Linking biodiversity to ecosystem function: Implications for conservation ecology
Schwartz, M.W.; Brigham, C.A.; Hoeksema, J.D.; Lyons, K.G.; Mills, M.H.; van Mantgem, P.
2000-01-01
We evaluate the empirical and theoretical support for the hypothesis that a large proportion of native species richness is required to maximize ecosystem stability and sustain function. This assessment is important for conservation strategies because sustenance of ecosystem functions has been used as an argument for the conservation of species. If ecosystem functions are sustained at relatively low species richness, then arguing for the conservation of ecosystem function, no matter how important in its own right, does not strongly argue for the conservation of species. Additionally, for this to be a strong conservation argument the link between species diversity and ecosystem functions of value to the human community must be clear. We review the empirical literature to quantify the support for two hypotheses: (1) species richness is positively correlated with ecosystem function, and (2) ecosystem functions do not saturate at low species richness relative to the observed or experimental diversity. Few empirical studies demonstrate improved function at high levels of species richness. Second, we analyze recent theoretical models in order to estimate the level of species richness required to maintain ecosystem function. Again we find that, within a single trophic level, most mathematical models predict saturation of ecosystem function at a low proportion of local species richness. We also analyze a theoretical model linking species number to ecosystem stability. This model predicts that species richness beyond the first few species does not typically increase ecosystem stability. One reason that high species richness may not contribute significantly to function or stability is that most communities are characterized by strong dominance such that a few species provide the vast majority of the community biomass. Rapid turnover of species may rescue the concept that diversity leads to maximum function and stability. The role of turnover in ecosystem function and stability has not been investigated. Despite the recent rush to embrace the linkage between biodiversity and ecosystem function, we find little support for the hypothesis that there is a strong dependence of ecosystem function on the full complement of diversity within sites. Given this observation, the conservation community should take a cautious view of endorsing this linkage as a model to promote conservation goals.
[Assessment on the changing conditions of ecosystems in key ecological function zones in China].
Huang, Lin; Cao, Wei; Wu, Dan; Gong, Guo-li; Zhao, Guo-song
2015-09-01
In this paper, the dynamics of ecosystem macrostructure, qualities and core services during 2000 and 2010 were analyzed for the key ecological function zones of China, which were classified into four types of water conservation, soil conservation, wind prevention and sand fixation, and biodiversity maintenance. In the water conservation ecological function zones, the areas of forest and grassland ecosystems were decreased whereas water bodies and wetland were increased in the past 11 years, and the water conservation volume of forest, grassland and wetland ecosystems increased by 2.9%. This region needs to reverse the decreasing trends of forest and grassland ecosystems. In the soil conservation ecological function zones, the area of farmland ecosystem was decreased, and the areas of forest, grassland, water bodies and wetland ecosystems were increased. The total amount of the soil erosion was reduced by 28.2%, however, the soil conservation amount of ecosystems increased by 38.1%. In the wind prevention and sand fixation ecological function zones, the areas of grassland, water bodies and wetland ecosystems were decreased, but forest and farmland ecosystems were increased. The unit amount of the soil. wind erosion was reduced and the sand fixation amount of ecosystems increased lightly. In this kind of region that is located in arid and semiarid areas, ecological conservation needs to reduce farmland area and give priority to the protection of the original ecological system. In the biodiversity maintenance ecological function zones, the areas of grassland and desert ecosystems were decreased and other types were increased. The human disturbances showed a weakly upward trend and needs to be reduced. The key ecological function zones should be aimed at the core services and the protecting objects, to assess quantitatively on the effectiveness of ecosystem conservation and improvement.
Bowker, M.A.; Miller, M.E.; Belnap, J.; Sisk, T.D.; Johnson, N.C.
2008-01-01
Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000-ha Grand Staircase-Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function- and diversity-based conservation-value layers on the potential degradation layer. Different methods for ascribing conservation-value and conservation-priority layers all yielded strikingly similar results (r = 0.89-0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant-community properties) and that such information can be used to prioritize conservation effort in drylands. ?? 2008 Society for Conservation Biology.
[Effects of small hydropower substitute fuel project on forest ecosystem services].
Yu, Hai Yan; Zha, Tong Gang; Nie, Li Shui; Lyu, Zhi Yuan
2016-10-01
Based on the Forest Ecosystem Services Assessment Standards (LY/T 1721-2008) issued by the State Forestry Administration, this paper evaluated four key functions of forest ecosystems, i.e., water conservation, soil conservation, carbon fixation and oxygen release, and nutrient accumulation. Focusing on the project area of Majiang County in Guizhou Province, this study provided some quantitative evidence that the implementation of the small hydropower substituting fuel project had positive effects on the values and material quantities of ecosystem service functions. The results showed that the small hydropower substituting fuel project had a significant effect on the increase of forest ecosystem services. Water conservation quantity of Pinus massoniana and Cupressus funebris plantations inside project area was 20662.04 m 3 ·hm -2 ·a -1 , 20.5% higher than outside project area, with soil conservation quantity of 119.1 t·hm -2 ·a -1 , 29.7% higher than outside project area, carbon fixation and oxygen release of 220.49 t·hm -2 ·a -1 , 40.2% higher than outside project area, and forest tree nutrition accumulation of 3.49 t·hm -2 ·a -1 , 48.5% higher than outside project area. Small hydropower substituting fuel project for increasing the quota of forest ecosystem service function value was in the order of carbon fixation and oxygen release function (71400 yuan·hm -2 ·a -1 ) > water conservation function (60100 yuan·hm -2 ·a -1 ) > tree nutrition accumulation function (13800 yuan·hm -2 ·a -1 ) > soil conservation function (8100 yuan·hm -2 ·a -1 ). Small hydropower substituting fuel project played an important role for improving the forest ecological service function value and realizing the sustainable development of forest.
Incorporating surrogate species and seascape connectivity to improve marine conservation outcomes.
Olds, Andrew D; Connolly, Rod M; Pitt, Kylie A; Maxwell, Paul S; Aswani, Shankar; Albert, Simon
2014-08-01
Conservation focuses on maintaining biodiversity and ecosystem functioning, but gaps in our knowledge of species biology and ecological processes often impede progress. For this reason, focal species and habitats are used as surrogates for multispecies conservation, but species-based approaches are not widely adopted in marine ecosystems. Reserves in the Solomon Islands were designed on the basis of local ecological knowledge to conserve bumphead parrotfish (Bolbometopon muricatum) and to protect food security and ecosystem functioning. Bumphead parrotfish are an iconic threatened species and may be a useful surrogate for multispecies conservation. They move across tropical seascapes throughout their life history, in a pattern of habitat use that is shared with many other species. We examined their value as a conservation surrogate and assessed the importance of seascape connectivity (i.e., the physical connectedness of patches in the seascape) among reefs, mangroves, and seagrass to marine reserve performance. Reserves were designed for bumphead parrotfish, but also enhanced the abundance of other species. Integration of local ecological knowledge and seascape connectivity enhanced the abundance of 17 other harvested fish species in local reserves. This result has important implications for ecosystem functioning and local villagers because many of these species perform important ecological processes and provide the foundation for extensive subsistence fisheries. Our findings suggest greater success in maintaining and restoring marine ecosystems may be achieved when they are managed to conserve surrogate species and preserve functional seascape connections. © 2014 Society for Conservation Biology.
Managing forest ecosystems to conserve fungus diversity and sustain wild mushroom harvests.
D. Pilz; R. Molina
1996-01-01
Ecosystem management is the dominant paradigm for managing the forests of the Pacific Northwest. It integrates biological, ecological, geophysical, and silvicultural information to develop adaptive management practices that conserve biological diversity and maintain ecosystem functioning while meeting human needs for the sustainable production of forest products. Fungi...
Giving credit where credit is due: increasing landowner compensation for ecosystem services
Gina L. LaRocco; Robert L. Deal
2011-01-01
Conservation of biodiversity serves a number of human needs, including maintenance of ecosystem services that are critical to the sustainability of all life. Effective biodiversity conservation will require better landowner incentives for restoration and protection of ecosystems. Many services produced from healthy, functioning landscapes are not well recognized in...
Response diversity determines the resilience of ecosystems to environmental change.
Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro
2013-05-01
A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from measures (such as response diversity) that may be more effective proxies for ecosystem stability and resilience. Certain conclusions and recommendations of earlier studies using these traditional measures as indicators of ecosystem resilience thus may be suspect. We believe that functional ecology perspectives incorporating the effects and responses of diversity are essential for development of management strategies to safeguard (and restore) optimal ecosystem functionality (especially multifunctionality). Our review highlights these issues and we envision our work generating debate around the relationship between biodiversity and ecosystem functionality, and leading to improved conservation priorities and biodiversity management practices that maximize ecosystem resilience in the face of uncertain environmental change. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems.
Barnosky, Anthony D; Hadly, Elizabeth A; Gonzalez, Patrick; Head, Jason; Polly, P David; Lawing, A Michelle; Eronen, Jussi T; Ackerly, David D; Alex, Ken; Biber, Eric; Blois, Jessica; Brashares, Justin; Ceballos, Gerardo; Davis, Edward; Dietl, Gregory P; Dirzo, Rodolfo; Doremus, Holly; Fortelius, Mikael; Greene, Harry W; Hellmann, Jessica; Hickler, Thomas; Jackson, Stephen T; Kemp, Melissa; Koch, Paul L; Kremen, Claire; Lindsey, Emily L; Looy, Cindy; Marshall, Charles R; Mendenhall, Chase; Mulch, Andreas; Mychajliw, Alexis M; Nowak, Carsten; Ramakrishnan, Uma; Schnitzler, Jan; Das Shrestha, Kashish; Solari, Katherine; Stegner, Lynn; Stegner, M Allison; Stenseth, Nils Chr; Wake, Marvalee H; Zhang, Zhibin
2017-02-10
Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change. Copyright © 2017, American Association for the Advancement of Science.
A fungal perspective on conservation biology.
Heilmann-Clausen, Jacob; Barron, Elizabeth S; Boddy, Lynne; Dahlberg, Anders; Griffith, Gareth W; Nordén, Jenni; Ovaskainen, Otso; Perini, Claudia; Senn-Irlet, Beatrice; Halme, Panu
2015-02-01
Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem-based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi, their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation: as providers of habitats and processes important for other organisms; as indicators of desired or undesired trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links between human societies and the natural world because of their value as food, medicine, and biotechnological tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate the crucial role of fungi in nature. © 2014 Society for Conservation Biology.
Ecosystem Services in Conservation Planning: Targeted Benefits vs. Co-Benefits or Costs?
Chan, Kai M. A.; Hoshizaki, Lara; Klinkenberg, Brian
2011-01-01
There is growing support for characterizing ecosystem services in order to link conservation and human well-being. However, few studies have explicitly included ecosystem services within systematic conservation planning, and those that have follow two fundamentally different approaches: ecosystem services as intrinsically-important targeted benefits vs. substitutable co-benefits. We present a first comparison of these two approaches in a case study in the Central Interior of British Columbia. We calculated and mapped economic values for carbon storage, timber production, and recreational angling using a geographical information system (GIS). These ‘marginal’ values represent the difference in service-provision between conservation and managed forestry as land uses. We compared two approaches to including ecosystem services in the site-selection software Marxan: as Targeted Benefits, and as Co-Benefits/Costs (in Marxan's cost function); we also compared these approaches with a Hybrid approach (carbon and angling as targeted benefits, timber as an opportunity cost). For this analysis, the Co-Benefit/Cost approach yielded a less costly reserve network than the Hybrid approach (1.6% cheaper). Including timber harvest as an opportunity cost in the cost function resulted in a reserve network that achieved targets equivalently, but at 15% lower total cost. We found counter-intuitive results for conservation: conservation-compatible services (carbon, angling) were positively correlated with each other and biodiversity, whereas the conservation-incompatible service (timber) was negatively correlated with all other networks. Our findings suggest that including ecosystem services within a conservation plan may be most cost-effective when they are represented as substitutable co-benefits/costs, rather than as targeted benefits. By explicitly valuing the costs and benefits associated with services, we may be able to achieve meaningful biodiversity conservation at lower cost and with greater co-benefits. PMID:21915318
NASA Astrophysics Data System (ADS)
Lv, Xizhi; Zuo, Zhongguo; Xiao, Peiqing
2017-06-01
With increasing demand for water resources and frequently a general deterioration of local water resources, water conservation by forests has received considerable attention in recent years. To evaluate water conservation capacities of different forest ecosystems in mountainous areas of Loess Plateau, the landscape of forests was divided into 18 types in Loess Plateau. Under the consideration of the factors such as climate, topography, plant, soil and land use, the water conservation of the forest ecosystems was estimated by means of InVEST model. The result showed that 486417.7 hm2 forests in typical mountain areas were divided into 18 forest types, and the total water conservation quantity was 1.64×1012m3, equaling an average of water conversation quantity of 9.09×1010m3. There is a great difference in average water conversation capacity among various forest types. The water conservation function and its evaluation is crucial and complicated issues in the study of ecological service function in modern times.
Is U.S. climatic diversity well represented within the existing federal protection network?
Enric Batllori; Carol Miller; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz
2014-01-01
Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans....
Cachera, Marie; Le Loc'h, François
2017-08-01
The relationships between diversity and ecosystem functioning have become a major focus of science. A crucial issue is to estimate functional diversity, as it is intended to impact ecosystem dynamics and stability. However, depending on the ecosystem, it may be challenging or even impossible to directly measure ecological functions and thus functional diversity. Phylogenetic diversity was recently under consideration as a proxy for functional diversity. Phylogenetic diversity is indeed supposed to match functional diversity if functions are conservative traits along evolution. However, in case of adaptive radiation and/or evolutive convergence, a mismatch may appear between species phylogenetic and functional singularities. Using highly threatened taxa, sharks, this study aimed to explore the relationships between phylogenetic and functional diversities and singularities. Different statistical computations were used in order to test both methodological issue (phylogenetic reconstruction) and overall a theoretical questioning: the predictive power of phylogeny for function diversity. Despite these several methodological approaches, a mismatch between phylogeny and function was highlighted. This mismatch revealed that (i) functions are apparently nonconservative in shark species, and (ii) phylogenetic singularity is not a proxy for functional singularity. Functions appeared to be not conservative along the evolution of sharks, raising the conservational challenge to identify and protect both phylogenetic and functional singular species. Facing the current rate of species loss, it is indeed of major importance to target phylogenetically singular species to protect genetic diversity and also functionally singular species in order to maintain particular functions within ecosystem.
One hundred questions of importance to the conservation of global biological diversity.
Sutherland, W J; Adams, W M; Aronson, R B; Aveling, R; Blackburn, T M; Broad, S; Ceballos, G; Côté, I M; Cowling, R M; Da Fonseca, G A B; Dinerstein, E; Ferraro, P J; Fleishman, E; Gascon, C; Hunter, M; Hutton, J; Kareiva, P; Kuria, A; Macdonald, D W; Mackinnon, K; Madgwick, F J; Mascia, M B; McNeely, J; Milner-Gulland, E J; Moon, S; Morley, C G; Nelson, S; Osborn, D; Pai, M; Parsons, E C M; Peck, L S; Possingham, H; Prior, S V; Pullin, A S; Rands, M R W; Ranganathan, J; Redford, K H; Rodriguez, J P; Seymour, F; Sobel, J; Sodhi, N S; Stott, A; Vance-Borland, K; Watkinson, A R
2009-06-01
We identified 100 scientific questions that, if answered, would have the greatest impact on conservation practice and policy. Representatives from 21 international organizations, regional sections and working groups of the Society for Conservation Biology, and 12 academics, from all continents except Antarctica, compiled 2291 questions of relevance to conservation of biological diversity worldwide. The questions were gathered from 761 individuals through workshops, email requests, and discussions. Voting by email to short-list questions, followed by a 2-day workshop, was used to derive the final list of 100 questions. Most of the final questions were derived through a process of modification and combination as the workshop progressed. The questions are divided into 12 sections: ecosystem functions and services, climate change, technological change, protected areas, ecosystem management and restoration, terrestrial ecosystems, marine ecosystems, freshwater ecosystems, species management, organizational systems and processes, societal context and change, and impacts of conservation interventions. We anticipate that these questions will help identify new directions for researchers and assist funders in directing funds. ©2009 Society for Conservation Biology.
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
7 CFR 625.4 - Program requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF... ecosystem functions and values. Specific restoration, protection, enhancement, maintenance, and management... restoration, enhancement, and protection of forest ecosystem functions and values when considering the cost of...
Interactions among ecosystem stressors and their importance in conservation
Darling, Emily S.; Brown, Christopher J.
2016-01-01
Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions—notably synergies—a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world. PMID:26865306
Morzaria-Luna, Hem Nalini; Ainsworth, Cameron H.; Kaplan, Isaac C.; Levin, Phillip S.; Fulton, Elizabeth A.
2013-01-01
High bycatch of non-target species and species of conservation concern often drives the implementation of fisheries policies. However, species- or fishery-specific policies may lead to indirect consequences, positive or negative, for other species or fisheries. We use an Atlantis ecosystem model of the Northern Gulf of California to evaluate the effects of fisheries policies directed at reducing bycatch of vaquita (Phocoena sinus) on other species of conservation concern, priority target species, and metrics of ecosystem function and structure. Vaquita, a Critically Endangered porpoise endemic to the Upper Gulf of California, are frequently entangled by finfish gillnets and shrimp driftnets. We tested five fishery management scenarios, projected over 30 years (2008 to 2038), directed at vaquita conservation. The scenarios consider progressively larger spatial restrictions for finfish gillnets and shrimp driftnets. The most restrictive scenario resulted in the highest biomass of species of conservation concern; the scenario without any conservation measures in place resulted in the lowest. Vaquita experienced the largest population increase of any functional group; their biomass increased 2.7 times relative to initial (2008) levels under the most restrictive spatial closure scenario. Bycatch of sea lions, sea turtles, and totoaba decreased > 80% in shrimp driftnets and at least 20% in finfish gillnet fleets under spatial management. We found indirect effects on species and ecosystem function and structure as a result of vaquita management actions. Biomass and catch of forage fish declined, which could affect lower-trophic level fisheries, while other species such as skates, rays, and sharks increased in both biomass and catch. When comparing across performance metrics, we found that scenarios that increased ecosystem function and structure resulted in lower economic performance indicators, underscoring the need for management actions that consider ecological and economic tradeoffs as part of the integrated management of the Upper Gulf of California. PMID:23691155
Phylogenetic and functional diversity in large carnivore assemblages
Dalerum, F.
2013-01-01
Large terrestrial carnivores are important ecological components and prominent flagship species, but are often extinction prone owing to a combination of biological traits and high levels of human persecution. This study combines phylogenetic and functional diversity evaluations of global and continental large carnivore assemblages to provide a framework for conservation prioritization both between and within assemblages. Species-rich assemblages of large carnivores simultaneously had high phylogenetic and functional diversity, but species contributions to phylogenetic and functional diversity components were not positively correlated. The results further provide ecological justification for the largest carnivore species as a focus for conservation action, and suggests that range contraction is a likely cause of diminishing carnivore ecosystem function. This study highlights that preserving species-rich carnivore assemblages will capture both high phylogenetic and functional diversity, but that prioritizing species within assemblages will involve trade-offs between optimizing contemporary ecosystem function versus the evolutionary potential for future ecosystem performance. PMID:23576787
An ecosystem services framework to support both practical conservation and economic development.
Tallis, Heather; Kareiva, Peter; Marvier, Michelle; Chang, Amy
2008-07-15
The core idea of the Millennium Ecosystem Assessment is that the human condition is tightly linked to environmental condition. This assertion suggests that conservation and development projects should be able to achieve both ecological and social progress without detracting from their primary objectives. Whereas "win-win" projects that achieve both conservation and economic gains are a commendable goal, they are not easy to attain. An analysis of World Bank projects with objectives of alleviating poverty and protecting biodiversity revealed that only 16% made major progress on both objectives. Here, we provide a framework for anticipating win-win, lose-lose, and win-lose outcomes as a result of how people manage their ecosystem services. This framework emerges from detailed explorations of several case studies in which biodiversity conservation and economic development coincide and cases in which there is joint failure. We emphasize that scientific advances around ecosystem service production functions, tradeoffs among multiple ecosystem services, and the design of appropriate monitoring programs are necessary for the implementation of conservation and development projects that will successfully advance both environmental and social goals. The potentially bright future of jointly advancing ecosystem services, conservation, and human well-being will be jeopardized unless a global monitoring effort is launched that uses the many ongoing projects as a grand experiment.
An ecosystem services framework to support both practical conservation and economic development
Tallis, Heather; Kareiva, Peter; Marvier, Michelle; Chang, Amy
2008-01-01
The core idea of the Millennium Ecosystem Assessment is that the human condition is tightly linked to environmental condition. This assertion suggests that conservation and development projects should be able to achieve both ecological and social progress without detracting from their primary objectives. Whereas “win–win” projects that achieve both conservation and economic gains are a commendable goal, they are not easy to attain. An analysis of World Bank projects with objectives of alleviating poverty and protecting biodiversity revealed that only 16% made major progress on both objectives. Here, we provide a framework for anticipating win–win, lose–lose, and win–lose outcomes as a result of how people manage their ecosystem services. This framework emerges from detailed explorations of several case studies in which biodiversity conservation and economic development coincide and cases in which there is joint failure. We emphasize that scientific advances around ecosystem service production functions, tradeoffs among multiple ecosystem services, and the design of appropriate monitoring programs are necessary for the implementation of conservation and development projects that will successfully advance both environmental and social goals. The potentially bright future of jointly advancing ecosystem services, conservation, and human well-being will be jeopardized unless a global monitoring effort is launched that uses the many ongoing projects as a grand experiment. PMID:18621702
Ten ways remote sensing can contribute to conservation.
Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2015-04-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.
Obscuring ecosystem function with application of the ecosystem services concept.
Peterson, Markus J; Hall, Damon M; Feldpausch-Parker, Andrea M; Peterson, Tarla Rai
2010-02-01
Conservationists commonly have framed ecological concerns in economic terms to garner political support for conservation and to increase public interest in preserving global biodiversity. Beginning in the early 1980s, conservation biologists adapted neoliberal economics to reframe ecosystem functions and related biodiversity as ecosystem services to humanity. Despite the economic success of programs such as the Catskill/Delaware watershed management plan in the United States and the creation of global carbon exchanges, today's marketplace often fails to adequately protect biodiversity. We used a Marxist critique to explain one reason for this failure and to suggest a possible, if partial, response. Reframing ecosystem functions as economic services does not address the political problem of commodification. Just as it obscures the labor of human workers, commodification obscures the importance of the biota (ecosystem workers) and related abiotic factors that contribute to ecosystem functions. This erasure of work done by ecosystems impedes public understanding of biodiversity. Odum and Odum's radical suggestion to use the language of ecosystems (i.e., emergy or energy memory) to describe economies, rather than using the language of economics (i.e., services) to describe ecosystems, reverses this erasure of the ecosystem worker. Considering the current dominance of economic forces, however, implementing such solutions would require social changes similar in magnitude to those that occurred during the 1960s. Niklas Luhmann argues that such substantive, yet rapid, social change requires synergy among multiple societal function systems (i.e., economy, education, law, politics, religion, science), rather than reliance on a single social sphere, such as the economy. Explicitly presenting ecosystem services as discreet and incomplete aspects of ecosystem functions not only allows potential economic and environmental benefits associated with ecosystem services, but also enables the social and political changes required to ensure valuation of ecosystem functions and related biodiversity in ways beyond their measurement on an economic scale.
Wang, Jitao; Peng, Jian; Zhao, Mingyue; Liu, Yanxu; Chen, Yunqian
2017-01-01
Ecological restoration can mitigate human disturbance to the natural environment and restore ecosystem functions. China's Grain-for-Green Programme (GFGP) has been widely adopted in the last 15years and exerted significant impact on land-use and ecosystem services. North-western Yunnan is one of the key areas of GFGP implementation in the upper Yangtze River. Promotion of ecosystem services in this region is of great importance to the ecological sustainability of Yangtze River watershed. In this study, remote sensing and modelling techniques are applied to analyse the impact of GFGP on ecosystem services. Results show that the transformation from non-irrigated farmland to forestland could potentially improve soil conservation by 24.89%. Soil conservation of restored forest was 78.17% of retained forest while net primary production (NPP) already reached 88.65%, which suggested different recovery rates of NPP and soil conservation. Increasing extent of GFGP implementation improved soil conservation but decreased NPP and water yield at sub-watershed scale, which revealed trade-offs between ecosystem services under ecological restoration. Future ecosystem management and GFGP policy-making should consider trade-offs of ecosystem services in order to achieve sustainable provision of ecosystem services. Copyright © 2016 Elsevier B.V. All rights reserved.
Ten ways remote sensing can contribute to conservation
Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2014-01-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?
Incorporating climate change into systematic conservation planning
Groves, Craig R.; Game, Edward T.; Anderson, Mark G.; Cross, Molly; Enquist, Carolyn; Ferdana, Zach; Girvetz, Evan; Gondor, Anne; Hall, Kimberly R.; Higgins, Jonathan; Marshall, Rob; Popper, Ken; Schill, Steve; Shafer, Sarah L.
2012-01-01
The principles of systematic conservation planning are now widely used by governments and non-government organizations alike to develop biodiversity conservation plans for countries, states, regions, and ecoregions. Many of the species and ecosystems these plans were designed to conserve are now being affected by climate change, and there is a critical need to incorporate new and complementary approaches into these plans that will aid species and ecosystems in adjusting to potential climate change impacts. We propose five approaches to climate change adaptation that can be integrated into existing or new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on opportunities emerging in response to climate change. We discuss both key assumptions behind each approach and the trade-offs involved in using the approach for conservation planning. We also summarize additional data beyond those typically used in systematic conservation plans required to implement these approaches. A major strength of these approaches is that they are largely robust to the uncertainty in how climate impacts may manifest in any given region.
The effectiveness of conservation interventions to overcome the urban-environmental paradox.
McDonald, Robert I
2015-10-01
Globally, urbanization is rapidly growing cities and towns at a historically unprecedented rate, and this rapid urban growth is influencing many facets of the environment. This paper reviews the effectiveness of conservation interventions that are designed to increase urban sustainability. It presents evidence for an apparent urban-environmental paradox: while the process of urban growth converts natural habitat to other land covers and degrades natural resources and ecosystem function, the increase in human population can increase demand for natural resources and ecosystem services. The fundamental problem that many conservation interventions try to address is that most facets of the environment are common or public goods, and are hence undervalued in decision making (market failure). The paper presents a threefold classification of conservation interventions in cities: conservation in the city (protecting biodiversity), conservation by the city (reducing per capita resource and energy use), and conservation for cities (projects that maintain or enhance ecosystem services). It ends by discussing methods for spatially targeting conservation interventions of all three types and for quantifying the effectiveness of interventions retrospectively. © 2015 New York Academy of Sciences.
The 2008 South China Freeze and its Impact on the Forests
NASA Astrophysics Data System (ADS)
Zhou, B.; Ai, C.; Wang, Y.; Li, Z.; Cao, Y.; Wang, X.
2008-12-01
An unprecedented calamity caused by snow and freezing rain occurred in South China in 2008. This freeze was closely related to the La Nina phenomenon according to a report from the World Meteorological Organization. The freeze stroke 19 provinces in China, and damaged forests of 19.33 million ha with a standing volume loss of 371 million m3. It is estimated that the direct economic loss in the form of destroyed forests is over $8 billion. The indirect loss in the form of impaired ecological functions, such as water and soil conservation, water resources conservancy, biodiversity and forest carbon pool etc is enormous. The calamity of snow and freezing rain affected the structure and function of forest ecosystems. The snow load and freezing rain caused mechanical damage to the trees, with the species of Pinus massoniana, Cunninghamia lanceolata, Pinus elliottii and Phyllostachys pubescens etc. being the most seriously affected. The cold weather could also cause the physiological hurt to the trees. The change of the biotic components leads to the change of abiotic components in the ecosystems. The sunlight under the canopy was intensified due to the opening up of the canopy. The air temperature in the forest, the nutrient and microorganism in soil, the litterfall dynamic were also affected. The alteration of the forest ecosystem structure brought in the alteration of its functions. The damage of the ecosystem structure weakened the capacity of the water and soil conservation, water resources conservancy and reduced the biodiversity in forest ecosystems. Forest gaps allow more sunlight into the freeze-damaged ecosystem, inducing the invasion of more masculine species. The direction and progress of the community succession was therefore altered. At the same time, the freeze made a great impact on the stability and health of the forest ecosystem, increasing the potential risk of outbreak of forest fire and plant diseases/insect pests. Some suggestions on the rebuilding and recovery of damaged forest were given in this paper.
NASA Astrophysics Data System (ADS)
Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul
2012-01-01
The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for development of sustainable livelihood options for local communities from the conservation of critical ecosystems such as mangroves.
Multiple function benefit - cost comparison of conservation buffer placement strategies
Z. Qiu; M.G. Dosskey
2012-01-01
Conservation buffers are considered to be effective practices for repairing impaired streams and restoring multiple ecosystem functions in degraded agricultural watersheds. Six different planning strategies for targeting their placement within watersheds were compared in terms of cost-effectiveness for environmental improvement in the 144 km² Neshanic River...
Coral reef management and conservation in light of rapidly evolving ecological paradigms.
Mumby, Peter J; Steneck, Robert S
2008-10-01
The decline of many coral reef ecosystems in recent decades surprised experienced managers and researchers. It shattered old paradigms that these diverse ecosystems are spatially uniform and temporally stable on the scale of millennia. We now see reefs as heterogeneous, fragile, globally stressed ecosystems structured by strong positive or negative feedback processes. We review the causes and consequences of reef decline and ask whether management practices are addressing the problem at appropriate scales. We conclude that both science and management are currently failing to address the comanagement of extractive activities and ecological processes that drive ecosystems (e.g. productivity and herbivory). Most reef conservation efforts are directed toward reserve implementation, but new approaches are needed to sustain ecosystem function in exploited areas.
Plant Functional Traits: Soil and Ecosystem Services.
Faucon, Michel-Pierre; Houben, David; Lambers, Hans
2017-05-01
Decline of ecosystem services has triggered numerous studies aiming at developing more sustainable agricultural management practices. Some agricultural practices may improve soil properties by expanding plant biodiversity. However, sustainable management of agroecosystems should be performed from a functional plant trait perspective. Advances in functional ecology, especially plant functional trait effects on ecosystem processes and services, provide pivotal knowledge for ecological intensification of agriculture; this approach acknowledges that a crop field is an agroecosystem whose ecological processes influence soil properties. We highlight the links between plant functional traits and soil properties in relation to four major ecosystem processes involved in vital ecosystem services: food production, crop protection, climate change mitigation, and soil and water conservation, aiming towards ecological intensification of sustainable agricultural and soil management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Primates in 21st century ecosystems: does primate conservation promote ecosystem conservation?
Norconk, Marilyn A; Boinski, Sue; Forget, Pierre-Michel
2011-01-01
Contributors to this issue of the American Journal of Primatology were among the participants in an invited symposium at the 2008 Association for Tropical Biology and Conservation meeting in Paramaribo, Suriname. They were asked to assess how essential primates are to tropical ecosystems and, given their research interests, discuss how primate research contributes to the broader understanding about how ecosystems function. This introduction to the issue is divided into three parts: a review of the roles that nonhuman primates play in tropical ecosystems; the implementation of large-scale landscape methods used to identify primate densities; and concerns about the increasingly porous boundaries between humans, nonhuman primates, and pathogens. Although 20th century primate research created a rich database on individual species, including both theoretical and descriptive approaches, the dual effects of high human population densities and widespread habitat destruction should warn us that creative, interdisciplinary and human-related research is needed to solve 21st century problems. © 2010 Wiley-Liss, Inc.
Hoeinghaus, David J; Agostinho, Angelo A; Gomes, Luiz C; Pelicice, Fernando M; Okada, Edson K; Latini, João D; Kashiwaqui, Elaine A L; Winemiller, Kirk O
2009-10-01
Applying the ecosystem services concept to conservation initiatives or in managing ecosystem services requires understanding how environmental impacts affect the ecology of key species or functional groups providing the services. We examined effects of river impoundments, one of the leading threats to freshwater biodiversity, on an important ecosystem service provided by large tropical rivers (i.e., artisanal fisheries). The societal and economic importance of this ecosystem service in developing countries may provide leverage to advance conservation agendas where future impoundments are being considered. We assessed impoundment effects on the energetic costs of fisheries production (embodied energy) and commercial market value of the artisanal fishery of the Paraná River, Brazil, before and after formation of Itaipu Reservoir. High-value migratory species that dominated the fishery before the impoundment was built constituted a minor component of the contemporary fishery that is based heavily on reservoir-adapted introduced species. Cascading effects of river impoundment resulted in a mismatch between embodied energy and market value: energetic costs of fisheries production increased, whereas market value decreased. This was partially attributable to changes in species functional composition but also strongly linked to species identities that affected market value as a result of consumer preferences even when species were functionally similar. Similar trends are expected in other large tropical rivers following impoundment. In addition to identifying consequences of a common anthropogenic impact on an important ecosystem service, our assessment provides insight into the sustainability of fisheries production in tropical rivers and priorities for regional biodiversity conservation.
Neglected wild life: Parasitic biodiversity as a conservation target☆
Gómez, Andrés; Nichols, Elizabeth
2013-01-01
Parasites appropriate host resources to feed and/or to reproduce, and lower host fitness to varying degrees. As a consequence, they can negatively impact human and animal health, food production, economic trade, and biodiversity conservation. They can also be difficult to study and have historically been regarded as having little influence on ecosystem organization and function. Not surprisingly, parasitic biodiversity has to date not been the focus of much positive attention from the conservation community. However, a growing body of evidence demonstrates that parasites are extremely diverse, have key roles in ecological and evolutionary processes, and that infection may paradoxically result in ecosystem services of direct human relevance. Here we argue that wildlife parasites should be considered meaningful conservation targets no less relevant than their hosts. We discuss their numerical and functional importance, current conservation status, and outline a series of non-trivial challenges to consider before incorporating parasite biodiversity in conservation strategies. We also suggest that addressing the key knowledge gaps and communication deficiencies that currently impede broad discussions about parasite conservation requires input from wildlife parasitologists. PMID:24533340
Natural restoration of degraded rangeland ecosystem in Heshan hilly land
Hai, R.; Weibing, D.; Jun, W.; Zuoyue, Y.; Qinfeng, G.
2007-01-01
This study examined the 20-yr trend of natural restoration of a degraded rangeland ecosystem after disturbance in Heshan hilly land. The results showed that herbs and shrubs were the dominant plants in the community and only a small number of the shade-intolerant tree species had invaded, showing the characteristics of assembly of pioneer communities. The organic matter content, soluble nitrogen, available phosphorus and available potassium had recovered to the level of the local climax community. Part of the ecological functions such as water and soil conservation had also recovered. While the functions of water and soil conservation recovered first, more time was needed for productivity and other functions to completely recover, suggesting the idiosyncratic nature of different ecosystem variables in response to time and microclimate change. Particularly, nutrient cycling recovered very slowly by natural restoration and artificial plantation may be necessary to accelerate the restoration process. ?? 2007 Ecological Society of China.
