. Consequently we produce two sorts of field. One is suitable for use by models, the global field. And the other color bar gif of the Alaska Region map Previous Alaska Region Maps NCEP MMAB Interactive Sea Ice Image Generation Animation Alaska Region Sea of Okhotsk and Sea of Japan - current figure concentration color bar
Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications
Liu, Chunlei; Wei, Hongjiang; Gong, Nan-Jie; Cronin, Matthew; Dibb, Russel; Decker, Kyle
2016-01-01
Quantitative susceptibility mapping (QSM) is a recently developed MRI technique for quantifying the spatial distribution of magnetic susceptibility within biological tissues. It first uses the frequency shift in the MRI signal to map the magnetic field profile within the tissue. The resulting field map is then used to determine the spatial distribution of the underlying magnetic susceptibility by solving an inverse problem. The solution is achieved by deconvolving the field map with a dipole field, under the assumption that the magnetic field is a result of the superposition of the dipole fields generated by all voxels and that each voxel has its unique magnetic susceptibility. QSM provides improved contrast to noise ratio for certain tissues and structures compared to its magnitude counterpart. More importantly, magnetic susceptibility is a direct reflection of the molecular composition and cellular architecture of the tissue. Consequently, by quantifying magnetic susceptibility, QSM is becoming a quantitative imaging approach for characterizing normal and pathological tissue properties. This article reviews the mechanism generating susceptibility contrast within tissues and some associated applications. PMID:26844301
NASA Astrophysics Data System (ADS)
Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.
2009-12-01
Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind of distribution could not be shown using MRD differences since they come from standardized distributions. Field-extend time-lapse ECa maps can provide useful images of the hydrological response of agricultural fields which can be used to evaluate different soil management strategies or to aid the assessment of biogeochemical fluxes at the field scale.
Dark solitons, D-branes and noncommutative tachyon field theory
NASA Astrophysics Data System (ADS)
Giaccari, Stefano; Nian, Jun
2017-11-01
In this paper we discuss the boson/vortex duality by mapping the (3+1)D Gross-Pitaevskii theory into an effective string theory in the presence of boundaries. Via the effective string theory, we find the Seiberg-Witten map between the commutative and the noncommutative tachyon field theories, and consequently identify their soliton solutions with D-branes in the effective string theory. We perform various checks of the duality map and the identification of soliton solutions. This new insight between the Gross-Pitaevskii theory and the effective string theory explains the similarity of these two systems at quantitative level.
NASA Astrophysics Data System (ADS)
Guttmann, Markus; Pöppl, Ronald
2017-04-01
Global warming results in an ongoing retreat of Alpine glaciers, leaving behind large amounts of easily erodible sediments. As a consequence processes like rockfalls, landslides and debris flows as well as fluvial processes occur more frequently in pro- and paraglacial areas, often involving catastrophic consequences for humans and infrastructure in the affected valleys. The main objective of the presented work was to map and spatially quantify glacier retreat and geomorphological changes in the Kromer valley, Silvretta Alps (Austria) by applying GIS- and field-based geomorphological mapping. In total six geomorphological maps (1950s, 1970s, 2001, 2006, 2012, and 2016) were produced and analyzed in the light of the study aim. First results have shown a significant decrease of total glaciated area from 96 ha to 53 ha which was accompanied by increased proglacial geomorphic activity (i.e. fluvial processes, rockfalls, debris flows, shallow landslides) in the last 15 years. More detailed results will be presented at the EGU General Assembly 2017.
ERIC Educational Resources Information Center
Krejsler, John B.
2013-01-01
Drawing on Foucauldian genealogy, the article maps major sources and trajectories of the evidence discourse. This enables scrutiny of the current struggle about "evidence" for "What Works" in education and social welfare. Evidence discourse is identified as emerging from the medical field as a bottom-up professional strategy.…
NASA Astrophysics Data System (ADS)
Luhmann, J. G.; Ma, Y.-J.; Brain, D. A.; Ulusen, D.; Lillis, R. J.; Halekas, J. S.; Espley, J. R.
2015-11-01
The first unambiguous detections of the crustal remanent magnetic fields of Mars were obtained by Mars Global Surveyor (MGS) during its initial orbits around Mars, which probed altitudes to within ∼110 km of the surface. However, the majority of its measurements were carried out around 400 km altitude, fixed 2 a.m. to 2 p.m. local time, mapping orbit. While the general character and planetary origins of the localized crustal fields were clearly revealed by the mapping survey data, their effects on the solar wind interaction could not be investigated in much detail because of the limited mapping orbit sampling. Previous analyses (Brain et al., 2006) of the field measurements on the dayside nevertheless provided an idea of the extent to which the interaction of the solar wind and planetary fields leads to non-ideal field draping at the mapping altitude. In this study we use numerical simulations of the global solar wind interaction with Mars as an aid to interpreting that observed non-ideal behavior. In addition, motivated by models for different interplanetary field orientations, we investigate the effects of induced and reconnected (planetary and external) fields on the Martian field's properties derived at the MGS mapping orbit altitude. The results suggest that inference of the planetary low order moments is compromised by their influence. In particular, the intrinsic dipole contribution may differ from that in the current models because the induced component is so dominant.
Mapping wide row crops with video sequences acquired from a tractor moving at treatment speed.
Sainz-Costa, Nadir; Ribeiro, Angela; Burgos-Artizzu, Xavier P; Guijarro, María; Pajares, Gonzalo
2011-01-01
This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird's-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight.
Plasma-driven ultrashort bunch diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dornmair, I.; Schroeder, C. B.; Floettmann, K.
2016-06-10
Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.
Seamless Warping of Diffusion Tensor Fields
Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425
Physician Dual Practice: A Descriptive Mapping Review of Literature.
Moghri, Javad; Arab, Mohammad; Rashidian, Arash; Akbari Sari, Ali
2016-03-01
Physician dual practice is a common phenomenon in almost all countries throughout the world, which could potential impacts on access, equity and quality of services. This paper aims to review studies in physician dual practice and categorize them in order to their main objectives and purposes. Comprehensive literature searches were undertaken in order to obtain main papers and documents in the field of physician dual practice. Systematic searches in Medline and Embase from 1960 to 2013, and general searches in some popular search engines were carried out in this way. After that, descriptive mapping review methods were utilized to categorize eligible studies in this area. The searches obtained 404 titles, of which 81 full texts were assessed. Finally, 24 studies were eligible for inclusion in our review. These studies were categorized into four groups - "motivation and forces behind dual practice", "consequences of dual practice", "dual practice Policies and their impacts", and "other studies" - based on their main objectives. Our findings showed a dearth of scientifically reliable literature in some areas of dual practice, like the prevalence of the phenomenon, the real consequences of it, and the impacts of the implemented policy measures. Rigorous empirical and evaluative studies should be designed to detect the real consequences of DP and assess the effects of interventions and regulations, which governments have implemented in this field.
Boz, Kubra; Denli, Hayri Hakan
2018-05-07
The rapid development of the global system for mobile communication services and the consequent increased electromagnetic field (EMF) exposure to the human body have generated debate on the potential danger with respect to human health. The many research studies focused on this subject have, however, not provided any certain evidence about harmful consequences due to mobile communication systems. On the other hand, there are still views suggesting such exposure might affect the human body in different ways. To reduce such effects to a minimum, the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has declared boundary values for the energy released by the base stations, which are the main source of the electromagnetic fields. These values are accepted by many countries in various parts of the world. The aim of this study was to create EMF intensity maps for the area covered by Istanbul Technical University (ITU) and find areas of potential risk with regard to health considering the current situation and future trends. In this study, the field intensities of electromagnetic signals issued at the frequencies of 900 and 1800 MHz were measured in V/m at 29 pre-specified survey points using a spectrum analyzer (Spectran HF-6065). Geographic information systems and spatial interpolation techniques were used to produce EMF intensity maps. Three different spatial interpolation methods, minimum mean square error, Radial Basis and Empirical Bayesian Kriging, were compared. The results were geographically analyzed and the measurements expressed as heat maps covering the study area. Using these maps, the values measured were compared with the EMF intensity standards issued by ICNIRP. The results showed that the exposure levels to the EMF intensities were all within the ICNIRP limits at the ITU study area. However, since the EMF intensity level with respect to human health is not known, it is not possible to confirm if these levels are safe or not.
Commitment Elements Reframed (Antecedents & Consequences) for Organizational Effectiveness
ERIC Educational Resources Information Center
Fornes, Sandra L.; Rocco, Tonette S.
2004-01-01
The purpose of this paper is to identify theories of commitment in the workplace to develop a framework that helps the field create higher levels of commitment, productivity, and satisfaction. The paper is organized into five main sections: the method, commitment in the workplace, mapping workplace commitment, and the implications for HRD and…
Preliminary aeromagnetic anomaly map of California
Roberts, Carter W.; Jachens, Rober C.
1999-01-01
The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.
NASA Astrophysics Data System (ADS)
Deligne, Natalia I.; Fitzgerald, Rebecca H.; Blake, Daniel M.; Davies, Alistair J.; Hayes, Josh L.; Stewart, Carol; Wilson, Grant; Wilson, Thomas M.; Castelino, Renella; Kennedy, Ben M.; Muspratt, Scott; Woods, Richard
2017-04-01
What happens when a city has a volcanic eruption within its boundaries? To explore the consequences of this rare but potentially catastrophic combination, we develop a detailed multi-hazard scenario of an Auckland Volcanic Field (AVF) eruption; the AVF underlies New Zealand's largest city, Auckland. We start with an existing AVF unrest scenario sequence and develop it through a month-long hypothetical eruption based on geologic investigations of the AVF and historic similar eruptions from around the world. We devise a credible eruption sequence and include all volcanic hazards that could occur in an AVF eruption. In consultation with Civil Defence and Emergency Management staff, we create a series of evacuation maps for before, during, and after the hypothetical eruption sequence. Our result is a versatile scenario with many possible applications, developed further in companion papers that explore eruption consequences on transportation and water networks. However, here we illustrate one application: evaluating the consequences of an eruption on electricity service provision. In a collaborative approach between scientists and electricity service providers, we evaluate the impact of the hypothetical eruption to electricity generation, transmission, and distribution infrastructure. We then evaluate how the impacted network functions, accounting for network adaptations (e.g., diverting power away from evacuated areas), site access, and restoration factors. We present a series of regional maps showing areas with full service, rolling outages, and no power as a result of the eruption. This illustrative example demonstrates how a detailed scenario can be used to further understand the ramifications of urban volcanism on local and regional populations, and highlights the importance of looking beyond damage to explore the consequences of volcanism.
Psychological Factors behind Truancy, School Phobia, and School Refusal: A Literature Study
ERIC Educational Resources Information Center
Ek, Hans; Eriksson, Rikard
2013-01-01
Truancy is a problem that normally leads to treatment interventions within different organizations. Within these organizations different perspectives on the causes and consequences of the above problem can be found. The purpose of this literature study is to map out and describe the current state of research within the fields of school refusal,…
Harnessing Next-Generation Sequencing Capabilities for Microbial Forensics
2014-07-15
content typing, rep-PCR, pulsed-field gel electrophoresis, optical mapping, and antimicrobial susceptibility testing (G. Gault et al., 2011; P...Tremlett, G, Pidd, 2011). This case demonstrates the vulnerability of our food supply and why unusual outbreaks involving endemic microbes must be taken as... food products to malevolent tampering, and the widespread international economic consequences that can occur even from limited product contamination
USDA-ARS?s Scientific Manuscript database
The area cultivated under conservation tillage practices such as no-till and minimal tillage has recently increased in south central Nebraska (NE). Consequently, changes in some of the impacts of cropping systems on soil such as enhancing soil and water quality, improving soil structures and infiltr...
NASA Astrophysics Data System (ADS)
Ding, R.; Cruz, L.; Whitney, J.; Telenko, D.; Oware, E. K.
2017-12-01
There is the growing need for the development of efficient irrigation management practices due to increasing irrigation water scarcity as a result of growing population and changing climate. Soil texture primarily controls the water-holding capacity of soils, which determines the amount of irrigation water that will be available to the plant. However, while there are significant variabilities in the textural properties of the soil across a field, conventional irrigation practices ignore the underlying variability in the soil properties, resulting in over- or under-irrigation. Over-irrigation leaches plant nutrients beyond the root-zone leading to fertilizer, energy, and water wastages with dire environmental consequences. Under-irrigation, in contrast, causes water stress of the plant, thereby reducing plant quality and yield. The goal of this project is to leverage soil textural map of a field to create water management zones (MZs) to guide site-specific precision irrigation. There is increasing application of electromagnetic induction methods to rapidly and inexpensively map spatially continuous soil properties in terms of the apparent electrical conductivity (ECa) of the soil. ECa is a measure of the bulk soil properties, including soil texture, moisture, salinity, and cation exchange capacity, making an ECa map a pseudo-soil map. Data for the project were collected from a farm site at Eden, NY. The objective is to leverage high-resolution ECa map to predict spatially dense soil textural properties from limited measurements of soil texture. Thus, after performing ECa mapping, we conducted particle-size analysis of soil samples to determine the textural properties of soils at selected locations across the field. We cokriged the high-resolution ECa measurements with the sparse soil textural data to estimate a soil texture map for the field. We conducted irrigation experiments at selected locations to calibrate representative water-holding capacities of each estimated soil textural unit. Estimated soil units with similar water-holding characteristics were merged to create sub-field water MZs to guide precision irrigation of each MZ, instructed by each MZ's calibrated water-holding properties.
Vedder, John G.; Stanley, Richard G.; Graham, S.E.; Valin, Z.C.
2001-01-01
Geologic mapping of the San Rafael Primitive Area (now the San Rafael Wilderness) by Gower and others (1966) and Vedder and others (1967) did not include all of the San Rafael Mtn. quadrangle, and the part that was mapped was done in reconnaissance fashion. To help resolve some of the structural and stratigraphic ambiguities of the earlier mapping and to complete the mapping of the quadrangle, additional field work was done during short intervals in 1980 and 1981 and from 1996 to 1998. Contacts within the belt of Franciscan rocks at the southwestern corner of the quadrangle were generalized from the detailed map by Wahl (1998). Because extensive areas were inaccessible owing to impenetrable chaparral, observations from several helicopter overflights (1965, 1980, 1981) and interpretations from aerial photographs were used as compilation aids. Consequently, some of the depicted contacts and faults are highly inferential, particularly within the Upper Cretaceous rocks throughout the middle part of the quadrangle.
The role of awake craniotomy in reducing intraoperative visual field deficits during tumor surgery
Wolfson, Racheal; Soni, Neil; Shah, Ashish H.; Hosein, Khadil; Sastry, Ananth; Bregy, Amade; Komotar, Ricardo J.
2015-01-01
Objective: Homonymous hemianopia due to damage to the optic radiations or visual cortex is a possible consequence of tumor resection involving the temporal or occipital lobes. The purpose of this review is to present and analyze a series of studies regarding the use of awake craniotomy (AC) to decrease visual field deficits following neurosurgery. Materials and Methods: A literature search was performed using the Medline and PubMed databases from 1970 and 2014 that compared various uses of AC other than intraoperative motor/somatosensory/language mapping with a focus on visual field mapping. Results: For the 17 patients analyzed in this study, 14 surgeries resulted in quadrantanopia, 1 in hemianopia, and 2 without visual deficits. Overall, patient satisfaction with AC was high, and AC was a means to reduce surgery-related complications and cost related with the procedure. Conclusion AC is a safe and tolerable procedure that can be used effectively to map optic radiations and the visual cortices in order to preserve visual function during resection of tumors infiltrating the temporal and occipital lobes. In the majority of cases, a homonymous hemianopia was prevented and patients were left with a quadrantanopia that did not interfere with daily function. PMID:26396597
A model for polar cap electric fields
NASA Technical Reports Server (NTRS)
Dangelo, N.
1976-01-01
A model is proposed relating polar cap ionospheric electric fields to the parameters of the solar wind near the orbit of the earth. The model ignores the notion of field line merging. An essential feature is the role played by velocity shear instabilities in regions of the outer magnetosphere, in which mapping of the magnetosheath electric field would produce sunward convection. The anomalous resistivity which arises from velocity shear turbulence, suffices to essentially disconnect the magnetosphere from the magnetosheath, at any place where that resistivity is large enough. The magnetosheath-magnetosphere system, as a consequence, acts as a kind of diode or rectifier for the magnetosheath electric fields. Predictions of the model are compared with several observations related to polar cap convection.
Magnetic field topology of τ Scorpii. The uniqueness problem of Stokes V ZDI inversions
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Wade, G. A.
2016-02-01
Context. The early B-type star τ Sco exhibits an unusually complex, relatively weak surface magnetic field. Its topology was previously studied with the Zeeman Doppler imaging (ZDI) modelling of high-resolution circular polarisation (Stokes V) observations. Aims: Here we assess the robustness of the Stokes V ZDI reconstruction of the magnetic field geometry of τ Sco and explore the consequences of using different parameterisations of the surface magnetic maps. Methods: This analysis is based on the archival ESPaDOnS high-resolution Stokes V observations and employs an independent ZDI magnetic inversion code. Results: We succeeded in reproducing previously published magnetic field maps of τ Sco using both general harmonic expansion and a direct, pixel-based representation of the magnetic field. These maps suggest that the field topology of τ Sco is comprised of comparable contributions of the poloidal and toroidal magnetic components. At the same time, we also found that available Stokes V observations can be successfully fitted with restricted harmonic expansions, by either neglecting the toroidal field altogether, or linking the radial and horizontal components of the poloidal field as required by the widely used potential field extrapolation technique. These alternative modelling approaches lead to a stronger and topologically more complex surface field structure. The field distributions, which were recovered with different ZDI options, differ significantly and yield indistinguishable Stokes V profiles but different linear polarisation (Stokes Q and U) signatures. Conclusions: Our investigation underscores the well-known problem of non-uniqueness of the Stokes V ZDI inversions. For the magnetic stars with properties similar to τ Sco (relatively complex field, slow rotation) the outcome of magnetic reconstruction strongly depends on the adopted field parameterisation, rendering photospheric magnetic mapping and determination of the extended magnetospheric field topology ambiguous. Stokes Q and U spectropolarimetric observations represent the only way of breaking the degeneracy of surface magnetic field models. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Imaging snake orbits at graphene n -p junctions
NASA Astrophysics Data System (ADS)
Kolasiński, K.; Mreńca-Kolasińska, A.; Szafran, B.
2017-01-01
We consider conductance mapping of the snake orbits confined along the n -p junction defined in graphene by the electrostatic doping in the quantum Hall regime. We explain the periodicity of conductance oscillations at the magnetic field and the Fermi energy scales by the properties of the n -p junction as a conducting channel. We evaluate the conductance maps for a floating gate scanning the surface of the device. In the quantum Hall conditions the currents flow near the edges of the sample and along the n -p junction. The conductance mapping resolves only the n -p junction and not the edges. The conductance oscillations along the junction are found in the maps with periodicity related to the cyclotron orbits of the scattering current. Stronger probe potentials provide support to localized resonances at one of the sides of the junction with current loops that interfere with the n -p junction currents. The interference results in a series of narrow lines parallel to the junction with positions that strongly depend on the magnetic field through the Aharonov-Bohm effect. The consequences of a limited transparency of finite-width n -p junctions are also discussed.
Surface Design Based on Discrete Conformal Transformations
NASA Astrophysics Data System (ADS)
Duque, Carlos; Santangelo, Christian; Vouga, Etienne
Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.
NASA Astrophysics Data System (ADS)
Bogan, A.; Studenikin, S. A.; Korkusinski, M.; Aers, G. C.; Gaudreau, L.; Zawadzki, P.; Sachrajda, A. S.; Tracy, L. A.; Reno, J. L.; Hargett, T. W.
2017-04-01
Hole transport experiments were performed on a gated double quantum dot device defined in a p -GaAs /AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.
Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W
2017-04-21
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogan, A.; Studenikin, Sergei A.; Korkusinski, M.
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and themore » direction of the external magnetic field. As a result, the heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.« less
Bogan, A.; Studenikin, Sergei A.; Korkusinski, M.; ...
2017-04-20
Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and themore » direction of the external magnetic field. As a result, the heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.« less
Research Area 7.4: Identifying a Path Towards Rapid Discrimination of Infection Disease Outbreaks
2014-07-15
content typing, rep-PCR, pulsed-field gel electrophoresis, optical mapping, and antimicrobial susceptibility testing (G. Gault et al., 2011; P...Tremlett, G, Pidd, 2011). This case demonstrates the vulnerability of our food supply and why unusual outbreaks involving endemic microbes must be taken as... food products to malevolent tampering, and the widespread international economic consequences that can occur even from limited product contamination
Aeromagnetic map compilation: Procedures for merging and an example from Washington
Finn, C.
1999-01-01
Rocks in Antarctica and offshore have widely diverse magnetic properties. Consequently, aeromagnetic data collected there can improve knowledge of the geologic, tectonic and geothermal characteristics of the region. Aeromagnetic data can map concealed structures such as faults, folds and dikes, ascertain basin thickness and locate buried volcanic, as well as some intrusive and metamorphic rocks. Gridded, composite data sets allow a view of continental-scale trends that individual data sets do not provide and link widely-separated areas of outcrop and disparate geologic studies. Individual magnetic surveys must be processed so that they match adjacent surveys prior to merging. A consistent representation of the Earth's magnetic field (International Geomagnetic Reference Field (IGRF)) must be removed from each data set. All data sets need to be analytically continued to the same flight elevation with their datums shifted to match adjacent data. I advocate minimal processing to best represent the individual surveys in the merged compilation. An example of a compilation of aeromagnetic surveys from Washington illustrates the utility of aeromagnetic maps for providing synoptic views of regional tectonic features.
Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors
NASA Astrophysics Data System (ADS)
Calero, D.; Fernandez, E.; Parés, M. E.
2017-11-01
This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.
Determination of MLC model parameters for Monaco using commercial diode arrays.
Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian
2016-07-08
Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors
NASA Astrophysics Data System (ADS)
Poggio, Matteo; Brown, David J.; Gasch, Caley K.; Brooks, Erin S.; Yourek, Matt A.
2015-04-01
In the Palouse region of eastern Washington and northern Idaho (USA), spatially discontinuous restrictive layers impede rooting growth and water infiltration. Consequently, accurate maps showing the depth and spatial extent of these restrictive layers are essential for watershed hydrologic modeling appropriate for precision agriculture. In this presentation, we report on the use of a Visible and Near-Infrared (VisNIR) penetrometer fore optic to construct detailed maps of three wheat fields in the Palouse region. The VisNIR penetrometer was used to deliver in situ soil reflectance to an Analytical Spectral Devices (ASD, Boulder, CO, USA) spectrometer and simultaneously acquire insertion force. With a hydraulic push-type soil coring systems for insertion (e.g. Giddings), we collected soil spectra and insertion force data along 41m x 41m grid points (2 fields) and 50m x 50m grid points (1 field) to ≈80cm depth, in addition to interrogation points at 36 representative instrumented locations per field. At each of the 36 instrumented locations, two soil cores were extracted for laboratory determination of clay content and bulk density. We developed calibration models of soil clay content and bulk density with spectra and insertion force collected in situ, using partial least squares regression 2 (PLSR2). Applying spline functions, we delineated clay and bulk density profiles at each points (grid and 24 locations). The soil profiles were then used as inputs in a regression-kriging model with terrain indexes and ECa data (derived from an EM38 field survey, Geonics, Mississauga, Ontario, Canada) as covariates to generate 3D soil maps. Preliminary results show that the VisNIR penetrometer can capture the spatial patterns of restrictive layers. Work is ongoing to evaluate the prediction accuracy of penetrometer-derived 3D clay content and restriction layer maps.
2014-07-15
content typing, rep-PCR, pulsed-field gel electrophoresis, optical mapping, and antimicrobial susceptibility testing (G. Gault et al., 2011; P...Tremlett, G, Pidd, 2011). This case demonstrates the vulnerability of our food supply and why unusual outbreaks involving endemic microbes must be taken as... food products to malevolent tampering, and the widespread international economic consequences that can occur even from limited product contamination
Williams, D. H.
1975-01-01
The condition of the periphery of the retinal field of the human eye is of considerable significance, it is suggested, to those participating in various sporting activities. Its boundaries shrink and expand depending upon the physiological conditions imposed both upon the eye and upon the organism as a whole. Consequently its message to the brain may be impaired under stress with resulting danger owing to delayed response. Images Fig. 3 Fig. 4 Fig. 5 PMID:1148574
The spatial distribution and time evolution of impact-generated magnetic fields
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Schultz, P. H.
1991-01-01
The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time.
Shaded relief aeromagnetic map of the Santa Clara Valley and vicinity, California
Roberts, Carter W.; Jachens, Robert C.
2003-01-01
This aeromagnetic map covers the southern portion of San Francisco Bay, the Santa Clara Valley and surrounding mountains, part of which has been modelled in threedimensions (Jachens and other, 2001). The magnetic anomaly map has been compiled from existing digital data. Data was obtained from six aeromagnetic surveys that were flown at different times, spacings and elevations. The International Geomagnetic Reference Field (IGRF) for the date of each survey had been removed in the initial processing. The resulting residual magnetic anomalies were analytically continued onto a common surface 305 m (1000 ft) above terrain. Portions of each survey were substantially above the specified flight height listed in the table. The surveys were then merged together using a commercial software package called Oasis Montage. The gray lines on the map indicate the extent of each survey. The program used these regions of overlap to determine the best fit between surveys. Black dots show probable edges of magnetic bodies defined by the maximum horizontal gradient determined using a computer program by Blakely (1995). Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). Faults often cut magnetic bodies and offset magnetic anomalies can thus be used to help determine fault motion. Serpentinite, which is highly magnetic, is often found along faults. On this map areas of low magnetic anomalies are shown in blues and green while highs are shown in reds and magentas. Faults are from Brabb and others, 1998a,1998b, Graymer and others 1996, Lienkaemper, 1992 and Wentworth and others 1998.
Estimating B1+ in the breast at 7 T using a generic template.
van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J
2018-05-01
Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Estimating B 1 + in the breast at 7 T using a generic template
Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.
2018-01-01
Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887
NASA Astrophysics Data System (ADS)
Bucciantini, N.; Bandiera, R.; Olmi, B.; Del Zanna, L.
2017-10-01
Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At present, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work, we investigate, for the first time using simulated synchrotron maps, the effect of a small-scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5-3 times the one in the ordered field.
Random waves in the brain: Symmetries and defect generation in the visual cortex
NASA Astrophysics Data System (ADS)
Schnabel, M.; Kaschube, M.; Löwel, S.; Wolf, F.
2007-06-01
How orientation maps in the visual cortex of the brain develop is a matter of long standing debate. Experimental and theoretical evidence suggests that their development represents an activity-dependent self-organization process. Theoretical analysis [1] exploring this hypothesis predicted that maps at an early developmental stage are realizations of Gaussian random fields exhibiting a rigorous lower bound for their densities of topological defects, called pinwheels. As a consequence, lower pinwheel densities, if observed in adult animals, are predicted to develop through the motion and annihilation of pinwheel pairs. Despite of being valid for a large class of developmental models this result depends on the symmetries of the models and thus of the predicted random field ensembles. In [1] invariance of the orientation map's statistical properties under independent space rotations and orientation shifts was assumed. However, full rotation symmetry appears to be broken by interactions of cortical neurons, e.g. selective couplings between groups of neurons with collinear orientation preferences [2]. A recently proposed new symmetry, called shift-twist symmetry [3], stating that spatial rotations have to occur together with orientation shifts in order to be an appropriate symmetry transformation, is more consistent with this organization. Here we generalize our random field approach to this important symmetry class. We propose a new class of shift-twist symmetric Gaussian random fields and derive the general correlation functions of this ensemble. It turns out that despite strong effects of the shift-twist symmetry on the structure of the correlation functions and on the map layout the lower bound on the pinwheel densities remains unaffected, predicting pinwheel annihilation in systems with low pinwheel densities.
A CLEAN-based method for mosaic deconvolution
NASA Astrophysics Data System (ADS)
Gueth, F.; Guilloteau, S.; Viallefond, F.
1995-03-01
Mosaicing may be used in aperture synthesis to map large fields of view. So far, only MEM techniques have been used to deconvolve mosaic images (Cornwell (1988)). A CLEAN-based method has been developed, in which the components are located in a modified expression. This allows a better utilization of the information and consequent noise reduction in the overlapping regions. Simulations show that this method gives correct clean maps and recovers most of the flux of the sources. The introduction of the short-spacing visibilities in the data set is strongly required. Their absence actually introduces artificial lack of structures on the corresponding scale in the mosaic images. The formation of ``stripes'' in clean maps may also occur, but this phenomenon can be significantly reduced by using the Steer-Dewdney-Ito algorithm (Steer, Dewdney & Ito (1984)) to identify the CLEAN components. Typical IRAM interferometer pointing errors do not have a significant effect on the reconstructed images.
Supersymmetry and the rotation group
NASA Astrophysics Data System (ADS)
McKeon, D. G. C.
2018-04-01
A model invariant under a supersymmetric extension of the rotation group 0(3) is mapped, using a stereographic projection, from the spherical surface S2 to two-dimensional Euclidean space. The resulting model is not translation invariant. This has the consequence that fields that are supersymmetric partners no longer have a degenerate mass. This degeneracy is restored once the radius of S2 goes to infinity, and the resulting supersymmetry transformation for the fields is now mass dependent. An analogous model on the surface S4 is introduced and its projection onto four-dimensional Euclidean space is examined. This model in turn suggests a supersymmetric model on (3 + 1)-dimensional Minkowski space.
Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong
1992-01-01
Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.
Adam, R.; Ade, P. A. R.; Aghanim, N.; ...
2016-02-09
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
NASA Astrophysics Data System (ADS)
Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wiesemeyer, H.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-02-01
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in the Stokes Q and/or U maps. We focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 1020 to 1022 cm-2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. We discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, R.; Ade, P. A. R.; Aghanim, N.
The role of the magnetic field in the formation of the filamentary structures observed in the interstellar medium (ISM) is a debated topic owing to the paucity of relevant observations needed to test existing models. The Planck all-sky maps of linearly polarized emission from dust at 353 GHz provide the required combination of imaging and statistics to study the correlation between the structures of the Galactic magnetic field and of interstellar matter over the whole sky, both in the diffuse ISM and in molecular clouds. The data reveal that structures, or ridges, in the intensity map have counterparts in themore » Stokes Q and/or U maps. In this paper, we focus our study on structures at intermediate and high Galactic latitudes, which cover two orders of magnitude in column density, from 10 20 to 10 22 cm -2. We measure the magnetic field orientation on the plane ofthe sky from the polarization data, and present an algorithm to estimate the orientation of the ridges from the dust intensity map. We use analytical models to account for projection effects. Comparing polarization angles on and off the structures, we estimate the mean ratio between the strengths of the turbulent and mean components of the magnetic field to be between 0.6 and 1.0, with a preferred value of 0.8. We find that the ridges are usually aligned with the magnetic field measured on the structures. This statistical trend becomes more striking for increasing polarization fraction and decreasing column density. There is no alignment for the highest column density ridges. We interpret the increase in alignment with polarization fraction as a consequence of projection effects. We present maps to show that the decrease in alignment for high column density is not due to a loss of correlation between the distribution of matter and the geometry of the magnetic field. In molecular complexes, we also observe structures perpendicular to the magnetic field, which, statistically, cannot be accounted for by projection effects. This first statistical study of the relative orientation between the matter structures and the magnetic field in the ISM points out that, at the angular scales probed by Planck, the field geometry projected on the plane of the sky is correlated with the distribution of matter. In the diffuse ISM, the structures of matter are usually aligned with the magnetic field, while perpendicular structures appear in molecular clouds. Finally, we discuss our results in the context of models and MHD simulations, which attempt to describe the respective roles of turbulence, magnetic field, and self-gravity in the formation of structures in the magnetized ISM.« less
FIRST ZEEMAN DOPPLER IMAGING OF A COOL STAR USING ALL FOUR STOKES PARAMETERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosén, L.; Kochukhov, O.; Wade, G. A.
Magnetic fields are ubiquitous in active cool stars, but they are in general complex and weak. Current Zeeman Doppler imaging (ZDI) studies of cool star magnetic fields chiefly employ circular polarization observations because linear polarization is difficult to detect and requires a more sophisticated radiative transfer modeling to interpret. But it has been shown in previous theoretical studies, and in the observational analyses of magnetic Ap stars, that including linear polarization in the magnetic inversion process makes it possible to correctly recover many otherwise lost or misinterpreted magnetic features. We have obtained phase-resolved observations in all four Stokes parameters ofmore » the RS CVn star II Peg at two separate epochs. Here we present temperature and magnetic field maps reconstructed for this star using all four Stokes parameters. This is the very first such ZDI study of a cool active star. Our magnetic inversions reveal a highly structured magnetic field topology for both epochs. The strength of some surface features is doubled or even quadrupled when linear polarization is taken into account. The total magnetic energy of the reconstructed field map also becomes about 2.1–3.5 times higher. The overall complexity is also increased as the field energy is shifted toward higher harmonic modes when four Stokes parameters are used. As a consequence, the potential field extrapolation of the four Stokes parameter ZDI results indicates that magnetic field becomes weaker at a distance of several stellar radii due to a decrease of the large-scale field component.« less
The influence of Mars' magnetic topology on atmospheric escape
NASA Astrophysics Data System (ADS)
Curry, S.; Luhmann, J. G.; DiBraccio, G. A.; Dong, C.; Xu, S.; Mitchell, D.; Gruesbeck, J.; Espley, J. R.; Connerney, J. E. P.; McFadden, J. P.; Ma, Y. J.; Brain, D.
2017-12-01
At weakly magnetized planets such as Mars and Venus, the solar wind directly interacts with the upper atmosphere where ions can be picked up and swept away by the background convection electric field. These pick-up ions have a gyroradius on the planetary scale that is largely dominated by the interplanetary magnetic field (IMF). But at Mars, their trajectory is also influenced by the existence of remanent crustal magnetic fields, which are thought to create a shielding effect for escaping planetary ions when they are on the dayside. Consequently, the magnetic topology changes at Mars as magnetic reconnection occurs between the draped (IMF) and the crustal magnetic fields (closed). The resulting topology includes open field lines in the solar wind with one footprint attached to the planet. Using magnetohydrodynamic (MHD) and test particle simulations, we will explore the influence of the magnetic topology on ion escape. We will present escape rates for planetary ions for different crustal field positions during different IMF configurations, with +/-BY and +/-BZ components in the Mars Sun Orbit (MSO) coordinate system. We will also compare global maps of ion outflow and escape with open / closed magnetic field line maps and compare our results with ion fluxes and magnetic field data from the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission. Our results relating the dynamic magnetic field topology at Mars and planetary ion escape are an important aspect of magnetospheric physics and planetary evolution, both of which have applications to our own solar system and the increasing number of exoplanets discovered every year.
Cultural Mapping of the Heritage Districts in Medan, North Sumatra
NASA Astrophysics Data System (ADS)
Fitri, I.; Ratna; Sitorus, R.; Affan, M.
2017-03-01
Medan as one of the historical towns in Indonesia is rich with architectural and urban heritages; however, there still has no integrated plan to safeguard them. This paper discusses the cultural mapping of the seven heritage conservation districts in the city of Medan. It focuses on exploring the process and challenges of the study from the initial step of data collections to the building of the cultural maps with web based GIS. Multi-method of data collection tactics or triangulation such as field survey, interviews was done to cover the cultural data resources including both tangible (or quantitative) and intangible (or qualitative). Participation of the local community is essential to identify mainly the intangibles one. Based on the preliminary analysis of the seven heritage districts in Medan city, Merdeka-Kesawan area had whole categories of the cultural assets and resources compared to other six heritage areas. Consequently, it influences the enhancement its cultural heritage significance. By using our methods, we emphasized the importance of the cultural mapping in preparing the conservation policies and strategies of the seven heritage districts in Medan.
Kamadjeu, Raoul
2009-01-01
Background The use of GIS in public health is growing, a consequence of a rapidly evolving technology and increasing accessibility to a wider audience. Google Earth™ (GE) is becoming an important mapping infrastructure for public health. However, generating traditional public health maps for GE is still beyond the reach of most public health professionals. In this paper, we explain, through the example of polio eradication activities in the Democratic Republic of Congo, how we used GE Earth as a planning tool and we share the methods used to generate public health maps. Results The use of GE improved field operations and resulted in better dispatch of vaccination teams and allocation of resources. It also allowed the creation of maps of high quality for advocacy, training and to help understand the spatiotemporal relationship between all the entities involved in the polio outbreak and response. Conclusion GE has the potential of making mapping available to a new set of public health users in developing countries. High quality and free satellite imagery, rich features including Keyhole Markup Language or image overlay provide a flexible but yet powerful platform that set it apart from traditional GIS tools and this power is still to be fully harnessed by public health professionals. PMID:19161606
Vortex unbinding in 2D classical JJ arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minnhagen, Petter
1998-05-15
Vortices for 2D superfluids are introduced and are described in terms of a 2D Coulomb gas. The 2D classical JJ array is modeled by a 2D XY-model and a mapping between the XY-model and the Coulomb gas is given. The physical properties of a JJ array are then given in terms of the corresponding Coulomb gas properties. First aspects of the Kosterlitz-Thouless vortex unbinding transitions are reviewed. Consequences for the resistance as well as the frequency dependent conductivity are described. Next the vortex unbinding induced by an external current is considered with Consequencies for the non-linear IV-characteristics. Finally some somemore » effects of a perpendicular magnetic field are discussed in terms of an interplay between free vortices and bound vortex pairs.« less
NASA Astrophysics Data System (ADS)
Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K.
2015-06-01
The aim of this paper is to assess the groundwater potentiality combining Geographic Information Systems and Remote Sensing with data obtained from the field, as an additional tool to the hydrogeological research. The present study was elaborated in the broader area of Tirnavos, covering 419.4 km2. The study area is located in Thessaly (central Greece) and is crossed by two rivers, Pinios and Titarisios. Agriculture is one of the main elements of Thessaly's economy resulting in intense agricultural activity and consequently increased exploitation of groundwater resources. Geographic Information Systems (GIS) and Remote Sensing (RS) were used in order to create a map that depicts the likelihood of existence of groundwater, consisting of five classes, showing the groundwater potentiality and ranging from very high to very low. The extraction of this map is based on the study of input data such as: rainfall, potential recharge, lithology, lineament density, slope, drainage density and depth to groundwater. Weights were assigned to all these factors according to their relevance to groundwater potential and eventually a map based on weighted spatial modeling system was created. Furthermore, a groundwater quality suitability map was illustrated by overlaying the groundwater potentiality map with the map showing the potential zones for drinking groundwater in the study area. The results provide significant information and the maps could be used from local authorities for groundwater exploitation and management.
2011-04-14
characteristics in many locations and consequently most of the base has been mapped as disturbed urban land complexes. Major soil complexes represented...at WPAFB include: Warsaw-Fill land complex, Sloan-Fill land complex, Miamian- Urban land complex, Fox- Urban land complex, Linwood Muck, Westland- Urban ...land complex, and Warsaw- Urban land complex. 3.6.1 Proposed Action The project area for the alternative includes approximately 3.7 acres of property
Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System
Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul
2017-01-01
In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513
Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.
Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul
2017-03-22
In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.
Laba, M.; Tsai, F.; Ogurcak, D.; Smith, S.; Richmond, M.E.
2005-01-01
Mapping invasive plant species in aquatic and terrestrial ecosystems helps to understand the causes of their progression, manage some of their negative consequences, and control them. In recent years, a variety of new remote-sensing techniques, like Derivative Spectral Analysis (DSA) of hyperspectral data, have been developed to facilitate this mapping. A number of questions related to these techniques remain to be addressed. This article attempts to answer one of these questions: Is the application of DSA optimal at certain times of the year? Field radiometric data gathered weekly during the summer of 1999 at selected field sites in upstate New York, populated with purple loosestrife (Lythrum salicaria L.), common reed (Phragmites australis (Cav.)) and cattail (Typha L.) are analyzed using DSA to differentiate among plant community types. First, second and higher-order derivatives of the reflectance spectra of nine field plots, varying in plant composition, are calculated and analyzed in detail to identify spectral ranges in which one or more community types have distinguishing features. On the basis of the occurrence and extent of these spectral ranges, experimental observations suggest that a satisfactory differentiation among community types was feasible on 30 August, when plants experienced characteristic phenological changes (transition from flowers to seed heads). Generally, dates in August appear optimal from the point of view of species differentiability and could be selected for image acquisitions. This observation, as well as the methodology adopted in this article, should provide a firm basis for the acquisition of hyperspectral imagery and for mapping the targeted species over a broad range of spatial scales. ?? 2005 American Society for Photogrammetry and Remote Sensing.
Mapping Gender and Migration in Sociological Scholarship: Is It Segregation or Integration?
Curran, Sara R.; Shafer, Steven; Donato, Katharine M.; Garip, Filiz
2016-01-01
A review of the sociological research about gender and migration shows the substantial ways in which gender fundamentally organizes the social relations and structures influencing the causes and consequences of migration. Yet, although a significant sociological research has emerged on gender and migration in the last three decades, studies are not evenly distributed across the discipline. In this article, we map the recent intellectual history of gender and migration in the field of sociology and then systematically assess the extent to which studies on engendering migration have appeared in four widely read journals of sociology (American Journal of Sociology, American Sociological Review, Demography, and Social Forces). We follow with a discussion of these studies, and in our conclusions, we consider how future gender and migration scholarship in sociology might evolve more equitably. PMID:27478289
Wrenching and oil migration, Mervine field, Kay County, Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, H.G.
1985-02-01
Since 1913, Mervine field (T27N, R3E) has produced oil from 11 Mississippian and Pennsylvanian zones, and gas from 2 Permian zones. The field exhibits an impressive asymmetric surface anticline, with the steeper flank dipping 30/sup 0/E maximum. A nearly vertical, basement-involved fault develops immediately beneath the steeper flank of the surface anticline. Three periods of left-lateral wrench faulting account for 93% of all structural growth: 24% in post-Mississippian-pre-Desmoinesian time, 21% in Virgilian time, and 48% in post-Wolfcampian time. In Mesozoic through early Cenozoic times, the Devonian Woodford Shale (and possibly the Desmoinesian Cherokee shales) locally generated oil, which should havemore » been structurally trapped in the Ordovician Bromide sandstone. This oil may have joined oil already trapped in the Bromide, which had migrated to the Mervine area in the Early Pennsylvanian from a distant source. Intense post-Wolfcampian movement(s) fractured the competent pre-Pennsylvanian rocks, allowing Bromide brine and entrained oil to migrate vertically up the master fault, finally accumulating in younger reservoirs. Pressure, temperature, and salinity anomalies attest to vertical fluid migration continuing at the present time at Mervine field. Consequently, pressure, temperature, and salinity mapping should be considered as valuable supplements to structural and lithologic mapping when prospecting for structural hydrocarbon accumulations in epicratonic provinces.« less
NASA Astrophysics Data System (ADS)
Yadav, S.; Sunda, S.; Sridharan, R.
2016-12-01
The impact of the St. Patrick's Day storm (17 March 2015) on the major equatorial electro-dynamical process viz., the Equatorial Ionization Anomaly (EIA) has been assessed using 2D (lat. x long.) total electron content (TEC) maps generated from the ground based SBAS (Satellite Based Augmentation System) enabled receiver data. The various aspects of EIA viz., i) evolution/devolution, ii) longitudinal structure, and iii) its variability during different phases of a geomagnetic storm have been brought out. These 2D TEC maps, which have a large latitudinal (5̊ S-45° N) and longitudinal (55-110° E) coverage, show the complete reversal in the longitudinal structure of EIA during the recovery phase of the storm as compared to the quiet day. These results have been explained in the light of the combined effects of the storm associated processes viz., i) the penetration electric fields of magnetosphere origin, ii) storm induced thermospheric winds, and iii) activation of the consequent disturbance dynamo, effectively distorting the longitudinal wave number 4 (WN4) structure of the EIA. It has been shown unambiguously that even a separation of few degrees in longitude ( 30̊) could experience significantly different forcings. The relevance and the far reaching consequences of the study in the light of the current trends and requirements for reliable satellite based navigation are highlighted.
PPF Dependent Fixed Point Results for Triangular α c-Admissible Mappings
Ćirić, Ljubomir; Alsulami, Saud M.; Salimi, Peyman
2014-01-01
We introduce the concept of triangular α c-admissible mappings (pair of mappings) with respect to η c nonself-mappings and establish the existence of PPF dependent fixed (coincidence) point theorems for contraction mappings involving triangular α c-admissible mappings (pair of mappings) with respect to η c nonself-mappings in Razumikhin class. Several interesting consequences of our theorems are also given. PMID:24672352
NASA Astrophysics Data System (ADS)
Deo, Ram K.
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
Consequence Maps: A Novel Behavior Management Tool for Educators
ERIC Educational Resources Information Center
Tobin, Catherine E.; Simpson, Richard
2012-01-01
Behavior management remains one of the most significant challenges faced by classroom personnel. One relatively novel and promising management approach involves the use of "Consequence Maps". In this article we discuss the use of this method, including its application and evaluation. A case study of a six-year-old boy in a self-contained special…
Langhammer, Jakub; Vilímek, Vít
2008-09-01
The paper presents the analysis of anthropogenical modifications of the landscape in relation to the course and consequences of floods. The research was conducted in the Otava river basin which represents the core zone of the extreme flood in August 2002 in Central Europe. The analysis was focused on the key indicators of landscape modification potentially affecting the runoff process - the long-term changes of land-use, changes of land cover structure, land drainage, historical shortening of the river network and the modifications of streams and floodplains. The information on intensity and spatial distribution of modifications was derived from different data sources--historical maps, available GIS data, remote sensing and field mapping. The results revealed a high level of spatial diversity of anthropogenical modifications in different parts of the river basin. The intensive modifications in most of indicators were concentrated in the lowland region of the river basin due to its agricultural use; however important changes were also recorded in the headwater region of the basin. The high spatial diversity of the modifications may result in their varying effect on the course and consequences of floods in different parts of the river basin. This effect is demonstrated by the cluster analysis based on the matrix of indicators of stream and floodplain modification, physiogeographical characteristics and geomorphological evidences of the flood in August 2002, derived from the individual thematic layers using GIS.
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Wilke, Marko; Altaye, Mekibib; Holland, Scott K.
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Use of geological mapping tools to improve the hydraulic performance of SuDS.
Bockhorn, Britta; Klint, Knud Erik Strøyberg; Jensen, Marina Bergen; Møller, Ingelise
2015-01-01
Most cities in Denmark are situated on low permeable clay rich deposits. These sediments are of glacial origin and range among the most heterogeneous, with hydraulic conductivities spanning several orders of magnitude. This heterogeneity has obvious consequences for the sizing of sustainable urban drainage systems (SuDS). We have tested methods to reveal geological heterogeneity at field scale to identify the most suitable sites for the placement of infiltration elements and to minimize their required size. We assessed the geological heterogeneity of a clay till plain in Eastern Jutland, Denmark measuring the shallow subsurface resistivity with a geoelectrical multi-electrode system. To confirm the resistivity data we conducted a spear auger mapping. The exposed sediments ranged from clay tills over sandy clay tills to sandy tills and correspond well to the geoelectrical data. To verify the value of geological information for placement of infiltration elements we carried out a number of infiltration tests on geologically different areas across the field, and we observed infiltration rates two times higher in the sandy till area than in the clay till area, thus demonstrating that the hydraulic performance of SuDS can be increased considerably and oversizing avoided if field geological heterogeneity is revealed before placing SuDS.
Luo, Yanqi; Khoram, Parisa; Brittman, Sarah; Zhu, Zhuoying; Lai, Barry; Ong, Shyue Ping; Garnett, Erik C; Fenning, David P
2017-11-01
Optoelectronic devices based on hybrid perovskites have demonstrated outstanding performance within a few years of intense study. However, commercialization of these devices requires barriers to their development to be overcome, such as their chemical instability under operating conditions. To investigate this instability and its consequences, the electric field applied to single crystals of methylammonium lead bromide (CH 3 NH 3 PbBr 3 ) is varied, and changes are mapped in both their elemental composition and photoluminescence. Synchrotron-based nanoprobe X-ray fluorescence (nano-XRF) with 250 nm resolution reveals quasi-reversible field-assisted halide migration, with corresponding changes in photoluminescence. It is observed that higher local bromide concentration is correlated to superior optoelectronic performance in CH 3 NH 3 PbBr 3 . A lower limit on the electromigration rate is calculated from these experiments and the motion is interpreted as vacancy-mediated migration based on nudged elastic band density functional theory (DFT) simulations. The XRF mapping data provide direct evidence of field-assisted ionic migration in a model hybrid-perovskite thin single crystal, while the link with photoluminescence proves that the halide stoichiometry plays a key role in the optoelectronic properties of the perovskite. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Science Traverses in the Canadian High Arctic
NASA Technical Reports Server (NTRS)
Williamson, Marie-Claude
2012-01-01
The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
NASA Astrophysics Data System (ADS)
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
Premelting, fluctuations, and coarse-graining of water-ice interfaces.
Limmer, David T; Chandler, David
2014-11-14
Using statistical field theory supplemented with molecular dynamics simulations, we consider premelting on the surface of ice as a generic consequence of broken hydrogen bonds at the boundary between the condensed and gaseous phases. A procedure for coarse-graining molecular configurations onto a continuous scalar order parameter field is discussed, which provides a convenient representation of the interface between locally crystal-like and locally liquid-like regions. A number of interfacial properties are straightforwardly evaluated using this procedure such as the average premelting thickness and surface tension. The temperature and system size dependence of the premelting layer thickness calculated in this way confirms the characteristic logarithmic growth expected for the scalar field theory that the system is mapped onto through coarse-graining, though remains finite due to long-ranged interactions. Finally, from explicit simulations the existence of a premelting layer is shown to be insensitive to bulk lattice geometry, exposed crystal face, and curvature.
Premelting, fluctuations, and coarse-graining of water-ice interfaces
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2014-11-01
Using statistical field theory supplemented with molecular dynamics simulations, we consider premelting on the surface of ice as a generic consequence of broken hydrogen bonds at the boundary between the condensed and gaseous phases. A procedure for coarse-graining molecular configurations onto a continuous scalar order parameter field is discussed, which provides a convenient representation of the interface between locally crystal-like and locally liquid-like regions. A number of interfacial properties are straightforwardly evaluated using this procedure such as the average premelting thickness and surface tension. The temperature and system size dependence of the premelting layer thickness calculated in this way confirms the characteristic logarithmic growth expected for the scalar field theory that the system is mapped onto through coarse-graining, though remains finite due to long-ranged interactions. Finally, from explicit simulations the existence of a premelting layer is shown to be insensitive to bulk lattice geometry, exposed crystal face, and curvature.
Current trends in geomorphological mapping
NASA Astrophysics Data System (ADS)
Seijmonsbergen, A. C.
2012-04-01
Geomorphological mapping is a world currently in motion, driven by technological advances and the availability of new high resolution data. As a consequence, classic (paper) geomorphological maps which were the standard for more than 50 years are rapidly being replaced by digital geomorphological information layers. This is witnessed by the following developments: 1. the conversion of classic paper maps into digital information layers, mainly performed in a digital mapping environment such as a Geographical Information System, 2. updating the location precision and the content of the converted maps, by adding more geomorphological details, taken from high resolution elevation data and/or high resolution image data, 3. (semi) automated extraction and classification of geomorphological features from digital elevation models, broadly separated into unsupervised and supervised classification techniques and 4. New digital visualization / cartographic techniques and reading interfaces. Newly digital geomorphological information layers can be based on manual digitization of polygons using DEMs and/or aerial photographs, or prepared through (semi) automated extraction and delineation of geomorphological features. DEMs are often used as basis to derive Land Surface Parameter information which is used as input for (un) supervised classification techniques. Especially when using high-res data, object-based classification is used as an alternative to traditional pixel-based classifications, to cluster grid cells into homogeneous objects, which can be classified as geomorphological features. Classic map content can also be used as training material for the supervised classification of geomorphological features. In the classification process, rule-based protocols, including expert-knowledge input, are used to map specific geomorphological features or entire landscapes. Current (semi) automated classification techniques are increasingly able to extract morphometric, hydrological, and in the near future also morphogenetic information. As a result, these new opportunities have changed the workflows for geomorphological mapmaking, and their focus have shifted from field-based techniques to using more computer-based techniques: for example, traditional pre-field air-photo based maps are now replaced by maps prepared in a digital mapping environment, and designated field visits using mobile GIS / digital mapping devices now focus on gathering location information and attribute inventories and are strongly time efficient. The resulting 'modern geomorphological maps' are digital collections of geomorphological information layers consisting of georeferenced vector, raster and tabular data which are stored in a digital environment such as a GIS geodatabase, and are easily visualized as e.g. 'birds' eye' views, as animated 3D displays, on virtual globes, or stored as GeoPDF maps in which georeferenced attribute information can be easily exchanged over the internet. Digital geomorphological information layers are increasingly accessed via web-based services distributed through remote servers. Information can be consulted - or even build using remote geoprocessing servers - by the end user. Therefore, it will not only be the geomorphologist anymore, but also the professional end user that dictates the applied use of digital geomorphological information layers.
Digital Geological Mapping for Earth Science Students
NASA Astrophysics Data System (ADS)
England, Richard; Smith, Sally; Tate, Nick; Jordan, Colm
2010-05-01
This SPLINT (SPatial Literacy IN Teaching) supported project is developing pedagogies for the introduction of teaching of digital geological mapping to Earth Science students. Traditionally students are taught to make geological maps on a paper basemap with a notebook to record their observations. Learning to use a tablet pc with GIS based software for mapping and data recording requires emphasis on training staff and students in specific GIS and IT skills and beneficial adjustments to the way in which geological data is recorded in the field. A set of learning and teaching materials are under development to support this learning process. Following the release of the British Geological Survey's Sigma software we have been developing generic methodologies for the introduction of digital geological mapping to students that already have experience of mapping by traditional means. The teaching materials introduce the software to the students through a series of structured exercises. The students learn the operation of the software in the laboratory by entering existing observations, preferably data that they have collected. Through this the students benefit from being able to reflect on their previous work, consider how it might be improved and plan new work. Following this they begin fieldwork in small groups using both methods simultaneously. They are able to practise what they have learnt in the classroom and review the differences, advantages and disadvantages of the two methods, while adding to the work that has already been completed. Once the field exercises are completed students use the data that they have collected in the production of high quality map products and are introduced to the use of integrated digital databases which they learn to search and extract information from. The relatively recent development of the technologies which underpin digital mapping also means that many academic staff also require training before they are able to deliver the course materials. Consequently, a set of staff training materials are being developed in parallel to those for the students. These focus on the operation of the software and an introduction to the structure of the exercises. The presentation will review the teaching exercises and student and staff responses to their introduction.