Evolving conservation paradigms for the Anthropocene
Ariel E. Lugo
2014-01-01
The Anthropocene will have fundamental effects on the species composition, function, and structure of the ecosystems of the world. Land management agencies such as the USDA Forest Service will need to adapt their policies and conservation activities to avoid engaging in continuous conflict with natural processes and unfamiliar biotic assemblages. Conservation paradigms...
Habitat modeling for biodiversity conservation.
Bruce G. Marcot
2006-01-01
Habitat models address only 1 component of biodiversity but can be useful in addressing and managing single or multiple species and ecosystem functions, for projecting disturbance regimes, and in supporting decisions. I review categories and examples of habitat models, their utility for biodiversity conservation, and their roles in making conservation decisions. I...
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality.
Hautier, Yann; Isbell, Forest; Borer, Elizabeth T; Seabloom, Eric W; Harpole, W Stanley; Lind, Eric M; MacDougall, Andrew S; Stevens, Carly J; Adler, Peter B; Alberti, Juan; Bakker, Jonathan D; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Caldeira, Maria C; Chaneton, Enrique J; Chu, Chengjin; Daleo, Pedro; Dickman, Christopher R; Dwyer, John M; Eskelinen, Anu; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Hillebrand, Helmut; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Morgan, John W; Pärtel, Meelis; Pascual, Jesus; Price, Jodi N; Prober, Suzanne M; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Standish, Rachel J; Virtanen, Risto; Wardle, Glenda M; Yahdjian, Laura; Hector, Andy
2018-01-01
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
Conservation mycology in Australia and the potential role of citizen science.
Irga, Peter J; Barker, Katherine; Torpy, Fraser R
2018-04-23
Fungi are undoubtedly important for ecosystem functioning, however they are relatively poorly considered in biodiversity conservation planning. Fungi have been omitted or given scant attention in most biodiversity policy documents, management plans and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community, compounded by a scarcity of mycology-associated curricula at the tertiary level, along with a lack of mycologists in research institutions. While molecular advancements the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts. Conversely, citizen science initiatives are making significant contributions to the mycology discipline, by both increasing awareness as well as extending the scope of fungal surveys. Future research by professional and amateur mycologists into the distribution and functionality in ecosystems will help us identify wider, and more effective conservation goals. This article is protected by copyright. All rights reserved.
Maintaining ecosystem function and services in logged tropical forests.
Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F
2014-09-01
Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ecosystem services response to urbanization in metropolitan areas: Thresholds identification.
Peng, Jian; Tian, Lu; Liu, Yanxu; Zhao, Mingyue; Hu, Yi'na; Wu, Jiansheng
2017-12-31
Ecosystem service is the key comprehensive indicator for measuring the ecological effects of urbanization. Although various studies have found a causal relationship between urbanization and ecosystem services degradation, the linear or non-linear characteristics are still unclear, especially identifying the impact thresholds in this relationship. This study quantified four ecosystem services (i.e. soil conservation, carbon sequestration and oxygen production, water yield, and food production) and total ecosystem services (TES), and then identified multiple advantageous area of ecosystem services in the peri-urban area of Beijing City. Using piecewise linear regression, the response of TES to urbanization (i.e., population density, GDP density, and construction land proportion) and its thresholds were detected. The results showed that, the TES was high in the north and west and low in the southeast, and there were seven multiple advantageous areas (distributed in the new urban development zone and ecological conservation zone), one single advantageous area (distributed in the ecological conservation zone), and six disadvantageous areas (mainly distributed in the urban function extended zone). TES response to population and economic urbanization each had a threshold (229personkm -2 and 107.15millionyuankm -2 , respectively), above which TES decreased rapidly with intensifying urbanization. However, there was a negative linear relationship between land urbanization and TES, which indicated that the impact of land urbanization on ecosystem services was more direct and effective than that of population and economic urbanization. It was also found that the negative impact of urbanization on TES was highest in the urban function extended zone, followed in descending order by that in the new urban development zone and ecological conservation zone. According to the detected relationships between urbanization and TES, the economic and population urbanization should be strengthened accompanied by slowing or even reducing land urbanization, so as to achieve urban ecological sustainability with less ecosystem services degradation. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecosystem impacts of exotic annual invaders in the genus Bromus
Matthew J. Germino; Jayne Belnap; John M. Stark; Edith B Allen; Benjamin Rau
2016-01-01
An understanding of the impacts of exotic plant species on ecosystems is necessary to justify and guide efforts to limit their spread, restore natives, and plan for conservation. Invasive annual grasses such as Bromus tectorum, B. rubens, B. hordeaceus, and B. diandrus (hereafter collectively referred to as Bromus) transform the structure and function of ecosystems...
Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan
2015-01-01
Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...
System-level strategies for conserving rare or little-known species
Bruce G. Marcot; Carolyn Hull Sieg
2007-01-01
In this chapter we review the literature on system-level strategies for conserving rare or little-known (RLK) species, continuing from the species-level approaches addressed in the previous chapter. We define system-level approaches as those that result in conservation actions focused on providing for community or ecosystem composition, structure, or function.
Wiederholt, Ruscena; Lopez-Hoffman, Laura; Svancara, Colleen; McCracken, Gary; Thogmartin, Wayne E.; Diffendorfer, James E.; Mattson, Brady; Bagstad, Kenneth J.; Cryan, Paul; Russell, Amy; Semmens, Darius J.; Rodrigo A. Medellín,
2015-01-01
Conservation planning can be challenging due to the need to balance biological concerns about population viability with social concerns about the benefits biodiversity provide to society, often while operating under a limited budget. Methods and tools that help prioritize conservation actions are critical for the management of at-risk species. Here, we use a multi-attribute utility function to assess the optimal maternity roosts to conserve for maintaining the population viability and the ecosystem services of a single species, the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mexican free-tailed bats provide ecosystem services such as insect pest-suppression in agricultural areas and recreational viewing opportunities, and may be threatened by climate change and development of wind energy. We evaluated each roost based on five attributes: the maternity roost’s contribution to population viability, the pest suppression ecosystem services to the surrounding area provided by the bats residing in the roost, the ecotourism value of the roost, the risks posed to each roost structure, and the risks posed to the population of bats residing in each roost. We compared several scenarios that prioritized these attributes differently, hypothesizing that the set of roosts with the highest rankings would vary according to the conservation scenario. Our results indicate that placing higher values on different roost attributes (e.g. population importance over ecosystem service value) altered the roost rankings. We determined that the values placed on various conservation objectives are an important determinant of habitat planning.
NASA Astrophysics Data System (ADS)
Thomsen, Matthias S.; Garcia, Clement; Bolam, Stefan G.; Parker, Ruth; Godbold, Jasmin A.; Solan, Martin
2017-03-01
Consensus has been reached that global biodiversity loss impairs ecosystem functioning and the sustainability of services beneficial to humanity. However, the ecosystem consequences of extinction in natural communities are moderated by compensatory species dynamics, yet these processes are rarely accounted for in impact assessments and seldom considered in conservation programmes. Here, we use marine invertebrate communities to parameterise numerical models of sediment bioturbation - a key mediator of biogeochemical cycling - to determine whether post-extinction compensatory mechanisms alter biodiversity-ecosystem function relations following non-random extinctions. We find that compensatory dynamics lead to trajectories of sediment mixing that diverge from those without compensation, and that the form, magnitude and variance of each probabilistic distribution is highly influenced by the type of compensation and the functional composition of surviving species. Our findings indicate that the generalized biodiversity-function relation curve, as derived from multiple empirical investigations of random species loss, is unlikely to yield representative predictions for ecosystem properties in natural systems because the influence of post-extinction community dynamics are under-represented. Recognition of this problem is fundamental to management and conservation efforts, and will be necessary to ensure future plans and adaptation strategies minimize the adverse impacts of the biodiversity crisis.
Connecting Earth observation to high-throughput biodiversity data.
Bush, Alex; Sollmann, Rahel; Wilting, Andreas; Bohmann, Kristine; Cole, Beth; Balzter, Heiko; Martius, Christopher; Zlinszky, András; Calvignac-Spencer, Sébastien; Cobbold, Christina A; Dawson, Terence P; Emerson, Brent C; Ferrier, Simon; Gilbert, M Thomas P; Herold, Martin; Jones, Laurence; Leendertz, Fabian H; Matthews, Louise; Millington, James D A; Olson, John R; Ovaskainen, Otso; Raffaelli, Dave; Reeve, Richard; Rödel, Mark-Oliver; Rodgers, Torrey W; Snape, Stewart; Visseren-Hamakers, Ingrid; Vogler, Alfried P; White, Piran C L; Wooster, Martin J; Yu, Douglas W
2017-06-22
Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could be misleading and reduce the effectiveness of nature conservation and even unintentionally decrease conservation effort. We describe an approach that combines automated recording devices, high-throughput DNA sequencing and modern ecological modelling to extract much more of the information available in Earth observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services.
Optimal Conservation Outcomes Require Both Restoration and Protection
Possingham, Hugh P.; Bode, Michael; Klein, Carissa J.
2015-01-01
Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests. PMID:25625277
Optimal conservation outcomes require both restoration and protection.
Possingham, Hugh P; Bode, Michael; Klein, Carissa J
2015-01-01
Conservation outcomes are principally achieved through the protection of intact habitat or the restoration of degraded habitat. Restoration is generally considered a lower priority action than protection because protection is thought to provide superior outcomes, at lower costs, without the time delay required for restoration. Yet while it is broadly accepted that protected intact habitat safeguards more biodiversity and generates greater ecosystem services per unit area than restored habitat, conservation lacks a theory that can coherently compare the relative outcomes of the two actions. We use a dynamic landscape model to integrate these two actions into a unified conservation theory of protection and restoration. Using nonlinear benefit functions, we show that both actions are crucial components of a conservation strategy that seeks to optimise either biodiversity conservation or ecosystem services provision. In contrast to conservation orthodoxy, in some circumstances, restoration should be strongly preferred to protection. The relative priority of protection and restoration depends on their costs and also on the different time lags that are inherent to both protection and restoration. We derive a simple and easy-to-interpret heuristic that integrates these factors into a single equation that applies equally to biodiversity conservation and ecosystem service objectives. We use two examples to illustrate the theory: bird conservation in tropical rainforests and coastal defence provided by mangrove forests.
Faulkner, Stephen P.; Baldwin, Michael J.; Barrow, Wylie C.; Waddle, Hardin; Keeland, Bobby D.; Walls, Susan C.; James, Dale; Moorman, Tom
2010-01-01
The degree to which these conservation practices can restore ecosystem functions and services is not well known. This project was initiated to quantify existing ecological services derived from USDA conservation practices in the MAV as part of the USDA Conservation Effects Assessment Project, Wetlands Component (CEAP-Wetlands). The U.S. Geological Survey (USGS), in collaboration with the USDA Natural Resources Conservation Service, the USDA Farm Service Agency, the U.S. Fish and Wildlife Service, and Ducks Unlimited, collected data on soils, vegetation, nitrogen cycling, migratory birds, and amphibians from 88 different sites between 2006 and 2008. Results from restored WRP sites were compared to baseline data from active agricultural cropland (AG) to evaluate changes in ecosystem services.
Quantifying effects of biodiversity on ecosystem functioning across times and places†
Isbell, Forest; Cowles, Jane; Dee, Laura E.; Loreau, Michel; Reich, Peter B.; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard
2018-01-01
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. PMID:29493062
Quantifying effects of biodiversity on ecosystem functioning across times and places.
Isbell, Forest; Cowles, Jane; Dee, Laura E; Loreau, Michel; Reich, Peter B; Gonzalez, Andrew; Hector, Andy; Schmid, Bernhard
2018-06-01
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments. © 2018 John Wiley & Sons Ltd/CNRS.
CONSERVATION PROGRAMS THAT PROMOTE INVASIVE SPECIES
Invasive plant species are degrading the structure and function of ecosystems throughout the world. Although most state and federal conservation agencies in the U.S. attempt to reduce the impact of invasive species, some agency activities can contribute to the spread of invasive...
Esteves, F A; Caliman, A; Santangelo, J M; Guariento, R D; Farjalla, V F; Bozelli, R L
2008-11-01
Neotropical coastal lagoons (NCL) are human-dominated ecosystems. Their distribution along densely populated coastal areas of developing countries makes these systems among the most threatened in the world. Here, we summarize some aspects of the causes and consequences of NCL biodiversity, their functioning, their importance to the surrounding populations, their fragility, and their responses to local and global anthropogenic impacts and the challenges that Neotropical countries face in conserving these systems. Although still scarce and geographically concentrated, a growing body of studies has shown that NCLs are physiographically diversified systems, which harbor a considerable and particular proportion of the Neotropical inland aquatic biodiversity. Despite the fact that coastal lagoons are ecotones that are intricately connected to surrounding environments, they develop mechanisms for structural and functional regulation, which confer to these systems higher productivity and carrying capacities than surrounding ecosystems. Such traits attract residential developments and subsidize local traditional populations with important economic and aesthetic ecosystem revenues such as fisheries and scenic beauty. However, the disorganized human occupation around NCLs are causing profound impacts such as eutrophication, salinization, exotic species introduction, as well as other effects, which are ultimately imposing major habitat degradations and biodiversity extirpations in NCLs. We argue that interdisciplinary conservation strategies, which integrate scientific expertise, government officials, private companies and the general public, are the most likely to overcome the geographic and economic obstacles to NCL conservation.
From Top-Down to Grassroots: Chronicling the Search for Common Ground in Conservation in the West
Geoff Koch; Susan Charnley
2016-01-01
Sustainable working landscapes are critical to the conservation of biodiversity in the American West and its cultures of rural ranching and forestry. Given the West's patchwork of public, private, and tribal lands, perhaps the best way to conserve biodiversity and ecosystem function on a large scale is through a process of collaborative conservation. These are the...
Spatial Assessment of Forest Ecosystem Functions and Services using Human Relating Factors for SDG
NASA Astrophysics Data System (ADS)
Song, C.; Lee, W. K.; Jeon, S. W.; Kim, T.; Lim, C. H.
2015-12-01
Application of ecosystem service concept in environmental related decision making could be numerical and objective standard for policy maker between preserving and developing perspective of environment. However, pursuing maximum benefit from natural capital through ecosystem services caused failure by losing ecosystem functions through its trade-offs. Therefore, difference between ecosystem functions and services were demonstrated and would apply human relating perspectives. Assessment results of ecosystem functions and services can be divided 3 parts. Tree growth per year set as the ecosystem function factor and indicated through so called pure function map. After that, relating functions can be driven such as water conservation, air pollutant purification, climate change regulation, and timber production. Overall process and amount are numerically quantified. These functional results can be transferred to ecosystem services by multiplying economic unit value, so function reflecting service maps can be generated. On the other hand, above services, to implement more reliable human demand, human reflecting service maps are also be developed. As the validation, quantified ecosystem functions are compared with former results through pixel based analysis. Three maps are compared, and through comparing difference between ecosystem function and services and inversed trends in function based and human based service are analysed. In this study, we could find differences in PF, FRS, and HRS in relation to based ecosystem conditions. This study suggests that the differences in PF, FRS, and HRS should be understood in the decision making process for sustainable management of ecosystem services. Although the analysis is based on in sort existing process separation, it is important to consider the possibility of different usage of ecosystem function assessment results and ecosystem service assessment results in SDG policy making. Furthermore, process based functional approach can suggest environmental information which is reflected the other kinds of perspective.
Analysis of Reptile Biodiversity and Ecosystem Services within ...
A focus for resource management, conservation planning, and environmental decision analysis has been mapping and quantifying biodiversity and ecosystem services. The challenge has been to integrate ecology with economics to better understand the effects of human policies and actions and their subsequent impacts on human well-being and ecosystem function. Biodiversity is valued by humans in varied ways, and thus is an important input to include in assessing the benefits of ecosystems to humans. Some biodiversity metrics more clearly reflect ecosystem services (e.g., game species, threatened and endangered species), whereas others may indicate indirect and difficult to quantify relationships to services (e.g., taxa richness and cultural value). In the present study, we identify and map reptile biodiversity and ecosystem services metrics. The importance of reptiles to biodiversity and ecosystems services is not often described. We used species distribution models for reptiles in the conterminous United States from the U.S. Geological Survey’s Gap Analysis Program. We focus on species richness metrics including all reptile species richness, taxa groupings of lizards, snakes and turtles, NatureServe conservation status (G1, G2, G3) species, IUCN listed reptiles, threatened and endangered species, Partners in Amphibian and Reptile Conservation listed reptiles, and rare species. These metrics were analyzed with the Protected Areas Database of the United States to
López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J; Cryan, Paul; Diffendorfer, Jay E; Goldstein, Joshua; Lasharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A; Russell, Amy; Semmens, Darius
2014-01-01
Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.
López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.
2014-01-01
Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.
Structure and functioning of dryland ecosystems in a changing world.
Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2016-11-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
Structure and functioning of dryland ecosystems in a changing world
Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2017-01-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303
USDA-ARS?s Scientific Manuscript database
Aerial extent of wetland ecosystems have decreased dramatically since precolonial times due to the conversion of these areas for human use. Wetlands provide various ecosystem services, and conservation efforts are being made to restore wetlands and their functions, including soil carbon storage. Thi...
Qiu, Kaiyang; Xie, Yingzhong; Xu, Dongmei; Pott, Richard
2018-05-15
The effects of biodiversity on ecosystem functions have been extensively studied, but little is known about the effects of ecosystem functions on biodiversity. This knowledge is important for understanding biodiversity-ecosystem functioning relationships. Desertification reversal is a significant global challenge, but the factors that play key roles in this process remain unclear. Here, using data sampled from areas undergoing desertification reversal, we identify the dominant soil factors that play a role in vegetation recovery with ordinary least squares and structural equation modelling. We found that ecosystem functions related to the cycling of soil carbon (organic C, SOC), nitrogen (total N, TN), and potassium (available K, AK) had the most substantial effects on vegetation recovery. The effects of these ecosystem functions were simultaneously influenced by the soil clay, silt and coarse sand fractions and the soil water content. Our findings suggest that K plays a critical role in ecosystem functioning and is a limiting factor in desertification reversal. Our results provide a scientific basis for desertification reversal. Specifically, we found that plant biodiversity may be regulated by N, phosphorus (P) and K cycling. Collectively, biodiversity may respond to ecosystem functions, the conservation and enhancement of which can promote the recovery of vegetation.
On inclusion of ecosystem services in the assessment of damage from land degradation
NASA Astrophysics Data System (ADS)
Tsvetnov, E. V.; Makarov, O. A.; Yakovlev, A. S.; Bondarenko, E. V.
2016-12-01
In the assessment of damage arising from land degradation at the Training and Experimental Soil-Ecological Center of Moscow State University, the cost of unfulfilled and underfulfilled ecosystem surfaces of soils should be taken into account. The following soil services were considered for the territory studied: direct provision with resources, protection, maintenance of ecosystem life and cultural services. A relationship between the concepts of ecosystem services and ecological functions of soils is shown. The concept of function is wider in some respect than the concept associated with it. In the definition of ecosystem service, only the manifestation of the soil function, which can have an economic interpretation, is selected. A simulation of ecosystem services proposed in the ecological and economic evaluation of damage arising from land degradation can be a real mechanism of nature conservation and development of systems of sustainable management at various levels of the administrative structure of the country.
Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?
Cavanagh, Rachel D; Broszeit, Stefanie; Pilling, Graham M; Grant, Susie M; Murphy, Eugene J; Austen, Melanie C
2016-12-14
Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions. © 2016 The Authors.
Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?
Broszeit, Stefanie; Pilling, Graham M.; Grant, Susie M.; Austen, Melanie C.
2016-01-01
Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions. PMID:27928037
Strecker, A.L.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.
2011-01-01
To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential tradeoffs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity;contemporary threats to biodiversity (including interactions with nonnative species);and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities;however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple and complementary conservation values describing taxonomic, functional, and phylogenetic diversity. ??2011 by the Ecological Society of America.
Strecker, Angela L.; Olden, Julian D.; Whittier, Joanna B.; Paukert, Craig P.
2011-01-01
To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential trade-offs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity; contemporary threats to biodiversity (including interactions with nonnative species); and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region. Regions of projected human population growth were not concordant with conservation priorities; however, higher human population abundance will likely have indirect effects on native biodiversity by increasing demand for water. This will come in direct conflict with projected reductions in precipitation and warmer temperatures, which have substantial overlap with regions of high contemporary diversity. Native and endemic fishes in arid ecosystems are critically endangered by both current and future threats, but our results highlight the use of systematic conservation planning for the optimal allocation of limited resources that incorporates multiple and complementary conservation values describing taxonomic, functional, and phylogenetic diversity.
Fire as an ecosystem process: Chapter 3
Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.
2016-01-01
This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.
Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss.
Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J
2008-01-08
Recent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking. Here, we present a global-scale study based on 116 deep-sea sites that relates benthic biodiversity to several independent indicators of ecosystem functioning and efficiency. We show that deep-sea ecosystem functioning is exponentially related to deep-sea biodiversity and that ecosystem efficiency is also exponentially linked to functional biodiversity. These results suggest that a higher biodiversity supports higher rates of ecosystem processes and an increased efficiency with which these processes are performed. The exponential relationships presented here, being consistent across a wide range of deep-sea ecosystems, suggest that mutually positive functional interactions (ecological facilitation) can be common in the largest biome of our biosphere. Our results suggest that a biodiversity loss in deep-sea ecosystems might be associated with exponential reductions of their functions. Because the deep sea plays a key role in ecological and biogeochemical processes at a global scale, this study provides scientific evidence that the conservation of deep-sea biodiversity is a priority for a sustainable functioning of the worlds' oceans.
Stevens, Patricia; Walters, Katie D.
2015-01-01
The Trust Species and Habitats Branch of the Fort Collins Science Center includes a diverse group of scientists encompassing both traditional and specialized expertise in wildlife biology, ecosystem ecology, quantitative ecology, disease ecology, molecular genetics, and stable isotope geochemistry. Using our expertise and collaborating with others around the world, our goal is to provide the information, tools, and technologies that our partners need to support conservation, management, and restoration of terrestrial vertebrate populations, habitats, and ecosystem function in a changing world.
The Integrated Landscape Modeling partnership - Current status and future directions
Mushet, David M.; Scherff, Eric J.
2016-01-28
The Integrated Landscape Modeling (ILM) partnership is an effort by the U.S. Geological Survey (USGS) and U.S. Department of Agriculture (USDA) to identify, evaluate, and develop models to quantify services derived from ecosystems, with a focus on wetland ecosystems and conservation effects. The ILM partnership uses the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling platform to facilitate regional quantifications of ecosystem services under various scenarios of land-cover change that are representative of differing conservation program and practice implementation scenarios. To date, the ILM InVEST partnership has resulted in capabilities to quantify carbon stores, amphibian habitat, plant-community diversity, and pollination services. Work to include waterfowl and grassland bird habitat quality is in progress. Initial InVEST modeling has been focused on the Prairie Pothole Region (PPR) of the United States; future efforts might encompass other regions as data availability and knowledge increase as to how functions affecting ecosystem services differ among regions.The ILM partnership is also developing the capability for field-scale process-based modeling of depressional wetland ecosystems using the Agricultural Policy/Environmental Extender (APEX) model. Progress was made towards the development of techniques to use the APEX model for closed-basin depressional wetlands of the PPR, in addition to the open systems that the model was originally designed to simulate. The ILM partnership has matured to the stage where effects of conservation programs and practices on multiple ecosystem services can now be simulated in selected areas. Future work might include the continued development of modeling capabilities, as well as development and evaluation of differing conservation program and practice scenarios of interest to partner agencies including the USDA’s Farm Service Agency (FSA) and Natural Resources Conservation Service (NRCS). When combined, the ecosystem services modeling capabilities of InVEST and the process-based abilities of the APEX model should provide complementary information needed to meet USDA and the Department of the Interior information needs.
Ecosystem-based analysis of a marine protected area where fisheries and protected species coexist.
Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana
2010-04-01
The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.
Ecosystem-Based Analysis of a Marine Protected Area Where Fisheries and Protected Species Coexist
NASA Astrophysics Data System (ADS)
Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana
2010-04-01
The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.
Coral reef habitats as surrogates of species, ecological functions, and ecosystem services.
Mumby, Peter J; Broad, Kenneth; Brumbaugh, Daniel R; Dahlgren, Craig P; Harborne, Alastair R; Hastings, Alan; Holmes, Katherine E; Kappel, Carrie V; Micheli, Fiorenza; Sanchirico, James N
2008-08-01
Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.
Conserving biodiversity and ecosystem function through limited development: an empirical evaluation.
Milder, Jeffrey C; Lassoie, James P; Bedford, Barbara L
2008-02-01
Suburban, exurban, and rural development in the United States consumes nearly 1 million hectares of land per year and is a leading threat to biodiversity. In response to this threat, conservation development has been advanced as a way to combine land development and land conservation while providing functional protection for natural resources. Yet, although conservation development techniques have been in use for decades, there have been few critical evaluations of their conservation effectiveness. We addressed this deficiency by assessing the conservation outcomes of one type of conservation development project: conservation and limited development projects (CLDPs). Conducted by land trusts, landowners, and developers, CLDPs use revenue from limited development to finance the protection of land and natural resources. We compared a sample of 10 CLDPs from the eastern United States with their respective baseline scenarios (conventional development) and with a sample of conservation subdivisions--a different conservation development technique characterized by higher-density development. To measure conservation success, we created an evaluation method containing eight indicators that quantify project impacts to terrestrial and aquatic ecosystems at the site and in the surrounding landscape. The CLDPs protected and managed threatened natural resources including rare species and ecological communities. In terms of conservation benefits, the CLDPs significantly outperformed their respective baseline scenarios and the conservation subdivisions. These results imply that CLDPs can offer a low-impact alternative to conventional development and a low-cost method for protecting land when conventional conservation techniques are too expensive. In addition, our evaluation method demonstrates how planners and developers can incorporate appropriate ecological considerations when designing, reviewing, and evaluating conservation development projects.
Status assessment of New Zealand's naturally uncommon ecosystems.
Holdaway, Robert J; Wiser, Susan K; Williams, Peter A
2012-08-01
Globally, ecosystems are under increasing anthropogenic pressure; thus, many are at risk of elimination. This situation has led the International Union for Conservation of Nature (IUCN) to propose a quantitative approach to ecosystem-risk assessment. However, there is a need for their proposed criteria to be evaluated through practical examples spanning a diverse range of ecosystems and scales. We applied the IUCN's ecosystem red-list criteria, which are based on changes in extent of ecosystems and reductions in ecosystem processes, to New Zealand's 72 naturally uncommon ecosystems. We aimed to test the applicability of the proposed criteria to ecosystems that are naturally uncommon (i.e., those that would naturally occur over a small area in the absence of human activity) and to provide information on the probability of ecosystem elimination so that conservation priorities might be set. We also tested the hypothesis that naturally uncommon ecosystems classified as threatened on the basis of IUCN Red List criteria contain more threatened plant species than those classified as nonthreatened. We identified 18 critically endangered, 17 endangered, and 10 vulnerable ecosystems. We estimated that naturally uncommon ecosystems contained 145 (85%) of mainland New Zealand's taxonomically distinct nationally critical, nationally endangered, and nationally vulnerable plant species, 66 (46%) of which were endemic to naturally uncommon ecosystems. We estimated there was a greater number of threatened plant species (per unit area) in critically endangered ecosystems than in ecosystems classified as nonthreatened. With their high levels of endemism and rapid and relatively well-documented history of anthropogenic change, New Zealand's naturally uncommon ecosystems provide an excellent case-study for the ongoing development of international criteria for threatened ecosystems. We suggest that interactions and synergies among decline in area, decline in function, and the scale of application of the criteria be used to improve the IUCN criteria for threatened ecosystems. ©2012 Society for Conservation Biology.
Kark, Salit; Brokovich, Eran; Mazor, Tessa; Levin, Noam
2015-12-01
Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation-related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide-ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi-billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra-deep hydrocarbon industry for deep-sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade-offs among multiple objectives, costs, and risks. © 2015 Society for Conservation Biology.
Soil microbial community restoration in conservation reserve program semi-arid grasslands
USDA-ARS?s Scientific Manuscript database
The Conservation Reserve Program (CRP) in the Southern High Plains (SHP) is known to play a crucial role in maintaining ecosystem health by reducing soil erosion. However, the restoration of its soil biological health (biological community and its function) over time have not been clearly elucidated...
Farley, Joshua; Batker, David; de la Torre, Isabel; Hudspeth, Tom
2010-01-01
Humans are rapidly depleting critical ecosystems and the life support functions they provide, increasing the urgency of developing effective conservation tools. Using a case study of the conversion of mangrove ecosystems to shrimp aquaculture, this article describes an effort to develop a transdisciplinary, transinstitutional approach to conservation that simultaneously trains future generations of environmental problem solvers. We worked in close collaboration with academics, non-government organizations, local government and local communities to organize a workshop in Puerto Princesa, Palawan, Philippines. The primary objectives of the workshop were to: (1) train participants in the basic principles of ecological economics and its goals of sustainable scale, just distribution and efficient allocation; (2) learn from local community stakeholders and participating scientists about the problems surrounding conversion of mangrove ecosystems to shrimp aquaculture; (3) draw on the skills and knowledge of all participants to develop potential solutions to the problem; and (4) communicate results to those with the power and authority to act on them. We found that the economic and ecological benefits of intact mangroves outweigh the returns to aquaculture. Perversely, however, private property rights to mangrove ecosystems favor inefficient, unjust and unsustainable allocation of the resource-a tragedy of the non-commons. We presented the workshop results to the press and local government, which shut down the aquaculture ponds to conserve the threatened ecosystem. Effective communication to appropriate audiences was essential for transforming research into action. Our approach is promising and can be readily applied to conservation research and advocacy projects worldwide, but should be improved through adaptive management-practitioners must continually build on those elements that work and discard or improve those that fail.
López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul; Diffendorfer, Jay E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A.; Russell, Amy; Semmens, Darius
2014-01-01
Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular. PMID:24498400
NASA Astrophysics Data System (ADS)
Farley, Joshua; Batker, David; de La Torre, Isabel; Hudspeth, Tom
2010-01-01
Humans are rapidly depleting critical ecosystems and the life support functions they provide, increasing the urgency of developing effective conservation tools. Using a case study of the conversion of mangrove ecosystems to shrimp aquaculture, this article describes an effort to develop a transdisciplinary, transinstitutional approach to conservation that simultaneously trains future generations of environmental problem solvers. We worked in close collaboration with academics, non-government organizations, local government and local communities to organize a workshop in Puerto Princesa, Palawan, Philippines. The primary objectives of the workshop were to: (1) train participants in the basic principles of ecological economics and its goals of sustainable scale, just distribution and efficient allocation; (2) learn from local community stakeholders and participating scientists about the problems surrounding conversion of mangrove ecosystems to shrimp aquaculture; (3) draw on the skills and knowledge of all participants to develop potential solutions to the problem; and (4) communicate results to those with the power and authority to act on them. We found that the economic and ecological benefits of intact mangroves outweigh the returns to aquaculture. Perversely, however, private property rights to mangrove ecosystems favor inefficient, unjust and unsustainable allocation of the resource—a tragedy of the non-commons. We presented the workshop results to the press and local government, which shut down the aquaculture ponds to conserve the threatened ecosystem. Effective communication to appropriate audiences was essential for transforming research into action. Our approach is promising and can be readily applied to conservation research and advocacy projects worldwide, but should be improved through adaptive management—practitioners must continually build on those elements that work and discard or improve those that fail.
Schwarzmüller, Florian; Eisenhauer, Nico; Brose, Ulrich
2015-05-01
Human activities may compromise biodiversity if external stressors such as nutrient enrichment endanger overall network stability by inducing unstable dynamics. However, some ecosystems maintain relatively high diversity levels despite experiencing continuing disturbances. This indicates that some intrinsic properties prevent unstable dynamics and resulting extinctions. Identifying these 'ecosystem buffers' is crucial for our understanding of the stability of ecosystems and an important tool for environmental and conservation biologists. In this vein, weak interactions have been suggested as stabilizing elements of complex systems, but their relevance has rarely been tested experimentally. Here, using network and allometric theory, we present a novel concept for a priori identification of species that buffer against externally induced instability of increased population oscillations via weak interactions. We tested our model in a microcosm experiment using a soil food-web motif. Our results show that large-bodied species feeding at the food web's base, so called 'trophic whales', can buffer ecosystems against unstable dynamics induced by nutrient enrichment. Similar to the functionality of chemical or mechanical buffers, they serve as 'biotic buffers' that take up stressor effects and thus protect fragile systems from instability. We discuss trophic whales as common functional building blocks across ecosystems. Considering increasing stressor effects under anthropogenic global change, conservation of these network-intrinsic biotic buffers may help maintain the stability and diversity of natural ecosystems. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
USDA-ARS?s Scientific Manuscript database
There is increasing demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has made great gains in production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as Conservation ...
Ecosystem disturbance and wildlife conservation in western grasslands - A symposium proceedings
Deborah M. Finch
1996-01-01
This publication is the result of a half-day symposium, "Ecology, management, and sustainability of western grassland ecosystems" held at The Wildlife Society's First Annual Technical Conference, September 22-26, 1994 in Albuquerque, NM. The purpose of the symposium was to review and synthesize information about the structure, function, and...
Cross, Molly S; Zavaleta, Erika S; Bachelet, Dominique; Brooks, Marjorie L; Enquist, Carolyn A F; Fleishman, Erica; Graumlich, Lisa J; Groves, Craig R; Hannah, Lee; Hansen, Lara; Hayward, Greg; Koopman, Marni; Lawler, Joshua J; Malcolm, Jay; Nordgren, John; Petersen, Brian; Rowland, Erika L; Scott, Daniel; Shafer, Sarah L; Shaw, M Rebecca; Tabor, Gary M
2012-09-01
As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)--water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.
Cross, Molly S.; Zavaleta, Erika S.; Bachelet, Dominique; Brooks, Marjorie L.; Enquist, Carolyn A.F.; Fleishman, Erica; Graumlich, Lisa J.; Groves, Craig R.; Hannah, Lee; Hansen, Lara J.; Hayward, Gregory D.; Koopman, Marni; Lawler, Joshua J.; Malcolm, Jay; Nordgren, John R.; Petersen, Brian; Rowland, Erika; Scott, Daniel; Shafer, Sarah L.; Shaw, M. Rebecca; Tabor, Gary
2012-01-01
As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)—water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.
U.S. Geological Survey Science Strategy for the Wyoming Landscape Conservation Initiative
Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Chong, Geneva W.; Drummond, Mark A.; Homer, Collin G.; Johnson, Ronald C.; Kauffman, Matthew J.; Knick, Steven T.; Kosovich, John J.; Miller, Kirk A.; Owens, Tom; Shafer, Sarah L.; Sweat, Michael J.
2009-01-01
Southwest Wyoming's wildlife and habitat resources are increasingly affected by energy and urban/exurban development, climate change, and other key drivers of ecosystem change. To ensure that southwest Wyoming's wildlife populations and habitats persist in the face of development and other changes, a consortium of public resource-management agencies proposed the Wyoming Landscape Conservation Initiative (WLCI), the overall goal of which is to implement conservation actions. As the principal agency charged with conducting WLCI science, the U.S. Geological Survey (USGS) has developed a Science Strategy for the WLCI. Workshops were held for all interested parties to identify and refine the most pressing management needs for achieving WLCI goals. Research approaches for addressing those needs include developing conceptual models for understanding ecosystem function, identifying key drivers of change affecting WLCI ecosystems, and conducting scientific monitoring and experimental studies to better understand ecosystems processes, cumulative effects of change, and effectiveness of habitat treatments. The management needs drive an iterative, three-phase framework developed for structuring and growing WLCI science efforts: Phase I entails synthesizing existing information to assess current conditions, determining what is already known about WLCI ecosystems, and providing a foundation for future work; Phase II entails conducting targeted research and monitoring to address gaps in data and knowledge during Phase I; and Phase III entails integrating new knowledge into WLCI activities and coordinating WLCI partners and collaborators. Throughout all three phases, information is managed and made accessible to interested parties and used to guide and improve management and conservation actions, future habitat treatments, best management practices, and other conservation activities.
Landscape moderation of biodiversity patterns and processes - eight hypotheses.
Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin
2012-08-01
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Davies, T Jonathan; Urban, Mark C; Rayfield, Bronwyn; Cadotte, Marc W; Peres-Neto, Pedro R
2016-09-01
Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature. © 2016 by the Ecological Society of America.
Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation.
Asner, G P; Martin, R E; Knapp, D E; Tupayachi, R; Anderson, C B; Sinca, F; Vaughn, N R; Llactayo, W
2017-01-27
Functional biogeography may bridge a gap between field-based biodiversity information and satellite-based Earth system studies, thereby supporting conservation plans to protect more species and their contributions to ecosystem functioning. We used airborne laser-guided imaging spectroscopy with environmental modeling to derive large-scale, multivariate forest canopy functional trait maps of the Peruvian Andes-to-Amazon biodiversity hotspot. Seven mapped canopy traits revealed functional variation in a geospatial pattern explained by geology, topography, hydrology, and climate. Clustering of canopy traits yielded a map of forest beta functional diversity for land-use analysis. Up to 53% of each mapped, functionally distinct forest presents an opportunity for new conservation action. Mapping functional diversity advances our understanding of the biosphere to conserve more biodiversity in the face of land use and climate change. Copyright © 2017, American Association for the Advancement of Science.
Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R
2017-08-01
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.
The role of satellite remote sensing in structured ecosystem risk assessments.
Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily
2018-04-01
The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
The role of palaeoecological records in assessing ecosystem services
NASA Astrophysics Data System (ADS)
Jeffers, Elizabeth S.; Nogué, Sandra; Willis, Katherine J.
2015-03-01
Biological conservation and environmental management are increasingly focussing on the preservation and restoration of ecosystem services (i.e. the benefits that humans receive from the natural functioning of healthy ecosystems). Over the past decade there has been a rapid increase in the number of palaeoecological studies that have contributed to conservation of biodiversity and management of ecosystem processes; however, there are relatively few instances in which attempts have been made to estimate the continuity of ecosystem goods and services over time. How resistant is an ecosystem service to environmental perturbations? And, if damaged, how long it does it take an ecosystem service to recover? Both questions are highly relevant to conservation and management of landscapes that are important for ecosystem service provision and require an in-depth understanding of the way ecosystems function in space and time. An understanding of time is particularly relevant for those ecosystem services - be they supporting, provisioning, regulating or cultural services that involve processes that vary over a decadal (or longer) timeframe. Most trees, for example, have generation times >50 years. Understanding the response of forested ecosystems to environmental perturbations and therefore the continuity of the ecosystem services they provide for human well-being - be it for example, carbon draw-down (regulating service) or timber (provisioning service) - requires datasets that reflect the typical replacement rates in these systems and the lifecycle of processes that alter their trajectories of change. Therefore, data are required that span decadal to millennial time-scales. Very rarely, however, is this information available from neo-ecological datasets and in many ecosystem service assessments, this lack of a temporal record is acknowledged as a significant information gap. This review aims to address this knowledge gap by examining the type and nature of palaeoecological datasets that might be critical to assessing the persistence of ecosystem services across a variety of time scales. Specifically we examine the types of palaeoecological records that can inform on the dynamics of ecosystem processes and services over time - and their response to complex environmental changes. We focus on three key areas: a) exploring the suitability of palaeoecological records for examining variability in space and time of ecosystem processes; b) using palaeoecological data to determine the resilience and persistence of ecosystem services and goods over time in response to drivers of change; and c) how best to translate raw palaeoecological data into the relevant currencies required for ecosystem service assessments.
Pacific Yew: A Facultative Riparian Conifer with an Uncertain Future
Stanley Scher; Bert Schwarzschild
1989-01-01
Increasing demands for Pacific yew bark, a source of an anticancer agent, have generated interest in defining the yew resource and in exploring strategies to conserve this species. The distribution, riparian requirements and ecosystem functions of yew populations in coastal and inland forests of northern California are outlined and alternative approaches to conserving...
Functional Classification of Natural Resources for Valuing Natural Resources in Korea
NASA Astrophysics Data System (ADS)
Choi, H.; Lee, W.; Kwak, H.
2013-12-01
The ecosystem services concept emphasizes not only regulating services, but also supporting, provisioning, and cultural/social services according to the Millennium Ecosystem Assessment (MA). While the spatial and quantifying of ecosystem services is becoming increasingly recognized for natural resources conservation, however, due to methodological challenges, ecosystem services quantification is rarely considered in Republic of Korea (ROK). This study matches appropriate indicators, data and mapping for describing respective states, quantification and ecosystem valuation. The results were analyzed with statistical and GIS-based techniques. We classified the ecosystem services function based on reference to the literature, interviews and a modified approach compared to the MA, the Economics of Ecosystems and Biodiversity (TEEB). For quantifying values, we subdivided land cover types using ecological features and normalized numerical information of provisioning services, regulating services and cultural services. Resulting hotspots of ecosystem services are related to landscape features and land cover types in ROK. The mapping results show hotspots of ecosystem services where high level of ecosystem services is distributed - around Baekdudaegan protected area (Gangwon, Gyeongbuk Province, Chungbuk, Jeonam Province). n addition, the results of our study show that ecosystem services function - especially, fostering water resources, erosion control, air quality and pollution control in terrestrial ecosystems - can contribute to planning management policy for ecosystem based management at regional scale.
Strategic plant choices can alleviate climate change impacts: A review.
Espeland, Erin K; Kettenring, Karin M
2018-09-15
Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.
USDA-ARS?s Scientific Manuscript database
The rumen microbial ecosystem is highly regarded for its ability to digest and transform low quality plant material into chemical forms of use by the host. However, less than 35% of the dietary energy consumed by the ruminant is conserved by the host. Methane production within the rumen contribute...
Scientists' opinions on the global status and management of biological diversity.
Rudd, Murray A
2011-12-01
The large investments needed if loss of biological diversity is to be stemmed will likely lead to increased public and political scrutiny of conservation strategies and the science underlying them. It is therefore crucial to understand the degree of consensus or divergence among scientists on core scientific perceptions and strategies most likely to achieve given objectives. I developed an internet survey designed to elucidate the opinions of conservation scientists. Conservation scientists (n =583) were unanimous (99.5%) in their view that a serious loss of biological diversity is likely, very likely, or virtually certain. Scientists' agreement that serious loss is very likely or virtually certain ranged from 72.8% for Western Europe to 90.9% for Southeast Asia. Tropical coral ecosystems were perceived as the most seriously affected by loss of biological diversity; 88.0% of respondents familiar with that ecosystem type agreed that a serious loss is very likely or virtually certain. With regard to conservation strategies, scientists most often viewed understanding how people and nature interact in certain contexts and the role of biological diversity in maintaining ecosystem function as their priorities. Protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services. Many scientists expressed a willingness to consider conservation triage, engage in active conservation interventions, and consider reframing conservation goals and measures of success for conservation of biological diversity in an era of climate change. Although some heterogeneity of opinion is evident, results of the survey show a clear consensus within the scientific community on core issues of the extent and geographic scope of loss of biological diversity and on elements that may contribute to successful conservation strategies in the future. ©2011 Society for Conservation Biology.
An intertebrate ecosystem engineer likely covered under the umbrella of sage-grouse conservation
Carlisle, Jason D.; Stewart, David R.; Chalfoun, Anna D.
2017-01-01
Conservation practitioners often rely on areas designed to protect species of greatest conservation priority to also conserve co-occurring species (i.e., the umbrella species concept). The extent to which vertebrate species may serve as suitable umbrellas for invertebrate species, however, has rarely been explored. Sage-grouse (Centrocercus spp.) have high conservation priority throughout much of the rangelands of western North America and are considered an umbrella species through which the conservation of entire rangeland ecosystems can be accomplished. Harvester ants are ecosystem engineers and play important roles in the maintenance and function of rangeland ecosystems. We compared indices of the abundance of western harvester ants (Pogonomyrmex occidentalis) and Greater Sage-Grouse (Centrocercus urophasianus) at 72 sites in central Wyoming, USA, in 2012. The abundance of harvester ant mounds was best predicted by a regression model that included a combination of local habitat characteristics and the abundance of sage-grouse. When controlling for habitat-related factors, areas with higher abundances of sage-grouse pellets (an index of sage-grouse abundance and/or habitat use) had higher abundances of ant mounds than areas with lower abundances of sage-grouse pellets. The causal mechanism underlying this positive relationship between sage-grouse and ant mound abundance at the fine scale could be indirect (e.g., both species prefer similar environmental conditions) or direct (e.g., sage-grouse prefer areas with a high abundance of ant mounds because ants are an important prey item during certain life stages). We observed no relationship between a broad-scale index of breeding sage-grouse density and the abundance of ant mounds. We suspect that consideration of the nonbreeding habitat of sage-grouse and finer-scale measures of sagegrouse abundance are critical to the utility of sage-grouse as an umbrella species for the conservation of harvester ants and their important role in rangeland ecosystems.
Global mapping of ecosystem services and conservation priorities
Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R. E.; Lehner, B.; Malcolm, T. R.; Ricketts, T. H.
2008-01-01
Global efforts to conserve biodiversity have the potential to deliver economic benefits to people (i.e., “ecosystem services”). However, regions for which conservation benefits both biodiversity and ecosystem services cannot be identified unless ecosystem services can be quantified and valued and their areas of production mapped. Here we review the theory, data, and analyses needed to produce such maps and find that data availability allows us to quantify imperfect global proxies for only four ecosystem services. Using this incomplete set as an illustration, we compare ecosystem service maps with the global distributions of conventional targets for biodiversity conservation. Our preliminary results show that regions selected to maximize biodiversity provide no more ecosystem services than regions chosen randomly. Furthermore, spatial concordance among different services, and between ecosystem services and established conservation priorities, varies widely. Despite this lack of general concordance, “win–win” areas—regions important for both ecosystem services and biodiversity—can be usefully identified, both among ecoregions and at finer scales within them. An ambitious interdisciplinary research effort is needed to move beyond these preliminary and illustrative analyses to fully assess synergies and trade-offs in conserving biodiversity and ecosystem services. PMID:18621701
NASA Astrophysics Data System (ADS)
Chen, Liding; Yang, Lei; Wei, Wei; Wang, Ziting; Mo, Baoru; Cai, Guojun
2013-01-01
The Chinese government initiated a massive conservation program called "Grain-for-Green" in 1999 to reduce soil erosion and improve ecosystem function. Implementing practical sustainable development in the loess plateau still remains problematic, particularly in its eco-fragile areas. Here we discussed an approach for sustainable development at the watershed scale by integrating land use suitability, ecosystem services and public participation in the loess hilly area. We linked land use scenario analysis and economic modeling to compare the outcomes of three scenarios, CLU (Current Land Use), GOLU (Grain-production Oriented Land Use) and PSLU (Potential Sustainable Land Use). The results indicated that compared to PSLU, GOLU may provide a higher economic productivity in the short-term, but not in the long-term. CLU ranked lowest in terms of economic benefits and did not meet the daily needs of the local farmers. To reconcile the land use adjustments with farmers' basic needs, a labor-saving land use strategy is necessary. Since the PSLU scenario assumes that slope cropland should be converted to pastures or orchards, more time may be available for off-farm work and for more public participation in integrated ecosystem management. Financial support to the local farmers for environmental conservation should be modulated in function of their positive contribution to ecosystem management.
Ecomarkets for conservation and sustainable development in the coastal zone.
Fujita, Rod; Lynham, John; Micheli, Fiorenza; Feinberg, Pasha G; Bourillón, Luis; Sáenz-Arroyo, Andrea; Markham, Alexander C
2013-05-01
Because conventional markets value only certain goods or services in the ocean (e.g. fish), other services provided by coastal and marine ecosystems that are not priced, paid for, or stewarded tend to become degraded. In fact, the very capacity of an ecosystem to produce a valued good or service is often reduced because conventional markets value only certain goods and services, rather than the productive capacity. Coastal socio-ecosystems are particularly susceptible to these market failures due to the lack of clear property rights, strong dependence on resource extraction, and other factors. Conservation strategies aimed at protecting unvalued coastal ecosystem services through regulation or spatial management (e.g. Marine Protected Areas) can be effective but often result in lost revenue and adverse social impacts, which, in turn, create conflict and opposition. Here, we describe 'ecomarkets' - markets and financial tools - that could, under the right conditions, generate value for broad portfolios of coastal ecosystem services while maintaining ecosystem structure and function by addressing the unique problems of the coastal zone, including the lack of clear management and exclusion rights. Just as coastal tenure and catch-share systems generate meaningful conservation and economic outcomes, it is possible to imagine other market mechanisms that do the same with respect to a variety of other coastal ecosystem goods and services. Rather than solely relying on extracting goods, these approaches could allow communities to diversify ecosystem uses and focus on long-term stewardship and conservation, while meeting development, food security, and human welfare goals. The creation of ecomarkets will be difficult in many cases, because rights and responsibilities must be devolved, new social contracts will be required, accountability systems must be created and enforced, and long-term patterns of behaviour must change. We argue that efforts to overcome these obstacles are justified, because these deep changes will strongly complement policies and tools such as Marine Protected Areas, coastal spatial management, and regulation, thereby helping to bring coastal conservation to scale. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
[Environmental benefit-loss analysis of agro-ecosystem in Haihe River Basin, China].
Bai, Yang; Ouyang, Zhi-yun; Zheng, Hua; Xu, Wei-hua; Jiang, Bo; Fang, Yu
2010-11-01
According to the connotation of ecosystem services, an evaluation index system for the agro-ecosystem services in the Haihe River basin of China was established, and the economic value of the agro-ecosystem services and environmental costs were evaluated by the methods of market valuation, shadow price, and opportunity cost. In 2005, the total environmental benefit value of the agro-ecosystem services in the basin was 180. 264 billion RMB, with the regulation value of 79.416 billion RMB (44.06%) and the supporting value of 100.848 billion RMB (55.94%). Provision and cultural services were not considered in this research. From the viewpoint of functional type, the ecosystem services value from high to low was in the order of oxygen release > water conservation > nutrient cycling > soil conservation > waste purification > environmental purification > carbon sequestration > straw returning. The environmental costs of the agro-ecosystem were quite high (42. 293 billion RMB), among which, fertilizer loss was 427.42 x 10(4) t, equivalent to 15.191 billion RMB, and greenhouse gases production was calculated as 3599.65 x 10(4) t CO2, equivalent to 27. 102 billion RMB.
Dynamic reserve selection: Optimal land retention with land-price feedbacks
Sandor F. Toth; Robert G. Haight; Luke W. Rogers
2011-01-01
Urban growth compromises open space and ecosystem functions. To mitigate the negative effects, some agencies use reserve selection models to identify conservation sites for purchase or retention. Existing models assume that conservation has no impact on nearby land prices. We propose a new integer program that relaxes this assumption via adaptive cost coefficients. Our...
Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity
Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951
Schröter, Matthias; Rusch, Graciela M; Barton, David N; Blumentrath, Stefan; Nordén, Björn
2014-01-01
Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.
Martin G. Raphael; Randall J. Wilk
2013-01-01
One of the fundamental concepts behind the conservation strategy in the U.S. federal Northwest Forest Plan is the importance of habitat buff ers in providing functional stream and streamside ecosystems. To better understand the importance of riparian buff ers in providing habitat for associated organisms, we investigated responses of small mammals to various streamside...
Conservation Planning for Ecosystem Services
Chan, Kai M. A; Shaw, M. Rebecca; Cameron, David R; Underwood, Emma C; Daily, Gretchen C
2006-01-01
Despite increasing attention to the human dimension of conservation projects, a rigorous, systematic methodology for planning for ecosystem services has not been developed. This is in part because flows of ecosystem services remain poorly characterized at local-to-regional scales, and their protection has not generally been made a priority. We used a spatially explicit conservation planning framework to explore the trade-offs and opportunities for aligning conservation goals for biodiversity with six ecosystem services (carbon storage, flood control, forage production, outdoor recreation, crop pollination, and water provision) in the Central Coast ecoregion of California, United States. We found weak positive and some weak negative associations between the priority areas for biodiversity conservation and the flows of the six ecosystem services across the ecoregion. Excluding the two agriculture-focused services—crop pollination and forage production—eliminates all negative correlations. We compared the degree to which four contrasting conservation network designs protect biodiversity and the flow of the six services. We found that biodiversity conservation protects substantial collateral flows of services. Targeting ecosystem services directly can meet the multiple ecosystem services and biodiversity goals more efficiently but cannot substitute for targeted biodiversity protection (biodiversity losses of 44% relative to targeting biodiversity alone). Strategically targeting only biodiversity plus the four positively associated services offers much promise (relative biodiversity losses of 7%). Here we present an initial analytical framework for integrating biodiversity and ecosystem services in conservation planning and illustrate its application. We found that although there are important potential trade-offs between conservation for biodiversity and for ecosystem services, a systematic planning framework offers scope for identifying valuable synergies. PMID:17076586
Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems
Man in ‘t Veld, Willem A.; Meffert, Johan P.; Bouma, Tjeerd J.; van Rijswick, Patricia C. J.; Heusinkveld, Jannes H. T.; Orth, Robert J.; van Katwijk, Marieke M.; van der Heide, Tjisse
2016-01-01
Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. PMID:27559058
The biodiversity-dependent ecosystem service debt.
Isbell, Forest; Tilman, David; Polasky, Stephen; Loreau, Michel
2015-02-01
Habitat destruction is driving biodiversity loss in remaining ecosystems, and ecosystem functioning and services often directly depend on biodiversity. Thus, biodiversity loss is likely creating an ecosystem service debt: a gradual loss of biodiversity-dependent benefits that people obtain from remaining fragments of natural ecosystems. Here, we develop an approach for quantifying ecosystem service debts, and illustrate its use to estimate how one anthropogenic driver, habitat destruction, could indirectly diminish one ecosystem service, carbon storage, by creating an extinction debt. We estimate that c. 2-21 Pg C could be gradually emitted globally in remaining ecosystem fragments because of plant species loss caused by nearby habitat destruction. The wide range for this estimate reflects substantial uncertainties in how many plant species will be lost, how much species loss will impact ecosystem functioning and whether plant species loss will decrease soil carbon. Our exploratory analysis suggests that biodiversity-dependent ecosystem service debts can be globally substantial, even when locally small, if they occur diffusely across vast areas of remaining ecosystems. There is substantial value in conserving not only the quantity (area), but also the quality (biodiversity) of natural ecosystems for the sustainable provision of ecosystem services. © 2014 John Wiley & Sons Ltd/CNRS.
A Bioacoustic Record of a Conservancy in the Mount Kenya Ecosystem
Muchiri, David; Njoroge, Peter
2016-01-01
Abstract Background Environmental degradation is a major threat facing ecosystems around the world. In order to determine ecosystems in need of conservation interventions, we must monitor the biodiversity of these ecosystems effectively. Bioacoustic approaches offer a means to monitor ecosystems of interest in a sustainable manner. In this work we show how a bioacoustic record from the Dedan Kimathi University wildlife conservancy, a conservancy in the Mount Kenya ecosystem, was obtained in a cost effective manner. A subset of the dataset was annotated with the identities of bird species present since they serve as useful indicator species. These data reveal the spatial distribution of species within the conservancy and also point to the effects of major highways on bird populations. This dataset will provide data to train automatic species recognition systems for birds found within the Mount Kenya ecosystem. Such systems are necessary if bioacoustic approaches are to be employed at the large scales necessary to influence wildlife conservation measures. New information We provide acoustic recordings from the Dedan Kimathi University wildlife conservancy, a conservancy in the Mount Kenya ecosystem, obtained using a low cost acoustic recorder. A total of 2701 minute long recordings are provided including both daytime and nighttime recordings. We present an annotation of a subset of the daytime recordings indicating the bird species present in the recordings. The dataset contains recordings of at least 36 bird species. In addition, the presence of a few nocturnal species within the conservancy is also confirmed. PMID:27932917
A Bioacoustic Record of a Conservancy in the Mount Kenya Ecosystem.
Wa Maina, Ciira; Muchiri, David; Njoroge, Peter
2016-01-01
Environmental degradation is a major threat facing ecosystems around the world. In order to determine ecosystems in need of conservation interventions, we must monitor the biodiversity of these ecosystems effectively. Bioacoustic approaches offer a means to monitor ecosystems of interest in a sustainable manner. In this work we show how a bioacoustic record from the Dedan Kimathi University wildlife conservancy, a conservancy in the Mount Kenya ecosystem, was obtained in a cost effective manner. A subset of the dataset was annotated with the identities of bird species present since they serve as useful indicator species. These data reveal the spatial distribution of species within the conservancy and also point to the effects of major highways on bird populations. This dataset will provide data to train automatic species recognition systems for birds found within the Mount Kenya ecosystem. Such systems are necessary if bioacoustic approaches are to be employed at the large scales necessary to influence wildlife conservation measures. We provide acoustic recordings from the Dedan Kimathi University wildlife conservancy, a conservancy in the Mount Kenya ecosystem, obtained using a low cost acoustic recorder. A total of 2701 minute long recordings are provided including both daytime and nighttime recordings. We present an annotation of a subset of the daytime recordings indicating the bird species present in the recordings. The dataset contains recordings of at least 36 bird species. In addition, the presence of a few nocturnal species within the conservancy is also confirmed.
Field, Christopher R; Dayer, Ashley A; Elphick, Chris S
2017-08-22
The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas.
Field, Christopher R.; Dayer, Ashley A.; Elphick, Chris S.
2017-01-01
The human aspects of conservation are often overlooked but will be critical for identifying strategies for biological conservation in the face of climate change. We surveyed the behavioral intentions of coastal landowners with respect to various conservation strategies aimed at facilitating ecosystem migration for tidal marshes. We found that several popular strategies, including conservation easements and increasing awareness of ecosystem services, may not interest enough landowners to allow marsh migration at the spatial scales needed to mitigate losses from sea-level rise. We identified less common conservation strategies that have more support but that are unproven in practice and may be more expensive. Our results show that failure to incorporate human dimensions into ecosystem modeling and conservation planning could lead to the use of ineffective strategies and an overly optimistic view of the potential for ecosystem migration into human dominated areas. PMID:28790190
Functional Rarity: The Ecology of Outliers.
Violle, Cyrille; Thuiller, Wilfried; Mouquet, Nicolas; Munoz, François; Kraft, Nathan J B; Cadotte, Marc W; Livingstone, Stuart W; Mouillot, David
2017-05-01
Rarity has been a central topic for conservation and evolutionary biologists aiming to determine the species characteristics that cause extinction risk. More recently, beyond the rarity of species, the rarity of functions or functional traits, called functional rarity, has gained momentum in helping to understand the impact of biodiversity decline on ecosystem functioning. However, a conceptual framework for defining and quantifying functional rarity is still lacking. We introduce 12 different forms of functional rarity along gradients of species scarcity and trait distinctiveness. We then highlight the potential key role of functional rarity in the long-term and large-scale maintenance of ecosystem processes, as well as the necessary linkage between functional and evolutionary rarity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Richard C. Cobb; David M. Rizzo; Katherine J. Hayden; Matteo Garbelotto; A.N. Filipe João; Christopher A. Gilligan; Whalen W. Dillon; Ross K. Meentemeyer; Yana S. Vlachovic; Ellen Goheen; Tedmund J. Swiecki; Everett M. Hansen; Susan J. Frankel
2013-01-01
Non-native diseases of dominant tree species have diminished North American forest biodiversity, structure, and ecosystem function over the last 150 years. Since the mid-1990s, coastal California forests have suffered extensive decline of the endemic overstory tree tanoak, Notholithocarpus densiflorus (Hook. & Arn.) Manos, Cannon & S. H. Oh...
Diane De Steven; Richard Lowrance
2011-01-01
In the eastern U.S. Coastal Plain and Piedmont region, diverse inland wetlands (riverine, depressional, wet flats) have been impacted by or converted to agriculture. Farm Bill conservation practices that restore or enhance wetlands can return their ecological functions and services to the agricultural landscape. We review the extent of regional knowledge regarding the...
Jeremy Pinto; Anthony S. Davis; James J. K. Leary; Matthew M. Aghai
2015-01-01
Restoring degraded mesic-montane forests represents a major challenge in maintaining functioning ecosystems throughout the tropics. A key example of this lies in Hawaiâi, where restoring native koa (Acacia koa, A. Gray) forests are a top conservation and forestry priority because of the critical habitat and high-value timber products that they provide. Efforts...
Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.
Atkinson, Scott C; Jupiter, Stacy D; Adams, Vanessa M; Ingram, J Carter; Narayan, Siddharth; Klein, Carissa J; Possingham, Hugh P
2016-01-01
Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.
Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities
Atkinson, Scott C.; Jupiter, Stacy D.; Adams, Vanessa M.; Ingram, J. Carter; Narayan, Siddharth; Klein, Carissa J.; Possingham, Hugh P.
2016-01-01
Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme. PMID:27008421
Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R
2008-01-01
Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.
Classification of climate-change-induced stresses on biological diversity.
Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L
2011-08-01
Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.
Value of ecosystem hydropower service and its impact on the payment for ecosystem services.
Fu, B; Wang, Y K; Xu, P; Yan, K; Li, M
2014-02-15
Hydropower is an important service provided by ecosystems. We surveyed all the hydropower plants in the Zagunao River Basin, Southwest China. Then, we assessed the hydropower service by using the InVEST (The Integrated Value and Tradeoff of Ecosystem Service Tools) model. Finally, we discussed the impact on ecological compensation. The results showed that: 1) hydropower service value of ecosystems in the Zagunao River Basin is 216.29 Euro/hm(2) on the average, of which the high-value area with more than 475.65 Euro/hm(2) is about 750.37 km(2), accounting for 16.12% of the whole watershed, but it provides 53.47% of the whole watershed service value; 2) ecosystem is an ecological reservoir with a great regulation capacity. Dams cannot completely replace the reservoir water conservation function of ecosystems, and has high economic and environmental costs that must be paid as well. Compensation for water conservation services should become an important basis for ecological compensation of hydropower development. 3) In the current PES cases, the standard of compensation is generally low. Cascade development makes the value of upstream ecosystem services become more prominent, reflecting the differential rent value, and the value of ecosystem services should be based on the distribution of differentiated ecological compensation. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Piccoli, Ilaria; Camarotto, Carlo; Lazzaro, Barbara; Furlan, Lorenzo; Morari, Francesco
2017-04-01
Soil structure plays a pivotal role in soil functioning and can inform of the degradation of the soil ecosystem. Intensive and repeated tillage operations have been known to negatively affect the soil structure characteristics while conservation agriculture (CA) practices were demonstrated to improve soil structure and related ecosystem services. The aim of this study is to evaluate the effect of conservation agriculture practices on total porosity, pore size distribution, pore architecture and morphology on silty soils of Veneto low-lying plain (North-Eastern Italy). Experimental design was established in 2010 on 4 farms in North-Eastern Italy to compare conventional intensive tillage system "IT" versus conservation agriculture "CA" (no-tillage, cover-crop and residue retention). 96 samples were collected in 2015 at four depths down to 50 cm depth, and investigated for porosity from micro to macro by coupling mercury intrusion porosimetry (MIP) (0.0074-100 µm) and x-ray computed microtomography (µCT) (>26 µm). Pore morphology and architecture were studied from 3D images analysis and MIP pore size curve. Ultramicroporosity class (0.1-5 μm) positively responded to CA after 5-yr of practices adoption while no significant effects were observed in the x-ray µCT domain (> 26 µm). Silty soils of Veneto plain showed a slow reaction to conservation agriculture because of the low soil organic carbon content and poor aggregate stability. Nevertheless the positive influence of CA on ultramicroporosity, which is strictly linked to soil organic carbon (SOC) stabilization, indicated that a virtuous cycle was initiated between SOC and porosity, hopefully leading to well-developed macropore systems and, in turn, enhanced soil functions and ecosystem services.
Kareksela, Santtu; Moilanen, Atte; Tuominen, Seppo; Kotiaho, Janne S
2013-12-01
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on-the-ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land-use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land-use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape-level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land-use zoning in the province of Central Finland. © 2013 Society for Conservation Biology.
Incorporating threat in hotspots and coldspots of biodiversity and ecosystem services.
Schröter, Matthias; Kraemer, Roland; Ceauşu, Silvia; Rusch, Graciela M
2017-11-01
Spatial prioritization could help target conservation actions directed to maintain both biodiversity and ecosystem services. We delineate hotspots and coldspots of two biodiversity conservation features and five regulating and cultural services by incorporating an indicator of 'threat', i.e. timber harvest profitability for forest areas in Telemark (Norway). We found hotspots, where high values of biodiversity, ecosystem services and threat coincide, ranging from 0.1 to 7.1% of the area, depending on varying threshold levels. Targeting of these areas for conservation follows reactive conservation approaches. In coldspots, high biodiversity and ecosystem service values coincide with low levels of threat, and cover 0.1-3.4% of the forest area. These areas might serve proactive conservation approaches at lower opportunity cost (foregone timber harvest profits). We conclude that a combination of indicators of biodiversity, ecosystem services and potential threat is an appropriate approach for spatial prioritization of proactive and reactive conservation strategies.
Madin, Elizabeth M. P.; Gaines, Steven D.; Madin, Joshua S.; Link, Anne-Katrin; Lubchenco, Peggy J.; Selden, Rebecca L.; Warner, Robert R.
2012-01-01
Efforts to restore top predators in human-altered systems raise the question of whether rebounds in predator populations are sufficient to restore pristine foodweb dynamics. Ocean ecosystems provide an ideal system to test this question. Removal of fishing in marine reserves often reverses declines in predator densities and size. However, whether this leads to restoration of key functional characteristics of foodwebs, especially prey foraging behavior, is unclear. The question of whether restored and pristine foodwebs function similarly is nonetheless critically important for management and restoration efforts. We explored this question in light of one important determinant of ecosystem function and structure – herbivorous prey foraging behavior. We compared these responses for two functionally distinct herbivorous prey fishes (the damselfish Plectroglyphidodon dickii and the parrotfish Chlorurus sordidus) within pairs of coral reefs in pristine and restored ecosystems in two regions of these species' biogeographic ranges, allowing us to quantify the magnitude and temporal scale of this key ecosystem variable's recovery. We demonstrate that restoration of top predator abundances also restored prey foraging excursion behaviors to a condition closely resembling those of a pristine ecosystem. Increased understanding of behavioral aspects of ecosystem change will greatly improve our ability to predict the cascading consequences of conservation tools aimed at ecological restoration, such as marine reserves. PMID:22403650
Conservation for the landscape ecological diversity in Wulingyuan scenic area of China.
Yan, Fu
2003-03-01
Wulingyuan is located at the mountainous area of the middle reach of the Yangtze River, it is one of the three nature heritages in China which ranks in the "List of World's Heritage" by UNESCO. It is characterized by quartz sandstone peaks landform with several landform components (pattern, corridor) and rich in landscape ecological diversity and biodiversity. The main patterns (ecosystem) include mid-height mountain peaks, rift-valley and streams among peaks, peaks and gullies on slopes, square mountain-platforms and peaks among blind valleys and so on. The corridor system consists of natural corridors and artificial corridors among which the stream corridors account for a major part. The fracturing of habitat is unfavorable for the biodiversity conservation, but meanwhile the habitat diversity leads to an increase in biodiversity. Therefore, it is still rich in landscape ecological diversity in Wulingyuan. The biodiversity at the level of landscape component (ecosystem) and the function of the Wulingyuan complex ecosystem, and the measures for the biodiversity conservation in Wulingyuan ecotourism area are discussed in this paper.
Development of a Global Wetland Sustainability Index for comprehensive land use planning
NASA Astrophysics Data System (ADS)
Schleupner, C.; Schneider, U. A.; Havlik, P.; Stacke, T.
2012-04-01
Allocation of nature reserves for conservation of ecosystem functions and services is a multi-dimensional task. Conservation programs act from local to regional or national scales, and some efforts involve entire continents. Globally, several international environmental agreements have been established which include conservation issues. Examples are the Convention on Biological Diversity, the Convention on Migratory Species of Wild Animals, the UN Framework Convention on Climate Change, and the Ramsar Convention on Wetlands. A common aim of most initiatives is the protection and restoration of valuable natural sites by providing a functional network of sites. The planning of protected habitat networks to safeguard global biodiversity requires substantial knowledge on exposure, services, and functions of ecosystems. Further, the complex spatial relationships between humans and the environment under consideration of costs and land use competition have to be determined. Often such analyses are hindered by lack of data. We developed a global index that ranks sites for wetland protection according to its wetland quantity, wetland quality and pressure upon the wetland sites. Each of the three parts is based on several spatial-ecological datasets that contain important information for the adequate assessment of spatial economic and ecologic interdependencies. Applying cluster analyses and ecological decision trees the data are combined and results are translated to the final index and expressed per simulation unit for integration into the Global Biomass Optimization Model GLOBIOM. This global recursive dynamic partial equilibrium model integrates the agricultural, bio energy and forestry sectors with the aim to provide policy analyses on global issues concerning land use competition between the major land-based production sectors. Results not only show the most vulnerable wetland areas to nature loss and the most valuable wetland areas for biodiversity protection under certain land use scenarios. Moreover, costs of protection are estimated and the results give recommendations for action by illustrating wetland conservation areas in need for conservation. Often wetlands provide numerous ecosystem services to society, such as water retention, flood control, water purification, to name only a few. The sustainable conservation of wetland sites, especially in highly human dominated landscapes, is therefore an important global but still underestimated objective.