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Nordahl, Bobo; Bunkholt, Halvor; Nicolaisen, Magnus; Jarna, Alexandra; Iversen, Sverre; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.
2015-11-01
The unstable rock slope database is developed and maintained by the Geological Survey of Norway as part of the systematic mapping of unstable rock slopes in Norway. This mapping aims to detect catastrophic rock slope failures before they occur. More than 250 unstable slopes with post-glacial deformation are detected up to now. The main aims of the unstable rock slope database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, as well as hazard and risk classification. Feature classes and tables linked to the main feature class include different scenarios of an unstable rock slope, field observation points, sampling points for dating, displacement measurement stations, lineaments, unstable areas, run-out areas, areas affected by secondary effects, along with tables for hazard and risk classification and URL links to further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through an online map service. Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site. Areas of possible rock avalanche run-out and their secondary effects displayed in the online map service, along with hazard and risk assessments, will become important tools for land-use planning. The present database will further evolve in the coming years as the systematic mapping progresses and as available techniques and tools evolve.
Simple heterogeneity parametrization for sea surface temperature and chlorophyll
NASA Astrophysics Data System (ADS)
Skákala, Jozef; Smyth, Timothy J.
2016-06-01
Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.
NASA Astrophysics Data System (ADS)
Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan; Shinde, Seema
2014-04-01
Cerium doped Gadolinium garnets (Gd3AlxGa5-xO12 where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.
Digital Bathymetric Model of Mono Lake, California
Raumann, Christian G.; Stine, Scott; Evans, Alexander; Wilson, Jerry
2002-01-01
In 1986 and 1987, Pelagos Corporation of San Diego (now Racal Pelagos) undertook a bathymetric survey of Mono Lake in eastern California for the Los Angeles Department of Water and Power (DWP). The result of that survey was a series of maps at various scales and contour intervals. From these maps, the DWP hoped to predict consequences of the drop in lake level that resulted from their diversion of streams in the Mono Basin. No digital models, including shaded-relief and perspective-view renderings, were made from the data collected during the survey. With the permission of Pelagos Corporation and DWP, these data are used to produce a digital model of the floor of Mono Lake. The model was created using a geographic information system (GIS) to incorporate these data with new observations and measurements made in the field. This model should prove to be a valuable tool for enhanced visualization and analyses of the floor of Mono Lake.
A mapping of information security in health Information Systems in Latin America and Brazil.
Pereira, Samáris Ramiro; Fernandes, João Carlos Lopes; Labrada, Luis; Bandiera-Paiva, Paulo
2013-01-01
In health, Information Systems are patient records, hospital administration or other, have advantages such as cost, availability and integration. However, for these benefits to be fully met, it is necessary to guarantee the security of information maintained and provided by the systems. The lack of security can lead to serious consequences such as lawsuits and induction to medical errors. The management of information security is complex and is used in various fields of knowledge. Often, it is left in the background for not being the ultimate goal of a computer system, causing huge financial losses to corporations. This paper by systematic review methodologies, presented a mapping in the literature, in order to identify the most relevant aspects that are addressed by security researchers of health information, as to the development of computerized systems. They conclude through the results, some important aspects, for which the managers of computerized health systems should remain alert.
Cortical topography of intracortical inhibition influences the speed of decision making.
Wilimzig, Claudia; Ragert, Patrick; Dinse, Hubert R
2012-02-21
The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes.
Cortical topography of intracortical inhibition influences the speed of decision making
Wilimzig, Claudia; Ragert, Patrick; Dinse, Hubert R.
2012-01-01
The neocortex contains orderly topographic maps; however, their functional role remains controversial. Theoretical studies have suggested a role in minimizing computational costs, whereas empirical studies have focused on spatial localization. Using a tactile multiple-choice reaction time (RT) task before and after the induction of perceptual learning through repetitive sensory stimulation, we extend the framework of cortical topographies by demonstrating that the topographic arrangement of intracortical inhibition contributes to the speed of human perceptual decision-making processes. RTs differ among fingers, displaying an inverted U-shaped function. Simulations using neural fields show the inverted U-shaped RT distribution as an emergent consequence of lateral inhibition. Weakening inhibition through learning shortens RTs, which is modeled through topographically reorganized inhibition. Whereas changes in decision making are often regarded as an outcome of higher cortical areas, our data show that the spatial layout of interaction processes within representational maps contributes to selection and decision-making processes. PMID:22315409
Cressman, Earle Rupert; Noger, Martin C.
1981-01-01
In 1960, the U.S. Geological Survey and the Kentucky Geological Survey began a program to map the State geologically at a scale of 1:24,000 and to publish the maps as 707 U.S. Geological Survey Geologic Quadrangle Maps. Fieldwork was completed by the spring of 1977, and all maps were published by December 1978. Geologic mapping of the State was proposed by the Kentucky Society of Professional Engineers in 1959. Wallace W. Hagan, Director and State Geologist of the Kentucky Geological Survey, and Preston McGrain, Assistant State Geologist, promoted support for the proposal among organizations such as Chambers of Commerce, industrial associations, professional societies, and among members of the State government. It was also arranged for the U.S. Geological Survey to supply mapping personnel and to publish the maps; the cost would be shared equally by the two organizations. Members of the U.S. Geological Survey assigned to the program were organized as the Branch of Kentucky Geology. Branch headquarters, including an editorial staff, was at Lexington, Ky., but actual mapping was conducted from 18 field offices distributed throughout the State. The Publications Division of the U.S. Geological Survey established a cartographic office at Lexington to prepare the maps for publication. About 260 people, including more than 200 professionals, were assigned to the Branch of Kentucky Geology by the U.S. Geological Survey at one time or another. The most geologists assigned any one year was 61. To complete the mapping and ancillary studies, 661 professional man-years were required, compared with an original estimate of 600 man-years. A wide variety of field methods were used, but most geologists relied on the surveying altimeter to obtain elevations. Surface data were supplemented by drill-hole records, and several dozen shallow diamond-drill holes were drilled to aid the mapping. Geologists generally scribed their own maps, with a consequent saving of publication costs. Paleontologists and stratigraphers of the U.S. Geological Survey cooperated closely with the program. Paleontologic studies were concentrated in the Ordovician of central Kentucky, the Pennsylvanian of eastern and western Kentucky, and the Mesozoic and Cenozoic of westernmost Kentucky. In addition to financial support, the Kentucky Geological Survey provided economic data, stratigraphic support, and drillhole records to the field offices. Geologists of the State Survey made subsurface structural interpretations, constructed bedrock topography maps, and mapped several quadrangles. Some of the problems encountered were the inadequacy of much of the existing stratigraphic nomenclature, the uneven quality of some of the mapping, and the effects of relative isolation on the professional development of some of the geologists. The program cost a total of $20,927,500. In terms of 1960 dollars, it cost $16,035,000; this compares with an original estimate of $12,000,000. Although it is difficult to place a monetary value on the geologic mapping, the program has contributed to newly discovered mineral wealth, jobs, and money saved by government and industry. The maps are used widely in the exploration for coal, oil and gas, fluorspar, limestone, and clay. The maps are also used in planning highways and locations of dams, in evaluating foundation and excavation conditions, in preparing environmental impact statements, and in land-use planning.
New Mexico Play Fairway Analysis: Particle Tracking ArcGIS Map Packages
Jeff Pepin
2015-11-15
These are map packages used to visualize geochemical particle-tracking analysis results in ArcGIS. It includes individual map packages for several regions of New Mexico including: Acoma, Rincon, Gila, Las Cruces, Socorro and Truth or Consequences.
NASA Astrophysics Data System (ADS)
De Marco, M.; Krása, J.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Margarone, D.; Ahmed, H.; Borghesi, M.; Kar, S.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Limpouch, J.; Korn, G.; Weber, S.; Velardi, L.; Delle Side, D.; Nassisi, V.; Ullschmied, J.
2016-06-01
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Folding Digital Mapping into a Traditional Field Camp Program
NASA Astrophysics Data System (ADS)
Kelley, D. F.
2011-12-01
Louisiana State University runs a field camp with a permanent fixed-base which has continually operated since 1928 in the Front Range just to the south of Colorado Springs, CO. The field camp program which offers a 6-credit hour course in Field Geology follows a very traditional structure. The first week is spent collecting data for the construction of a detailed stratigraphic column of the local geology. The second week is spent learning the skills of geologic mapping, while the third applies these skills to a more geologically complicated mapping area. The final three weeks of the field camp program are spent studying and mapping igneous and metamorphic rocks as well as conducting a regional stratigraphic correlation exercise. Historically there has been a lack of technology involved in this program. All mapping has been done in the field without the use of any digital equipment and all products have been made in the office without the use of computers. In the summer of 2011 the use of GPS units, and GIS software were introduced to the program. The exercise that was chosen for this incorporation of technology was one in which metamorphic rocks are mapped within Golden Gate Canyon State Park in Colorado. This same mapping exercise was carried out during the 2010 field camp session with no GPS or GIS use. The students in both groups had the similar geologic backgrounds, similar grade point averages, and similar overall performances at field camp. However, the group that used digital mapping techniques mapped the field area more quickly and reportedly with greater ease. Additionally, the students who used GPS and GIS included more detailed rock descriptions with their final maps indicating that they spent less time in the field focusing on mapping contacts between units. The outcome was a better overall product. The use of GPS units also indirectly caused the students to produce better field maps. In addition to greater ease in mapping, the use of GIS software to create maps was rewarding to the students and gave them mapping experience that is in line with industry standards.
Debris flows susceptibility mapping under tropical rain conditions in Rwanda.
NASA Astrophysics Data System (ADS)
Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri
2017-04-01
Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.
Plasmoid formation and evolution in a numerical simulation of a substorm
NASA Technical Reports Server (NTRS)
Slinker, S. P.; Fedder, J. A.; Lyon, J. G.
1995-01-01
Plasmoids are thought to occur as a consequence of the formation of a near-Earth neutral line during the evolution of a geomagnetic substorm. Using a 3D, global MHD simulation of the interaction of the Earth's magnetosphere with the solar wind, we initiate a substorm by a southward turning of the Interplanetary Magnetic Field (IMF) after a long period of steady northward field. A large plasmoid is formed and ejected. We show field line maps of its shape and relate its formation time to the progress of the substorm as indicated by the cross polar potential. Because of the large region of closed field in the magnetotail at the time of the substorm, this plasmoid is longer in axial dimension than is typically observed. We compare the simulation results with the type of satellite observations which have been used to argue for the existence of plasmoids or of traveling compression regions (TCRs) in the lobes or magnetosheath. The simulation predicts that plasmoid passage would result in a strong signal in the cross tail electric field.
Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy
Boujraf, Saïd
2018-01-01
Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631
JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.
Lu, Wenmiao; Lu, Yi
2011-07-01
Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.
NASA Astrophysics Data System (ADS)
Barros, Diego; Takahashi, Hisao; Wrasse, Cristiano M.; Figueiredo, Cosme Alexandre O. B.
2018-01-01
A ground-based network of GNSS receivers has been used to monitor equatorial plasma bubbles (EPBs) by mapping the total electron content (TEC map). The large coverage of the TEC map allowed us to monitor several EPBs simultaneously and get characteristics of the dynamics, extension and longitudinal distributions of the EPBs from the onset time until their disappearance. These characteristics were obtained by using TEC map analysis and the keogram technique. TEC map databases analyzed were for the period between November 2012 and January 2016. The zonal drift velocities of the EPBs showed a clear latitudinal gradient varying from 123 m s-1 at the Equator to 65 m s-1 for 35° S latitude. Consequently, observed EPBs are inclined against the geomagnetic field lines. Both zonal drift velocity and the inclination of the EPBs were compared to the thermospheric neutral wind, which showed good agreement. Moreover, the large two-dimensional coverage of TEC maps allowed us to study periodic EPBs with a wide longitudinal distance. The averaged values observed for the inter-bubble distances also presented a clear latitudinal gradient varying from 920 km at the Equator to 640 km at 30° S. The latitudinal gradient in the inter-bubble distances seems to be related to the difference in the zonal drift velocity of the EPB from the Equator to middle latitudes and to the difference in the westward movement of the terminator. On several occasions, the distances reached more than 2000 km. Inter-bubble distances greater than 1000 km have not been reported in the literature.
Zero entropy continuous interval maps and MMLS-MMA property
NASA Astrophysics Data System (ADS)
Jiang, Yunping
2018-06-01
We prove that the flow generated by any continuous interval map with zero topological entropy is minimally mean-attractable and minimally mean-L-stable. One of the consequences is that any oscillating sequence is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy. In particular, the Möbius function is linearly disjoint from all flows generated by all continuous interval maps with zero topological entropy (Sarnak’s conjecture for continuous interval maps). Another consequence is a non-trivial example of a flow having discrete spectrum. We also define a log-uniform oscillating sequence and show a result in ergodic theory for comparison. This material is based upon work supported by the National Science Foundation. It is also partially supported by a collaboration grant from the Simons Foundation (grant number 523341) and PSC-CUNY awards and a grant from NSFC (grant number 11571122).
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Wade, G. A.; Shulyak, D.
2012-04-01
Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and extrapolations, as well as methodological flaws and inconsistencies of their analysis. Our discussion proves that published magnetic inversions based on a mean stellar atmosphere are highly robust and reliable, and that the presence of small-scale magnetic field structures on the surfaces of Ap stars is indeed real. Incorporating horizontal variations of atmospheric structure in Doppler imaging can marginally improve reconstruction of abundance distributions for stars showing very large iron overabundances. But this costly technique is unnecessary for magnetic mapping with high-resolution polarization spectra.
Haacke, Jon E.; Barclay, C. S. Venable; Hettinger, Robert D.
2016-09-30
In the 1970s and 1980s, C.S. Venable Barclay conducted geologic mapping of areas primarily underlain by Cretaceous coals in the eastern part of the Little Snake River coal field (LSR) in Carbon County, southwest Wyoming. With some exceptions, most of the mapping data were never published. Subsequently, after his retirement from the U.S. Geological Survey (USGS), his field maps and field notebooks were archived in the USGS Field Records. Due to a pending USGS coal assessment of the Little Snake River coal field area and planned geological mapping to be conducted by the Wyoming State Geological Survey, Barclay’s mapping data needed to be published to support these efforts. Subsequently, geologic maps were scanned and georeferenced into a geographic information system, and project and field notes were scanned into Portable Document Format (PDF) files. Data for seventeen 7½-minute quadrangles are presented in this report. This publication is solely intended to compile the mapping data as it was last worked on by Barclay and provides no interpretation or modification of his work.
NASA Astrophysics Data System (ADS)
Pasteka, Roman; Zahorec, Pavol; Mikuska, Jan; Szalaiova, Viktoria; Papco, Juraj; Krajnak, Martin; Kusnirak, David; Panisova, Jaroslava; Vajda, Peter; Bielik, Miroslav
2014-05-01
In this contribution results of the running project "Bouguer anomalies of new generation and the gravimetrical model of Western Carpathians (APVV-0194-10)" are presented. The existing homogenized regional database (212478 points) was enlarged by approximately 107 500 archive detailed gravity measurements. These added gravity values were measured since the year 1976 to the present, therefore they need to be unified and reprocessed. The improved positions of more than 8500 measured points were acquired by digitizing of archive maps (we recognized some local errors within particular data sets). Besides the local errors (due to the wrong positions, heights or gravity of measured points) we have found some areas of systematic errors probably due to the gravity measurement or processing errors. Some of them were confirmed and consequently corrected by field measurements within the frame of current project. Special attention is paid to the recalculation of the terrain corrections - we have used a new developed software as well as the latest version of digital terrain model of Slovakia DMR-3. Main improvement of the new terrain corrections evaluation algorithm is the possibility to calculate it in the real gravimeter position and involving of 3D polyhedral bodies approximation (accepting the spherical approximation of Earth's curvature). We have realized several tests by means of the introduction of non-standard distant relief effects introduction. A new complete Bouguer anomalies map was constructed and transformed by means of higher derivatives operators (tilt derivatives, TDX, theta-derivatives and the new TDXAS transformation), using the regularization approach. A new interesting regional lineament of probably neotectonic character was recognized in the new map of complete Bouguer anomalies and it was confirmed also by realized in-situ field measurements.
A new gradient shimming method based on undistorted field map of B0 inhomogeneity.
Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang
2016-04-01
Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Carrere, Veronique; Abrams, Michael J.
1988-01-01
Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data were acquired over the Goldfield Mining District, Nevada, in September 1987. Goldfield is one of the group of large epithermal precious metal deposits in Tertiary volcanic rocks, associated with silicic volcanism and caldera formation. Hydrothermal alteration consists of silicification along fractures, advanced agrillic and argillic zones further away from veins and more widespread propylitic zones. An evaluation of AVIRIS data quality was performed. Faults in the data, related to engineering problems and a different behavior of the instrument while on-board the U2, were encountered. Consequently, a decision was made to use raw data and correct them only for dark current variations and detector read-out-delays. New software was written to that effect. Atmospheric correction was performed using the flat field correction technique. Analysis of the data was then performed to extract spectral information, mainly concentrating on the 2 to 2.45 micron window, as the alteration minerals of interest have their distinctive spectral reflectance features in this region. Principally kaolinite and alunite spectra were clearly obtained. Mapping of the different minerals and alteration zones was attempted using ratios and clustering techniques. Poor signal-to-noise performance of the instrument and the lack of appropriate software prevented the production of an alteration map of the area. Spectra extracted locally from the AVIRIS data were checked in the field by collecting representative samples of the outcrops.
An offline-online Web-GIS Android application for fast data acquisition of landslide hazard and risk
NASA Astrophysics Data System (ADS)
Olyazadeh, Roya; Sudmeier-Rieux, Karen; Jaboyedoff, Michel; Derron, Marc-Henri; Devkota, Sanjaya
2017-04-01
Regional landslide assessments and mapping have been effectively pursued by research institutions, national and local governments, non-governmental organizations (NGOs), and different stakeholders for some time, and a wide range of methodologies and technologies have consequently been proposed. Land-use mapping and hazard event inventories are mostly created by remote-sensing data, subject to difficulties, such as accessibility and terrain, which need to be overcome. Likewise, landslide data acquisition for the field navigation can magnify the accuracy of databases and analysis. Open-source Web and mobile GIS tools can be used for improved ground-truthing of critical areas to improve the analysis of hazard patterns and triggering factors. This paper reviews the implementation and selected results of a secure mobile-map application called ROOMA (Rapid Offline-Online Mapping Application) for the rapid data collection of landslide hazard and risk. This prototype assists the quick creation of landslide inventory maps (LIMs) by collecting information on the type, feature, volume, date, and patterns of landslides using open-source Web-GIS technologies such as Leaflet maps, Cordova, GeoServer, PostgreSQL as the real DBMS (database management system), and PostGIS as its plug-in for spatial database management. This application comprises Leaflet maps coupled with satellite images as a base layer, drawing tools, geolocation (using GPS and the Internet), photo mapping, and event clustering. All the features and information are recorded into a GeoJSON text file in an offline version (Android) and subsequently uploaded to the online mode (using all browsers) with the availability of Internet. Finally, the events can be accessed and edited after approval by an administrator and then be visualized by the general public.
Design Insights for MapReduce from Diverse Production Workloads
2012-01-25
different industries [5]. Consequently, there is a need to develop systematic knowledge of MapRe- duce behavior at both established users within technol...relevant to MapReduce-like systems that combine data movements and computation. 5.2 Task granularity Many MapReduce workload management mechanisms make...ex- ecutes the jobs given, versus what the jobs actually are. MapReduce workload managers currently optimize exe- cution scheduling and placement
NASA Astrophysics Data System (ADS)
Miller, J. D.; Hudak, G. J.; Peterson, D.
2011-12-01
Since 2007, the central program of the Precambrian Research Center (PRC) at the University of Minnesota Duluth has been a six-week geology field camp focused on the Precambrian geology of the Canadian Shield. This field camp has two main purposes. First and foremost is to teach students specialized field skills and field mapping techniques that can be utilized to map and interpret Precambrian shield terranes characterized by sparse outcrop and abundant glacial cover. In addition to teaching basic outcrop mapping technique , students are introduced to geophysical surveying (gravity, magnetics), glacial drift prospecting, and drill core logging techniques in several of our geological mapping exercises. These mapping methodologies are particularly applicable to minerals exploration in shield terranes. The second and equally important goal of the PRC field camp is to teach students modern map-making and map production skills. During the fifth and sixth weeks of field camp, students conduct "capstone" mapping projects. These projects encompass one week of detailed bedrock mapping in remote regions of northern Minnesota that have not been mapped in detail (e.g. scales greater than 1:24,000) and a second week of map-making and map generation utilizing geographic information systems (currently ArcGIS10), graphics software packages (Adobe Illustrator CS4), and various imaging software for geophysical and topographic data. Over the past five years, PRC students and faculty have collaboratively published 21 geologic maps through the Precambrian Research Center Map Series. These maps are currently being utilized in a variety of ways by industry, academia, and government for mineral exploration programs, development of undergraduate, graduate, and faculty research projects, and for planning, archeological studies, and public education programs in Minnesota's state parks. Acquisition of specialized Precambrian geological mapping skills and geologic map-making proficiencies has enabled our students to be highly sought after for employment and/or subsequent graduate studies.
Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.
2012-01-01
I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815
Narayan, Sreenath; Kalhan, Satish C; Wilson, David L
2013-05-01
To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.
Evaluation of using digital gravity field models for zoning map creation
NASA Astrophysics Data System (ADS)
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
Shifman, M. A.; Nadkarni, P.; Miller, P. L.
1992-01-01
Pulse field gel electrophoresis mapping is an important technique for characterizing large segments of DNA. We have developed two tools to aid in the construction of pulse field electrophoresis gel maps: PFGE READER which stores experimental conditions and calculates fragment sizes and PFGE MAPPER which constructs pulse field gel electrophoresis maps. PMID:1482898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyagi, Mohit; Pitale, Shreyas S.; Ghosh, Manoranjan
2014-04-24
Cerium doped Gadolinium garnets (Gd{sub 3}Al{sub x}Ga{sub 5−x}O{sub 12} where 0≤x≤5) are synthesized via combustion synthesis using mixture of urea and glycine fuels. A 4h Post annealing at 1400 oC is found to be necessary for pure phase formation. Lattice spacing variation as a result of partial or total Ga substitution at Al site was mapped by X-ray diffraction. Photoluminescence emission of Ce shifts as a consequence of Ga substitution and therefore suggests a local re-adjustment of crystal field around activator site.
Computed inverse resonance imaging for magnetic susceptibility map reconstruction.
Chen, Zikuan; Calhoun, Vince
2012-01-01
This article reports a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a 2-step computational approach. The forward T2*-weighted MRI (T2*MRI) process is broken down into 2 steps: (1) from magnetic susceptibility source to field map establishment via magnetization in the main field and (2) from field map to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes 2 inverse steps to reverse the T2*MRI procedure: field map calculation from MR-phase image and susceptibility source calculation from the field map. The inverse step from field map to susceptibility map is a 3-dimensional ill-posed deconvolution problem, which can be solved with 3 kinds of approaches: the Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from an MR-phase image with high fidelity (spatial correlation ≈ 0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by 2 computational steps: calculating the field map from the phase image and reconstructing the susceptibility map from the field map. The crux of CIMRI lies in an ill-posed 3-dimensional deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm.
Microfilming maps of abandoned anthracite mines: mines in the southern anthracite field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gait, G.B.
1978-01-01
This report is the fifth in a series concerning the Bureau of Mines program for microfilming maps of abandoned mines in the Pennsylvania anthracite region. A catalog of the microfilmed maps of 47 of 49 major mines and 18 independent mines in the Southern field is presented. Previous reports included catalogs of microfilmed maps of mines in the Eastern Middle field, the Wyoming and Lackawanna Basins of the Northern field, and the Western Middle anthracite field.
NASA Astrophysics Data System (ADS)
Virtanen, Ilpo; Mursula, Kalevi
2015-04-01
Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.
Template‐based field map prediction for rapid whole brain B0 shimming
Shi, Yuhang; Vannesjo, S. Johanna; Miller, Karla L.
2017-01-01
Purpose In typical MRI protocols, time is spent acquiring a field map to calculate the shim settings for best image quality. We propose a fast template‐based field map prediction method that yields near‐optimal shims without measuring the field. Methods The template‐based prediction method uses prior knowledge of the B0 distribution in the human brain, based on a large database of field maps acquired from different subjects, together with subject‐specific structural information from a quick localizer scan. The shimming performance of using the template‐based prediction is evaluated in comparison to a range of potential fast shimming methods. Results Static B0 shimming based on predicted field maps performed almost as well as shimming based on individually measured field maps. In experimental evaluations at 7 T, the proposed approach yielded a residual field standard deviation in the brain of on average 59 Hz, compared with 50 Hz using measured field maps and 176 Hz using no subject‐specific shim. Conclusions This work demonstrates that shimming based on predicted field maps is feasible. The field map prediction accuracy could potentially be further improved by generating the template from a subset of subjects, based on parameters such as head rotation and body mass index. Magn Reson Med 80:171–180, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29193340
NASA Technical Reports Server (NTRS)
Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara
2013-01-01
Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively smaller gains in geologic knowledge.
NASA Astrophysics Data System (ADS)
Orlando, Elena
2016-04-01
Galactic synchrotron radiation observed from radio to microwaves is produced by cosmic-ray (CR) electrons propagating in magnetic fields (B-fields). The low-frequency foreground component separated maps by WMAP and Planck depend on the assumed synchrotron spectrum. The synchrotron spectrum varies for different line of sights as a result of changes on the CR spectrum due to propagation effects and source distributions. Our present knowledge of the CR spectrum at different locations in the Galaxy is not sufficient to distinguish various possibilities in the modeling. As a consequence uncertainties on synchrotron emission models complicate the foreground component separation analysis with Planck and future microwave telescopes. Hence, any advancement in synchrotron modeling is important for separating the different foreground components.The first step towards a more comprehensive understanding of degeneracy and correlation among the synchrotron model parameters is outlined in our Strong et al. 2011 and Orlando et al. 2013 papers. In the latter the conclusion was that CR spectrum, propagation models, B-fields, and foreground component separation analysis need to be studied simultaneously in order to properly obtain and interpret the synchrotron foreground. Indeed for the officially released Planck maps, we use only the best spectral model from our above paper for the component separation analysis.Here we present a collections of our latest results on synchrotron, CRs and B-fields in the context of CR propagation, showing also our recent work on B-fields within the Planck Collaboration. We underline also the importance of using the constraints on CRs that we obtain from gamma ray observations. Methods and perspectives for further studies on the synchrotron foreground will be addressed.
PenMap demonstration project, landslide mapping system
DOT National Transportation Integrated Search
2002-12-01
This report documents the findings of a technology transfer project to demonstrate the effectiveness of a portable field mapping system to landslide field reconnaissance work. The objective of this project was to expose the latest field data collecti...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buehler, Marc; Tartaglia, Michael; Tompkins, John
The Mu2e experiment at Fermilab is designed to explore charged lepton flavor violation by searching for muon-to-electron conversion. The magnetic field generated by a system of solenoids is crucial for Mu2e and requires accurate characterization to detect any flaws and to produce a detailed field map. Stringent physics goals are driving magnetic field specifications for the Mu2e solenoids. A field mapper is being designed, which will produce detailed magnetic field maps. The uniform field region of the spectrometer volume requires the highest level of precision (1 Gauss per 1 Tesla). During commissioning, multiple magnetic field maps will be generated tomore » verify proper alignment of all magnet coils, and to create the final magnetic field map. In order to design and build a precise field mapping system consisting of Hall and NRM probes, tolerances and precision for such a system need to be evaluated. In this paper we present a design for the Mu2e field mapping hardware, and discuss results from OPERA-3D simulations to specify parameters for Hall and NMR probes. We also present a fitting procedure for the analytical treatment of our expected magnetic measurements.« less
NASA Astrophysics Data System (ADS)
Nüsser, Marcus; Schmidt, Susanne
2017-04-01
Against the background of the prominent Himalayan glacier debate of the past decade, global concerns were raised about the severe consequences of detected and expected changes in the South Asian cryosphere. Due to the lack of historical glaciological data in the Himalayan region, studies of glacier changes over long time periods are rare. The present study seeks to analyze and quantify glacier changes in the Nanga Parbat region between 1856 and 2016. Due to the steep topography and great vertical span, the debris-covered glaciers of the mountain massif are largely fed by avalanches of different size. This impact of snow and ice re-distribution by avalanches is often neglected in glacier mass-balances. Therefore, an integrated approach was used to investigate the glacier changes and the impact of avalanches. This approach includes (1) a re-photographic survey with images from several expeditions between 1934 and 2010, (2) mapping during own field surveys between 1992 and 2010, as well as (3) the analyses of remote sensing data (Corona, QuickBird, KompSat, Landsat, etc. and DEM) and (4) historical topographic maps. The re-photographic survey allows for direct comparisons and illustrates glacier changes over a span of seventy years. Changes of glacier lengths were quantified by using remote sensing data and the topographic map of 1934. In order to calculate glacier surface changes, a digital elevation model (DEM) with a spatial resolution of 30 x 30 m2 was derived from the digitized contour lines of the topographic map from 1934 and compared to SRTM-DEM (30 x 30 m2) and ALOS-DSM. Based on remote sensing time-series, avalanche deposits on glaciers were mapped in order to identify their magnitude and frequencies. To calculate the potential glacier catchment, area of steep rock walls and the ratio between accumulation and ablation zones were calculated for each glacier basin. Our field based investigations show that the glaciers in the Rupal Valley are characterized by small retreating rates since 1856, when Adolph Schlagintweit mapped them for the first time; others such as the Raikot Glacier on the northern side of the Nanga Parbat are fluctuating since 1934.
Integrating remote sensing and terrain data in forest fire modeling
NASA Astrophysics Data System (ADS)
Medler, Michael Johns
Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.
Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho
Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin
1995-01-01
This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to channel deactivation, increased island visitation and nest predation by predatory mammals due to loss of a water barrier between some islands and banks, and larger populations of alien plant species in the new riparian vegetation.
Early detection of sporadic pancreatic cancer: strategic map for innovation--a white paper.
Kenner, Barbara J; Chari, Suresh T; Cleeter, Deborah F; Go, Vay Liang W
2015-07-01
Innovation leading to significant advances in research and subsequent translation to clinical practice is urgently necessary in early detection of sporadic pancreatic cancer. Addressing this need, the Early Detection of Sporadic Pancreatic Cancer Summit Conference was conducted by Kenner Family Research Fund in conjunction with the 2014 American Pancreatic Association and Japan Pancreas Society Meeting. International interdisciplinary scientific representatives engaged in strategic facilitated conversations based on distinct areas of inquiry: Case for Early Detection: Definitions, Detection, Survival, and Challenges; Biomarkers for Early Detection; Imaging; and Collaborative Studies. Ideas generated from the summit have led to the development of a Strategic Map for Innovation built upon 3 components: formation of an international collaborative effort, design of an actionable strategic plan, and implementation of operational standards, research priorities, and first-phase initiatives. Through invested and committed efforts of leading researchers and institutions, philanthropic partners, government agencies, and supportive business entities, this endeavor will change the future of the field and consequently the survival rate of those diagnosed with pancreatic cancer.
Bracken, Robert E.; Brown, Philip J.
2006-01-01
On March 12, 2003, data were gathered at Yuma Proving Grounds, in Arizona, using a Tensor Magnetic Gradiometer System (TMGS). This report shows how these data were processed and explains concepts required for successful TMGS data reduction. Important concepts discussed include extreme attitudinal sensitivity of vector measurements, low attitudinal sensitivity of gradient measurements, leakage of the common-mode field into gradient measurements, consequences of thermal drift, and effects of field curvature. Spatial-data collection procedures and a spin-calibration method are addressed. Discussions of data-reduction procedures include tracking of axial data by mathematically matching transfer functions among the axes, derivation and application of calibration coefficients, calculation of sensor-pair gradients, thermal-drift corrections, and gradient collocation. For presentation, the magnetic tensor at each data station is converted to a scalar quantity, the I2 tensor invariant, which is easily found by calculating the determinant of the tensor. At important processing junctures, the determinants for all stations in the mapped area are shown in shaded relief map-view. Final processed results are compared to a mathematical model to show the validity of the assumptions made during processing and the reasonableness of the ultimate answer obtained.
Novice to Expert Cognition During Geologic Bedrock Mapping
NASA Astrophysics Data System (ADS)
Petcovic, H. L.; Libarkin, J.; Hambrick, D. Z.; Baker, K. M.; Elkins, J. T.; Callahan, C. N.; Turner, S.; Rench, T. A.; LaDue, N.
2011-12-01
Bedrock geologic mapping is a complex and cognitively demanding task. Successful mapping requires domain-specific content knowledge, visuospatial ability, navigation through the field area, creating a mental model of the geology that is consistent with field data, and metacognition. Most post-secondary geology students in the United States receive training in geologic mapping, however, not much is known about the cognitive processes that underlie successful bedrock mapping, or about how these processes change with education and experience. To better understand cognition during geologic mapping, we conducted a 2-year research study in which 67 volunteers representing a range from undergraduate sophomore to 20+ years professional experience completed a suite of cognitive measures plus a 1-day bedrock mapping task in the Rocky Mountains, Montana, USA. In addition to participants' geologic maps and field notes, the cognitive suite included tests and questionnaires designed to measure: (1) prior geologic experience, via a self-report survey; (2) geologic content knowledge, via a modified version of the Geoscience Concept Inventory; (3) visuospatial ability, working memory capacity, and perceptual speed, via paper-and-pencil and computerized tests; (4) use of space and time during mapping via GPS tracking; and (5) problem-solving in the field via think-aloud audio logs during mapping and post-mapping semi-structured interviews. Data were examined for correlations between performance on the mapping task and other measures. We found that both geological knowledge and spatial visualization ability correlated positively with accuracy in the field mapping task. More importantly, we found a Visuospatial Ability × Geological Knowledge interaction, such that visuospatial ability positively predicted mapping performance at low, but not high, levels of geological knowledge. In other words, we found evidence to suggest that visuospatial ability mattered for bedrock mapping for the novices in our sample, but not for the experts. For experienced mappers, we found a significant correlation between GCI scores and the thoroughness with which they covered the map area, plus a relationship between speed and map accuracy such that faster mappers produced better maps. However, fast novice mappers tended to produce the worst maps. Successful mappers formed a mental model of the underlying geologic structure immediately to early in the mapping task, then spent field time collecting observations to confirm, disconfirm, or modify their initial model. In contrast, the least successful mappers (all inexperienced) rarely generated explanations or models of the underlying geologic structure in the field.
NASA Astrophysics Data System (ADS)
Nolesini, Teresa; Frodella, William; Bardi, Federica; Intrieri, Emanuele; Carlà, Tommaso; Solari, Lorenzo; Dotta, Giulia; Ferrigno, Federica; Casagli, Nicola
2017-04-01
Landslides represent one of the most frequent geo-hazard, not only causing a serious threat to human lives, but also determining socio-economic losses, countable in billions of Euros and expressed in terms of damage to property, infrastructures and environmental degradation. Recent events show a significant increase in the number of disasters with natural and/or technological causes, which could have potentially serious consequences for Critical Infrastructures (CI). Where these infrastructures tend to fail or to be destroyed, the resulting cascade effect (chain of accidents) could lead to catastrophic damage and affect people, the environment and the economy. In the field of landslide detection, mapping, monitoring and management, the availability of advanced remote sensing technologies, which allow systematic and easily updatable acquisitions of data, may enhance the implementation of near real time monitoring activity and the production of landslide maps, optimizing field work. This work aims at presenting an example of the advantages given by the combined use of advanced remote sensing techniques, such as Ground-Based Interferometric Synthetic Aperture Radar (GB-InSAR), Terrestrial Laser Scanning (TLS) and Infrared Thermography (IRT), in order to monitor and map the Calatabiano landslide, located in the Catania Province (Sicily Island, Southern Italy). The landslide occurred on October 24th 2015, after a period of heavy rainfall, causing the rupture of a water pipeline transect of the aqueduct supplying water to the city of Messina. As a consequence of this event a considerable lack in water resources occurred for a large number of the city inhabitants. A provisional by-pass, consisting of three 350 m long pipes passing through the landslide area, was implemented in order to restore the city water supplies during the emergency management phase. In this framework an integrated monitoring network was implemented, in order to assess the residual risk by analyzing the landslide geomorphological and kinematic features, and to support the early warning procedures needed to ensure the safety of the personnel involved in the by-pass realization and the long term landslide stabilization works. The intrinsic characteristics of the abovementioned techniques, such as the capability of: i) producing near-real time displacement maps without physical access to the analysed area; ii) observing the investigated scenario 24 hours per day and in all-weather conditions; iii) generating high-resolution images, especially for local scale phenomena analysis; iv) providing high versatility and transportability; represent consistent advantages with respect to the traditional methods. The preliminary monitoring results and a 3D landslide mapping have shown its effectiveness during the emergency and the post emergency management phase.
Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta
NASA Astrophysics Data System (ADS)
Pondrelli, M.; Rossi, A. P.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A.
2011-09-01
Geological, facies, geomorphological and allostratigraphic map of the Eberswalde fan delta area are presented. The Eberswalde fan delta is proposed as a sort of prototype area to map sedimentary deposits, because of its excellent data coverage and its variability in depositional as well as erosional morphologies and sedimentary facies. We present a report to distinguish different cartographic products implying an increasing level of interpretation. The geological map - in association with the facies map - represents the most objective mapping product. Formations are distinguished on the basis of objectively observable parameters: texture, color, sedimentary structures and geographic distribution. Stratigraphic relations are evaluated using Steno's principles. Formations can be interpreted in terms of depositional environment, but an eventual change of the genetic interpretation would not lead to a change in the geological map. The geomorphological map is based on the data represented in the geological map plus the association of the morphological elements, in order to infer the depositional sub-environments. As a consequence, it is an interpretative map focused on the genetic reconstruction. The allostratigraphic map is based on the morphofacies analysis - expressed by the geomorphological map - and by the recognition of surfaces which reflect allogenic controls, such as water level fluctuations: unconformities, erosional truncations and flooding surfaces. As a consequence, this is an even more interpretative map than the geomorphological one, since it focuses on the control on the sedimentary systems. Geological maps represent the most suitable cartographic product for a systematic mapping, which can serve as a prerequisite for scientific or landing site analyses. Geomorphological and allostratographic maps are suitable tools to broaden scientific analysis or to provide scientific background to landing site selection.
Lee, Won June; Na, Kyeong Ik; Kim, Young Kook; Jeoung, Jin Wook; Park, Ki Ho
2017-06-01
To evaluate the diagnostic ability of wide-field retinal nerve fiber layer (RNFL) maps with swept-source optical coherence tomography (SS-OCT) for detection of preperimetric (PPG) and early perimetric glaucoma (EG). One hundred eighty-four eyes, including 67 healthy eyes, 43 eyes with PPG, and 74 eyes with EG, were analyzed. Patients underwent a comprehensive ocular examination including red-free RNFL photography, visual field testing and wide-field SS-OCT scanning (DRI-OCT-1 Atlantis; Topcon, Tokyo, Japan). SS-OCT provides a wide-field RNFL thickness map and a SuperPixel map, which are composed of the RNFL deviation map of the peripapillary area and the deviation map of the composition of the ganglion cell layer with the inner plexiform layer and RNFL (GC-IPL+RNFL) in the macular area. The ability to discriminate PPG and EG from healthy eyes was assessed using sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) for all parameters and criteria provided by the wide-field SS-OCT scan. The wide-field RNFL thickness map using SS-OCT showed the highest sensitivity of PPG-diagnostic and EG-diagnostic performance compared with the other SS-OCT criteria based on the internal normative base (93.0 and 97.3%, respectively). Among the SS-OCT continuous parameters, the RFNL thickness of the 7 clock-hour, inferior and inferotemporal macular ganglion cell analyses showed the largest AUC of PPG-diagnostic and EG-diagnostic performance (AUC=0.809 to 0.865). The wide-field RNFL thickness map using SS-OCT performed well in distinguishing eyes with PPG and EG from healthy eyes. In the clinical setting, wide-field RNFL maps of SS-OCT can be useful tools for detection of early-stage glaucoma.
Experiential and Outdoor Education: The Participant Experience Shared through Mind Maps
ERIC Educational Resources Information Center
Jirásek, Ivo; Plevová, Irena; Jirásková, Miroslava; Dvorácková, Adéla
2016-01-01
This paper describes an analysis of mind maps capturing the experiences of the participants in an experiential and outdoor education course. The method of mind mapping is usually limited to a quantitative scoring analysis and comparative content analysis of concepts. As a consequence, the visual elements of the information are usually ignored, but…
NASA Astrophysics Data System (ADS)
Chen, Zhu-an; Zhang, Li-ting; Liu, Lu
2009-10-01
ESRI's GIS components MapObjects are applied in many cadastral information system because of its miniaturization and flexibility. Some cadastral information was saved in cadastral database directly by MapObjects's Shape file format in this cadastral information system. However, MapObjects didn't provide the function of building attribute field for map layer's attribute data file in cadastral database and user cann't save the result of analysis. This present paper designed and realized the function of building attribute field in MapObjects based on the method of Jackson's system development.
What's the use of land? (a secondary school social studies project)
NASA Technical Reports Server (NTRS)
1976-01-01
The concept of a student land use survey was discussed with the curriculum development team of the Jefferson County Public Schools in Colorado. In these discussions it soon became apparent that the curriculum potentials included much more than a classroom activity involving mapping the features on the ground in the area of study. A new flood control dam to be located in the area of Denver, Colorado, became the central topic in a program involving a wide variety of curriculum fields, such as mapmaking, local community history, physical geography, mathematics, and environmental studies. Consequently, a prototype of a multidisciplinary unit concept was developed for later incorporation by the Jefferson County curriculum team.
Mapping of cavitational activity in a pilot plant dyeing equipment.
Actis Grande, G; Giansetti, M; Pezzin, A; Rovero, G; Sicardi, S
2015-11-01
A large number of papers of the literature quote dyeing intensification based on the application of ultrasound (US) in the dyeing liquor. Mass transfer mechanisms are described and quantified, nevertheless these experimental results in general refer to small laboratory apparatuses with a capacity of a few hundred millilitres and extremely high volumetric energy intensity. With the strategy of overcoming the scale-up inaccuracy consequent to the technological application of ultrasounds, a dyeing pilot-plant prototype of suitable liquor capacity (about 40 L) and properly simulating several liquor to textile hydraulic relationships was designed by including US transducers with different geometries. Optimal dyeing may be obtained by optimising the distance between transducer and textile material, the liquid height being a non-negligible operating parameter. Hence, mapping the cavitation energy in the machinery is expected to provide basic data on the intensity and distribution of the ultrasonic field in the aqueous liquor. A flat ultrasonic transducer (absorbed electrical power of 600 W), equipped with eight devices emitting at 25 kHz, was mounted horizontally at the equipment bottom. Considering industrial scale dyeing, liquor and textile substrate are reciprocally displaced to achieve a uniform colouration. In this technology a non uniform US field could affect the dyeing evenness to a large extent; hence, mapping the cavitation energy distribution in the machinery is expected to provide fundamental data and define optimal operating conditions. Local values of the cavitation intensity were recorded by using a carefully calibrated Ultrasonic Energy Meter, which is able to measure the power per unit surface generated by the cavitation implosion of bubbles. More than 200 measurements were recorded to define the map at each horizontal plane positioned at a different distance from the US transducer; tap water was heated at the same temperature used for dyeing tests (60°C). Different liquid flow rates were tested to investigate the effect of the hydrodynamics characterising the equipment. The mapping of the cavitation intensity in the pilot-plant machinery was performed to achieve with the following goals: (a) to evaluate the influence of turbulence on the cavitation intensity, and (b) to determine the optimal distance from the ultrasound device at which a fabric should be positioned, this parameter being a compromise between the cavitation intensity (higher next to the transducer) and the US field uniformity (achieved at some distance from this device). By carrying out dyeing tests of wool fabrics in the prototype unit, consistent results were confirmed by comparison with the mapping of cavitation intensity. Copyright © 2015 Elsevier B.V. All rights reserved.
Shrub Abundance Mapping in Arctic Tundra with Misr
NASA Astrophysics Data System (ADS)
Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.
2013-12-01
Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms; white and black sky albedos; and blue, green, red, and NIR nadir camera BRFs), to grow a forest of decision trees. The final estimate is the average of the predicted values from each tree. Observations not used in constructing the trees were used in validation. The model was applied with a large volume of MISR data and the resulting fractional cover estimates were combined into annual maps using a compositing algorithm that flags results affected by cloud, cloud shadow, surface water, extreme outliers, topographic shading, and burned areas. The maps show that shrub cover is lower on the north slope in comparison to southern part, as expected, however, a preliminary assessment of the fractional cover change over the last decade, achieved by averaging fractional cover values for 2000-2002 and 2008-2010 and then calculating the change between the two periods, revealed that there are large areas for which we cannot determine the sign of the change with high confidence, as the precision of our estimate is close to the magnitude of the cover values. Additional research is thus required to reliably map shrub cover in this environment at annual intervals.
Cross-disciplinary Undergraduate Research: A Case Study in Digital Mapping, western Ireland
NASA Astrophysics Data System (ADS)
Whitmeyer, S. J.; de Paor, D. G.; Nicoletti, J.; Rivera, M.; Santangelo, B.; Daniels, J.
2008-12-01
As digital mapping technology becomes ever more advanced, field geologists spend a greater proportion of time learning digital methods relative to analyzing rocks and structures. To explore potential solutions to the time commitment implicit in learning digital field methods, we paired James Madison University (JMU) geology majors (experienced in traditional field techniques) with Worcester Polytechnic Institute (WPI) engineering students (experienced in computer applications) during a four week summer mapping project in Connemara, western Ireland. The project consisted of approximately equal parts digital field mapping (directed by the geology students), and lab-based map assembly, evaluation and formatting for virtual 3D terrains (directed by the engineering students). Students collected geologic data in the field using ruggedized handheld computers (Trimble GeoExplorer® series) with ArcPAD® software. Lab work initially focused on building geologic maps in ArcGIS® from the digital field data and then progressed to developing Google Earth-based visualizations of field data and maps. Challenges included exporting GIS data, such as locations and attributes, to KML tags for viewing in Google Earth, which we accomplished using a Linux bash script written by one of our engineers - a task outside the comfort zone of the average geology major. We also attempted to expand the scope of Google Earth by using DEMs of present-day geologically-induced landforms as representative models for paleo-geographic reconstructions of the western Ireland field area. As our integrated approach to digital field work progressed, we found that our digital field mapping produced data at a faster rate than could be effectively managed during our allotted time for lab work. This likely reflected the more developed methodology for digital field data collection, as compared with our lab-based attempts to develop new methods for 3D visualization of geologic maps. However, this experiment in cross-disciplinary undergraduate research was a big success, with an enthusiastic interchange of expertise between undergraduate geology and engineering students that produced new, cutting-edge methods for visualizing geologic data and maps.
A campus-based course in field geology
NASA Astrophysics Data System (ADS)
Richard, G. A.; Hanson, G. N.
2009-12-01
GEO 305: Field Geology offers students practical experience in the field and in the computer laboratory conducting geological field studies on the Stony Brook University campus. Computer laboratory exercises feature mapping techniques and field studies of glacial and environmental geology, and include geophysical and hydrological analysis, interpretation, and mapping. Participants learn to use direct measurement and mathematical techniques to compute the location and geometry of features and gain practical experience in representing raster imagery and vector geographic data as features on maps. Data collecting techniques in the field include the use of hand-held GPS devices, compasses, ground-penetrating radar, tape measures, pacing, and leveling devices. Assignments that utilize these skills and techniques include mapping campus geology with GPS, using Google Earth to explore our geologic context, data file management and ArcGIS, tape and compass mapping of woodland trails, pace and compass mapping of woodland trails, measuring elevation differences on a hillside, measuring geologic sections and cores, drilling through glacial deposits, using ground penetrating radar on glaciotectonic topography, mapping the local water table, and the identification and mapping of boulders. Two three-hour sessions are offered per week, apportioned as needed between lecture; discussion; guided hands-on instruction in geospatial and other software such as ArcGIS, Google Earth, spreadsheets, and custom modules such as an arc intersection calculator; outdoor data collection and mapping; and writing of illustrated reports.
NMR spectroscopy up to 35.2T using a series-connected hybrid magnet.
Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M; Gor'kov, Peter L; Brey, William W; Lendi, Pietro; Schiano, Jeffrey L; Bird, Mark D; Dixon, Iain R; Toth, Jack; Boebinger, Gregory S; Cross, Timothy A
2017-11-01
The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7 Li lock sample doped with paramagnetic MnCl 2 . The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1 H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields. Copyright © 2017 Elsevier Inc. All rights reserved.
NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet
NASA Astrophysics Data System (ADS)
Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M.; Gor'kov, Peter L.; Brey, William W.; Lendi, Pietro; Schiano, Jeffrey L.; Bird, Mark D.; Dixon, Iain R.; Toth, Jack; Boebinger, Gregory S.; Cross, Timothy A.
2017-11-01
The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1 T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48 mm magnet bore and 42 mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1 ppm homogeneity over a cylindrical volume of 1 cm diameter and height. The magnetic field is regulated within 0.2 ppm using an external 7Li lock sample doped with paramagnetic MnCl2. The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1H frequencies of 1.0, 1.2 and 1.5 GHz. NMR at 1.5 GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields.
A mapping closure for turbulent scalar mixing using a time-evolving reference field
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.
1992-01-01
A general mapping-closure approach for modeling scalar mixing in homogeneous turbulence is developed. This approach is different from the previous methods in that the reference field also evolves according to the same equations as the physical scalar field. The use of a time-evolving Gaussian reference field results in a model that is similar to the mapping closure model of Pope (1991), which is based on the methodology of Chen et al. (1989). Both models yield identical relationships between the scalar variance and higher-order moments, which are in good agreement with heat conduction simulation data and can be consistent with any type of epsilon(phi) evolution. The present methodology can be extended to any reference field whose behavior is known. The possibility of a beta-pdf reference field is explored. The shortcomings of the mapping closure methods are discussed, and the limit at which the mapping becomes invalid is identified.
A comparison of contour maps derived from independent methods of measuring lunar magnetic fields
NASA Technical Reports Server (NTRS)
Lichtenstein, B. R.; Coleman, P. J., Jr.; Russell, C. T.
1978-01-01
Computer-generated contour maps of strong lunar remanent magnetic fields are presented and discussed. The maps, obtained by previously described (Eliason and Soderblom, 1977) techniques, are derived from a variety of direct and indirect measurements from Apollo 15 and 16 and Explorer 35 magnetometer and electron reflection data. A common display format is used to facilitate comparison of the maps over regions of overlapping coverage. Most large scale features of either weak or strong magnetic field regions are found to correlate fairly well on all the maps considered.
Alaska and Yukon magnetic compilation, residual total magnetic field
Miles, W.; Saltus, Richard W.; Hayward, N.; Oneschuk, D.
2017-01-01
This map is a compilation of aeromagnetic surveys over Yukon and eastern Alaska. Aeromagnetic surveys measure the total intensity of the earth's magnetic field. The field was measured by a magnetometer aboard an aircraft flown in parallel lines spaced at 200 m to 10000 m across the map area. The magnetic field reflects magnetic properties of bedrock and provides qualitative and quantitative information used in geological mapping. Understanding the geology will help geologists map the area, assist mineral/hydrocarbon exploration activities, and provide useful information necessary for communities, aboriginal associations, and government to make land use decisions. This survey was flown to improve our knowledge of the area. It will support ongoing geological mapping and resource assessment.
Field-based Information Technology in Geology Education: GeoPads
NASA Astrophysics Data System (ADS)
Knoop, P. A.; van der Pluijm, B.
2004-12-01
During the past two summers, we have successfully incorporated a field-based information technology component into our senior-level, field geology course (GS-440) at the University of Michigan's Camp Davis Geology Field Station, near Jackson, WY. Using GeoPads -- rugged TabletPCs equipped with electronic notebook software, GIS, GPS, and wireless networking -- we have significantly enhanced our field mapping exercises and field trips. While fully retaining the traditional approaches and advantages of field instruction, GeoPads offer important benefits in the development of students' spatial reasoning skills. GeoPads enable students to record observations and directly create geologic maps in the field, using a combination of an electronic field notebook (Microsoft OneNote) tightly integrated with pen-enabled GIS software (ArcGIS-ArcMap). Specifically, this arrangement permits students to analyze and manipulate their data in multiple contexts and representations -- while still in the field -- using both traditional 2-D map views, as well as richer 3-D contexts. Such enhancements provide students with powerful exploratory tools that aid the development of spatial reasoning skills, allowing more intuitive interactions with 2-D representations of our 3-D world. Additionally, field-based GIS mapping enables better error-detection, through immediate interaction with current observations in the context of both supporting data (e.g., topographic maps, aerial photos, magnetic surveys) and students' ongoing observations. The overall field-based IT approach also provides students with experience using tools that are increasingly relevant to their future academic or professional careers.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
Li, Haisen S; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S; Chetty, Indrin J
2014-01-06
The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
NASA Astrophysics Data System (ADS)
Li, Haisen S.; Zhong, Hualiang; Kim, Jinkoo; Glide-Hurst, Carri; Gulam, Misbah; Nurushev, Teamour S.; Chetty, Indrin J.
2014-01-01
The direct dose mapping (DDM) and energy/mass transfer (EMT) mapping are two essential algorithms for accumulating the dose from different anatomic phases to the reference phase when there is organ motion or tumor/tissue deformation during the delivery of radiation therapy. DDM is based on interpolation of the dose values from one dose grid to another and thus lacks rigor in defining the dose when there are multiple dose values mapped to one dose voxel in the reference phase due to tissue/tumor deformation. On the other hand, EMT counts the total energy and mass transferred to each voxel in the reference phase and calculates the dose by dividing the energy by mass. Therefore it is based on fundamentally sound physics principles. In this study, we implemented the two algorithms and integrated them within the Eclipse treatment planning system. We then compared the clinical dosimetric difference between the two algorithms for ten lung cancer patients receiving stereotactic radiosurgery treatment, by accumulating the delivered dose to the end-of-exhale (EE) phase. Specifically, the respiratory period was divided into ten phases and the dose to each phase was calculated and mapped to the EE phase and then accumulated. The displacement vector field generated by Demons-based registration of the source and reference images was used to transfer the dose and energy. The DDM and EMT algorithms produced noticeably different cumulative dose in the regions with sharp mass density variations and/or high dose gradients. For the planning target volume (PTV) and internal target volume (ITV) minimum dose, the difference was up to 11% and 4% respectively. This suggests that DDM might not be adequate for obtaining an accurate dose distribution of the cumulative plan, instead, EMT should be considered.