Wang, Shujun; Liu, Jian; Wang, Renqing; Ni, Zirong; Xu, Shipeng; Sun, Yueyao
2012-05-01
Ecosystems and their components provide a lot of benefits for the welfare of human beings. Coupled with increasing socioeconomic development, most of the rapidly developing and transitional countries and regions have been experiencing dramatic land use changes. This has resulted in a large amount of forestland, grassland, and wetland being occupied as residential and industrial land or reclaimed for arable land, which in turn results in a sharp deterioration of ecosystem services around the world. Shandong Province, an economically powerful province of China, was chosen as a case study in order to capture the impact of socioeconomic development on ecosystem services. By way of the study, land uses and their changes were categorized between 1980 and 2006, and the ecosystem services capital and changes of 111 counties of Shandong Province in different phases were evaluated, as well as the total ecosystem services capital, followed by the zoning of ecosystem services function region of Shandong Province. We found that the counties in mountainous areas and wetlands, where generally the prefectural-level cities are located with a rapid socioeconomic development, experienced a successive deterioration of ecosystem services especially during the 2000s. Finally, three conservation strategies for managing and improving ecosystem services were proposed and discussed with the aim of achieving coordinate and sustainable development of the socioeconomy, environment, and ecosystems not only in Shandong Province but also in other provinces of China, as well as in other developing and transitional countries and regions.
Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.
Govers, Laura L; Man In 't Veld, Willem A; Meffert, Johan P; Bouma, Tjeerd J; van Rijswick, Patricia C J; Heusinkveld, Jannes H T; Orth, Robert J; van Katwijk, Marieke M; van der Heide, Tjisse
2016-08-31
Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts. © 2016 The Author(s).
Huang, Lin; Cao, Wei; Xu, Xinliang; Fan, Jiangwen; Wang, Junbang
2018-09-15
The maintenance and improvement of ecosystem services on the Tibet Plateau are critical for national ecological security in China and are core objectives of ecological conservation in this region. In this paper, ecosystem service benefits of the Tibet Ecological Conservation Project were comprehensively assessed by estimating and mapping the spatiotemporal variation patterns of critical ecosystem services on the Tibet Plateau from 2000 to 2015. Furthermore, we linked the benefit assessment to the sustainable spatial planning of future ecological conservation strategies. Comparing the 8 years before and after the project, the water retention and carbon sink services of the forest, grassland and wetland ecosystems were slightly increased after the project, and the ecosystem sand fixation service has been steadily enhanced. The increasing forage supply service of grassland significantly reduced the grassland carrying pressure and eased the conflict between grassland and livestock. However, enhanced rainfall erosivity occurred due to increased rainfall, and root-layer soils could not recover in a short period of time, both factors have led to a decline in soil conservation service. The warm and humid climate is beneficial for the restoration of ecosystems on the Tibet Plateau, and the implementation of the Tibet Ecological Conservation Project has had a positive effect on the local improvement of ecosystem services. A new spatial planning strategy for ecological conservation was introduced and aims to establish a comprehensive, nationwide system to protect important natural ecosystems and wildlife, and to promote the sustainable use of natural resources. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rare Species Support Vulnerable Functions in High-Diversity Ecosystems
Mouillot, David; Bellwood, David R.; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C. E. Timothy; Renaud, Julien; Thuiller, Wilfried
2013-01-01
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning. PMID:23723735
Rare species support vulnerable functions in high-diversity ecosystems.
Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried
2013-01-01
Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across spatial scales. As such, they are likely to insure against future uncertainty arising from climate change and the ever-increasing anthropogenic pressures on ecosystems. Our results call for a more detailed understanding of the role of rarity and functional vulnerability in ecosystem functioning.
Conservation status of freshwater mussels in Europe: state of the art and future challenges.
Lopes-Lima, Manuel; Sousa, Ronaldo; Geist, Juergen; Aldridge, David C; Araujo, Rafael; Bergengren, Jakob; Bespalaya, Yulia; Bódis, Erika; Burlakova, Lyubov; Van Damme, Dirk; Douda, Karel; Froufe, Elsa; Georgiev, Dilian; Gumpinger, Clemens; Karatayev, Alexander; Kebapçi, Ümit; Killeen, Ian; Lajtner, Jasna; Larsen, Bjørn M; Lauceri, Rosaria; Legakis, Anastasios; Lois, Sabela; Lundberg, Stefan; Moorkens, Evelyn; Motte, Gregory; Nagel, Karl-Otto; Ondina, Paz; Outeiro, Adolfo; Paunovic, Momir; Prié, Vincent; von Proschwitz, Ted; Riccardi, Nicoletta; Rudzīte, Mudīte; Rudzītis, Māris; Scheder, Christian; Seddon, Mary; Şereflişan, Hülya; Simić, Vladica; Sokolova, Svetlana; Stoeckl, Katharina; Taskinen, Jouni; Teixeira, Amílcar; Thielen, Frankie; Trichkova, Teodora; Varandas, Simone; Vicentini, Heinrich; Zajac, Katarzyna; Zajac, Tadeusz; Zogaris, Stamatis
2017-02-01
Freshwater mussels of the Order Unionida provide important ecosystem functions and services, yet many of their populations are in decline. We comprehensively review the status of the 16 currently recognized species in Europe, collating for the first time their life-history traits, distribution, conservation status, habitat preferences, and main threats in order to suggest future management actions. In northern, central, and eastern Europe, a relatively homogeneous species composition is found in most basins. In southern Europe, despite the lower species richness, spatially restricted species make these basins a high conservation priority. Information on freshwater mussels in Europe is unevenly distributed with considerable differences in data quality and quantity among countries and species. To make conservation more effective in the future, we suggest greater international cooperation using standardized protocols and methods to monitor and manage European freshwater mussel diversity. Such an approach will not only help conserve this vulnerable group but also, through the protection of these important organisms, will offer wider benefits to freshwater ecosystems. © 2016 Cambridge Philosophical Society.
Physiological Ecology and Ecohydrology of Coastal Forested Wetlands
Krauss, Ken W.
2007-01-01
The form, function, and productivity of wetland communities are influenced strongly by the hydrologic regime of an area. Wetland ecosystems persist by depending upon surpluses of rainfall, evapotranspiration, soil moisture, and frequency and amplitude of water-level fluctuations. Yet, wetland vegetation can also influence ecosystem water economy through conservative water- and carbon-use strategies at several organizational scales. Scientists have described leaf-level water-use efficiency in coastal mangrove forests as being among the highest of any ecosystem. These forested wetlands occur in intertidal areas and often persist under flooded saline conditions. Are these same strategies used by other types of coastal forested wetlands? Do conservative water-use strategies reflect a consequence of salt balance more than efficiency in water use per se? At what organizational scales do these strategies manifest? These are just a few of the questions being answered by physiological and landscape ecologists at the U.S. Geological Survey National Wetlands Research Center (NWRC).
Monitoring the welfare of polar bear populations in a rapidly changing Arctic
Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Sonsthagen, Sarah A.
2017-01-01
Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.
Threats to intact tropical peatlands and opportunities for their conservation.
Roucoux, K H; Lawson, I T; Baker, T R; Del Castillo Torres, D; Draper, F C; Lähteenoja, O; Gilmore, M P; Honorio Coronado, E N; Kelly, T J; Mitchard, E T A; Vriesendorp, C F
2017-12-01
Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza-Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land-use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon-dense (domed pole forest) areas. New carbon-based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Gilby, Ben L.; Olds, Andrew D.; Connolly, Rod M.; Yabsley, Nicholas A.; Maxwell, Paul S.; Tibbetts, Ian R.; Schoeman, David S.; Schlacher, Thomas A.
2017-12-01
Species surrogates, the use of particular species to index habitat condition or to represent ecological assemblages are commonly identified in many ecosystems, but are less tested, and therefore less employed in estuaries. Estuaries provide important ecosystem goods (e.g. harvestable species) and services (e.g. carbon processing, coastal armouring), but require protection from multiple human activities, meaning that finding surrogates for estuarine condition or faunal assemblages is a significant knowledge gap. In this study, we test the efficacy of the threatened estuary ray Hemitrygon fluviorum, as a suitable indicator of ecosystem condition and management umbrella surrogate species for conservation prioritisation and monitoring purposes within estuaries. We surveyed fish assemblages and ray presence at ten sites within each of 22 estuaries in southeast Queensland, Australia, using one hour deployments of baited video arrays. We then tested for correlations between ray presence, a series of environmental variables considered important to ecosystem management within estuaries (i.e. testing rays as indicator species), and the co-occurring fish species (i.e. testing rays as umbrella species). Estuary rays function as both umbrella species and ecological indicators of habitat status in subtropical Australian estuaries. As umbrellas, ray occurrence concords with elevated species richness. As ecological indicators, ray distribution concords with habitats of good water quality (especially low turbidity) and more natural vegetation remaining in the catchment. These results highlight the potential for other threatened aquatic vertebrates that are both readily detectable and that are reliable proxies for ecosystems status to be become useful management tools in estuaries. The protection of such large, threatened species in coastal seascapes allows managers to address multiple targets for conservation, especially; (1) protecting species of conservation concern; (2) maintaining diversity; and (3) protecting optimal habitats by better placing reserves.
NASA Astrophysics Data System (ADS)
Zhou, Z. X.; Li, Jing; Guo, Z. Z.; Li, Ting
2017-06-01
It is important to ensure the efficient supply of land ecosystem services when the competition for land is increasing. In this paper we simulated the ecosystem services function under two scenarios, including carbon sequestration, agricultural production, water and soil conservation, and analyzed the tradeoffs among these ecosystem services in Guanzhong-Tianshui region from 2000 to 2050. Then the productive efficiency of ecosystem services was assessed under two scenarios and compared their production possibility frontiers (PPFs). Through the simulation analysis of their optimum allocation, we also provide the scientific evidence to the development of ecosystem. The natural rules were revealed that if these trade-offs emphasize the potential to sequester carbon in the landscape, along with very little loss of agricultural production, much more water is used. It could be identified to adhere to combine the exploitation and utilization, remediation and protection for land to promote the effective circulation of land eco-system, and meet the society's preferences for land ecosystem service function by adjusting the use of multiple eco-services.
Biodiversity influences plant productivity through niche-efficiency.
Liang, Jingjing; Zhou, Mo; Tobin, Patrick C; McGuire, A David; Reich, Peter B
2015-05-05
The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity-ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche-efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche-efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species' inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.
Biodiversity influences plant productivity through niche–efficiency
Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.
2015-01-01
The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty. PMID:25901325
Biodiversity influences plant productivity through niche–efficiency
Liang, Jingjing; Zhou, Mo; Tobin, Patrick C.; McGuire, A. David; Reich, Peter B.
2015-01-01
The loss of biodiversity is threatening ecosystem productivity and services worldwide, spurring efforts to quantify its effects on the functioning of natural ecosystems. Previous research has focused on the positive role of biodiversity on resource acquisition (i.e., niche complementarity), but a lack of study on resource utilization efficiency, a link between resource and productivity, has rendered it difficult to quantify the biodiversity–ecosystem functioning relationship. Here we demonstrate that biodiversity loss reduces plant productivity, other things held constant, through theory, empirical evidence, and simulations under gradually relaxed assumptions. We developed a theoretical model named niche–efficiency to integrate niche complementarity and a heretofore-ignored mechanism of diminishing marginal productivity in quantifying the effects of biodiversity loss on plant productivity. Based on niche–efficiency, we created a relative productivity metric and a productivity impact index (PII) to assist in biological conservation and resource management. Relative productivity provides a standardized measure of the influence of biodiversity on individual productivity, and PII is a functionally based taxonomic index to assess individual species’ inherent value in maintaining current ecosystem productivity. Empirical evidence from the Alaska boreal forest suggests that every 1% reduction in overall plant diversity could render an average of 0.23% decline in individual tree productivity. Out of the 283 plant species of the region, we found that large woody plants generally have greater PII values than other species. This theoretical model would facilitate the integration of biological conservation in the international campaign against several pressing global issues involving energy use, climate change, and poverty.
Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco
2015-01-01
Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.
Environmental offsets, resilience and cost-effective conservation
Little, L. R.; Grafton, R. Q.
2015-01-01
Conservation management agencies are faced with acute trade-offs when dealing with disturbance from human activities. We show how agencies can respond to permanent ecosystem disruption by managing for Pimm resilience within a conservation budget using a model calibrated to a metapopulation of a coral reef fish species at Ningaloo Reef, Western Australia. The application is of general interest because it provides a method to manage species susceptible to negative environmental disturbances by optimizing between the number and quality of migration connections in a spatially distributed metapopulation. Given ecological equivalency between the number and quality of migration connections in terms of time to recover from disturbance, our approach allows conservation managers to promote ecological function, under budgetary constraints, by offsetting permanent damage to one ecological function with investment in another. PMID:26587260
Fishing down nutrients on coral reefs.
Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A
2016-08-16
Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.
Mitsuyasu Yabe
2007-01-01
Over 18 million people visit and enjoy the view of the worldâs largest class caldera topography, which forms the important landscape element of National Park Aso. Aso grassland spreads and rare plants exist in the harmony of nature and human activities. This study was a Contingent Valuation (CV) survey to estimate the conservation value of Aso grassland. We...
Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A
2014-01-01
Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.
The ecology, restoration, and management of southeastern floodplain ecosystems: a synthesis
King, Sammy L.; Sharitz, Rebecca R.; Groninger, John W.; Battaglia, Loretta L.
2009-01-01
Floodplain ecosystems of the southeastern United States provide numerous services to society, but hydrologic and geomorphic alterations, agricultural practices, water quality and availability, and urban development continue to challenge restorationists and managers at multiple spatial and temporal scales. These challenges are further exacerbated by tremendous uncertainty regarding climate and land use patterns and natural variability in these systems. The symposium from which the papers in 2009 ensued was organized to provide a critical evaluation of current natural resource restoration and management practices to support the sustainability of floodplain ecosystem functions in the southeastern United States. In this paper we synthesize these concepts and evaluate restoration and conservation techniques in light of our understanding of these ecosystems. We also discuss current and future challenges and attempt to identify new approaches that may facilitate the long-term sustainability of southeastern floodplain systems. We conclude thatintegration of disciplines and approaches is necessary to meet the floodplain conservation challenges of the coming century. Integration will not only include purposeful dialogue between interdisciplinary natural resource professionals, but it also is necessary to sincerely engage the public about goals, objectives, and desirable outcomes of floodplain ecosystem restoration.
The ecology, restoration, and management of southeastern floodplain ecosystems: A synthesis
King, S.L.; Sharitz, R.R.; Groninger, John W.; Battaglia, Loretta L.
2009-01-01
Floodplain ecosystems of the southeastern United States provide numerous services to society, but hydrologic and geomorphic alterations, agricultural practices, water quality and availability, and urban development continue to challenge restorationists and managers at multiple spatial and temporal scales. These challenges are further exacerbated by tremendous uncertainty regarding climate and land use patterns and natural variability in these systems. The symposium from which the papers in 2009 ensued was organized to provide a critical evaluation of current natural resource restoration and management practices to support the sustainability of floodplain ecosystem functions in the southeastern United States. In this paper we synthesize these concepts and evaluate restoration and conservation techniques in light of our understanding of these ecosystems. We also discuss current and future challenges and attempt to identify new approaches that may facilitate the long-term sustainability of southeastern floodplain systems. We conclude that integration of disciplines and approaches is necessary to meet the floodplain conservation challenges of the coming century. Integration will not only include purposeful dialogue between interdisciplinary natural resource professionals, but it also is necessary to sincerely engage the public about goals, objectives, and desirable outcomes of floodplain ecosystem restoration. ?? 2009, The Society of Wetland Scientists.
Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?
Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.
2015-01-01
The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032
Locally rare species influence grassland ecosystem multifunctionality
Manning, Peter; Prati, Daniel; Gossner, Martin M.; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H.; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E. Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C.; Rillig, Matthias C.; Schaefer, H. Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A.; Solly, Emily F.; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N.; Weisser, Wolfgang W.; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-01-01
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. PMID:27114572
Locally rare species influence grassland ecosystem multifunctionality.
Soliveres, Santiago; Manning, Peter; Prati, Daniel; Gossner, Martin M; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Klein, Alexandra-Maria; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Renner, Swen C; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric
2016-05-19
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities. © 2016 The Author(s).
Elementary School Children Contribute to Environmental Research as Citizen Scientists.
Miczajka, Victoria L; Klein, Alexandra-Maria; Pufal, Gesine
2015-01-01
Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to the project as citizen scientists. Specifically, we compared data estimating vegetation cover, measuring vegetation height and counting seeds from a seed removal experiment, that were collected by children and scientists in schoolyards. Children counted seeds similarly to scientists but under- or overestimated vegetation cover and measured different heights. We conclude that children can be involved as citizen scientists in research projects according to their skill level. However, more sophisticated tasks require specific training to become familiarized with scientific experiments and the development of needed skills and methods.
Multiscale analysis of restoration priorities for marine shoreline planning.
Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K
2009-10-01
Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.
Towards a framework for assessment and management of cumulative human impacts on marine food webs.
Giakoumi, Sylvaine; Halpern, Benjamin S; Michel, Loïc N; Gobert, Sylvie; Sini, Maria; Boudouresque, Charles-François; Gambi, Maria-Cristina; Katsanevakis, Stelios; Lejeune, Pierre; Montefalcone, Monica; Pergent, Gerard; Pergent-Martini, Christine; Sanchez-Jerez, Pablo; Velimirov, Branko; Vizzini, Salvatrice; Abadie, Arnaud; Coll, Marta; Guidetti, Paolo; Micheli, Fiorenza; Possingham, Hugh P
2015-08-01
Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. © 2015 Society for Conservation Biology.
Tropical marginal seas: priority regions for managing marine biodiversity and ecosystem function.
McKinnon, A David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J W; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J
2014-01-01
Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems-coral reefs and emergent atolls, deep benthic systems, and pelagic biomes-and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence-from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas-but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.
Tropical Marginal Seas: Priority Regions for Managing Marine Biodiversity and Ecosystem Function
NASA Astrophysics Data System (ADS)
McKinnon, A. David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J. W.; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J.
2014-01-01
Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems - coral reefs and emergent atolls, deep benthic systems, and pelagic biomes - and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence - from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas - but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.
Linking the influence and dependence of people on biodiversity across scales.
Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M; Wardle, David A; O'Connor, Mary I; Duffy, J Emmett; Turnbull, Lindsay A; Thompson, Patrick L; Larigauderie, Anne
2017-05-31
Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.
Xiao, Yang; Xiao, Qiang
2018-03-29
Because natural ecosystems and ecosystem services (ES) are both critical to the well-being of humankind, it is important to understand their relationships and congruence for conservation planning. Spatial conservation planning is required to set focused preservation priorities and to assess future ecological implications. This study uses the combined measures of ES models and ES potential to estimate and analyze all four groups of ecosystem services to generate opportunities to maximize ecosystem services. Subsequently, we identify the key areas of conservation priorities as future forestation and conservation hotspot zones to improve the ecological management in Chongqing City, located in the upper reaches of the Three Gorges Reservoir Area, China. Results show that ecosystem services potential is extremely obvious. Compared to ecosystem services from 2000, we determined that soil conservation could be increased by 59.11%, carbon sequestration by 129.51%, water flow regulation by 83.42%, and water purification by 84.42%. According to our prioritization results, approximately 48% of area converted to forests exhibited high improvements in all ecosystem services (categorized as hotspot-1, hotspot-2, and hotspot-3). The hotspots identified in this study can be used as an excellent surrogate for evaluation ecological engineering benefits and can be effectively applied in improving ecological management planning.
Soranno, Patricia A.; Cheruvelil, Kendra Spence; Webster, Katherine E.; Bremigan, Mary T.; Wagner, Tyler; Stow, Craig A.
2010-01-01
Governmental entities are responsible for managing and conserving large numbers of lake, river, and wetland ecosystems that can be addressed only rarely on a case-by-case basis. We present a system for predictive classification modeling, grounded in the theoretical foundation of landscape limnology, that creates a tractable number of ecosystem classes to which management actions may be tailored. We demonstrate our system by applying two types of predictive classification modeling approaches to develop nutrient criteria for eutrophication management in 1998 north temperate lakes. Our predictive classification system promotes the effective management of multiple ecosystems across broad geographic scales by explicitly connecting management and conservation goals to the classification modeling approach, considering multiple spatial scales as drivers of ecosystem dynamics, and acknowledging the hierarchical structure of freshwater ecosystems. Such a system is critical for adaptive management of complex mosaics of freshwater ecosystems and for balancing competing needs for ecosystem services in a changing world.
Variation of ecosystem services and human activities: A case study in the Yanhe Watershed of China
NASA Astrophysics Data System (ADS)
Su, Chang-hong; Fu, Bo-Jie; He, Chan-Sheng; Lü, Yi-He
2012-10-01
The concept of 'ecosystem service' provides cohesive views on mechanisms by which nature contributes to human well-being. Fast social and economic development calls for research on interactions between human and natural systems. We took the Yanhe Watershed as our study area, and valued the variation of ecosystem services and human activities of 2000 and 2008. Five ecosystem services were selected i.e. net primary production (NPP), carbon sequestration and oxygen production (CSOP), water conservation, soil conservation, and grain production. Human activity was represented by a composite human activity index (HAI) that integrates human population density, farmland ratio, influence of residential sites and road network. Analysis results of the five ecosystem services and human activity (HAI) are as follows: (i) NPP, CSOP, water conservation, and soil conservation increased from 2000 to 2008, while grain production declined. HAI decreased from 2000 to 2008. Spatially, NPP, CSOP, and water conservation in 2000 and 2008 roughly demonstrated a pattern of decline from south to north, while grain production shows an endocentric increasing spatial pattern. Soil conservation showed a spatial pattern of high in the south and low in the north in 2000 and a different pattern of high in the west and low in the east in 2008 respectively. HAI is proportional to the administrative level and economic development. Variation of NPP/CSOP between 2000 and 2008 show an increasing spatial pattern from northwest to southeast. In contrast, the variation of soil conservation shows an increasing pattern from southeast to northwest. Variation of water conservation shows a fanning out decreasing pattern. Variation of grain production doesn't show conspicuous spatial pattern. (ii) Variation of water conservation and of soil conservation is significantly positively correlated at 0.01 level. Both variations of water conservation and soil conservation are negatively correlated with variation of HAI at 0.01 level. Variations of NPP/CSOP are negatively correlated with variations of soil conservation and grain production at 0.05 level. (iii) Strong tradeoffs exist between regulation services and provision service, while synergies exist within regulation services. Driving effect of human activities on ecosystem services and tradeoffs and synergies among ecosystem service are also discussed.
Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea.
Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk
2015-01-01
Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas.
Assessment of Coastal Ecosystem Services for Conservation Strategies in South Korea
Chung, Min Gon; Kang, Hojeong; Choi, Sung-Uk
2015-01-01
Despite the fact that scientific and political consideration for ecosystem services has dramatically increased over the past decade, few studies have focused on marine and coastal ecosystem services for conservation strategies. We used an ecosystem services approach to assess spatial distributions of habitat risks and four ecosystem services (coastal protection, carbon storage, recreation, and aesthetic quality), and explored the tradeoffs among them in coastal areas of South Korea. Additionally, we analyzed how the social and ecological characteristics in coastal areas interact with conservation and development policies by using this approach. We found strong negative associations between the habitat risks and ecosystem services (aquaculture, carbon storage, recreation, and aesthetic quality) across the coastal counties. Our results showed that the intensity of the habitat risks and the provision of ecosystem services were significantly different between reclamation-dominated and conservation-dominated counties, except for coastal vulnerability. A generalized linear model suggested that reclamation projects were dependent on economic efficiency, whereas demographic pressures and habitat conditions influenced the designation of protected areas at a county level. The ecosystem services approach provided guidelines to achieve both sustainable development and environment conservation. By using the approach, we can select the priority areas for developments while we can minimize the degradation of biodiversity and ecosystem services. As cultural ecosystem services are evenly distributed throughout coastal areas of South Korea, decision makers may employ them to improve the conditions of coastal wetlands outside of protected areas. PMID:26221950
Safeguarding biodiversity and ecosystem services in the Little Karoo, South Africa.
Egoh, Benis N; Reyers, Belinda; Carwardine, Josie; Bode, Michael; O'Farrell, Patrick J; Wilson, Kerrie A; Possingham, Hugh P; Rouget, Mathieu; de Lange, Willem; Richardson, David M; Cowling, Richard M
2010-08-01
Global declines in biodiversity and the widespread degradation of ecosystem services have led to urgent calls to safeguard both. Responses to this urgency include calls to integrate the needs of ecosystem services and biodiversity into the design of conservation interventions. The benefits of such integration are purported to include improvements in the justification and resources available for these interventions. Nevertheless, additional costs and potential trade-offs remain poorly understood in the design of interventions that seek to conserve biodiversity and ecosystem services. We sought to investigate the synergies and trade-offs in safeguarding ecosystem services and biodiversity in South Africa's Little Karoo. We used data on three ecosystem services--carbon storage, water recharge, and fodder provision--and data on biodiversity to examine several conservation planning scenarios. First, we investigated the amount of each ecosystem service captured incidentally by a conservation plan to meet targets for biodiversity only while minimizing opportunity costs. We then examined the costs of adding targets for ecosystem services into this conservation plan. Finally, we explored trade-offs between biodiversity and ecosystem service targets at a fixed cost. At least 30% of each ecosystem service was captured incidentally when all of biodiversity targets were met. By including data on ecosystem services, we increased the amount of services captured by at least 20% for all three services without additional costs. When biodiversity targets were reduced by 8%, an extra 40% of fodder provision and water recharge were obtained and 58% of carbon could be captured for the same cost. The opportunity cost (in terms of forgone production) of safeguarding 100% of the biodiversity targets was about US$500 million. Our results showed that with a small decrease in biodiversity target achievement, substantial gains for the conservation of ecosystem services can be achieved within our biodiversity priority areas for no extra cost.
Ecosystem services provided by waterbirds.
Green, Andy J; Elmberg, Johan
2014-02-01
Ecosystem services are ecosystem processes that directly or indirectly benefit human well-being. There has been much recent literature identifying different services and the communities and species that provide them. This is a vital first step towards management and maintenance of these services. In this review, we specifically address the waterbirds, which play key functional roles in many aquatic ecosystems, including as predators, herbivores and vectors of seeds, invertebrates and nutrients, although these roles have often been overlooked. Waterbirds can maintain the diversity of other organisms, control pests, be effective bioindicators of ecological conditions, and act as sentinels of potential disease outbreaks. They also provide important provisioning (meat, feathers, eggs, etc.) and cultural services to both indigenous and westernized societies. We identify key gaps in the understanding of ecosystem services provided by waterbirds and areas for future research required to clarify their functional role in ecosystems and the services they provide. We consider how the economic value of these services could be calculated, giving some examples. Such valuation will provide powerful arguments for waterbird conservation. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
[Service value assessment of orchard ecosystem: a case of Putian City of Fujian].
Chen, Jing; Wu, Duan-wang
2011-09-01
Based on the equivalent weight factor of China terrestrial ecosystem service value, and by using ecosystem service value assessment model, this paper evaluated the orchard ecosystem service value in Putian City. In 2002-2008, the orchard ecosystem service value in the City had an overall increasing trend, among which, the service value of gas regulation and water resource conservation had a fluctuation trend of decreased after an initial increase, and that of other functions increased rapidly in 2002-2006 and then developed mildly. The service value of regulation function was higher than that of direct use function, showing that only on the basis of preserving well the functions of ecosystem, could the orchard ecosystem be claimed and used. As most of the orchards in the City are on hills or mountains, the construction and ecological protection of the orchards are obviously disjointed, making the orchards become bare land or other land-use types, resulting in serious soil erosion and degradation, which not only destroyed the orchard ecology, but also gave negative effects on the production efficiency of agriculture. In the future construction of Putian orchards, it should implement comprehensive planning and management of mountain areas, water regions, farm lands, forest lands, and paths, reduce the orchard construction costs by taking advantage of high and new technologies in light of the local conditions and the demands of domestic and foreign markets, and promote the virtuous circle of ecosystem by comprehensive utilization of resources and regulation of biological interaction to make the structure of the orchard ecosystem approached to scientific and rational.
Cartwright, Jennifer M.; Wolfe, William J.
2016-08-11
In the southeastern United States, insular ecosystems—such as rock outcrops, depression wetlands, high-elevation balds, flood-scoured riparian corridors, and insular prairies and barrens—occupy a small fraction of land area but constitute an important source of regional and global biodiversity, including concentrations of rare and endemic plant taxa. Maintenance of this biodiversity depends upon regimes of abiotic stress and disturbance, incorporating factors such as soil surface temperature, widely fluctuating hydrologic conditions, fires, flood scouring, and episodic droughts that may be subject to alteration by climate change. Over several decades, numerous localized, site-level investigations have yielded important information about the floristics, physical environments, and ecological dynamics of these insular ecosystems; however, the literature from these investigations has generally remained fragmented. This report consists of literature syntheses for eight categories of insular ecosystems of the southeastern United States, concerning (1) physical geography, (2) ecological determinants of community structures including vegetation dynamics and regimes of abiotic stress and disturbance, (3) contributions to regional and global biodiversity, (4) historical and current anthropogenic threats and conservation approaches, and (5) key knowledge gaps relevant to conservation, particularly in terms of climate-change effects on biodiversity. This regional synthesis was undertaken to discern patterns across ecosystems, identify knowledge gaps, and lay the groundwork for future analyses of climate-change vulnerability. Findings from this synthesis indicate that, despite their importance to regional and global biodiversity, insular ecosystems of the southeastern United States have been subjected to a variety of direct and indirect human alterations. In many cases, important questions remain concerning key determinants of ecosystem function. In particular, few empirical investigations in these ecosystems have focused on possible climate-change effects, despite the well-documented ecological effects of climate change at a global level. Long-term management of these ecosystems could benefit from increased scientific effort to characterize and quantify the linkages between changing environmental conditions and the ecological processes that sustain biodiversity.
Where less may be more: how the rare biosphere pulls ecosystems strings.
Jousset, Alexandre; Bienhold, Christina; Chatzinotas, Antonis; Gallien, Laure; Gobet, Angélique; Kurm, Viola; Küsel, Kirsten; Rillig, Matthias C; Rivett, Damian W; Salles, Joana F; van der Heijden, Marcel G A; Youssef, Noha H; Zhang, Xiaowei; Wei, Zhong; Hol, W H Gera
2017-04-01
Rare species are increasingly recognized as crucial, yet vulnerable components of Earth's ecosystems. This is also true for microbial communities, which are typically composed of a high number of relatively rare species. Recent studies have demonstrated that rare species can have an over-proportional role in biogeochemical cycles and may be a hidden driver of microbiome function. In this review, we provide an ecological overview of the rare microbial biosphere, including causes of rarity and the impacts of rare species on ecosystem functioning. We discuss how rare species can have a preponderant role for local biodiversity and species turnover with rarity potentially bound to phylogenetically conserved features. Rare microbes may therefore be overlooked keystone species regulating the functioning of host-associated, terrestrial and aquatic environments. We conclude this review with recommendations to guide scientists interested in investigating this rapidly emerging research area.
Manier, D.J.; Wood, David J.A.; Bowen, Z.H.; Donovan, R.M.; Holloran, M.J.; Juliusson, L.M.; Mayne, K.S.; Oyler-McCance, S.J.; Quamen, F.R.; Saher, D.J.; Titolo, A.J.
2013-01-01
The Greater Sage-Grouse, has been observed, hunted, and counted for decades. The sagebrush biome, home to the Greater Sage-Grouse, includes sagebrush-steppe and Great Basin sagebrush communities, interspersed with grasslands, salt flats, badlands, mountain ranges, springs, intermittent creeks and washes, and major river systems, and is one of the most widespread and enigmatic components of Western U.S. landscapes. Over time, habitat conversion, degradation, and fragmentation have accumulated across the entire range such that local conditions as well as habitat distributions at local and regional scales are negatively affecting the long-term persistence of this species. Historic patterns of human use and settlement of the sagebrush ecosystem have contributed to the current condition and status of sage-grouse populations. The accumulation of habitat loss, persistent habitat degradation, and fragmentation by industry and urban infrastructure, as indicated by U.S. Fish and Wildlife Service (USFWS) findings, presents a significant challenge for conservation of this species and sustainable management of the sagebrush ecosystem. Because of the wide variations in natural and human history across these landscapes, no single prescription for management of sagebrush ecosystems (including sage-grouse habitats) will suffice to guide the collective efforts of public and private entities to conserve the species and its habitat. This report documents and summarizes several decades of work on sage-grouse populations, sagebrush as habitat, and sagebrush community and ecosystem functions based on the recent assessment and findings of the USFWS under consideration of the Endangered Species Act. As reflected here, some of these topics receive a greater depth of discussion because of the perceived importance of the issue for sagebrush ecosystems and sage-grouse populations. Drawing connections between the direct effects on sagebrush ecosystems and the effect of ecosystem condition on habitat condition, and finally the connection between habitat quality and sage-grouse population dynamics remains an important goal for science, management, and conservation. This effort is necessary, despite the perception that these complicated, indirect relations are difficult to characterize and manage, and the many advances in understanding and application developed toward this end have been documented here to help inform regional planning and policy decisions.
Khan, Shujaul Mulk; Page, Sue E; Ahmad, Habib; Harper, David M
2013-08-01
Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities' utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities.
Khan, Shujaul Mulk; Page, Sue E.; Ahmad, Habib; Harper, David M.
2013-01-01
Background Conservation of the unique biodiversity of mountain ecosystems needs trans-disciplinary approaches to succeed in a crowded colloquial world. Geographers, conservationists, ecologists and social scientists have, in the past, had the same conservation goals but have tended to work independently. In this review, the need to integrate different conservation criteria and methodologies is discussed. New criteria are offered for prioritizing species and habitats for conservation in montane ecosystems that combine both ecological and social data. Scope Ecological attributes of plant species, analysed through robust community statistical packages, provide unbiased classifications of species assemblages and environmental biodiversity gradients and yield importance value indices (IVIs). Surveys of local communities’ utilization of the vegetation provides use values (UVs). This review suggests a new means of assessing anthropogenic pressure on plant biodiversity at both species and community levels by integrating IVI and UV data sets in a combined analysis. Conclusions Mountain ecosystems are hot spots for plant conservation efforts because they hold a high overall plant diversity as communities replace each other along altitudinal and climatic gradients, including a high proportion of endemic species. This review contributes an enhanced understanding of (1) plant diversity in mountain ecosystems with special reference to the western Himalayas; (2) ethnobotanical and ecosystem service values of mountain vegetation within the context of anthropogenic impacts; and (3) local and regional plant conservation strategies and priorities. PMID:23825353
7 CFR 625.16 - Violations and remedies.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false Violations and remedies. 625.16 Section 625.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... necessary to protect important listed species, candidate species, and forest ecosystem functions and values...
7 CFR 625.16 - Violations and remedies.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false Violations and remedies. 625.16 Section 625.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... necessary to protect important listed species, candidate species, and forest ecosystem functions and values...
7 CFR 625.16 - Violations and remedies.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false Violations and remedies. 625.16 Section 625.16 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... necessary to protect important listed species, candidate species, and forest ecosystem functions and values...