The synoptic maps of Br from HMI observations
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Hoeksema, J. Todd; Liu, Sun; Yang, Xudong; Centeno, Rebecca; Leka, K. D.; Barnes, Graham
2012-03-01
The vector magnetic field measurement can, in principal, give the "true" radial component of the magnetic field. We prepare 4 types of synoptic maps of the radial photospheric magnetic field, from the vector magnetic field data disambiguated by means of the minimum energy method developed at NWRA/CoRA, the vector data determined under the potential-field acute assumption, and the vector data determined under the radial-acute assumption, and the standard line-of-sight magnetogram. The models of the global corona, the MHD and the PFSS, are applied to different types of maps. Although the three-dimensional structures of the global coronal magnetic field with different maps are similar and overall agreeing well the AIA full-disk images, noticeable differences among the model outputs are found especially in the high latitude regions. We will show details of these test maps and discuss the issues in determining the radial component of the photospheric magnetic field near the poles and limb.
Use of a remote computer terminal during field checking of Landsat digital maps
Robinove, Charles J.; Hutchinson, C.F.
1978-01-01
Field checking of small-scale land classification maps made digitally from Landsat data is facilitated by use of a remote portable teletypewriter terminal linked by teleplume to the IDIMS (Interactive Digital Image Manipulation System) at the EDC (EROS Data Center), Sioux Falls, S. Dak. When field checking of maps 20 miles northeast of Baker, Calif., during the day showed that changes in classification were needed, the terminal was used at night to combine image statistical files, remap portions of images, and produce new alphanumeric maps for field checking during the next day. The alphanumeric maps can be used without serious difficulty in location in the field even though the scale is distorted, and statistical files created during the field check can be used for full image classification and map output at the EDC. This process makes field checking faster than normal, provides interaction with the statistical data while in the field, and reduces to a minimum the number of trips needed to work interactively with the IDIMS at the EDC, thus saving significant amounts of time and money. The only significant problem is using telephone lines which at times create spurious characters in the printout or prevent the line feed (paper advance) signal from reaching the terminal, thus overprinting lines which should be sequential. We recommend that maps for field checking be made with more spectral classes than are expected because in the field it is much easier to group classes than to reclassify or separate classes when only the remote terminal is available for display.
NASA Astrophysics Data System (ADS)
Isac, Anca; Mandea, Mioara; Purucker, Michael
2013-04-01
Most of the terrestrial impact craters have been obliterated by other terrestrial geological processes. Some examples however remain. Among them, complex craters such as Chicxculub, Vredefort, or the outsider Bangui structure (proposed but still unconfirmed as a result of an early Precambrian large impact) exert in the total magnetic field anomaly global map (WDMAM-B) circular shapes with positive anomalies which may suggest the circularity of a multiring structure. A similar pattern is observed from the newest available data (global spherical model of the internal magnetic field by Purucker and Nicolas, 2010) for some Nectarian basins as Moscovienese, Mendel-Rydberg or Crissium. As in the case of Earth's impacts, the positive anomalies appear near the basin center and inside the first ring, this distribution being strongly connected with crater-forming event. Detailed analysis of largest impact craters from Earth and Moon --using a forward modeling approach by means of the Equivalent Source Dipole method--evaluates the shock impact demagnetization effects--a magnetic low--by reducing the thickness of the pre-magnetized lithosphere due to the excavation process (the impact crater being shaped as a paraboloid of revolution). The magnetic signature of representative early Nectarian craters, Crissium, as well as Earth's complex craters, defined by stronger magnetic fields near the basin center and/or inside the first ring, might be a consequence of the shock remanent magnetization of the central uplift plus a thermoremanent magnetization of the impact melt in a steady magnetizing field generated by a former active dynamo. In this case, ESD method is not able to obtain a close fit of the forward model to the observation altitude map or model.
Differences in experiences in rockfall hazard mapping in Switzerland and Principality of Andorra
NASA Astrophysics Data System (ADS)
Abbruzzese, J.; Labiouse, V.
2009-04-01
The need to cope with rockfall hazard and risk led many countries to adopt proper strategies for hazard mapping and risk management, based on their own social and political constraints. The experience of every single country in facing this challenge provides useful information and possible approaches to evaluate rockfall hazard and risk. More, with particular regard to the hazard mapping process, some important points are common to many methodologies in Europe, especially as for the use of rock fall intensity-frequency diagrams to define specific hazard levels. This aspect could suggest a starting point for comparing and possibly harmonising existing methodologies. On the other hand, the results obtained from methodologies used in different countries may be difficult to be compared, first because the existing national guidelines are established as a consequence of what has been learned in each country from dealing with past rockfall events. Particularly, diverse social and political considerations do influence the definition of the threshold values of the parameters which determine a given degree of hazard, and eventually the type of land-use accepted for each hazard level. Therefore, a change in the threshold values for rockfall intensity and frequency is already enough to produce completely different zoning results even if the same methodology is applied. In relation with this issue, the paper introduces some of the current challenges and difficulties in comparing hazard mapping results in Europe and, subsequently, in the chance to develop a common standard procedure to assess the rockfall hazard. The present work is part of an on-going research project whose aim is to improve methodologies for rockfall hazard and risk mapping at the local scale, in the framework of the European Project "Mountain Risks: from prediction to management and governance", funded by the European Commission. As a reference, two approaches will be considered, proposed in Switzerland and in the Principality of Andorra, respectively. At first, the guidelines applied in the two countries will be outlined, showing which way the correspondent procedures differ. For this purpose, in both cases, the main philosophy in facing rockfall hazard will be discussed, together with its consequences in terms of the resulting intensity-frequency threshold values proposed to determine different classes of hazard. Then, a simple case study carried out in Switzerland, in the Canton of Valais, will show an application of the discussed theoretical issues, by means of a comparison between the two approaches. A rockfall hazard mapping will be performed on a 2D slope profile, following both the Swiss energy-probability threshold values and the ones used in the Principality of Andorra. The analysis of the results will introduce some consequences the criteria for defining classes of hazard may have on land-use planning, depending on which guidelines are applied in a study site. This aspect involves not only differences in zoning concerning the extension of the areas in danger, but as well the influence on land-use that the meaning of the same hazard level may have, according to which threshold values for rockfall intensity and frequency are used. These considerations underline what role social and political decisions can play in the hazard assessment process, on the basis of the experiences and understandings of each country in this field. More precisely, it is rather evident that a possible comparison and/or harmonisation of hazard mapping results is closely linked to this aspect as well, and not only to more technical matters, such as computing and mapping techniques.
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo
2016-10-01
Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.
Mghirbi, Oussama; Bord, Jean-Paul; Le Grusse, Philippe; Mandart, Elisabeth; Fabre, Jacques
2018-03-08
Faced with health, environmental, and socio-economic issues related to the heavy use of pesticides, diffuse phytosanitary pollution becomes a major concern shared by all the field actors. These actors, namely the farmers and territorial managers, have expressed the need to implement decision support tools for the territorial management of diffuse pollution resulting from the plant protection practices and their impacts. To meet these steadily increasing requests, a cartographic analysis approach was implemented based on GIS which allows the spatialization of the diffuse pollution impacts related to plant protection practices on the Etang de l'Or catchment area in the South of France. Risk mapping represents a support-decision tool that enables the different field actors to identify and locate vulnerable areas, so as to determine action plans and agri-environmental measures depending on the context of the natural environment. This work shows that mapping is helpful for managing risks related to the use of pesticides in agriculture by employing indicators of pressure (TFI) and risk on the applicator's health (IRSA) and on the environment (IRTE). These indicators were designed to assess the impact of plant protection practices at various spatial scales (field, farm, etc.). The cartographic analysis of risks related to plant protection practices shows that diffuse pollution is unequally located in the North (known for its abundant garrigues and vineyards) and in the South of the Etang de l'Or catchment area (the Mauguio-Lunel agricultural plain known for its diversified cropping systems). This spatial inequity is essentially related to land use and agricultural production system. Indeed, the agricultural lands cover about 60% of the total catchment area. Consequently, this cartographic analysis helps the territorial actors with the implementation of strategies for managing risks of diffuse pollution related to pesticides use in agriculture, based on environmental and socio-economic issues and the characteristics of the natural environment.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
Improvements in GRACE Gravity Fields Using Regularization
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.
NASA Astrophysics Data System (ADS)
Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.
2014-12-01
The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the field size map. The app can also cache map data so that high resolution satellite imagery and reference data from the users can be viewed in the field without the need for an internet connection. This app will be used for calibration and validation of the data products in SIGMA, e.g. data collection at JECAM (Joint Experiment of Crop Assessment and Monitoring) sites.
ENVIRONMENTAL FEATURE FINDER: A REMOTE SENSING DECISION SUPPORT TOOL
Land cover maps are essential to sound environmental stewardship and EPA’s mission to protect human health and the environment, but existing maps are not always sufficiently current, detailed, or appropriate for a given application. Consequently, we are developing a decision sup...
Geomatics, Support for an Efficient Urban Planning
NASA Astrophysics Data System (ADS)
Moscovici, Anca-Maria; Grecea, Carmen
2017-10-01
Geomatics represents a natural consequence of the accelerated development of information technology; it’s a combination of the basic concepts of Geodesy and Geoinformation and encompasses a wide range of the fields, including tools and techniques used in surveying, mapping, remote sensing, Geographic information systems (GIS), global navigation systems by satellite (GPS), geography, planning and decision making in almost all areas: infrastructure, environment, demography, urbanism, health, sociology, economics, tourism, administration, transportation and many others. As a consequence of the population growth and industrialization, society has become more complex for government and other institutions, with the result that more complex and complicated tasks have to be performed. In order to solve these tasks properly, more and more information is required. Having passed through the stages of agricultural and industrial societies, we now live in an information society. Town planning cadastre defines itself as a particular cadastre, a part of the general one, which involves inventory and systematic evidence of the buildings, fields, networks and utilities inside towns. All these problems regard both technical and economic aspects. In order to automate cadastral activity, the first important procedure is to collect all physical information from a certain territory, which will supply later on the database for town cadastre. Geodetic activity for engineering projects is able to provide accurate solutions for positioning, setting out, control, mapping in order to cover basic needs of land administrative information and decision making for the local authorities. The paper points out the purpose and the importance of town planning cadastre for providing the exact data on the situation of the urban fond in order to identify its needs; it presents the case of Timisoara city located in the western side of Romania that has been chosen as the European Capital of Culture for 2021. As a national strategy, a key component in the policies of growth poles is promoting urban development as part of a long-term project with sustainable impact on economic, cultural and social development.
Surface-material maps of Viking landing sites on Mars
NASA Technical Reports Server (NTRS)
Moore, H. J.; Keller, J. M.
1991-01-01
Researchers mapped the surface materials at the Viking landing sites on Mars to gain a better understanding of the materials and rock populations at the sites and to provide information for future exploration. The maps extent to about 9 m in front of each lander and are about 15 m wide - an area comparable to the area of a pixel in high resolution Viking Orbiter images. The maps are divided into the near and far fields. Data for the near fields are from 1/10 scale maps, umpublished maps, and lander images. Data for the far fields are from 1/20 scale contour maps, contoured lander camera mosaics, and lander images. Rocks are located on these maps using stereometric measurements and the contour maps. Frequency size distribution of rocks and the responses of soil-like materials to erosion by engine exhausts during landings are discussed.
Linking Indicators: Key Research Questions to Guide Decisions on What to Measure, Map and Model
Public policy increasingly demands insight into the social consequences of environmental policy and drivers of human behaviors that affect the environment. Social consequences can provide potent justifications for environmental protection and management, and human preferences and...
NASA Astrophysics Data System (ADS)
Hasegawa, Hiroshi; Sonnerup, Bengt U. Ã.-.; Nakamura, Takuma K. M.
2010-11-01
First results are presented of a method, developed by Sonnerup and Hasegawa (2010), for analyzing time evolution of magnetohydrostatic Grad-Shafranov (GS) equilibria, using data recorded by an observing probe as it traverses a quasi-static, two-dimensional (2D), magnetic-field/plasma structure. The method recovers spatial initial values used in the classical GS reconstruction for an interval before and after the time of actual measurements, by advancing them backward and forward in time based on a set of equations for an incompressible plasma; the consequence is generation of multiple GS maps or a movie of the 2D field structure. The method is successfully benchmarked by use of a 2D magnetohydrodynamic simulation of time-dependent magnetic reconnection, and then is applied to a flux transfer event (FTE) seen by the Cluster spacecraft at the dayside high-latitude magnetopause. The application shows that the field lines constituting the FTE flux rope were contracting toward its center as a result of modest convective flow in the region around the core of the flux rope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelder, T.; Whitaker, A.
2006-07-15
Early ENE-striking joints (present coordinates) within both Pennsylvanian coal and Devonian black shale of the Central and Southern Appalachians reflect an approximately rectilinear stress field with a dimension > 1500 km. This Appalachian-wide stress field (AWSF) dates from the time of joint propagation, when both the coal and shale were buried to the oil window during the 10-15 m.y. period straddling the Pennsylvanian-Permian boundary. The AWSF was generated during the final assembly of Pangea as a consequence of plate-boundary tractions arising from late-stage oblique convergence, where maximum horizontal stress, S-H, of the AWSF was parallel to the direction of closuremore » between Gondwana and Laurentia. After closure, the AWSF persisted during dextral slip of peri-Gondwanan microcontinents, when SH appears to have crosscut plate-scale trans-current faults at around 30{sup o}. Following > 10 m.y. of dextral slip during tightening of Gondwana against Laurentia, the AWSF was disrupted by local stress fields associated with thrusting on master basement decollements to produce the local orocline-shaped Alleghanian map pattern seen today.« less
Mapping global cropland and field size.
Fritz, Steffen; See, Linda; McCallum, Ian; You, Liangzhi; Bun, Andriy; Moltchanova, Elena; Duerauer, Martina; Albrecht, Fransizka; Schill, Christian; Perger, Christoph; Havlik, Petr; Mosnier, Aline; Thornton, Philip; Wood-Sichra, Ulrike; Herrero, Mario; Becker-Reshef, Inbal; Justice, Chris; Hansen, Matthew; Gong, Peng; Abdel Aziz, Sheta; Cipriani, Anna; Cumani, Renato; Cecchi, Giuliano; Conchedda, Giulia; Ferreira, Stefanus; Gomez, Adriana; Haffani, Myriam; Kayitakire, Francois; Malanding, Jaiteh; Mueller, Rick; Newby, Terence; Nonguierma, Andre; Olusegun, Adeaga; Ortner, Simone; Rajak, D Ram; Rocha, Jansle; Schepaschenko, Dmitry; Schepaschenko, Maria; Terekhov, Alexey; Tiangwa, Alex; Vancutsem, Christelle; Vintrou, Elodie; Wenbin, Wu; van der Velde, Marijn; Dunwoody, Antonia; Kraxner, Florian; Obersteiner, Michael
2015-05-01
A new 1 km global IIASA-IFPRI cropland percentage map for the baseline year 2005 has been developed which integrates a number of individual cropland maps at global to regional to national scales. The individual map products include existing global land cover maps such as GlobCover 2005 and MODIS v.5, regional maps such as AFRICOVER and national maps from mapping agencies and other organizations. The different products are ranked at the national level using crowdsourced data from Geo-Wiki to create a map that reflects the likelihood of cropland. Calibration with national and subnational crop statistics was then undertaken to distribute the cropland within each country and subnational unit. The new IIASA-IFPRI cropland product has been validated using very high-resolution satellite imagery via Geo-Wiki and has an overall accuracy of 82.4%. It has also been compared with the EarthStat cropland product and shows a lower root mean square error on an independent data set collected from Geo-Wiki. The first ever global field size map was produced at the same resolution as the IIASA-IFPRI cropland map based on interpolation of field size data collected via a Geo-Wiki crowdsourcing campaign. A validation exercise of the global field size map revealed satisfactory agreement with control data, particularly given the relatively modest size of the field size data set used to create the map. Both are critical inputs to global agricultural monitoring in the frame of GEOGLAM and will serve the global land modelling and integrated assessment community, in particular for improving land use models that require baseline cropland information. These products are freely available for downloading from the http://cropland.geo-wiki.org website. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Young, Kelsey E.; Evans, C. A.; Hodges, K. V.
2012-01-01
While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist
M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale
1994-01-01
A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....
J. McKean; J. Roering
2004-01-01
A map of extant slope failures is the most basic element of any landslide assessment. Without an accurate inventory of slope instability, it is not possible to analyze the controls on the spatial and temporal patterns of mass movement or the environmental, human, or geomorphic consequences of slides. Landslide inventory maps are tedious to compile, difficult to make in...
Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M
2014-03-24
The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.
Animating Autonomous Pedestrians
2006-01-01
walkable surface in a region may be mapped onto a horizontal plane without loss of essential geometric information. Consequently, the 3D space may be...that the walkable surface in a region may be mapped onto a horizontal plane without loss of essential geometric information, such as the distance
NASA Astrophysics Data System (ADS)
Blakely, R. J.; Wells, R. E.; Sherrod, B. L.; Brocher, T. M.
2016-12-01
Newly acquired potential-field data, geologic mapping, and recorded seismicity indicate that the Cascadia subduction zone is segmented in southwestern Washington by a left-stepping, possibly active crustal structure spanning nearly the entire onshore portion of the forearc. The east-striking, southward verging Doty thrust fault is an important part of this trans-forearc structure. As mapped, the eastern end of the 50-km-long Doty fault connects with the northwestern termination of ongoing seismicity on the north-northwest-striking Mt. St. Helens seismic zone (MSHSZ), suggesting that the Doty fault and MSHSZ may be kinematically linked. Westward, the mapped Doty fault terminates at and may link to mapped faults striking northwestward to 35 km north of Grays Harbor, a total northwest distance of 85 km. A newly acquired aeromagnetic survey over the Doty fault and MSHSZ, and existing gravity data, emphasize Crescent Formation and other Eocene volcanic rocks in the hanging wall of the Doty fault with up to 4 km of vertical throw. Most MSHSZ epicenters fall within a broad (5- to 10-km wide) magnetic low extending 50 km north-northwestward from Mt. St Helens. The magnetic low skirts around the western margin of the Miocene-age Spirit Lake pluton, but otherwise is not obviously associated with topography or mapped geology. We suggest that dextral slip on the MSHSZ is distributed across a broad, northwest-striking area that includes the magnetic low and is transferred to compressional slip on the Doty fault. The Doty fault demarcates a clear north-to-south decrease in the density of episodic tremor, suggesting that the thrust fault may intersect or modulate over-pressured fluids generated above the slab (Wells et al., in review). The Doty fault, MSHSZ, and neighboring structures are consistent with a dextral shear couple (Wells and Coe, 1985) and consequent clockwise crustal rotation extending across the entire landward portion of the Cascadia forearc, from the Pacific Coast to the Cascadia arc and from Grays Harbor to the Portland basin in northwestern Oregon.
75 FR 2886 - Notice of Availability of Travel Map, Challis Field Office, Idaho
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... travel management map depicting designated roads, vehicle ways and trails on public lands managed by the BLM Challis Field Office, Idaho. The map describes seasonal closure areas and trails and the daytime...
Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.
NASA Astrophysics Data System (ADS)
Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane
2017-04-01
The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.
Tissue engineering and regenerative medicine: manufacturing challenges.
Williams, D J; Sebastine, I M
2005-12-01
Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.
Magnetotelluric data, Taos Plateau Volcanic Field, New Mexico
Ailes, Chad E.; Rodriguez, Brian D.
2010-01-01
The population of the San Luis Basin region of northern New Mexico is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's groundwater resources. An important issue in managing the groundwater resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal groundwater aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the San Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey called magnetotellurics (MT), and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west MT sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field where drillhole data are sparse. Resistivity modeling of the MT data can be used to help map changes in electrical resistivity with depths that are related to differences in rock types. These various rock types help control the properties of aquifers. The purpose of this report is to release the MT sounding data collected along the east-west profile. No interpretation of the data is included.
Probabilistic Seismic Hazard Maps for Ecuador
NASA Astrophysics Data System (ADS)
Mariniere, J.; Beauval, C.; Yepes, H. A.; Laurence, A.; Nocquet, J. M.; Alvarado, A. P.; Baize, S.; Aguilar, J.; Singaucho, J. C.; Jomard, H.
2017-12-01
A probabilistic seismic hazard study is led for Ecuador, a country facing a high seismic hazard, both from megathrust subduction earthquakes and shallow crustal moderate to large earthquakes. Building on the knowledge produced in the last years in historical seismicity, earthquake catalogs, active tectonics, geodynamics, and geodesy, several alternative earthquake recurrence models are developed. An area source model is first proposed, based on the seismogenic crustal and inslab sources defined in Yepes et al. (2016). A slightly different segmentation is proposed for the subduction interface, with respect to Yepes et al. (2016). Three earthquake catalogs are used to account for the numerous uncertainties in the modeling of frequency-magnitude distributions. The hazard maps obtained highlight several source zones enclosing fault systems that exhibit low seismic activity, not representative of the geological and/or geodetical slip rates. Consequently, a fault model is derived, including faults with an earthquake recurrence model inferred from geological and/or geodetical slip rate estimates. The geodetical slip rates on the set of simplified faults are estimated from a GPS horizontal velocity field (Nocquet et al. 2014). Assumptions on the aseismic component of the deformation are required. Combining these alternative earthquake models in a logic tree, and using a set of selected ground-motion prediction equations adapted to Ecuador's different tectonic contexts, a mean hazard map is obtained. Hazard maps corresponding to the percentiles 16 and 84% are also derived, highlighting the zones where uncertainties on the hazard are highest.
Magnetometric mapping of superconducting RF cavities
NASA Astrophysics Data System (ADS)
Schmitz, B.; Köszegi, J.; Alomari, K.; Kugeler, O.; Knobloch, J.
2018-05-01
A scalable mapping system for superconducting RF (SRF) cavities is presented. Currently, it combines local temperature measurement with 3D magnetic field mapping along the outer surface of the resonator. This allows for the observation of dynamic effects that have an impact on the superconducting properties of a cavity, such as the normal to superconducting phase transition or a quench. The system was developed for a single cell 1.3 GHz TESLA-type cavity, but can be easily adopted to arbitrary other cavity types. A data acquisition rate of 500 Hz for all channels simultaneously (i.e., 2 ms acquisition time for a complete map) and a magnetic field resolution of currently up to 14 mA/m/μ0 = 17 nT have been implemented. While temperature mapping is a well known technique in SRF research, the integration of magnetic field mapping opens the possibility of detailed studies of trapped magnetic flux and its impact on the surface resistance. It is shown that magnetic field sensors based on the anisotropic magnetoresistance effect can be used in the cryogenic environment with improved sensitivity compared to room temperature. Furthermore, examples of first successful combined temperature and magnetic-field maps are presented.
NASA Technical Reports Server (NTRS)
Skinner, J. A., Jr.; Eppler, D. B.; Bleacher, J. E.; Evans, C. A.; Feng, W.; Gruener, J.; Hurwitz, D. M.; Janoiko, B.; Whitson, P.
2014-01-01
Cartographic products and - specifically - geologic maps provide critical assistance for establishing physical and temporal frameworks of planetary surfaces. The technical methods that result in the creation of geologic maps vary depending on how observations are made as well as the overall intent of the final products [1-3]. These methods tend to follow a common linear work flow, including the identification and delineation of spatially and temporally discrete materials (units), the documentation of their primary (emplacement) and secondary (erosional) characteristics, analysis of the relative and absolute age relationships between these materials, and the collation of observations and interpretations into an objective map product. The "objectivity" of a map is critical cross comparison with overlapping maps and topical studies as well as its relevance to scientific posterity. However, the "accuracy" and "correctness" of a geologic map is very subject to debate. This can be evidenced by comparison of existing geologic maps at various scales, particularly those compiled through field- and remote-based mapped efforts. Our study focuses on comparing the fidelity of (1) "Apollo-style" geologic investigations, where typically non-geologist crew members follow static traverse routes established through pre-mission planning, and (2) "traditional" field-based investigations, where geologists are given free rein to observe without preplanned routes. This abstract summarizes the regional geology wherein our study was conducted, presents the geologic map created from traditional field mapping techniques, and offers basic insights into how geologic maps created from different tactics can be reconciled in support of exploratory missions. Additional abstracts [4-6] from this study discuss various exploration and science results of these efforts.
Boson mapping techniques applied to constant gauge fields in QCD
NASA Technical Reports Server (NTRS)
Hess, Peter Otto; Lopez, J. C.
1995-01-01
Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).
Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields
NASA Technical Reports Server (NTRS)
Shihui, Y.; Jiehai, J.; Minhan, J.
1985-01-01
A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.
Profiling Bioactivity of the ToxCast Chemical Library Using BioMAP Primary Human Cell Systems
The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, ...
Betti numbers of holomorphic symplectic quotients via arithmetic Fourier transform.
Hausel, Tamás
2006-04-18
A Fourier transform technique is introduced for counting the number of solutions of holomorphic moment map equations over a finite field. This technique in turn gives information on Betti numbers of holomorphic symplectic quotients. As a consequence, simple unified proofs are obtained for formulas of Poincaré polynomials of toric hyperkähler varieties (recovering results of Bielawski-Dancer and Hausel-Sturmfels), Poincaré polynomials of Hilbert schemes of points and twisted Atiyah-Drinfeld-Hitchin-Manin (ADHM) spaces of instantons on C2 (recovering results of Nakajima-Yoshioka), and Poincaré polynomials of all Nakajima quiver varieties. As an application, a proof of a conjecture of Kac on the number of absolutely indecomposable representations of a quiver is announced.
Flood maps in Europe - methods, availability and use
NASA Astrophysics Data System (ADS)
de Moel, H.; van Alphen, J.; Aerts, J. C. J. H.
2009-03-01
To support the transition from traditional flood defence strategies to a flood risk management approach at the basin scale in Europe, the EU has adopted a new Directive (2007/60/EC) at the end of 2007. One of the major tasks which member states must carry out in order to comply with this Directive is to map flood hazards and risks in their territory, which will form the basis of future flood risk management plans. This paper gives an overview of existing flood mapping practices in 29 countries in Europe and shows what maps are already available and how such maps are used. Roughly half of the countries considered have maps covering as good as their entire territory, and another third have maps covering significant parts of their territory. Only five countries have very limited or no flood maps available yet. Of the different flood maps distinguished, it appears that flood extent maps are the most commonly produced floods maps (in 23 countries), but flood depth maps are also regularly created (in seven countries). Very few countries have developed flood risk maps that include information on the consequences of flooding. The available flood maps are mostly developed by governmental organizations and primarily used for emergency planning, spatial planning, and awareness raising. In spatial planning, flood zones delimited on flood maps mainly serve as guidelines and are not binding. Even in the few countries (e.g. France, Poland) where there is a legal basis to regulate floodplain developments using flood zones, practical problems are often faced which reduce the mitigating effect of such binding legislation. Flood maps, also mainly extent maps, are also created by the insurance industry in Europe and used to determine insurability, differentiate premiums, or to assess long-term financial solvency. Finally, flood maps are also produced by international river commissions. With respect to the EU Flood Directive, many countries already have a good starting point to map their flood hazards. A flood risk based map that includes consequences, however, has yet to be developed by most countries.
NASA Astrophysics Data System (ADS)
Mnich, M.; Condit, C.
2016-12-01
The Springerville Volcanic Field (SVF), located in east-central Arizona, is one of the best-characterized basaltic monogenetic volcanic fields in the world, with it's expanse of over 3000 km2 now mapped in it's entirety as a result of recent efforts in 2010 and 2011. The methods used, called "magmatic mapping" (Condit, 2007), provide a standardized, volcanic unit focused approach to characterizing volcanic fields. This approach focuses on delineating contacts between flows, completely characterizing each flow, and placing them into a temporal framework. Results of magmatic mapping in the SVF now provide a comprehensive overview of the lifespan of the field, representing a unique resource, useful not only in studying the petrogenetic evolution of this field, but in serving as a template for comparing similar volcanic fields. On Earth, several fields pose a significant risk to population centers, though these hazards are often poorly understood due to long intervals between eruptions. On other planets, remote mapping can be greatly enhanced by comparing it with a well-studied terrestrial analog that has been analyzed in detail; an area with ever heightening necessity as high-resolution data is becoming increasingly available. In the SVF, olivine phyric lavas are most abundance (22% of volcanic outcrop), followed by diktytaxitic and olivine/plagioclase phyric flows. However, lithology will vary depending on when an eruption takes place in a volcanic fields lifecycle. On the whole, the SVF is younger to the east and younger lavas are dominantly more alkalic. These trends are also displayed within individual geographic divisions, many of which correspond to temporal-geographic clusters as defined by Condit and Connor (1996). The mapping methods and patterns in geochemistry, lithology and age progression within the SVF represent a unique template for which to base basaltic mapping.
The complex magnetic field topology of the cool Ap star 49 Cam
NASA Astrophysics Data System (ADS)
Silvester, J.; Kochukhov, O.; Rusomarov, N.; Wade, G. A.
2017-10-01
49 Cam is a cool magnetic chemically peculiar star that has been noted for showing strong, complex Zeeman linear polarization signatures. This paper describes magnetic and chemical surface maps obtained for 49 Cam using the Invers10 magnetic Doppler imaging code and high-resolution spectropolarimetric data in all four Stokes parameters collected with the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and Pic du Midi Observatory. The reconstructed magnetic field maps of 49 Cam show a relatively complex structure. Describing the magnetic field topology in terms of spherical harmonics, we find significant contributions of modes up to ℓ = 3, including toroidal components. Observations cannot be reproduced using a simple low-order multipolar magnetic field structure. 49 Cam exhibits a level of field complexity that has not been seen in magnetic maps of other cool Ap stars. Hence, we concluded that relatively complex magnetic fields are observed in Ap stars at both low and high effective temperatures. In addition to mapping the magnetic field, we also derive surface abundance distributions of nine chemical elements, including Ca, Sc, Ti, Cr, Fe, Ce, Pr, Nd and Eu. Comparing these abundance maps with the reconstructed magnetic field geometry, we find no clear relationship of the abundance distributions with the magnetic field for some elements. However, for other elements some distinct patterns are found. We discuss these results in the context of other recent magnetic mapping studies and theoretical predictions of radiative diffusion.
NASA Astrophysics Data System (ADS)
Vrabec, Marko; Dolžan, Erazem
2016-04-01
The undergraduate field course in Geological Mapping at the University of Ljubljana involves 20-40 students per year, which precludes the use of specialized rugged digital field equipment as the costs would be way beyond the capabilities of the Department. A different mapping area is selected each year with the aim to provide typical conditions that a professional geologist might encounter when doing fieldwork in Slovenia, which includes rugged relief, dense tree cover, and moderately-well- to poorly-exposed bedrock due to vegetation and urbanization. It is therefore mandatory that the digital tools and workflows are combined with classical methods of fieldwork, since, for example, full-time precise GNSS positioning is not viable under such circumstances. Additionally, due to the prevailing combination of complex geological structure with generally poor exposure, students cannot be expected to produce line (vector) maps of geological contacts on the go, so there is no need for such functionality in hardware and software that we use in the field. Our workflow therefore still relies on paper base maps, but is strongly complemented with digital tools to provide robust positioning, track recording, and acquisition of various point-based data. Primary field hardware are students' Android-based smartphones and optionally tablets. For our purposes, the built-in GNSS chips provide adequate positioning precision most of the time, particularly if they are GLONASS-capable. We use Oruxmaps, a powerful free offline map viewer for the Android platform, which facilitates the use of custom-made geopositioned maps. For digital base maps, which we prepare in free Windows QGIS software, we use scanned topographic maps provided by the National Geodetic Authority, but also other maps such as aerial imagery, processed Digital Elevation Models, scans of existing geological maps, etc. Point data, like important outcrop locations or structural measurements, are entered into Oruxmaps as waypoints. Students are also encouraged to directly measure structural data with specialized Android apps such as the MVE FieldMove Clino. Digital field data is exported from Oruxmaps to Windows computers primarily in the ubiquitous GPX data format and then integrated in the QGIS environment. Recorded GPX tracks are also used with the free Geosetter Windows software to geoposition and tag any digital photographs taken in the field. With minimal expenses, our workflow provides the students with basic familiarity and experience in using digital field tools and methods. The workflow is also practical enough for the prevailing field conditions of Slovenia that the faculty staff is using it in geological mapping for scientific research and consultancy work.
Modelling soil erosion in a head catchment of Jemma Basin on the Ethiopian highlands
NASA Astrophysics Data System (ADS)
Cama, Mariaelena; Schillaci, Calogero; Kropáček, Jan; Hochschild, Volker; Maerker, Michael
2017-04-01
Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality especially in developing countries such as Ethiopia where rapid population growth and climatic changes affect wide mountainous areas. The catchment of Andit-Tid is a head catchment of Jemma Basin draining to the Blue Nile (Central Ethiopia). It is located in an extremely variable topographical environment and it is exposed to high degradation dynamics especially in the lower part of the catchment. The increasing agricultural activity and grazing, lead to an intense use of the steep slopes which altered the soil structure. As a consequence, water erosion processes accelerated leading to the evolution of sheet erosion, gullies and badlands. This study is aimed at a geomorphological assessment of soil erosion susceptibility. First, a geomorphological map is generated using high resolution digital elevation model (DEM) derived from high resolution stereoscopic satellite data, multispectral imagery from Rapid Eye satellite system . The map was then validated by a detailed field survey. The final maps contains three inventories of landforms: i) sheet, ii) gully erosion and iii) badlands. The water erosion susceptibility is calculated with a Maximum Entropy approach. In particular, three different models are built using the three inventories as dependent variables and a set of spatial attributes describing the lithology, terrain, vegetation and land cover from remote sensing data and DEMs as independent variables. The single susceptibility maps for sheet, gully erosion as well as badlands showed good to excellent predictive performances. Moreover, we reveal and discuss the importance of different sets of variables among the three models. In order to explore the mutual overlap of the three susceptibility maps we generated a combined map as color composite whereas each color represents one component of water erosion. The latter map yield a useful information for land use managers and planning purposes.
Quaternary volcanic evolution in the continental back-arc of southern Mendoza, Argentina
NASA Astrophysics Data System (ADS)
May, Venera R.; Chivas, Allan R.; Dosseto, Anthony; Honda, Masahiko; Matchan, Erin L.; Phillips, David; Price, David M.
2018-07-01
The Payenia Basaltic Province (PBP) is the largest and the northernmost of the Quaternary back-arc Patagonian basaltic provinces in South America. In the last 10 years, several studies have investigated either, the geochemistry or the geochronology of this basaltic province. However, only a few investigations have focused on the two aspects simultaneously in order to reconstruct its Quaternary volcanic history. Consequently, this study aims to provide new Quaternary ages and to contribute in understanding how its geochemistry evolved though time. In the current study nine basaltic flows from the PBP in central west Argentina were dated using a combination of cosmogenic surface exposure, 40Ar/39Ar, and thermoluminescence dating methods. Seven flows have Middle to Late Pleistocene ages and two erupted in the Holocene. Using the new ages here inferred and the previously published Quaternary geochronology, together with the available geochemical data, maps of Pleistocene geochemical evolution have been generated. These maps indicate that two geochemically distinct magma types erupted over the same time interval (ca. 1.5 Ma) within the PBP: In the north-eastern part (Nevado volcanic field) of the province, an arc-like signature is distinguishable, whereas the southern part of the PBP (Río Colorado volcanic field) exhibits an intraplate, Ocean Island Basalt (OIB)-like signature. The arc-like signature decreases in the Early to Middle Pleistocene as indicated by a reduction in Ba/La and La/Ta values in the Nevado volcanic field. At ca. 0.25 Ma a similar disparity has been inferred between two volcanic fields on the western part of the PBP, one erupting lavas with arc-like characteristics and the other with OIB-like signatures, despite being only tens of kilometres apart. Holocene volcanism is restricted to the western side of the Payún Matrú volcanic field and is dominated by OIB-like signatures, notably high Ta/Hf and low Ba/La and La/Ta values.
NASA Astrophysics Data System (ADS)
Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.
2004-12-01
We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.
Opening the cusp. [using magnetic field topology
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.
1991-01-01
This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.
Nonlinear elastic inclusions in isotropic solids.
Yavari, Arash; Goriely, Alain
2013-12-08
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.
Nonlinear elastic inclusions in isotropic solids
Yavari, Arash; Goriely, Alain
2013-01-01
We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder. PMID:24353470
Ping-pong modes and higher-periodicity multipactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishek, R. A.
Multipactor is a vacuum discharge driven by secondary electron emission. Multiple period multipactors have long been known to exist but have been studied less extensively. In a period-n multipactor, electrons undergo multiple impacts in one rf period, with the synchronous phase alternating periodically between multiple values. A novel resonant form is proposed that combines one- and two-surface impacts within a single period, provided the total transit time is an odd number of rf half-periods and the product of secondary yields exceeds unity. For low fD products, the simplest such mode is shown to significantly increase the upper electric field boundarymore » of the multipacting region and lead to overlap of higher-order bands. The results agree nicely with 3-D particle-in-cell code simulations. An alternative, map-based method is introduced for analyzing higher-periodicity multipactor. Practical implications of the findings are discussed, including consequences for multipactor suppression strategies using a dc magnetic field.« less
Geologic Map of the Eaton Reservoir Quadrangle, Larimer County, Colorado and Albany County, Wyoming
Workman, Jeremiah B.
2008-01-01
New geologic mapping of the Eaton Reservoir 7.5' quadrangle defines geologic relationships in the northern Front Range along the Colorado/Wyoming border approximately 35 km south of Laramie, Wyo. Previous mapping within the quadrangle was limited to regional reconnaissance mapping (Tweto, 1979; Camp, 1979; Burch, 1983) and some minor site-specific studies (Carlson and Marsh, 1986; W. Braddock, unpub. mapping, 1982). Braddock and others (1989) mapped the Diamond Peak 7.5' quadrangle to the east, Burch (1983) mapped rocks of the Rawah batholith to the south, W. Braddock (unpub. mapping, 1981) mapped the Sand Creek Pass 7.5' quadrangle to the west, and Ver Ploeg and Boyd (2000) mapped the Laramie 30' x 60' quadrangle to the north. Field work was completed during 2005 and 2006 and the mapping was compiled at a scale of 1:24,000. Minimal petrographic work and isotope dating was done in connection with the present mapping, but detailed petrographic and isotope studies were carried out on correlative map units in surrounding areas as part of a related regional study of the northern Front Range. Classification of Proterozoic rocks is primarily based upon field observation of bulk mineral composition, macroscopic textural features, and field relationships that allow for correlation with rocks studied in greater detail outside of the map area.
Automated high resolution mapping of coffee in Rwanda using an expert Bayesian network
NASA Astrophysics Data System (ADS)
Mukashema, A.; Veldkamp, A.; Vrieling, A.
2014-12-01
African highland agro-ecosystems are dominated by small-scale agricultural fields that often contain a mix of annual and perennial crops. This makes such systems difficult to map by remote sensing. We developed an expert Bayesian network model to extract the small-scale coffee fields of Rwanda from very high resolution data. The model was subsequently applied to aerial orthophotos covering more than 99% of Rwanda and on one QuickBird image for the remaining part. The method consists of a stepwise adjustment of pixel probabilities, which incorporates expert knowledge on size of coffee trees and fields, and on their location. The initial naive Bayesian network, which is a spectral-based classification, yielded a coffee map with an overall accuracy of around 50%. This confirms that standard spectral variables alone cannot accurately identify coffee fields from high resolution images. The combination of spectral and ancillary data (DEM and a forest map) allowed mapping of coffee fields and associated uncertainties with an overall accuracy of 87%. Aggregated to district units, the mapped coffee areas demonstrated a high correlation with the coffee areas reported in the detailed national coffee census of 2009 (R2 = 0.92). Unlike the census data our map provides high spatial resolution of coffee area patterns of Rwanda. The proposed method has potential for mapping other perennial small scale cropping systems in the East African Highlands and elsewhere.
NASA Astrophysics Data System (ADS)
Shaw, Adam; Nunn, John
2010-06-01
In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45° to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 °C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.
The feasibility of an infrared system for real-time visualization and mapping of ultrasound fields.
Shaw, Adam; Nunn, John
2010-06-07
In treatment planning for ultrasound therapy, it is desirable to know the 3D structure of the ultrasound field. However, mapping an ultrasound field in 3D is very slow, with even a single planar raster scan taking typically several hours. Additionally, hydrophones that are used for field mapping are expensive and can be damaged in some therapy fields. So there is value in rapid methods which enable visualization and mapping of the ultrasound field in about 1 min. In this note we explore the feasibility of mapping the intensity distribution by measuring the temperature distribution produced in a thin sheet of absorbing material. A 0.2 mm thick acetate sheet forms a window in the wall of a water tank containing the transducer. The window is oriented at 45 degrees to the beam axis, and the distance from the transducer to the window can be varied. The temperature distribution is measured with an infrared camera; thermal images of the inclined plane could be viewed in real time or images could be captured for later analysis and 3D field reconstruction. We conclude that infrared thermography can be used to gain qualitative information about ultrasound fields. Thermal images are easily visualized with good spatial and thermal resolutions (0.044 mm and 0.05 degrees C in our system). The focus and field structure such as side lobes can be identified in real time from the direct video output. 3D maps and image planes at arbitrary orientations to the beam axis can be obtained and reconstructed within a few minutes. In this note we are primarily interested in the technique for characterization of high intensity focused ultrasound (HIFU) fields, but other applications such as physiotherapy fields are also possible.
VizieR Online Data Catalog: X-ray sources in the AKARI NEP deep field (Krumpe+, 2015)
NASA Astrophysics Data System (ADS)
Krumpe, M.; Miyaji, T.; Brunner, H.; Hanami, H.; Ishigaki, T.; Takagi, T.; Markowitz, A. G.; Goto, T.; Malkan, M. A.; Matsuhara, H.; Pearson, C.; Ueda, Y.; Wada, T.
2015-06-01
The fits images labelled SeMap* are the sensitivity maps in which we give the minimum flux that would have caused a detection at each position. This flux depends on the maximum likelihood threshold chosen in the source detection run, the point spread function, and the background level at the chosen position. We create sensitivity maps in different energy bands (0.5-2, 0.5-7, 2-4, 2-7, and 4-7keV) by searching for the flux to reject the null-hypothesis that the flux at a given position is only caused by a background fluctuation. In a chosen energy band, we determine for each position in the survey the flux required to obtain a certain Poisson probability above the background counts. Since ML=-ln(P), we know from our ML=12 threshold the probability we are aiming for. In practice, we search for a value of -ln P_total that falls within Delta ML=+/-0.2 of our targeted ML threshold. This tolerance range corresponds to having one spurious source more or less in the whole survey. Note, that outside the deep Subaru/Suprime-Cam imaging the sensitivity maps should be used with caution since we assume for their generation a ML=12 over the whole area covered by Chandra. More details on the procedure of producing the sensitivity maps, including the PSF-summed background map and PSF-weighted averaged exposure maps are given in the paper, section 5.3. The fits images labelled u90* are the upper limit maps, where the upper 90 per cent confidence flux limit is given at each position. We take a Bayesian approach following Kraft, Burrows & Nousek, 1991ApJ...374..344K. Consequently, we obtain the upper 90~per cent confidence flux limit by searching for the flux such that given the observed counts the Bayesian probability of having this flux or larger is 10~per cent. More details on the procedure of producing the upper 90 per cent flux limit maps are given in the paper, section 5.4. (6 data files).
Correlation of LANDSAT lineaments with Devonian gas fields in Lawrence County, Ohio
NASA Technical Reports Server (NTRS)
Johnson, G. O.
1981-01-01
In an effort to locate sources of natural gas in Ohio, the fractures and lineaments in Black Devonian shale were measured by: (1) field mapping of joints, swarms, and fractures; (2) stereophotointerpretation of geomorphic lineaments with precise photoquads; and (3) by interpreting the linear features on LANDSAT images. All results were compiled and graphically represented on 1:250,000 scale maps. The geologic setting of Lawrence County was defined and a field fracture map was generated and plotted as rose patterns at the exposure site. All maps were compared, contrasted, and correlated by superimposing each over the other as a transparency. The LANDSAT lineaments had significant correlation with the limits of oil and gas producing fields. These limits included termination of field production as well as extensions to other fields. The lineaments represent real rock fractures with zones of increased permeability in the near surface bedrock.
NASA Technical Reports Server (NTRS)
Realmuto, Vincent J.; Hon, Ken; Kahle, Anne B.; Abbott, Elsa A.; Pieri, David C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10 C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows.
Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.
Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan
2018-04-30
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Application of remote sensing techniques to the geology of the bonanza volcanic center
NASA Technical Reports Server (NTRS)
Marrs, R. W.
1973-01-01
A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.
Beta Testing StraboSpot: Perspectives on mobile field mapping and data collection
NASA Astrophysics Data System (ADS)
Bunse, E.; Graham, K. A.; Rufledt, C.; Walker, J. D.; Müller, A.; Tikoff, B.
2017-12-01
Geologic field mapping has recently transitioned away from traditional techniques (e.g. field notebooks, paper mapping, Brunton compasses) and towards mobile `app' mapping technology. The StraboSpot system (Strabo) is an open-source solution for collection and storage for geologic field, microstructural, and lab-based data. Strabo's mission is to "enable recording and sharing data within the geoscience community, encourage interdisciplinary research, and facilitate the investigation of scientific questions that cannot currently be addressed" (Walker et al., 2015). Several mobile application beta tests of the system, on both Android and Apple iOS platforms using smartphones and tablets, began in Summer 2016. Students at the 2016 and 2017 University of Kansas Field Camps used Strabo in place of ArcGIS for Desktop on Panasonic Toughbooks, to field map two study areas. Strabo was also field tested by students of graduate and undergraduate level for both geo/thermochronologic sample collection and reconnaissance mapping associated with regional tectonic analysis in California. Throughout this period of testing, the app was geared toward structural and tectonic geologic data collection, but is versatile enough for other communities to currently use and is expanding to accommodate the sedimentology and petrology communities. Overall, users in each of the beta tests acclimated quickly to using Strabo for field data collection. Some key advantages to using Strabo over traditional mapping methods are: (1) Strabo allows for consolidation of materials in the field; (2) helps students track their position in the field with integrated GPS; and (3) Strabo data is in a uniform format making it simple for geologists to collaborate. While traditional field methods are not likely to go out of style in the near future, Strabo acts as a bridge between professional and novice geologists by providing a tool that is intuitive on all levels of geological and technological experience and allows for more effective collaboration in the field. Walker, J. Douglas, et al. (2015), Development of Structural Geology and Tectonics Data System with Field and Lab Interface, Abstract IN21E-04 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 14-18 Dec.
NASA Astrophysics Data System (ADS)
Love, J. J.
2016-12-01
Magnetic-storm induction of geoelectric fields in the Earth's electrically conducting crust, lithosphere, mantle, and ocean can interfere with the operations of electric-power grid systems. The future occurrence of an extremely intense magnetic storm might even result in continental-scale failure of electric-power distribution. Such an event would entail significant deleterious consequence for the economy and international security. Building on a project established by the President's National Science and Technology Council and the Office of Science and Technology Policy for assessing space-weather induction hazards, we develop a series of geoelectric hazard maps. These are constructed using an empirical parameterization of induction: local estimates of Earth-surface impedance, obtained from EarthScope and USGS magnetotelluric survey data, are convolved with latitude-dependent statistical maps of extreme-value geomagnetic activity, obtained from decades magnetic observatory data. Geoelectric hazard maps are constructed for both north-south and east-west geomagnetic variation, and for both 240-s and 1200-s sinusoidal variation -- periods of interest to the power-grid industry. The maps cover about half of the continental United States. They depict the threshold level that geoelectric amplitude can be expected to exceed, on average, once per century at discrete geographic sites in response to extreme-intensity geomagnetic activity. Of the regions where magnetotelluric data are available, the greatest induction hazards are found in Minnesota, Wisconsin, and Iowa - this being the result of both high-latitude geomagntic activity and complex subsurface conductivity structure. At some sites in the continental United States, once-per-century geoelectric amplitudes can exceed the 1.7 V/km realized in Quebec during the March 1989 storm. This work highlights the importance of geophysical surveys and ground-level monitoring data for assessing space-weather induction hazards.
Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape
NASA Astrophysics Data System (ADS)
Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.
2015-12-01
Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.
NASA Astrophysics Data System (ADS)
Lang, K. A.; Petrie, G.
2014-12-01
Extended field-based summer courses provide an invaluable field experience for undergraduate majors in the geosciences. These courses often utilize the construction of geological maps and structural cross sections as the primary pedagogical tool to teach basic map orientation, rock identification and structural interpretation. However, advances in the usability and ubiquity of Geographic Information Systems in these courses presents new opportunities to evaluate student work. In particular, computer-based quantification of systematic mapping errors elucidates the factors influencing student success in the field. We present a case example from a mapping exercise conducted in a summer Field Geology course at a popular field location near Dillon, Montana. We use a computer algorithm to automatically compare the placement and attribution of unit contacts with spatial variables including topographic slope, aspect, bedding attitude, ground cover and distance from starting location. We compliment analyses with anecdotal and survey data that suggest both physical factors (e.g. steep topographic slope) as well as structural nuance (e.g. low angle bedding) may dominate student frustration, particularly in courses with a high student to instructor ratio. We propose mechanisms to improve student experience by allowing students to practice skills with orientation games and broadening student background with tangential lessons (e.g. on colluvial transport processes). As well, we suggest low-cost ways to decrease the student to instructor ratio by supporting returning undergraduates from previous years or staging mapping over smaller areas. Future applications of this analysis might include a rapid and objective system for evaluation of student maps (including point-data, such as attitude measurements) and quantification of temporal trends in student work as class sizes, pedagogical approaches or environmental variables change. Long-term goals include understanding and characterizing stochasticity in geological mapping beyond the undergraduate classroom, and better quantifying uncertainty in published map products.
Lithology and aggregate quality attributes for the digital geologic map of Colorado
Knepper, Daniel H.; Green, Gregory N.; Langer, William H.
1999-01-01
This geologic map was prepared as a part of a study of digital methods and techniques as applied to complex geologic maps. The geologic map was digitized from the original scribe sheets used to prepare the published Geologic Map of Colorado (Tweto 1979). Consequently the digital version is at 1:500,000 scale using the Lambert Conformal Conic map projection parameters of the state base map. Stable base contact prints of the scribe sheets were scanned on a Tektronix 4991 digital scanner. The scanner automatically converts the scanned image to an ASCII vector format. These vectors were transferred to a VAX minicomputer, where they were then loaded into ARC/INFO. Each vector and polygon was given attributes derived from the original 1979 geologic map.
Ryder, Robert T.; Kinney, Scott A.; Suitt, Stephen E.; Merrill, Matthew D.; Trippi, Michael H.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
In 2006 and 2007, the greenline Appalachian basin field maps were digitized under the supervision of Scott Kinney and converted to geographic information system (GIS) files for chapter I.1 (this volume). By converting these oil and gas field maps to a digital format and maintaining the field names where noted, they are now available for a variety of oil and gas and possibly carbon-dioxide sequestration projects. Having historical names assigned to known digitized conventional fields provides a convenient classification scheme into which cumulative production and ultimate field-size databases can be organized. Moreover, as exploratory and development drilling expands across the basin, many previously named fields that were originally treated as conventional fields have evolved into large, commonly unnamed continuous-type accumulations. These new digital maps will facilitate a comparison between EUR values from recently drilled, unnamed parts of continuous accumulations and EUR values from named fields discovered early during the exploration cycle of continuous accumulations.
Database on unstable rock slopes in Norway
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.
2014-05-01
Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of the database will be shown in the online map service (e.g. processed results of displacement measurements), while more detailed data will not (e.g. raw data of displacement measurements). Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site, a municipality, a county or the entire country. Selected data will also be downloadable free of charge. The present database on unstable rock slopes in Norway will further evolve in the coming years as the systematic mapping conducted by the Geological Survey of Norway progresses and as available techniques and tools evolve.
,
2006-01-01
GDA (Geologic Data Assistant) is an extension to ArcPad, a mobile mapping software program by Environmental Systems Research Institute (ESRI) designed to run on personal digital assistant (PDA) computers. GDA and ArcPad allow a PDA to replace the paper notebook and field map traditionally used for geologic mapping. GDA allows easy collection of field data.
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
7 CFR 12.22 - Highly erodible field determination criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... percent or more of the total field acreage is identified as soil map units which are highly erodible; or (2) 50 or more acres in such field are identified as soil map units which are highly erodible. (b...
Mapping of wildlife habitat in Farmington Bay, Utah
NASA Technical Reports Server (NTRS)
Jaynes, R. A.; Willie, R. D. (Principal Investigator)
1982-01-01
Mapping was accomplished through the interpretation of high-altitude color infrared photography. The feasibility of utilizing LANDSAT digital data to augment the analysis was explored; complex patterns of wildlife habitat and confusion of spectral classes resulted in the decision to make limited use of LANDSAT data in the analysis. The final product is a map which delineates wildlife habitat at a scale of 1:24,000. The map is registered to and printed on a screened U.S.G.S. quadrangle base map. Screened delineations of shoreline contours, mapped from a previous study, are also shown on the map. Intensive field checking of the map was accomplished for the Farmington Bay Waterfowl Management Area in August 1981; other areas on the map received only spot field checking.
Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B
2011-07-01
Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.
Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah
Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M.
2002-01-01
The geologic map of the central Marysvale volcanic field, southwestern Utah, shows the geology at 1:100,000 scale of the heart of one of the largest Cenozoic volcanic fields in the Western United States. The map shows the area of 38 degrees 15' to 38 degrees 42'30' N., and 112 degrees to 112 degrees 37'30' W. The Marysvale field occurs mostly in the High Plateaus, a subprovince of the Colorado Plateau and structurally a transition zone between the complexly deformed Great Basin to the west and the stable, little-deformed main part of the Colorado Plateau to the east. The western part of the field is in the Great Basin proper. The volcanic rocks and their source intrusions in the volcanic field range in age from about 31 Ma (Oligocene) to about 0.5 Ma (Pleistocene). These rocks overlie sedimentary rocks exposed in the mapped area that range in age from Ordovician to early Cenozoic. The area has been deformed by thrust faults and folds formed during the late Mesozoic to early Cenozoic Sevier deformational event, and later by mostly normal faults and folds of the Miocene to Quaternary basin-range episode. The map revises and updates knowledge gained during a long-term U.S. Geological Survey investigation of the volcanic field, done in part because of its extensive history of mining. The investigation also was done to provide framework geologic knowledge suitable for defining geologic and hydrologic hazards, for locating hydrologic and mineral resources, and for an understanding of geologic processes in the area. A previous geologic map (Cunningham and others, 1983, U.S. Geological Survey Miscellaneous Investigations Series I-1430-A) covered the same area as this map but was published at 1:50,000 scale and is obsolete due to new data. This new geologic map of the central Marysvale field, here published as U.S. Geological Survey Geologic Investigations Series I-2645-A, is accompanied by gravity and aeromagnetic maps of the same area and the same scale (Campbell and others, 1999, U.S. Geological Survey Geologic Investigations Series I-2645-B).