NASA Astrophysics Data System (ADS)
Ramos Bendana, Zayra Sherlly
Tropical forests are of high conservation priority world-wide due their high value for harboring biodiversity and providing ecosystem services from the local to global scale. Financial resources for conservation are scarce. This challenges practitioners to design conservation networks encompassing spatial synergies between biodiversity and ecosystem services. Furthermore, conservation networks need to be robust to climate change impacts and the unpredictability of biodiversity response to these impacts. Methodologies for selecting locations that can help achieve multiple conservation objectives and can be easily integrated in current conservation practices are urgently needed. The first chapter of this study was focused on exploring the effect of integrating into conservation assessments two climate adaptation approaches based on environmental heterogeneity, as well as the effect of the selection of planning unit size on resultant conservation networks. With Costa Rica as planning region, our results showed that protecting the representation of the geophysical diversity resulted in conservation networks with over 25% more internal environmental heterogeneity, but more fragmented. Incorporating cross-environmental connectivity, on the other hand, resulted in low increases in environmental heterogeneity. Increasing the planning unit size reduced the effect of emphasizing connectivity between environmentally different locations. These results highlight the importance of testing environmental-heterogeneity-based approaches in each context due the specific characteristics of planning regions prior integrating them into formal conservation assessments. The second chapter focused on exploring synergies between biodiversity and carbon storage priorities, when integrating environmental-heterogeneity-based climate adaptation approaches. Results revealed very low synergies between targeting the representation of regional biodiversity and areas of high carbon content. However, spreading out across the country the selection of carbon priority areas by adding stratification improved the synergies with biodiversity priorities, and revealed locations that could be considered priorities for carbon storage in the distribution range of Dry Tropical Forests; one of the most threatened tropical ecosystem. The extent of gains for co-benefits between carbon-related ES and biodiversity conservation will depend in part on how priority areas are selected for implementing strategies, such as PES and REDD, and will determine the location and amount of tropical forest to be conserved. As indicated by the recent development of the spatial data used in Chapter 2, improving spatial datasets for supporting ES targeting is critical in tropical dry forests. As a result, we developed new phenological approaches to map tropical dry forest type using multitemporal Landsat 8 Operational Land Imager data. The major gains in mapping accuracy realized by the multitemporal analysis bodes well for the future of landscape level ES planning in tropical dry forest. Finally, the promising progress in the detection of functional traits through remote sensing offers further opportunities to improve on the quality of the inputs for the mapping of ES, a topic covered in Chapter 4.
Forest restoration, biodiversity and ecosystem functioning.
Aerts, Raf; Honnay, Olivier
2011-11-24
Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.
Is U.S. climatic diversity well represented within the existing federal protection network?
Batllori, Enric; Miller, Carol; Parisien, Marc-Andre; Parks, Sean A; Moritz, Max A
Establishing protection networks to ensure that biodiversity and associated ecosystem services persist under changing environments is a major challenge for conservation planning. The potential consequences of altered climates for the structure and function of ecosystems necessitates new and complementary approaches be incorporated into traditional conservation plans. The conterminous United States of America (CONUS) has an extensive system of protected areas managed by federal agencies, but a comprehensive assessment of how this network represents CONUS climate is lacking. We present a quantitative classification of the climate space that is independent from the geographic locations to evaluate the climatic representation of the existing protected area network. We use this classification to evaluate the coverage of each agency's jurisdiction and to identify current conservation deficits. Our findings reveal that the existing network poorly represents CONUS climatic diversity. Although rare climates are generally well represented by the network, the most common climates are particularly underrepresented. Overall, 83% of the area of the CONUS corresponds to climates underrepresented by the network. The addition of some currently unprotected federal lands to the network would enhance the coverage of CONUS climates. However, to fully palliate current conservation deficits, large-scale private-land conservation initiatives will be critical.
Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats.
Halpern, Benjamin S; Selkoe, Kimberly A; Micheli, Fiorenza; Kappel, Carrie V
2007-10-01
Marine ecosystems are threatened by a suite of anthropogenic stressors. Mitigating multiple threats is a daunting task, particularly when funding constraints limit the number of threats that can be addressed. Threats are typically assessed and prioritized via expert opinion workshops that often leave no record of the rationale for decisions, making it difficult to update recommendations with new information. We devised a transparent, repeatable, and modifiable method for collecting expert opinion that describes and documents how threats affect marine ecosystems. Experts were asked to assess the functional impact, scale, and frequency of a threat to an ecosystem; the resistance and recovery time of an ecosystem to a threat; and the certainty of these estimates. To quantify impacts of 38 distinct anthropogenic threats on 23 marine ecosystems, we surveyed 135 experts from 19 different countries. Survey results showed that all ecosystems are threatened by at least nine threats and that nine ecosystems are threatened by >90% of existing threats. The greatest threats (highest impact scores) were increasing sea temperature, demersal destructive fishing, and point-source organic pollution. Rocky reef, coral reef, hard-shelf, mangrove, and offshore epipelagic ecosystems were identified as the most threatened. These general results, however, may be partly influenced by the specific expertise and geography of respondents, and should be interpreted with caution. This approach to threat analysis can identify the greatest threats (globally or locally), most widespread threats, most (or least) sensitive ecosystems, most (or least) threatened ecosystems, and other metrics of conservation value. Additionally, it can be easily modified, updated as new data become available, and scaled to local or regional settings, which would facilitate informed and transparent conservation priority setting.
Thirty year ecosystem trajectories in a submerged marine cave under changing pressure regime.
Montefalcone, Monica; De Falco, Giada; Nepote, Ettore; Canessa, Martina; Bertolino, Marco; Bavestrello, Giorgio; Morri, Carla; Bianchi, Carlo Nike
2018-06-01
Marine caves are unique and vulnerable habitats exhibiting high biodiversity and heterogeneity, but threatened by multiple global and local disturbances. Marine caves, although widely distributed along the Mediterranean coast, suffer for the lack of quantitative data on their structure and function, which hinder their conservation status assessment. Thanks to the availability of a nearly 30-year-long series of data (1986-2013), we evaluated ecosystem change in the Bergeggi marine cave (Ligurian Sea, NW Mediterranean), a cave with a complex shape and high habitat heterogeneity. Non-taxonomic descriptors were adopted, namely growth forms (GF) and trophic guilds (TG), which are informative about ecosystem structure and functioning, respectively. The cave experienced a general trend of change during the last three decades, mainly due to the decline in the cover of sessile organisms (especially 3-dimensional forms) matched by an increase of turf and sediment, thus causing the structural and functional homogenization of the cave community. While change before 2004 had been attributed to climatic factors (especially to the summer heat waves of 1999 and 2003), the most important rate of change was observed between 2009 and 2013, coinciding with recent major beach nourishments and the extension of the neighbouring Vado Ligure harbour, thus providing evidences on the importance of local disturbances deriving from coastal interventions. Monitoring the status of cave ecosystems is urgently needed, and the use of effective indicators, such as the specific traits here adopted (morphology and feeding strategy), could provide effective tools to assist marine cave conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Novel ecosystems: Governance and conservation in the age of the Anthropocene.
Clement, Sarah; Standish, Rachel J
2018-02-15
Meeting conservation objectives in an era of global environmental change has precipitated debate about where and how to intervene. Ecological and social values of novel ecosystems are particularly contested. Governance has a role to play, but this role is underexplored. Here, we critically review the novel ecosystems literature to identify challenges that fall within the realm of governance. Using a conceptual framework for analysing adaptive governance, we consider how governance could help address five challenges. Specifically, we argue that reforming governance can support the re-framing of policy objectives for ecosystems where transformation is likely, and in doing so, it could highlight the tensions between the emergence of novel ecosystems on the one hand and cultural expectations about how ecosystems should look on the other. We discuss the influence of power, authority and administrative competence on conservation efforts in times of environmental change. We consider how buffering can address translational mismatch between conventional conservation policy and modern ecological reality. This review provides insights into how governance reform could enable more adaptive responses to transformative changes, such as novel ecosystems, while remaining committed to achieving conservation outcomes. Indeed, at their best, adaptive responses would encompass the reality of ecological transformation while being sympathetic to concerns about undesirable outcomes. Connections between researchers in the fields of governance, ecology and conservation could help to achieve these twin aims. We provide examples of governance and policy-making techniques that can support context-specific governance reform that supports more effective conservation in the Anthropocene. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chambers, Jeanne C.; Maestas, Jeremy D.; Pyke, David A.; Boyd, Chad S.; Pellant, Mike; Wuenschel, Amarina
2017-01-01
Conservation of imperiled species often demands addressing a complex suite of threats that undermine species viability. Regulatory approaches, such as the US Endangered Species Act (1973), tend to focus on anthropogenic threats through adoption of policies and regulatory mechanisms. However, persistent ecosystem-based threats, such as invasive species and altered disturbance regimes, remain critical issues for most at-risk species considered to be conservation-reliant. We describe an approach for addressing persistent ecosystem threats to at-risk species based on ecological resilience and resistance concepts that is currently being used to conserve greater sage-grouse (Centrocercus urophasianus)and sagebrush ecosystems. The approach links biophysical indicators of ecosystem resilience and resistance with species-specific population and habitat requisites in a risk-based framework to identify priority areas for management and guide allocation of resources to manage persistent ecosystem-based threats. US federal land management and natural resource agencies have adopted this framework as a foundation for prioritizing sage-grouse conservation resources and determining effective restoration and management strategies. Because threats and strategies to address them cross-cut program areas, an integrated approach that includes wildland fire operations, postfire rehabilitation, fuels management, and habitat restoration is being used. We believe this approach is applicable to species conservation in other largely intact ecosystems with persistent, ecosystem-based threats.
Ferraro, Paul J; Hanauer, Merlin M; Miteva, Daniela A; Nelson, Joanna L; Pattanayak, Subhrendu K; Nolte, Christoph; Sims, Katharine R E
2015-06-16
Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds.
Ferraro, Paul J.; Hanauer, Merlin M.; Miteva, Daniela A.; Nelson, Joanna L.; Pattanayak, Subhrendu K.; Nolte, Christoph; Sims, Katharine R. E.
2015-01-01
Scholars have made great advances in modeling and mapping ecosystem services, and in assigning economic values to these services. This modeling and valuation scholarship is often disconnected from evidence about how actual conservation programs have affected ecosystem services, however. Without a stronger evidence base, decision makers find it difficult to use the insights from modeling and valuation to design effective policies and programs. To strengthen the evidence base, scholars have advanced our understanding of the causal pathways between conservation actions and environmental outcomes, but their studies measure impacts on imperfect proxies for ecosystem services (e.g., avoidance of deforestation). To be useful to decision makers, these impacts must be translated into changes in ecosystem services and values. To illustrate how this translation can be done, we estimated the impacts of protected areas in Brazil, Costa Rica, Indonesia, and Thailand on carbon storage in forests. We found that protected areas in these conservation hotspots have stored at least an additional 1,000 Mt of CO2 in forests and have delivered ecosystem services worth at least $5 billion. This aggregate impact masks important spatial heterogeneity, however. Moreover, the spatial variability of impacts on carbon storage is the not the same as the spatial variability of impacts on avoided deforestation. These findings lead us to describe a research program that extends our framework to study other ecosystem services, to uncover the mechanisms by which ecosystem protection benefits humans, and to tie cost-benefit analyses to conservation planning so that we can obtain the greatest return on scarce conservation funds. PMID:26082549
Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have be...
Macroclimatic change expected to transform coastal wetland ecosystems this century
Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.
2017-01-01
Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.
Functional traits predict relationship between plant abundance dynamic and long-term climate warming
Soudzilovskaia, Nadejda A.; Elumeeva, Tatiana G.; Onipchenko, Vladimir G.; Shidakov, Islam I.; Salpagarova, Fatima S.; Khubiev, Anzor B.; Tekeev, Dzhamal K.; Cornelissen, Johannes H. C.
2013-01-01
Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year’s shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change. PMID:24145400
@Caribbean_LCC | CARIBBEAN LANDSCAPE CONSERVATION COOPERATIVE (A2)
Monitoring Data Ecosystem Governance Community Get involved Advisory Groups Scientific Community Practitioner ! Caribbean Agriculture, Forestry and Climate Governance Database Slide background LANDSCAPE Conservation Is Caribbean. Ecosystem Governance Discover our compendium of NGOs and coalition groups doing conservation
Comment on "The extent of forest in dryland biomes".
Griffith, Daniel M; Lehmann, Caroline E R; Strömberg, Caroline A E; Parr, Catherine L; Pennington, R Toby; Sankaran, Mahesh; Ratnam, Jayashree; Still, Christopher J; Powell, Rebecca L; Hanan, Niall P; Nippert, Jesse B; Osborne, Colin P; Good, Stephen P; Anderson, T Michael; Holdo, Ricardo M; Veldman, Joseph W; Durigan, Giselda; Tomlinson, Kyle W; Hoffmann, William A; Archibald, Sally; Bond, William J
2017-11-17
Bastin et al (Reports, 12 May 2017, p. 635) infer forest as more globally extensive than previously estimated using tree cover data. However, their forest definition does not reflect ecosystem function or biotic composition. These structural and climatic definitions inflate forest estimates across the tropics and undermine conservation goals, leading to inappropriate management policies and practices in tropical grassy ecosystems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
USDA-ARS?s Scientific Manuscript database
Successful management of riverine ecosystems often requires mitigation of alien plant invasions. Understanding how environmental variation within watersheds influences distribution and spread of invasive plants is essential to restoring impacted ecological functions and conserving native plant commu...
Anthropogenic areas as incidental substitutes for original habitat.
Martínez-Abraín, Alejandro; Jiménez, Juan
2016-06-01
One speaks of ecological substitutes when an introduced species performs, to some extent, the ecosystem function of an extirpated native species. We suggest that a similar case exists for habitats. Species evolve within ecosystems, but habitats can be destroyed or modified by natural and human-made causes. Sometimes habitat alteration forces animals to move to or remain in a suboptimal habitat type. In that case, the habitat is considered a refuge, and the species is called a refugee. Typically refugee species have lower population growth rates than in their original habitats. Human action may lead to the unintended generation of artificial or semiartificial habitat types that functionally resemble the essential features of the original habitat and thus allow a population growth rate of the same magnitude or higher than in the original habitat. We call such areas substitution habitats and define them as human-made habitats within the focal species range that by chance are partial substitutes for the species' original habitat. We call species occupying a substitution habitat adopted species. These are 2 new terms in conservation biology. Examples of substitution habitats are dams for European otters, wheat and rice fields for many steppeland and aquatic birds, and urban areas for storks, falcons, and swifts. Although substitution habitats can bring about increased resilience against the agents of global change, the conservation of original habitat types remains a conservation priority. © 2016 Society for Conservation Biology.
Identifying priority areas for ecosystem service management in South African grasslands.
Egoh, Benis N; Reyers, Belinda; Rouget, Mathieu; Richardson, David M
2011-06-01
Grasslands provide many ecosystem services required to support human well-being and are home to a diverse fauna and flora. Degradation of grasslands due to agriculture and other forms of land use threaten biodiversity and ecosystem services. Various efforts are underway around the world to stem these declines. The Grassland Programme in South Africa is one such initiative and is aimed at safeguarding both biodiversity and ecosystem services. As part of this developing programme, we identified spatial priority areas for ecosystem services, tested the effect of different target levels of ecosystem services used to identify priority areas, and evaluated whether biodiversity priority areas can be aligned with those for ecosystem services. We mapped five ecosystem services (below ground carbon storage, surface water supply, water flow regulation, soil accumulation and soil retention) and identified priority areas for individual ecosystem services and for all five services at the scale of quaternary catchments. Planning for individual ecosystem services showed that, depending on the ecosystem service of interest, between 4% and 13% of the grassland biome was required to conserve at least 40% of the soil and water services. Thirty-four percent of the biome was needed to conserve 40% of the carbon service in the grassland. Priority areas identified for five ecosystem services under three target levels (20%, 40%, 60% of the total amount) showed that between 17% and 56% of the grassland biome was needed to conserve these ecosystem services. There was moderate to high overlap between priority areas selected for ecosystem services and already-identified terrestrial and freshwater biodiversity priority areas. This level of overlap coupled with low irreplaceability values obtained when planning for individual ecosystem services makes it possible to combine biodiversity and ecosystem services in one plan using systematic conservation planning. Copyright © 2011 Elsevier Ltd. All rights reserved.
Coupled urbanization and agricultural ecosystem services in Guanzhong-Tianshui Economic Zone.
Zhou, Z X; Li, J; Zhang, W
2016-08-01
Ecosystems offer material and environmental support for human habitation and development in those areas of the earth where people choose to live. However, urbanization is an inexorable trend of human social development and threatens the health of those ecosystems inhabited by humans. This study calculates the values of NPP (net primary productivity), carbon sequestration, water interception, soil conservation, and agricultural production in the Guanzhong-Tianshui Economic Zone. At the same time, we combined DMSP/OLS (Defense Meteorological Satellite Program Operational Line Scanner) night lights remote sensing data and statistical data to analyze the level of urbanization. Quantitative analysis was performed on the interactions between the ecosystem service functions and urbanization based on the calculations of their coupled coordination degrees. The results were the following: (1) The values of NPP, carbon sequestration, and agricultural production showed a trend of increase. However, water interception decreased before increasing, while soil conservation showed the reverse trend; (2) Urbanization levels in the Guanzhong-Tianshui Economic Zone for the last 10 years have proceeded at a fast pace with comprehensive promotion; and (3) Coupled and coupled coordination degrees between urbanization and ecosystem services show increasing trends. This research can provide a theoretical basis for the region's rapid economic development in the balance.
Linking the influence and dependence of people on biodiversity across scales
Isbell, Forest; Gonzalez, Andrew; Loreau, Michel; Cowles, Jane; Díaz, Sandra; Hector, Andy; Mace, Georgina M.; Wardle, David A.; O’Connor, Mary I.; Duffy, J. Emmett; Turnbull, Lindsay A.; Thompson, Patrick L.; Larigauderie, Anne
2017-01-01
Biodiversity enhances many of nature’s benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth’s history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation. PMID:28569811
Evaluating the Return in Ecosystem Services from Investment in Public Land Acquisitions
Kovacs, Kent; Polasky, Stephen; Nelson, Erik; Keeler, Bonnie L.; Pennington, Derric; Plantinga, Andrew J.; Taff, Steven J.
2013-01-01
We evaluate the return on investment (ROI) from public land conservation in the state of Minnesota, USA. We use a spatially-explicit modeling tool, the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), to estimate how changes in land use and land cover (LULC), including public land acquisitions for conservation, influence the joint provision and value of multiple ecosystem services. We calculate the ROI of a public conservation acquisition as the ratio of the present value of ecosystem services generated by the conservation to the cost of the conservation. For the land scenarios analyzed, carbon sequestration services generated the greatest benefits followed by water quality improvements and recreation opportunities. We found ROI values ranged from 0.21 to 5.28 depending on assumptions about future land use change, service values, and discount rate. Our study suggests conservation is a good investment as long as investments are targeted to areas with low land costs and high service values. PMID:23776429
Large conservation gains possible for global biodiversity facets.
Pollock, Laura J; Thuiller, Wilfried; Jetz, Walter
2017-06-01
Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity-species. Here we broaden the focus and provide an evaluation of how much of the world's species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.
Large conservation gains possible for global biodiversity facets
NASA Astrophysics Data System (ADS)
Pollock, Laura J.; Thuiller, Wilfried; Jetz, Walter
2017-06-01
Different facets of biodiversity other than species numbers are increasingly appreciated as critical for maintaining the function of ecosystems and their services to humans. While new international policy and assessment processes such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) recognize the importance of an increasingly global, quantitative and comprehensive approach to biodiversity protection, most insights are still focused on a single facet of biodiversity—species. Here we broaden the focus and provide an evaluation of how much of the world’s species, functional and phylogenetic diversity of birds and mammals is currently protected and the scope for improvement. We show that the large existing gaps in the coverage for each facet of diversity could be remedied by a slight expansion of protected areas: an additional 5% of the land has the potential to more than triple the protected range of species or phylogenetic or functional units. Further, the same areas are often priorities for multiple diversity facets and for both taxa. However, we find that the choice of conservation strategy has a fundamental effect on outcomes. It is more difficult (that is, requires more land) to maximize basic representation of the global biodiversity pool than to maximize local diversity. Overall, species and phylogenetic priorities are more similar to each other than they are to functional priorities, and priorities for the different bird biodiversity facets are more similar than those of mammals. Our work shows that large gains in biodiversity protection are possible, while also highlighting the need to explicitly link desired conservation objectives and biodiversity metrics. We provide a framework and quantitative tools to advance these goals for multi-faceted biodiversity conservation.
Sangil, Carlos; Martín-García, Laura; Clemente, Sabrina
2013-11-15
In this paper we develop a tool to assess the impact of fishing on ecosystem functioning in shallow rocky reefs. The relationships between biological parameters (fishes, sea urchins, seaweeds), and fishing activities (fish traps, boats, land-based fishing, spearfishing) were tested in La Palma island (Canary Islands). Data from fishing activities and biological parameters were analyzed using principal component analyses. We produced two models using the first component of these analyses. This component was interpreted as a new variable that described the fishing pressure and the conservation status at each studied site. Subsequently the scores on the first axis were mapped using universal kriging methods and the models obtained were extrapolated across the whole island to display the expected fishing pressure and conservation status more widely. The fishing pressure and conservation status models were spatially related; zones where fishing pressure was high coincided with zones in the unhealthiest ecological state. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deborah M. Finch; Douglas A. Boyce; Jeanne C. Chambers; Chris J. Colt; Kas Dumroese; Stanley G. Kitchen; Clinton McCarthy; Susan E. Meyer; Bryce A. Richardson; Mary M. Rowland; Mark A. Rumble; Michael K. Schwartz; Monica S. Tomosy; Michael J. Wisdom
2016-01-01
Sagebrush ecosystems are among the largest and most threatened ecosystems in North America. Greater sage-grouse has served as the bellwether for species conservation in these ecosystems and has been considered for listing under the Endangered Species Act eight times. In September 2015, the decision was made not to list greater sage-grouse, but to reevaluate its status...
Forests planted for ecosystem restoration or conservation.
Constance A. Harrington
1999-01-01
Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...
Assessing ecological correlates of marine bird declines to inform marine conservation.
Vilchis, L Ignacio; Johnson, Christine K; Evenson, Joseph R; Pearson, Scott F; Barry, Karen L; Davidson, Peter; Raphael, Martin G; Gaydos, Joseph K
2015-02-01
Identifying drivers of ecosystem change in large marine ecosystems is central for their effective management and conservation. This is a sizable challenge, particularly in ecosystems transcending international borders, where monitoring and conservation of long-range migratory species and their habitats are logistically and financially problematic. Here, using tools borrowed from epidemiology, we elucidated common drivers underlying species declines within a marine ecosystem, much in the way epidemiological analyses evaluate risk factors for negative health outcomes to better inform decisions. Thus, we identified ecological traits and dietary specializations associated with species declines in a community of marine predators that could be reflective of ecosystem change. To do so, we integrated count data from winter surveys collected in long-term marine bird monitoring programs conducted throughout the Salish Sea--a transboundary large marine ecosystem in North America's Pacific Northwest. We found that decadal declines in winter counts were most prevalent among pursuit divers such as alcids (Alcidae) and grebes (Podicipedidae) that have specialized diets based on forage fish, and that wide-ranging species without local breeding colonies were more prone to these declines. Although a combination of factors is most likely driving declines of diving forage fish specialists, we propose that changes in the availability of low-trophic prey may be forcing wintering range shifts of diving birds in the Salish Sea. Such a synthesis of long-term trends in a marine predator community not only provides unique insights into the types of species that are at risk of extirpation and why, but may also inform proactive conservation measures to counteract threats--information that is paramount for species-specific and ecosystem-wide conservation. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.
Turrini, Alessandra; Giovannetti, Manuela
2012-02-01
Soil fungi play a crucial role in producing fundamental ecosystem services such as soil fertility, formation and maintenance, nutrient cycling and plant community dynamics. However, they have received little attention in the field of conservation biology. Arbuscular mycorrhizal fungi (AMF) are beneficial soil symbionts fulfilling a key function in the complex networks of belowground/aboveground biotic interactions as they live in association with the roots of most (80%) land plant families and influence not only soil fertility but also plant nutrition, diversity and productivity. The diversity of AMF communities can decline due to habitat loss and anthropogenic disturbance, especially in agro-ecosystems, and many valuable ecotypes could become extinct before they are even discovered. Consequently, long-term strategies are urgently needed to ensure their conservation in habitats where they naturally occur and have evolved. Protected areas, where living organisms are under the care of national and international authorities, represent an appropriate place for the in situ conservation of AMF, providing them with adapted situations together with established complex networks of interactions with different components within each specific ecosystem. Here, we review data available about the main present-day threats to AMF and the current state of knowledge about their occurrence in protected sites worldwide, providing a checklist of national parks and nature reserves where they have been reported. The aim was to offer a strategic perspective to increase awareness of the importance of conserving these beneficial plant symbionts and of preserving their biodiversity in the years to come.
NASA Astrophysics Data System (ADS)
Ronchi, Silvia; Salata, Stefano
2017-10-01
Recently, in Italy, a legislative proposal has been set to reform the role and the functions of natural protected areas promoting their aggregation (or the abolition) pursuing a better efficiency for their administration and economic saving. The system of natural protected areas is composed of different conservation levels: there are the Natural parks, established in the ‘80 by national or regional institution for the safeguard of natural elements, the Natura 2000 -Habitat 92/43/CEE promoted by European Union, with conservation measures for maintaining or restoring habitats and species of Communitarian interest, and the local parks of supra-municipal interest (namely PLIS) created by single municipalities or their aggregation aimed at limiting the soil sealing process. The hierarchical level of protection has determined differences in the management of the areas which leads to various approaches and strategies for biodiversity conservation and integrity. In order to assess strengths and weaknesses of the legislative initiative, the new management framework should be designed, considering the ecosystem characteristics of each natural protected area to define the future opportunities and critics, rather than, in the extreme case, remove the level of protection due to the absence of valuable ecosystem conditions. The paper provides an operative support to better apply the legislative proposal investigating the dynamics that affect all protected areas using the land take process as a major threat to biodiversity conservation in natural zones. The land take process is explored using the Land Use Change analysis (LUCa) as a possible way to determine the impact and the environmental effects of land transitions. LUCa is also useful to determine the loss of protected zones capacity to support Ecosystem Services. Finally, the assessment of the Ecosystem Services Capacity (ESC) index expresses the ability of each LULC to provide ES and, in particular, the Ecological Integrity, Regulating Services and Provisioning Services. The efficacy of the proposal is tested in the Lombardy Region (Northwest of Italy) where the natural protected areas are more than 500 with a territorial extension of 740 thousand hectares that correspond to 31% of the regional surface.
Connors, B M; Cooper, A B
2014-12-01
Categorization of the status of populations, species, and ecosystems underpins most conservation activities. Status is often based on how a system's current indicator value (e.g., change in abundance) relates to some threshold of conservation concern. Receiver operating characteristic (ROC) curves can be used to quantify the statistical reliability of indicators of conservation status and evaluate trade-offs between correct (true positive) and incorrect (false positive) classifications across a range of decision thresholds. However, ROC curves assume a discrete, binary relationship between an indicator and the conservation status it is meant to track, which is a simplification of the more realistic continuum of conservation status, and may limit the applicability of ROC curves in conservation science. We describe a modified ROC curve that treats conservation status as a continuum rather than a discrete state. We explored the influence of this continuum and typical sources of variation in abundance that can lead to classification errors (i.e., random variation and measurement error) on the true and false positive rates corresponding to varying decision thresholds and the reliability of change in abundance as an indicator of conservation status, respectively. We applied our modified ROC approach to an indicator of endangerment in Pacific salmon (Oncorhynchus nerka) (i.e., percent decline in geometric mean abundance) and an indicator of marine ecosystem structure and function (i.e., detritivore biomass). Failure to treat conservation status as a continuum when choosing thresholds for indicators resulted in the misidentification of trade-offs between true and false positive rates and the overestimation of an indicator's reliability. We argue for treating conservation status as a continuum when ROC curves are used to evaluate decision thresholds in indicators for the assessment of conservation status. © 2014 Society for Conservation Biology.
Effects of air pollution on ecosystems and biological diversity in the eastern United States.
Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C
2009-04-01
Conservation organizations have most often focused on land-use change, climate change, and invasive species as prime threats to biodiversity conservation. Although air pollution is an acknowledged widespread problem, it is rarely considered in conservation planning or management. In this synthesis, the state of scientific knowledge on the effects of air pollution on plants and animals in the Northeastern and Mid-Atlantic regions of the United States is summarized. Four air pollutants (sulfur, nitrogen, ozone, and mercury) and eight ecosystem types ranging from estuaries to alpine tundra are considered. Effects of air pollution were identified, with varying levels of certainty, in all the ecosystem types examined. None of these ecosystem types is free of the impacts of air pollution, and most are affected by multiple pollutants. In aquatic ecosystems, effects of acidity, nitrogen, and mercury on organisms and biogeochemical processes are well documented. Air pollution causes or contributes to acidification of lakes, eutrophication of estuaries and coastal waters, and mercury bioaccumulation in aquatic food webs. In terrestrial ecosystems, the effects of air pollution on biogeochemical cycling are also very well documented, but the effects on most organisms and the interaction of air pollution with other stressors are less well understood. Nevertheless, there is strong evidence for effects of nitrogen deposition on plants in grasslands, alpine areas, and bogs, and for nitrogen effects on forest mycorrhizae. Soil acidification is widespread in forest ecosystems across the eastern United States and is likely to affect the composition and function of forests in acid-sensitive areas over the long term. Ozone is known to cause reductions in photosynthesis in many terrestrial plant species. For the most part, the effects of these pollutants are chronic, not acute, at the exposure levels common in the eastern United States. Mortality is often observed only at experimentally elevated exposure levels or in combination with other stresses such as drought, freezing, or pathogens. The notable exceptions are the acid/aluminum effects on aquatic organisms, which can be lethal at levels of acidity observed in many surface waters in the region. Although the effects are often subtle, they are important to biological conservation. Changes in species composition caused by terrestrial or aquatic acidification or eutrophication can propagate throughout the food webs to affect many organisms beyond those that are directly sensitive to the pollution. Likewise, sublethal doses of toxic pollutants may reduce the reproductive success of the affected organisms or make them more susceptible to potentially lethal pathogens. Many serious gaps in knowledge that warrant further research were identified. Among those gaps are the effects of acidification, ozone, and mercury on alpine systems, effects of nitrogen on species composition of forests, effects of mercury in terrestrial food webs, interactive effects of multiple pollutants, and interactions among air pollution and other environmental changes such as climate change and invasive species. These gaps in knowledge, coupled with the strong likelihood of impacts on ecosystems that have not been studied in the region, suggests that current knowledge underestimates the actual impact of air pollutants on biodiversity. Nonetheless, because known or likely impacts of air pollution on the biodiversity and function of natural ecosystems are widespread in the Northeast and Mid-Atlantic regions, the effects of air pollution should be considered in any long-term conservation strategy. It is recommended that ecologically relevant standards, such as "critical loads," be adopted for air pollutants and the importance of long-term monitoring of air pollution and its effects is emphasized.
7 CFR 625.15 - Violations and remedies.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE... listed species and forest ecosystem functions and values or other rights of the United States under the..., NRCS may withhold any easement and cost-share payments owing to landowners at any time there is a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... than those in the grass family. Functions and values of grasslands and shrublands means ecosystem... through an easement. Grassland means land on which the vegetation is dominated by grasses, grass-like... conservation purposes specified in clause (i), (ii), (iii), or (iv) of section 170(h)(4)(A) of the Internal...
Population Abundance and Ecosystem Service Provision: The Case of Birds
Gaston, Kevin J; Cox, Daniel T C; Canavelli, Sonia B; García, Daniel; Hughes, Baz; Maas, Bea; Martínez, Daniel; Ogada, Darcy; Inger, Richard
2018-01-01
Abstract Although there is a diversity of concerns about recent persistent declines in the abundances of many species, the implications for the associated delivery of ecosystem services to people are surprisingly poorly understood. In principle, there are a broad range of potential functional relationships between the abundance of a species or group of species and the magnitude of ecosystem-service provision. Here, we identify the forms these relationships are most likely to take. Focusing on the case of birds, we review the empirical evidence for these functional relationships, with examples of supporting, regulating, and cultural services. Positive relationships between abundance and ecosystem-service provision are the norm (although seldom linear), we found no evidence for hump-shaped relationships, and negative ones were limited to cultural services that value rarity. Given the magnitude of abundance declines among many previously common species, it is likely that there have been substantial losses of ecosystem services, providing important implications for the identification of potential tipping points in relation to defaunation resilience, biodiversity conservation, and human well-being. PMID:29686433
Houk, Peter; Camacho, Rodney; Johnson, Steven; McLean, Matthew; Maxin, Selino; Anson, Jorg; Joseph, Eugene; Nedlic, Osamu; Luckymis, Marston; Adams, Katrina; Hess, Don; Kabua, Emma; Yalon, Anthony; Buthung, Eva; Graham, Curtis; Leberer, Trina; Taylor, Brett; van Woesik, Robert
2015-01-01
Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models’ predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral reefs provide to societies in the face of climate change. PMID:26087252
Houk, Peter; Camacho, Rodney; Johnson, Steven; McLean, Matthew; Maxin, Selino; Anson, Jorg; Joseph, Eugene; Nedlic, Osamu; Luckymis, Marston; Adams, Katrina; Hess, Don; Kabua, Emma; Yalon, Anthony; Buthung, Eva; Graham, Curtis; Leberer, Trina; Taylor, Brett; van Woesik, Robert
2015-01-01
Fishing and pollution are chronic stressors that can prolong recovery of coral reefs and contribute to ecosystem decline. While this premise is generally accepted, management interventions are complicated because the contributions from individual stressors are difficult to distinguish. The present study examined the extent to which fishing pressure and pollution predicted progress towards the Micronesia Challenge, an international conservation strategy initiated by the political leaders of 6 nations to conserve at least 30% of marine resources by 2020. The analyses were rooted in a defined measure of coral-reef-ecosystem condition, comprised of biological metrics that described functional processes on coral reefs. We report that only 42% of the major reef habitats exceeded the ecosystem-condition threshold established by the Micronesia Challenge. Fishing pressure acting alone on outer reefs, or in combination with pollution in some lagoons, best predicted both the decline and variance in ecosystem condition. High variances among ecosystem-condition scores reflected the large gaps between the best and worst reefs, and suggested that the current scores were unlikely to remain stable through time because of low redundancy. Accounting for the presence of marine protected area (MPA) networks in statistical models did little to improve the models' predictive capabilities, suggesting limited efficacy of MPAs when grouped together across the region. Yet, localized benefits of MPAs existed and are expected to increase over time. Sensitivity analyses suggested that (i) grazing by large herbivores, (ii) high functional diversity of herbivores, and (iii) high predator biomass were most sensitive to fishing pressure, and were required for high ecosystem-condition scores. Linking comprehensive fisheries management policies with these sensitive metrics, and targeting the management of pollution, will strengthen the Micronesia Challenge and preserve ecosystem services that coral reefs provide to societies in the face of climate change.
Human use of the landscape for crop production can degrade ecosystem services. A number of agricultural conservation practices are touted as mitigating these impacts. Many of these practices are encouraged by incentive programs such as the Conservation Reserve Program administere...