Spatial MEG laterality maps for language: clinical applications in epilepsy.
D'Arcy, Ryan C N; Bardouille, Timothy; Newman, Aaron J; McWhinney, Sean R; Debay, Drew; Sadler, R Mark; Clarke, David B; Esser, Michael J
2013-08-01
Functional imaging is increasingly being used to provide a noninvasive alternative to intracarotid sodium amobarbitol testing (i.e., the Wada test). Although magnetoencephalography (MEG) has shown significant potential in this regard, the resultant output is often reduced to a simplified estimate of laterality. Such estimates belie the richness of functional imaging data and consequently limit the potential value. We present a novel approach that utilizes MEG data to compute "complex laterality vectors" and consequently "laterality maps" for a given function. Language function was examined in healthy controls and in people with epilepsy. When compared with traditional laterality index (LI) approaches, the resultant maps provided critical information about the magnitude and spatial characteristics of lateralized function. Specifically, it was possible to more clearly define low LI scores resulting from strong bilateral activation, high LI scores resulting from weak unilateral activation, and most importantly, the spatial distribution of lateralized activation. We argue that the laterality concept is better presented with the inherent spatial sensitivity of activation maps, rather than being collapsed into a one-dimensional index. Copyright © 2012 Wiley Periodicals, Inc.
Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
Colliex, Christian; Kociak, Mathieu; Stéphan, Odile
2016-03-01
Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and spherical surfaces (or interfaces), extending then to more complex geometries isolated and in interaction, thus establishing basic rules from the classical to the quantum domain. A few hints towards application domains and prospective fields rich of interest will finally be indicated, confirming the demonstrated key role of electron-beam nanoplasmonics, the more as an yet-enhanced energy resolution down to the 10meV comes on the verge of current access. Copyright © 2015 Elsevier B.V. All rights reserved.
Expert system-based mineral mapping using AVIRIS
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.
1992-01-01
Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.
Code of Federal Regulations, 2010 CFR
2010-04-01
... AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER RIGHTS-OF-WAY OVER INDIAN LANDS § 169.7 Field notes. Field notes of the survey shall appear along the line indicating the right-of-way on the maps, unless the maps would be too crowded thereby to be easily legible, in which event the field notes may be...
Reconstruction of flux coordinates from discretized magnetic field maps
NASA Astrophysics Data System (ADS)
Predebon, I.; Momo, B.; Suzuki, Y.; Auriemma, F.
2018-04-01
We provide a simple method to build a straight field-line coordinate system from discretized (Poincaré) magnetic field maps. The method is suitable for any plasma domain with nested flux surfaces, including magnetic islands. Illustrative examples are shown for tokamak, heliotron, and reversed-field-pinch plasmas with m = 1 islands.
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.
2016-12-01
Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.
NASA Astrophysics Data System (ADS)
Watkins, Hannah; Bond, Clare; Butler, Rob
2016-04-01
Geological mapping techniques have advanced significantly in recent years from paper fieldslips to Toughbook, smartphone and tablet mapping; but how do the methods used to create a geological map affect the thought processes that result in the final map interpretation? Geological maps have many key roles in the field of geosciences including understanding geological processes and geometries in 3D, interpreting geological histories and understanding stratigraphic relationships in 2D and 3D. Here we consider the impact of the methods used to create a map on the thought processes that result in the final geological map interpretation. As mapping technology has advanced in recent years, the way in which we produce geological maps has also changed. Traditional geological mapping is undertaken using paper fieldslips, pencils and compass clinometers. The map interpretation evolves through time as data is collected. This interpretive process that results in the final geological map is often supported by recording in a field notebook, observations, ideas and alternative geological models explored with the use of sketches and evolutionary diagrams. In combination the field map and notebook can be used to challenge the map interpretation and consider its uncertainties. These uncertainties and the balance of data to interpretation are often lost in the creation of published 'fair' copy geological maps. The advent of Toughbooks, smartphones and tablets in the production of geological maps has changed the process of map creation. Digital data collection, particularly through the use of inbuilt gyrometers in phones and tablets, has changed smartphones into geological mapping tools that can be used to collect lots of geological data quickly. With GPS functionality this data is also geospatially located, assuming good GPS connectivity, and can be linked to georeferenced infield photography. In contrast line drawing, for example for lithological boundary interpretation and sketching, is yet to find the digital flow that is achieved with pencil on notebook page or map. Free-form integrated sketching and notebook functionality in geological mapping software packages is in its nascence. Hence, the result is a tendency for digital geological mapping to focus on the ease of data collection rather than on the thoughts and careful observations that come from notebook sketching and interpreting boundaries on a map in the field. The final digital geological map can be assessed for when and where data was recorded, but the thought processes of the mapper are less easily assessed, and the use of observations and sketching to generate ideas and interpretations maybe inhibited by reliance on digital mapping methods. All mapping methods used have their own distinct advantages and disadvantages and with more recent technologies both hardware and software issues have arisen. We present field examples of using conventional fieldslip mapping, and compare these with more advanced technologies to highlight some of the main advantages and disadvantages of each method and discuss where geological mapping may be going in the future.
Measuring novices' field mapping abilities using an in-class exercise based on expert task analysis
NASA Astrophysics Data System (ADS)
Caulkins, J. L.
2010-12-01
We are interested in developing a model of expert-like behavior for improving the teaching methods of undergraduate field geology. Our aim is to assist students in mastering the process of field mapping more efficiently and effectively and to improve their ability to think creatively in the field. To examine expert-mapping behavior, a cognitive task analysis was conducted with expert geologic mappers in an attempt to define the process of geologic mapping (i.e. to understand how experts carry out geological mapping). The task analysis indicates that expert mappers have a wealth of geologic scenarios at their disposal that they compare against examples seen in the field, experiences that most undergraduate mappers will not have had. While presenting students with many geological examples in class may increase their understanding of geologic processes, novices still struggle when presented with a novel field situation. Based on the task analysis, a short (45-minute) paper-map-based exercise was designed and tested with 14 pairs of 3rd year geology students. The exercise asks students to generate probable geologic models based on a series of four (4) data sets. Each data set represents a day’s worth of data; after the first “day,” new sheets simply include current and previously collected data (e.g. “Day 2” data set includes data from “Day 1” plus the new “Day 2” data). As the geologic complexity increases, students must adapt, reject or generate new geologic models in order to fit the growing data set. Preliminary results of the exercise indicate that students who produced more probable geologic models, and produced higher ratios of probable to improbable models, tended to go on to do better on the mapping exercises at the 3rd year field school. These results suggest that those students with more cognitively available geologic models may be more able to use these models in field settings than those who are unable to draw on these models for whatever reason. Giving students practice at generating geologic models to explain data may be useful in preparing our students for field mapping exercises.
NASA Astrophysics Data System (ADS)
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping
2015-07-01
Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping
2015-07-01
Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms ( R 2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.
NASA Astrophysics Data System (ADS)
Jin, H.; Chen, G.
2017-12-01
In the magnetic quiet afternoon on 22 July 2013 and noon on 23 May 2016 , Hainan coherent scatter phased array radar (HCOPAR) located at low latitude of China has recorded two cases of the extremely rare daytime F region irregularities. The field-aligned irregularities (FAIs) appeared in the topside F2 layer with small Doppler velocities and narrow spectral widths. The time sequence of the fan sector maps shows the FAIs of 2016 moved northward with almost no zonal drift velocity. The Kp and DST indexes indicate that the irregularities emerged in the magnetic quiet days, so the irregularities were irrelevant to the storm-induced eastward electric field as other daytime cases. More than 2 h after the emergency of the daytime irregularities over Hainan, the Shaoyang digisonde situated 870 km north to the HCOPAR recorded the spread-F in ionospheric F1 layer. According to the echo altitudes, the spread-F may connect the daytime bubbles via magnetic field line. It is difficult for F-region irregularities to survive in the sunlit ionosphere due to the strong photoionization after sunrise. Consequently, the daytime FAIs over Hainan may travel from higher altitudes in the south along the geomagnetic field and are most likely the remnant of postsunset/postmidnight plasma bubbles.
Coronal Holes and Magnetic Flux Ropes Interweaving Solar Cycles
NASA Astrophysics Data System (ADS)
Lowder, Chris; Yeates, Anthony; Leamon, Robert; Qiu, Jiong
2016-10-01
Coronal holes, dark patches observed in solar observations in extreme ultraviolet and x-ray wavelengths, provide an excellent proxy for regions of open magnetic field rooted near the photosphere. Through a multi-instrument approach, including SDO data, we are able to stitch together high resolution maps of coronal hole boundaries spanning the past two solar activity cycles. These observational results are used in conjunction with models of open magnetic field to probe physical solar parameters. Magnetic flux ropes are commonly defined as bundles of solar magnetic field lines, twisting around a common axis. Photospheric surface flows and magnetic reconnection work in conjunction to form these ropes, storing magnetic stresses until eruption. With an automated methodology to identify flux ropes within observationally driven magnetofrictional simulations, we can study their properties in detail. Of particular interest is a solar-cycle length statistical description of eruption rates, spatial distribution, magnetic orientation, flux, and helicity. Coronal hole observations can provide useful data about the distribution of the fast solar wind, with magnetic flux ropes yielding clues as to ejected magnetic field and the resulting space weather geo-effectiveness. With both of these cycle-spanning datasets, we can begin to form a more detailed picture of the evolution and consequences of both sets of solar magnetic features.
Geologic map and structure sections of the Clear Lake Volcanics, Northern California
Hearn, B.C.; Donnelly-Nolan, J. M.; Goff, F.E.
1995-01-01
The Clear Lake Volcanics are located in the California Coast Ranges about 150 km north of San Francisco. This Quaternary volcanic field has erupted intermittently since 2.1 million years ago. This volcanic field is considered a high-threat volcanic system (Ewert and others, 2005) The adjacent Geysers geothermal field, largest power-producing geothermal field in the world, is powered by the magmatic heat source for the volcanic field. This report consists of three sheets that include the geologic map, one table, two figures, three cross sections, description of map units, charts of standard and diagrammatic correlation of map units, and references. This map supersedes U.S. Geological Survey Open-File Report 76-751. Descriptions of map units are grouped by geographic area. Summaries of the evolution, chemistry, structure, and tectonic setting of the Clear Lake Volcanics are given in Hearn and others (1981) and Donnelly-Nolan and others (1981). The geology of parts of the area underlain by the Cache Formation is based on mapping by Rymer (1981); the geology of parts of the areas underlain by the Sonoma Volcanics, Franciscan assemblage, and Great Valley sequence is based on mapping by McLaughlin (1978). Volcanic compositional map units are basalt, basaltic andesite, andesite, dacite, rhyodacite, and rhyolite, based on SiO2 content. Included in this report are maps showing the distribution of volcanic rocks through time and a chart showing erupted volumes of different lava types through time. A table gives petrographic data for each map unit by mineral type, abundance, and size. Most ages are potassium-argon (K/Ar) ages determined for whole-rock samples and mineral separates by Donnelly-Nolan and others (1981), unless otherwise noted. A few ages are carbon-14 ages or were estimated from geologic relationships. Magnetic polarities are from Mankinen and others (1978; 1981) or were determined in the field by B.C. Hearn, Jr., using a portable fluxgate magnetometer. Thickness for most units is estimated from topographic relief except where drill-hole data were available.
Norman, Laura M.; Middleton, Barry R.; Wilson, Natalie R.
2018-01-01
Mapping of vegetation types is of great importance to the San Carlos Apache Tribe and their management of forestry and fire fuels. Various remote sensing techniques were applied to classify multitemporal Landsat 8 satellite data, vegetation index, and digital elevation model data. A multitiered unsupervised classification generated over 900 classes that were then recoded to one of the 16 generalized vegetation/land cover classes using the Southwest Regional Gap Analysis Project (SWReGAP) map as a guide. A supervised classification was also run using field data collected in the SWReGAP project and our field campaign. Field data were gathered and accuracy assessments were generated to compare outputs. Our hypothesis was that a resulting map would update and potentially improve upon the vegetation/land cover class distributions of the older SWReGAP map over the 24,000 km2 study area. The estimated overall accuracies ranged between 43% and 75%, depending on which method and field dataset were used. The findings demonstrate the complexity of vegetation mapping, the importance of recent, high-quality-field data, and the potential for misleading results when insufficient field data are collected.
PREFACE: 3rd International Workshop on Materials Analysis and Processing in Magnetic Fields (MAP3)
NASA Astrophysics Data System (ADS)
Sakka, Yoshio; Hirota, Noriyuki; Horii, Shigeru; Ando, Tsutomu
2009-07-01
The 3rd International Workshop on Materials Analysis and Processing in Materials Fields (MAP3) was held on 14-16 May 2008 at the University of Tokyo, Japan. The first was held in March 2004 at the National High Magnetic Field Laboratory in Tallahassee, USA. Two years later the second took place in Grenoble, France. MAP3 was held at The University of Tokyo International Symposium, and jointly with MANA Workshop on Materials Processing by External Stimulation, and JSPS CORE Program of Construction of the World Center on Electromagnetic Processing of Materials. At the end of MAP3 it was decided that the next MAP4 will be held in Atlanta, USA in 2010. Processing in magnetic fields is a rapidly expanding research area with a wide range of promising applications in materials science. MAP3 focused on the magnetic field interactions involved in the study and processing of materials in all disciplines ranging from physics to chemistry and biology: Magnetic field effects on chemical, physical, and biological phenomena Magnetic field effects on electrochemical phenomena Magnetic field effects on thermodynamic phenomena Magnetic field effects on hydrodynamic phenomena Magnetic field effects on crystal growth Magnetic processing of materials Diamagnetic levitation Magneto-Archimedes effect Spin chemistry Application of magnetic fields to analytical chemistry Magnetic orientation Control of structure by magnetic fields Magnetic separation and purification Magnetic field-induced phase transitions Materials properties in high magnetic fields Development of NMR and MRI Medical application of magnetic fields Novel magnetic phenomena Physical property measurement by Magnetic fields High magnetic field generation> MAP3 consisted of 84 presentations including 16 invited talks. This volume of Journal of Physics: Conference Series contains the proceeding of MAP3 with 34 papers that provide a scientific record of the topics covered by the conference with the special topics (13 papers) in the journal Science and Technology of Advanced Materials. All articles have been refereed by experts in the field. Both of these journals are fully accessible electronically and can be cited and referenced in the usual way. It is our hope that the reader will enjoy and profit from the MAP3 Proceedings. Hitoshi Wada (Kashiwa, Japan) Chair Eric Beaugon (Grenoble, France) Hans J Schneider-Muntau (Tallahassee, USA) Co-chair Advisory Board Shigeo Asai (Nagoya, Japan) Koichi Kitazawa (Tokyo, Japan) Mitsuhiro Motokawa (Sendai, Japan) Shoogo Ueno (Fukuoka, Japan) Robert Tournier (Grenoble, France) Justin Schwartz (Tallahassee, USA) J C Maan (Nijmegen, Netherland) Scientific Committee Yoshifumi Tanimoto (Hiroshima, Japan) Masuhiro Yamaguchi (Yokohama, Japan) Tsunehisa Kimura (Kyoto, Japan) Yoshio Sakka (Tsukuba Japan) Ryoichi Aogaki (Tokyo, Japan) Jyunji Miyakoshi (Hirosaki, Japan) Kazuo Watanabe (Sendai, Japan) James M Valles Jr. (Providence, USA) Joon Pyo Park (Pohang, Korea) Qiang Wang (Shenyang, China) Nicole Pamme (Hull, UK) Sophie Rivoirard (Grenoble, France) P C M Christianen (Nijmegen, Netherland) Local Organizing Committee Isao Yamamoto Masafumi Yamato Shigeru Horii Norihito Sogoshi Masateru Ikehata Noriyuki Hirota Tsutomu Ando Proceedings Editorial Board Yoshio Sakka Noriyuki Hirota Shigeru Horii Tsutomu Ando Conference photograph
Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe
2017-01-01
Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael
2015-04-01
Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.
Relating Land Use and Human Intra-City Mobility
Lee, Minjin; Holme, Petter
2015-01-01
Understanding human mobility patterns—how people move in their everyday lives—is an interdisciplinary research field. It is a question with roots back to the 19th century that has been dramatically revitalized with the recent increase in data availability. Models of human mobility often take the population distribution as a starting point. Another, sometimes more accurate, data source is land-use maps. In this paper, we discuss how the intra-city movement patterns, and consequently population distribution, can be predicted from such data sources. As a link between land use and mobility, we show that the purposes of people’s trips are strongly correlated with the land use of the trip’s origin and destination. We calibrate, validate and discuss our model using survey data. PMID:26445147
LANDSAT detection of hydrothermal alteration in the Nogal Canyon Cauldron, New Mexico
NASA Technical Reports Server (NTRS)
Vincent, R. K.; Rouse, G.
1977-01-01
In 1974 a circular-shaped iron oxide anomaly was observed in an image of a LANDSAT frame centered near Truth or Consequences, New Mexico. Field examination of the anomaly has shown that it coincides with a zone of hydrothermal alteration on the northern edge of the Nogal Canyon Cauldron. The altered area contains clay minerals ranging in colors from white to vivid red, the latter presumably resulting from hematite staining. In situ gas measurements showed no evidence of active hydrogen sulfide seepage. Preliminary geochemical analyses of grab samples have detected no significant amounts of mineralization. Whereas this area does not at present appear to be economically important, it provides an example of how LANDSAT can be utilized in reconnaissance mapping for cauldrons, calderas, and other volcanic features which display hydrothermal alteration.
Methods for enhancing mapping of thermal fronts in oil recovery
Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.
1987-01-01
A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.
Digital geologic map of the Coeur d'Alene 1:100,000 quadrangle, Idaho and Montana
digital compilation by Munts, Steven R.
2000-01-01
Between 1961 and 1969, Alan Griggs and others conducted fieldwork to prepare a geologic map of the Spokane 1:250,000 map (Griggs, 1973). Their field observations were posted on paper copies of 15-minute quadrangle maps. In 1999, the USGS contracted with the Idaho Geological Survey to prepare a digital version of the Coeur d’Alene 1:100,000 quadrangle. To facilitate this work, the USGS obtained the field maps prepared by Griggs and others from the USGS Field Records Library in Denver, Colorado. The Idaho Geological Survey (IGS) digitized these maps and used them in their mapping program. The mapping focused on field checks to resolve problems in poorly known areas and in areas of disagreement between adjoining maps. The IGS is currently in the process of preparing a final digital spatial database for the Coeur d’Alene 1:100,000 quadrangle. However, there was immediate need for a digital version of the geologic map of the Coeur d’Alene 1:100,000 quadrangle and the data from the field sheets along with several other sources were assembled to produce this interim product. This interim product is the digital geologic map of the Coeur d’Alene 1:100,000 quadrangle, Idaho and Montana. It was compiled from the preliminary digital files prepared by the Idaho Geological, and supplemented by data from Griggs (1973) and from digital databases by Bookstrom and others (1999) and Derkey and others (1996). The resulting digital geologic map (GIS) database can be queried in many ways to produce a variety of geologic maps. Digital base map data files (topography, roads, towns, rivers and lakes, etc.) are not included: they may be obtained from a variety of commercial and government sources. This database is not meant to be used or displayed at any scale larger than 1:100,000 (e.g., 1:62,500 or 1:24,000). The digital geologic map graphics (of00-135_map.pdf) that are provided are representations of the digital database. The map area is located in north Idaho. This open-file report describes the geologic map units, the methods used to convert the geologic map data into a digital format, the ArcInfo GIS file structures and relationships, and explains how to download the digital files from the U.S. Geological Survey public access World Wide Web site on the Internet.
NASA Technical Reports Server (NTRS)
Kahn, W. D.
1984-01-01
The spaceborne gravity gradiometer is a potential sensor for mapping the fine structure of the Earth's gravity field. Error analyses were performed to investigate the accuracy of the determination of the Earth's gravity field from a gravity field satellite mission. The orbital height of the spacecraft is the dominating parameter as far as gravity field resolution and accuracies are concerned.
NASA Astrophysics Data System (ADS)
Cai, Kaicong; Zheng, Xuan; Du, Fenfen
2017-08-01
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively.
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
Mapping the magnetic field vector in a fountain clock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gertsvolf, Marina; Marmet, Louis
2011-12-15
We show how the mapping of the magnetic field vector components can be achieved in a fountain clock by measuring the Larmor transition frequency in atoms that are used as a spatial probe. We control two vector components of the magnetic field and apply audio frequency magnetic pulses to localize and measure the field vector through Zeeman spectroscopy.
Mu2e Solenoid Field Mapping System Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, Sandor; DeLurgio, Patrick M.; Elementi, Luciano
The Mu2e experiment at Fermilab plans to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. A complex solenoid system and precise knowledge of its magnetic field play a major role in the experimental approach Mu2e has chosen. It is essential to map the solenoid field up to 10 -4 accuracy. This article describes the design of the Field Mapping System Mu2e will use to measure the magnetic field. Two different mechanical mapper systems, a survey based position determination of the in-house calibrated 3D Hall probes, a motion control system,more » and a data acquisition and readout system are presented.« less
Mu2e Solenoid Field Mapping System Design
Feher, Sandor; DeLurgio, Patrick M.; Elementi, Luciano; ...
2018-01-11
The Mu2e experiment at Fermilab plans to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. A complex solenoid system and precise knowledge of its magnetic field play a major role in the experimental approach Mu2e has chosen. It is essential to map the solenoid field up to 10 -4 accuracy. This article describes the design of the Field Mapping System Mu2e will use to measure the magnetic field. Two different mechanical mapper systems, a survey based position determination of the in-house calibrated 3D Hall probes, a motion control system,more » and a data acquisition and readout system are presented.« less
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
Rotskoff, Grant M
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
NASA Astrophysics Data System (ADS)
Sacramento, P. D.; Vieira, V. R.
2018-04-01
Mappings between models may be obtained by unitary transformations with preservation of the spectra but in general a change in the states. Non-canonical transformations in general also change the statistics of the operators involved. In these cases one may expect a change of topological properties as a consequence of the mapping. Here we consider some dualities resulting from mappings, by systematically using a Majorana fermion representation of spin and fermionic problems. We focus on the change of topological invariants that results from unitary transformations taking as examples the mapping between a spin system and a topological superconductor, and between different fermionic systems.
Three-dimensional analysis of magnetometer array data
NASA Technical Reports Server (NTRS)
Richmond, A. D.; Baumjohann, W.
1984-01-01
A technique is developed for mapping magnetic variation fields in three dimensions using data from an array of magnetometers, based on the theory of optimal linear estimation. The technique is applied to data from the Scandinavian Magnetometer Array. Estimates of the spatial power spectra for the internal and external magnetic variations are derived, which in turn provide estimates of the spatial autocorrelation functions of the three magnetic variation components. Statistical errors involved in mapping the external and internal fields are quantified and displayed over the mapping region. Examples of field mapping and of separation into external and internal components are presented. A comparison between the three-dimensional field separation and a two-dimensional separation from a single chain of stations shows that significant differences can arise in the inferred internal component.
QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tassev, Svetlin; Savcheva, Antonia, E-mail: svetlin.tassev@cfa.harvard.edu
Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both twomore » and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.« less
QSL Squasher: A Fast Quasi-separatrix Layer Map Calculator
NASA Astrophysics Data System (ADS)
Tassev, Svetlin; Savcheva, Antonia
2017-05-01
Quasi-Separatrix Layers (QSLs) are a useful proxy for the locations where current sheets can develop in the solar corona, and give valuable information about the connectivity in complicated magnetic field configurations. However, calculating QSL maps, even for two-dimensional slices through three-dimensional models of coronal magnetic fields, is a non-trivial task, as it usually involves tracing out millions of magnetic field lines with immense precision. Thus, extending QSL calculations to three dimensions has rarely been done until now. In order to address this challenge, we present QSL Squasher—a public, open-source code, which is optimized for calculating QSL maps in both two and three dimensions on graphics processing units. The code achieves large processing speeds for three reasons, each of which results in an order-of-magnitude speed-up. (1) The code is parallelized using OpenCL. (2) The precision requirements for the QSL calculation are drastically reduced by using perturbation theory. (3) A new boundary detection criterion between quasi-connectivity domains is used, which quickly identifies possible QSL locations that need to be finely sampled by the code. That boundary detection criterion relies on finding the locations of abrupt field-line length changes, which we do by introducing a new Field-line Length Edge (FLEDGE) map. We find FLEDGE maps useful on their own as a quick-and-dirty substitute for QSL maps. QSL Squasher allows construction of high-resolution 3D FLEDGE maps in a matter of minutes, which is two orders of magnitude faster than calculating the corresponding 3D QSL maps. We include a sample of calculations done using QSL Squasher to demonstrate its capabilities as a QSL calculator, as well as to compare QSL and FLEDGE maps.
Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
Dregely, Daniel; Neubrech, Frank; Duan, Huigao; Vogelgesang, Ralf; Giessen, Harald
2013-01-01
Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light–matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure. PMID:23892519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banken, M.K.; Andrews, R.
The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma are engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program includes a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. During 1996, three highly successful FDD workshops involving 6 producing formations (4 plays) were completed: (1) Layton and Osage-Layton April 17 (2)more » Prue and Skinner June 19 and 26 (3) Cleveland October 17 (4) Peru October 17 (combined with Cleveland play). Each play was presented individually using the adopted protocol of stratigraphic interpretations, a regional overview, and two or more detailed field studies. The project goal was to have one field study from each play selected for waterflood simulation in order to demonstrate enhanced recovery technologies that can be used to recovery secondary oil. In this effort, software utilized for reservoir simulation included Eclipse and Boast 111. In some cases, because of poor production records and inadequate geologic data, field studies completed in some plays were not suitable for modeling. All of the workshops included regional sandstone trend analysis, updated field boundary identification, a detailed bibliography and author reference map, and detailed field studies. Discussion of general FDD depositional concepts was also given. In addition to the main workshop agenda, the workshops provided computer mapping demonstrations and rock cores with lithologic and facies interpretations. In addition to the workshops, other elements of FDD program were improved during 1996. Most significant was the refinement of NRIS MAPS - a user-friendly computer program designed to access NRIS data and interface with mapping software such as Arc View in order to produce various types of information maps. Most commonly used are well base maps for field studies, lease production maps, and regional maps showing well production codes, formation show codes, well spud dates, and well status codes. These regional maps are valuable in identifying areas of by-passed oil production, field trends, and time periods of development for the various FDD plays in Oklahoma. Besides maps, NRIS MAPS provides data in table format which can be used to generate production decline curves and estimates of cumulative hydrocarbon production for leases and fields. Additionally, many computer-related services were provided by support staff concerning technical training, private consultation, computer mapping, and data acquisition.« less
Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.
2009-01-01
We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.
Ferrand, Guillaume; Luong, Michel; Cloos, Martijn A; Amadon, Alexis; Wackernagel, Hans
2014-08-01
Transmit arrays have been developed to mitigate the RF field inhomogeneity commonly observed in high field magnetic resonance imaging (MRI), typically above 3T. To this end, the knowledge of the RF complex-valued B1 transmit-sensitivities of each independent radiating element has become essential. This paper details a method to speed up a currently available B1-calibration method. The principle relies on slice undersampling, slice and channel interleaving and kriging, an interpolation method developed in geostatistics and applicable in many domains. It has been demonstrated that, under certain conditions, kriging gives the best estimator of a field in a region of interest. The resulting accelerated sequence allows mapping a complete set of eight volumetric field maps of the human head in about 1 min. For validation, the accuracy of kriging is first evaluated against a well-known interpolation technique based on Fourier transform as well as to a B1-maps interpolation method presented in the literature. This analysis is carried out on simulated and decimated experimental B1 maps. Finally, the accelerated sequence is compared to the standard sequence on a phantom and a volunteer. The new sequence provides B1 maps three times faster with a loss of accuracy limited potentially to about 5%.
Realmuto, V.J.; Hon, K.; Kahle, A.B.; Abbott, E.A.; Pieri, D.C.
1992-01-01
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10?? C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense. ?? 1992 Springer-Verlag.
What Four Million Mappings Can Tell You about Two Hundred Ontologies
NASA Astrophysics Data System (ADS)
Ghazvinian, Amir; Noy, Natalya F.; Jonquet, Clement; Shah, Nigam; Musen, Mark A.
The field of biomedicine has embraced the Semantic Web probably more than any other field. As a result, there is a large number of biomedical ontologies covering overlapping areas of the field. We have developed BioPortal—an open community-based repository of biomedical ontologies. We analyzed ontologies and terminologies in BioPortal and the Unified Medical Language System (UMLS), creating more than 4 million mappings between concepts in these ontologies and terminologies based on the lexical similarity of concept names and synonyms. We then analyzed the mappings and what they tell us about the ontologies themselves, the structure of the ontology repository, and the ways in which the mappings can help in the process of ontology design and evaluation. For example, we can use the mappings to guide users who are new to a field to the most pertinent ontologies in that field, to identify areas of the domain that are not covered sufficiently by the ontologies in the repository, and to identify which ontologies will serve well as background knowledge in domain-specific tools. While we used a specific (but large) ontology repository for the study, we believe that the lessons we learned about the value of a large-scale set of mappings to ontology users and developers are general and apply in many other domains.
Conditional Random Field-Based Offline Map Matching for Indoor Environments
Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram
2016-01-01
In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm. PMID:27537892
Conditional Random Field-Based Offline Map Matching for Indoor Environments.
Bataineh, Safaa; Bahillo, Alfonso; Díez, Luis Enrique; Onieva, Enrique; Bataineh, Ikram
2016-08-16
In this paper, we present an offline map matching technique designed for indoor localization systems based on conditional random fields (CRF). The proposed algorithm can refine the results of existing indoor localization systems and match them with the map, using loose coupling between the existing localization system and the proposed map matching technique. The purpose of this research is to investigate the efficiency of using the CRF technique in offline map matching problems for different scenarios and parameters. The algorithm was applied to several real and simulated trajectories of different lengths. The results were then refined and matched with the map using the CRF algorithm.
Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping
NASA Astrophysics Data System (ADS)
Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno
2016-04-01
Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
Multi-field query expansion is effective for biomedical dataset retrieval.
Bouadjenek, Mohamed Reda; Verspoor, Karin
2017-01-01
In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one. © The Author(s) 2017. Published by Oxford University Press.
Crustal Structure of the Flood Basalt Province of Ethiopia from Constrained 3-D Gravity Inversion
NASA Astrophysics Data System (ADS)
Mammo, Tilahun
2013-12-01
The Oligocene Afar mantle plume resulted in the eruption of a large volume of basaltic magma, including major sequences of rhyolitic ignimbrites, in a short span of time across Ethiopia. In order to assess the impact of these magmatic processes on the crust and to investigate the general crustal configuration beneath the Ethiopian plateau, northern part of the Main Ethiopian Rift and the Afar depression, analysis and modeling of the gravity field have been conducted. The Bouguer gravity map is dominated by long-wavelength anomalies that primarily arise from the isostatic compensation of the topography. Consequently, anomalies within the crust/upper mantle are masked and quantitative interpretation becomes difficult. The long-wavelength anomalies are approximated using admittance technique and subsequently removed from the Bouguer anomalies to obtain the residual isostatic anomalies. The residual map contains both short- and intermediate-wavelength anomalies related to geologic and tectonic features. The long-wavelength regional isostatic field is used to map the crust-mantle interface and the results are in good agreement with those determined by other geophysical methods. Seismic constrained gravity inversion was performed on the isostatic residual field and series of three-dimensional models have been constructed for the structures of the crust and upper mantle beneath the uplifted and rifted flood basalt province of northern Ethiopia. The inversion results have shown that the NW plateau has thick crust that rests on normal lithospheric mantle. Afar, On the other hand, is marked by thin stretched crust resting on a low-density upper mantle indicating a hotter thermal regime and partial melt. No lithospheric mantle is observed beneath Afar. The models further indicate the presence of an extensive sub-crustal thick (~12 km on average) and high-density (~3.06 gm/cc) mafic accreted igneous layer of fractionated cumulate (magmatic underplating) beneath the NW plateau. The study suggests that the underplate was fundamental to the accretion process and may have played a role in compensating most of the plateau uplift and in localizing stresses.
Multi-field query expansion is effective for biomedical dataset retrieval
2017-01-01
Abstract In the context of the bioCADDIE challenge addressing information retrieval of biomedical datasets, we propose a method for retrieval of biomedical data sets with heterogenous schemas through query reformulation. In particular, the method proposed transforms the initial query into a multi-field query that is then enriched with terms that are likely to occur in the relevant datasets. We compare and evaluate two query expansion strategies, one based on the Rocchio method and another based on a biomedical lexicon. We then perform a comprehensive comparative evaluation of our method on the bioCADDIE dataset collection for biomedical retrieval. We demonstrate the effectiveness of our multi-field query method compared to two baselines, with MAP improved from 0.2171 and 0.2669 to 0.2996. We also show the benefits of query expansion, where the Rocchio expanstion method improves the MAP for our two baselines from 0.2171 and 0.2669 to 0.335. We show that the Rocchio query expansion method slightly outperforms the one based on the biomedical lexicon as a source of terms, with an improvement of roughly 3% for MAP. However, the query expansion method based on the biomedical lexicon is much less resource intensive since it does not require computation of any relevance feedback set or any initial execution of the query. Hence, in term of trade-off between efficiency, execution time and retrieval accuracy, we argue that the query expansion method based on the biomedical lexicon offers the best performance for a prototype biomedical data search engine intended to be used at a large scale. In the official bioCADDIE challenge results, although our approach is ranked seventh in terms of the infNDCG evaluation metric, it ranks second in term of P@10 and NDCG. Hence, the method proposed here provides overall good retrieval performance in relation to the approaches of other competitors. Consequently, the observations made in this paper should benefit the development of a Data Discovery Index prototype or the improvement of the existing one. PMID:29220457
Map showing general availability of ground water in the Alton-Kolob coal-fields area, Utah
Price, Don
1982-01-01
This is one of a series of maps that describes the geology and related natural resources of the Alton-Kolob coal-fields area, Utah. Shown on this map is the general availability of ground water as indicated by potential yields of individual wells and expected depth to water in wells. Most data used to compile this map were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources Division of Water Rights. Other sources of data included the U.S. Geological Survey 7½- and 15-minute topographic quadrangle maps, unpublished reports of field evaluations of potential shock-watering sites by U.S. Geological Survey personnel, and the geologic map of Utah (Stokes, 1964).This map is very generalized and is intended chiefly for planning purposes. It should be used with discretion. For more detailed information about the availability of ground water in various parts of the map area the reader is referred to the following reports: Thomas and Taylor (1946); Marine (1963); Sandberg (1963, 1966); Carpenter, Robinson, and Bjorklund (1964, 1967); Feltis (1966); Goode (1964, 1966); Cordova, Sandberg, and McConkie (1972); Cordova (1978, 1981); and Bjorklund, Sumison, and Sandberg (1977, 1978). For a general description of the chemical quality of ground water in the Alton-Kolob coal-fields area the reader is referred to Price (1981).
Vaughan, R. Greg; Heasler, Henry; Jaworowski, Cheryl; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.
2014-01-01
Maps that define the current distribution of geothermally heated ground are useful toward setting a baseline for thermal activity to better detect and understand future anomalous hydrothermal and (or) volcanic activity. Monitoring changes in the dynamic thermal areas also supports decisions regarding the development of Yellowstone National Park infrastructure, preservation and protection of park resources, and ensuring visitor safety. Because of the challenges associated with field-based monitoring of a large, complex geothermal system that is spread out over a large and remote area, satellite-based thermal infrared images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to map the location and spatial extent of active thermal areas, to generate thermal anomaly maps, and to quantify the radiative component of the total geothermal heat flux. ASTER thermal infrared data acquired during winter nights were used to minimize the contribution of solar heating of the surface. The ASTER thermal infrared mapping results were compared to maps of thermal areas based on field investigations and high-resolution aerial photos. Field validation of the ASTER thermal mapping is an ongoing task. The purpose of this report is to make available ASTER-based maps of Yellowstone’s thermal areas. We include an appendix containing the names and characteristics of Yellowstone’s thermal areas, georeferenced TIFF files containing ASTER thermal imagery, and several spatial data sets in Esri shapefile format.
Preserving a Unique Archive for Long-Term Solar Variability Studies
NASA Astrophysics Data System (ADS)
Webb, David F.; Hewins, Ian; McFadden, Robert; Emery, Barbara; Gibson, Sarah; Denig, William
2016-05-01
In 1964 (solar cycle 20) Patrick McIntosh began creating hand-drawn synoptic maps of solar activity, based on Hydrogen alpha (Hα) imaging measurements. These synoptic maps were unique because they traced the polarity inversion lines (PILs), connecting widely separated filaments, fibril patterns and plage corridors to reveal the large-scale organization of the solar magnetic field. He and his assistants later included coronal hole (CH) boundaries to the maps, usually from ground-based He-I 10830 images. They continued making these maps until 2010 (the start of solar cycle 24), yielding more than 40 years (~ 540 Carrington rotations) or nearly four complete solar cycles (SCs) of synoptic maps. The McIntosh collection of maps forms a unique and consistent set of global solar magnetic field data, and are unique tools for studying the structure and evolution of the large-scale solar fields and polarity boundaries, because: 1) they have excellent spatial resolution for defining polarity boundaries, 2) the organization of the fields into long-lived, coherent features is clear, and 3) the data are relatively homogeneous over four solar cycles. After digitization and archiving, these maps -- along with computer codes permitting efficient searches of the map arrays -- will be made publicly available at NOAA’s National Centers for Environmental Information (NCEI) in their final, searchable form. This poster is a progress report of the project so far and some suggested scientific applications.
Uncertainties in ecosystem service maps: a comparison on the European scale.
Schulp, Catharina J E; Burkhard, Benjamin; Maes, Joachim; Van Vliet, Jasper; Verburg, Peter H
2014-01-01
Safeguarding the benefits that ecosystems provide to society is increasingly included as a target in international policies. To support such policies, ecosystem service maps are made. However, there is little attention for the accuracy of these maps. We made a systematic review and quantitative comparison of ecosystem service maps on the European scale to generate insights in the uncertainty of ecosystem service maps and discuss the possibilities for quantitative validation. Maps of climate regulation and recreation were reasonably similar while large uncertainties among maps of erosion protection and flood regulation were observed. Pollination maps had a moderate similarity. Differences among the maps were caused by differences in indicator definition, level of process understanding, mapping aim, data sources and methodology. Absence of suitable observed data on ecosystem services provisioning hampers independent validation of the maps. Consequently, there are, so far, no accurate measures for ecosystem service map quality. Policy makers and other users need to be cautious when applying ecosystem service maps for decision-making. The results illustrate the need for better process understanding and data acquisition to advance ecosystem service mapping, modelling and validation.
Geochemistry and geophysics field maps used during the USGS 2011 field season in southwest Alaska
Giles, Stuart A.
2013-01-01
The US Geological Survey (USGS) has been studying a variety of geochemical and geophyscial assessment techniques for concealed mineral deposits. The 2011 field season for this project took place in southwest Alaska, northeast of Bristol Bay between Dillingham and Iliamna Lake. Four maps were created for the geochemistry and geophysics teams to use during field activities.
Sparse Reconstruction of Electric Fields from Radial Magnetic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeates, Anthony R.
2017-02-10
Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localizedmore » solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.« less
APPLICATION OF A "VITURAL FIELD REFERENCE DATABASE" TO ASSESS LAND-COVER MAP ACCURACIES
An accuracy assessment was performed for the Neuse River Basin, NC land-cover/use
(LCLU) mapping results using a "Virtual Field Reference Database (VFRDB)". The VFRDB was developed using field measurement and digital imagery (camera) data collected at 1,409 sites over a perio...
Schulz, William; Coe, Jeffrey A.; Ricci, P.P; Smoczyk, Gregory M.; Shurtleff, Brett L; Panosky, J
2017-01-01
Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s–1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985–1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow depths along the landslide's marginal faults, highlighting their importance in controlling landslide stability. Hourly results also suggested that motion propagated along the 3.9-km length of the active landslide, even following sub-millimeter displacements, while strengthening of landslide shear boundaries during faster movement was likely critical in regulating the landslide's motion. Hence, detailed kinematic characterizations obtained from traditional and emerging approaches helped to reveal that mechanisms controlling landslide movement and evolution over decades also are critical to sub-millimeter movement on a nearly continuous basis.
NASA Astrophysics Data System (ADS)
Schulz, William H.; Coe, Jeffrey A.; Ricci, Pier P.; Smoczyk, Gregory M.; Shurtleff, Brett L.; Panosky, Joanna
2017-05-01
Knowledge of kinematics is rudimentary for understanding landslide controls and is increasingly valuable with greater spatiotemporal coverage. However, characterizing landslide-wide kinematics is rare, especially at broadly ranging timescales. We used highly detailed kinematic data obtained using photogrammetry and field mapping during the 1980s and 1990s and our 4.3-day ground-based InSAR survey during 2010 to study kinematics of the large, persistently moving Slumgullion landslide. The landslide was segregated into 11 kinematic elements using the 1980s-1990s data and the InSAR survey revealed most of these elements within a few hours. Averages of InSAR-derived displacement point measures within each element agreed well with higher quality in situ observations; averaging was deemed necessary because adverse look angles for the radar coupled with tree cover on the landslide introduced error in the InSAR results. We found that the landslide moved during 2010 at about half its 1985-1990 speed, but slowing was most pronounced at the landslide head. Gradually decreased precipitation and increased temperature between the periods likely resulted in lower groundwater levels and consequent slowing of the landslide. We used GPS survey results and limit-equilibrium modeling to analyze changing stability of the landslide head from observed thinning and found that its stability increased between the two periods, which would result in its slowing, and the consequent slowing of the entire landslide. Additionally, InSAR results suggested movement of kinematic element boundaries in the head region and our field mapping verified that they moved and changed character, likely because of the long-term increasing head stability. On an hourly basis, InSAR results were near error bounds but suggested landslide acceleration in response to seemingly negligible rainfall. Pore-pressure diffusion modeling suggested that rainfall infiltration affected frictional strength only to shallow depths along the landslide's marginal faults, highlighting their importance in controlling landslide stability. Hourly results also suggested that motion propagated along the 3.9-km length of the active landslide, even following sub-millimeter displacements, while strengthening of landslide shear boundaries during faster movement was likely critical in regulating the landslide's motion. Hence, detailed kinematic characterizations obtained from traditional and emerging approaches helped to reveal that mechanisms controlling landslide movement and evolution over decades also are critical to sub-millimeter movement on a nearly continuous basis.
NASA Astrophysics Data System (ADS)
Delong, Michael D.; Brusven, Merlyn A.
1991-07-01
Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.
The Magnetic Field Structure of W3(OH)
NASA Astrophysics Data System (ADS)
El-Batal, Adham M.; Clemens, Dan P.; Montgomery, Jordan
2018-06-01
Situated in the Perseus arm of the Galaxy, the W3 molecular cloud is a high-mass star-forming region with low foreground optical extinction. Near-infrared H- and K-band polarimetric observations of a 10' × 10' field of view of W3 were obtained using the Mimir instrument on the 1.8 m Perkins Telescope. This field of view encompasses W3(OH), a region of OH and H2O masers as well as an HII region. The H-band data were used in conjunction with Spitzer M-band data to map extinction via H-M color excess. In total, 2654 stellar objects were found in the Mimir field of view, of which 1013 had H and M magnitudes with low errors. Using the extinction map and the individual stellar H-M color excess values, 429 stars with polarized signals were found to be background to the molecular cloud. These were useful for mapping the magnetic field structure and estimating the magnetic field strength of the cloud. Mid- to far-infrared (70 - 870 μm) archival Herschel and Planck data were used to map dust extinction at 850 µm and create an H2 column density map. Combined, maps of magnetic field strength and hydrogen column density can be used to infer the ratio of gravitational potential to magnetic potential ( M/Φ ). Findings are discussed in the context of M/Φ ratio in models and the stability of high-mass star-forming regions.This work has been supported by NSF AST14-12269 and NASA NNX15AE51G grants.
On the Magnetic Squashing Factor and the Lie Transport of Tangents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Roger B.; Pontin, David I.; Hornig, Gunnar
The squashing factor (or squashing degree) of a vector field is a quantitative measure of the deformation of the field line mapping between two surfaces. In the context of solar magnetic fields, it is often used to identify gradients in the mapping of elementary magnetic flux tubes between various flux domains. Regions where these gradients in the mapping are large are referred to as quasi-separatrix layers (QSLs), and are a continuous extension of separators and separatrix surfaces. These QSLs are observed to be potential sites for the formation of strong electric currents, and are therefore important for the study ofmore » magnetic reconnection in three dimensions. Since the squashing factor, Q , is defined in terms of the Jacobian of the field line mapping, it is most often calculated by first determining the mapping between two surfaces (or some approximation of it) and then numerically differentiating. Tassev and Savcheva have introduced an alternative method, in which they parameterize the change in separation between adjacent field lines, and then integrate along individual field lines to get an estimate of the Jacobian without the need to numerically differentiate the mapping itself. But while their method offers certain computational advantages, it is formulated on a perturbative description of the field line trajectory, and the accuracy of this method is not entirely clear. Here we show, through an alternative derivation, that this integral formulation is, in principle, exact. We then demonstrate the result in the case of a linear, 3D magnetic null, which allows for an exact analytical description and direct comparison to numerical estimates.« less
NASA Astrophysics Data System (ADS)
Silverglate, Peter R.; Fort, Dennis E.
2004-01-01
CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.
NASA Astrophysics Data System (ADS)
Silverglate, Peter R.; Fort, Dennis E.
2003-12-01
CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) is a hyperspectral imager that will be launched on the MRO (Mars Reconnaissance Orbiter) in August 2005. The MRO will circle Mars in a polar orbit at a nominal altitude of 325 km. The CRISM spectral range spans the ultraviolet (UV) to the mid-wave infrared (MWIR), 400 nm to 4050 nm. The instrument utilizes a Ritchey-Chretien telescope with a 2.06º field of view (FOV) to focus light on the entrance slit of a dual spectrometer. Within the spectrometer light is split by a dichroic into VNIR (visible-near infrared) (λ <= 1.05 μm) and IR (infrared) (λ >= 1.05 μm) beams. Each beam is directed into a separate modified Offner spectrometer that focuses a spectrally dispersed image of the slit onto a two dimensional focal plane (FP). The IR FP is a 640 x 480 HgCdTe area array; the VNIR FP is a 640 x 480 silicon photodiode area array. The spectral image is contiguously sampled with a 6.55 nm spectral spacing and an instantaneous field of view of 60 μradians. The orbital motion of the MRO pushbroom scans the spectrometer slit across the Martian surface, allowing the planet to be mapped in 558 spectral bands. There are four major mapping modes: A quick initial multi-spectral mapping of a major portion of the Martian surface in 59 selected spectral bands at a spatial resolution of 600 μradians (10:1 binning); an extended multi-spectral mapping of the entire Martian surface in 59 selected spectral bands at a spatial resolution of 300 μradians (5:1 binning); a high resolution Target Mode, performing hyperspectral mapping of selected targets of interest at full spatial and spectral resolution; and an atmospheric Emission Phase Function (EPF) mode for atmospheric study and correction at full spectral resolution at a spatial resolution of 300 μradians (5:1 binning). The instrument is gimbaled to allow scanning over +/-60° for the EPF and Target modes. The scanning also permits orbital motion compensation, enabling longer integration times and consequently higher signal-to-noise ratios for selected areas on the Martian surface in Target Mode.
iPads at Field Camp: A First Test of the Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Hurst, S. D.; Stewart, M. A.
2011-12-01
An iPad 2 was given to approximately half of the University of Illinois students attending the Wasatch-Uinta Field Camp (WUFC) in summer 2011. The iPads were provisioned with orientation measuring, mapping and location software. The software would automatically transfer an orientation measurement to the current location on the Google Maps application, and was able to output a full list of orientation data. Students also had normal access to more traditional mapping tools such as Brunton compasses and GPS units and were required to map with these tools along with other students of WUFC not provided iPads. Compared to traditional tools, iPads have drawbacks such as increased weight, break-ability, need for power source and wireless connectivity; in sum, they need a substantial infrastructure that reduces range, availability, and probably most importantly, convenience. Some of these drawbacks inhibited adoption by our students, the primary reasons being the added weight and the inability to map directly to a GIS application with detailed topographic maps equivalent to the physical topographic map sheets used at WUFC. In their favor, the iPads combine a host of tools into one, including software that can measure orientation in a fashion more intuitively than a Brunton. They also allow storage, editing and analysis of data, notes (spoken and/or written) and potentially unlimited access to a variety of maps. Via a post-field camp survey of the University of Illinois students at WUFC, we have identified some of the important issues that need to be addressed before portable tablets like the iPad become the tool of choice for general field work. Some problems are intrinsic to almost any advanced technology, some are artifacts of the current generations of hardware and software available for these devices. Technical drawbacks aside, the adoption of iPads was further inhibited primarily by inexperience with their use as a mapping tool and secondarily by their redundancy with traditional tools. We are addressing some aspects of software limitations and future technology improvements by the industry will naturally reduce other limitations. We will continue testing iPads during field trips and courses for the foreseeable future. As we begin to deal with these limitations and students become more accustomed to their use in the field, we expect our students to more fully embrace iPads as a convenient field and mapping tool.
,
1978-01-01
Two major subjects of the current research of the Topographic Division as reported here are related to policy decisions affecting the National Mapping Program of the Geological Survey. The adoption of a metric mapping policy has resulted in new cartographic products with associated changes in map design that require new looks in graphics and new equipment. The increasing use of digitized cartographic information has led to developments in data acquisition, processing, and storage and consequent changes in equipment and techniques. This report summarizes the activities in cartographic research and development for the 12-month period ending June 1977 and covers work done at the several facilities of the Topographic Division: the Western Mapping Center at Menlo Park, Calif., the Rocky Mountain Mapping Center at Denver, Colo., the Mid-Continent Mapping Center at Rolla, Mo., and the Eastern Mapping Center, the Special Mapping Center, the Office of Plans and Program Development, and the Office of Research and Technical Standards all at Reston, Va.
Application of Ifsar Technology in Topographic Mapping: JUPEM's Experience
NASA Astrophysics Data System (ADS)
Zakaria, Ahamad
2018-05-01
The application of Interferometric Synthetic Aperture Radar (IFSAR) in topographic mapping has increased during the past decades. This is due to the advantages that IFSAR technology offers in solving data acquisition problems in tropical regions. Unlike aerial photography, radar technology offers wave penetration through cloud cover, fog and haze. As a consequence, images can be made free of any natural phenomenon defects. In Malaysia, Department of Survey and Mapping Malaysia (JUPEM) has been utilizing the IFSAR products since 2009 to update topographic maps at 1 : 50,000 map scales. Orthorectified radar imagery (ORI), Digital Surface Models (DSM) and Digital Terrain Models (DTM) procured under the project have been further processed before the products are ingested into a revamped mapping workflow consisting of stereo and mono digitizing processes. The paper will highlight the experience of Department of Survey and Mapping Malaysia (DSMM)/ JUPEM in using such technology in order to speed up mapping production.
Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field
NASA Astrophysics Data System (ADS)
Loukitcheva, M.; White, S. M.; Solanki, S. K.; Fleishman, G. D.; Carlsson, M.
2017-05-01
Aims: We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). Methods: The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. Results: The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10% is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Conclusions: Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.
Hall Probe Calibration System Design for the Mu2e Solenoid Field Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, Charles; Elementi, Luciano; Feher, Sandor
The goal of the Mu2e experiment at Fermilab is to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. The Mu2e experimental apparatus utilizes a complex magnetic field in the muon generation and momentum and charge selection process. Precise knowledge of the magnetic field is crucial. It is planned to map the solenoid field with calibrated 3D Hall probes up to 10 -5 accuracy. Here, this article describes a new design of a Hall probe calibration system that will be used to calibrate 3D Hall probes to better than 10more » -5 accuracy for the Mu2e Solenoid Field Mapping System.« less
Hall Probe Calibration System Design for the Mu2e Solenoid Field Mapping System
Orozco, Charles; Elementi, Luciano; Feher, Sandor; ...
2018-02-22
The goal of the Mu2e experiment at Fermilab is to search for charged-lepton flavor violation by looking for neutrino-less muon to electron conversion in the field of the nucleus. The Mu2e experimental apparatus utilizes a complex magnetic field in the muon generation and momentum and charge selection process. Precise knowledge of the magnetic field is crucial. It is planned to map the solenoid field with calibrated 3D Hall probes up to 10 -5 accuracy. Here, this article describes a new design of a Hall probe calibration system that will be used to calibrate 3D Hall probes to better than 10more » -5 accuracy for the Mu2e Solenoid Field Mapping System.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, J.I.; Layton, D.W.
1988-02-01
Data are presented in this volume for assessing the health risks in populations of military personnel that could result as a consequence of exposure to field waters containing constituents or infectious organisms of military concern, which are from natural and anthropogenic sources, at levels above those recommended as field-water-quality standards (i.e., above safe levels). Turbidity and color are the physical properties that are of military concern in field water. The other constituents that are of military concern in field water are (1) total dissolved solids, (2) chloride, (3) magnesium, (4) sulfate, (5) arsenic, (6) cyanide, (7) the pesticide lindane, andmore » (8) metabolites of algae and associated bacteria. Bacteria, viruses, and parasites (e.g., protozoa and helminths) are categories of water-related infectious organisms that are of military concern. Figures were developed from dose-response data to enable military risk managers to quickly assess the potential performance-degrading effects in personnel exposed to a measured concentration of a particular constituent in field water. The general physical, chemical, and biological quality of field waters in geographic regions worldwide, representing potential theaters of operation for U.S. military forces, also are evaluated. This analysis is based on available water-quality monitoring data and indicators of likely water-quality conditions (e.g., geohydrology, climate, sanitation, industrialization, etc.). Accompanying our evaluation are maps and tables alerting military planners and risk managers to the physical, chemical, or biological quality of field water that can be expected generally in geographic regions of concern.« less
Flood and Coastal Storm Damage Reduction Program. Beach-fx User’s Manual: Version 1.0
2009-08-01
Shapefile Import Template Attribute Fields ............................................................. 103 Appendix B: General Description of Output...Reordering map players . ....................................................................................................... 24 Figure 20. Map display...94 Figure 68. Field calculator
Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.
2014-05-31
This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.
Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee
2012-10-01
Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.
Magnetic Field Fluctuations in the High Ionosphere at Polar Latitudes: Impact of the IMF Conditions
NASA Astrophysics Data System (ADS)
De Michelis, P.; Consolini, G.; Tozzi, R.
2016-12-01
The characterization of ionospheric turbulence plays an important role for all those communication systems affected by the ionospheric medium. For instance, independently of geomagnetic latitude, ionospheric turbulence represents a considerable issue for all Global Navigation Satellite Systems (GNSS). Swarm constellation measurements of the Earth's magnetic field allow a precise characterization of ionospheric turbulence. This is possible using a range of indices derived from the analysis of the scaling properties of the geomagnetic field. In particular, by the scaling properties of the 1st order structure function, a scale index can be obtained, with a consequent characterization of the degree of persistence of the fluctuations and of their spectral properties. The knowledge of this index provides a global characterization of the nature and level of ionospheric turbulence on a local scale, which can be displayed along a single satellite orbit or through maps over the region of interest. The present work focuses on the analysis of the scaling properties of the 1st order structure function of magnetic field fluctuations measured by Swarm constellation at polar latitudes in the Northern Hemisphere. They are studied according to different interplanetary magnetic field conditions and Earth's seasons to characterize the possible drivers of magnetic field variability. The obtained results are discussed in the framework of Sun-Earth relationship and ionospheric polar convection. This work is supported by the Italian National Program for Antarctic Research (PNRA) Research Project 2013/AC3.08
Vectorial nanoscale mapping of optical antenna fields by single molecule dipoles.
Singh, Anshuman; Calbris, Gaëtan; van Hulst, Niek F
2014-08-13
Optical nanoantennas confine light on the nanoscale, enabling strong light-matter interactions and ultracompact optical devices. Such confined nanovolumes of light have nonzero field components in all directions (x, y, and z). Unfortunately mapping of the actual nanoscale field vectors has so far remained elusive, though antenna hotspots have been explored by several techniques. In this paper, we present a novel method to probe all three components of the local antenna field. To this end a resonant nanoantenna is fabricated at the vertex of a scanning tip. Next, the nanoantenna is deterministically scanned in close proximity to single fluorescent molecules, whose fixed excitation dipole moment reads out the local field vector. With nanometer molecular resolution, we distinctly map x-, y-, and z-field components of the dipole antenna, i.e. a full vectorial mode map, and show good agreement with full 3D FDTD simulations. Moreover, the fluorescence polarization maps the localized coupling, with emission through the longitudinal antenna mode. Finally, the resonant antenna probe is used for single molecule imaging with 40 nm fwhm response function. The total fluorescence enhancement is 7.6 times, while out-of-plane molecules, almost undetectable in far-field, are made visible by the strong antenna z-field with a fluorescence enhancement up to 100 times. Interestingly, the apparent position of molecules shifts up to 20 nm depending on their orientation. The capability to resolve orientational information on the single molecule level makes the scanning resonant antenna an ideal tool for extreme resolution bioimaging.
Cai, Kaicong; Zheng, Xuan; Du, Fenfen
2017-08-05
The spectroscopy of amide-I vibrations has been widely utilized for the understanding of dynamical structure of polypeptides. For the modeling of amide-I spectra, two frequency maps were built for β-peptide analogue (N-ethylpropionamide, NEPA) in a number of solvents within different schemes (molecular mechanics force field based, GM map; DFT calculation based, GD map), respectively. The electrostatic potentials on the amide unit that originated from solvents and peptide backbone were correlated to the amide-I frequency shift from gas phase to solution phase during map parameterization. GM map is easier to construct with negligible computational cost since the frequency calculations for the samples are purely based on force field, while GD map utilizes sophisticated DFT calculations on the representative solute-solvent clusters and brings insight into the electronic structures of solvated NEPA and its chemical environments. The results show that the maps' predicted amide-I frequencies present solvation environmental sensitivities and exhibit their specific characters with respect to the map protocols, and the obtained vibrational parameters are in satisfactory agreement with experimental amide-I spectra of NEPA in solution phase. Although different theoretical schemes based maps have their advantages and disadvantages, the present maps show their potentials in interpreting the amide-I spectra for β-peptides, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating
Tang, Xiaoduan; Xu, Shen; Wang, Xinwei
2013-01-01
Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566
NASA Astrophysics Data System (ADS)
Moharana, S.; Dutta, S.
2015-12-01
Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was observed in different plot levels in the paddy fields from the two images. However, no such significant variation in rice genotypes at growth level was observed. Hence, the spectral information acquired from space platform can be linearly scaled to map the variation in field levels of rice crop which will be act as an informative system for rice agriculture practice.
The magnetic fields of Ap stars from high resolution Stokes IQUV spectropolarimetry
NASA Astrophysics Data System (ADS)
Silvester, James
In this thesis we describe the acquisition of high resolution time resolved spectropolarimetric observations of 7 (bright and well understood) Ap stars in Stokes IQUV using the ESPaDOnS and Narval spectropolarimeters at the Canada-France-Hawaii Telescope and the 2m Telescope Bernard Lyot at Pic du Midi Observatory. We compare these observations with those obtained a decade earlier using the MuSiCoS spectropolarimeter to confirm consistency with the older data and provide evidence that both ESPaDOnS and Narval perform as expected in all Stokes parameters. We demonstrate that our refined longitudinal magnetic field and linear polarisation measurements for these 7 stars are of much greater quality than was previously obtained with MuSiCoS and that the global magnetic properties of these stars are stable over a long timescale. The ultimate aim of these new data is to provide a basis from which mapping of both the magnetic field and abundance structures can be performed on our target stars. We then describe magnetic field mapping of the Ap star alpha 2 CVn using these data. This mapping is achieved with the use of tomographic inversion of Doppler-broadened Stokes IQUV profiles of a large variety of spectral lines using the INVERS10 Magnetic Doppler imaging code. We show that not only are the new magnetic field maps of alpha 2 CVn consistent with a previous generation of maps of alpha 2 CVn, but that the same magnetic field topology can be derived from a variety of atomic line sets. This indicates that the magnetic field we derive for alpha2 CVn is a realistic representation of the star's true magnetic topology. Finally we investigate surface abundance structures for alpha 2 CVn for various chemical elements. We investigate the correlation between the location of these abundance features and the magnetic field of alpha 2 CVn. We will demonstrate that whilst the magnetic field plays a role in the formation of abundance structures, the current theoretical framework does not fully explain what we find from our maps. Ultimately this work motivates future mapping of Ap stars by confirming the reliability of both the instrument and associated data and the mapping technique itself.
Stress field modeling of the Carpathian Basin based on compiled tectonic maps
NASA Astrophysics Data System (ADS)
Albert, Gáspár; Ungvári, Zsuzsanna; Szentpéteri, Krisztián
2014-05-01
The estimation of the stress field in the Carpathian Basin is tackled by several authors. Their modeling methods usually based on measurements (borehole-, focal mechanism- and geodesic data) and the result is a possible structural pattern of the region. Our method works indirectly: the analysis is aimed to project a possible 2D stress field over the already mapped/known/compiled lineament pattern. This includes a component-wise interpolation of the tensor-field, which is based on the generated irregular point cloud in the puffer zone of the mapped lineaments. The interpolated values appear on contour and tensor maps, and show the relative stress field of the area. In 2006 Horváth et al. compiled the 'Atlas of the present-day geodynamics of the Pannonian basin'. To test our method we processed the lineaments of the 1:1 500 000 scale 'Map of neotectonic (active) structures' published in this atlas. The geodynamic parameters (i.e. normal, reverse, right- and left lateral strike-slip faults, etc.) of the lines on this map were mostly explained in the legend. We classified the linear elements according to these parameters and created a geo-referenced mapping database. This database contains the polyline sections of the map lineaments as vectors (i.e. line sections), and the directions of the stress field as attributes of these vectors. The directions of the dip-parallel-, strike-parallel- and vertical stress-vectors are calculated from the geodynamical parameters of the line section. Since we created relative stress field properties, the eigenvalues of the vectors were maximized to one. Each point in the point cloud inherits the stress property of the line section, from which it was derived. During the modeling we tried several point-cloud generating- and interpolation methods. The analysis of the interpolated tensor fields revealed that the model was able to reproduce a geodynamic synthesis of the Carpathian Basin, which can be correlated with the synthesis of the Atlas published in 2006. The method was primarily aimed to reconstruct paleo-stress fields. References Horváth, F., Bada, G., Windhoffer, G., Csontos, L., Dombrádi, E., Dövényi, P., Fodor, L., Grenerczy, G., Síkhegyi, F., Szafián, P., Székely, B., Timár, G., Tóth, L., Tóth, T. 2006: Atlas of the present-day geodynamics of the Pannonian basin: Euroconform maps with explanatory text. Magyar Geofizika 47, 133-137.
ERIC Educational Resources Information Center
Kotzé, Sanet Henriët; Mole, Calvin Gerald
2015-01-01
At Stellenbosch University, South Africa, basic histology is taught to a combination class of almost 400 first-year medical, physiotherapy, and dietetic students. Many students often find the amount of work in basic histology lectures overwhelming and consequently loose interest. The aim was to determine if a draw-along mapping activity would…
Six years of aerial and ground monitoring surveys for sudden oak death in California
Lisa Bell; Jeff Mai; Zachary Heath; Erik Haunreiter; Lisa M. Fischer
2008-01-01
Aerial surveys have been conducted since 2001 to map recent hardwood mortality and consequently target ground visits for detection of Phytophthora ramorum, the pathogen that causes sudden oak death (SOD). Each year the aerial and ground surveys monitored much of California?s forests at risk for SOD resulting in new maps of hardwood mortality,...
The challenge of modelling and mapping the future distribution and impact of invasive alien species
Robert C. Venette
2015-01-01
Invasions from alien species can jeopardize the economic, environmental or social benefits derived from biological systems. Biosecurity measures seek to protect those systems from accidental or intentional introductions of species that might become injurious. Pest risk maps convey how the probability of invasion by an alien species or the potential consequences of that...
Dynamics on Networks of Manifolds
NASA Astrophysics Data System (ADS)
DeVille, Lee; Lerman, Eugene
2015-03-01
We propose a precise definition of a continuous time dynamical system made up of interacting open subsystems. The interconnections of subsystems are coded by directed graphs. We prove that the appropriate maps of graphs called graph fibrations give rise to maps of dynamical systems. Consequently surjective graph fibrations give rise to invariant subsystems and injective graph fibrations give rise to projections of dynamical systems.
Global maps of the magnetic thickness and magnetization of the Earth's lithosphere
NASA Astrophysics Data System (ADS)
Vervelidou, Foteini; Thébault, Erwan
2015-10-01
We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.
Pearson, Daniel; Osborn, Raphaella; Whitford, Thomas J; Failing, Michel; Theeuwes, Jan; Le Pelley, Mike E
2016-10-01
Recent research has shown that reward learning can modulate oculomotor and attentional capture by physically salient and task-irrelevant distractor stimuli, even when directing gaze to those stimuli is directly counterproductive to receiving reward. This value-modulated oculomotor capture effect may reflect biased competition in the oculomotor system, such that the relationship between a stimulus feature and reward enhances that feature's representation on an internal priority map. However, it is also possible that this effect is a result of reward reducing the threshold for a saccade to be made to salient items. Here, we demonstrate value-modulated oculomotor capture when two reward-associated distractor stimuli are presented simultaneously in the same search display. The influence of reward on oculomotor capture is found to be most prominent at the shortest saccade latencies. We conclude that the value-modulated oculomotor capture effect is a consequence of biased competition on the saccade priority map and cannot be explained by a general reduction in saccadic threshold.
Recent Development of an Earth Science App - FieldMove Clino
NASA Astrophysics Data System (ADS)
Vaughan, Alan; Collins, Nathan; Krus, Mike; Rourke, Peter
2014-05-01
As geological modelling and analysis move into 3D digital space, it becomes increasingly important to be able to rapidly integrate new data with existing databases, without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. Digital field mapping offers significant benefits when compared with traditional paper mapping techniques, in that it can directly and interactively feed and be guided by downstream geological modelling and analysis. One of the most important pieces of equipment used by the field geologists is the compass clinometer. Midland Valley's development team have recently release their highly anticipated FieldMove Clino App. FieldMove Clino is a digital compass-clinometer for data capture on a smartphone. The app allows the user to use their phone as a traditional hand-held bearing compass, as well as a digital compass-clinometer for rapidly measuring and capturing the georeferenced location and orientation of planar and linear features in the field. The user can also capture and store digital photographs and text notes. FieldMove Clino supports online Google Maps as well as offline maps, so that the user can import their own georeferenced basemaps. Data can be exported as comma-separated values (.csv) or Move™ (.mve) files and then imported directly into FieldMove™, Move™ or other applications. Midland Valley is currently pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.
NASA Technical Reports Server (NTRS)
Quiroga, S. Q.
1977-01-01
The applicability of LANDSAT digital information to soil mapping is described. A compilation of all cartographic information and bibliography of the study area is made. LANDSAT MSS images on a scale of 1:250,000 are interpreted and a physiographic map with legend is prepared. The study area is inspected and a selection of the sample areas is made. A digital map of the different soil units is produced and the computer mapping units are checked against the soil units encountered in the field. The soil boundaries obtained by automatic mapping were not substantially changed by field work. The accuracy of the automatic mapping is rather high.
NASA Technical Reports Server (NTRS)
Marrs, R. W.; Evans, M. A.
1974-01-01
The author has identified the following significant results. The crop types of a Great Plains study area were mapped from color infrared aerial photography. Each field was positively identified from field checks in the area. Enlarged (50x) density contour maps were constructed from three ERTS-1 images taken in the summer of 1973. The map interpreted from the aerial photography was compared to the density contour maps and the accuracy of the ERTS-1 density contour map interpretations were determined. Changes in the vegetation during the growing season and harvest periods were detectable on the ERTS-1 imagery. Density contouring aids in the detection of such charges.
NASA Astrophysics Data System (ADS)
Rapoport, B. I.; Pavlenko, I.; Weyssow, B.; Carati, D.
2002-11-01
Recent studies of ion and electron transport indicate that the safety factor profile, q(r), affects internal transport barrier (ITB) formation in magnetic confinement devices [1, 2]. These studies are consistent with experimental observations that low shear suppresses magnetic island interaction and associated stochasticity when the ITB is formed [3]. In this sense the position and quality of the ITB depend on the stochasticity of the magnetic field, and can be controlled by q(r). This study explores effects of the q-profile on magnetic field stochasticity using two-dimensional mapping techniques. Q-profiles typical of ITB experiments are incorporated into Hamiltonian maps to investigate the relation between magnetic field stochasticity and ITB parameters predicted by other models. It is shown that the mapping technique generates results consistent with these predictions, and suggested that Hamiltonian mappings can be useful as simple and computationally inexpensive approximation methods for describing the magnetic field in ITB experiments. 1. I. Voitsekhovitch et al. 29th EPS Conference on Plasma Physics and Controlled Fusion (2002). O-4.04. 2. G.M.D. Hogeweij et al. Nucl. Fusion. 38 (1998): 1881. 3. K.A. Razumova et al. Plasma Phys. Contr. Fusion. 42 (2000): 973.
Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona
Beard, L. Sue; Kennedy, Jeffrey; Truini, Margot; Felger, Tracey
2011-01-01
A 1:250,000-scale geologic map and report covering the Detrital, Hualapai, and Sacramento valleys in northwest Arizona is presented for the purpose of improving understanding of the geology and geohydrology of the basins beneath those valleys. The map was compiled from existing geologic mapping, augmented by digital photogeologic reconnaissance mapping. The most recent geologic map for the area, and the only digital one, is the 1:1,000,000-scale Geologic Map of Arizona. The larger scale map presented here includes significantly more detailed geology than the Geologic Map of Arizona in terms of accuracy of geologic unit contacts, number of faults, fault type, fault location, and details of Neogene and Quaternary deposits. Many sources were used to compile the geology; the accompanying geodatabase includes a source field in the polygon feature class that lists source references for polygon features. The citations for the source field are included in the reference section.
Keane, Robert E.; Burgan, Robert E.; Van Wagtendonk, Jan W.
2001-01-01
Fuel maps are essential for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, fuel mapping is an extremely difficult and complex process requiring expertise in remotely sensed image classification, fire behavior, fuels modeling, ecology, and geographical information systems (GIS). This paper first presents the challenges of mapping fuels: canopy concealment, fuelbed complexity, fuel type diversity, fuel variability, and fuel model generalization. Then, four approaches to mapping fuels are discussed with examples provided from the literature: (1) field reconnaissance; (2) direct mapping methods; (3) indirect mapping methods; and (4) gradient modeling. A fuel mapping method is proposed that uses current remote sensing and image processing technology. Future fuel mapping needs are also discussed which include better field data and fuel models, accurate GIS reference layers, improved satellite imagery, and comprehensive ecosystem models.
Applicability of ERTS-1 to lineament and photogeologic mapping in Montana: Preliminary report
NASA Technical Reports Server (NTRS)
Weidman, R. M.; Alt, D. D.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.; Berg, R. B.; Johns, W. M.
1973-01-01
A lineament map prepared from a mosaic of western Montana shows about 85 lines not represented on the state geologic map, including elements of a northeast-trending set through central western Montana which merit ground truth checking and consideration in regional structural analysis. Experimental fold annotation resulted in a significant local correction to the state geologic map. Photogeologic mapping studies produced only limited success in identification of rock types, but they did result in the precise delineation of a late Cretaceous or early Tertiary volcanic field (Adel Mountain field) and the mapping of a connection between two granitic bodies shown on the state map. Imagery was used successfully to map clay pans associated with bentonite beds in gently dipping Bearpaw Shale. It is already apparent that ERTS imagery should be used to facilitate preparation of a much needed statewide tectonic map and that satellite imagery mapping, aided by ground calibration, provides and economical means to discover and correct errors in the state geologic map.
NASA Astrophysics Data System (ADS)
Poormohammadi, Jaber; Rezagholizadeh, Hessam
The idea of action immediate propagation has been in physicists' mind from the beginning, until Faraday raised the idea of delayed propagation. Using this idea and the delayed theory of fields, we face consequences which can be interesting for anyone who has learned physics. We can mention non-equivalency between stationary frames and moving frames, dependency of field to medium, different velocity barriers for different mediums and non-equivalency of inertial reference frames are among these consequences. By designing an experiment we can challenge this theory and its consequences. All of these sections processed in the article titled ''The delayed theory of fields''.
USDA-ARS?s Scientific Manuscript database
A continuous monitoring of daily evapotranspiration (ET) at field scale can be achieved by combining thermal infrared remote sensing data information from multiple satellite platforms. Here, an integrated approach to field scale ET mapping is described, combining multi-scale surface energy balance e...
Methods for enhancing mapping of thermal fronts in oil recovery
Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.
1984-03-30
A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
NASA Astrophysics Data System (ADS)
Rotskoff, Grant
We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.
Circumpolar Arctic vegetation mapping workshop
Walker, D. A.; Markon, C.J.
1996-01-01
The first Circumpolar Arctic Vegetation Mapping Workshop was held in the historic village of Lakta on the outskirts of St. Petersburg, Russia, March 21-25, 1994. The primary goals of the workshop were to: (1) review the status of arctic vegetation mapping in the circumpolar countries and (2) develop a strategy for synthesizing and updating the existing information into a new series of maps that portray the current state of knowledge. Such products are important for a number of purposes, such as the international effort to understand the consequences of global change in Arctic regions, to predict the direction of future changes, and for informed planning of resource development in the Arctic.
Noncommutative gauge theories and Kontsevich's formality theorem
NASA Astrophysics Data System (ADS)
Jurčo, B.; Schupp, P.; Wess, J.
2001-09-01
The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.
Link between orientation and retinotopic maps in primary visual cortex
Paik, Se-Bum; Ringach, Dario L.
2012-01-01
Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015
The delineation and interpretation of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, B. D.
1983-01-01
The observed changes in velocity with time are reduced relative to the well-determined low degree and order GEM field model and accelerations are found by analytical differentiation of the range rates. This new map is essentially identical to the first map and we have produced a composite map by combining all 90 passes of SST data. The resolution of the map is at worst about 5 deg and much better in most places. A comparison of this map with conventional GEM models shows very good agreement. A reduction of the SEASAT altimeter data has also been carried out for an additional comparison. Although the SEASAT geoid contains much more high frequency information, it agrees very well with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. A further comparison with regional bathymetric data shows a remarkably close correlation with plate age.
NASA Technical Reports Server (NTRS)
Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)
2011-01-01
Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.
NASA Technical Reports Server (NTRS)
Baxes, Gregory A. (Inventor)
2010-01-01
Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.
Kooloos, Jan G M; Vorstenbosch, Marc A T M
2013-01-01
A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models. © 2013 American Association of Anatomists.
Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones.
Sohn, Bong-Soo
2017-03-11
This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing.
Ubiquitous Creation of Bas-Relief Surfaces with Depth-of-Field Effects Using Smartphones
Sohn, Bong-Soo
2017-01-01
This paper describes a new method to automatically generate digital bas-reliefs with depth-of-field effects from general scenes. Most previous methods for bas-relief generation take input in the form of 3D models. However, obtaining 3D models of real scenes or objects is often difficult, inaccurate, and time-consuming. From this motivation, we developed a method that takes as input a set of photographs that can be quickly and ubiquitously captured by ordinary smartphone cameras. A depth map is computed from the input photographs. The value range of the depth map is compressed and used as a base map representing the overall shape of the bas-relief. However, the resulting base map contains little information on details of the scene. Thus, we construct a detail map using pixel values of the input image to express the details. The base and detail maps are blended to generate a new depth map that reflects both overall depth and scene detail information. This map is selectively blurred to simulate the depth-of-field effects. The final depth map is converted to a bas-relief surface mesh. Experimental results show that our method generates a realistic bas-relief surface of general scenes with no expensive manual processing. PMID:28287487
Mapping Natech risk due to earthquakes using RAPID-N
NASA Astrophysics Data System (ADS)
Girgin, Serkan; Krausmann, Elisabeth
2013-04-01
Natural hazard-triggered technological accidents (so-called Natech accidents) at hazardous installations are an emerging risk with possibly serious consequences due to the potential for release of hazardous materials, fires or explosions. For the reduction of Natech risk, one of the highest priority needs is the identification of Natech-prone areas and the systematic assessment of Natech risks. With hardly any Natech risk maps existing within the EU the European Commission's Joint Research Centre has developed a Natech risk analysis and mapping tool called RAPID-N, that estimates the overall risk of natural-hazard impact to industrial installations and its possible consequences. The results are presented as risk summary reports and interactive risk maps which can be used for decision making. Currently, RAPID-N focuses on Natech risk due to earthquakes at industrial installations. However, it will be extended to also analyse and map Natech risk due to floods in the near future. The RAPID-N methodology is based on the estimation of on-site natural hazard parameters, use of fragility curves to determine damage probabilities of plant units for various damage states, and the calculation of spatial extent, severity, and probability of Natech events potentially triggered by the natural hazard. The methodology was implemented as a web-based risk assessment and mapping software tool which allows easy data entry, rapid local or regional risk assessment and mapping. RAPID-N features an innovative property estimation framework to calculate on-site natural hazard parameters, industrial plant and plant unit characteristics, and hazardous substance properties. Custom damage states and fragility curves can be defined for different types of plant units. Conditional relationships can be specified between damage states and Natech risk states, which describe probable Natech event scenarios. Natech consequences are assessed using a custom implementation of U.S. EPA's Risk Management Program (RMP) Guidance for Offsite Consequence Analysis methodology. This custom implementation is based on the property estimation framework and allows the easy modification of model parameters and the substitution of equations with alternatives. RAPID-N can be applied at different stages of the Natech risk management process: It allows on the one hand the analysis of hypothetical Natech scenarios to prevent or prepare for a Natech accident by supporting land-use and emergency planning. On the other hand, once a natural disaster occurs RAPID-N can be used for rapidly locating facilities with potential Natech accident damage based on actual natural-hazard information. This provides a means to warn the population in the vicinity of the facilities in a timely manner. This presentation will introduce the specific features of RAPID-N and show the use of the tool by application to a case-study area.
Condit, Christopher D.; Crumpler, Larry S.; Aubele, Jayne C.
1999-01-01
The Springerville volcanic field is one of the many late Pliocene to Holocene, mostly basaltic, volcanic fields present near the Colorado Plateau margin (fig. 1, in pamphlet). The field overlies the lithospheric transition zone between the Colorado Plateau and the Basin and Range Province (Condit and others, 1989b). Establishing relations in time, space, and composition of the rocks of these plateau-margin fields offers the possibility to integrate more fully into a regional synthesis the detailed geochemistry of these fields now being examined (for example, Perry and others, 1987; Fitton and others, 1988; Menzies and others, 1991). The work also provides baseline information for understanding mantle properties and processes at different depths and locations. Because the Springerville field is the southernmost of the plateau-margin fields, and because it contains both tholeiitic and alkalic rocks (tables 1 and 2, in pamphlet), it is a particularly important location for establishing these patterns in time, space, and composition. Our four thematic maps of the Springerville field were compiled by using digital mapping techniques so that associated petrologic and chemical data could be conveniently included in a geographic information system for one of the plateau-margin fields. Parts of these maps have been included in Condit (1995), a stand-alone Macintosh2 computer program that takes advantage of their digital format.
Beebook: light field mapping app
NASA Astrophysics Data System (ADS)
De Donatis, Mauro; Di Pietro, Gianfranco; Rinnone, Fabio
2014-05-01
In the last decade the mobile systems for field digital mapping were developed (see Wikipedia for "Digital geologic mapping"), also against many skeptic traditional geologists. Until now, hardware was often heavy (tablet PC) and software sometime difficult also for expert GIS users. At present, the advent of light tablet and applications makes things easier, but we are far to find a whole solution for a complex survey like the geological one where you have to manage complexities such information, hypothesis, data, interpretation. Beebook is a new app for Android devices, has been developed for fast ad easy mapping work in the field trying to try to solve this problem. The main features are: • off-line raster management, GeoTIFF ed other raster format using; • on-line map visualisation (Google Maps, OSM, WMS, WFS); • SR management and conversion using PROJ.4; • vector file mash-up (KML and SQLite format); • editing of vector data on the map (lines, points, polygons); • augmented reality using "Mixare" platform; • export of vector data in KML, CSV, SQLite (Spatialite) format; • note: GPS or manual point inserting linked to other application files (pictures, spreadsheet, etc.); • form: creation, edition and filling of customized form; • GPS: status control, tracker and positioning on map; • sharing: synchronization and sharing of data, forms, positioning and other information can be done among users. The input methods are different from digital keyboard to fingers touch, from voice recording to stylus. In particular the most efficient way of inserting information is the stylus (or pen): field geologists are familiar with annotation and sketches. Therefore we suggest the use of devices with stylus. The main point is that Beebook is the first "transparent" mobile GIS for tablet and smartphone deriving from previous experience as traditional mapping and different previous digital mapping software ideation and development (MapIT, BeeGIS, Geopaparazzi). Deriving from those experiences, we developed a tool which is easy to use and applicable not only for geology but also to every field survey.
Field Guide to the Plant Community Types of Voyageurs National Park
Faber-Langendoen, Don; Aaseng, Norman; Hop, Kevin; Lew-Smith, Michael
2007-01-01
INTRODUCTION The objective of the U.S. Geological Survey-National Park Service Vegetation Mapping Program is to classify, describe, and map vegetation for most of the park units within the National Park Service (NPS). The program was created in response to the NPS Natural Resources Inventory and Monitoring Guidelines issued in 1992. Products for each park include digital files of the vegetation map and field data, keys and descriptions to the plant communities, reports, metadata, map accuracy verification summaries, and aerial photographs. Interagency teams work in each park and, following standardized mapping and field sampling protocols, develop products and vegetation classification standards that document the various vegetation types found in a given park. The use of a standard national vegetation classification system and mapping protocol facilitate effective resource stewardship by ensuring compatibility and widespread use of the information throughout the NPS as well as by other Federal and state agencies. These vegetation classifications and maps and associated information support a wide variety of resource assessment, park management, and planning needs, and provide a structure for framing and answering critical scientific questions about plant communities and their relation to environmental processes across the landscape. This field guide is intended to make the classification accessible to park visitors and researchers at Voyageurs National Park, allowing them to identify any stand of natural vegetation and showing how the classification can be used in conjunction with the vegetation map (Hop and others, 2001).
NASA Astrophysics Data System (ADS)
Hinton, Courtney; Punjabi, Alkesh; Ali, Halima
2008-11-01
The simple map is the simplest map that has topology of divertor tokamaks [1]. Recently, the action-angle coordinates for simple map are analytically calculated, and simple map is constructed in action-angle coordinates [2]. Action-angle coordinates for simple map can not be inverted to real space coordinates (R,Z). Because there is logarithmic singularity on the ideal separatrix, trajectories can not cross separatrix [2]. Simple map in action-angle coordinates is applied to calculate stochastic broadening due to magnetic noise and field errors. Mode numbers for noise + field errors from the DIII-D tokamak are used. Mode numbers are (m,n)=(3,1), (4,1), (6,2), (7,2), (8,2), (9,3), (10,3), (11,3), (12,3) [3]. The common amplitude δ is varied from 0.8X10-5 to 2.0X10-5. For this noise and field errors, the width of stochastic layer in simple map is calculated. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793 1. A. Punjabi, H. Ali, T. Evans, and A. Boozer, Phys. Let. A 364, 140--145 (2007). 2. O. Kerwin, A. Punjabi, and H. Ali, to appear in Physics of Plasmas. 3. A. Punjabi and H. Ali, P1.012, 35^th EPS Conference on Plasma Physics, June 9-13, 2008, Hersonissos, Crete, Greece.
Field camp: Using traditional methods to train the next generation of petroleum geologists
Puckette, J.O.; Suneson, N.H.
2009-01-01
The summer field camp experience provides many students with their best opportunity to learn the scientific process by making observations and collecting, recording, evaluating, and interpreting geologic data. Field school projects enhance student professional development by requiring cooperation and interpersonal interaction, report writing to communicate interpretations, and the development of project management skills to achieve a common goal. The field school setting provides students with the opportunity to observe geologic features and their spatial distribution, size, and shape that will impact the student's future careers as geoscientists. The Les Huston Geology Field Camp (a.k.a. Oklahoma Geology Camp) near Ca??on City, Colorado, focuses on time-tested traditional methods of geological mapping and fieldwork to accomplish these goals. The curriculum consists of an introduction to field techniques (pacing, orienteering, measuring strike and dip, and using a Jacob's staff), sketching outcrops, section measuring (one illustrating facies changes), three mapping exercises (of increasing complexity), and a field geophysics project. Accurate rock and contact descriptions are emphasized, and attitudes and contacts are mapped in the field. Mapping is done on topographic maps at 1:12,000 and 1:6000 scales; air photos are provided. Global positioning system (GPS)-assisted mapping is allowed, but we insist that locations be recorded in the field and confirmed using visual observations. The course includes field trips to the Cripple Creek and Leadville mining districts, Floris-sant/Guffey volcano area, Pikes Peak batholith, and the Denver Basin. Each field trip is designed to emphasize aspects of geology that are not stressed in the field exercises. Students are strongly encouraged to accurately describe geologic features and gather evidence to support their interpretations of the geologic history. Concise reports are a part of each major exercise. Students are grouped into teams to (1) introduce the team concept and develop interpersonal skills that are fundamental components of many professions, (2) ensure safety, and (3) mix students with varying academic backgrounds and physical strengths. This approach has advantages and disadvantages. Students with academic strengths in specific areas assist those with less experience, thereby becoming engaged in the teaching process. However, some students contribute less to fi nal map projects than others, and assigning grades to individual team members can be diffi cult. The greatest challenges we face involve group dynamics and student personalities. We continue to believe that traditional fi eld methods, aided by (but not relying upon) new technologies, are the key to constructing and/or interpreting geologic maps. The requirement that students document fi eld evidence using careful observations teaches skills that will be benefi cial throughout their professional careers. ??2009 The Geological Society of America. All rights reserved.
Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China
NASA Astrophysics Data System (ADS)
GAO, X.
2017-12-01
China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.
Unconventional topological Hall effect in skyrmion crystals caused by the topology of the lattice
NASA Astrophysics Data System (ADS)
Göbel, Börge; Mook, Alexander; Henk, Jürgen; Mertig, Ingrid
2017-03-01
The hallmark of a skyrmion crystal (SkX) is the topological Hall effect (THE). In this article we predict and explain an unconventional behavior of the topological Hall conductivity in SkXs. In simple terms, the spin texture of the skyrmions causes an inhomogeneous emergent magnetic field whose associated Lorentz force acts on the electrons. By making the emergent field homogeneous, the THE is mapped onto the quantum Hall effect (QHE). Consequently, each electronic band of the SkX is assigned to a Landau level. This correspondence of THE and QHE allows us to explain the unconventional behavior of the THE of electrons in SkXs. For example, a skyrmion crystal on a triangular lattice exhibits a quantized topological Hall conductivity with steps of 2 .e2/h below and with steps of 1 .e2/h above the van Hove singularity. On top of this, the conductivity shows a prominent sign change at the van Hove singularity. These unconventional features are deeply connected to the topology of the structural lattice.
Further Mapping of Mercury's Crustal Magnetic Field Using MESSENGER Magnetometer Data
NASA Astrophysics Data System (ADS)
Hood, L. L.; Oliveira, J. S.; Spudis, P. D.; Galluzzi, V.
2018-05-01
Further mapping of Mercury's crustal magnetic field shows that anomalies are associated with some impact craters but not others. Differences in impactor composition (e.g., iron content) may be indicated by this new observation.
NASA Astrophysics Data System (ADS)
Manfredotti, Claudio
Because of its physical properties (strong radiation hardness, wide energy gap with a consequent extremely low dark current, very large electron and hole mobility) diamond is a very good candidate for nuclear particle detection, particularly in harsh environments or in conditions of strong radiation damage. Being commonly polycrystalline, diamond samples obtained by chemical vapour deposition (CVD) are not homogeneous, not only from the morphological point of view, but also from the electronic one. As a consequence, as it was indicated quite early starting from 1995, charge collection properties such as charge collection efficiency (cce) are not uniform, but they are depending on the site hit by incoming particle. Moreover, these properties are influenced by previous irradiations which are used in order to improve them and, finally, they are also dependent on the thickness of the sample, since the electronic non uniformity extends also in depth by affecting the profile of the electrical field from top to bottom electrode of the nuclear detector in the standard "sandwich" arrangement. By the use of focussed ion beams, it is possible to investigate these non uniformities by the aid of techniques like IBIC (Ion Beam Induced Charge) and IBIL (Ion Beam Induced Luminescence) with a space resolution of the order of 1 m. This relatively new kind of microscopy, which is called "ion microscopy", is capable not only to give 2D maps of cce, which can be quite precisely compared with morphological images obtained by Scanning Electron Microscopy (generally the grains display a much better cce than intergrain regions), but also to give the electric field profile from one electrode to the other one in a "lateral" arrangement of the ion beam. IBIL, by supplying 2D maps of luminescence intensity at different wavelength, can give information about the presence of specific radiative recombination centers and their distribution in the material. Finally, a new technique called XBIC (X-ray Beam Induced Charge), which makes use of very collimated (to 0.1 m) x-ray beams from high energy electron synchrotrons, opens new ways to map cce with a less damaging radiation and with a better energy resolution. In this paper we resume recent and less recent work carried out by our group by using these techniques, a work that has been undertaken afterwards also by other research groups in the world. In particular, topics such as the better homogeneity obtained by "priming" and the effects of "light priming", together with a certain "complementarity" between IBIC and IBIL maps, giving evidence that radiative recombination centers along the grain boundaries or in damaged regions are important in affecting cce, will be presented and discussed in some details. The conclusion is that ion microscopy is a powerful and essentially unique method for the investigation of diamond and other semiconductor materials proposed for nuclear detection.
Schuenke, Patrick; Windschuh, Johannes; Roeloffs, Volkert; Ladd, Mark E; Bachert, Peter; Zaiss, Moritz
2017-02-01
Together with the development of MRI contrasts that are inherently small in their magnitude, increased magnetic field accuracy is also required. Hence, mapping of the static magnetic field (B 0 ) and the excitation field (B 1 ) is not only important to feedback shim algorithms, but also for postprocess contrast-correction procedures. A novel field-inhomogeneity mapping method is presented that allows simultaneous mapping of the water shift and B 1 (WASABI) using an off-resonant rectangular preparation pulse. The induced Rabi oscillations lead to a sinc-like spectrum in the frequency-offset dimension and allow for determination of B 0 by its symmetry axis and of B 1 by its oscillation frequency. Stability of the WASABI method with regard to the influences of T 1 , T 2 , magnetization transfer, and repetition time was investigated and its convergence interval was verified. B 0 and B 1 maps obtained simultaneously by means of WASABI in the human brain at 3 T and 7 T can compete well with maps obtained by standard methods. Finally, the method was applied successfully for B 0 and B 1 correction of chemical exchange saturation transfer MRI (CEST-MRI) data of the human brain. The proposed WASABI method yields a novel simultaneous B 0 and B 1 mapping within 1 min that is robust and easy to implement. Magn Reson Med 77:571-580, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Technical Reports Server (NTRS)
Alsdorf, Douglas E.; Vonfrese, Ralph R. B.
1994-01-01
The FORTRAN programs supplied in this document provide a complete processing package for statistically extracting residual core, external field and lithospheric components in Magsat observations. To process the individual passes: (1) orbits are separated into dawn and dusk local times and by altitude, (2) passes are selected based on the variance of the magnetic field observations after a least-squares fit of the core field is removed from each pass over the study area, and (3) spatially adjacent passes are processed with a Fourier correlation coefficient filter to separate coherent and non-coherent features between neighboring tracks. In the second state of map processing: (1) data from the passes are normalized to a common altitude and gridded into dawn and dusk maps with least squares collocation, (2) dawn and dusk maps are correlated with a Fourier correlation efficient filter to separate coherent and non-coherent features; the coherent features are averaged to produce a total field grid, (3) total field grids from all altitudes are continued to a common altitude, correlation filtered for coherent anomaly features, and subsequently averaged to produce the final total field grid for the study region, and (4) the total field map is differentially reduced to the pole.
Nasseh, Daniel; Engel, Jutta; Mansmann, Ulrich; Tretter, Werner; Stausberg, Jürgen
2014-01-01
Confidentiality of patient data in the field of medical informatics is an important task. Leaked sensitive information within this data can be adverse to and being abused against a patient. Therefore, when working with medical data, appropriate and secure models which serve as guidelines for different applications are needed. Consequently, this work presents a model for performing a privacy preserving record linkage between study and registry data. The model takes into account seven requirements related to data privacy. Furthermore, this model is exemplified with a study on family based colorectal cancer in Germany. The model is very strict and excludes possible violations towards data privacy protection to a reasonable degree. It should be applicable to similar use cases which are in need of a mapping between medical data of a study and a registry database.
NASA Technical Reports Server (NTRS)
Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.
2006-01-01
The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.
Bound-preserving Legendre-WENO finite volume schemes using nonlinear mapping
NASA Astrophysics Data System (ADS)
Smith, Timothy; Pantano, Carlos
2017-11-01
We present a new method to enforce field bounds in high-order Legendre-WENO finite volume schemes. The strategy consists of reconstructing each field through an intermediate mapping, which by design satisfies realizability constraints. Determination of the coefficients of the polynomial reconstruction involves nonlinear equations that are solved using Newton's method. The selection between the original or mapped reconstruction is implemented dynamically to minimize computational cost. The method has also been generalized to fields that exhibit interdependencies, requiring multi-dimensional mappings. Further, the method does not depend on the existence of a numerical flux function. We will discuss details of the proposed scheme and show results for systems in conservation and non-conservation form. This work was funded by the NSF under Grant DMS 1318161.
Global Distribution of Seamounts as Inferred from Ship Depth Soundings and Satellite Altimetry
NASA Astrophysics Data System (ADS)
Wessel, P.; Kim, S.; Sandwell, D. T.
2006-12-01
Traditionally, seamounts are active or extinct undersea volcanoes rising more than 1 km above the abyssal plain, but scientists now regularly apply the seamount label to features of just a few tens of meters in height. As constructional features they represent a small but significant fraction of the total volcanic extrusive budget for oceanic seafloor and their distribution provides key information on the variations in intraplate volcanic activity through space and time. Furthermore, they sustain significant ecological communities, determine habitats for fish, and act as obstacles to ocean currents, thus enhancing tidal energy dissipation and ocean mixing. Consequently, it is of some importance to locate and characterize seamounts. Two approaches are used to map the global distribution of seamounts. Depth soundings from single- and multi-beam echo sounders can provide the most detailed maps with up to 100--200 m horizontal resolution. However, soundings from the 5600 publicly available cruises sample only a small fraction of the ocean floor. Direct radar measurements of the ocean surface by satellite-borne altimeters have been used to infer the marine gravity field. By examining such gravity data one can characterize seamounts taller than ~2 km and such studies have produced seamount catalogues holding almost 15,000 seamounts. Recent retracking of the original radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a two-fold increase in resolution. By extrapolating the inferred power-law that relates seamount size to frequency we estimate that 45,000 smaller seamounts taller than 1.5 km still remain uncharted. Future altimetry missions could improve on resolution and decrease noise levels even further, allowing for an even larger number of small (1--1.5 km) seamounts to be separated from the background abyssal hill fabric. Mapping the complete global distribution of seamounts will help constrain competing models of seamount formation as well as facilitate the understanding of marine habitats and deep ocean circulation.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, D. K.; Bhowmick, P. K.; Mishra, P.
2016-12-01
In offshore sedimentary basins, analysis of 3-D seismic data tied with well log data can be used to deduce robust isopach and structure contour maps of different stratigraphic formations. The isopach maps give depocenters whereas structure contour maps give structural relief at a specific time. Combination of these two types of data helps us decipher horst-graben structures, sedimentary basin architecture and tectono-stratigraphic relations through Tertiary time. Restoration of structural cross sections with back-stripping of successively older stratigraphic layers leads to better understand tectono-sedimentary evolution of a basin. The Mumbai (or Bombay) Offshore Basin is the largest basin off the west coast of India and includes Bombay High giant oil/gas field. Although this field was discovered in 1974 and still producing, the basin architecture vis-à-vis structural evolution are not well documented. We take the approach briefly outlined above to study in detail three large hydrocarbon-bearing structures located within the offshore basin. The Cretaceous Deccan basalt forms the basement and hosts prodigal thickness (> 8 km at some localities) of Tertiary sedimentary formations.A two stage deformation is envisaged. At the first stage horst and graben structures formed due to approximately E-W extensional tectonics. This is most spectacularly seen at the basement top level. The faults associated with this extension strike NNW. At the second stage of deformation a set of ENE-striking cross faults have developed leading to the formation of transpressional structures at places. High rate of early sedimentation obliterated horst-graben architecture to large extent. An interesting aspect emerges is that the all the large-scale structures have rather low structural relief. However, the areal extent of such structures are very large. Consequently, these structures hold commercial quantities of oil/gas.
NASA Astrophysics Data System (ADS)
Chen, Che-Yu; Li, Zhi-Yun; King, Patrick K.; Fissel, Laura M.
2017-10-01
Thin, magnetically aligned striations of relatively moderate contrast with the background are commonly observed in both atomic and molecular clouds. They are also prominent in MHD simulations with turbulent converging shocks. The simulated striations develop within a dense, stagnated sheet in the midplane of the post-shock region where magnetically induced converging flows collide. We show analytically that the secondary flows are an inevitable consequence of the jump conditions of oblique MHD shocks. They produce the stagnated, sheet-like sub-layer through a secondary shock when, roughly speaking, the Alfvénic speed in the primary converging flows is supersonic, a condition that is relatively easy to satisfy in interstellar clouds. The dense sub-layer is naturally threaded by a strong magnetic field that lies close to the plane of the sub-layer. The substantial magnetic field makes the sheet highly anisotropic, which is the key to the striation formation. Specifically, perturbations of the primary inflow that vary spatially perpendicular to the magnetic field can easily roll up the sheet around the field lines without bending them, creating corrugations that appear as magnetically aligned striations in column density maps. On the other hand, perturbations that vary spatially along the field lines curve the sub-layer and alter its orientation relative to the magnetic field locally, seeding special locations that become slanted overdense filaments and prestellar cores through enhanced mass accumulation along field lines. In our scenario, the dense sub-layer, which is unique to magnetized oblique shocks, is the birthplace for both magnetically aligned diffuse striations and massive star-forming structures.
Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T.
Chung, Julius Juhyun; Choi, Wonmin; Jin, Tao; Lee, Jung Hee; Kim, Seong-Gi
2017-09-01
Chemical exchange (CE)-sensitive MRI benefits greatly from stronger magnetic fields; however, field effects on CE-sensitive imaging have not yet been studied well in vivo. We have compared CE-sensitive Z-spectra and maps obtained at the fields of 9.4 T and 15.2 T in phantoms and rats with off-resonance chemical-exchange-sensitive spin lock (CESL), which is similar to conventional chemical exchange saturation transfer. At higher fields, the background peak at water resonance has less spread and the exchange rate relative to chemical shift decreases, thus CESL intensity is dependent on B 0 . For the in vivo amide and nuclear Overhauser enhancement (NOE) composite resonances of rat brains, intensities were similar for both magnetic fields, but effective amide proton transfer and NOE values obtained with three-point quantification or a curve fitting method were larger at 15.2 T due to the reduced spread of attenuation at the direct water resonance. When using intermediate exchange-sensitive irradiation parameters, the amine proton signal was 65% higher at 15.2 T than at 9.4 T due to a reduced ratio of exchange rate to chemical shift. In summary, increasing magnetic field provides enhancements to CE-sensitive signals in the intermediate exchange regime and reduces contamination from background signals in the slow exchange regime. Consequently, ultrahigh magnetic field is advantageous for CE-sensitive MRI, especially for amine and hydroxyl protons. Copyright © 2017 John Wiley & Sons, Ltd.
Visual Field Map Clusters in Macaque Extrastriate Visual Cortex
Kolster, Hauke; Mandeville, Joseph B.; Arsenault, John T.; Ekstrom, Leeland B.; Wald, Lawrence L.; Vanduffel, Wim
2009-01-01
The macaque visual cortex contains more than 30 different functional visual areas, yet surprisingly little is known about the underlying organizational principles that structure its components into a complete ‘visual’ unit. A recent model of visual cortical organization in humans suggests that visual field maps are organized as clusters. Clusters minimize axonal connections between individual field maps that represent common visual percepts, with different clusters thought to carry out different functions. Experimental support for this hypothesis, however, is lacking in macaques, leaving open the question of whether it is unique to humans or a more general model for primate vision. Here we show, using high-resolution BOLD fMRI data in the awake monkey at 7 Tesla, that area MT/V5 and its neighbors are organized as a cluster with a common foveal representation and a circular eccentricity map. This novel view on the functional topography of area MT/V5 and satellites indicates that field map clusters are evolutionarily preserved and may be a fundamental organizational principle of the old world primate visual cortex. PMID:19474330
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta
2018-06-11
We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.
Dioptric defocus maps across the visual field for different indoor environments.
García, Miguel García; Ohlendorf, Arne; Schaeffel, Frank; Wahl, Siegfried
2018-01-01
One of the factors proposed to regulate the eye growth is the error signal derived from the defocus in the retina and actually, this might arise from defocus not only in the fovea but the whole visual field. Therefore, myopia could be better predicted by spatio-temporally mapping the 'environmental defocus' over the visual field. At present, no devices are available that could provide this information. A 'Kinect sensor v1' camera (Microsoft Corp.) and a portable eye tracker were used for developing a system for quantifying 'indoor defocus error signals' across the central 58° of the visual field. Dioptric differences relative to the fovea (assumed to be in focus) were recorded over the visual field and 'defocus maps' were generated for various scenes and tasks.
Deusser, Rebecca E.; Schwab, William C.; Denny, Jane F.
2002-01-01
Researchers of the sea-floor mapping facility at the U.S. Geological Survey (USGS) Woods Hole Field Center in Woods Hole, Mass., use state-of-the-art technology to produce accurate geologic maps of the sea floor. In addition to basic bathymetry and morphology, sea-floor maps may contain information about the distribution of sand resources, patterns of coastal erosion, pathways of pollutant transport, and geologic controls on marine biological habitats. The maps may also show areas of human impacts, such as disturbance by bottom fishing and pollution caused by offshore waste disposal. The maps provide a framework for scientific research and provide critical information to decisionmakers who oversee resources in the coastal ocean.
Digital Archives - Thomas M. Bown's Bighorn Basin Maps: The Suite of Forty-Four Office Master Copies
McKinney, Kevin C.
2001-01-01
This CD-ROM is a digitally scanned suite of master 'locality' maps produced by Dr. Thomas M. Bown. The maps are archived in the US Geological Survey Field Records. The maps feature annual compilations of newly established fossil (nineteen 7.5 degree maps) of central basin data collections. This master suite of forty-four maps represents a considerably broader geographic range within the basin. Additionally, three field seasons of data were compiled into the master suite of maps after the final editing of the Professional Paper. These maps are the culmination of Dr. Bown's Bighorn Basin research as a vertebrate paleontologist for the USGS. Data include Yale, Wyoming, Duke, Michigan and USGS localities. Practical topographic features are also indicated, such as jeep=trail access, new reservoirs, rerouted roadbeds, measured sections, fossil reconnaissance evaluations (G=good, NG=no good and H=hideous), faults, palcosol stages, and occasionally 'camp' vernacular for locality names.
NASA Astrophysics Data System (ADS)
Ali, Halima; Punjabi, Alkesh; Boozer, Allen
2004-09-01
In our method of maps [Punjabi et al., Phy. Rev. Lett. 69, 3322 (1992), and Punjabi et al., J. Plasma Phys. 52, 91 (1994)], symplectic maps are used to calculate the trajectories of magnetic field lines in divertor tokamaks. Effects of the magnetic perturbations are calculated using the low MN map [Ali et al., Phys. Plasmas 11, 1908 (2004)] and the dipole map [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. The dipole map is used to calculate the effects of externally located current carrying coils on the trajectories of the field lines, the stochastic layer, the magnetic footprint, and the heat load distribution on the collector plates in divertor tokamaks [Punjabi et al., Phys. Plasmas 10, 3992 (2003)]. Symplectic maps are general, efficient, and preserve and respect the Hamiltonian nature of the dynamics. In this brief communication, a rigorous mathematical derivation of the dipole map is given.
NASA Astrophysics Data System (ADS)
Lerman, Eugene
2018-08-01
Many systems of interest in science and engineering are made up of interacting subsystems. These subsystems, in turn, could be made up of collections of smaller interacting subsystems and so on. In a series of papers David Spivak with collaborators formalized these kinds of structures (systems of systems) as algebras over presentable colored operads (Spivak, 2013; Rupel and Spivak, 2013; Vagner et al., 2015). It is also very useful to consider maps between dynamical systems. This is the point of view taken by DeVille and Lerman in the study of dynamics on networks (DeVille and Lerman, 2015 [4,5]; DeVille and Lerman, 2010). The work of DeVille and Lerman was inspired by the coupled cell networks of Golubitsky, Stewart and their collaborators (Stewart et al., 2003; Golubitsky et al., 2005; Golubitsky and Stewart, 2006). The goal of this paper is to describe an algebraic structure that encompasses both approaches to systems of systems. More specifically we define a double category of open systems and construct a functor from this double category to the double category of vector spaces, linear maps and linear relations. This allows us, on one hand, to build new open systems out of collections of smaller open subsystems and on the other to keep track of maps between open systems. Consequently we obtain synchrony results for open systems which generalize the synchrony results of Golubitsky, Stewart and their collaborators for groupoid invariant vector fields on coupled cell networks.
Zobeck, T.M.; Parker, N.C.; Haskell, S.; Guoding, K.
2000-01-01
Factors that affect wind erosion such as surface vegetative and other cover, soil properties and surface roughness usually change spatially and temporally at the field-scale to produce important field-scale variations in wind erosion. Accurate estimation of wind erosion when scaling up from fields to regions, while maintaining meaningful field-scale process details, remains a challenge. The objectives of this study were to evaluate the feasibility of using a field-scale wind erosion model with a geographic information system (GIS) to scale up to regional levels and to quantify the differences in wind erosion estimates produced by different scales of soil mapping used as a data layer in the model. A GIS was used in combination with the revised wind erosion equation (RWEQ), a field-scale wind erosion model, to estimate wind erosion for two 50 km2 areas. Landsat Thematic Mapper satellite imagery from 1993 with 30 m resolution was used as a base map. The GIS database layers included land use, soils, and other features such as roads. The major land use was agricultural fields. Data on 1993 crop management for selected fields of each crop type were collected from local government agency offices and used to 'train' the computer to classify land areas by crop and type of irrigation (agroecosystem) using commercially available software. The land area of the agricultural land uses was overestimated by 6.5% in one region (Lubbock County, TX, USA) and underestimated by about 21% in an adjacent region (Terry County, TX, USA). The total estimated wind erosion potential for Terry County was about four times that estimated for adjacent Lubbock County. The difference in potential erosion among the counties was attributed to regional differences in surface soil texture. In a comparison of different soil map scales in Terry County, the generalised soil map had over 20% more of the land area and over 15% greater erosion potential in loamy sand soils than did the detailed soil map. As a result, the wind erosion potential determined using the generalised soil map Was about 26% greater than the erosion potential estimated by using the detailed soil map in Terry County. This study demonstrates the feasibility of scaling up from fields to regions to estimate wind erosion potential by coupling a field-scale wind erosion model with GIS and identifies possible sources of error with this approach.