Spasojevic, Marko J; Bahlai, Christie A; Bradley, Bethany A; Butterfield, Bradley J; Tuanmu, Mao-Ning; Sistla, Seeta; Wiederholt, Ruscena; Suding, Katharine N
2016-04-01
Understanding the mechanisms underlying ecosystem resilience - why some systems have an irreversible response to disturbances while others recover - is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large-scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small-scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four-corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local-scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues. © 2015 John Wiley & Sons Ltd.
Modeling soil conservation, water conservation and their tradeoffs: a case study in Beijing.
Bai, Yang; Ouyang, Zhiyun; Zheng, Hua; Li, Xiaoma; Zhuang, Changwei; Jiang, Bo
2012-01-01
Natural ecosystems provide society with important goods and services. With the rapid increase in human populations and excessive utilization of natural resources, humans frequently enhance the production of some services at the expense of the others. Although the need for tradeoffs between conservation and development is urgent, the lack of efficient methods to assess such tradeoffs has impeded progress. Three land use strategy scenarios (development scenario, plan trend scenario and conservation scenario) were created to forecast potential changes in ecosystem services from 2007 to 2050 in Beijing, China. GIS-based techniques were used to map spatial and temporal distribution and changes in ecosystem services for each scenario. The provision of ecosystem services differed spatially, with significant changes being associated with different scenarios. Scenario analysis of water yield (as average annual yield) and soil retention (as retention rate per unit area) for the period 2007 to 2050 indicated that the highest values for these parameters were predicted for the forest habitat under all three scenarios. Annual yield/retention of forest, shrub, and grassland ranked the highest in the conservation scenario. Total water yield and soil retention increased in the conservation scenario and declined dramatically in the other two scenarios, especially the development scenario. The conservation scenario was the optimal land use strategy, resulting in the highest soil retention and water yield. Our study suggests that the evaluation and visualization of ecosystem services can effectively assist in understanding the tradeoffs between conservation and development. Results of this study have implications for planning and monitoring future management of natural capital and ecosystem services, which can be integrated into land use decision-making.
Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar
Andriamaro, Luciano; Cano, Carlos Andres; Grantham, Hedley S.; Hole, David; Juhn, Daniel; McKinnon, Madeleine; Rasolohery, Andriambolantsoa; Steininger, Marc; Wright, Timothy Max
2016-01-01
The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions. PMID:28006005
Species richness accelerates marine ecosystem restoration in the Coral Triangle.
Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R
2017-11-07
Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.
Trait space of rare plants in a fire-dependent ecosystem.
Ames, Gregory M; Wall, Wade A; Hohmann, Matthew G; Wright, Justin P
2017-08-01
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait-based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co-occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue-chemistry traits differed significantly between rare and common, co-occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
What is conservation physiology? Perspectives on an increasingly integrated and essential science†
Cooke, Steven J.; Sack, Lawren; Franklin, Craig E.; Farrell, Anthony P.; Beardall, John; Wikelski, Martin; Chown, Steven L.
2013-01-01
Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. ‘Conservation physiology’ has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider ‘physiology’ in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive species, refinement of resource management strategies to minimize impacts, and evaluation of restoration plans. This concept of conservation physiology emphasizes the basis, importance, and ecological relevance of physiological diversity at a variety of scales. Real advances in conservation and resource management require integration and inter-disciplinarity. Conservation physiology and its suite of tools and concepts is a key part of the evidence base needed to address pressing environmental challenges. PMID:27293585
Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli
2014-06-01
This paper focuses on the marine foundation eelgrass species, Zostera marina , along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km 2 eelgrass (maximum >2100 km 2 ), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4-6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m -2 d -1 ) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3-10 g dw m -2 d -1 ) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd.
Land-use intensification effects on functional properties in tropical plant communities.
Carreño-Rocabado, Geovana; Peña-Claros, Marielos; Bongers, Frans; Díaz, Sandra; Quetier, Fabien; Chuviña, José; Poorter, Lourens
2016-01-01
There is consensus that plant diversity and ecosystem processes are negatively affected by land-use intensification (LUI), but, at the same time, there is empirical evidence that a large heterogeneity can be found in the responses. This heterogeneity is especially poorly understood in tropical ecosystems. We evaluated changes in community functional properties across five common land-use types in the wet tropics with different land-use intensity: mature forest, logged forest, secondary forest, agricultural land, and pastureland, located in the lowlands of Bolivia. For the dominant plant species, we measured 12 functional response traits related to their life history, acquisition and conservation of resources, plant domestication, and breeding. We used three single-trait metrics to describe community functional properties: community abundance-weighted mean (CWM) traits values, coefficient of variation, and kurtosis of distribution. The CWM of all 12 traits clearly responded to LUI. Overall, we found that an increase in LUI resulted in communities dominated by plants with acquisitive leaf trait values. However, contrary to our expectations, secondary forests had more conservative trait values (i.e., lower specific leaf area) than mature and logged forest, probably because they were dominated by palm species. Functional variation peaked at intermediate land-use intensity (high coefficient of variation and low kurtosis), which included secondary forest but, unexpectedly, also agricultural land, which is an intensely managed system. The high functional variation of these systems is due to a combination of how response traits (and species) are filtered out by biophysical filters and how management practices introduced a range of exotic species and their trait values into the local species pool. Our results showed that, at local scales and depending on prevailing environmental and management practices, LUI does not necessarily result in communities with more acquisitive trait values or with less functional variation. Instead of the widely expected negative impacts of LUI on plant diversity, we found varying responses of functional variation, with possible repercussions on many ecosystem services. These findings provide a background for actively mitigating negative effects of LUI while meeting the needs of local communities that rely mainly on provisioning ecosystem services for their livelihoods.
Ecosystem services, i.e., "services provided to humans from natural systems," have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become stra...
Elizabeth A. Byers
2010-01-01
Natural communities within the red spruce ecosystem of the central Appalachians are characterized by exceptionally high biodiversity and conservation value. This ecosystem stretches in a southwest - northeast trending band for 250 km along the high elevations of the Allegheny Mountains, from Greenbrier County, WV to Garrett County, MD.
Uncharted Waters: Bivalves of Midway Atoll and Integrating Mathematics into Biology Education
ERIC Educational Resources Information Center
McCully, Kristin M.
2013-01-01
To protect and conserve the Earth's biodiversity and ecosystem services, it is important not only to understand and conserve species and ecosystems, but also to instill an understanding and appreciation for biodiversity and ecosystem services in the next generations of both scientists and citizens. Thus, this dissertation combines research into…
Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian
2015-03-01
Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)-bridging functions of species and of ecosystems-is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model 'LPJ-GUESS' parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function 'annual biomass change' hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories.
7 CFR 625.12 - 30-year contracts.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 6 2014-01-01 2014-01-01 false 30-year contracts. 625.12 Section 625.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF..., maintenance, and management of habitat and forest ecosystem functions and values. (b) For the duration of its...
7 CFR 625.12 - 30-year contracts.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 6 2013-01-01 2013-01-01 false 30-year contracts. 625.12 Section 625.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF..., maintenance, and management of habitat and forest ecosystem functions and values. (b) For the duration of its...
7 CFR 625.12 - 30-year contracts.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 6 2012-01-01 2012-01-01 false 30-year contracts. 625.12 Section 625.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF..., maintenance, and management of habitat and forest ecosystem functions and values. (b) For the duration of its...
7 CFR 625.12 - 30-year contracts.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 6 2011-01-01 2011-01-01 false 30-year contracts. 625.12 Section 625.12 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF..., maintenance, and management of habitat and forest ecosystem functions and values. (b) For the duration of its...
W.A. Whittier; A.E. Mayfield III; R.M. Jetton
2017-01-01
The ecologically foundational species eastern hemlock, Tsuga canadensis, is being functionally eliminated from southern Appalachian forests by the hemlock woolly adelgid (HWA, Adelges tsugae). The management of HWA has focused on chemical and biological control, conservation of hemlock genetic resources, and host resistance...
Conserving biodiversity using risk management: hoax or hope?
Susan Hummel; Geoffrey H. Donovan; Thomas A. Spies; Miles A. Hemstrom
2008-01-01
Biodiversity has been called a form of ecosystem insurance. According to the "insurance hypothesis", the presence of many species protects against system decline, because built-in redundancies guarantee that some species will maintain key functions even if others fail. The hypothesis might have merit, but calling it "insurance" promotes an ambiguous...
Cost-effective conservation of amphibian ecology and evolution
Campos, Felipe S.; Lourenço-de-Moraes, Ricardo; Llorente, Gustavo A.; Solé, Mirco
2017-01-01
Habitat loss is the most important threat to species survival, and the efficient selection of priority areas is fundamental for good systematic conservation planning. Using amphibians as a conservation target, we designed an innovative assessment strategy, showing that prioritization models focused on functional, phylogenetic, and taxonomic diversity can include cost-effectiveness–based assessments of land values. We report new key conservation sites within the Brazilian Atlantic Forest hot spot, revealing a congruence of ecological and evolutionary patterns. We suggest payment for ecosystem services through environmental set-asides on private land, establishing potential trade-offs for ecological and evolutionary processes. Our findings introduce additional effective area-based conservation parameters that set new priorities for biodiversity assessment in the Atlantic Forest, validating the usefulness of a novel approach to cost-effectiveness–based assessments of conservation value for other species-rich regions. PMID:28691084
Ecosystem services and economic theory: integration for policy-relevant research.
Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew
2008-12-01
It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.
Foster, William A; Snaddon, Jake L; Turner, Edgar C; Fayle, Tom M; Cockerill, Timothy D; Ellwood, M D Farnon; Broad, Gavin R; Chung, Arthur Y C; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M
2011-11-27
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
Foster, William A.; Snaddon, Jake L.; Turner, Edgar C.; Fayle, Tom M.; Cockerill, Timothy D.; Ellwood, M. D. Farnon; Broad, Gavin R.; Chung, Arthur Y. C.; Eggleton, Paul; Khen, Chey Vun; Yusah, Kalsum M.
2011-01-01
The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape. PMID:22006968
NASA Astrophysics Data System (ADS)
Roca, Roberto; Adkins, Leslie; Wurschy, Maria Christina; Skerl, Kevin
1996-11-01
Future conservation efforts will need to transcend geopolitical boundaries in efforts to protect entire landscapes and ecosystems. Neotropical migratory birds are as a group a useful conservation tool for linking diverse landscapes and people due to their dependence on multiple habitats, sensitivity to habitat changes, and universal public appeal. The conservation of neotropical migrants can therefore function as a powerful hemispheric umbrella for ecosystem protection. Efforts to protect neotropical migratory birds on their nonbreeding grounds have traditionally been focused on Mexico, Central America, and the Caribbean. To assess the importance of South America to neotropical migrants, an ecoregional classification system was used to determine species distributions in the Andean/Southern Cone Region (Bolivia, Colombia, Ecuador, Paraguay, Peru, and Venezuela). The occurrence of migrants in protected areas that are part of The Nature Conservancy's Parks in Peril program was also assessed. Of the 406 neotropical migrant species, nearly one third (132) occur as regular nonbreeding residents in the region and for almost half of these species (53), South America is their main nonbreeding ground. All Parks in Peril sites were found to harbor neotropical migrants. Forty-eight species (36%) have declining longterm North American Breeding Bird Survey population trends and/or high Partners in Flight concern scores and thus are of significant conservation concern. Most importantly, 29 species (22%) of conservation concern use South America as their primary nonbreeding ground, indicating a need for focused conservation action. The nature of the ecoregional approach used in this endeavor makes future prioritization of ecoregions and conservation strategies for neotropical migrants across national boundaries possible. The ability to link diverse landscapes using a common element such as migratory birds allows for unique transboundary partnerships and opportunities for habitat conservation, which support the goal of the Conservancy's new Migratory Bird Initiative.
Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K
2015-07-01
Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation priority hotspot-III. This analysis complements assessment of ecosystems undergoing multiple threats. An integrated approach involving the deforestation and degradation indicators is useful in formulating the strategies to take appropriate conservation measures.
Conserving the functional and phylogenetic trees of life of European tetrapods
Thuiller, Wilfried; Maiorano, Luigi; Mazel, Florent; Guilhaumon, François; Ficetola, Gentile Francesco; Lavergne, Sébastien; Renaud, Julien; Roquet, Cristina; Mouillot, David
2015-01-01
Protected areas (PAs) are pivotal tools for biodiversity conservation on the Earth. Europe has had an extensive protection system since Natura 2000 areas were created in parallel with traditional parks and reserves. However, the extent to which this system covers not only taxonomic diversity but also other biodiversity facets, such as evolutionary history and functional diversity, has never been evaluated. Using high-resolution distribution data of all European tetrapods together with dated molecular phylogenies and detailed trait information, we first tested whether the existing European protection system effectively covers all species and in particular, those with the highest evolutionary or functional distinctiveness. We then tested the ability of PAs to protect the entire tetrapod phylogenetic and functional trees of life by mapping species' target achievements along the internal branches of these two trees. We found that the current system is adequately representative in terms of the evolutionary history of amphibians while it fails for the rest. However, the most functionally distinct species were better represented than they would be under random conservation efforts. These results imply better protection of the tetrapod functional tree of life, which could help to ensure long-term functioning of the ecosystem, potentially at the expense of conserving evolutionary history. PMID:25561666
Jeanne C. Chambers
2016-01-01
Land managers are responsible for developing effective strategies for conserving and restoring Great Basin ecosystems in the face of invasive species, conifer expansion, and altered fire regimes. A warming climate is magnifying the effects of these threats and adding urgency to implementation of management practices that will maintain or improve ecosystem...
Habitat fragmentation and its lasting impact on Earth’s ecosystems
Haddad, Nick M.; Brudvig, Lars A.; Clobert, Jean; Davies, Kendi F.; Gonzalez, Andrew; Holt, Robert D.; Lovejoy, Thomas E.; Sexton, Joseph O.; Austin, Mike P.; Collins, Cathy D.; Cook, William M.; Damschen, Ellen I.; Ewers, Robert M.; Foster, Bryan L.; Jenkins, Clinton N.; King, Andrew J.; Laurance, William F.; Levey, Douglas J.; Margules, Chris R.; Melbourne, Brett A.; Nicholls, A. O.; Orrock, John L.; Song, Dan-Xia; Townshend, John R.
2015-01-01
We conducted an analysis of global forest cover to reveal that 70% of remaining forest is within 1 km of the forest’s edge, subject to the degrading effects of fragmentation. A synthesis of fragmentation experiments spanning multiple biomes and scales, five continents, and 35 years demonstrates that habitat fragmentation reduces biodiversity by 13 to 75% and impairs key ecosystem functions by decreasing biomass and altering nutrient cycles. Effects are greatest in the smallest and most isolated fragments, and they magnify with the passage of time. These findings indicate an urgent need for conservation and restoration measures to improve landscape connectivity, which will reduce extinction rates and help maintain ecosystem services. PMID:26601154
Confronting the coral reef crisis.
Bellwood, D R; Hughes, T P; Folke, C; Nyström, M
2004-06-24
The worldwide decline of coral reefs calls for an urgent reassessment of current management practices. Confronting large-scale crises requires a major scaling-up of management efforts based on an improved understanding of the ecological processes that underlie reef resilience. Managing for improved resilience, incorporating the role of human activity in shaping ecosystems, provides a basis for coping with uncertainty, future changes and ecological surprises. Here we review the ecological roles of critical functional groups (for both corals and reef fishes) that are fundamental to understanding resilience and avoiding phase shifts from coral dominance to less desirable, degraded ecosystems. We identify striking biogeographic differences in the species richness and composition of functional groups, which highlight the vulnerability of Caribbean reef ecosystems. These findings have profound implications for restoration of degraded reefs, management of fisheries, and the focus on marine protected areas and biodiversity hotspots as priorities for conservation.
Prairie wetland complexes as landscape functional units in a changing climate
Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.; Voldseth, Richard A.; Millett, Bruce; Naugle, David E.; Tulbure, Mirela; Carroll, Rosemary W.H.; Tracy, John; Olawsky, Craig
2010-01-01
The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.
Integrating ecosystem services in terrestrial conservation planning.
Yuan, Mei-Hua; Lo, Shang-Lien; Yang, Chih-Kai
2017-05-01
The purpose of this study is to estimate the benefits of ecosystem services for prioritization of land use conservation and to highlight the importance of ecosystem services by comparison between ecosystem service value and green GDP accounting. Based on land use pattern and benefit transfer method, this research estimated value of ecosystem services in Taiwan. Scientific information of land use and land cover change is accessed through multi-year satellite imagery moderate resolution imaging spectroradiometer (MODIS), and geographic information system (GIS) technology. Combined with benefit transfer method, this research estimated the ecosystem service valuation of forest, grassland, cropland, wetland, water, and urban for the period of 2000 to 2015 in Taiwan. It is found that forest made the greatest contribution and the significant increasing area of wetland has huge potential benefit for environmental conservation in Taiwan. We recommend placing maintaining wetland ecosystem in Taiwan with higher priority. This research also compared ecosystem service value with natural capital consumption which would essentially facilitate policy makers to understand the relationship between benefits gained from natural capital and the loss from human-made capital.
Arenas-Castro, Salvador; Gonçalves, João; Alves, Paulo; Alcaraz-Segura, Domingo; Honrado, João P
2018-01-01
Global environmental changes are rapidly affecting species' distributions and habitat suitability worldwide, requiring a continuous update of biodiversity status to support effective decisions on conservation policy and management. In this regard, satellite-derived Ecosystem Functional Attributes (EFAs) offer a more integrative and quicker evaluation of ecosystem responses to environmental drivers and changes than climate and structural or compositional landscape attributes. Thus, EFAs may hold advantages as predictors in Species Distribution Models (SDMs) and for implementing multi-scale species monitoring programs. Here we describe a modelling framework to assess the predictive ability of EFAs as Essential Biodiversity Variables (EBVs) against traditional datasets (climate, land-cover) at several scales. We test the framework with a multi-scale assessment of habitat suitability for two plant species of conservation concern, both protected under the EU Habitats Directive, differing in terms of life history, range and distribution pattern (Iris boissieri and Taxus baccata). We fitted four sets of SDMs for the two test species, calibrated with: interpolated climate variables; landscape variables; EFAs; and a combination of climate and landscape variables. EFA-based models performed very well at the several scales (AUCmedian from 0.881±0.072 to 0.983±0.125), and similarly to traditional climate-based models, individually or in combination with land-cover predictors (AUCmedian from 0.882±0.059 to 0.995±0.083). Moreover, EFA-based models identified additional suitable areas and provided valuable information on functional features of habitat suitability for both test species (narrowly vs. widely distributed), for both coarse and fine scales. Our results suggest a relatively small scale-dependence of the predictive ability of satellite-derived EFAs, supporting their use as meaningful EBVs in SDMs from regional and broader scales to more local and finer scales. Since the evaluation of species' conservation status and habitat quality should as far as possible be performed based on scalable indicators linking to meaningful processes, our framework may guide conservation managers in decision-making related to biodiversity monitoring and reporting schemes.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes.
Alldred, Mary; Baines, Stephen B; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets.
Effects of Invasive-Plant Management on Nitrogen-Removal Services in Freshwater Tidal Marshes
Alldred, Mary; Baines, Stephen B.; Findlay, Stuart
2016-01-01
Establishing relationships between biodiversity and ecosystem function is an ongoing endeavor in contemporary ecosystem and community ecology, with important practical implications for conservation and the maintenance of ecosystem services. Removal of invasive plant species to conserve native diversity is a common management objective in many ecosystems, including wetlands. However, substantial changes in plant community composition have the potential to alter sediment characteristics and ecosystem services, including permanent removal of nitrogen from these systems via microbial denitrification. A balanced assessment of costs associated with keeping and removing invasive plants is needed to manage simultaneously for biodiversity and pollution targets. We monitored small-scale removals of Phragmites australis over four years to determine their effects on potential denitrification rates relative to three untreated Phragmites sites and adjacent sites dominated by native Typha angustifolia. Sediment ammonium increased following the removal of vegetation from treated sites, likely as a result of decreases in both plant uptake and nitrification. Denitrification potentials were lower in removal sites relative to untreated Phragmites sites, a pattern that persisted at least two years following removal as native plant species began to re-colonize treated sites. These results suggest the potential for a trade-off between invasive-plant management and nitrogen-removal services. A balanced assessment of costs associated with keeping versus removing invasive plants is needed to adequately manage simultaneously for biodiversity and pollution targets. PMID:26914688
NASA Astrophysics Data System (ADS)
Sharuga, S. M.; Reams, M.
2016-02-01
Traditional approaches to marine conservation and management are increasingly being found as inadequate; and, consequently, more complex ecosystem-based approaches to protecting marine ecosystems are growing in popularity. Ecosystem-based approaches, however, can be particularly challenging at a local level where resources and knowledge of specific marine conservation components may be limited. Marine conservation areas are known by a variety of names globally, but can be divided into four general types: Marine Protected Areas (MPAs), Marine Reserves, Fishery Reserves, and Ecological Reserves (i.e. "no take zones"). Each type of conservation area involves specific objectives, program elements and likely socioeconomic consequences. As an aid to community stakeholders and decision makers considering establishment of a marine conservation area, a simple method to compare and score the objectives and attributes of these four approaches is presented. A range of evaluation criteria are considered, including conservation of biodiversity and habitat, effective fishery management, overall cost-effectiveness, fairness to current users, enhancement of recreational activities, fairness to taxpayers, and conservation of genetic diversity. Environmental and socioeconomic costs and benefits of each type of conservation area are also considered. When exploring options for managing the marine environment, particular resource conservation needs must be evaluated individually on a case-by-case basis and the type of conservation area established must be tailored accordingly. However, MPAs are often more successful than other conservation areas because they offer a compromise between the needs of society and the environment, and therefore represent a viable option for ecosystem-based management.
NASA Astrophysics Data System (ADS)
Sharuga, S. M.; Reams, M.
2016-12-01
Traditional approaches to marine conservation and management are increasingly being found as inadequate; and, consequently, more complex ecosystem-based approaches to protecting marine ecosystems are growing in popularity. Ecosystem-based approaches, however, can be particularly challenging at a local level where resources and knowledge of specific marine conservation components may be limited. Marine conservation areas are known by a variety of names globally, but can be divided into four general types: Marine Protected Areas (MPAs), Marine Reserves, Fishery Reserves, and Ecological Reserves (i.e. "no take zones"). Each type of conservation area involves specific objectives, program elements and likely socioeconomic consequences. As an aid to community stakeholders and decision makers considering establishment of a marine conservation area, a simple method to compare and score the objectives and attributes of these four approaches is presented. A range of evaluation criteria are considered, including conservation of biodiversity and habitat, effective fishery management, overall cost-effectiveness, fairness to current users, enhancement of recreational activities, fairness to taxpayers, and conservation of genetic diversity. Environmental and socioeconomic costs and benefits of each type of conservation area are also considered. When exploring options for managing the marine environment, particular resource conservation needs must be evaluated individually on a case-by-case basis and the type of conservation area established must be tailored accordingly. However, MPAs are often more successful than other conservation areas because they offer a compromise between the needs of society and the environment, and therefore represent a viable option for ecosystem-based management.
Place-based and data-rich citizen science as a precursor for conservation action.
Haywood, Benjamin K; Parrish, Julia K; Dolliver, Jane
2016-06-01
Environmental education strategies have customarily placed substantial focus on enhancing ecological knowledge and literacy with the hope that, upon discovering relevant facts and concepts, participants will be better equipped to process and dissect environmental issues and, therefore, make more informed decisions. The assumption is that informed citizens will become active citizens--enthusiastically lobbying for, and participating in, conservation-oriented action. We surveyed and interviewed and used performance data from 432 participants in the Coastal Observation and Seabird Survey Team (COASST), a scientifically rigorous citizen science program, to explore measurable change in and links between understanding and action. We found that participation in rigorous citizen science was associated with significant increases in participant knowledge and skills; a greater connection to place and, secondarily, to community; and an increasing awareness of the relative impact of anthropogenic activities on local ecosystems specifically through increasing scientific understanding of the ecosystem and factors affecting it. Our results suggest that a place-based, data-rich experience linked explicitly to local, regional, and global issues can lead to measurable change in individual and collective action, expressed in our case study principally through participation in citizen science and community action and communication of program results to personal acquaintances and elected officials. We propose the following tenets of conservation literacy based on emergent themes and the connections between them explicit in our data: place-based learning creates personal meaning making; individual experience nested within collective (i.e., program-wide) experience facilitates an understanding of the ecosystem process and function at local and regional scales; and science-based meaning making creates informed concern (i.e., the ability to discern both natural and anthropogenic forcing), which allows individuals to develop a personalized prioritization schema and engage in conservation action. © 2016 Society for Conservation Biology.
Integrating Climate and Ocean Change Vulnerability into Conservation Planning
NASA Astrophysics Data System (ADS)
Mcleod, E.; Green, A.; Game, E.; Anthony, K.; Cinner, J.; Heron, S. F.; Kleypas, J. A.; Lovelock, C.; Pandolfi, J.; Pressey, B.; Salm, R.; Schill, S.; Woodroffe, C. D.
2013-05-01
Tropical coastal and marine ecosystems are particularly vulnerable to ocean warming, ocean acidification, and sea-level rise. Yet these projected climate and ocean change impacts are rarely considered in conservation planning due to the lack of guidance on how existing climate and ocean change models, tools, and data can be applied. We address this gap by describing how conservation planning can use available tools and data for assessing the vulnerability of tropical marine ecosystems to key climate threats. Additionally, we identify limitations of existing tools and provide recommendations for future research to improve integration of climate and ocean change information and conservation planning. Such information is critical for developing a conservation response that adequately protects these ecosystems and dependent coastal communities in the face of climate and ocean change.
Biodiversity and Coarse Woody Debris in Southern Forests
James W. McWinn; D.A. Crossley
1996-01-01
James W. McMinn and D. A. Crossley, Jr. Conservation of biodiversity is emerging as a major goal in the management of forest ecosystems. The implied objective is the conservation of a full complement of native species and communities within the forest ecosystem. Effective implementation of conservation measures will require a broader knowledge of the dimensions of...
Giannini, Tereza C; Tambosi, Leandro R; Acosta, André L; Jaffé, Rodolfo; Saraiva, Antonio M; Imperatriz-Fonseca, Vera L; Metzger, Jean Paul
2015-01-01
Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee's flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change.
Temporary wetlands: Challenges and solutions to conserving a ‘disappearing’ ecosystem
Calhoun, Aram J.K.; Mushet, David M.; Bell, Kathleen P.; Boix, Dani; Fitzsimons, James A.; Isselin-Nondedeu, Francis
2017-01-01
Frequent drying of ponded water, and support of unique, highly specialized assemblages of often rare species, characterize temporary wetlands, such as vernal pools, gilgais, and prairie potholes. As small aquatic features embedded in a terrestrial landscape, temporary wetlands enhance biodiversity and provide aesthetic, biogeochemical, and hydrologic functions. Challenges to conserving temporary wetlands include the need to: (1) integrate freshwater and terrestrial biodiversity priorities; (2) conserve entire ‘pondscapes’ defined by connections to other aquatic and terrestrial systems; (3) maintain natural heterogeneity in environmental gradients across and within wetlands, especially gradients in hydroperiod; (4) address economic impact on landowners and developers; (5) act without complete inventories of these wetlands; and (6) work within limited or non-existent regulatory protections. Because temporary wetlands function as integral landscape components, not singly as isolated entities, their cumulative loss is ecologically detrimental yet not currently part of the conservation calculus. We highlight approaches that use strategies for conserving temporary wetlands in increasingly human-dominated landscapes that integrate top-down management and bottom-up collaborative approaches. Diverse conservation activities (including education, inventory, protection, sustainable management, and restoration) that reduce landowner and manager costs while achieving desired ecological objectives will have the greatest probability of success in meeting conservation goals.
Jack, B Kelsey; Leimona, Beria; Ferraro, Paul J
2009-04-01
To supply ecosystem services, private landholders incur costs. Knowledge of these costs is critical for the design of conservation-payment programs. Estimating these costs accurately is difficult because the minimum acceptable payment to a potential supplier is private information. We describe how an auction of payment contracts can be designed to elicit this information during the design phase of a conservation-payment program. With an estimate of the ecosystem-service supply curve from a pilot auction, conservation planners can explore the financial, ecological, and socioeconomic consequences of alternative scaled-up programs. We demonstrate the potential of our approach in Indonesia, where soil erosion on coffee farms generates downstream ecological and economic costs. Bid data from a small-scale, uniform-price auction for soil-conservation contracts allowed estimates of the costs of a scaled-up program, the gain from integrating biophysical and economic data to target contracts, and the trade-offs between poverty alleviation and supply of ecosystem services. Our study illustrates an auction-based approach to revealing private information about the costs of supplying ecosystem services. Such information can improve the design of programs devised to protect and enhance ecosystem services.
″The Anthropocene″, Ecosystem Management, and Environmental Virtue.
Sandler, Ronald
2016-01-01
*Portions of this article are drawn from: Sandler, R. Environmental Ethics: Theory in Practice, Oxford University Press, New York, in press. In this article I consider contrasting views on the implications of rapid, macroscale anthropogenic change for environmental ethics, particularly ecosystem management, species conservation, and environmental virtue. I begin by reviewing the Anthropocene debate, which has become a primary point of discourse on whether we ought to embrace a more interventionist stance regarding ecosystem management and species conservation. I then discuss the challenges posed by rapid ecological change to predominant ecosystem management and species conservation practices. I argue that these challenges not withstanding, we ought not go all in on interventionist management, even as novel conservation and management techniques can be justified in particular cases. It is possible to adopt a more forward looking normative stance, without licensing robust interventionism. Finally, I discuss the implications of this for some environmental virtues.
Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.
Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G
2015-06-16
There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
The spotted owl in southern and central coastal California
R.J. Gutiérrez; Douglas J. Tempel; M. Zachariah Peery
2017-01-01
Spotted owl populations found in southern and central coastal California have received much less attention than those inhabiting the Sierra Nevada because of economic (effect of habitat conservation measures on timber harvest) and social issues (community stability and desire for naturally functioning ecosystems). Yet there has been continued concern over the...
Using avian focal species to inform rangeland management in California oak woodland
Alicia D. Young; Breanna Owens; Melissa Odell; Corey Shake; Wendell Gilgert; Geoffrey R. Geupel
2015-01-01
Biological knowledge about bird focal species may be used to inform planning, habitat management, and restoration efforts, with the assumption that the implementation of these species-based recommendations will maintain and enhance healthy functioning habitats and the ecosystems services they provide. Point Blue Conservation Science in collaboration with the Natural...
Forest biodiversity and woody biomass harvesting
Deahn M. Donner; T. Bently Wigley; Darren A. Miller
2017-01-01
With the expected increase in demand for woody biomass to help meet renewable energy needs, one principal sustainability question has been whether this material can be removed from forest stands while still conserving biological diversity and retaining ecosystem functioning (Hecht et al. 2009; Berch, Morris, and Malcolm 2011; Ridley et al. 2013). In general,...
Farming for restoration: Building bridges for native seeds
Sabine Tishew; Berta Youtie; Anita Kirmer; Nancy Shaw
2011-01-01
In both Europe and the United States, a shortage of native plant material frequently precludes successful restoration. Native plant materials are needed to restore ecosystem functioning and services, provide for in situ conservation of biodiversity (e.g., Hobbs and Cramer 2008), maintain genetic diversity (Bischoff et al. 2010), and afford resistance to invasive...
Limber pine conservation strategy: Recommendations for Rocky Mountain National Park
Christy M. Cleaver; Anna W. Schoettle; Kelly S. Burns; J. Jeff Connor
2015-01-01
Limber pine (Pinus flexilis), designated by Rocky Mountain National Park (RMNP) as a Species of Management Concern, is a keystone species that maintains ecosystem structure, function, and biodiversity in the park. In RMNP, limber pine is declining due to the interacting effects of recent severe droughts and the climate-exacerbated mountain pine beetle (...
Assessing the effects of large mobile predators on ecosystem connectivity.
McCauley, Douglas J; Young, Hillary S; Dunbar, Robert B; Estes, James A; Semmens, Brice X; Micheli, Fiorenza
2012-09-01
Large predators are often highly mobile and can traverse and use multiple habitats. We know surprisingly little about how predator mobility determines important processes of ecosystem connectivity. Here we used a variety of data sources drawn from Palmyra Atoll, a remote tropical marine ecosystem where large predators remain in high abundance, to investigate how these animals foster connectivity. Our results indicate that three of Palmyra's most abundant large predators (e.g., two reef sharks and one snapper) use resources from different habitats creating important linkages across ecosystems. Observations of cross-system foraging such as this have important implications for the understanding of ecosystem functioning, the management of large-predator populations, and the design of conservation measures intended to protect whole ecosystems. In the face of widespread declines of large, mobile predators, it is important that resource managers, policy makers, and ecologists work to understand how these predators create connectivity and to determine the impact that their depletions may be having on the integrity of these linkages.
Li, Bo; Han, Zeng-Lin; Tong, Lian-Jun
2009-05-01
By the methods of in situ investigation and regional ecological planning, the present ecological environment, ecosystem vulnerability, and ecological environment sensitivity in "Ji Triangle" Region were analyzed, and the ecological network of the study area was constructed. According to the ecological resources abundance degree, ecological recovery, farmland windbreak system, environmental carrying capacity, forestry foundation, and ecosystem integrity, the study area was classified into three regional ecological function ecosystems, i. e., east low hill ecosystem, middle plain ecosystem, and west plain wetland ecosystem. On the basis of marking regional ecological nodes, the regional ecological corridor (Haerbin-Dalian regional axis, Changchun-Jilin, Changchun-Songyuan, Jilin-Songyuan, Jilin-Siping, and Songyuan-Siping transportation corridor) and regional ecological network (one ring, three links, and three belts) were constructed. Taking the requests of regional ecological security into consideration, the ecological environment security system of "Ji Triangle" Region, including regional ecological conservation district, regional ecological restored district, and regional ecological management district, was built.
New directions in coral reef microbial ecology.
Garren, Melissa; Azam, Farooq
2012-04-01
Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains
NASA Astrophysics Data System (ADS)
Tuanmu, Mao-Ning; Viña, Andrés; Winkler, Julie A.; Li, Yu; Xu, Weihua; Ouyang, Zhiyun; Liu, Jianguo
2013-03-01
Climate change is threatening global ecosystems through its impact on the survival of individual species and their ecological functions. Despite the important role of understorey plants in forest ecosystems, climate impact assessments on understorey plants and their role in supporting wildlife habitat are scarce in the literature. Here we assess climate-change impacts on understorey bamboo species with an emphasis on their ecological function as a food resource for endangered giant pandas (Ailuropoda melanoleuca). An ensemble of bamboo distribution projections associated with multiple climate-change projections and bamboo dispersal scenarios indicates a substantial reduction in the distributional ranges of three dominant bamboo species in the Qinling Mountains, China during the twenty-first century. As these three species comprise almost the entire diet of the panda population in the region, the projected changes in bamboo distribution suggest a potential shortage of food for this population, unless alternative food sources become available. Although the projections were developed under unavoidable simplifying assumptions and uncertainties, they indicate potential challenges for panda conservation and underscore the importance of incorporating interspecific interactions into climate-change impact assessments and associated conservation planning.
NASA Astrophysics Data System (ADS)
Kutsch, W. L.; Falge, E. M.; Brümmer, C.; Mukwashi, K.; Schmullius, C.; Hüttich, C.; Odipo, V.; Scholes, R. J.; Mudau, A.; Midgley, G.; Stevens, N.; Hickler, T.; Scheiter, S.; Martens, C.; Twine, W.; Iiyambo, T.; Bradshaw, K.; Lück, W.; Lenfers, U.; Thiel-Clemen, T.; du Toit, J.
2015-12-01
Sub-Saharan Africa currently experiences rapidly growing human population, intrinsically tied to substantial changes in land use on shrubland, savanna and mixed woodland ecosystems due to over-exploitation. Significant conversions driving degradation, affecting fire frequency and water availability, and fueling climate change are expected to increase in the immediate future. However, measured data of greenhouse gas emissions as affected by land use change are scarce to entirely lacking from this region. The project 'Adaptive Resilience of Southern African Ecosystems' (ARS AfricaE) conducts research and develops scenarios of ecosystem development under climate change, for management support in conservation or for planning rural area development. This will be achieved by (1) creation of a network of research clusters (paired sites with natural and altered vegetation) along an aridity gradient in South Africa for ground-based micrometeorological in-situ measurements of energy and matter fluxes, (2) linking biogeochemical functions with ecosystem structure, and eco-physiological properties, (3) description of ecosystem disturbance (and recovery) in terms of ecosystem function such as carbon balance components and water use efficiency, (4) set-up of individual-based models to predict ecosystem dynamics under (post) disturbance managements, (5) combination with long-term landscape dynamic information derived from remote sensing and aerial photography, and (6) development of sustainable management strategies for disturbed ecosystems and land use change. Emphasis is given on validation (by a suite of field measurements) of estimates obtained from eddy covariance, model approaches and satellite derivations.
Seventy-one important questions for the conservation of marine biodiversity.
Parsons, E C M; Favaro, Brett; Aguirre, A Alonso; Bauer, Amy L; Blight, Louise K; Cigliano, John A; Coleman, Melinda A; Côté, Isabelle M; Draheim, Megan; Fletcher, Stephen; Foley, Melissa M; Jefferson, Rebecca; Jones, Miranda C; Kelaher, Brendan P; Lundquist, Carolyn J; McCarthy, Julie-Beth; Nelson, Anne; Patterson, Katheryn; Walsh, Leslie; Wright, Andrew J; Sutherland, William J
2014-10-01
The ocean provides food, economic activity, and cultural value for a large proportion of humanity. Our knowledge of marine ecosystems lags behind that of terrestrial ecosystems, limiting effective protection of marine resources. We describe the outcome of 2 workshops in 2011 and 2012 to establish a list of important questions, which, if answered, would substantially improve our ability to conserve and manage the world's marine resources. Participants included individuals from academia, government, and nongovernment organizations with broad experience across disciplines, marine ecosystems, and countries that vary in levels of development. Contributors from the fields of science, conservation, industry, and government submitted questions to our workshops, which we distilled into a list of priority research questions. Through this process, we identified 71 key questions. We grouped these into 8 subject categories, each pertaining to a broad component of marine conservation: fisheries, climate change, other anthropogenic threats, ecosystems, marine citizenship, policy, societal and cultural considerations, and scientific enterprise. Our questions address many issues that are specific to marine conservation, and will serve as a road map to funders and researchers to develop programs that can greatly benefit marine conservation. © 2014 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Phylogenetic diversity does not capture body size variation at risk in the world's mammals
Fritz, Susanne A.; Purvis, Andy
2010-01-01
Mammals contribute to important ecosystem processes and services, but many mammalian species are threatened with extinction. We compare how global patterns in three measures of mammalian diversity—species richness, phylogenetic diversity (PD) and body mass variance (BMV)—would change if all currently threatened species were lost. Given that many facets of species' ecology and life history scale predictably with body mass, the BMV in a region roughly reflects the diversity of species' roles within ecosystems and so is a simple proxy for functional diversity (FD). PD is also often considered to be a proxy for FD, but our results suggest that BMV losses within ecoregions would be much more severe than losses of PD or species richness, and that its congruence with the latter two measures is low. Because of the disproportionate loss of large mammals, 65 per cent of ecoregions would lose significantly more BMV than under random extinction, while only 11 per cent would lose significantly more PD. Ecosystem consequences of these selective losses may be profound, especially throughout the tropics, but are not captured by PD. This low surrogacy stresses a need for conservation prioritization based on threatened trait diversity, and for conservation efforts to take an ecosystem perspective. PMID:20375051
Blaen, Phillip J.; Jia, Li; Peh, Kelvin S.-H.; Field, Rob H.; Balmford, Andrew; MacDonald, Michael A.; Bradbury, Richard B.
2015-01-01
Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being. PMID:25894293
Blaen, Phillip J; Jia, Li; Peh, Kelvin S-H; Field, Rob H; Balmford, Andrew; MacDonald, Michael A; Bradbury, Richard B
2015-01-01
Despite growing recognition that mineral sites restored for nature conservation can enhance local biodiversity, the wider societal benefits provided by this type of restoration relative to alternative options are not well understood. This study addresses this research gap by quantifying differences in ecosystem services provision under two common mineral site after-uses: nature conservation and agriculture. Using a combination of site-specific primary field data, benefits transfer and modelling, we show that for our sites restoration for nature conservation provides a more diverse array of ecosystem services than would be delivered under an agricultural restoration scenario. We also explore the effects of addressing different conservation targets, which we find alter the provision of ecosystem services on a service-specific basis. Highly species-focused intervention areas are associated with increased carbon storage and livestock grazing provision, whereas non-intervention areas are important for carbon sequestration, fishing, recreation and flood risk mitigation. The results of this study highlight the wider societal importance of restored mineral sites and may help conservation managers and planners to develop future restoration strategies that provide benefits for both biodiversity and human well-being.
Biodiversity Conservation in the REDD
2010-01-01
Deforestation and forest degradation in the tropics is a major source of global greenhouse gas (GHG) emissions. The tropics also harbour more than half the world's threatened species, raising the possibility that reducing GHG emissions by curtailing tropical deforestation could provide substantial co-benefits for biodiversity conservation. Here we explore the potential for such co-benefits in Indonesia, a leading source of GHG emissions from land cover and land use change, and among the most species-rich countries in the world. We show that focal ecosystems for interventions to reduce emissions from deforestation and forest degradation in Indonesia do not coincide with areas supporting the most species-rich communities or highest concentration of threatened species. We argue that inherent trade-offs among ecosystems in emission reduction potential, opportunity cost of foregone development and biodiversity values will require a regulatory framework to balance emission reduction interventions with biodiversity co-benefit targets. We discuss how such a regulatory framework might function, and caution that pursuing emission reduction strategies without such a framework may undermine, not enhance, long-term prospects for biodiversity conservation in the tropics. PMID:21092321
Boström, Christoffer; Baden, Susanne; Bockelmann, Anna-Christina; Dromph, Karsten; Fredriksen, Stein; Gustafsson, Camilla; Krause-Jensen, Dorte; Möller, Tiia; Nielsen, Søren Laurentius; Olesen, Birgit; Olsen, Jeanine; Pihl, Leif; Rinde, Eli
2014-01-01
This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe.Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic.Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows.The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them. © 2014 The Authors. Aquatic Conservation: Marine and Freshwater Ecosystems published by John Wiley & Sons, Ltd. PMID:26167100
An exactly solvable coarse-grained model for species diversity
NASA Astrophysics Data System (ADS)
Suweis, Samir; Rinaldo, Andrea; Maritan, Amos
2012-07-01
We present novel analytical results concerning ecosystem species diversity that stem from a proposed coarse-grained neutral model based on birth-death processes. The relevance of the problem lies in the urgency for understanding and synthesizing both theoretical results from ecological neutral theory and empirical evidence on species diversity preservation. The neutral model of biodiversity deals with ecosystems at the same trophic level, where per capita vital rates are assumed to be species independent. Closed-form analytical solutions for the neutral theory are obtained within a coarse-grained model, where the only input is the species persistence time distribution. Our results pertain to: the probability distribution function of the number of species in the ecosystem, both in transient and in stationary states; the n-point connected time correlation function; and the survival probability, defined as the distribution of time spans to local extinction for a species randomly sampled from the community. Analytical predictions are also tested on empirical data from an estuarine fish ecosystem. We find that emerging properties of the ecosystem are very robust and do not depend on specific details of the model, with implications for biodiversity and conservation biology.
A gap analysis and comprehensive conservation strategy for riverine ecosystems of Missouri
Sowa, Scott P.; Annis, Gust; Morey, Michael E.; Diamond, David D.
2007-01-01
North America harbors an astounding proportion of the world's freshwater species, but it is facing a freshwater biodiversity crisis. A first step to slowing the loss of biodiversity involves identifying gaps in existing efforts to conserve biodiversity and prioritizing opportunities to fill these gaps. In this monograph we detail two separate, but complementary, conservation planning efforts - a Gap Analysis (GAP) and a State Wildlife Action Plan (WAP) - for Missouri that address this first step. The goal of the Missouri Aquatic GAP Project was to identify riverine ecosystems, habitats, and species not adequately represented (i.e., gaps) within existing conservation lands. The goal of the freshwater component of the Missouri Wildlife Action Plan was to identify and map a set of conservation-opportunity areas (COAs) that holistically represent all riverine ecosystems, habitats, and species in Missouri. Since conservation planning is a geographical exercise, both efforts utilized geographic information systems (GIS). Four principal GIS data sets were used in each planning effort: (1) a hierarchical riverine ecosystem classification, (2) predicted species distributions, (3) public ownership/stewardship, and (4) a human-threat index. Results of the gap analyses are not encouraging. Forty five, mostly rare, threatened, or endangered, species are not represented in lands set aside for conserving biodiversity. Results also illustrate the fragmented nature of conservation lands, which are mainly situated in the uplands and fail to provide connectivity among riverine habitats. Furthermore, many conservation lands are severely threatened by an array of human disturbances. In contrast, results of the WAP provide hope that relatively intact riverine ecosystems still exist. A total of 158 COAs, representing ∼6% of the total kilometers of stream in Missouri, were selected for the WAP. This illustrates that a wide spectrum of biodiversity can be represented within a small portion of the total resource base, but the area of conservation concern is often much larger. Identifying priority riverscapes for conservation is an important first step toward effective biodiversity conservation. Yet, achieving the ultimate goal of conserving biodiversity will require vigilance on the part of all responsible parties, with particular attention to addressing and coordinating the many remaining logistical tasks.
Oswald J. Schmitz; Anne M. Trainor
2014-01-01
Climate change stands to cause animal species to shift their geographic ranges. This will cause ecosystems to become reorganized across landscapes as species migrate into and out of specific locations with attendant impacts on values and services that ecosystems provide to humans. Conservation in an era of climate change needs to ensure that landscapes are resilient by...
Fear of large carnivores causes a trophic cascade
Suraci, Justin P.; Clinchy, Michael; Dill, Lawrence M.; Roberts, Devin; Zanette, Liana Y.
2016-01-01
The fear large carnivores inspire, independent of their direct killing of prey, may itself cause cascading effects down food webs potentially critical for conserving ecosystem function, particularly by affecting large herbivores and mesocarnivores. However, the evidence of this has been repeatedly challenged because it remains experimentally untested. Here we show that experimentally manipulating fear itself in free-living mesocarnivore (raccoon) populations using month-long playbacks of large carnivore vocalizations caused just such cascading effects, reducing mesocarnivore foraging to the benefit of the mesocarnivore's prey, which in turn affected a competitor and prey of the mesocarnivore's prey. We further report that by experimentally restoring the fear of large carnivores in our study system, where most large carnivores have been extirpated, we succeeded in reversing this mesocarnivore's impacts. We suggest that our results reinforce the need to conserve large carnivores given the significant “ecosystem service” the fear of them provides. PMID:26906881
Synergies and trade-offs between food security and biodiversity conservation
NASA Astrophysics Data System (ADS)
Molotoks, Amy
2016-04-01
Human land use activities have transformed a large proportion of the world's land surface and in particular, the expansion of agriculture has been a major driver in global land use change. The conversion of natural ecosystems to crop and pasture lands has contributed significantly to deforestation and associated biodiversity loss through habitat destruction. This loss has raised concerns about associated loss of ecological functions which directly support over one billion people worldwide. Furthermore, agriculture itself is heavily reliant on a number of ecosystem services which are essential for crop production. It is therefore essential that the global problems of food insecurity and biodiversity loss are not viewed independently as the methods used to address one will necessarily involve choices affecting the other. This poster will examine the relationship between food security provision and biodiversity hotspots by using global spatial datasets of land use and conservation value.
García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián
2015-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, 2) increase BSC cover in areas under strong erosion risk, to avoid soil loss, and 3) enhance soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. PMID:22073661
Eads, David A; Biggins, Dean E
2015-08-01
Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. © 2015 Society for Conservation Biology.
Conservation planning for biodiversity and wilderness: a real-world example.
Ceauşu, Silvia; Gomes, Inês; Pereira, Henrique Miguel
2015-05-01
Several of the most important conservation prioritization approaches select markedly different areas at global and regional scales. They are designed to maximize a certain biodiversity dimension such as coverage of species in the case of hotspots and complementarity, or composite properties of ecosystems in the case of wilderness. Most comparisons between approaches have ignored the multidimensionality of biodiversity. We analyze here the results of two species-based methodologies-hotspots and complementarity-and an ecosystem-based methodology-wilderness-at local scale. As zoning of protected areas can increase the effectiveness of conservation, we use the data employed for the management plan of the Peneda-Gerês National Park in Portugal. We compare the approaches against four criteria: species representativeness, wilderness coverage, coverage of important areas for megafauna, and for regulating ecosystem services. Our results suggest that species- and ecosystem-based approaches select significantly different areas at local scale. Our results also show that no approach covers well all biodiversity dimensions. Species-based approaches cover species distribution better, while the ecosystem-based approach favors wilderness, areas important for megafauna, and for ecosystem services. Management actions addressing different dimensions of biodiversity have a potential for contradictory effects, social conflict, and ecosystem services trade-offs, especially in the context of current European biodiversity policies. However, biodiversity is multidimensional, and management and zoning at local level should reflect this aspect. The consideration of both species- and ecosystem-based approaches at local scale is necessary to achieve a wider range of conservation goals.
Conservation Planning for Biodiversity and Wilderness: A Real-World Example
NASA Astrophysics Data System (ADS)
Ceauşu, Silvia; Gomes, Inês; Pereira, Henrique Miguel
2015-05-01
Several of the most important conservation prioritization approaches select markedly different areas at global and regional scales. They are designed to maximize a certain biodiversity dimension such as coverage of species in the case of hotspots and complementarity, or composite properties of ecosystems in the case of wilderness. Most comparisons between approaches have ignored the multidimensionality of biodiversity. We analyze here the results of two species-based methodologies—hotspots and complementarity—and an ecosystem-based methodology—wilderness—at local scale. As zoning of protected areas can increase the effectiveness of conservation, we use the data employed for the management plan of the Peneda-Gerês National Park in Portugal. We compare the approaches against four criteria: species representativeness, wilderness coverage, coverage of important areas for megafauna, and for regulating ecosystem services. Our results suggest that species- and ecosystem-based approaches select significantly different areas at local scale. Our results also show that no approach covers well all biodiversity dimensions. Species-based approaches cover species distribution better, while the ecosystem-based approach favors wilderness, areas important for megafauna, and for ecosystem services. Management actions addressing different dimensions of biodiversity have a potential for contradictory effects, social conflict, and ecosystem services trade-offs, especially in the context of current European biodiversity policies. However, biodiversity is multidimensional, and management and zoning at local level should reflect this aspect. The consideration of both species- and ecosystem-based approaches at local scale is necessary to achieve a wider range of conservation goals.
Toward Understanding, Managing, and Protecting Microbial Ecosystems
Bodelier, Paul L. E.
2011-01-01
Microbial communities are at the very basis of life on earth, catalyzing biogeochemical reactions driving global nutrient cycles. However, unlike for plants and animals, microbial diversity is not on the biodiversity–conservation agenda. The latter, however, would imply that microbial diversity is not under any threat by anthropogenic disturbance or climate change. This maybe a misconception caused by the rudimentary knowledge we have concerning microbial diversity and its role in ecosystem functioning. This perspective paper identifies major areas with knowledge gaps within the field of environmental microbiology that preclude a comprehension of microbial ecosystems on the level we have for plants and animals. Opportunities and challenges are pointed out to open the microbial black box and to go from descriptive to predictive microbial ecology. PMID:21747797
Holzwarth, Frédéric; Rüger, Nadja; Wirth, Christian
2015-01-01
Biodiversity and ecosystem functioning (BEF) research has progressed from the detection of relationships to elucidating their drivers and underlying mechanisms. In this context, replacing taxonomic predictors by trait-based measures of functional composition (FC)—bridging functions of species and of ecosystems—is a widely used approach. The inherent challenge of trait-based approaches is the multi-faceted, dynamic and hierarchical nature of trait influence: (i) traits may act via different facets of their distribution in a community, (ii) their influence may change over time and (iii) traits may influence processes at different levels of the natural hierarchy of organization. Here, we made use of the forest ecosystem model ‘LPJ-GUESS’ parametrized with empirical trait data, which creates output of individual performance, community assembly, stand-level states and processes. To address the three challenges, we resolved the dynamics of the top-level ecosystem function ‘annual biomass change’ hierarchically into its various component processes (growth, leaf and root turnover, recruitment and mortality) and states (stand structures, water stress) and traced the influence of different facets of FC along this hierarchy in a path analysis. We found an independent influence of functional richness, dissimilarity and identity on ecosystem states and processes and hence biomass change. Biodiversity effects were only positive during early succession and later turned negative. Unexpectedly, resource acquisition (growth, recruitment) and conservation (mortality, turnover) played an equally important role throughout the succession. These results add to a mechanistic understanding of biodiversity effects and place a caveat on simplistic approaches omitting hierarchical levels when analysing BEF relationships. They support the view that BEF relationships experience dramatic shifts over successional time that should be acknowledged in mechanistic theories. PMID:26064620
Lamsal, Pramod; Kumar, Lalit; Atreya, Kishor; Pant, Krishna Prasad
2017-12-01
Climate change (CC) threatens ecosystems in both developed and developing countries. As the impacts of CC are pervasive, global, and mostly irreversible, it is gaining worldwide attention. Here we review vulnerability and impacts of CC on forest and freshwater wetland ecosystems. We particularly look at investigations undertaken at different geographic regions in order to identify existing knowledge gaps and possible implications from such vulnerability in the context of Nepal along with available adaptation programs and national-level policy supports. Different categories of impacts which are attributed to disrupting structure, function, and habitat of both forest and wetland ecosystems are identified and discussed. We show that though still unaccounted, many facets of forest and freshwater wetland ecosystems of Nepal are vulnerable and likely to be impacted by CC in the near future. Provisioning ecosystem services and landscape-level ecosystem conservation are anticipated to be highly threatened with future CC. Finally, the need for prioritizing CC research in Nepal is highlighted to close the existing knowledge gap along with the implementation of adaptation measures based on existing location specific traditional socio-ecological system.
Identifying taxonomic and functional surrogates for spring biodiversity conservation.
Jyväsjärvi, Jussi; Virtanen, Risto; Ilmonen, Jari; Paasivirta, Lauri; Muotka, Timo
2018-02-27
Surrogate approaches are widely used to estimate overall taxonomic diversity for conservation planning. Surrogate taxa are frequently selected based on rarity or charisma, whereas selection through statistical modeling has been applied rarely. We used boosted-regression-tree models (BRT) fitted to biological data from 165 springs to identify bryophyte and invertebrate surrogates for taxonomic and functional diversity of boreal springs. We focused on these 2 groups because they are well known and abundant in most boreal springs. The best indicators of taxonomic versus functional diversity differed. The bryophyte Bryum weigelii and the chironomid larva Paratrichocladius skirwithensis best indicated taxonomic diversity, whereas the isopod Asellus aquaticus and the chironomid Macropelopia spp. were the best surrogates of functional diversity. In a scoring algorithm for priority-site selection, taxonomic surrogates performed only slightly better than random selection for all spring-dwelling taxa, but they were very effective in representing spring specialists, providing a distinct improvement over random solutions. However, the surrogates for taxonomic diversity represented functional diversity poorly and vice versa. When combined with cross-taxon complementarity analyses, surrogate selection based on statistical modeling provides a promising approach for identifying groundwater-dependent ecosystems of special conservation value, a key requirement of the EU Water Framework Directive. © 2018 Society for Conservation Biology.
Alternative states of a semiarid grassland ecosystem: implications for ecosystem services
Miller, Mark E.; Belote, R. Travis; Bowker, Matthew A.; Garman, Steven L.
2011-01-01
Ecosystems can shift between alternative states characterized by persistent differences in structure, function, and capacity to provide ecosystem services valued by society. We examined empirical evidence for alternative states in a semiarid grassland ecosystem where topographic complexity and contrasting management regimes have led to spatial variations in levels of livestock grazing. Using an inventory data set, we found that plots (n = 72) cluster into three groups corresponding to generalized alternative states identified in an a priori conceptual model. One cluster (biocrust) is notable for high coverage of a biological soil crust functional group in addition to vascular plants. Another (grass-bare) lacks biological crust but retains perennial grasses at levels similar to the biocrust cluster. A third (annualized-bare) is dominated by invasive annual plants. Occurrence of grass-bare and annualized-bare conditions in areas where livestock have been excluded for over 30 years demonstrates the persistence of these states. Significant differences among all three clusters were found for percent bare ground, percent total live cover, and functional group richness. Using data for vegetation structure and soil erodibility, we also found large among-cluster differences in average levels of dust emissions predicted by a wind-erosion model. Predicted emissions were highest for the annualized-bare cluster and lowest for the biocrust cluster, which was characterized by zero or minimal emissions even under conditions of extreme wind. Results illustrate potential trade-offs among ecosystem services including livestock production, soil retention, carbon storage, and biodiversity conservation. Improved understanding of these trade-offs may assist ecosystem managers when evaluating alternative management strategies.
Functional nonredundancy of elephants in a disturbed tropical forest.
Sekar, Nitin; Lee, Chia-Lo; Sukumar, Raman
2017-10-01
Conservation efforts are often motivated by the threat of global extinction. Yet if conservationists had more information suggesting that extirpation of individual species could lead to undesirable ecological effects, they might more frequently attempt to protect or restore such species across their ranges even if they were not globally endangered. Scientists have seldom measured or quantitatively predicted the functional consequences of species loss, even for large, extinction-prone species that theory suggests should be functionally unique. We measured the contribution of Asian elephants (Elephas maximus) to the dispersal of 3 large-fruited species in a disturbed tropical moist forest and predicted the extent to which alternative dispersers could compensate for elephants in their absence. We created an empirical probability model with data on frugivory and seed dispersal from Buxa Tiger Reserve, India. These data were used to estimate the proportion of seeds consumed by elephants and other frugivores that survive handling and density-dependent processes (Janzen-Connell effects and conspecific intradung competition) and germinate. Without compensation, the number of seeds dispersed and surviving density-dependent effects decreased 26% (Artocarpus chaplasha), 42% (Careya arborea), and 72% (Dillenia indica) when elephants were absent from the ecosystem. Compensatory fruit removal by other animals substantially ameliorated these losses. For instance, reductions in successful dispersal of D. indica were as low as 23% when gaur (Bos gaurus) persisted, but median dispersal distance still declined from 30% (C. arborea) to 90% (A. chaplasha) without elephants. Our results support the theory that the largest animal species in an ecosystem have nonredundant ecological functionality and that their extirpation is likely to lead to the deterioration of ecosystem processes such as seed dispersal. This effect is likely accentuated by the overall defaunation of many tropical systems. © 2017 Society for Conservation Biology.
[A review on disturbance ecology of forest].
Zhu, Jiaojun; Liu, Zugen
2004-10-01
More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.
Establishing IUCN Red List Criteria for Threatened Ecosystems
Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Baillie, Jonathan E M; Ash, Neville; Benson, John; Boucher, Timothy; Brown, Claire; Burgess, Neil D; Collen, Ben; Jennings, Michael; Keith, David A; Nicholson, Emily; Revenga, Carmen; Reyers, Belinda; Rouget, Mathieu; Smith, Tammy; Spalding, Mark; Taber, Andrew; Walpole, Matt; Zager, Irene; Zamin, Tara
2011-01-01
Abstract The potential for conservation of individual species has been greatly advanced by the International Union for Conservation of Nature's (IUCN) development of objective, repeatable, and transparent criteria for assessing extinction risk that explicitly separate risk assessment from priority setting. At the IV World Conservation Congress in 2008, the process began to develop and implement comparable global standards for ecosystems. A working group established by the IUCN has begun formulating a system of quantitative categories and criteria, analogous to those used for species, for assigning levels of threat to ecosystems at local, regional, and global levels. A final system will require definitions of ecosystems; quantification of ecosystem status; identification of the stages of degradation and loss of ecosystems; proxy measures of risk (criteria); classification thresholds for these criteria; and standardized methods for performing assessments. The system will need to reflect the degree and rate of change in an ecosystem's extent, composition, structure, and function, and have its conceptual roots in ecological theory and empirical research. On the basis of these requirements and the hypothesis that ecosystem risk is a function of the risk of its component species, we propose a set of four criteria: recent declines in distribution or ecological function, historical total loss in distribution or ecological function, small distribution combined with decline, or very small distribution. Most work has focused on terrestrial ecosystems, but comparable thresholds and criteria for freshwater and marine ecosystems are also needed. These are the first steps in an international consultation process that will lead to a unified proposal to be presented at the next World Conservation Congress in 2012. Establecimiento de Criterios para la Lista Roja de UICN de Ecosistemas Amenazados Resumen El potencial para la conservación de muchas especies ha avanzado enormemente porque la Unión Internacional para la Conservación de la Naturaleza (UICN) ha desarrollado criterios objetivos, repetibles y transparentes para evaluar el riesgo de extinción que explícitamente separa la evaluación de riesgo de la definición de prioridades. En el IV Congreso Mundial de Conservación en 2008, el proceso comenzó a desarrollar e implementar estándares globales comparables para ecosistemas. Un grupo de trabajo establecido por la UICN ha formulado un sistema inicial de categorías y criterios cuantitativos, análogos a los utilizados para especies, para asignar niveles de amenaza a ecosistemas a niveles local, regional y global. Un sistema final requerirá de definiciones de ecosistemas; cuantificación del estatus de ecosistemas; identificación de las etapas de degradación y pérdida de los ecosistemas; medidas de riesgo (criterios) alternativas; umbrales de clasificación para esos criterios y métodos estandarizados para la realización de evaluaciones. El sistema deberá reflejar el nivel y tasa de cambio en la extensión, composición, estructura y funcionamiento de un ecosistema, y tener sus raíces conceptuales en la teoría ecológica y la investigación empírica. Sobre la base de esos requerimientos y la hipótesis de que el riesgo del ecosistema es una función del riesgo de las especies que lo componen, proponemos un conjunto de 4 criterios: declinaciones recientes en la distribución o funcionamiento ecológica, pérdida total histórica en la distribución o funcionamiento ecológico, distribución pequeña combinada con declinación, o distribución muy pequeña. La mayor parte del trabajo se ha concentrado en ecosistemas terrestres, pero también se requieren umbrales y criterios comparables para ecosistemas dulceacuícolas y marinos. Estos son los primeros pasos de un proceso de consulta internacional que llevará a una propuesta unificada que será presentada en el próximo Congreso Mundial de Conservación en 2012. PMID:21054525
Making decisions in complex landscapes: Headwater stream management across multiple federal agencies
Katz, Rachel; Grant, Evan H. Campbell; Runge, Michael C.; Connery, Bruce; Crockett, Marquette; Herland, Libby; Johnson, Sheela; Kirk, Dawn; Wofford, Jeb; Bennett, Rick; Nislow, Keith; Norris, Marian; Hocking, Daniel; Letcher, Benjamin; Roy, Allison
2014-01-01
Headwater stream ecosystems are vulnerable to numerous threats associated with climate and land use change. In the northeastern US, many headwater stream species (e.g., brook trout and stream salamanders) are of special conservation concern and may be vulnerable to climate change influences, such as changes in stream temperature and streamflow. Federal land management agencies (e.g., US Fish and Wildlife Service, National Park Service, USDA Forest Service, Bureau of Land Management and Department of Defense) are required to adopt policies that respond to climate change and may have longer-term institutional support to enforce such policies compared to state, local, non-governmental, or private land managers. However, federal agencies largely make management decisions in regards to headwater stream ecosystems independently. This fragmentation of management resources and responsibilities across the landscape may significantly impede the efficiency and effectiveness of conservation actions, and higher degrees of collaboration may be required to achieve conservation goals. This project seeks to provide an example of cooperative landscape decision-making to address the conservation of headwater stream ecosystems. We identified shared and contrasting objectives of each federal agency and potential collaboration opportunities that may increase efficient and effective management of headwater stream ecosystems in two northeastern US watersheds. These workshops provided useful insights into the adaptive capacity of federal institutions to address threats to headwater stream ecosystems. Our ultimate goal is to provide a decision-making framework and analysis that addresses large-scale conservation threats across multiple stakeholders, as a demonstration of cooperative landscape conservation for aquatic ecosystems. Additionally, we aim to provide new scientific knowledge and a regional perspective to resource managers to help inform local management decisions.
Field evidence that ecosystem service projects support biodiversity and diversify options.
Goldman, Rebecca L; Tallis, Heather; Kareiva, Peter; Daily, Gretchen C
2008-07-08
Ecosystem service approaches to conservation are being championed as a new strategy for conservation, under the hypothesis that they will broaden and deepen support for biodiversity protection. Where traditional approaches focus on setting aside land by purchasing property rights, ecosystem service approaches aim to engage a much wider range of places, people, policies, and financial resources in conservation. This is particularly important given projected intensification of human impacts, with rapid growth in population size and individual aspirations. Here we use field research on 34 ecosystem service (ES) projects and 26 traditional biodiversity (BD) projects from the Western Hemisphere to test whether ecosystem service approaches show signs of realizing their putative potential. We find that the ES projects attract on average more than four times as much funding through greater corporate sponsorship and use of a wider variety of finance tools than BD projects. ES projects are also more likely to encompass working landscapes and the people in them. We also show that, despite previous concern, ES projects not only expand opportunities for conservation, but they are no less likely than BD projects to include or create protected areas. Moreover, they do not draw down limited financial resources for conservation but rather engage a more diverse set of funders. We also found, however, that monitoring of conservation outcomes in both cases is so infrequent that it is impossible to assess the effectiveness of either ES or BD approaches.
Field evidence that ecosystem service projects support biodiversity and diversify options
Goldman, Rebecca L.; Tallis, Heather; Kareiva, Peter; Daily, Gretchen C.
2008-01-01
Ecosystem service approaches to conservation are being championed as a new strategy for conservation, under the hypothesis that they will broaden and deepen support for biodiversity protection. Where traditional approaches focus on setting aside land by purchasing property rights, ecosystem service approaches aim to engage a much wider range of places, people, policies, and financial resources in conservation. This is particularly important given projected intensification of human impacts, with rapid growth in population size and individual aspirations. Here we use field research on 34 ecosystem service (ES) projects and 26 traditional biodiversity (BD) projects from the Western Hemisphere to test whether ecosystem service approaches show signs of realizing their putative potential. We find that the ES projects attract on average more than four times as much funding through greater corporate sponsorship and use of a wider variety of finance tools than BD projects. ES projects are also more likely to encompass working landscapes and the people in them. We also show that, despite previous concern, ES projects not only expand opportunities for conservation, but they are no less likely than BD projects to include or create protected areas. Moreover, they do not draw down limited financial resources for conservation but rather engage a more diverse set of funders. We also found, however, that monitoring of conservation outcomes in both cases is so infrequent that it is impossible to assess the effectiveness of either ES or BD approaches. PMID:18591667
Exploiting Allee effects for managing biological invasions
Patrick C. Tobin; Ludek Berec; Andrew M. Liebhold
2011-01-01
Biological invasions are a global and increasing threat to the function and diversity of ecosystems. Allee effects (positive density dependence) have been shown to play an important role in the establishment and spread of non-native species. Although Allee effects can be considered a bane in conservation efforts, they can be a benefit in attempts to manage non-native...
Conservation and maintenance of soil and water resources
Brian G. Tavernia; Mark D. Nelson; Titus S. Seilheimer; Dale D. Gormanson; Charles H. (Hobie) Perry; Peter V. Caldwell; Ge. Sun
2016-01-01
Forest ecosystem productivity and functioning depend on soil and water resources. But the reverse is also trueâforest and land-use management activities can significantly alter forest soils, water quality, and associated aquatic habitats (Ice and Stednick 2004, Reid 1993, Wigmosta and Burges 2001). Soil and water resources are protected through the allocation of land...
Wetland features and landscape context predict the risk of wetland habitat loss
Kevin J. Gutzwiller; Curtis H. Flather
2011-01-01
Wetlands generally provide significant ecosystem services and function as important harbors of biodiversity. To ensure that these habitats are conserved, an efficient means of identifying wetlands at risk of conversion is needed, especially in the southern United States where the rate of wetland loss has been highest in recent decades. We used multivariate adaptive...
Revegetation of Reconstructed Reaches of the Provo River, Heber Valley, Utah
John A. Rice
2006-01-01
In 1999, the Utah Reclamation Mitigation and Conservation Commission began the Provo River Restoration Project to create a more naturally functioning riverine ecosystem between Jordanelle Dam and Deer Creek Reservoir. The purpose of the project was to mitigate for past impacts to riverine, wetland, and riparian habitats caused by the Central Utah Project and other...
Accounting for variation in root wood density and percent carbon in belowground carbon estimates
Brandon H. Namm; John-Pascal Berrill
2012-01-01
Little is known about belowground biomass and carbon in tanoak. Although tanoaks rarely provide merchantable wood, an assessment of belowground carbon loss due to tanoak removal and Sudden Oak Death will inform conservation and management decisions in redwood-tanoak ecosystems.The carbon content of woody biomass is a function of...
Managing landscapes at multiple scales for sustainability of ecosystem functions (Preface)
R.A. Birdsey; R. Lucas; Y. Pan; G. Sun; E.J. Gustafson; A.H. Perera
2010-01-01
The science of landscape ecology is a rapidly evolving academic field with an emphasis on studying large-scale spatial heterogeneity created by natural influences and human activities. These advances have important implications for managing and conserving natural resources. At a September 2008 IUFRO conference in Chengdu, Sichuan, P.R. China, we highlighted both the...
Does seeding after wildfires in rangelands reduce erosion or invasive species?
David A. Pyke; Troy A. Wirth; Jan L. Beyers
2013-01-01
Mitigation of ecological damage caused by rangeland wildfires has historically been an issue restricted to the western United States. It has focused on conservation of ecosystem function through reducing soil erosion and spread of invasive plants. Effectiveness of mitigation treatments has been debated recently. We reviewed recent literature to conduct a meta-analysis...