RAPID-N: Assessing and mapping the risk of natural-hazard impact at industrial installations
NASA Astrophysics Data System (ADS)
Girgin, Serkan; Krausmann, Elisabeth
2015-04-01
Natural hazard-triggered technological accidents (so-called Natech accidents) at hazardous installations can have major consequences due to the potential for release of hazardous materials, fires and explosions. Effective Natech risk reduction requires the identification of areas where this risk is high. However, recent studies have shown that there are hardly any methodologies and tools that would allow authorities to identify these areas. To work towards closing this gap, the European Commission's Joint Research Centre has developed the rapid Natech risk assessment and mapping framework RAPID-N. The tool, which is implemented in an online web-based environment, is unique in that it contains all functionalities required for running a full Natech risk analysis simulation (natural hazards severity estimation, equipment damage probability and severity calculation, modeling of the consequences of loss of containment scenarios) and for visualizing its results. The output of RAPID-N are risk summary reports and interactive risk maps which can be used for decision making. Currently, the tool focuses on Natech risk due to earthquakes at industrial installations. However, it will be extended to also analyse and map Natech risk due to floods in the near future. RAPID-N is available at http://rapidn.jrc.ec.europa.eu. This presentation will discuss the results of case-study calculations performed for selected flammable and toxic substances to test the capabilities of RAPID-N both for single- and multi-site earthquake Natech risk assessment. For this purpose, an Istanbul earthquake scenario provided by the Turkish government was used. The results of the exercise show that RAPID-N is a valuable decision-support tool that assesses the Natech risk and maps the consequence end-point distances. These end-point distances are currently defined by 7 kPa overpressure for Vapour Cloud Explosions, 2nd degree burns for pool fire (which is equivalent to a heat radiation of 5 kW/m2 for 40s), or the ERPG-2 concentration for atmospheric dispersion of toxic substances).
NASA Astrophysics Data System (ADS)
Giardino, Marco; Magagna, Alessandra; Ferrero, Elena; Perrone, Gianluigi
2015-04-01
Digital field mapping has certainly provided geoscientists with the opportunity to map and gather data in the field directly using digital tools and software rather than using paper maps, notebooks and analogue devices and then subsequently transferring the data to a digital format for subsequent analysis. But, the same opportunity has to be recognized for Geoscience education, as well as for stimulating and helping students in the recognition of landforms and interpretation of the geological and geomorphological components of a landscape. More, an early exposure to mapping during school and prior to university can optimise the ability to "read" and identify uncertainty in 3d models. During 2014, about 200 Secondary School students (aged 12-15) of the Piedmont region (NW Italy) participated in a research program involving the use of mobile devices (smartphone and tablet) in the field. Students, divided in groups, used the application Trimble Outdoors Navigators for tracking a geological trail in the Sangone Valley and for taking georeferenced pictures and notes. Back to school, students downloaded the digital data in a .kml file for the visualization on Google Earth. This allowed them: to compare the hand tracked trail on a paper map with the digital trail, and to discuss about the functioning and the precision of the tools; to overlap a digital/semitransparent version of the 2D paper map (a Regional Technical Map) used during the field trip on the 2.5D landscape of Google Earth, as to help them in the interpretation of conventional symbols such as contour lines; to perceive the landforms seen during the field trip as a part of a more complex Pleistocene glacial landscape; to understand the classical and innovative contributions from different geoscientific disciplines to the generation of a 3D structural geological model of the Rivoli-Avigliana Morainic Amphitheatre. In 2013 and 2014, some other pilot projects have been carried out in different areas of the Piedmont region, and in the Sesia Val Grande Geopark, for testing the utility of digital field mapping in Geoscience education. Feedback from students are positive: they are stimulated and involved by the use of ICT for learning Geoscience, and they voluntary choose to work with their personal mobile device (more than 90% of them own a smartphone); they are interested in knowing the features of GPS, and of software for the visualization of satellite and aerial images, but they recognize the importance of integrating and comparing traditional and innovative methods in the field.
Geophysical exploration with audio frequency magnetic fields
NASA Astrophysics Data System (ADS)
Labson, V. F.
1985-12-01
Experience with the Audio Frequency Magnetic (AFMAG) method has demonstrated that an electromagnetic exploration system using the Earth's natural audiofrequency magnetic fields as an energy source, is capable of mapping subsurface electrical structure in the upper kilometer of the Earth's crust. The limitations are resolved by adapting the tensor analysis and remote reference noise bias removal techniques from the geomagnetic induction and magnetotelluric methods to the computation of the tippers. After a through spectral study of the natural magnetic fields, lightweight magnetic field sensors, capable of measuring the magnetic field throughout the year were designed. A digital acquisition and processing sytem, with the ability to provide audiofrequency tipper results in the field, was then built to complete the apparatus. The new instrumetnation was used in a study of the Mariposa, California site previously mapped with AFMAG. The usefulness of natural magnetic field data in mapping an electrical conductive body was again demonstrated. Several field examples are used to demonstrate that the proposed procedure yields reasonable results.
Map showing selected surface-water data for the Alton-Kolob coal-fields area, Utah
Price, Don
1982-01-01
This is one of a series of maps that describe the geology and related natural resources of the Alton-Kolob coal-fields area, Utah. Streamflow records used to compile the map and the following table were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, and the Utah Department of Transportation. The principal runoff-producing areas were delineated form a work map (scale 1:250,000) compiled to estimate water yields in Utah (Bagley and others, 1964).
Land use map, Finney County, Kansas
NASA Technical Reports Server (NTRS)
Morain, S. A. (Principal Investigator); Williams, D. L.; Coiner, J. C.
1973-01-01
The author has identified the following significant results. Methods for the mapping of land use in agricultural regions are developed and applied to preparation of a land use map of Finney County, Kanas. Six land use categories were identified from an MSS-5 image. These categories are: (1) large field irrigation; (2) small field irrigation; (3) dryland cultivation; (4) rangeland; (5) cultural features; and (6) riverine land. The map is composed of basically homogeneous regions with definable mixtures of the six categories. Each region is bounded by an ocularly evident change in land use.
NASA Astrophysics Data System (ADS)
Kjellgren, S.
2013-07-01
In response to the EU Floods Directive (2007/60/EC), flood hazard maps are currently produced all over Europe, reflecting a wider shift in focus from "flood protection" to "risk management", for which not only public authorities but also populations at risk are seen as responsible. By providing a visual image of the foreseen consequences of flooding, flood hazard maps can enhance people's knowledge about flood risk, making them more capable of an adequate response. Current literature, however, questions the maps' awareness raising capacity, arguing that their content and design are rarely adjusted to laypeople's needs. This paper wants to complement this perspective with a focus on risk communication by studying how these tools are disseminated and marketed to the public in the first place. Judging from communication theory, simply making hazard maps publicly available is unlikely to lead to attitudinal or behavioral effects, since this typically requires two-way communication and material or symbolic incentives. Consequently, it is relevant to investigate whether and how local risk managers, who are well positioned to interact with the local population, make use of flood hazard maps for risk communication purposes. A qualitative case study of this issue in the German state of Baden-Württemberg suggests that many municipalities lack a clear strategy for using this new information tool for hazard and risk communication. Four barriers in this regard are identified: perceived disinterest/sufficient awareness on behalf of the population at risk; unwillingness to cause worry or distress; lack of skills and resources; and insufficient support. These barriers are important to address - in research as well as in practice - since it is only if flood hazard maps are used to enhance local knowledge resources that they can be expected to contribute to social capacity building.
Accumulation of electric currents driving jetting events in the solar atmosphere
NASA Astrophysics Data System (ADS)
Vargas Domínguez, S.; Guo, Y.; Demoulin, P.; Schmieder, B.; Ding, M.; Liu, Y.
2013-12-01
The solar atmosphere is populated with a wide variety of structures and phenomena at different spatial and temporal scales. Explosive phenomena are of particular interest due to their contribution to the atmosphere's energy budget and their implications, e.g. coronal heating. Recent instrumental developments have provided important observations and therefore new insights for tracking the dynamic evolution of the solar atmosphere. Jets of plasma are frequently observed in the solar corona and are thought to be a consequence of magnetic reconnection, however, the physics involved is not fully understood. Unprecedented observations (EUV and vector magnetic fields) are used to study solar jetting events, from which we derive the magnetic flux evolution, the photospheric velocity field, and the vertical electric current evolution. The evolution of magnetic parasitic polarities displaying diverging flows are detected to trigger recurrent jets in a solar regionon 17 September 2010. The interaction drive the build up of electric currents. Observed diverging flows are proposed to build continuously such currents. Magnetic reconnection is proposed to occur periodically, in the current layer created between the emerging bipole and the large scale active region field. SDO/AIA EUV composite images. Upper: SDO/AIA 171 Å image overlaid by the line-of-sight magnetic field observed at the same time as that of the 171 Å image. Lower: Map of photospheric transverse velocities derived from LCT analysis with the HMI magnetograms.
Pattern recognition neural-net by spatial mapping of biology visual field
NASA Astrophysics Data System (ADS)
Lin, Xin; Mori, Masahiko
2000-05-01
The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.
Yang, Qi; Meng, Fan-Rui; Bourque, Charles P-A; Zhao, Zhengyong
2017-09-08
Forest ecosite reflects the local site conditions that are meaningful to forest productivity as well as basic ecological functions. Field assessments of vegetation and soil types are often used to identify forest ecosites. However, the production of high-resolution ecosite maps for large areas from interpolating field data is difficult because of high spatial variation and associated costs and time requirements. Indices of soil moisture and nutrient regimes (i.e., SMR and SNR) introduced in this study reflect the combined effects of biogeochemical and topographic factors on forest growth. The objective of this research is to present a method for creating high-resolution forest ecosite maps based on computer-generated predictions of SMR and SNR for an area in Atlantic Canada covering about 4.3 × 10 6 hectares (ha) of forestland. Field data from 1,507 forest ecosystem classification plots were used to assess the accuracy of the ecosite maps produced. Using model predictions of SMR and SNR alone, ecosite maps were 61 and 59% correct in identifying 10 Acadian- and Maritime-Boreal-region ecosite types, respectively. This method provides an operational framework for the production of high-resolution maps of forest ecosites over large areas without the need for data from expensive, supplementary field surveys.
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites.
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; Ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-08-01
The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1. Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites
Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L
2014-01-01
Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space. PMID:26430387
NASA Technical Reports Server (NTRS)
Schutt, J.; Fessler, B.; Cassidy, W. A.
1993-01-01
This technical report is an update to LPI Technical Report 89-02, which contained data and information that was current to May 1987. Since that time approximately 4000 new meteorites have been collected, mapped, and characterized, mainly from the numerous ice fields in the Allan Hills-David Glacier region, from the Pecora Escarpment and Moulton Escarpment in the Thiel Mountains-Patuxent region, the Wisconsin Range region, and from the Beardmore region. Meteorite location maps for ice fields from these regions have been produced and are available. This report includes explanatory texts for the maps of new areas and provides information on updates of maps of the areas covered in LPI Technical Report 89-02. Sketch maps and description of locales that have been searched and have yielded single or few meteorites are also included. The meteorite listings for all the ice fields have been updated to include any classification changes and new meteorites recovered from ice fields in the Allan Hills-David Glacier region since 1987. The text has been reorganized and minor errors in the original report have been corrected. Computing capabilities have improved immensely since the early days of this project. Current software and hardware allow easy access to data over computer networks. With various commercial software packages, the data can be used many different ways, including database creation, statistics, and mapping. The databases, explanatory texts, and the plotter files used to produce the meteorite location maps are available through a computer network. Information on how to access AMLAMP data, its formats, and ways it can be used are given in the User's Guide to AMLAMP Data section. Meteorite location maps and thematic maps may be ordered from the Lunar and Planetary Institute. Ordering information is given in Appendix A.
Consequences of excessive plasticity in the hippocampus induced by perinatal asphyxia.
Saraceno, G E; Caceres, L G; Guelman, L R; Castilla, R; Udovin, L D; Ellisman, M H; Brocco, M A; Capani, F
2016-12-01
Perinatal asphyxia (PA) is one of the most frequent risk factors for several neurodevelopmental disorders (NDDs) of presumed multifactorial etiology. Dysfunction of neuronal connectivity is thought to play a central role in the pathophysiology of NDDs. Because underlying causes of some NDDs begin before/during birth, we asked whether this clinical condition might affect accurate establishment of neural circuits in the hippocampus as a consequence of disturbed brain plasticity. We used a murine model that mimics the pathophysiological processes of perinatal asphyxia. Histological analyses of neurons (NeuN), dendrites (MAP-2), neurofilaments (NF-M/Hp) and correlative electron microscopy studies of dendritic spines were performed in Stratum radiatum of the hippocampal CA1 area after postnatal ontogenesis. Protein and mRNA analyses were achieved by Western blot and RT-qPCR. Behavioral tests were also carried out. NeuN abnormal staining and spine density were increased. RT-qPCR assays revealed a β-actin mRNA over-expression, while Western blot analysis showed higher β-actin protein levels in synaptosomal fractions in experimental group. M6a expression, protein involved in filopodium formation and synaptogenesis, was also increased. Furthermore, we found that PI3K/Akt/GSK3 pathway signaling, which is involved in synaptogenesis, was activated. Moreover, asphyctic animals showed habituation memory changes in the open field test. Our results suggest that abnormal synaptogenesis induced by PA as a consequence of excessive brain plasticity during brain development may contribute to the etiology of the NDDs. Consequences of this altered synaptic maturation can underlie some of the later behavioral deficits observed in NDDs. Copyright © 2016. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Biass, Sébastien; Falcone, Jean-Luc; Bonadonna, Costanza; Di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino
2016-10-01
We present a probabilistic approach to quantify the hazard posed by volcanic ballistic projectiles (VBP) and their potential impact on the built environment. A model named Great Balls of Fire (GBF) is introduced to describe ballistic trajectories of VBPs accounting for a variable drag coefficient and topography. It relies on input parameters easily identifiable in the field and is designed to model large numbers of VBPs stochastically. Associated functions come with the GBF code to post-process model outputs into a comprehensive probabilistic hazard assessment for VBP impacts. Outcomes include probability maps to exceed given thresholds of kinetic energies at impact, hazard curves and probabilistic isoenergy maps. Probabilities are calculated either on equally-sized pixels or zones of interest. The approach is calibrated, validated and applied to La Fossa volcano, Vulcano Island (Italy). We constructed a generic eruption scenario based on stratigraphic studies and numerical inversions of the 1888-1890 long-lasting Vulcanian cycle of La Fossa. Results suggest a ~ 10- 2% probability of occurrence of VBP impacts with kinetic energies ≤ 104 J at the touristic locality of Porto. In parallel, the vulnerability to roof perforation was estimated by combining field observations and published literature, allowing for a first estimate of the potential impact of VBPs during future Vulcanian eruptions. Results indicate a high physical vulnerability to the VBP hazard, and, consequently, half of the building stock having a ≥ 2.5 × 10- 3% probability of roof perforation.
Adverse drug event reporting systems: a systematic review
Peddie, David; Wickham, Maeve E.; Badke, Katherin; Small, Serena S.; Doyle‐Waters, Mary M.; Balka, Ellen; Hohl, Corinne M.
2016-01-01
Aim Adverse drug events (ADEs) are harmful and unintended consequences of medications. Their reporting is essential for drug safety monitoring and research, but it has not been standardized internationally. Our aim was to synthesize information about the type and variety of data collected within ADE reporting systems. Methods We developed a systematic search strategy, applied it to four electronic databases, and completed an electronic grey literature search. Two authors reviewed titles and abstracts, and all eligible full‐texts. We extracted data using a standardized form, and discussed disagreements until reaching consensus. We synthesized data by collapsing data elements, eliminating duplicate fields and identifying relationships between reporting concepts and data fields using visual analysis software. Results We identified 108 ADE reporting systems containing 1782 unique data fields. We mapped them to 33 reporting concepts describing patient information, the ADE, concomitant and suspect drugs, and the reporter. While reporting concepts were fairly consistent, we found variability in data fields and corresponding response options. Few systems clarified the terminology used, and many used multiple drug and disease dictionaries such as the Medical Dictionary for Regulatory Activities (MedDRA). Conclusion We found substantial variability in the data fields used to report ADEs, limiting the comparability of ADE data collected using different reporting systems, and undermining efforts to aggregate data across cohorts. The development of a common standardized data set that can be evaluated with regard to data quality, comparability and reporting rates is likely to optimize ADE data and drug safety surveillance. PMID:27016266
Adverse drug event reporting systems: a systematic review.
Bailey, Chantelle; Peddie, David; Wickham, Maeve E; Badke, Katherin; Small, Serena S; Doyle-Waters, Mary M; Balka, Ellen; Hohl, Corinne M
2016-07-01
Adverse drug events (ADEs) are harmful and unintended consequences of medications. Their reporting is essential for drug safety monitoring and research, but it has not been standardized internationally. Our aim was to synthesize information about the type and variety of data collected within ADE reporting systems. We developed a systematic search strategy, applied it to four electronic databases, and completed an electronic grey literature search. Two authors reviewed titles and abstracts, and all eligible full-texts. We extracted data using a standardized form, and discussed disagreements until reaching consensus. We synthesized data by collapsing data elements, eliminating duplicate fields and identifying relationships between reporting concepts and data fields using visual analysis software. We identified 108 ADE reporting systems containing 1782 unique data fields. We mapped them to 33 reporting concepts describing patient information, the ADE, concomitant and suspect drugs, and the reporter. While reporting concepts were fairly consistent, we found variability in data fields and corresponding response options. Few systems clarified the terminology used, and many used multiple drug and disease dictionaries such as the Medical Dictionary for Regulatory Activities (MedDRA). We found substantial variability in the data fields used to report ADEs, limiting the comparability of ADE data collected using different reporting systems, and undermining efforts to aggregate data across cohorts. The development of a common standardized data set that can be evaluated with regard to data quality, comparability and reporting rates is likely to optimize ADE data and drug safety surveillance. © 2016 The British Pharmacological Society.
Generating log-normal mock catalog of galaxies in redshift space
NASA Astrophysics Data System (ADS)
Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro
2017-10-01
We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
Skovsen, Søren
2017-01-01
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kgNha. The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations. PMID:29168783
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.
2014-01-01
Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.
2014-01-01
Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.
Indonesian Geomagnetic Maps for Epoch 2015.0 to cover of Indonesian Regions
NASA Astrophysics Data System (ADS)
Syirojudin, M.; Murjaya, J.; Zubaidah, S.; Hasanudin; Ahadi, S.; Efendi, N.; Suroyo, T.
2018-03-01
In compliance with the resolutions of IAGA (International Association of Geomagnetism and Aeronomy), Since 1960’s, every five years BMKG or Meteorology, Climatology and Geophysics Agency of Indonesia made geomagnetic field maps based on actual measurements in 53 repeat stations. It’s the map for more accurate result of Geomagnetic maps Epoch 2015.0, the number of repeat stations has been increased to 68 locations. Analysis data was conducted by spatial analyses using collocated co-kriging and kriging with external drift to map the observation data in five components, such as Declination (D), Inclination (I), Vertical (Z), Horizontal (H), and Total Geomagnetic Field (F). The data reduction used one permanent observatory i.e., Kupang Geophysical Observatory, as a reference standard. The results of this Geomagnetic Maps, that the contour lines of Indonesian geomagnetic declination in range -1 to 4.5 degree, Inclination component are -5 to -37 degree, Vertical component are -4000 to -28000 nT, Horizontal component are 36000 to 42000 nT, and Total Geomagnetic Field are 39000 to 46000 nT. In conclusion, Indonesian Geomagnetic Maps for Epoch 2015.0 can be used to compute geomagnetic data around Indonesian regions until next 5 years.
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René
2017-11-23
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.
Mapping Research in the Field of Special Education on the Island of Ireland since 2000
ERIC Educational Resources Information Center
Travers, Joseph; Savage, Rosie; Butler, Cathal; O'Donnell, Margaret
2018-01-01
This paper describes the process of building a database mapping research and policy in the field of special education on the island of Ireland from 2000 to 2013. The field of study includes special educational needs, disability and inclusion. The database contains 3188 references organised thematically and forms a source for researchers to access…
Student-Designed Mapping Project as Part of a Geology Field Camp
ERIC Educational Resources Information Center
Kelley, Daniel F.; Sumrall, Jeanne L.; Sumrall, Jonathan B.
2015-01-01
During the summer of 2012, the Louisiana State University (LSU) field camp program was affected by close proximity to the large Waldo Canyon Fire in Colorado Springs, CO, as well as by a fire incident on the field camp property. A mapping exercise was created that incorporated spatial data acquired on the LSU property to investigate research…
Mapping Women's and Gender Studies in the Academic Field in Slovenia
ERIC Educational Resources Information Center
Gaber, Milica Antic
2017-01-01
The aim of the present paper is to map the development of women's and gender studies (WGS) in the academic field in Slovenia. Slovenia is the first of the former Yugoslav state republics in which WGS have succeeded in entering the academic field and becoming part of institutionalised university study. In this paper we will ask the following…
NASA Technical Reports Server (NTRS)
Kiehn, R. M.
1976-01-01
With respect to irreversible, non-homeomorphic maps, contravariant and covariant tensor fields have distinctly natural covariance and transformational behavior. For thermodynamic processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive determinism for covariant tensor fields.
Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2010-01-01
The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.
NASA Astrophysics Data System (ADS)
Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.
2016-12-01
Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.
Fusing Panchromatic and SWIR Bands Based on Cnn - a Preliminary Study Over WORLDVIEW-3 Datasets
NASA Astrophysics Data System (ADS)
Guo, M.; Ma, H.; Bao, Y.; Wang, L.
2018-04-01
The traditional fusion methods are based on the fact that the spectral ranges of the Panchromatic (PAN) and multispectral bands (MS) are almost overlapping. In this paper, we propose a new pan-sharpening method for the fusion of PAN and SWIR (short-wave infrared) bands, whose spectral coverages are not overlapping. This problem is addressed with a convolutional neural network (CNN), which is trained by WorldView-3 dataset. CNN can learn the complex relationship among bands, and thus alleviate spectral distortion. Consequently, in our network, we use the simple three-layer basic architecture with 16 × 16 kernels to conduct the experiment. Every layer use different receptive field. The first two layers compute 512 feature maps by using the 16 × 16 and 1 × 1 receptive field respectively and the third layer with a 8 × 8 receptive field. The fusion results are optimized by continuous training. As for assessment, four evaluation indexes including Entropy, CC, SAM and UIQI are selected built on subjective visual effect and quantitative evaluation. The preliminary experimental results demonstrate that the fusion algorithms can effectively enhance the spatial information. Unfortunately, the fusion image has spectral distortion, it cannot maintain the spectral information of the SWIR image.
Scaling isotopic emissions and microbes across a permafrost thaw landscape
NASA Astrophysics Data System (ADS)
Varner, R. K.; Palace, M. W.; Saleska, S. R.; Bolduc, B.; Braswell, B. H., Jr.; Crill, P. M.; Chanton, J.; DelGreco, J.; Deng, J.; Frolking, S. E.; Herrick, C.; Hines, M. E.; Li, C.; McArthur, K. J.; McCalley, C. K.; Persson, A.; Roulet, N. T.; Torbick, N.; Tyson, G. W.; Rich, V. I.
2017-12-01
High latitude peatlands are a significant source of atmospheric methane. This source is spatially and temporally heterogeneous, resulting in a wide range of emission estimates for the atmospheric budget. Increasing atmospheric temperatures are causing degradation of underlying permafrost, creating changes in surface soil moisture, the surface and sub-surface hydrological patterns, vegetation and microbial communities, but the consequences to rates and magnitudes of methane production and emissions are poorly accounted for in global budgets. We combined field observations, multi-source remote sensing data and biogeochemical modeling to predict methane dynamics, including the fraction derived from hydrogenotrophic versus acetoclastic microbial methanogenesis across Stordalen mire, a heterogeneous discontinuous permafrost wetland located in northernmost Sweden. Using the field measurement validated Wetland-DNDC biogeochemical model, we estimated mire-wide CH4 and del13CH4 production and emissions for 2014 with input from field and unmanned aerial system (UAS) image derived vegetation maps, local climatology and water table from insitu and remotely sensed data. Model simulated methanogenic pathways correlate with sequence-based observations of methanogen community composition in samples collected from across the permafrost thaw landscape. This approach enables us to link below ground microbial community composition with emissions and indicates a potential for scaling across broad areas of the Arctic region.
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923
Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L
2012-01-01
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
Digital mapping in extreme and remote environments
NASA Astrophysics Data System (ADS)
Andersson, Joel; Bauer, Tobias; Sarlus, Zimer; Zainy, Maher; Brethes, Anais
2017-04-01
During the last few years, Luleå University of Technology has performed a series of research projects in remote areas with extreme climatic conditions using digital mapping technologies. The majority of past and ongoing research projects focus on the arctic regions of the Fennoscandian Shield and Greenland but also on the Zagros fold-and-thrust belt in northern Iraq. Currently, we use the Midland Valley application FieldMove on iPad mini devices with ruggedized casings. As all projects have a strong focus on geological field work, harsh climatic conditions are a challenge not only for the geologists but also for the digital mapping hardware. In the arctic regions especially cold temperatures affect battery lifetime and performance of the screens. But also high temperatures are restricting digital mapping. From experience, a typical temperature range where digital mapping, using iPad tablets, is possible lies between -20 and +40 degrees. Furthermore, the remote character of field areas complicates access but also availability of electricity. By a combination of robust solar chargers and ruggedized batteries we are able to work entirely autarkical. Additionally, we are currently installing a drone system that allows us to map outcrops normally inaccessible because of safety reasons or time deficiency. The produced data will subsequently be taken into our Virtual Reality studio for interpretation and processing. There we will be able to work also with high resolution DEM data from Lidar scanning allowing us to interpret structural features such as post-glacial faults in areas that are otherwise only accessible by helicopter. By combining digital field mapping with drone technique and a Virtual Reality studio we are able to work in hardly accessible areas, improve safety during field work and increase efficiency substantially.
The Tin Bider Impact Structure, Algeria: New Map with Field Inputs on Structural Aspect
NASA Astrophysics Data System (ADS)
Kassab, F.; Belhai, D.
2017-07-01
The Tin Bider impact structure is a complex type composed by sedimentary target rocks. We realized a geological map including new inputs on impact characters of a recent field investigation where we identify shatter cone and folds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.
2016-05-20
In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less
NASA Astrophysics Data System (ADS)
Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav
2017-06-01
The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.
Calculating potential fields using microchannel spatial light modulators
NASA Technical Reports Server (NTRS)
Reid, Max B.
1993-01-01
We describe and present experimental results of the optical calculation of potential field maps suitable for mobile robot navigation. The optical computation employs two write modes of a microchannel spatial light modulator (MSLM). In one mode, written patterns expand spatially, and this characteristic is used to create an extended two dimensional function representing the influence of the goal in a robot's workspace. Distinct obstacle patterns are written in a second, non-expanding, mode. A model of the mechanisms determining MSLM write mode characteristics is developed and used to derive the optical calculation time for full potential field maps. Field calculations at a few hertz are possible with current technology, and calculation time vs. map size scales favorably in comparison to digital electronic computation.
NASA Astrophysics Data System (ADS)
Gruber, D.; Skotnicki, S.; Gootee, B.
2016-12-01
The work of citizen scientists has become very important to researchers doing field work and internet-based projects but has not been widely utilized in digital mapping. The McDowell Mountains - located in Scottsdale, Arizona, at the edge of the basin-and-range province and protected as part of the McDowell Sonoran Preserve - are geologically complex. Until recently, no comprehensive geologic survey of the entire range had been done. Over the last 9 years geologist Steven Skotnicki spent 2000 hours mapping the complex geology of the range. His work, born of personal interest and partially supported by the McDowell Sonoran Conservancy, resulted in highly detailed hand-drawn survey maps. Dr. Skotnicki's work provides important new information and raises interesting research questions about the geology of this range. Citizen scientists of the McDowell Sonoran Conservancy Field Institute digitized Dr. Skotnicki's maps. A team of 10 volunteers, trained in ArcMap digitization techniques and led by volunteer project leader Daniel Gruber, performed the digitization work. Technical oversight of mapping using ArcMap, including provision of USGS-based mapping toolbars, was provided by Arizona Geological Survey (AZGS) research geologist Brian Gootee. The map digitization process identified and helped resolve a number of mapping questions. The citizen-scientist team spent 900 hours on training, digitization, quality checking, and project coordination with support and review by Skotnicki and Gootee. The resulting digital map has approximately 3000 polygons, 3000 points, and 86 map units with complete metadata and unit descriptions. The finished map is available online through AZGS and can be accessed in the field on mobile devices. User location is shown on the map and metadata can be viewed with a tap. The citizen scientist map digitization team has made this important geologic information available to the public and accessible to other researchers quickly and efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mejri, Youssef, E-mail: josef-bizert@hotmail.fr; Dép. des Mathématiques, Faculté des Sciences de Bizerte, 7021 Jarzouna; Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l’Ingénieur, ENIT BP 37, Le Belvedere, 1002 Tunis
In this article, we study the boundary inverse problem of determining the aligned magnetic field appearing in the magnetic Schrödinger equation in a periodic quantum cylindrical waveguide, by knowledge of the Dirichlet-to-Neumann map. We prove a Hölder stability estimate with respect to the Dirichlet-to-Neumann map, by means of the geometrical optics solutions of the magnetic Schrödinger equation.
High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.
Nassirpour, Sahar; Chang, Paul; Henning, Anke
2018-03-01
Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.
Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers
Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.
2013-01-01
Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.
Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition
Phillips, Steven; Wilson, William H.
2010-01-01
Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe—replaced by the relationships between the maps that transform them. PMID:20661306
Categorial compositionality: a category theory explanation for the systematicity of human cognition.
Phillips, Steven; Wilson, William H
2010-07-22
Classical and Connectionist theories of cognitive architecture seek to explain systematicity (i.e., the property of human cognition whereby cognitive capacity comes in groups of related behaviours) as a consequence of syntactically and functionally compositional representations, respectively. However, both theories depend on ad hoc assumptions to exclude specific instances of these forms of compositionality (e.g. grammars, networks) that do not account for systematicity. By analogy with the Ptolemaic (i.e. geocentric) theory of planetary motion, although either theory can be made to be consistent with the data, both nonetheless fail to fully explain it. Category theory, a branch of mathematics, provides an alternative explanation based on the formal concept of adjunction, which relates a pair of structure-preserving maps, called functors. A functor generalizes the notion of a map between representational states to include a map between state transformations (or processes). In a formal sense, systematicity is a necessary consequence of a higher-order theory of cognitive architecture, in contrast to the first-order theories derived from Classicism or Connectionism. Category theory offers a re-conceptualization for cognitive science, analogous to the one that Copernicus provided for astronomy, where representational states are no longer the center of the cognitive universe--replaced by the relationships between the maps that transform them.
Estimating the Health and Economic Impacts of Changes in Local Air Quality
Carvour, Martha L.; Hughes, Amy E.; Fann, Neal
2018-01-01
Objectives. To demonstrate the benefits-mapping software Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE), which integrates local air quality data with previously published concentration–response and health–economic valuation functions to estimate the health effects of changes in air pollution levels and their economic consequences. Methods. We illustrate a local health impact assessment of ozone changes in the 10-county nonattainment area of the Dallas–Fort Worth region of Texas, estimating the short-term effects on mortality predicted by 2 scenarios for 3 years (2008, 2011, and 2013): an incremental rollback of the daily 8-hour maximum ozone levels of all area monitors by 10 parts per billion and a rollback-to-a-standard ambient level of 65 parts per billion at only monitors above that level. Results. Estimates of preventable premature deaths attributable to ozone air pollution obtained by the incremental rollback method varied little by year, whereas those obtained by the rollback-to-a-standard method varied by year and were sensitive to the choice of ordinality and the use of preloaded or imported data. Conclusions. BenMAP-CE allows local and regional public health analysts to generate timely, evidence-based estimates of the health impacts and economic consequences of potential policy options in their communities. PMID:29698094
NASA Astrophysics Data System (ADS)
Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.
2016-12-01
Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in other regions, such as winter wheat in Pakistan, soybean in Argentina and soybean in the entire South America. Similar levels of accuracy and timeliness were achieved as in the US.
Heavy Metal - Exploring a magnetised metallic asteroid
NASA Astrophysics Data System (ADS)
Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven
2017-04-01
We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic plasma effects must be considered. Heavy Metal will investigate if (16) Psyche has an extended magnetosphere by mapping the local plasma density, composition, energy state and dynamics around the body, along with the magnetic field. By accurately mapping any internally retained magnetic field of (16) Psyche, we will address the origin of any magnetization (the possible remains of an early magnetic dynamo). The Heavy Metal spacecraft will be launched from Earth with an Ariane 6.2 rocket in the time window 2029 - 2031, and by using electric propulsion, along with a possible gravity assist manoeuvre by Mars, arrive at (16) Psyche some 4 - 4.5 years later. The S/C is then planned to orbit the body for a period of 1 year, and release a CubeSat for close up studies.
Highly sensitive mode mapping of whispering-gallery modes by scanning thermocouple-probe microscopy.
Klein, Angela E; Schmidt, Carsten; Liebsch, Mattes; Janunts, Norik; Dobynde, Mikhail; Tünnermann, Andreas; Pertsch, Thomas
2014-03-01
We propose a method for mapping optical near-fields with the help of a thermocouple scanning-probe microscope tip. As the tip scans the sample surface, its apex is heated by light absorption, generating a thermovoltage. The thermovoltage map represents the intensity distribution of light at the sample surface. The measurement technique has been employed to map optical whispering-gallery modes in fused silica microdisk resonators operating at near-infrared wavelengths. The method could potentially be employed for near-field imaging of a variety of systems in the near-infrared and visible spectral range.
Mapping Surface Features Produced by an Active Landslide
NASA Astrophysics Data System (ADS)
Parise, Mario; Gueguen, Erwan; Vennari, Carmela
2016-10-01
A large landslide reactivated on December 2013, at Montescaglioso, southern Italy, after 56 hours of rainfall. The landslide disrupted over 500 m of a freeway, involved a few warehouses, a supermarket, and private homes. After the event, it has been performed field surveys, aided by visual analysis of terrestrial and helicopter photographs, to compile a map of the surface deformations. The geomorphological features mapped included single fractures, sets of fractures, tension cracks, trenches, and pressure ridges. In this paper we present the methodology used, the map obtained through the intensive field work, and discuss the main surface features produced by the landslide.
An unconstrained Lagrangian formulation and conservation laws for the Schrödinger map system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Paul, E-mail: smith@math.berkeley.edu
2014-05-15
We consider energy-critical Schrödinger maps from R{sup 2} into S{sup 2} and H{sup 2}. Viewing such maps with respect to orthonormal frames on the pullback bundle provides a gauge field formulation of the evolution. We show that this gauge field system is the set of Euler-Lagrange equations corresponding to an action that includes a Chern-Simons term. We also introduce the stress-energy tensor and derive conservation laws. In conclusion we offer comparisons between Schrödinger maps and the closely related Chern-Simons-Schrödinger system.
Lake water quality mapping from LANDSAT
NASA Technical Reports Server (NTRS)
Scherz, J. P.
1977-01-01
The lakes in three LANDSAT scenes were mapped by the Bendix MDAS multispectral analysis system. Field checking the maps by three separate individuals revealed approximately 90-95% correct classification for the lake categories selected. Variations between observers was about 5%. From the MDAS color coded maps the lake with the worst algae problem was easily located. This lake was closely checked and a pollution source of 100 cows was found in the springs which fed this lake. The theory, lab work and field work which made it possible for this demonstration project to be a practical lake classification procedure are presented.
Chow, James C.L.; Grigorov, Grigor N.; Yazdani, Nuri
2006-01-01
A custom‐made computer program, SWIMRT, to construct “multileaf collimator (MLC) machine” file for intensity‐modulated radiotherapy (IMRT) fluence maps was developed using MATLAB® and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment‐planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image‐processing tools such as field resizing and edge trimming to modify the imported map. When the processed fluence map is suitable, a “MLC machine” file is generated for our Varian 21 EX linear accelerator with a 120‐leaf Millennium MLC. This machine file is transferred to the MLC console of the LINAC to control the continuous motions of the leaves during beam irradiation. An IMRT field is then irradiated with the 2D intensity profiles, and the irradiated profiles are compared to the imported or modified fluence map. This program was verified and tested using film dosimetry to address the following uncertainties: (1) the mechanical limitation due to the leaf width and maximum traveling speed, and (2) the dosimetric limitation due to the leaf leakage/transmission and penumbra effect. Because the fluence map can be edited, resized, and processed according to the requirement of a study, SWIMRT is essential in studying and investigating the IMRT technique using the sliding window algorithm. Using this program, future work on the algorithm may include redistributing the time space between segmental fields to enhance the fluence resolution, and readjusting the timing of each leaf during delivery to avoid small fields. Possible clinical utilities and examples for SWIMRT are given in this paper. PACS numbers: 87.53.Kn, 87.53.St, 87.53.Uv PMID:17533330
Doppler-Zeeman mapping of the magnetic CP star HD 215441
NASA Astrophysics Data System (ADS)
Khokhlova, V. L.; Vasilchenko, D. V.; Stepanov, V. V.; Tsymbal, V. V.
1997-07-01
The method of Vasilchenko et al. (1996) is used to obtain a Doppler-Zeeman map of the magnetic CP star HD 215441. The magnetic field is approximated by a magnetic dipole that is arbitrarily shifted from the star center. The solution of the inverse problem yields the dipole parameters and the maps of Si, Ti, Cr, and Fe abundance anomalies; the coordinates of local magnetic vectors on the star surface are computed. A comparison of the distribution of abundance anomalies and the magnetic-field configuration reveals that in the region where the magnetic-field lines are vertical (near the magnetic pole), Si, Ti and Cr are highly deficient, while the Fe enhancement is strongest. In the regions where the magnetic-field lines are horizontal (near the magnetic equator), Si, Ti and Cr show the greatest overabundance. In these regions, the Fe abundance is also slightly enhanced and exhibits, as it were, a secondary maximum. The factors that limit the accuracy of Doppler-Zeeman mapping are reviewed.
NASA Astrophysics Data System (ADS)
Linker, J. A.; Caplan, R. M.; Downs, C.; Riley, P.; Mikic, Z.; Lionello, R.; Henney, C. J.; Arge, C. N.; Liu, Y.; Derosa, M. L.; Yeates, A.; Owens, M. J.
2017-10-01
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. In this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linker, J. A.; Caplan, R. M.; Downs, C.
The heliospheric magnetic field is of pivotal importance in solar and space physics. The field is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps of the solar magnetic field based on full-disk magnetograms are commonly used as boundary conditions for coronal and solar wind models. Two primary observational constraints on the models are (1) the open field regions in the model should approximately correspond to coronal holes (CHs) observed in emission and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Inmore » this study, we calculate both magnetohydrodynamic and potential field source surface solutions using 14 different magnetic maps produced from five different types of observatory magnetograms, for the time period surrounding 2010 July. We have found that for all of the model/map combinations, models that have CH areas close to observations underestimate the interplanetary magnetic flux, or, conversely, for models to match the interplanetary flux, the modeled open field regions are larger than CHs observed in EUV emission. In an alternative approach, we estimate the open magnetic flux entirely from solar observations by combining automatically detected CHs for Carrington rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates the interplanetary magnetic flux. Our results imply that either typical observatory maps underestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not rooted in regions that are obviously dark in EUV and X-ray emission.« less
Two-dimensional strain-mapping by electron backscatter diffraction and confocal Raman spectroscopy
NASA Astrophysics Data System (ADS)
Gayle, Andrew J.; Friedman, Lawrence H.; Beams, Ryan; Bush, Brian G.; Gerbig, Yvonne B.; Michaels, Chris A.; Vaudin, Mark D.; Cook, Robert F.
2017-11-01
The strain field surrounding a spherical indentation in silicon is mapped in two dimensions (2-D) using electron backscatter diffraction (EBSD) cross-correlation and confocal Raman spectroscopy techniques. The 200 mN indentation created a 4 μm diameter residual contact impression in the silicon (001) surface. Maps about 50 μm × 50 μm area with 128 pixels × 128 pixels were generated in several hours, extending, by comparison, assessment of the accuracy of both techniques to mapping multiaxial strain states in 2-D. EBSD measurements showed a residual strain field dominated by in-surface normal and shear strains, with alternating tensile and compressive lobes extending about three to four indentation diameters from the contact and exhibiting two-fold symmetry. Raman measurements showed a residual Raman shift field, dominated by positive shifts, also extending about three to four indentation diameters from the contact but exhibiting four-fold symmetry. The 2-D EBSD results, in combination with a mechanical-spectroscopic analysis, were used to successfully predict the 2-D Raman shift map in scale, symmetry, and shift magnitude. Both techniques should be useful in enhancing the reliability of microelectromechanical systems (MEMS) through identification of the 2-D strain fields in MEMS devices.
Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data
NASA Technical Reports Server (NTRS)
Dubayah, R.
1992-01-01
A radiative transfer algorithm is combined with digital elevation and satellite reflectance data to model spatial variability in net solar radiation at fine spatial resolution. The method is applied to the tall-grass prairie of the 16 x 16 sq km FIFE site (First ISLSCP Field Experiment) of the International Satellite Land Surface Climatology Project. Spectral reflectances as measured by the Landsat Thematic Mapper (TM) are corrected for atmospheric and topographic effects using field measurements and accurate 30-m digital elevation data in a detailed model of atmosphere-surface interaction. The spectral reflectances are then integrated to produce estimates of surface albedo in the range 0.3-3.0 microns. This map of albedo is used in an atmospheric and topographic radiative transfer model to produce a map of net solar radiation. A map of apparent net solar radiation is also derived using only the TM reflectance data, uncorrected for topography, and the average field-measured downwelling solar irradiance. Comparison with field measurements at 10 sites on the prairie shows that the topographically derived radiation map accurately captures the spatial variability in net solar radiation, but the apparent map does not.
Accuracy and precision of stream reach water surface slopes estimated in the field and from maps
Isaak, D.J.; Hubert, W.A.; Krueger, K.L.
1999-01-01
The accuracy and precision of five tools used to measure stream water surface slope (WSS) were evaluated. Water surface slopes estimated in the field with a clinometer or from topographic maps used in conjunction with a map wheel or geographic information system (GIS) were significantly higher than WSS estimated in the field with a surveying level (biases of 34, 41, and 53%, respectively). Accuracy of WSS estimates obtained with an Abney level did not differ from surveying level estimates, but conclusions regarding the accuracy of Abney levels and clinometers were weakened by intratool variability. The surveying level estimated WSS most precisely (coefficient of variation [CV] = 0.26%), followed by the GIS (CV = 1.87%), map wheel (CV = 6.18%), Abney level (CV = 13.68%), and clinometer (CV = 21.57%). Estimates of WSS measured in the field with an Abney level and estimated for the same reaches with a GIS used in conjunction with l:24,000-scale topographic maps were significantly correlated (r = 0.86), but there was a tendency for the GIS to overestimate WSS. Detailed accounts of the methods used to measure WSS and recommendations regarding the measurement of WSS are provided.
Livo, K. Eric; Watson, Ken
2002-01-01
Sand and soils southwest of Greeley, Colorado, were characterized for mineral composition and industrial quality. Radi-ance data from the thermal channels of the MASTER simulator were calibrated using estimated atmospheric parameters. Chan-nel emissivities were approximated using an estimated ground temperature. Subsequently, a decorrelation algorithm was used to calculate inverse wave emissivity images. Six soil classes, one vegetation class, water, and several small classes were defined using an unsupervised classification algorithm. Ground covered by each of the derived emissivity spectral classes was studied using color-infrared air photos, color-infrared composite MAS-TER data, geologic maps, NASA/JPL Airborne Visible and Infra-red Imaging Spectrometer (AVIRIS) data, and field examination. Spectral classes were characterized by their responses and related to their mineral content through field examination. Classes with a minimum at channel 44, and having a similar spectral shape to quartz, field checked as containing abundant quartz. Classes with a minimum at channel 45, and having a spectral shape similar to the sheet minerals, were found in the field to contain abundant mica and clay. Sandy soil was found to have a positive slope at the longer wavelengths; the more clay rich soils had a negative slope. Spectra with a strong downturn at channel 50 generally indicated low vegetation cover, whereas an upturn indicated more vegetation cover. Mapping revealed a range of classified soils with varying amounts of quartz, silt, clay, and plant humus. Sand and gravel operations along the St. Vrain River, gravel lots, and some fields spectrally classified as quartz-rich sands were confirmed through field examination. Other fields mapped as sandy soils, ranging from quartz-rich sandy soil to quartz-rich silt-sand soil with clay. Flood plains mapped as sandy-silty-organic-rich clay. The city of Greeley contained all classes of materials, with the sand classes mapping as various types of asphalt. Abundant quartz gravel was apparent within the asphalt during field check-ing. The clay classes mapped silt-clay soils in areas of irrigated grass landscaping, some fields, and roofing materials.
Pelletier, J.D.; Mayer, L.; Pearthree, P.A.; House, P.K.; Demsey, K.A.; Klawon, J.K.; Vincent, K.R.
2005-01-01
Millions of people in the western United States live near the dynamic, distributary channel networks of alluvial fans where flood behavior is complex and poorly constrained. Here we test a new comprehensive approach to alluvial-fan flood hazard assessment that uses four complementary methods: two-dimensional raster-based hydraulic modeling, satellite-image change detection, fieldbased mapping of recent flood inundation, and surficial geologic mapping. Each of these methods provides spatial detail lacking in the standard method and each provides critical information for a comprehensive assessment. Our numerical model simultaneously solves the continuity equation and Manning's equation (Chow, 1959) using an implicit numerical method. It provides a robust numerical tool for predicting flood flows using the large, high-resolution Digital Elevation Models (DEMs) necessary to resolve the numerous small channels on the typical alluvial fan. Inundation extents and flow depths of historic floods can be reconstructed with the numerical model and validated against field- and satellite-based flood maps. A probabilistic flood hazard map can also be constructed by modeling multiple flood events with a range of specified discharges. This map can be used in conjunction with a surficial geologic map to further refine floodplain delineation on fans. To test the accuracy of the numerical model, we compared model predictions of flood inundation and flow depths against field- and satellite-based flood maps for two recent extreme events on the southern Tortolita and Harquahala piedmonts in Arizona. Model predictions match the field- and satellite-based maps closely. Probabilistic flood hazard maps based on the 10 yr, 100 yr, and maximum floods were also constructed for the study areas using stream gage records and paleoflood deposits. The resulting maps predict spatially complex flood hazards that strongly reflect small-scale topography and are consistent with surficial geology. In contrast, FEMA Flood Insurance Rate Maps (FIRMs) based on the FAN model predict uniformly high flood risk across the study areas without regard for small-scale topography and surficial geology. ?? 2005 Geological Society of America.
Food safety concerns regarding paratuberculosis.
Collins, Michael T
2011-11-01
Both ante mortem and post mortem contamination of foods of animal origin commonly occurs. Food manufacturing practices fail to reliably kill Mycobacterium avium subsp. paratuberculosis (MAP) due to its innate resistance to heat and other physical factors. While medical science does not agree on the human health consequences of MAP exposure, this potentially zoonotic pathogen is found in a significant proportion of people with a disease bearing marked similarity to Johne’s disease (ie, Crohn’s disease). Control of MAP infections in farm animals to mitigate the risk of human exposure is one additional reason for on-farm measures to control Johne’s disease.
William, David J; Rybicki, Nancy B; Lombana, Alfonso V; O'Brien, Tim M; Gomez, Richard B
2003-01-01
The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.
Mapping of the total magnetic field in the area of Lake Balaton
NASA Astrophysics Data System (ADS)
Visnovitz, Ferenc; Hegyi, Betti; Raveloson, Andrea; Rozman, Gábor; Lenkey, László; Kovács, Péter; Csontos, András; Heilig, Balázs; Horváth, Ferenc
2017-04-01
The Lake Balaton with 600 km2 area represents the largest lake in Central Europe and a blank spot on the magnetic anomaly map of Hungary. It is because the construction of the Hungarian magnetic anomaly map dates back to the 1960s and relied mainly on classical vertical-field balance surveys. To fill the gap, we initiated a systematic mapping using modern magnetometers and positioning system in the framework of a complex geophysical study of Lake Balaton (National Research Project 109255 K). The main goal of this study has been to identify subvolcanic bodies and tectonic structures below the lake and correlate them with well-known features mapped onshore in the vicinity of Balaton. During the magnetic survey an Overhauser field magnetometer (GEM System, GSM-19) was mounted on a plastic boat and towed behind a motorboat in a distance of 20 m with a speed of 6 to 16 km/h depending on weather conditions. Tests measurements showed that at this distance the magnetic noise generated by the motorboat was negligible. We measured total field values with a sampling interval of 1 to 2 s. As a result, the whole lake has been covered by magnetic profiles in an orthogonal grid with spacing of 1 km. During data interpretation we applied for correction of temporal variation of magnetic field registered in the Tihany Geophysical Observatory and normal field correction from a regional model. The final anomaly map in the western part of the lake shows anomalies with amplitudes of 20 to 60 nT and a half wavelength of 0.5 to 1 km. A larger feature was recognized related to the Badacsony Hill a major basaltic bute at the northern shore of the lake. In the middle part of the lake the total field is rather smooth, no significant anomaly has been revealed. However, slight disturbances can be noticed in the proximity of a neotectonic fault zone mapped by high resolution seismic data. In the eastern part of the lake few low amplitude (5-20 nT) anomalies have been observed that are associated also with seismically mapped strike-slip faults. As an interesting by-product a map was created showing short wavelength anomalies that are most probably caused by artificial metal objects sank and stuck in the lake mud. Some of these anomalies can be caused by parts of fallen warplanes and sunken tanks from military activities during the II. World War.
NASA Astrophysics Data System (ADS)
Ni, W.; Zhang, Z.; Sun, G.
2017-12-01
Several large-scale maps of forest AGB have been released [1] [2] [3]. However, these existing global or regional datasets were only approximations based on combining land cover type and representative values instead of measurements of actual forest aboveground biomass or forest heights [4]. Rodríguez-Veiga et al[5] reported obvious discrepancies of existing forest biomass stock maps with in-situ observations in Mexico. One of the biggest challenges to the credibility of these maps comes from the scale gaps between the size of field sampling plots used to develop(or validate) estimation models and the pixel size of these maps and the availability of field sampling plots with sufficient size for the verification of these products [6]. It is time-consuming and labor-intensive to collect sufficient number of field sampling data over the plot size of the same as resolutions of regional maps. The smaller field sampling plots cannot fully represent the spatial heterogeneity of forest stands as shown in Figure 1. Forest AGB is directly determined by forest heights, diameter at breast height (DBH) of each tree, forest density and tree species. What measured in the field sampling are the geometrical characteristics of forest stands including the DBH, tree heights and forest densities. The LiDAR data is considered as the best dataset for the estimation of forest AGB. The main reason is that LiDAR can directly capture geometrical features of forest stands by its range detection capabilities.The remotely sensed dataset, which is capable of direct measurements of forest spatial structures, may serve as a ladder to bridge the scale gaps between the pixel size of regional maps of forest AGB and field sampling plots. Several researches report that TanDEM-X data can be used to characterize the forest spatial structures [7, 8]. In this study, the forest AGB map of northeast China were produced using ALOS/PALSAR data taking TanDEM-X data as a bridges. The TanDEM-X InSAR data used in this study and forest AGB map was shown in Figure 2. The technique details and further analysis will be given in the final report. AcknowledgmentThis work was supported in part by the National Basic Research Program of China (Grant No. 2013CB733401, 2013CB733404), and in part by the National Natural Science Foundation of China (Grant Nos. 41471311, 41371357, 41301395).
Geographic analysis and monitoring at the United States Geological Survey
Findley, J.
2003-01-01
The Geographic Analysis and Monitoring (GAM) Program of the U.S. Geological Survey assesses the Nation's land surface at a variety of spatial and temporal scales to understand the rates, causes, and consequences of natural and human-induced processes and their interactions that affect the landscape over time. The program plays an important role in developing National Map tools and application. The GAM is a science and synthesis program that not only assesses the rates of changes to the Earth's land surface, but also provides reports on the status and trends of the Nation's land resources on a periodic basis, produces a land-use and land- cover database for the periodically updated map and data set-the Geographic Face of the Nation, and conducts research leading to improved understanding and knowledge about geographic processes. Scientific investigations provide comprehensive information needed to understand the environmental, resource, and economic consequences of landscape change. These analyses responds to the needs of resource managers and offers the American public baseline information to help them understand the dynamic nature of our national landscape and to anticipate the opportunities and consequences of our actions.
Reconnaissance geologic map of part of the San Isidro Quadrangle, Baja California Sur, Mexico
McLean, Hugh; Hausback, B.P.; Knapp, J.H.
1985-01-01
Mapping was done on aerial photographs and transferred, where possible, to 1:50,000-scale topographic base maps. Areas with roads were field checked; however, in the northeast part of the map area, lack of roads prevented field checks. Previous geologic surveys of parts of the map area were made by horseback in the early 1920's; reports were published by Darton (1921), Heim (1922), and Beal (1948). Subsurface data from petroleum exploration and a geologic map were incorporated in a regional study by Mina (1957). The first radiometric ages of rocks from the map area were published by Gastil and others (1979). Recently determined radiometric ages and chemical analysis of volcanic rocks were reported by Hausback (1984) and by Sawlan and Smith (1984). Our study incorporates geologic mapping with age control based on new radiometric ages as well as paleontology, Flows and tuffs were dated by the K-Ar method. Fossil ages are based on diatom and mollusk assemblages.
Visualizing Soil Landscapes on Mobile Devices
NASA Astrophysics Data System (ADS)
Schulze, Darrell; Lindbo, David
2016-04-01
The Integrating Spatial Educational Experiences (Isee) project utilizes the most detailed US soil survey data to create thematic maps of soil properties that are then combined with a highly optimized hillshade basemap for display. The Isee app, currently available for the iPad platform from the Apple App Store, allows the cached maps to be zoomed and panned quickly to any location down to a scale of 1:18,000. Maps currently available for the states of Indiana, Illinois, Kentucky, Ohio, Texas, West Virginia, and Wisconsin include, Dominant Soil Parent Materials, Natural Soil Drainage Classes, Limiting Layers, Surface Soil Colors, and Acid Subsoils. Other thematic maps will be added in the future. The ability to zoom, pan, and change maps quickly allows the user to see and understand soil landscape relationships that are not often apparent using static maps, while the ability to access the maps conveniently in the field allows the user to see how soil landscape features on the maps appear in the field.
Time-variable and static gravity field of Mars from MGS, Mars Odyssey, and MRO
NASA Astrophysics Data System (ADS)
Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.
2016-04-01
The Mars Global Surveyor (MGS), Mars Odyssey (ODY), and Mars Reconnaissance Orbiter (MRO) missions have significantly contributed to the determination of global high-resolution global gravity fields of Mars for the last 16 years. All three spacecraft were located in sun-synchronous, near-circular polar mapping orbits for their primary mission phases at different altitudes and Local Solar Time (LST). X-Band tracking data have been acquired from the NASA Deep Space Network (DSN) providing information on the time-variable and static gravity field of Mars. MGS operated between 1999 and 2006 at 390 km altitude. ODY and MRO are still orbiting Mars with periapsis altitudes of 400 km and 255 km, respectively. Before entering these mapping phases, all three spacecraft collected radio tracking data at lower altitudes (˜170-200 km) that help improve the resolution of the gravity field of Mars in specific regions. We analyzed the entire MGS radio tracking data set, and ODY and MRO radio data until 2015. These observations were processed using a batch least-squares filter through the NASA GSFC GEODYN II software. We combined all 2- and 3-way range rate data to estimate the global gravity field of Mars to degree and order 120, the seasonal variations of gravity harmonic coefficients C20, C30, C40 and C50 and the Love number k2. The gravity contribution of Mars atmospheric pressures on the surface of the planet has been discerned from the time-varying and static gravity harmonic coefficients. Surface pressure grids computed using the Mars-GRAM 2010 atmospheric model, with 2.5° x2.5° spatial and 2-h resolution, are converted into gravity spherical harmonic coefficients. Consequently, the estimated gravity and tides provide direct information on the solid planet. We will present the new Goddard Mars Model (GMM-3) of Mars gravity field in spherical harmonics to degree and order 120. The solution includes the Love number k2 and the 3-frequencies (annual, semi-annual, and tri-annual) time-variable coefficients of the gravity zonal harmonics C20, C30, C40 and C50. The seasonal gravity coefficients led us to determine the inter-annual mass exchange between the polar caps over ˜11 years from October 2002 to November 2014.
NASA Astrophysics Data System (ADS)
Tsvetkova, S.; Petit, P.; Konstantinova-Antova, R.; Aurière, M.; Wade, G. A.; Palacios, A.; Charbonnel, C.; Drake, N. A.
2017-03-01
Aims: This work studies the magnetic activity of the late-type giant 37 Com. This star belongs to the group of weak G-band stars that present very strong carbon deficiency in their photospheres. The paper is a part of a global investigation into the properties and origin of magnetic fields in cool giants. Methods: We use spectropolarimetric data, which allows the simultaneous measurement of the longitudinal magnetic field Bl, line activity indicators (Hα, Ca II IRT, S-index) and radial velocity of the star, and consequently perform a direct comparison of their time variability. Mean Stokes V profiles are extracted using the least squares deconvolution (LSD) method. One map of the surface magnetic field of the star is reconstructed via the Zeeman Doppler imaging (ZDI) inversion technique. Results: A periodogram analysis is performed on our dataset and it reveals a rotation period of 111 days. We interpret this period to be the rotation period of 37 Com. The reconstructed magnetic map reveals that the structure of the surface magnetic field is complex and features a significant toroidal component. The time variability of the line activity indicators, radial velocity and magnetic field Bl indicates a possible evolution of the surface magnetic structures in the period from 2008 to 2011. For completeness of our study, we use customized stellar evolutionary models suited to a weak G-band star. Synthetic spectra are also calculated to confirm the peculiar abundance of 37 Com. Conclusions: We deduce that 37 Com is a 6.5 M⊙ weak G-band star located in the Hertzsprung gap, whose magnetic activity is probably due to dynamo action. Based on observations obtained at the Télescope Bernard Lyot (TBL, Pic du Midi, France) of the Midi-Pyrénées Observatory which is operated by the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and Université de Toulouse, and at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Plouff, Donald
2000-01-01
Gravity observations are directly made or are obtained from other sources by the U.S. Geological Survey in order to prepare maps of the anomalous gravity field and consequently to interpret the subsurface distribution of rock densities and associated lithologic or geologic units. Observations are made in the field with gravity meters at new locations and at reoccupations of previously established gravity "stations." This report illustrates an interactively-prompted series of steps needed to convert gravity "readings" to values that are tied to established gravity datums and includes computer programs to implement those steps. Inasmuch as individual gravity readings have small variations, gravity-meter (instrument) drift may not be smoothly variable, and acommodations may be needed for ties to previously established stations, the reduction process is iterative. Decision-making by the program user is prompted by lists of best values and graphical displays. Notes about irregularities of topography, which affect the value of observed gravity but are not shown in sufficient detail on topographic maps, must be recorded in the field. This report illustrates ways to record field notes (distances, heights, and slope angles) and includes computer programs to convert field notes to gravity terrain corrections. This report includes approaches that may serve as models for other applications, for example: portrayal of system flow; style of quality control to document and validate computer applications; lack of dependence on proprietary software except source code compilation; method of file-searching with a dwindling list; interactive prompting; computer code to write directly in the PostScript (Adobe Systems Incorporated) printer language; and high-lighting the four-digit year on the first line of time-dependent data sets for assured Y2K compatibility. Computer source codes provided are written in the Fortran scientific language. In order for the programs to operate, they first must be converted (compiled) into an executable form on the user's computer. Although program testing was done in a UNIX (tradename of American Telephone and Telegraph Company) computer environment, it is anticipated that only a system-dependent date-and-time function may need to be changed for adaptation to other computer platforms that accept standard Fortran code.d del iliscipit volorer sequi ting etue feum zzriliquatum zzriustrud esenibh ex esto esequat.
High-Resolution Regional Biomass Map of Siberia from Glas, Palsar L-Band Radar and Landsat Vcf Data
NASA Astrophysics Data System (ADS)
Sun, G.; Ranson, K.; Montesano, P.; Zhang, Z.; Kharuk, V.
2015-12-01
The Arctic-Boreal zone is known be warming at an accelerated rate relative to other biomes. The taiga or boreal forest covers over 16 x106 km2 of Arctic North America, Scandinavia, and Eurasia. A large part of the northern Boreal forests are in Russia's Siberia, as area with recent accelerated climate warming. During the last two decades we have been working on characterization of boreal forests in north-central Siberia using field and satellite measurements. We have published results of circumpolar biomass using field plots, airborne (PALS, ACTM) and spaceborne (GLAS) lidar data with ASTER DEM, LANDSAT and MODIS land cover classification, MODIS burned area and WWF's ecoregion map. Researchers from ESA and Russia have also been working on biomass (or growing stock) mapping in Siberia. For example, they developed a pan-boreal growing stock volume map at 1-kilometer scale using hyper-temporal ENVISAT ASAR ScanSAR backscatter data. Using the annual PALSAR mosaics from 2007 to 2010 growing stock volume maps were retrieved based on a supervised random forest regression approach. This method is being used in the ESA/Russia ZAPAS project for Central Siberia Biomass mapping. Spatially specific biomass maps of this region at higher resolution are desired for carbon cycle and climate change studies. In this study, our work focused on improving resolution ( 50 m) of a biomass map based on PALSAR L-band data and Landsat Vegetation Canopy Fraction products. GLAS data were carefully processed and screened using land cover classification, local slope, and acquisition dates. The biomass at remaining footprints was estimated using a model developed from field measurements at GLAS footprints. The GLAS biomass samples were then aggregated into 1 Mg/ha bins of biomass and mean VCF and PALSAR backscatter and textures were calculated for each of these biomass bins. The resulted biomass/signature data was used to train a random forest model for biomass mapping of entire region from 50oN to 75oN, and 80oE to 145oE. The spatial patterns of the new biomass map is much better than the previous maps due to spatially specific mapping in high resolution. The uncertainties of field/GLAS and GLAS/imagery models were investigated using bootstrap procedure, and the final biomass map was compared with previous maps.
NASA Astrophysics Data System (ADS)
House, P. K.
2008-12-01
The combination of traditional methods of geologic mapping with rapidly developing web-based geospatial applications ('the geoweb') and the various collaborative opportunities of web 2.0 have the potential to change the nature, value, and relevance of geologic maps and related field studies. Parallel advances in basic GPS technology, digital photography, and related integrative applications provide practicing geologic mappers with greatly enhanced methods for collecting, visualizing, interpreting, and disseminating geologic information. Even a cursory application of available tools can make field and office work more enriching and efficient; whereas more advanced and systematic applications provide new avenues for collaboration, outreach, and public education. Moreover, they ensure a much broader audience among an immense number of internet savvy end-users with very specific expectations for geospatial data availability. Perplexingly, the geologic community as a whole is not fully exploring this opportunity despite the inevitable revolution in portends. The slow acceptance follows a broad generational trend wherein seasoned professionals are lagging behind geology students and recent graduates in their grasp of and interest in the capabilities of the geoweb and web 2.0 types of applications. Possible explanations for this include: fear of the unknown, fear of learning curve, lack of interest, lack of academic/professional incentive, and (hopefully not) reluctance toward open collaboration. Although some aspects of the expanding geoweb are cloaked in arcane computer code, others are extremely simple to understand and use. A particularly obvious and simple application to enhance any field study is photo geotagging, the digital documentation of the locations of key outcrops, illustrative vistas, and particularly complicated geologic field relations. Viewing geotagged photos in their appropriate context on a virtual globe with high-resolution imagery can be an extremely useful accompaniment to compilation of field mapping efforts. It can also complement published geologic maps by vastly improving their comprehensibility when field photos, and specific notes can be viewed interactively with them. Other useful applications include GPS tracking/documentation of field traverses; invoking multiple geologic layers; 3-D visualizations of terrain and structure; and online collaboration with colleagues via blogs or wikis. Additional steps towards collaborative geologic mapping on the web may also enhance efficient and open sharing of data and ideas. Geologists are well aware that paper geologic maps can convey tremendous amounts of information. Digital geologic maps linked via a virtual globe with field data, diverse imagery, historical photographs, explanatory diagrams, and 3-D models convey a much greater amount of information and can provide a much richer context for comprehension and interpretation. They can also serve as an efficient, entertaining, and potentially compelling mechanism for fostering inspiration in the minds of budding (and aging) geologists.
Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy.
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S
2009-11-26
Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ.
Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy†
Lue, Niyom; Choi, Wonshik; Popescu, Gabriel; Yaqoob, Zahid; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.
2010-01-01
Quantitative chemical analysis has served as a useful tool for understanding cellular metabolisms in biology. Among many physical properties used in chemical analysis, refractive index in particular has provided molecular concentration that is an important indicator for biological activities. In this report, we present a method of extracting full-field refractive index maps of live cells in their native states. We first record full-field optical thickness maps of living cells by Hilbert phase microscopy and then acquire physical thickness maps of the same cells using a custom-built confocal reflectance microscope. Full-field and axially averaged refractive index maps are acquired from the ratio of optical thickness to physical thickness. The accuracy of the axially averaged index measurement is 0.002. This approach can provide novel biological assays of label-free living cells in situ. PMID:19803506
A data fusion approach for mapping daily evapotranspiration at field scale
USDA-ARS?s Scientific Manuscript database
The capability for mapping water consumption over cropped landscapes on a daily and seasonal basis is increasingly relevant given forecasted scenarios of reduced water availability. Prognostic modeling of water losses to the atmosphere, or evapotranspiration (ET), at field or finer scales in agricul...
Dawn Fields of View of Asteroid Vesta
2007-01-01
This graphic from NASA's Dawn shows fields of view of Dawn instruments from Survey orbit (red), High Altitude Mapping Orbit (green), and Low Altitude Mapping Orbit (blue) and is part of the Mission Art series from NASA's Dawn mission. http://photojournal.jpl.nasa.gov/catalog/PIA19371
Visualizing flow fields using acoustic Doppler current profilers and the Velocity Mapping Toolbox
Jackson, P. Ryan
2013-01-01
The purpose of this fact sheet is to provide examples of how the U.S. Geological Survey is using acoustic Doppler current profilers for much more than routine discharge measurements. These instruments are capable of mapping complex three-dimensional flow fields within rivers, lakes, and estuaries. Using the Velocity Mapping Toolbox to process the ADCP data allows detailed visualization of the data, providing valuable information for a range of studies and applications.
Flood Hazard Mapping Assessment for Lebanon
NASA Astrophysics Data System (ADS)
Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie
2014-05-01
Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of recurrence flood plain maps of 10, 50 & 100 years intensity maps along with flood hazard maps for each watershed. It is of utmost significance for this study to be effective that the produced flood intensity and hazard maps will be made available to decision-makers, planners and relevant community stakeholders.
NASA Astrophysics Data System (ADS)
Alloy, A.; Gonzalez Dominguez, F.; Nila Fonseca, A. L.; Ruangsirikulchai, A.; Gentle, J. N., Jr.; Cabral, E.; Pierce, S. A.
2016-12-01
Land Subsidence as a result of groundwater extraction in central Mexico's larger urban centers initiated in the 80's as a result of population and economic growth. The city of Celaya has undergone subsidence for a few decades and a consequence is the development of an active normal fault system that affects its urban infrastructure and residential areas. To facilitate its analysis and a land use decision-making process we created an online interactive map enabling users to easily obtain information associated with land subsidence. Geological and socioeconomic data of the city was collected, including fault location, population data, and other important infrastructure and structural data has been obtained from fieldwork as part of a study abroad interchange undergraduate course. The subsidence and associated faulting hazard map was created using an InSAR derived subsidence velocity map and population data from INEGI to identify hazard zones using a subsidence gradient spatial analysis approach based on a subsidence gradient and population risk matrix. This interactive map provides a simple perspective of different vulnerable urban elements. As an accessible visualization tool, it will enhance communication between scientific and socio-economic disciplines. Our project also lays the groundwork for a future expert analysis system with an open source and easily accessible Python coded, SQLite database driven website which archives fault and subsidence data along with visual damage documentation to civil structures. This database takes field notes and provides an entry form for uniform datasets, which are used to generate a JSON. Such a database is useful because it allows geoscientists to have a centralized repository and access to their observations over time. Because of the widespread presence of the subsidence phenomena throughout cities in central Mexico, the spatial analysis has been automated using the open source software R. Raster, rgeos, shapefiles, and rgdal libraries have been used to develop the script which permits to obtain the raster maps of horizontal gradient and population density. An advantage is that this analysis can be automated for periodic updates or repurposed for similar analysis in other cities, providing an easily accessible tool for land subsidence hazard assessments.
Cortical connective field estimates from resting state fMRI activity.
Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W
2014-01-01
One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.
NASA Astrophysics Data System (ADS)
Losiak, Anna; Orgel, Csilla; Moser, Linda; MacArthur, Jane; Gołębiowska, Izabela; Wittek, Steffen; Boyd, Andrea; Achorner, Isabella; Rampey, Mike; Bartenstein, Thomas; Jones, Natalie; Luger, Ulrich; Sans, Alejandra; Hettrich, Sebastian
2013-04-01
The MARS2013 mission: The Austrian Space Forum together with multiple scientific partners will conduct a Mars analog field simulation. The project takes place between 1st and 28th of February 2013 in the northern Sahara near Erfoud. During the simulation a field crew (consisting of suited analog astronauts and a support team) will conduct several experiments while being managed by the Mission Support Center (MSC) located in Innsbruck, Austria. The aim of the project is to advance preparation of the future human Mars missions by testing: 1) the mission design with regard to operational and engineering challenges (e.g., how to work efficiently with introduced time delay in communication between field team and MSC), 2) scientific instruments (e.g., rovers) and 3) human performance in conditions analogous to those that will be encountered on Mars. The Role of Geological Mapping: Remote Science Support team (RSS) is responsible for processing science data obtained in the field. The RSS is also in charge of preparing a set of maps to enable planning activities of the mission (including the development of traverses) [1, 2]. The usage of those maps will increase the time-cost efficiency of the entire mission. The RSS team members do not have any prior knowledge about the area where the simulation is taking place and the analysis is fully based on remote sensing satellite data (Landsat, GoogleEarth) and a digital elevation model (ASTER GDEM)from the orbital data. The maps design: The set of maps (covering area 5 km X 5 km centered on the Mission Base Camp) was designed to simplify the process of site selection for the daily traverse planning. Additionally, the maps will help to accommodate the need of the field crew for the increased autonomy in the decision making process, forced by the induced time delay between MSC and "Mars". The set of provided maps should allow the field team to orientate and navigate in the explored areas as well as make informed decisions about choosing the best alternative traverses if the ones suggested by the flight planning team based on satellite data turn out to be impossible. The set of maps includes: A "geological map" prepared following suggestions of [3]. A set of experiment "suitability maps", one for every experiment, assessing the suitability of the area for an experiment. E.g., if a rover cannot move on surfaces that have an inclination larger than 5° and/or are covered with rocks larger than 15 cm in diameter, than the areas likely to have such conditions will be marked as not suitable for this experiment. "Danger" map - showing locations of all potentially dangerous places e.g., cliffs. "Mobility" map - with information important for estimating astronauts' mobility. During the mission maps will be updated on a daily basis, based on the observations made in the field. In this way quality of the maps (and predictions based on them) will be gradually improved. Acknowledges: We thank all people involved in the MARS2013 mission, especially Dr. Gernot Grömer, the President of Austrian Space Forum, MARS2013 program officer & expedition lead. References: [1] Sans Fuentes S.A. 2012. Human-Robotic Mars Science Operations: Target Selection Optimization via Traverse and Science Planning. (M.S. thesis). U. of Innsbruck. [2] Hettich S. 2012. Human-Robotic Mars Science Operations: Itinerary Optimisation for Surface Activities (M.S. thesis). U. of Innsbruck. [3] Skinner J.A.Jr., Fortezzo C.M. 2011. Acta Astronautica. http://dx.doi.org/10.1016/j.actaastro.2011.11.011.
NASA Astrophysics Data System (ADS)
Mansaray, Lamin R.; Liu, Lei; Zhou, Jun; Ma, Zhimin
2013-10-01
The Tonkolili iron field in northern Sierra Leone has the largest known iron ore deposit in Africa. It occurs in a greenstone belt in an Achaean granitic basement. This study focused mainly on mapping areas with iron-oxide and hydroxyl bearing minerals, and identifying potential areas for haematite mineralization and banded iron formations (BIFs) in Tonkolili. The predominant mineral assemblage at the surface (laterite duricrust) of this iron field is haematitegoethite- limonite ±magnetite. The mineralization occurs in quartzitic banded ironstones, layered amphibolites, granites, schists and hornblendites. In this study, Crosta techniques were applied on Enhanced Thematic Mapper (ETM+) data to enhance areas with alteration minerals and target potential areas of haematite and BIF units in the Tonkolili iron field. Synthetic analysis shows that alteration zones mapped herein are consistent with the already discovered magnetite BIFs in Tonkolili. Based on the overlaps of the simplified geological map and the remote sensing-based alteration mineral maps obtained in this study, three new haematite prospects were inferred within, and one new haematite prospect was inferred outside the tenement boundary of the Tonkolili exploration license. As the primary iron mineral in Tonkolili is magnetite, the study concludes that, these haematite prospects could also be underlain by magnetite BIFs. This study also concludes that, the application of Crosta techniques on ETM+ data is effective not only in mapping iron-oxide and hydroxyl alterations but can also provide a basis for inferring areas of potential iron resources in Algoma-type banded iron formations (BIFs), such as those in the Tonkolili field.
NASA Astrophysics Data System (ADS)
Condit, C. D.; Mninch, M.
2012-12-01
The Dynamic Digital Map (DDM) is an ideal vehicle for the professional geologist to use to describe the geologic setting of key sites to the public in a format that integrates and presents maps and associated analytical data and multimedia without the need for an ArcGIS interface. Maps with field trip guide stops that include photographs, movies and figures and animations, showing, for example, how the features seen in the field formed, or how data might be best visualized in "time-frame" sequences are ideally included in DDMs. DDMs distribute geologic maps, images, movies, analytical data, and text such as field guides, in an integrated cross-platform, web enabled format that are intuitive to use, easily and quickly searchable, and require no additional proprietary software to operate. Maps, photos, movies and animations are stored outside the program, which acts as an organizational framework and index to present these data. Once created, the DDM can be downloaded from the web site hosting it in the flavor matching the user's operating system (e.g. Linux, Windows and Macintosh) as zip, dmg or tar files (and soon as iOS and Android tablet apps). When decompressed, the DDM can then access its associated data directly from that site with no browser needed. Alternatively, the entire package can be distributed and used from CD, DVD, or flash-memory storage. The intent of this presentation is to introduce the variety of geology that can be accessed from the over 25 DDMs created to date, concentrating on the DDM of the Springerville Volcanic Field. We will highlight selected features of some of them, introduce a simplified interface to the original DDM (that we renamed DDMC for Classic) and give a brief look at a the recently (2010-2011) completed geologic maps of the Springerville Volcanic field to see examples of each of the features discussed above, and a display of the integrated analytical data set. We will also highlight the differences between the classic or DDMCs and the new Dynamic Digital Map Extended (DDME) designed from the ground up to take advantage of the expanded connectedness this redesigned program will accommodate.
Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.
Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter
2008-09-01
Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.
Tectonic implications of Mars crustal magnetism
Connerney, J. E. P.; Acuña, M. H.; Ness, N. F.; Kletetschka, G.; Mitchell, D. L.; Lin, R. P.; Reme, H.
2005-01-01
Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an ≈400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics. PMID:16217034
Tectonic implications of Mars crustal magnetism.
Connerney, J E P; Acuña, M H; Ness, N F; Kletetschka, G; Mitchell, D L; Lin, R P; Reme, H
2005-10-18
Mars currently has no global magnetic field of internal origin but must have had one in the past, when the crust acquired intense magnetization, presumably by cooling in the presence of an Earth-like magnetic field (thermoremanent magnetization). A new map of the magnetic field of Mars, compiled by using measurements acquired at an approximately 400-km mapping altitude by the Mars Global Surveyor spacecraft, is presented here. The increased spatial resolution and sensitivity of this map provide new insight into the origin and evolution of the Mars crust. Variations in the crustal magnetic field appear in association with major faults, some previously identified in imagery and topography (Cerberus Rupes and Valles Marineris). Two parallel great faults are identified in Terra Meridiani by offset magnetic field contours. They appear similar to transform faults that occur in oceanic crust on Earth, and support the notion that the Mars crust formed during an early era of plate tectonics.
Forest and range mapping in the Houston area with ERTS-1
NASA Technical Reports Server (NTRS)
Heath, G. R.; Parker, H. D.
1973-01-01
ERTS-1 data acquired over the Houston area has been analyzed for applications to forest and range mapping. In the field of forestry the Sam Houston National Forest (Texas) was chosen as a test site, (Scene ID 1037-16244). Conventional imagery interpretation as well as computer processing methods were used to make classification maps of timber species, condition and land-use. The results were compared with timber stand maps which were obtained from aircraft imagery and checked in the field. The preliminary investigations show that conventional interpretation techniques indicated an accuracy in classification of 63 percent. The computer-aided interpretations made by a clustering technique gave 70 percent accuracy. Computer-aided and conventional multispectral analysis techniques were applied to range vegetation type mapping in the gulf coast marsh. Two species of salt marsh grasses were mapped.
Developing a mapping tool for tablets
NASA Astrophysics Data System (ADS)
Vaughan, Alan; Collins, Nathan; Krus, Mike
2014-05-01
Digital field mapping offers significant benefits when compared with traditional paper mapping techniques in that it provides closer integration with downstream geological modelling and analysis. It also provides the mapper with the ability to rapidly integrate new data with existing databases without the potential degradation caused by repeated manual transcription of numeric, graphical and meta-data. In order to achieve these benefits, a number of PC-based digital mapping tools are available which have been developed for specific communities, eg the BGS•SIGMA project, Midland Valley's FieldMove®, and a range of solutions based on ArcGIS® software, which can be combined with either traditional or digital orientation and data collection tools. However, with the now widespread availability of inexpensive tablets and smart phones, a user led demand for a fully integrated tablet mapping tool has arisen. This poster describes the development of a tablet-based mapping environment specifically designed for geologists. The challenge was to deliver a system that would feel sufficiently close to the flexibility of paper-based geological mapping while being implemented on a consumer communication and entertainment device. The first release of a tablet-based geological mapping system from this project is illustrated and will be shown as implemented on an iPad during the poster session. Midland Valley is pioneering tablet-based mapping and, along with its industrial and academic partners, will be using the application in field based projects throughout this year and will be integrating feedback in further developments of this technology.
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-01-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
NASA Astrophysics Data System (ADS)
Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia
2012-05-01
Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.
Mapping energetics of atom probe evaporation events through first principles calculations.
Peralta, Joaquín; Broderick, Scott R; Rajan, Krishna
2013-09-01
The purpose of this work is to use atomistic modeling to determine accurate inputs into the atom probe tomography (APT) reconstruction process. One of these inputs is evaporation field; however, a challenge occurs because single ions and dimers have different evaporation fields. We have calculated the evaporation field of Al and Sc ions and Al-Al and Al-Sc dimers from an L1₂-Al₃Sc surface using ab initio calculations and with a high electric field applied to the surface. The evaporation field is defined as the electric field at which the energy barrier size is calculated as zero, corresponding to the minimum field that atoms from the surface can break their bonds and evaporate from the surface. The evaporation field of the surface atoms are ranked from least to greatest as: Al-Al dimer, Al ion, Sc ion, and Al-Sc dimer. The first principles results were compared with experimental data in the form of an ion evaporation map, which maps multi-ion evaporations. From the ion evaporation map of L1₂-Al₃Sc, we extract relative evaporation fields and identify that an Al-Al dimer has a lower evaporation field than an Al-Sc dimer. Additionally, comparatively an Al-Al surface dimer is more likely to evaporate as a dimer, while an Al-Sc surface dimer is more likely to evaporate as single ions. These conclusions from the experiment agree with the ab initio calculations, validating the use of this approach for modeling APT energetics. Copyright © 2013 Elsevier B.V. All rights reserved.
Magnetic Doppler imaging of Ap stars
NASA Astrophysics Data System (ADS)
Silvester, J.; Wade, G. A.; Kochukhov, O.; Landstreet, J. D.; Bagnulo, S.
2008-04-01
Historically, the magnetic field geometries of the chemically peculiar Ap stars were modelled in the context of a simple dipole field. However, with the acquisition of increasingly sophisticated diagnostic data, it has become clear that the large-scale field topologies exhibit important departures from this simple model. Recently, new high-resolution circular and linear polarisation spectroscopy has even hinted at the presence of strong, small-scale field structures, which were completely unexpected based on earlier modelling. This project investigates the detailed structure of these strong fossil magnetic fields, in particular the large-scale field geometry, as well as small scale magnetic structures, by mapping the magnetic and chemical surface structure of a selected sample of Ap stars. These maps will be used to investigate the relationship between the local field vector and local surface chemistry, looking for the influence the field may have on the various chemical transport mechanisms (i.e., diffusion, convection and mass loss). This will lead to better constraints on the origin and evolution, as well as refining the magnetic field model for Ap stars. Mapping will be performed using high resolution and signal-to-noise ratio time-series of spectra in both circular and linear polarisation obtained using the new-generation ESPaDOnS (CFHT, Mauna Kea, Hawaii) and NARVAL spectropolarimeters (Pic du Midi Observatory). With these data we will perform tomographic inversion of Doppler-broadened Stokes IQUV Zeeman profiles of a large variety of spectral lines using the INVERS10 magnetic Doppler imaging code, simultaneously recovering the detailed surface maps of the vector magnetic field and chemical abundances.
The evolution of culture (or the lack thereof): mapping the conceptual space.
Gadagkar, Raghavendra
2017-07-01
This short essay is based on a lecture that I gave at short notice on a subject in which I am by no means an expert. The combination of lack of expertise and time for preparation, created an unexpectedly unique opportunity for thinking outside the box. I decided not to try to read up (as there was no time in any case) but instead to organize the little that I already knew about cultural evolution in a systematic schema-I attempted to create a scaffolding, on which I could hang everything I knew about cultural evolution, and hopefully, everything I might ever discover about cultural evolution in the future. I considered three dimensions of the study of cultural evolution, namely (i) the phenomenon of cultural evolution, (ii) production of knowledge in the field of cultural evolution, and (iii) the consequences or applications of an understanding of the evolution of culture.
Meshless analysis of shear deformable shells: the linear model
NASA Astrophysics Data System (ADS)
Costa, Jorge C.; Tiago, Carlos M.; Pimenta, Paulo M.
2013-10-01
This work develops a kinematically linear shell model departing from a consistent nonlinear theory. The initial geometry is mapped from a flat reference configuration by a stress-free finite deformation, after which, the actual shell motion takes place. The model maintains the features of a complete stress-resultant theory with Reissner-Mindlin kinematics based on an inextensible director. A hybrid displacement variational formulation is presented, where the domain displacements and kinematic boundary reactions are independently approximated. The resort to a flat reference configuration allows the discretization using 2-D Multiple Fixed Least-Squares (MFLS) on the domain. The consistent definition of stress resultants and consequent plane stress assumption led to a neat formulation for the analysis of shells. The consistent linear approximation, combined with MFLS, made possible efficient computations with a desired continuity degree, leading to smooth results for the displacement, strain and stress fields, as shown by several numerical examples.
Biomedical Applications of Nanodiamonds: An Overview.
Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C
2015-02-01
Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed.
Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation
NASA Astrophysics Data System (ADS)
Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong
2018-05-01
According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.
Fast, noise-free memory for photon synchronization at room temperature.
Finkelstein, Ran; Poem, Eilon; Michel, Ohad; Lahad, Ohr; Firstenberg, Ofer
2018-01-01
Future quantum photonic networks require coherent optical memories for synchronizing quantum sources and gates of probabilistic nature. We demonstrate a fast ladder memory (FLAME) mapping the optical field onto the superposition between electronic orbitals of rubidium vapor. Using a ladder-level system of orbital transitions with nearly degenerate frequencies simultaneously enables high bandwidth, low noise, and long memory lifetime. We store and retrieve 1.7-ns-long pulses, containing 0.5 photons on average, and observe short-time external efficiency of 25%, memory lifetime (1/ e ) of 86 ns, and below 10 -4 added noise photons. Consequently, coupling this memory to a probabilistic source would enhance the on-demand photon generation probability by a factor of 12, the highest number yet reported for a noise-free, room temperature memory. This paves the way toward the controlled production of large quantum states of light from probabilistic photon sources.
A hot wire radiant energy source for mapping the field of view of a radiometer
NASA Technical Reports Server (NTRS)
Edwards, S. F.; Stewart, W. F.; Vann, D. S.
1977-01-01
The design and performance of a calibration device that allows the measurement of a radiometer's field of view are described. The heart of the device is a heated 0.0254-mm (0.001-inch) diameter filament that provides a variable, isothermal line source of radiant energy against a cold background. By moving this discrete line source across the field of view of a radiometer, the radiometer's spatial response can be completely mapped. The use of a platinum filament provides a durable radiation source whose temperature is stable and repeatable to 10 K over the range of 600 to 1200 K. By varying the energy emitted by the filament, the field of view of radiometers with different sensitivities (or multiple channel radiometers) can be totally mapped.
Radiofrequency Electromagnetic Field Map of Timisoara
NASA Astrophysics Data System (ADS)
Stefu, N.; Solyom, I.; Arama, A.
2015-12-01
There are many electromagnetic field (EMF) sources nowadays acting simultaneously, especially in urban areas, making the theoretical estimation of electromagnetic power at ground level very difficult. This paper reports on EMF maps built with measurements collected in Timisoara, at various radiofrequencies. A grid of 15×15 squares was built (approximate resolution 400m x 400m) and measurements of the average and maximum values of the electric field E, magnetic field H and total power density S at 0.9, 1.8 and 2.4 GHz were collected in every node of the grid. Positions of the nodes in terms of latitude and longitude were also collected. Maps were built presenting the spatial distribution of the measured quantities over Timisoara. Potential influences of EMF on public health are discussed.
Vegetation classification and distribution mapping report Mesa Verde National Park
Thomas, Kathryn A.; McTeague, Monica L.; Ogden, Lindsay; Floyd, M. Lisa; Schulz, Keith; Friesen, Beverly A.; Fancher, Tammy; Waltermire, Robert G.; Cully, Anne
2009-01-01
The classification and distribution mapping of the vegetation of Mesa Verde National Park (MEVE) and surrounding environment was achieved through a multi-agency effort between 2004 and 2007. The National Park Service’s Southern Colorado Plateau Network facilitated the team that conducted the work, which comprised the U.S. Geological Survey’s Southwest Biological Science Center, Fort Collins Research Center, and Rocky Mountain Geographic Science Center; Northern Arizona University; Prescott College; and NatureServe. The project team described 47 plant communities for MEVE, 34 of which were described from quantitative classification based on f eld-relevé data collected in 1993 and 2004. The team derived 13 additional plant communities from field observations during the photointerpretation phase of the project. The National Vegetation Classification Standard served as a framework for classifying these plant communities to the alliance and association level. Eleven of the 47 plant communities were classified as “park specials;” that is, plant communities with insufficient data to describe them as new alliances or associations. The project team also developed a spatial vegetation map database representing MEVE, with three different map-class schemas: base, group, and management map classes. The base map classes represent the fi nest level of spatial detail. Initial polygons were developed using Definiens Professional (at the time of our use, this software was called eCognition), assisted by interpretation of 1:12,000 true-color digital orthophoto quarter quadrangles (DOQQs). These polygons (base map classes) were labeled using manual photo interpretation of the DOQQs and 1:12,000 true-color aerial photography. Field visits verified interpretation concepts. The vegetation map database includes 46 base map classes, which consist of associations, alliances, and park specials classified with quantitative analysis, additional associations and park specials noted during photointerpretation, and non-vegetated land cover, such as infrastructure, land use, and geological land cover. The base map classes consist of 5,007 polygons in the project area. A field-based accuracy assessment of the base map classes showed overall accuracy to be 43.5%. Seven map classes comprise 89.1% of the park vegetated land cover. The group map classes represent aggregations of the base map classes, approximating the group level of the National Vegetation Classification Standard, version 2 (Federal Geographic Data Committee 2007), and reflecting physiognomy and floristics. Terrestrial ecological systems, as described by NatureServe (Comer et al. 2003), were used as the fi rst approximation of the group level. The project team identified 14 group map classes for this project. The overall accuracy of the group map classes was determined using the same accuracy assessment data as for the base map classes. The overall accuracy of the group representation of vegetation was 80.3%. In consultation with park staff , the team developed management map classes, consisting of park-defined groupings of base map classes intended to represent a balance between maintaining required accuracy and providing a focus on vegetation of particular interest or import to park managers. The 23 management map classes had an overall accuracy of 73.3%. While the main products of this project are the vegetation classification and the vegetation map database, a number of ancillary digital geographic information system and database products were also produced that can be used independently or to augment the main products. These products include shapefiles of the locations of field-collected data and relational databases of field-collected data.
Lee, Won June; Kim, Young Kook; Jeoung, Jin Wook; Park, Ki Ho
2017-12-01
To determine the usefulness of swept-source optical coherence tomography (SS-OCT) probability maps in detecting locations with significant reduction in visual field (VF) sensitivity or predicting future VF changes, in patients with classically defined preperimetric glaucoma (PPG). Of 43 PPG patients, 43 eyes were followed-up on every 6 months for at least 2 years were analyzed in this longitudinal study. The patients underwent wide-field SS-OCT scanning and standard automated perimetry (SAP) at the time of enrollment. With this wide-scan protocol, probability maps originating from the corresponding thickness map and overlapped with SAP VF test points could be generated. We evaluated the vulnerable VF points with SS-OCT probability maps as well as the prevalence of locations with significant VF reduction or subsequent VF changes observed in the corresponding damaged areas of the probability maps. The vulnerable VF points were shown in superior and inferior arcuate patterns near the central fixation. In 19 of 43 PPG eyes (44.2%), significant reduction in baseline VF was detected within the areas of structural change on the SS-OCT probability maps. In 16 of 43 PPG eyes (37.2%), subsequent VF changes within the areas of SS-OCT probability map change were observed over the course of the follow-up. Structural changes on SS-OCT probability maps could detect or predict VF changes using SAP, in a considerable number of PPG eyes. Careful comparison of probability maps with SAP results could be useful in diagnosing and monitoring PPG patients in the clinical setting.
Charting the Development of Portsmouth Harbour, Dockyard and Town in the Tudor Period
NASA Astrophysics Data System (ADS)
Fontana, Dominic
2013-12-01
Portsmouth was crucial to the defence of Tudor England and consequently it was mapped for military planning purposes throughout the Tudor period from 1545. The resulting sequence of maps records much of the town and harbour. The maps offer opportunities for furthering our understanding of Tudor Portsmouth and its population Additionally, images of the urban landscape provided by the "Cowdray Engraving", which depicts the loss of Henry VIII's warship Mary Rose on the 19th July 1545, may also be considered and compared with those presented in the early maps of the town. This paper considers the Portsmouth maps of 1545, 1552, 1584 and the chart of Portsmouth Harbour dating from between 1586 and 1620. These are examined in relation to one another and compared with evidence from the Cowdray Engraving.
Magnetic field mapping of the UCNTau magneto-gravitational trap: design study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libersky, Matthew Murray
2014-09-04
The beta decay lifetime of the free neutron is an important input to the Standard Model of particle physics, but values measured using different methods have exhibited substantial disagreement. The UCN r experiment in development at Los Alamos National Laboratory (LANL) plans to explore better methods of measuring the neutron lifetime using ultracold neutrons (UCNs). In this experiment, UCNs are confined in a magneto-gravitational trap formed by a curved, asymmetric Halbach array placed inside a vacuum vessel and surrounded by holding field coils. If any defects present in the Halbach array are sufficient to reduce the local field near themore » surface below that needed to repel the desired energy level UCNs, loss by material interaction can occur at a rate similar to the loss by beta decay. A map of the magnetic field near the surface of the array is necessary to identify any such defects, but the array's curved geometry and placement in a vacuum vessel make conventional field mapping methods difficult. A system consisting of computer vision-based tracking and a rover holding a Hall probe has been designed to map the field near the surface of the array, and construction of an initial prototype has begun at LANL. The design of the system and initial results will be described here.« less
NASA Astrophysics Data System (ADS)
Bobra, M. G.; Sun, X.; Hoeksema, J. T.; Turmon, M.; Liu, Y.; Hayashi, K.; Barnes, G.; Leka, K. D.
2014-09-01
A new data product from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) called Space-weather HMI Active Region Patches ( SHARPs) is now available. SDO/HMI is the first space-based instrument to map the full-disk photospheric vector magnetic field with high cadence and continuity. The SHARP data series provide maps in patches that encompass automatically tracked magnetic concentrations for their entire lifetime; map quantities include the photospheric vector magnetic field and its uncertainty, along with Doppler velocity, continuum intensity, and line-of-sight magnetic field. Furthermore, keywords in the SHARP data series provide several parameters that concisely characterize the magnetic-field distribution and its deviation from a potential-field configuration. These indices may be useful for active-region event forecasting and for identifying regions of interest. The indices are calculated per patch and are available on a twelve-minute cadence. Quick-look data are available within approximately three hours of observation; definitive science products are produced approximately five weeks later. SHARP data are available at jsoc.stanford.edu and maps are available in either of two different coordinate systems. This article describes the SHARP data products and presents examples of SHARP data and parameters.
SCF-Xα-SW electron densities with the overlapping sphere approximation
NASA Astrophysics Data System (ADS)
McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.
Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα methods, which do not employ the spherical muffin-tin (MT) potential approximation, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT approximation in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS approximation is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS approximation increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, D.; Van Driel-Gesztelyi, L.; Green, L. M.
Using spectra obtained by the EUV Imaging Spectrometer (EIS) instrument onboard Hinode, we present a detailed spatially resolved abundance map of an active region (AR)-coronal hole (CH) complex that covers an area of 359'' × 485''. The abundance map provides first ionization potential (FIP) bias levels in various coronal structures within the large EIS field of view. Overall, FIP bias in the small, relatively young AR is 2-3. This modest FIP bias is a consequence of the age of the AR, its weak heating, and its partial reconnection with the surrounding CH. Plasma with a coronal composition is concentrated atmore » AR loop footpoints, close to where fractionation is believed to take place in the chromosphere. In the AR, we found a moderate positive correlation of FIP bias with nonthermal velocity and magnetic flux density, both of which are also strongest at the AR loop footpoints. Pathways of slightly enhanced FIP bias are traced along some of the loops connecting opposite polarities within the AR. We interpret the traces of enhanced FIP bias along these loops to be the beginning of fractionated plasma mixing in the loops. Low FIP bias in a sigmoidal channel above the AR's main polarity inversion line, where ongoing flux cancellation is taking place, provides new evidence of a bald patch magnetic topology of a sigmoid/flux rope configuration.« less
A preliminary geomorphological map from the Múlajökull drumlin field, Iceland
NASA Astrophysics Data System (ADS)
Jonsson, S. A.; Schomacker, A.; Benediktsson; Johnson, M.; Ingolfsson, O.
2012-12-01
The drumlin field in front of Múlajökull, a surge-type, outlet glacier from Hofsjökull in Iceland, is the only known active drumlin field (Johnson et al., 2010). The aim of this study is to further explore the distribution and formation of drumlins and drumlin fields in a modern glacial environment. We use data from Digital Elevation Models (DEMs), aerial imagery and field mapping. Here we present a preliminary geomorphological map based on remote sensing and fieldwork in 2010 and 2011. Geomorphological mapping of the drumlin field both with DEMs and ground proofing has revealed over 100 drumlins and a number of drumlinized ridges. The drumlins furthest from the present ice margin are broader and have lower relief than those closer to the ice. We suggest that this reflects an evolution of the drumlin form during recurrent surging. The drumlins farther away from the ice have experienced fewer surges than those that have just been uncovered due to present retreat of the ice margin. During successive surges, the drumlins become narrower and develop a higher relief. Reference: Johnson, M.D., Schomacker, A., Benediktsson, Í. Ö., Geiger, A. J., Ferguson, A. and Ingólfsson, Ó. 2010, Active drumlin field revealed at the margin of Múlajökull, Iceland: A surge-type glacier: Geology v. 38, p. 943-946.
Nonabelian noncommutative gauge theory via noncommutative extra dimensions
NASA Astrophysics Data System (ADS)
Jurčo, Branislav; Schupp, Peter; Wess, Julius
2001-06-01
The concept of covariant coordinates on noncommutative spaces leads directly to gauge theories with generalized noncommutative gauge fields of the type that arises in string theory with background B-fields. The theory is naturally expressed in terms of cochains in an appropriate cohomology; we discuss how it fits into the framework of projective modules. The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map). As application we show the exact equality of the Dirac-Born-Infeld action with B-field in the commutative setting and its semi-noncommutative cousin in the intermediate picture. Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; an explicit map between abelian and nonabelian gauge fields is given. All constructions are also valid for non-constant B-field, Poisson structure and metric.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beleggia, M.; Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin; Kasama, T.
We apply off-axis electron holography and Lorentz microscopy in the transmission electron microscope to map the electric field generated by a sharp biased metallic tip. A combination of experimental data and modelling provides quantitative information about the potential and the field around the tip. Close to the tip apex, we measure a maximum field intensity of 82 MV/m, corresponding to a field k factor of 2.5, in excellent agreement with theory. In order to verify the validity of the measurements, we use the inferred charge density distribution in the tip region to generate simulated phase maps and Fresnel (out-of-focus) imagesmore » for comparison with experimental measurements. While the overall agreement is excellent, the simulations also highlight the presence of an unexpected astigmatic contribution to the intensity in a highly defocused Fresnel image, which is thought to result from the geometry of the applied field.« less
Exploring the use of multi-sensor data fusion for daily evapotranspiration mapping at field scale
USDA-ARS?s Scientific Manuscript database
Modern practices of water management in agriculture can significantly benefit from accurate mapping of crop water consumption at field scale. Assuming that actual evapotranspiration (ET) is the main water loss in land hydrological balance, remote sensing data represent an invaluable tool for water u...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Che-Yu; Li, Zhi-Yun; King, Patrick K.
2017-10-01
Thin, magnetically aligned striations of relatively moderate contrast with the background are commonly observed in both atomic and molecular clouds. They are also prominent in MHD simulations with turbulent converging shocks. The simulated striations develop within a dense, stagnated sheet in the midplane of the post-shock region where magnetically induced converging flows collide. We show analytically that the secondary flows are an inevitable consequence of the jump conditions of oblique MHD shocks. They produce the stagnated, sheet-like sub-layer through a secondary shock when, roughly speaking, the Alfvénic speed in the primary converging flows is supersonic, a condition that is relativelymore » easy to satisfy in interstellar clouds. The dense sub-layer is naturally threaded by a strong magnetic field that lies close to the plane of the sub-layer. The substantial magnetic field makes the sheet highly anisotropic, which is the key to the striation formation. Specifically, perturbations of the primary inflow that vary spatially perpendicular to the magnetic field can easily roll up the sheet around the field lines without bending them, creating corrugations that appear as magnetically aligned striations in column density maps. On the other hand, perturbations that vary spatially along the field lines curve the sub-layer and alter its orientation relative to the magnetic field locally, seeding special locations that become slanted overdense filaments and prestellar cores through enhanced mass accumulation along field lines. In our scenario, the dense sub-layer, which is unique to magnetized oblique shocks, is the birthplace for both magnetically aligned diffuse striations and massive star-forming structures.« less
NASA Astrophysics Data System (ADS)
Skowronek, Sandra; Van De Kerchove, Ruben; Rombouts, Bjorn; Aerts, Raf; Ewald, Michael; Warrie, Jens; Schiefer, Felix; Garzon-Lopez, Carol; Hattab, Tarek; Honnay, Olivier; Lenoir, Jonathan; Rocchini, Duccio; Schmidtlein, Sebastian; Somers, Ben; Feilhauer, Hannes
2018-06-01
Remote sensing is a promising tool for detecting invasive alien plant species. Mapping and monitoring those species requires accurate detection. So far, most studies relied on models that are locally calibrated and validated against available field data. Consequently, detecting invasive alien species at new study areas requires the acquisition of additional field data which can be expensive and time-consuming. Model transfer might thus provide a viable alternative. Here, we mapped the distribution of the invasive alien bryophyte Campylopus introflexus to i) assess the feasibility of spatially transferring locally calibrated models for species detection between four different heathland areas in Germany and Belgium and ii) test the potential of combining calibration data from different sites in one species distribution model (SDM). In a first step, four different SDMs were locally calibrated and validated by combining field data and airborne imaging spectroscopy data with a spatial resolution ranging from 1.8 m to 4 m and a spectral resolution of about 10 nm (244 bands). A one-class classifier, Maxent, which is based on the comparison of probability densities, was used to generate all SDMs. In a second step, each model was transferred to the three other study areas and the performance of the models for predicting C. introflexus occurrences was assessed. Finally, models combining calibration data from three study areas were built and tested on the remaining fourth site. In this step, different combinations of Maxent modelling parameters were tested. For the local models, the area under the curve for a test dataset (test AUC) was between 0.57-0.78, while the test AUC for the single transfer models ranged between 0.45-0.89. For the combined models the test AUC was between 0.54-0.9. The success of transferring models calibrated in one site to another site highly depended on the respective study site; the combined models provided higher test AUC values than the locally calibrated models for three out of four study sites. Furthermore, we also demonstrated the importance of optimizing the Maxent modelling parameters. Overall, our results indicate the potential of a combined model to map C. introflexus without the need for new calibration data.
NASA Astrophysics Data System (ADS)
Zunino, A. J., III
2017-12-01
The presented assemblage of data and maps was collected and created from May 20th to 25th, 2017 on Hong Kong's Independent Schools Foundation (ISF) Academy's trip to the district of Baray, Cambodia, where students participated in an experiential learning program (ELP) in the rural village of Dharmrai Slaap. The focus of this data and mapping is to display development trends both static within Dharmrai Slaap as well as over time as ISF continues to serve the village. Ultimately the hope is that these resources will help all involved to better understand the needs of the community. The primary takeaways from this project with relation to topics of a geophysical nature are the application of scientific research techniques to the issue of development, the teaching of these applications to high school students within an experiential learning context, and ultimately the application of geophysical topics beyond the science classroom. Within 5 short days in Cambodia students: Gained a brief, hands-on introduction to ArcGIS via the design of the project's basemap. Applied quantitative research techniques to social science via the conducting of household interviews. Conducted spatial data collection in the field via the use of handheld GPS devices. Gained hands-on experience with soil coring and water sampling equipment collecting data in the field. Sociological and scientific attributes gathered by students in the field were then assigned spatial data based on coordinates recorded and ported into ArcGIS. Based on the information gathered a selection of maps could then be prepared to reflect trends and needs within the community. This record of spatial data ties into the service component of the experiential learning program, as over the years as this GIS project continues students will be able to see the community's upward trend toward development as a reflection of their service. It is through this application of geophysical research skills and approaches that the topic of development is examined through a new lens in the Baray project. By challenging students to think about the causes and consequences of poverty in such a way not only does it give them a fresh and personal perspective, it empowers them with unique applications of new skills which typically find themselves confined to a science classroom.
Mapping Soil pH Buffering Capacity of Selected Fields
NASA Technical Reports Server (NTRS)
Weaver, A. R.; Kissel, D. E.; Chen, F.; West, L. T.; Adkins, W.; Rickman, D.; Luvall, J. C.
2003-01-01
Soil pH buffering capacity, since it varies spatially within crop production fields, may be used to define sampling zones to assess lime requirement, or for modeling changes in soil pH when acid forming fertilizers or manures are added to a field. Our objective was to develop a procedure to map this soil property. One hundred thirty six soil samples (0 to 15 cm depth) from three Georgia Coastal Plain fields were titrated with calcium hydroxide to characterize differences in pH buffering capacity of the soils. Since the relationship between soil pH and added calcium hydroxide was approximately linear for all samples up to pH 6.5, the slope values of these linear relationships for all soils were regressed on the organic C and clay contents of the 136 soil samples using multiple linear regression. The equation that fit the data best was b (slope of pH vs. lime added) = 0.00029 - 0.00003 * % clay + 0.00135 * % O/C, r(exp 2) = 0.68. This equation was applied within geographic information system (GIS) software to create maps of soil pH buffering capacity for the three fields. When the mapped values of the pH buffering capacity were compared with measured values for a total of 18 locations in the three fields, there was good general agreement. A regression of directly measured pH buffering capacities on mapped pH buffering capacities at the field locations for these samples gave an r(exp 2) of 0.88 with a slope of 1.04 for a group of soils that varied approximately tenfold in their pH buffering capacities.
Harvey, Ben M; Dumoulin, Serge O
2016-02-15
Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.
van Randeraad-van der Zee, Carlijn H; Beurskens, Anna J H M; Swinkels, Raymond A H M; Pool, Jan J M; Batterham, Roy W; Osborne, Richard H; de Vet, Henrica C W
2016-05-01
To empirically define the concept of burden of neck pain. The lack of a clear understanding of this construct from the perspective of persons with neck pain and care providers hampers adequate measurement of this burden. An additional aim was to compare the conceptual model obtained with the frequently used Neck Disability Index (NDI). Concept mapping, combining qualitative (nominal group technique and group consensus) and quantitative research methods (cluster analysis and multidimensional scaling), was applied to groups of persons with neck pain (n = 3) and professionals treating persons with neck pain (n = 2). Group members generated statements, which were organized into concept maps. Group members achieved consensus about the number and description of domains and the researchers then generated an overall mind map covering the full breadth of the burden of neck pain. Concept mapping revealed 12 domains of burden of neck pain: impaired mobility neck, neck pain, fatigue/concentration, physical complaints, psychological aspects/consequences, activities of daily living, social participation, financial consequences, difficult to treat/difficult to diagnose, difference of opinion with care providers, incomprehension by social environment, and how person with neck pain deal with complaints. All ten items of the NDI could be linked to the mind map, but the NDI measures only part of the burden of neck pain. This study revealed the relevant domains for the burden of neck pain from the viewpoints of persons with neck pain and their care providers. These results can guide the identification of existing measurements instruments for each domain or the development of new ones to measure the burden of neck pain.
Surface magnetic field mapping on high albedo marking areas of the moon
NASA Astrophysics Data System (ADS)
Shibuya, H.; Aikawa, K.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.
2009-12-01
The correlation between high albedo markings (HAM) on the surface of the moon and strong magnetic anomalies has been claimed since the early time of the lunar magnetic field study (Hood and Schubert, 1980). Hood et al. (1989) mapped the smoothed magnetic field over the Reiner Gamma region using Lunar Prospector magnetometer (LP-MAG) data, and showed that the position of them matches well. We have developed a method to recover the 3-d magnetic field from satellite field observations (EPR method which stands for Equivalent Pole Reduction; Toyoshima et al. 2008). Applying EPR to the several areas of strong magnetic anomalies, we calculated the magnetic anomaly maps of near surface regions, to see how the anomaly and the HAM correlate each other. The data used is of the Lunar Prospector magnetometer (LP-MAG). They are selected from low altitude observations performed in 1998 to 1999. The areas studied are Reiner Gamma, Airy, Descartes, Abel, and Crisium Antipode regions. The EPR determines a set of magnetic monopoles at the moon surface which produce the magnetic field of the observation. In each studied area, we put poles in 0.1° intervals of both latitude and longitude, then the magnetic field at 5km in altitude is calculated. The field distribution is superimposed with the albedo map made from Clementine data. The total force (Bf) maps indicate that the HMA occurs at the strong anomaly regions, but their shape does not quite overlie. However, taking horizontal component (Bh), not only position but the shape and size of the anomalies coincide with HMA regions. It is particularly true for the Reiner Gamma, and Descartes regions. The shape of HMA fits in a Bh contour. The HMA is argued to be formed by the reduction of solar wind particles which are shielded by the magnetic field. Since the deflection of the charged particle becomes large at large horizontal component, the Bh distribution showed here support the argument.
The Egyptian geomagnetic reference field to the Epoch, 2010.0
NASA Astrophysics Data System (ADS)
Deebes, H. A.; Abd Elaal, E. M.; Arafa, T.; Lethy, A.; El Emam, A.; Ghamry, E.; Odah, H.
2017-06-01
The present work is a compilation of two tasks within the frame of the project ;Geomagnetic Survey & Detailed Geomagnetic Measurements within the Egyptian Territory; funded by the ;Science and Technology Development Fund agency (STDF);. The National Research Institute of Astronomy and Geophysics (NRIAG), has conducted a new extensive land geomagnetic survey that covers the whole Egyptian territory. The field measurements have been done at 3212 points along all the asphalted roads, defined tracks, and ill-defined tracks in Egypt; with total length of 11,586 km. In the present work, the measurements cover for the first time new areas as: the southern eastern borders of Egypt including Halayeb and Shlatin, the Quattara depresion in the western desert, and the new roads between Farafra and Baharia oasis. Also marine geomagnetic survey have been applied for the first time in Naser lake. Misallat and Abu-Simble geomagnetic observatories have been used to reduce the field data to the Epoch 2010. During the field measurements, whenever possible, the old stations occupied by the previous observers have been re-occupied to determine the secular variations at these points. The geomagnetic anomaly maps, the normal geomagnetic field maps with their corresponding secular variation maps, the normal geomagnetic field equations of the geomagnetic elements (EGRF) and their corresponding secular variations equations, are outlined. The anomalous sites, as discovered from the anomaly maps are, only, mentioned. In addition, a correlation between the International Geomagnetic Reference Field (IGRF) 2010.0 and the Egyptian Geomagnetic Reference Field (EGRF) 2010 is indicated.
Westö, Johan; May, Patrick J C
2018-05-02
Receptive field (RF) models are an important tool for deciphering neural responses to sensory stimuli. The two currently popular RF models are multi-filter linear-nonlinear (LN) models and context models. Models are, however, never correct and they rely on assumptions to keep them simple enough to be interpretable. As a consequence, different models describe different stimulus-response mappings, which may or may not be good approximations of real neural behavior. In the current study, we take up two tasks: First, we introduce new ways to estimate context models with realistic nonlinearities, that is, with logistic and exponential functions. Second, we evaluate context models and multi-filter LN models in terms of how well they describe recorded data from complex cells in cat primary visual cortex. Our results, based on single-spike information and correlation coefficients, indicate that context models outperform corresponding multi-filter LN models of equal complexity (measured in terms of number of parameters), with the best increase in performance being achieved by the novel context models. Consequently, our results suggest that the multi-filter LN-model framework is suboptimal for describing the behavior of complex cells: the context-model framework is clearly superior while still providing interpretable quantizations of neural behavior.
Knotted fields and explicit fibrations for lemniscate knots
NASA Astrophysics Data System (ADS)
Bode, B.; Dennis, M. R.; Foster, D.; King, R. P.
2017-06-01
We give an explicit construction of complex maps whose nodal lines have the form of lemniscate knots. We review the properties of lemniscate knots, defined as closures of braids where all strands follow the same transverse (1, ℓ) Lissajous figure, and are therefore a subfamily of spiral knots generalizing the torus knots. We then prove that such maps exist and are in fact fibrations with appropriate choices of parameters. We describe how this may be useful in physics for creating knotted fields, in quantum mechanics, optics and generalizing to rational maps with application to the Skyrme-Faddeev model. We also prove how this construction extends to maps with weakly isolated singularities.
Geologic map of the Cochiti Dam quadrangle, Sandoval County, New Mexico
Dethier, David P.; Thompson, Ren A.; Hudson, Mark R.; Minor, Scott A.; Sawyer, David A.
2011-01-01
The mapped distribution of units is based primarily on interpretation of 1:16,000-scale, color aerial photographs taken in 1992, and 1:40,000-scale, black-and-white, aerial photographs taken in 1996. Most of the contacts on the map were transferred from the aerial photographs using a photogrammetric stereo-plotter and subsequently field checked for accuracy and revised based on field determination of allostratigraphic and lithostratigraphic units. Determination of lithostratigraphic units in volcanic deposits was aided by geochemical data, 40Ar/39Ar geochronology, aeromagnetic and paleomagnetic data. Supplemental revision of mapped contacts was based on interpretation of USGS 1-meter orthoimagery.
NASA Astrophysics Data System (ADS)
Sahabiev, I. A.; Giniyatullin, K. G.; Ryazanov, S. S.
2018-01-01
The concept of climate-optimized agriculture (COA) of the UN FAO implies the transformation of agriculture techniques in conditions of changing climate. It is important to implement a timely transition to the concept of COA and sustainable development of soil resources, accurate digital maps of spatial distribution of soils and soil properties are needed. Digital mapping of soil humus content was carried out on the territory of the national crop testing fields (NCTF) of the Republic of Tatarstan (Russian Federation) and the accuracy of the maps obtained was estimated.
Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows
NASA Technical Reports Server (NTRS)
He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.
Mapping Surface Soil Organic Carbon for Crop Fields with Remote Sensing
NASA Technical Reports Server (NTRS)
Chen, Feng; Kissel, David E.; West, Larry T.; Rickman, Doug; Luvall, J. C.; Adkins, Wayne
2004-01-01
The organic C concentration of surface soil can be used in agricultural fields to vary crop production inputs. Organic C is often highly spatially variable, so that maps of soil organic C can be used to vary crop production inputs using precision farming technology. The objective of this research was to demonstrate the feasibility of mapping soil organic C on three fields, using remotely sensed images of the fields with a bare surface. Enough soil samples covering the range in soil organic C must be taken from each field to develop a satisfactory relationship between soil organic C content and image reflectance values. The number of soil samples analyzed in the three fields varied from 22 to 26. The regression equations differed between fields, but gave highly significant relationships with R2 values of 0.93, 0.95, and 0.89 for the three fields. A comparison of predicted and measured values of soil organic C for an independent set of 2 soil samples taken on one of the fields gave highly satisfactory results, with a comparison equation of % organic C measured + 1.02% organic C predicted, with r2 = 0.87.
NASA Technical Reports Server (NTRS)
Frazee, C. J.; Westin, F. C.; Gropper, J.; Myers, V. I.
1972-01-01
Research to determine the optimum time or season for obtaining imagery to identify and map soil limitations was conducted in the proposed Oahe irrigation project area in South Dakota. The optimum time for securing photographs or imagery is when the soil surface patterns are most apparent. For cultivated areas similar to the study area, May is the optimum time. The fields are cultivated or the planted crop has not yet masked soil surface features. Soil limitations in 59 percent of the field of the flight line could be mapped using the above criteria. The remaining fields cannot be mapped because the vegetation or growing crops do not express features related to soil differences. This suggests that imagery from more than one year is necessary to map completely the soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations of Oahe area by remote sensing techniques. Imagery from the other times studied is not suitable for identifying and mapping soil limitations because the vegetative cover masked the soil surface and does not reflect soil differences.
Mars Observer Mission: Mapping the Martian World
NASA Technical Reports Server (NTRS)
1992-01-01
The 1992 Mars Observer Mission is highlighted in this video overview of the mission objectives and planning. Using previous photography and computer graphics and simulation, the main objectives of the 687 day (one Martian year) consecutive orbit by the Mars Observer Satellite around Mars are explained. Dr. Arden Albee, the project scientist, speaks about the pole-to-pole mapping of the Martian surface topography, the planned relief maps, the chemical and mineral composition analysis, the gravity fields analysis, and the proposed search for any Mars magnetic fields.
Concept Mapping: An "Instagram" of Students' Thinking
ERIC Educational Resources Information Center
Campbell, Laurie O.
2016-01-01
Minimal research has been accumulated in the field of social studies education for Novakian concept mapping, yet there are many benefits from adding this learning tool to a teacher's instructional toolbox. The article defines Novakian concept mapping and invites readers to adopt digital Novakian concept mapping into the social studies classroom as…
a Model Study of Small-Scale World Map Generalization
NASA Astrophysics Data System (ADS)
Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.
2018-04-01
With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.
NASA Astrophysics Data System (ADS)
Scudiero, Elia; Skaggs, Todd; Anderson, Ray; Corwin, Dennis
2016-04-01
Irrigation in California's Central Valley (USA) has decreased significantly due to water shortages resulting from the current drought, which began in 2010. In particular, fallow fields in the west side of the San Joaquin Valley (WSJV), which is the southwest portion of the Central Valley, increased from around 12% in the years before the drought (2007-2010) to 20-25% in the following years (2011-2015). We monitored and mapped drought-induced edaphic changes in salinity at two scales: (i) field scale (32.4-ha field in Kings County) and (ii) water district scale (2400 ha at -former- Broadview Water District in Fresno County). At both scales drought-induced land-use changes (i.e., shift from irrigated agriculture to fallow) drastically decreased soil quality by increasing salinity (and sodicity), especially in the root-zone (top 1.2 m). The field study monitors the spatial (three dimensions) changes of soil salinity (and sodicity) in the root-zone during 10 years of irrigation with drainage water followed by 4 years of no applied irrigation water (only rainfall) due to drought conditions. Changes of salinity (and other edaphic properties), through the soil profile (down to 1.2 m, at 0.3-m increments), were monitored and modeled using geospatial apparent electrical conductivity measurements and extensive soil sampling in 1999, 2002, 2004, 2009, 2011, and 2013. Results indicate that when irrigation was applied, salts were leached from the root-zone causing a remarkable improvement in soil quality. However, in less than two years after termination of irrigation, salinity in the soil profile returned to original levels or higher across the field. At larger spatial scales the effect of drought-induced land-use change on root-zone salinity is also evident. Up to spring 2006, lands in Broadview Water District (BWD) were used for irrigated agriculture. Water rights were then sold and the farmland was retired. Soil quality decreased since land retirement, especially during the drought years. Root-zone soil salinity was mapped in 1991 using geospatial apparent electrical conductivity measurements and extensive soil sampling and in 2013 using recent root-zone remote sensing salinity map for the WSJV (developed and published by the U.S. Salinity Laboratory, USDA-ARS), which was calibrated and (independently) validated, including fields from the BWD. Results reveal dramatic increases in soil salinity for all the fields that were originally non-saline and slightly-saline in 1991. Additionally, time-series analysis of very-high resolution ortho-imagery (from Google Earth and USGS) suggests that surface soil quality drastically decreased especially during the drought years. Our research shows how terminating irrigation in California's Central Valley can lead to substantial soil salinization in a very short time. Salinization in WSJV due to the termination of irrigation is a consequence of the complex multi-scale interaction of geomorphologic, topographic, and anthropogenic factors requiring yearly monitoring to adequately assess the impacts of drought for use in field- and basin-scale water management decisions. Among other concerns, increased salinity and sodicity affect vegetation growth and may lead to increased soil erosion and very-fine dust formation creating health and environmental hazards.
Geophysical models of Western Aphrodite-Niobe region: Venus
NASA Technical Reports Server (NTRS)
Marchenkov, K. I.; Saunders, R. S.; Banerdt, W. B.
1993-01-01
The new topography and gravitational field data for Venus expressed in spherical harmonics of degree and order up to 50 allow us to analyze the crust-mantle boundary relief and stress state of the Venusian lithosphere. In these models, we consider models in which convection is confined beneath a thick, buoyant lithosphere. We divide the convection regime into an upper mantle and lower mantle component. The lateral scales are smaller than on Earth. In these models, relative to Earth, convection is reflected in higher order terms of the gravitational field. On Venus geoid height and topography are highly correlated, although the topography appears to be largely compensated. We hypothesize that Venus topography for those wavelengths that correlate well with the geoid is partly compensated at the crust-mantle boundary, while for the others compensation may be distributed over the whole mantle. In turn the strong sensitivity of the stresses to parameters of the models of the external layers of Venus together with geological mapping allows us to begin investigations of the tectonics and geodynamics of the planet. For stress calculations we use a new technique of space- and time-dependent Green's response functions using Venus models with rheologically stratified lithosphere and mantle and a ductile lower crust. In the basic model of Venus the mean crust is 50-70 km thick, the density contrast across the crust-mantle boundary is in the range from 0.3 to 0.4 g/cm(exp -3). The thickness of a weak mantle zone may be from 350 to 1000 km. Strong sensitivity of calculated stress to various parameters of the layered model of Venus together with geological mapping and analysis of surface tectonic patterns allow us to investigate the tectonics and geodynamics of the planet. The results are presented in the form of maps of compression-extension and maximum shear stresses in the lithosphere and maps of crust-mantle boundary relief, which can be presented as a function of time. We have modeled the region of Western Aphrodite and the Niobe plains to get reasonable depths of compensation. Crust mantle boundary relief is calculated for Western Aphrodite-Niobe relative to a mean crustal thickness of 50 km. The calculations include the consequences of simple crust models and more complicated models with a weak, ductile lower crust, a strong upper mantle and a weak lower mantle layer.
Automatic fault tracing of active faults in the Sutlej valley (NW-Himalayas, India)
NASA Astrophysics Data System (ADS)
Janda, C.; Faber, R.; Hager, C.; Grasemann, B.
2003-04-01
In the Sutlej Valley the Lesser Himalayan Crystalline Sequence (LHCS) is actively extruding between the Munsiari Thrust (MT) at the base, and the Karcham Normal Fault (KNF) at the top. The clear evidences for ongoing deformation are brittle faults in Holocene lake deposits, hot springs activity near the faults and dramatically younger cooling ages within the LHCS (Vannay and Grasemann, 2001). Because these brittle fault zones obviously influence the morphology in the field we developed a new method for automatically tracing the intersections of planar fault geometries with digital elevation models (Faber, 2002). Traditional mapping techniques use structure contours (i.e. lines or curves connecting points of equal elevation on a geological structure) in order to construct intersections of geological structures with topographic maps. However, even if the geological structure is approximated by a plane and therefore structure contours are equally spaced lines, this technique is rather time consuming and inaccurate, because errors are cumulative. Drawing structure contours by hand makes it also impossible to slightly change the azimuth and dip direction of the favoured plane without redrawing everything from the beginning on. However, small variations of the fault position which are easily possible by either inaccuracies of measurement in the field or small local variations in the trend and/or dip of the fault planes can have big effects on the intersection with topography. The developed method allows to interactively view intersections in a 2D and 3D mode. Unlimited numbers of planes can be moved separately in 3 dimensions (translation and rotation) and intersections with the topography probably following morphological features can be mapped. Besides the increase of efficiency this method underlines the shortcoming of classical lineament extraction ignoring the dip of planar structures. Using this method, areas of active faulting influencing the morphology, can be mapped near the MT and the KNF suggesting that the most active zones are restricted to the Sutlej Valley. Faber R., 2002: WinGeol - Software for Analyzing and Visualization of Geological data, Department of Geological Sciences, University of Vienna. Vannay, J.-C., Grasemann, B., 2001. Himalayan inverted metamorphism and syn-convergence extension as a consequence of a general shear extrusion. Geol. Mag. 138 (3), 253-276.
On the structures and mapping of auroral electrostatic potentials
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Newman, A. L.; Cornwall, J. M.
1981-01-01
The mapping of magnetospheric and ionospheric electric fields in a kinetic model of magnetospheric-ionospheric electrodynamic coupling proposed for the aurora is examined. One feature is the generalization of the kinetic current-potential relationship to the return current region (identified as a region where the parallel drop from magnetosphere to ionosphere is positive); such a return current always exists unless the ionosphere is electrically charged to grossly unphysical values. A coherent phenomenological picture of both the low energy return current and the high energy precipitation of an inverted-V is given. The mapping between magnetospheric and ionospheric electric fields is phrased in terms of a Green's function which acts as a filter, emphasizing magnetospheric latitudinal spatial scales of order (when mapped to the ionosphere) 50 to 150 km. This same length, when multiplied by electric fields just above the ionosphere, sets the scale for potential drops between the ionosphere and equatorial magnetosphere.
NASA Astrophysics Data System (ADS)
Beitone, C.; Balandraud, X.; Delpueyo, D.; Grédiac, M.
2017-01-01
This paper presents a post-processing technique for noisy temperature maps based on a gradient anisotropic diffusion (GAD) filter in the context of heat source reconstruction. The aim is to reconstruct heat source maps from temperature maps measured using infrared (IR) thermography. Synthetic temperature fields corrupted by added noise are first considered. The GAD filter, which relies on a diffusion process, is optimized to retrieve as well as possible a heat source concentration in a two-dimensional plate. The influence of the dimensions and the intensity of the heat source concentration are discussed. The results obtained are also compared with two other types of filters: averaging filter and Gaussian derivative filter. The second part of this study presents an application for experimental temperature maps measured with an IR camera. The results demonstrate the relevancy of the GAD filter in extracting heat sources from noisy temperature fields.
Zietz, Isidore; Henderson, Roland G.
1949-01-01
The eight attached maps were constructed from data taken on Project Volcano in the summer of 1947. The project was sponsored by the Office of Naval Research and conducted by the U.S. Geological Survey in cooperation with the Naval Ordnance Laboratory. Field work was done by Fred Keller, Jr., and J. L. Meuschke, Geophysicists of the U.S. Geological Survey, and by L. R. Alldredge, Physicist of the Naval Ordnance Laboratory. The instrument used was a modified AN/ASQ-3A flux-gate type total field magnetometer mounted in the tailcone of a PBY-5A aircraft. It is hoped that observation of the magnetic fields over volcanic areas over a period of years, may lead to prognostication of volcanic activity. These maps represent the results of the first of such surveys.
Magnetic maps in animals: nature's GPS.
Lohmann, Kenneth J; Lohmann, Catherine M F; Putman, Nathan F
2007-11-01
Diverse animals detect the Earth's magnetic field and use it as a cue in orientation and navigation. Most research on magnetoreception has focused on the directional or ;compass' information that can be extracted from the Earth's field. Because the field varies predictably across the surface of the globe, however, it also provides a potential source of positional or 'map' information, which some animals use to steer themselves along migratory pathways or to navigate toward specific target areas. The use of magnetic positional information has been demonstrated in several diverse animals including sea turtles, spiny lobsters, newts and birds, suggesting that such systems are phylogenetically widespread and can function over a wide range of spatial scales. These ;magnetic maps' have not yet been fully characterized. They may be organized in several fundamentally different ways, some of which bear little resemblance to human maps, and they may also be used in conjunction with unconventional navigational strategies.
On the feasibility of real-time mapping of the geoelectric field across North America
Love, Jeffrey J.; Rigler, E. Joshua; Kelbert, Anna; Finn, Carol A.; Bedrosian, Paul A.; Balch, Christopher C.
2018-06-08
A review is given of the present feasibility for accurately mapping geoelectric fields across North America in near-realtime by modeling geomagnetic monitoring and magnetotelluric survey data. Should this capability be successfully developed, it could inform utility companies of magnetic-storm interference on electric-power-grid systems. That real-time mapping of geoelectric fields is a challenge is reflective of (1) the spatiotemporal complexity of geomagnetic variation, especially during magnetic storms, (2) the sparse distribution of ground-based geomagnetic monitoring stations that report data in realtime, (3) the spatial complexity of three-dimensional solid-Earth impedance, and (4) the geographically incomplete state of continental-scale magnetotelluric surveys.
Application of geoelectric methods for man-caused gas deposit mapping and monitoring
NASA Astrophysics Data System (ADS)
Yakymchuk, M. A.; Levashov, S. P.; Korchagin, I. N.; Syniuk, B. B.
2009-04-01
The rather new application of original geoelectric methods of forming of short-pulsed electromagnetic field (FSPEF) and vertical electric-resonance sounding (VERS) (FSPEF-VERS technology) (Levashov et al., 2003; 2004) is discussed. In 2008 the FSPEF-VERS methods were used for ascertaining the reasons of serious man-caused accident on gas field. The emission of water with gas has occurred near an operational well on one gas field. The assumption was discussed, that some part of gas from producing horizons has got into the upper horizons, in aquiferous stratum layers. It promoted creation of superfluous pressure in aquiferous stratums which has led to accident on the field. Operative geophysical investigations within an accident site were carried out by FSPEF and VERS geoelectric methods on 07.10.08 and 13.10.08 on the first stage. The primary goal of executed works was detection and mapping of gas penetration zones in aquiferous stratums of cross-section upper part, and also the determination of bedding depths and a total area of distribution of gas in upper aquiferous stratums. The anomalous zone were revealed and mapped by FSPEF survey. It is caused by raised migration of water in upper horizons of a cross-section. The depths of anomalous polarized layers (APL) of "gas" and „aquiferous stratum" type were defined by VERS method. The VERS data are presented by sounding diagram's and columns, by vertical cross-sections lengthways and transversely of gas penetration zones, by map of thicknesses of man-caused gas "deposit". The perforation on depths of 450 and 310 m was spent in a producing borehole on the first day investigation data. Gas discharges were received from 450 and 310 m depths. Three degassing boreholes have been drilled on 08.11.08 working day. Depths of wells are about 340 m. Gas inflows were received from 330 m depth. Drilling of fourth well was conducted. The anomalous zone area has decreased twice in comparison with two previous surveys. So, the anomaly total area made S=20.7 hectares on 07.10.08, and S=19.7 hectares on 13.10.08 and S=10.5 hectares on 08.11.08. The anomaly intensity has decreased, some local extremum has appeared. All this testifies that there is an intensive degassing process of cross-section upper part through producing wells and the drilled degassing wells. Exclusively important feature of the FSPEF-VERS technology is an operationability(!) the of practical problems solving. For an emergency situation on gas field an operationability of technology has crucial importance. For one day of works only the field staff management has received considerable volume of operative information, allowing in quite proved manner to estimate as accident scales and it possible reasons, and so those threats, which this accident can represent for nearby located settlements. So, the imposing of a sketch-map of distribution of a "man-caused" gas deposit on a map of wells location has shown that this deposit does not extend over field border and, hence, does not represent essential threat for nearby settlements. Technology operationability in a whole and practical experience of repeated measurements testifies about possibility of the FSPEF-VERS methods using for operative carrying out of monitoring character survey. Such monitoring survey can be spent on a field after degassing wells drilling to check the process of gas pump-down from a "man-caused" deposit. Geoelectric researches on an emergency site of field on 08.11.08 and the received thus results practically show efficiency and working capacity of the FSPEF-VERS technology in a monitoring mode. The performed experimental works have shown, that process of gas pump-down from a "man-caused" deposit can be traced in time by the FSPEF-VERS technology. It is expedient to locate the additional degassing wells for definitive elimination of accident consequences with taking into account the data of monitoring works by FSPEF-VERS methods. The experiment results testify of practical possibility of these methods using for operative solving the specific problems of oil- and gas-extraction, as well as they are one more weighty arguments to practicability of the more broad using of FSPEF-VERS technologies in geological prospecting process for oil and gas. Levashov S.P., Yakymchuk N.A., Korchagin I.N., Taskynbaev K.M. (2003) Geoelectric investigations oin Kenbye oilfield in Western Kazakhstan. 65th EAGE Conference & Exhibition, Extended Abstracts P154. Levashov S.P., Yakymchuk M.A. Korchagin I.N., Pyschaniy Ju.M., Yakymchuk Ju.M. (2004) Electric-resonance sounding method and its application for the ecological, geological-geophysical and engineering-geological investigations. 66nd EAGE Conference and Technical Exhibition. Extended abstracts P035.
NASA Astrophysics Data System (ADS)
Nass, Andrea; van Gasselt, Stephan; Hargitai, Hendrik; Hare, Trent; Manaud, Nicolas; Karachevtseva, Irina; Kersten, Elke; Roatsch, Thomas; Wählisch, Marita; Kereszturi, Akos
2016-04-01
Cartography is one of the most important communication channels between users of spatial information and laymen as well as the open public alike. This applies to all known real-world objects located either here on Earth or on any other object in our Solar System. In planetary sciences, however, the main use of cartography resides in a concept called planetary mapping with all its various attached meanings: it can be (1) systematic spacecraft observation from orbit, i.e. the retrieval of physical information, (2) the interpretation of discrete planetary surface units and their abstraction, or it can be (3) planetary cartography sensu strictu, i.e., the technical and artistic creation of map products. As the concept of planetary mapping covers a wide range of different information and knowledge levels, aims associated with the concept of mapping consequently range from a technical and engineering focus to a scientific distillation process. Among others, scientific centers focusing on planetary cartography are the United State Geological Survey (USGS, Flagstaff), the Moscow State University of Geodesy and Cartography (MIIGAiK, Moscow), Eötvös Loránd University (ELTE, Hungary), and the German Aerospace Center (DLR, Berlin). The International Astronomical Union (IAU), the Commission Planetary Cartography within International Cartographic Association (ICA), the Open Geospatial Consortium (OGC), the WG IV/8 Planetary Mapping and Spatial Databases within International Society for Photogrammetry and Remote Sensing (ISPRS) and a range of other institutions contribute on definition frameworks in planetary cartography. Classical cartography is nowadays often (mis-)understood as a tool mainly rather than a scientific discipline and an art of communication. Consequently, concepts of information systems, mapping tools and cartographic frameworks are used interchangeably, and cartographic workflows and visualization of spatial information in thematic maps have often been neglected or were left to software systems to decide by some arbitrary default values. The diversity of cartography as a research discipline and its different contributions in geospatial sciences and communication of information and knowledge will be highlighted in this contribution. We invite colleagues from this and other discipline to discuss concepts and topics for joint future collaboration and research.
NASA Astrophysics Data System (ADS)
Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O.
2017-11-01
Land use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial-temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10-30%. The analysis showed that during the period of 1990-2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates that improving consistency of land use map timeseries is of critical importance for assessing land use change and its environmental impact.
NASA Astrophysics Data System (ADS)
Kasprzak, Marek; Jancewicz, Kacper; Michniewicz, Aleksandra
2017-11-01
The paper presents an example of using photographs taken by unmanned aerial vehicles (UAV) and processed using the structure from motion (SfM) procedure in a geomorphological study of rock relief. Subject to analysis is a small rock city in the West Sudetes (SW Poland), known as Starościńskie Skały and developed in coarse granite bedrock. The aims of this paper were, first, to compare UAV/SfM-derived data with the cartographical image based on the traditional geomorphological field-mapping methods and the digital elevation model derived from airborne laser scanning (ALS). Second, to test if the proposed combination of UAV and SfM methods may be helpful in recognizing the detailed structure of granite tors. As a result of conducted UAV flights and digital image post-processing in AgiSoft software, it was possible to obtain datasets (dense point cloud, texture model, orthophotomap, bare-ground-type digital terrain model—DTM) which allowed to visualize in detail the surface of the study area. In consequence, it was possible to distinguish even the very small forms of rock surface microrelief: joints, aplite veins, rills and karren, weathering pits, etc., otherwise difficult to map and measure. The study includes also valorization of particular datasets concerning microtopography and allows to discuss indisputable advantages of using the UAV/SfM-based DTM in geomorphic studies of tors and rock cities, even those located within forest as in the presented case study.
Underpressure in Mesozoic and Paleozoic rock units in the Midcontinent of the United States
Nelson, Philip H.; Gianoutsos, Nicholas J.; Drake, Ronald
2015-01-01
Potentiometric surfaces for Paleozoic strata, based on water well levels and selected drill-stem tests, reveal the control on hydraulic head exerted by outcrops in eastern Kansas and Oklahoma. From outcrop in the east, the westward climb of hydraulic head is much less than that of the land surface, with heads falling so far below land surface that the pressure:depth ratio in eastern Colorado is less than 5.7 kPa/m (0.25 psi/ft). Permian evaporites separate the Paleozoic hydrogeologic units from a Lower Cretaceous (Dakota Group) aquifer, and a highly saline brine plume pervading Paleozoic units in central Kansas and Oklahoma is attributed to dissolution of Permian halite. Underpressure also exists in the Lower Cretaceous hydrogeologic unit in the Denver Basin, which is hydrologically separate from the Paleozoic units. The data used to construct the seven potentiometric surfaces were also used to construct seven maps of pressure:depth ratio. These latter maps are a function of the differences among hydraulic head, land-surface elevation, and formation elevation. As a consequence, maps of pressure:depth ratio reflect the interplay of three topologies that evolved independently with time. As underpressure developed, gas migrated in response to the changing pressure regime, most notably filling the Hugoton gas field in southwestern Kansas. The timing of underpressure development was determined by the timing of outcrop exposure and tilting of the Great Plains. Explorationists in western Kansas and eastern Colorado should not be surprised if a reservoir is underpressured; rather, they should be surprised if it is not.
NASA Astrophysics Data System (ADS)
Daanen, R. P.; Emond, A.; Liljedahl, A. K.; Walter Anthony, K. M.; Barnes, D. L.; Romanovsky, V. E.; Graham, G.
2016-12-01
An airborne electromagnetic (AEM) survey was conducted in Goldstream Valley, Alaska, to map the electrical resistivity of the ground by sending a magnetic field down from a transmitter flying 30m above the ground into the subsurface. The recorded electromagnetic data are a function of the resistivity structure in the ground. The RESOLVE system used in the survey records data for six frequencies, resulting in a depth of investigation from 1-3 meters and up to 150 meters, depending on resistivity of the ground. Recording six frequencies enables the use of inversion methods to find a solution for a discretized resistivity model providing resistivity as a function of depth below ground surface. Using the airborne RESOLVE system in a populated study area involved challenges related to signal noise, access, and public opinion. Noise issues were mainly the consequence of power lines, which produce varying levels and frequencies of noise. We were not permitted to fly directly over homes, cars, animals, or people because of safety concerns, which resulted in gaps in our dataset. Public outreach well in advance of the survey informed residents about the methods used, their benefits to understanding the environment, and their potential impacts on the environment. Inversion of the data provided resistivity models that were interpreted for frozen and thawed ground conditions; these interpretation were constrained by alternate data sources such as well logs, borehole data, ground-based geophysics, and temperature measurements. The resulting permafrost map will be used to interpret groundwater movement into the valley and methane release from thermokarst lakes.
NASA Astrophysics Data System (ADS)
El Alaoui El Fels, Abdelhafid; Alaa, Noureddine; Bachnou, Ali; Rachidi, Said
2018-05-01
The development of the statistical models and flood risk modeling approaches have seen remarkable improvements in their productivities. Their application in arid and semi-arid regions, particularly in developing countries, can be extremely useful for better assessment and planning of flood risk in order to reduce the catastrophic impacts of this phenomenon. This study focuses on the Setti Fadma region (Ourika basin, Morocco) which is potentially threatened by floods and is subject to climatic and anthropogenic forcing. The study is based on two main axes: (i) the extreme flow frequency analysis, using 12 probability laws adjusted by Maximum Likelihood method and (ii) the generation of the flood risk indicator maps are based on the solution proposed by the Nays2DFlood solver of the Hydrodynamic model of two-dimensional Saint-Venant equations. The study is used as a spatial high-resolution digital model (Lidar) in order to get the nearest hydrological simulation of the reality. The results showed that the GEV is the most appropriate law of the extreme flows estimation for different return periods. Taking into consideration the mapping of 100-year flood area, the study revealed that the fluvial overflows extent towards the banks of Ourika and consequently, affects some living areas, cultivated fields and the roads that connects the valley to the city of Marrakech. The aim of this study is to propose new technics of the flood risk management allowing a better planning of the flooded areas.
MER Field Geologic Traverse in Gusev Crater, Mars: Initial Results From the Perspective of Spirit
NASA Technical Reports Server (NTRS)
Crumpler, L.; Cabrol, N.; desMarais, D.; Farmer, J.; Golmbek, M.; Grant, J.; Greely, R.; Grotzinger, J.; Haskin, L.; Arvidson, R.
2004-01-01
This report casts the initial results of the traverse and science investigations by the Mars Exploration Rover (MER) Spirit at Gusev crater [1] in terms of data sets commonly used in field geologic investigations: Local mapping of geologic features, analyses of selected samples, and their location within the local map, and the regional context of the field traverse in terms of the larger geologic and physiographic region. These elements of the field method are represented in the MER characterization of the Gusev traverse by perspective-based geologic/morphologic maps, the placement of the results from Mossbauer, APXS, Microscopic Imager, Mini-TES and Pancam multispectral studies in context within this geologic/ morphologic map, and the placement of the overall traverse in the context of narrow-angle MOC (Mars Orbiter Camera) and descent images. A major campaign over a significance fraction of the mission will be the first robotic traverse of the ejecta from a Martian impact crater along an approximate radial from the crater center. The Mars Exploration Rovers have been conceptually described as 'robotic field geologists', that is, a suite of instruments with mobility that enables far-field traverses to multiple sites located within a regional map/image base at which in situ analyses may be done. Initial results from MER, where the field geologic method has been used throughout the initial course of the investigation, confirm that this field geologic model is applicable for remote planetary surface exploration. The field geologic method makes use of near-field geologic characteristics ('outcrops') to develop an understanding of the larger geologic context through continuous loop of rational steps focused on real-time hypothesis identification and testing. This poster equates 'outcrops' with the locations of in situ investigations and 'regional context' with the geology over distance of several kilometers. Using this fundamental field geologic method, we have identified the basic local geologic materials on the floor of Gusev at this site, their compositions and likely lithologies, origins, processes that have modified these materials, and their potential significance in the interpretation of the regional geology both spatially and temporally.
A low-frequency near-field interferometric-TOA 3-D Lightning Mapping Array
NASA Astrophysics Data System (ADS)
Lyu, Fanchao; Cummer, Steven A.; Solanki, Rahulkumar; Weinert, Joel; McTague, Lindsay; Katko, Alex; Barrett, John; Zigoneanu, Lucian; Xie, Yangbo; Wang, Wenqi
2014-11-01
We report on the development of an easily deployable LF near-field interferometric-time of arrival (TOA) 3-D Lightning Mapping Array applied to imaging of entire lightning flashes. An interferometric cross-correlation technique is applied in our system to compute windowed two-sensor time differences with submicrosecond time resolution before TOA is used for source location. Compared to previously reported LF lightning location systems, our system captures many more LF sources. This is due mainly to the improved mapping of continuous lightning processes by using this type of hybrid interferometry/TOA processing method. We show with five station measurements that the array detects and maps different lightning processes, such as stepped and dart leaders, during both in-cloud and cloud-to-ground flashes. Lightning images mapped by our LF system are remarkably similar to those created by VHF mapping systems, which may suggest some special links between LF and VHF emission during lightning processes.
Efficient receptive field tiling in primate V1
Nauhaus, Ian; Nielsen, Kristina J.; Callaway, Edward M.
2017-01-01
The primary visual cortex (V1) encodes a diverse set of visual features, including orientation, ocular dominance (OD) and spatial frequency (SF), whose joint organization must be precisely structured to optimize coverage within the retinotopic map. Prior experiments have only identified efficient coverage based on orthogonal maps. Here, we used two-photon calcium imaging to reveal an alternative arrangement for OD and SF maps in macaque V1; their gradients run parallel but with unique spatial periods, whereby low SF regions coincide with monocular regions. Next, we mapped receptive fields and find surprisingly precise micro-retinotopy that yields a smaller point-image and requires more efficient inter-map geometry, thus underscoring the significance of map relationships. While smooth retinotopy is constraining, studies suggest that it improves both wiring economy and the V1 population code read downstream. Altogether, these data indicate that connectivity within V1 is finely tuned and precise at the level of individual neurons. PMID:27499086
NASA Astrophysics Data System (ADS)
Seijmonsbergen, Harry; de Jong, Mat; Anders, Niels; de Graaff, Leo; Cammeraat, Erik
2013-04-01
Geoconservation potential is, in our approach, closely linked to the spatial distribution of geomorphological sites and thus, geomorphological inventories. Detailed geomorphological maps are translated, using a standardized workflow, into polygonal maps showing the potential geoconservation value of landforms. A new development is to semi-automatically extract in a GIS geomorphological information from high resolution topographical data, such as LiDAR, and combine this with conventional data types (e.g. airphotos, geological maps) into geomorphological maps. Such hybrid digital geomorphological maps are also easily translated into digital information layers which show the geoconservation potential in an area. We present a protocol for digital geomorphological mapping illustrated with an example for the municipality of Lech in Vorarlberg (Austria). The protocol consists of 5 steps: 1. data preparation, 2. generating training and validation samples, 3. parameterization, 4. feature extraction, and 5. assessing classification accuracy. The resulting semi-automated digital geomorphological map is then further validated, in two ways. Firstly, the map is manually checked with the help of a series of digital datasets (e.g. airphotos) in a digital 3D environment, such as ArcScene. The second validation is field visit, which preferably occurs in parallel to the digital evaluation, so that updates are quickly achieved. The final digital and coded geomorphological information layer is converted into a potential geoconservation map by weighting and ranking the landforms based on four criteria: scientific relevance, frequency of occurrence, disturbance, and environmental vulnerability. The criteria with predefined scores for the various landform types are stored in a separate GIS attribute table, which is joined to the attribute table of the hybrid geomorphological information layer in an automated procedure. The results of the assessment can be displayed as the potential geoconservation map or as GeoPDF in a separate information layer. The Lech example highlights the problems ski resorts in a fragile high-alpine mountain environment are facing. The ongoing development poses a challenge to the communities. Which place do the high-ranking potential geoconservation sites get in the landscape planning and management? Must they be sacrificed to the economic benefits of winter tourism or, conversely, can their value be exploited in summer tourism - or is their intrinsic value enough to justify protection? Our method is transparent, takes into account the total landscape, and allows for rapid updating of the geodatabase. Evaluating the change in geoconservation potential over time, as a consequence of expansion of infrastructure or change in intensity of natural processes, is possible. In addition, model scenarios can be run to assess the impact of man-induced change on the potential geoconservation value of landforms.
Douglass, John K; Wehling, Martin F
2016-12-01
A highly automated goniometer instrument (called FACETS) has been developed to facilitate rapid mapping of compound eye parameters for investigating regional visual field specializations. The instrument demonstrates the feasibility of analyzing the complete field of view of an insect eye in a fraction of the time required if using non-motorized, non-computerized methods. Faster eye mapping makes it practical for the first time to employ sample sizes appropriate for testing hypotheses about the visual significance of interspecific differences in regional specializations. Example maps of facet sizes are presented from four dipteran insects representing the Asilidae, Calliphoridae, and Stratiomyidae. These maps provide the first quantitative documentation of the frontal enlarged-facet zones (EFZs) that typify asilid eyes, which, together with the EFZs in male Calliphoridae, are likely to be correlated with high-spatial-resolution acute zones. The presence of EFZs contrasts sharply with the almost homogeneous distribution of facet sizes in the stratiomyid. Moreover, the shapes of EFZs differ among species, suggesting functional specializations that may reflect differences in visual ecology. Surveys of this nature can help identify species that should be targeted for additional studies, which will elucidate fundamental principles and constraints that govern visual field specializations and their evolution.
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
Field Mapping System for Solenoid Magnet
NASA Astrophysics Data System (ADS)
Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.
2007-01-01
A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.
Educational Technology--Mapping the Terrain with Bernstein as Cartographer
ERIC Educational Resources Information Center
Czerniewicz, L.
2010-01-01
This paper uses the literature of educational technology as the site of analysis in order to map the field of educational technology. Having considered Kuhn and Bourdieu's theories, the paper frames the analysis of the field in Bernsteinian terms as a horizontal knowledge structure in a vertical knowledge discourse. Using the concepts of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Punjabi, Alkesh; Ali, Halima
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates ({psi},{theta}) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. {psi} is the toroidal magnetic flux and {theta} is the poloidal angle. Natural canonical coordinates ({psi},{theta},{phi}) can be transformed to physical position (R,Z,{phi}) using a canonical transformation. (R,Z,{phi}) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonicalmore » coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.« less
NASA Astrophysics Data System (ADS)
Punjabi, Alkesh; Ali, Halima
2008-12-01
A new approach to integration of magnetic field lines in divertor tokamaks is proposed. In this approach, an analytic equilibrium generating function (EGF) is constructed in natural canonical coordinates (ψ,θ) from experimental data from a Grad-Shafranov equilibrium solver for a tokamak. ψ is the toroidal magnetic flux and θ is the poloidal angle. Natural canonical coordinates (ψ,θ,φ) can be transformed to physical position (R,Z,φ) using a canonical transformation. (R,Z,φ) are cylindrical coordinates. Another canonical transformation is used to construct a symplectic map for integration of magnetic field lines. Trajectories of field lines calculated from this symplectic map in natural canonical coordinates can be transformed to trajectories in real physical space. Unlike in magnetic coordinates [O. Kerwin, A. Punjabi, and H. Ali, Phys. Plasmas 15, 072504 (2008)], the symplectic map in natural canonical coordinates can integrate trajectories across the separatrix surface, and at the same time, give trajectories in physical space. Unlike symplectic maps in physical coordinates (x,y) or (R,Z), the continuous analog of a symplectic map in natural canonical coordinates does not distort trajectories in toroidal planes intervening the discrete map. This approach is applied to the DIII-D tokamak [J. L. Luxon and L. E. Davis, Fusion Technol. 8, 441 (1985)]. The EGF for the DIII-D gives quite an accurate representation of equilibrium magnetic surfaces close to the separatrix surface. This new approach is applied to demonstrate the sensitivity of stochastic broadening using a set of perturbations that generically approximate the size of the field errors and statistical topological noise expected in a poloidally diverted tokamak. Plans for future application of this approach are discussed.
Satellite SAR applied in offhore wind resource mapping: possibilities and limitations
NASA Astrophysics Data System (ADS)
Hasager, C. B.
Satellite remote sensing of ocean wind fields from Synthetic Aperture Radar (SAR) observations is presented. The study is based on a series of more than 60 ERS-2 SAR satellite scenes from the Horns Rev in the North Sea. The wind climate from the coastline and 80 km offshore is mapped in detail with a resolution of 400 m by 400 m grid cells. Spatial variations in wind speed as a function of wind direction and fetch are observed and discussed. The satellite wind fields are compared to in-situ observations from a tall offshore meteorological mast at which wind speed at 4 levels are analysed. The mast is located 14 km offshore and the wind climate is observed continously since May 1999. For offshore wind resource mapping the SAR-based wind field maps can constitute an alternative to in-situ observations and a practical method is developed for applied use in WAsP (Wind Atlas Analysis and Application Program). The software is the de facto world standard tool used for prediction of wind climate and power production from wind turbines and wind farms. The possibilities and limitations on achieving offshore wind resource estimates using SAR-based wind fields in lieu of in-situ data are discussed. It includes a presentation of the footprint area-averaging techniques tailored for SAR-based wind field maps. Averaging techniques are relevant for the reduction of noise apparent in SAR wind speed maps. Acknowledgments: Danish Research Agency (SAT-WIND Sagsnr. 2058-03-0006) for funding, ESA (EO-1356, AO-153) for ERS-2 SAR scenes, and Elsam Engineering A/S for in-situ met-data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuppann, C.W.
1989-09-01
Correlation of productive zones at the Folsomville field is difficult because lithology in the upper part of the Ste. Genevieve Limestone, which contains oolite bodies, is both laterally and vertically variable. The problem is further complicated by significant thickness variations of this interval that result in juxtaposed positions of porosity zones when geophysical logs are correlated side by side. Subsurface slice mapping, now an infrequently used method of subsurface analysis, can resolve complex geometries of oolite bodies and account for seemingly incongruous patterns of hydrocarbon production. Any mappable parameter can be envisioned in three dimensions by using the slice-map method.more » Net porosity and lithofacies slice maps, constructed at 2-ft intervals beneath a persistent stratigraphic marker near the top of the Ste. Genevieve Limestone, describe the stratigraphic geometries of oolite reservoirs at the Folsomville field. Integrating fluid content and well-production histories with the slice maps allows patterns of hydrocarbon production to be deciphered, a procedure that should provide a valuable guide in designing the most effect enhanced recovery program for the field.« less
Abbas, Zaheer; Gras, Vincent; Möllenhoff, Klaus; Oros-Peusquens, Ana-Maria; Shah, Nadim Joni
2015-02-01
Quantitative water content mapping in vivo using MRI is a very valuable technique to detect, monitor and understand diseases of the brain. At 1.5 T, this technology has already been successfully used, but it has only recently been applied at 3T because of significantly increased RF field inhomogeneity at the higher field strength. To validate the technology at 3T, we estimate and compare in vivo quantitative water content maps at 1.5 T and 3T obtained with a protocol proposed recently for 3T MRI. The proposed MRI protocol was applied on twenty healthy subjects at 1.5 T and 3T; the same post-processing algorithms were used to estimate the water content maps. The 1.5 T and 3T maps were subsequently aligned and compared on a voxel-by-voxel basis. Statistical analysis was performed to detect possible differences between the estimated 1.5 T and 3T water maps. Our analysis indicates that the water content values obtained at 1.5 T and 3T did not show significant systematic differences. On average the difference did not exceed the standard deviation of the water content at 1.5 T. Furthermore, the contrast-to-noise ratio (CNR) of the estimated water content map was increased at 3T by a factor of at least 1.5. Vulnerability to RF inhomogeneity increases dramatically with the increasing static magnetic field strength. However, using advanced corrections for the sensitivity profile of the MR coils, it is possible to preserve quantitative accuracy while benefiting from the increased CNR at the higher field strength. Indeed, there was no significant difference in the water content values obtained in the brain at 1.5 T and 3T. Copyright © 2014 Elsevier Inc. All rights reserved.
Can Polar Fields Explain Missing Open Flux?
NASA Astrophysics Data System (ADS)
Linker, J.; Downs, C.; Caplan, R. M.; Riley, P.; Mikic, Z.; Lionello, R.
2017-12-01
The "open" magnetic field is the portion of the Sun's magnetic field that extends out into the heliosphere and becomes the interplanetary magnetic field (IMF). Both the IMF and the Sun's magnetic field in the photosphere have been measured for many years. In the standard paradigm of coronal structure, the open magnetic field originates primarily in coronal holes. The regions that are magnetically closed trap the coronal plasma and give rise to the streamer belt. This basic picture is qualitatively reproduced by models of coronal structure using photospheric magnetic fields as input. If this paradigm is correct, there are two primary observational constraints on the models: (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. Linker et al. (2017, ApJ, submitted) investigated the July 2010 time period for a range of observatory maps and both PFSS and MHD models. We found that all of the model/map combinations underestimated the interplanetary magnetic flux, unless the modeled open field regions were larger than observed coronal holes. An estimate of the open magnetic flux made entirely from solar observations (combining detected coronal hole boundaries with observatory synoptic magnetic maps) also underestimated the interplanetary magnetic flux. The magnetic field near the Sun's poles is poorly observed and may not be well represented in observatory maps. In this paper, we explore whether an underestimate of the polar magnetic flux during this time period could account for the overall underestimate of open magnetic flux. Research supported by NASA, AFOSR, and NSF.
[Bibliometric map of Spain 1996-2004: biomedicine and health sciences].
Méndez-Vásquez, Raúl Isaac; Suñén-Pinyol, Eduard; Cervelló, Rosa; Camí, Jordi
2008-03-01
The study presents the bibliometric analysis of the Spanish scientific output in biomedicine during 1996-2004. This is the last edition of a series of bibliometric studies aimed to characterize the Spanish scientific performance in biomedicine. The analysis was restricted to citable documents for which simple and composite bibliometric indicators were obtained at different aggregation levels: fields, autonomous regions, institutional sectors and research centres. The documents were selected according to the Journal Citation Reports, and were assigned to affiliation centres following an integer counting scheme after an exhaustive normalization of the affiliation addresses. Compared to the period 1994-2002, research activity in biomedicine grew as much as Spain: 8.9% in the number of documents; 22.5% citations; 12.5% citation per document average and 27.2% international cooperation. Besides, biomedicine showed the highest citation per document average compared to other major fields. International cooperation in biomedicine (27.2%) reached the European average. The documents published in international cooperation account for the half of citations to documents in biomedicine. The number of documents and citations belonging to the clinic medicine subfield and to the health sector showed the highest growth. In general, these results reproduce the tendencies described in prior studies. The documents in biomedicine showed a highly asymmetric distribution among institutional sectors, autonomous regions, scientific fields and research centres. The remarkably increase in the output of clinical medicine field and in the health sector could be the consequence of important science policy actions undertaken in these areas in the last years.
Maternal environment affects the genetic basis of seed dormancy in Arabidopsis thaliana.
Postma, Froukje M; Ågren, Jon
2015-02-01
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions. © 2015 John Wiley & Sons Ltd.
The monophasic action potential upstroke: a means of characterizing local conduction.
Levine, J H; Moore, E N; Kadish, A H; Guarnieri, T; Spear, J F
1986-11-01
The upstrokes of monophasic action potentials (MAPs) recorded with an extracellular pressure electrode were characterized in isolated canine tissue preparations in vitro. The characteristics of the MAP upstroke were compared with those of the local action potential foot as well as with the characteristics of approaching electrical activation during uniform and asynchronous conduction. The upstroke of the MAP was exponential during uniform conduction. The time constant of rise of the MAP upstroke (TMAP) correlated with that of the action potential foot (Tfoot): TMAP + 1.01 Tfoot + 0.50; r2 = .80. Furthermore, changes in Tfoot with alterations in cycle length were associated with similar changes in TMAP: Tfoot = 1.06 TMAP - 0.11; r2 = .78. In addition, TMAP and Tfoot both deviated from exponential during asynchronous activation; the inflections that developed in the MAP upstroke correlated in time with intracellular action potential upstrokes that were asynchronous in onset in these tissues. Finally, the field of view of the MAP was determined and was found to be dependent in part on tissue architecture and the space constant. Specifically, the field of view of the MAP was found to be greater parallel compared with transverse to fiber orientation (6.02 +/- 1.74 vs 3.03 +/- 1.10 mm; p less than .01). These data suggest that the MAP upstroke may be used to define and characterize local electrical activation. The relatively large field of view of the MAP suggests that this technique may be a sensitive means to record focal membrane phenomena in vivo.
Dartmouth College Earth Sciences Mobile Field Program
NASA Astrophysics Data System (ADS)
Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.
2011-12-01
For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students spend several weeks conducting traditional multiday mapping of complexly-deformed sedimentary, metamorphic and igneous rocks, and also collect and interpret geobiological, geochemical, geophysical, paleoclimatological, paleontological, and remote-sensing data outside the context of traditional mapping. During the Mono Lake segment, for example, students examine the interaction of ecology and chemistry in alkaline lakes. During the Canadian Rockies segment, students reconstruct Holocene paleoclimate using tree stumps and fossil wood detritus marking former positions of an alpine glacier. While a mobile, wide-ranging field program requires complicated logistics and potentially high per-student costs, the diversity of research topics, geological environments, and field techniques have made it a successful cornerstone of the Dartmouth Earth Sciences major. After the Stretch experience, significant fractions of our students become involved in ongoing faculty research, pursue senior theses, and go on to pursue Earth Sciences graduate degrees.
A conceptual framework and classification of capability areas for business process maturity
NASA Astrophysics Data System (ADS)
Van Looy, Amy; De Backer, Manu; Poels, Geert
2014-03-01
The article elaborates on business process maturity, which indicates how well an organisation can perform based on its business processes, i.e. on its way of working. This topic is of paramount importance for managers who try to excel in today's competitive world. Hence, business process maturity is an emerging research field. However, no consensus exists on the capability areas (or skills) needed to excel. Moreover, their theoretical foundation and synergies with other fields are frequently neglected. To overcome this gap, our study presents a conceptual framework with six main capability areas and 17 sub areas. It draws on theories regarding the traditional business process lifecycle, which are supplemented by recognised organisation management theories. The comprehensiveness of this framework is validated by mapping 69 business process maturity models (BPMMs) to the identified capability areas, based on content analysis. Nonetheless, as a consensus neither exists among the collected BPMMs, a classification of different maturity types is proposed, based on cluster analysis and discriminant analysis. Consequently, the findings contribute to the grounding of business process literature. Possible future avenues are evaluating existing BPMMs, directing new BPMMs or investigating which combinations of capability areas (i.e. maturity types) contribute more to performance than others.
Mapping of electrical potential distribution with charged particle beams. [using an X-ray source
NASA Technical Reports Server (NTRS)
Robinson, J. W.
1979-01-01
Potentials were measured using a beam of soft X-rays in air at 2 x 10 to the -5 power Torr. Ions were detected by a continuous-dynode electron multiplier after they passed through a retarding field. Ultimate resolution depends upon the diameter of the X-ray beam which was 3 mm. When the fields in the region of interest were such to disperse the ions, only a small fraction were detected and the method of measurement was not very reliable. Yet reasonable data could be collected if the ions traveled in parallel paths toward the detector. Development should concentrate on increasing the aperture of the detector from the pinhole which was used to something measured in centimeters. Also increasing the strength of the source would provide a stronger signal and more reliable data. Measurements were made at an estimated ion current to 10 to the -15 power A from a 10 cm length of the X-ray beam, this current being several orders of magnitude below what would have a perturbing effect on the region to be measured. Consequently, the source strength can be increased and prospects for this method of measurement are good.
Adapting line integral convolution for fabricating artistic virtual environment
NASA Astrophysics Data System (ADS)
Lee, Jiunn-Shyan; Wang, Chung-Ming
2003-04-01
Vector field occurs not only extensively in scientific applications but also in treasured art such as sculptures and paintings. Artist depicts our natural environment stressing valued directional feature besides color and shape information. Line integral convolution (LIC), developed for imaging vector field in scientific visualization, has potential of producing directional image. In this paper we present several techniques of exploring LIC techniques to generate impressionistic images forming artistic virtual environment. We take advantage of directional information given by a photograph, and incorporate many investigations to the work including non-photorealistic shading technique and statistical detail control. In particular, the non-photorealistic shading technique blends cool and warm colors into the photograph to imitate artists painting convention. Besides, we adopt statistical technique controlling integral length according to image variance to preserve details. Furthermore, we also propose method for generating a series of mip-maps, which revealing constant strokes under multi-resolution viewing and achieving frame coherence in an interactive walkthrough system. The experimental results show merits of emulating satisfyingly and computing efficiently, as a consequence, relying on the proposed technique successfully fabricates a wide category of non-photorealistic rendering (NPR) application such as interactive virtual environment with artistic perception.
FMM: a web server for metabolic pathway reconstruction and comparative analysis.
Chou, Chih-Hung; Chang, Wen-Chi; Chiu, Chih-Min; Huang, Chih-Chang; Huang, Hsien-Da
2009-07-01
Synthetic Biology, a multidisciplinary field, is growing rapidly. Improving the understanding of biological systems through mimicry and producing bio-orthogonal systems with new functions are two complementary pursuits in this field. A web server called FMM (From Metabolite to Metabolite) was developed for this purpose. FMM can reconstruct metabolic pathways form one metabolite to another metabolite among different species, based mainly on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and other integrated biological databases. Novel presentation for connecting different KEGG maps is newly provided. Both local and global graphical views of the metabolic pathways are designed. FMM has many applications in Synthetic Biology and Metabolic Engineering. For example, the reconstruction of metabolic pathways to produce valuable metabolites or secondary metabolites in bacteria or yeast is a promising strategy for drug production. FMM provides a highly effective way to elucidate the genes from which species should be cloned into those microorganisms based on FMM pathway comparative analysis. Consequently, FMM is an effective tool for applications in synthetic biology to produce both drugs and biofuels. This novel and innovative resource is now freely available at http://FMM.mbc.nctu.edu.tw/.
NASA Astrophysics Data System (ADS)
Stumpf, Harald
2006-09-01
Based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents, in previous papers the effect of CP-symmetry breaking on the effective dynamics of these particles was calculated. Motivated by the phenomenological procedure in this paper, isospin symmetry breaking will be added and the physical consequences of these calculations will be discussed. The dynamical law of the fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. The corresponding effective dynamics is derived by algebraic weak mapping theorems. In contrast to the commonly applied modifications of the quark mass matrices, CP-symmetry breaking is introduced into this algebraic formalism by an inequivalent vacuum with respect to the CP-invariant case, represented by a modified spinor field propagator. This leads to an extension of the standard model as effective theory which contains besides the "electric" electroweak bosons additional "magnetic" electroweak bosons and corresponding interactions. If furthermore the isospin invariance of the propagator is broken too, it will be demonstrated in detail that in combination with CP-symmetry breaking this induces a considerable modification of electroweak nuclear reaction rates.