NASA Astrophysics Data System (ADS)
Yue, Y.; Tong, X.; Wang, K.; Fensholt, R.; Brandt, M.
2017-12-01
With the aim to combat desertification and improve the ecological environment, mega-engineering afforestation projects have been launched in the karst regions of southwest China around the turn of the new millennium. A positive impact of these projects on vegetation cover has been shown, however, it remains unclear if conservation efforts have been able to effectively restore ecosystem properties and reduce the sensitivity of the karst ecosystem to climate variations at large scales. Here we use passive microwave and optical satellite time series data combined with the ecosystem model LPJ-GUESS and show widespread increase in vegetation cover with a clear demarcation at the Chinese national border contrasting the conditions of neighboring countries. We apply a breakpoint detection to identify permanent changes in vegetation time series and assess the vegetation's sensitivity against climate before and after the breakpoints. A majority (74%) of the breakpoints were detected between 2001 and 2004 and are remarkably in line with the implementation and spatial extent of the Grain to Green project. We stratify the counties of the study area into four groups according to the extent of Grain to Green conservation areas and find distinct differences between the groups. Vegetation trends are similar prior to afforestation activities (1982-2000), but clearly diverge at a later stage, following the spatial extent of conservation areas. Moreover, vegetation cover dynamics were increasingly decoupled from climatic influence in areas of high conservation efforts. Whereas both vegetation resilience and resistance were considerably improved in areas with large conservation efforts thereby showing an increase in ecosystem stability, ongoing degradation and an amplified sensitivity to climate variability was found in areas with limited project implementation. Our study concludes that large scale conservation projects can regionally contribute to a greening Earth and are able to mitigate desertification by increasing the vegetation cover and reducing the ecosystem sensitivity to climate change, however, degradation remains a serious issue in the karst ecosystem of southwest China.
Delivery of crop pollination services is an insufficient argument for wild pollinator conservation
Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G
2015-01-01
There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893
NASA Astrophysics Data System (ADS)
Bhatt, Jay P.; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K.
2016-05-01
Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.
Bhatt, Jay P; Manish, Kumar; Mehta, Rajender; Pandit, Maharaj K
2016-05-01
Conservation efforts globally are skewed toward terrestrial ecosystems. To date, conservation of aquatic ecosystems, in particular fish fauna, is largely neglected. We provide a country-wide assessment of Indian river ecosystems in order to identify and prioritize areas for protection and restoration of freshwater fish fauna. Using various biodiversity and anthropogenic attributes, coupled with tools of ecological modeling, we delineated areas for fish fauna conservation and restoration in the 20 major river basins of India. To do this, we used prioritization analyses and reserve selection algorithms to derive conservation value index (CVI) and vulnerability index (VI) of the river basins. CVI was estimated using endemicity, rarity, conservation value, and taxonomic singularity, while VI was estimated using a disturbance index derived from percent geographic area of the basin under human settlements, human population density, predominant land use, and total number of exotic fish species in each basin. The two indices, CVI and VI, were converted into geo-referenced maps, and each map was super-imposed onto species richness and forest cover maps, respectively. After superimposition, areas with high CVI and low VI shade intensities were delineated for conservation, while areas with high CVI and high VI shade intensities were demarcated for restoration. In view of the importance of freshwater fish for human livelihoods and consumption, and ecosystems of India's rivers, we call for urgent attention to the conservation of their fish fauna along with restoration of their degraded habitats.
Using return on investment to maximize conservation effectiveness in Argentine grasslands.
Murdoch, William; Ranganathan, Jai; Polasky, Stephen; Regetz, James
2010-12-07
The rapid global loss of natural habitats and biodiversity, and limited resources, place a premium on maximizing the expected benefits of conservation actions. The scarcity of information on the fine-grained distribution of species of conservation concern, on risks of loss, and on costs of conservation actions, especially in developing countries, makes efficient conservation difficult. The distribution of ecosystem types (unique ecological communities) is typically better known than species and arguably better represents the entirety of biodiversity than do well-known taxa, so we use conserving the diversity of ecosystem types as our conservation goal. We define conservation benefit to include risk of conversion, spatial effects that reward clumping of habitat, and diminishing returns to investment in any one ecosystem type. Using Argentine grasslands as an example, we compare three strategies: protecting the cheapest land ("minimize cost"), maximizing conservation benefit regardless of cost ("maximize benefit"), and maximizing conservation benefit per dollar ("return on investment"). We first show that the widely endorsed goal of saving some percentage (typically 10%) of a country or habitat type, although it may inspire conservation, is a poor operational goal. It either leads to the accumulation of areas with low conservation benefit or requires infeasibly large sums of money, and it distracts from the real problem: maximizing conservation benefit given limited resources. Second, given realistic budgets, return on investment is superior to the other conservation strategies. Surprisingly, however, over a wide range of budgets, minimizing cost provides more conservation benefit than does the maximize-benefit strategy.
Pickens, Bradley A.; Mordecai, Rua S.; Drew, C. Ashton; Alexander-Vaughn, Louise B.; Keister, Amy S.; Morris, Hilary L.C.; Collazo, Jaime A.
2017-01-01
Systematic conservation planning, a widely used approach to identify priority lands and waters, uses efficient, defensible, and transparent methods aimed at conserving biodiversity and ecological systems. Limited financial resources and competing land uses can be major impediments to conservation; therefore, participation of diverse stakeholders in the planning process is advantageous to help address broad-scale threats and challenges of the 21st century. Although a broad extent is needed to identify core areas and corridors for fish and wildlife populations, a fine-scale resolution is needed to manage for multiple, interconnected ecosystems. Here, we developed a conservation plan using a systematic approach to promote landscape-level conservation within the extent of the South Atlantic Landscape Conservation Cooperative. Our objective was to identify the highest-ranked 30% of lands and waters within the South Atlantic deemed necessary to conserve ecological and cultural integrity for the 10 primary ecosystems of the southeastern United States. These environments varied from terrestrial, freshwater aquatic, and marine. The planning process was driven by indicators of ecosystem integrity at a 4-ha resolution. We used the program Zonation and 28 indicators to optimize the identification of lands and waters to meet the stated objective. A novel part of our study was the prioritization of multiple ecosystems, and we discuss the advantages and disadvantages of this approach. The evaluation of indicator representation within prioritizations was a useful method to show where improvements could be made; some indicators dictated hotspots, some had a limited extent and were well represented, and others had a limited effect. Overall, we demonstrate that a broad-scale (408,276 km2 of terrestrial and 411,239 km2 of marine environments) conservation plan can be realized at a fine-scale resolution, which will allow implementation of the regional plan at a local level relevant to decision making.
Impacts of climate change on prioritizing conservation areas of hydrological ecosystem services
NASA Astrophysics Data System (ADS)
Lien, Wan Yu; Lin, Yu Pin
2015-04-01
Ecosystem services (ESs) including hydrological services play important roles in our daily life and provide a lot of benefits for human beings from ecological systems. The systems and their services may be threatened by climate change from global to local scales. We herein developed a systematic approach to assess the impacts of climate change on the hydrological ecosystem services, such as water yield, nutrient (nitrogen and phosphorous) retention, and soil retention in a watershed in Northern Taiwan. We first used an ecosystem service evaluation model, InVEST, to estimate the amount and spatial patterns of annual and monthly hydrological ecosystem services under historical weather data, and different climate change scenarios based on five GMSs. The monthly and annual spatiotemporal variations of the ESs were analyzed in this study. Finally, the multiple estimated ESs were considered as the protection conservation targets and regarded as the input data of the systematic conservation planning software, Zonation, to systematically prioritize reserve areas of the ESs under the climate change scenarios. The ES estimation results indicated that the increasing rainfall in wet season leads to the higher water yield and results in the higher sediment and nutrient export indirectly. The Zonation successfully fielded conservation priorities of the ESs. The conservation priorities of the ESs significantly varied spatially and monthly under the climate change scenarios. The ESs results also indicated that the areas where ESs values and conservation priorities with low resilience under climate change should be considered as high priority protected area to ensure the hydrological services in future. Our proposed approach is a novel systematic approach which can be applied to assess impacts of climate change on spatiotemporal variations of ESs as well as prioritize protected area of the ESs under various climate change scenarios. Keyword: climate change, ecosystem service, conservation planning, spatial analysis.
Effects of invasive plants on arthropods.
Litt, Andrea R; Cord, Erin E; Fulbright, Timothy E; Schuster, Greta L
2014-12-01
Non-native plants have invaded nearly all ecosystems and represent a major component of global ecological change. Plant invasions frequently change the composition and structure of vegetation communities, which can alter animal communities and ecosystem processes. We reviewed 87 articles published in the peer-reviewed literature to evaluate responses of arthropod communities and functional groups to non-native invasive plants. Total abundance of arthropods decreased in 62% of studies and increased in 15%. Taxonomic richness decreased in 48% of studies and increased in 13%. Herbivorous arthropods decreased in response to plant invasions in 48% of studies and increased in 17%, likely due to direct effects of decreased plant diversity. Predaceous arthropods decreased in response to invasive plants in 44% of studies, which may reflect indirect effects due to reductions in prey. Twenty-two percent of studies documented increases in predators, which may reflect changes in vegetation structure that improved mobility, survival, or web-building for these species. Detritivores increased in 67% of studies, likely in response to increased litter and decaying vegetation; no studies documented decreased abundance in this functional group. Although many researchers have examined effects of plant invasions on arthropods, sizeable information gaps remain, specifically regarding how invasive plants influence habitat and dietary requirements. Beyond this, the ability to predict changes in arthropod populations and communities associated with plant invasions could be improved by adopting a more functional and mechanistic approach. Understanding responses of arthropods to invasive plants will critically inform conservation of virtually all biodiversity and ecological processes because so many organisms depend on arthropods as prey or for their functional roles, including pollination, seed dispersal, and decomposition. Given their short generation times and ability to respond rapidly to ecological change, arthropods may be ideal targets for restoration and conservation activities. © 2014 Society for Conservation Biology.
The impact of systematic landscape conservation planning on ecosystem: Chen Youlan river watershed
NASA Astrophysics Data System (ADS)
Chen, Chi-ju
2017-04-01
Heraclitus said that "no man ever steps in the same river twice." Everything continues to change. Land use change will keep redefine itself and subject the Earth and humankind to collateral changes. Humankind benefits from ecosystem in many ways. The ecosystem provides people with nutrients, enriches soil with sediment, and sustains all living organisms with water; these benefits are known as ecosystem services. In Taiwan, land use change has impacted ecosystem and biodiversity on various levels. Thus, we took six land use scenarios from 1999 to 2005 in Chen Youlan river watershed as our case study, intending to observe the course of ecosystem and biodiversity changes and the cause of it. Systematic Landscape conservation planning (SLCP) framework can be adopted when designing land use policy to safeguard human interests and ecosystem. This study use SLCP to develop ecosystem services and biodiversity protection strategies. Several strategies were designed by using 1999 to 2005 data as provision to protect the intactness of future ecosystem services and biodiversity. This research explores the potential and possible impacts of different land use protection strategies in the future. It is possible to identify the conservation priority of a certain region by using the Zonation meta-algorithm. This study selects the zonation critical protection area (Joint set of Yushan National Park) as strategy A, B and C. Strategy D takes Yushan National Park as a protected area; unstable hot spots in 1999/03 (Joint set of Yushan National Park) are selected as strategy E. Next, we used Kappa statistical method to find the minimal ecosystem services change and biodiversity hotspots change of the five aforementioned strategies and compared with those from 1999/03. By the Kappa statistical method, we further prioritized the important conservation areas by strategy A, B, C, E in the future. The results can not only serve as management reference for government agencies, but also develop an ideal trajectory of policy making as well as human-nature dynamics, leading to a sustainable future. We do not have to be subject to changes passively, instead, we can evolve ourselves and actively initiate the evolutionary path towards sustainable coexistence with nature. Keywords: InVEST , CLUE-s , biodiversity , ecosystem services, ecosystem services hotspots, land use change, SLCP, Systematic Landscape conservation planning, Chen Youlan river
European seaweeds under pressure: Consequences for communities and ecosystem functioning
NASA Astrophysics Data System (ADS)
Mineur, Frédéric; Arenas, Francisco; Assis, Jorge; Davies, Andrew J.; Engelen, Aschwin H.; Fernandes, Francisco; Malta, Erik-jan; Thibaut, Thierry; Van Nguyen, Tu; Vaz-Pinto, Fátima; Vranken, Sofie; Serrão, Ester A.; De Clerck, Olivier
2015-04-01
Seaweed assemblages represent the dominant autotrophic biomass in many coastal environments, playing a central structural and functional role in several ecosystems. In Europe, seaweed assemblages are highly diverse systems. The combined seaweed flora of different European regions hold around 1550 species (belonging to nearly 500 genera), with new species continuously uncovered, thanks to the emergence of molecular tools. In this manuscript we review the effects of global and local stressors on European seaweeds, their communities, and ecosystem functioning. Following a brief review on the present knowledge on European seaweed diversity and distribution, and the role of seaweed communities in biodiversity and ecosystem functioning, we discuss the effects of biotic homogenization (invasive species) and global climate change (shifts in bioclimatic zones and ocean acidification) on the distribution of individual species and their effect on the structure and functioning of seaweed communities. The arrival of new introduced species (that already account for 5-10% of the European seaweeds) and the regional extirpation of native species resulting from oceans' climate change are creating new diversity scenarios with undetermined functional consequences. Anthropogenic local stressors create additional disruption often altering dramatically assemblage's structure. Hence, we discuss ecosystem level effects of such stressors like harvesting, trampling, habitat modification, overgrazing and eutrophication that impact coastal communities at local scales. Last, we conclude by highlighting significant knowledge gaps that need to be addressed to anticipate the combined effects of global and local stressors on seaweed communities. With physical and biological changes occurring at unexpected pace, marine phycologists should now integrate and join their research efforts to be able to contribute efficiently for the conservation and management of coastal systems.
A geological perspective on the degradation and conservation of western Atlantic coral reefs.
Kuffner, Ilsa B; Toth, Lauren T
2016-08-01
Continuing coral-reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral-reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs-as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species-cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern-day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of Society for Conservation Biology.
Introduction to watershed ecosystem services: Chapter 1
Hall, Jefferson S.; Stallard, Robert F.; Kirn, Vanessa
2015-01-01
Humans derive a great number of goods and services from terrestrial ecosystems (Millennium Ecosystem Assessment, 2003, 2005). Some, like timber, fruits, bush meat, and other forest based food stuffs, are evident but others are not so obvious. Increasingly policy makers have realized the importance of forests and other ecosystems in sequestering carbon, as clearing of once vibrant vegetation or draining of swamps releases carbon dioxide (U.S. DOE, 2012) and where planting trees – particularly in the tropics - takes carbon dioxide out of the atmosphere (Bala et al., 2007). Scientists and conservationists have long called our attention to the value of Neotropical landscapes for biodiversity conservation as forests and other ecosystems harbor vast numbers of species. In recent decades conservationists and policy makers have also highlighted the potential of forests and other ecosystems to regulate stream flows (Ibáñez et al., 2002, Laurance, 2007 but also see Calder et al., 2007) and play a role in assuring clean water (Uriarte et al., 2011). All of these goods and services are part of what is collectively referred to as ecosystem services or goods and services that are provided to humanity through the unimpeded natural function of the ecosystem.
Pitcher, Tony J.
2005-01-01
‘Back-to-the-future’ (BTF) is an integrative approach to a restoration ecology of the oceans that attempts to solve the fisheries crisis. To this end, it harnesses the latest understanding of ecosystem processes, developments in whole ecosystem simulation modelling, and insight into the human dimension of fisheries management. BTF includes new methods for describing past ecosystems, designing fisheries that meet criteria for sustainability and responsibility, and evaluating the costs and benefits of fisheries in restored ecosystems. Evaluation of alternative policy choices, involving trade-offs between conservation and economic values, employs a range of economic, social and ecological measures. Automated searches maximize values of objective functions, and the methodology includes analyses of model parameter uncertainty. Participatory workshops attempt to maximize compliance by fostering a sense of ownership among all stakeholders. Some challenges that have still to be met include improving methods for quantitatively describing the past, reducing uncertainty in ecosystem simulation techniques and in making policy choices robust against climate change. Critical issues include whether past ecosystems make viable policy goals, and whether desirable goals may be reached from today’s ecosystem. Examples from case studies in British Columbia, Newfoundland and elsewhere are presented. PMID:15713591
76 FR 40336 - Availability of Seats for the Florida Keys National Marine Sanctuary Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-08
... (alternate), Conservation and Environment [1 of 2] (member), Conservation and Environment [1 of 2] (alternate...--Charter Fishing Flats Guide (alternate), South Florida Ecosystem Restoration (member), and South Florida Ecosystem Restoration (alternate). Applicants are chosen based upon their particular expertise and...
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Advancing mangrove macroecology
Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.
2017-01-01
Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and rehabilitation projects as macroecological studies that advance the critical selection and conservation of ecosystem services when managing mangrove resources. Future work to further incorporate macroecology into mangrove research will require a concerted effort by research groups and institutions to launch research initiatives and synthesize data collected across broad biogeographic regions.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
The Ecology of Seamounts: Structure, Function, and Human Impacts
NASA Astrophysics Data System (ADS)
Clark, Malcolm R.; Rowden, Ashley A.; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I.; Rogers, Alex D.; O'Hara, Timothy D.; White, Martin; Shank, Timothy M.; Hall-Spencer, Jason M.
2010-01-01
In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.
The role of macroinvertebrates for conservation of freshwater systems.
Nieto, Carolina; Ovando, Ximena M C; Loyola, Rafael; Izquierdo, Andrea; Romero, Fátima; Molineri, Carlos; Rodríguez, José; Rueda Martín, Paola; Fernández, Hugo; Manzo, Verónica; Miranda, María José
2017-07-01
Freshwater ecosystems are the most threatened ecosystems worldwide. Argentinian-protected areas have been established mainly to protect vertebrates and plants in terrestrial ecosystems. In order to create a comprehensive biodiverse conservation plan, it is crucial to integrate both aquatic and terrestrial systems and to include macroinvertebrates. Here, we address this topic by proposing priority areas of conservation including invertebrates, aquatic ecosystems, and their connectivity and land uses. Northwest of Argentina. We modeled the ecological niches of different taxa of macroinvertebrates such as Coleoptera, Ephemeroptera, Hemiptera, Megaloptera, Lepidoptera, Odonata, Plecoptera, Trichoptera, Acari, and Mollusca. Based on these models, we analyzed the contribution of currently established protected areas in the conservation of the aquatic biodiversity and we propose a spatial prioritization taking into account possible conflict regarding different land uses. Our analysis units were the real watersheds, to which were added longitudinal connectivity up and down the rivers. A total of 132 species were modeled in the priority area analyses. The analysis 1 showed that only an insignificant percentage of the macroinvertebrates distribution is within the protected areas in the North West of Argentina. The analyses 2 and 3 recovered similar values of protection for the macroinvertebrate species. The upper part of Bermejo, Salí-Dulce, San Francisco, and the Upper part of Juramento basins were identified as priority areas of conservation. The aquatic ecosystems need special protection and 10% or even as much as 17% of land conservation is insufficient for species of macroinvertebrates. In turn the protected areas need to combine the aquatic and terrestrial systems and need to include macroinvertebrates as a key group to sustain the biodiversity. In many cases, the land uses are in conflict with the conservation of biodiversity; however, it is possible to apply the connectivity of the watersheds and create multiple-use modules.
NASA Astrophysics Data System (ADS)
Henkel, J. R.; Dausman, A.; Cowan, J.; Sutter, B.
2017-12-01
Healthy and sustainable ecosystems are essential for thriving and resilient coastal communities. As a result of settlements following the Deepwater Horizon oil spill, the Gulf Coast Ecosystem Restoration Council (Council) and other funding entities, will receive billions of dollars over the next 15 years for restoration projects and programs. These and future restoration efforts present an opportunity to improve the function of coastal wetlands in the Gulf of Mexico, and potentially address long-standing barriers to ecosystem health and resilience in the region. In its Comprehensive Plans, the Council has committed to science-based decision-making, collaboration among its eleven state and federal members, and close coordination with other Gulf restoration and conservation funding efforts including NRDA, NFWF and other federal programs to leverage resources and integrate complementary restoration efforts. To help fulfill these commitments the Council is exploring methods and tools to collect and assess data to evaluate and report on both ecological and socio-economic outcomes of restoration projects. Application of these tools in coordination with restoration partners, will demonstrate the cascading benefits of ecosystem restoration in a quantifiable way, and can help decision-makers increase investments in ecosystem restoration that will support the long-term sustainability of coastal systems. An understanding of ecosystem function and services can also provide a transparent lens for communicating the results of successful ecosystem restoration projects to the public (helping answer the "So what?" of ecosystem restoration). As the Council moves forward making decisions based on the best available science, improving ecosystem functioning and services will play a role in project and program selection and will result in more resilient ecosystems. This will enable the Council to help communities enhance their ability to recover from natural and manmade disasters and thrive in the face of changing environmental conditions.
Biodiversity conservation: The key is reducing meat consumption.
Machovina, Brian; Feeley, Kenneth J; Ripple, William J
2015-12-01
The consumption of animal-sourced food products by humans is one of the most powerful negative forces affecting the conservation of terrestrial ecosystems and biological diversity. Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing tropical countries where the majority of biological diversity resides. Bushmeat consumption in Africa and southeastern Asia, as well as the high growth-rate of per capita livestock consumption in China are of special concern. The projected land base required by 2050 to support livestock production in several megadiverse countries exceeds 30-50% of their current agricultural areas. Livestock production is also a leading cause of climate change, soil loss, water and nutrient pollution, and decreases of apex predators and wild herbivores, compounding pressures on ecosystems and biodiversity. It is possible to greatly reduce the impacts of animal product consumption by humans on natural ecosystems and biodiversity while meeting nutritional needs of people, including the projected 2-3 billion people to be added to human population. We suggest that impacts can be remediated through several solutions: (1) reducing demand for animal-based food products and increasing proportions of plant-based foods in diets, the latter ideally to a global average of 90% of food consumed; (2) replacing ecologically-inefficient ruminants (e.g. cattle, goats, sheep) and bushmeat with monogastrics (e.g. poultry, pigs), integrated aquaculture, and other more-efficient protein sources; and (3) reintegrating livestock production away from single-product, intensive, fossil-fuel based systems into diverse, coupled systems designed more closely around the structure and functions of ecosystems that conserve energy and nutrients. Such efforts would also impart positive impacts on human health through reduction of diseases of nutritional extravagance. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina
2014-05-01
Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.
Alcaraz-Segura, Domingo; Cabello, Javier; Paruelo, José M; Delibes, Miguel
2009-01-01
Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.
Aukema, Juliann E; Pricope, Narcisa G; Husak, Gregory J; Lopez-Carr, David
2017-01-01
Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change-largely wetting-in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being.
Pricope, Narcisa G.; Husak, Gregory J.; Lopez-Carr, David
2017-01-01
Humans and the ecosystem services they depend on are threatened by climate change. Places with high or growing human population as well as increasing climate variability, have a reduced ability to provide ecosystem services just as the need for these services is most critical. A spiral of vulnerability and ecosystem degradation often ensues in such places. We apply different global conservation schemes as proxies to examine the spatial relation between wet season precipitation, population change over three decades, and natural resource conservation. We pose two research questions: 1) Where are biodiversity and ecosystem services vulnerable to the combined effects of climate change and population growth? 2) Where are human populations vulnerable to degraded ecosystem services? Results suggest that globally only about 20% of the area between 50 degrees latitude North and South has experienced significant change–largely wetting–in wet season precipitation. Approximately 40% of rangelands and 30% of rainfed agriculture lands have experienced significant precipitation changes, with important implications for food security. Over recent decades a number of critical conservation areas experienced high population growth concurrent with significant wetting or drying (e.g. the Horn of Africa, Himalaya, Western Ghats, and Sri Lanka), posing challenges not only for human adaptation but also to the protection and sustenance of biodiversity and ecosystem services. Identifying areas of climate and population risk and their overlap with conservation priorities can help to target activities and resources that promote biodiversity and ecosystem services while improving human well-being. PMID:28125659
Ecosystem services-based SWOT analysis of protected areas for conservation strategies.
Scolozzi, Rocco; Schirpke, Uta; Morri, Elisa; D'Amato, Dalia; Santolini, Riccardo
2014-12-15
An ecosystem services-based SWOT analysis is proposed in order to identify and quantify internal and external factors supporting or threatening the conservation effectiveness of protected areas. The proposed approach concerns both the ecological and the social perspective. Strengths and weaknesses, opportunities and threats were evaluated based on 12 selected environmental and socio-economic indicators for all terrestrial Italian protected areas, belonging to the Natura 2000 network, and for their 5-km buffer area. The indicators, used as criteria within a multi-criteria assessment, include: core area, cost-distance between protected areas, changes in ecosystem services values, intensification of land use, and urbanization. The results were aggregated for three biogeographical regions, Alpine, Continental, and Mediterranean, indicating that Alpine sites have more opportunities and strengths than Continental and Mediterranean sites. The results call attention to where connectivity and land-use changes may have stronger influence on protected areas, in particular, whereas urbanization or intensification of agriculture may hamper conservation goals of protected areas. The proposed SWOT analysis provides helpful information for a multiple scale perspective and for identifying conservation priorities and for defining management strategies to assure biodiversity conservation and ecosystem services provision. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vallejo-Ramos, Mariana; Moreno-Calles, Ana I; Casas, Alejandro
2016-07-22
Transformation of natural ecosystems into intensive agriculture is a main factor causing biodiversity loss worldwide. Agroforestry systems (AFS) may maintain biodiversity, ecosystem benefits and human wellbeing, they have therefore high potential for concealing production and conservation. However, promotion of intensive agriculture and disparagement of TEK endanger their permanence. A high diversity of AFS still exist in the world and their potentialities vary with the socio-ecological contexts. We analysed AFS in tropical, temperate, and arid environments, of the Tehuacan Valley, Mexico, to investigate how their capacity varies to conserve biodiversity and role of TEK influencing differences in those contexts. We hypothesized that biodiversity in AFS is related to that of forests types associated and the vigour of TEK and management. We conducted studies in a matrix of environments and human cultures in the Tehuacán Valley. In addition, we reviewed, systematized and compared information from other regions of Mexico and the world with comparable socio-ecological contexts in order to explore possible general patterns. Our study found from 26 % to nearly 90 % of wild plants species richness conserved in AFS, the decreasing proportion mainly associated to pressures for intensifying agricultural production and abandoning traditional techniques. Native species richness preserved in AFS is influenced by richness existing in the associated forests, but the main driver is how people preserve benefits of components and functions of ecosystems. Elements of modern agricultural production may coexist with traditional management patterns, but imposition of modern models may break possible balances. TEK influences decisions on what and how modern techniques may be advantageous for preserving biodiversity, ecosystem integrity in AFS and people's wellbeing. TEK, agroecology and other sciences may interact for maintaining and improving traditional AFS to increase biodiversity and ecosystem integrity while improving quality of life of people managing the AFS.
Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems
NASA Astrophysics Data System (ADS)
Costantini, E. A. C.; Branquinho, C.; Nunes, A.; Schwilch, G.; Stavi, I.; Valdecantos, A.; Zucca, C.
2015-12-01
Soil indicators may be used for assessing both land suitability for restoration and the effectiveness of restoration strategies in restoring ecosystem functioning and services. In this review paper, several soil indicators, which can be used to assess the effectiveness of restoration strategies in dryland ecosystems at different spatial and temporal scales, are discussed. The selected indicators represent the different viewpoints of pedology, ecology, hydrology, and land management. The recovery of soil capacity to provide ecosystem services is primarily obtained by increasing soil rooting depth and volume, and augmenting water accessibility for vegetation. Soil characteristics can be used either as indicators of suitability, that is, inherently slow-changing soil qualities, or as indicators for modifications, namely dynamic, thus "manageable" soil qualities. Soil organic matter forms, as well as biochemistry, micro- and meso-biology, are among the most utilized dynamic indicators. On broader territorial scales, the Landscape Function Analysis uses a functional approach, where the effectiveness of restoration strategies is assessed by combining the analysis of spatial pattern of vegetation with qualitative soil indicators. For more holistic and comprehensive projects, effective strategies to combat desertification should integrate soil indicators with biophysical and socio-economic evaluation and include participatory approaches. The integrated assessment protocol of Sustainable Land Management developed by the World Overview of Conservation Approaches and Technologies network is thoroughly discussed. Two overall outcomes stem from the review: (i) the success of restoration projects relies on a proper understanding of their ecology, namely the relationships between soil, plants, hydrology, climate, and land management at different scales, which is particularly complex due to the heterogeneous pattern of ecosystems functioning in drylands, and (ii) the selection of the most suitable soil indicators follows a clear identification of the different and sometimes competing ecosystem services that the project is aimed at restoring.
Avoiding social traps in the ecosystem stewardship: The Italian Fontanile lowland spring.
Balderacchi, Matteo; Perego, Alessia; Lazzari, Giovanni; Muñoz-Carpena, Rafael; Acutis, Marco; Laini, Alex; Giussani, Andrea; Sanna, Mattia; Kane, David; Trevisan, Marco
2016-01-01
Fontanile is a Po Valley (Italy) quasi-natural lowland spring built in the middle age. This paper identifies options for the conservation of the Fontanile water dependent ecosystem, using scenarios and simulations, and exploring different policy options. Three modeling analysis have been performed: the first was carried out for estimating groundwater contamination and recharge from above, the second for evaluating the function of vegetative filter strip on the surface water quality and the last one for testing pesticide drift reduction due to the vegetative filter strip. Uncertainty characterization included climate change projections. Despite the nitrate concentration in water could favorite the eutrophication phenomena, this not occurs because of the low phosphate concentration in water and of the presence of arboreal shade. Therefore, the protection strategies must focus on sustaining desirable water quantity conditions. Water saving and conservation technologies that improve the agricultural productivity but reduce the Fontanile water flow and large buffer strips that have a limited efficacy due to the Fontanile hydrological settings can be judged as ecological traps. Inefficient irrigation systems, good agricultural practices, integrated pest management and arboreal filter strip can preserve the quality of those ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
... considering a number of other important issues, including ecosystem approaches to management, the... to shark conservation and management; (2) ecosystem considerations and the precautionary approach; (3... authority of the organization in this regard. In addition, some Contracting Parties to the organization...
The role of watersheds in reconciling fisheries with conservation.
Peter A. Bisson
2007-01-01
Several keynote speakers at the fourth World Fisheries Congress emphasized the importance of understanding ecosystem processes if we are to effectively reconcile fisheries with conservation. Nowhere is this more important than in watershed management. Watershed processes determine the properties of freshwater ecosystems and thereby regulate the productivity of local...
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach
NASA Astrophysics Data System (ADS)
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of ScienceTM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Valuing ecosystem services in terms of ecological risks and returns.
Abson, David J; Termansen, Mette
2011-04-01
The economic valuation of ecosystem services is a key policy tool in stemming losses of biological diversity. It is proposed that the loss of ecosystem function and the biological resources within ecosystems is due in part to the failure of markets to recognize the benefits humans derive from ecosystems. Placing monetary values on ecosystem services is often suggested as a necessary step in correcting such market failures. We consider the effects of valuing different types of ecosystem services within an economic framework. We argue that provisioning and regulating ecosystem services are generally produced and consumed in ways that make them amenable to economic valuation. The values associated with cultural ecosystem services lie outside the domain of economic valuation, but their worth may be expressed through noneconomic, deliberative forms of valuation. We argue that supporting ecosystem services are not of direct value and that the losses of such services can be expressed in terms of the effects of their loss on the risk to the provision of the directly valued ecosystem services they support. We propose a heuristic framework that considers the relations between ecological risks and returns in the provision of ecosystem services. The proposed ecosystem-service valuation framework, which allows the expression of the value of all types of ecosystem services, calls for a shift from static, purely monetary valuation toward the consideration of trade-offs between the current flow of benefits from ecosystems and the ability of those ecosystems to provide future flows. ©2010 Society for Conservation Biology.
Ecosystem Vulnerability Review: Proposal of an Interdisciplinary Ecosystem Assessment Approach.
Weißhuhn, Peter; Müller, Felix; Wiggering, Hubert
2018-06-01
To safeguard the sustainable use of ecosystems and their services, early detection of potentially damaging changes in functional capabilities is needed. To support a proper ecosystem management, the analysis of an ecosystem's vulnerability provide information on its weaknesses as well as on its capacity to recover after suffering an impact. However, the application of the vulnerability concept to ecosystems is still an emerging topic. After providing background on the vulnerability concept, we summarize existing ecosystem vulnerability research on the basis of a systematic literature review with a special focus on ecosystem type, disciplinary background, and more detailed definition of the ecosystem vulnerability components. Using the Web of Science TM Core Collection, we overviewed the literature from 1991 onwards but used the 5 years from 2011 to 2015 for an in-depth analysis, including 129 articles. We found that ecosystem vulnerability analysis has been applied most notably in conservation biology, climate change research, and ecological risk assessments, pinpointing a limited spreading across the environmental sciences. It occurred primarily within marine and freshwater ecosystems. To avoid confusion, we recommend using the unambiguous term ecosystem vulnerability rather than ecological, environmental, population, or community vulnerability. Further, common ground has been identified, on which to define the ecosystem vulnerability components exposure, sensitivity, and adaptive capacity. We propose a framework for ecosystem assessments that coherently connects the concepts of vulnerability, resilience, and adaptability as different ecosystem responses. A short outlook on the possible operationalization of the concept by ecosystem vulnerabilty indices, and a conclusion section complete the review.
Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi
2013-01-01
In the late nineteenth century and twentieth century, there was considerable interest and activity to develop the United States for agricultural, mining, and many other purposes to improve the quality of human life standards and prosperity. Most of the work to support this development was focused along disciplinary lines with little attention focused on ecosystem service trade-offs or synergisms, especially those that transcended boundaries of scientific disciplines and specific interest groups. Concurrently, human population size has increased substantially and its use of ecosystem services has increased more than five-fold over just the past century. Consequently, the contemporary landscape has been highly modified for human use, leaving behind a fragmented landscape where basic ecosystem functions and processes have been broadly altered. Over this period, climate change also interacted with other anthropogenic effects, resulting in modern environmental problems having a complexity that is without historical precedent. The challenge before the scientific community is to develop new science paradigms that integrate relevant scientific disciplines to properly frame and evaluate modern environmental problems in a systems-type approach to better inform the decision-making process. Wetland science is a relatively new discipline that grew out of the conservation movement of the early twentieth century. In the United States, most of the conservation attention in the earlier days was on wildlife, but a growing human awareness of the importance of the environment led to the passage of the National Environmental Policy Act in 1969. Concurrently, there was a broadening interest in conservation science, and the scientific study of wetlands gradually gained acceptance as a scientific discipline. Pioneering wetland scientists became formally organized when they formed The Society of Wetland Scientists in 1980 and established a publication outlet to share wetland research findings. In comparison to older and more traditional scientific disciplines, the wetland sciences may be better equipped to tackle today’s complex problems. Since its emergence as a scientific discipline, the study of wetlands has frequently required interdisciplinary and integrated approaches. This interdisciplinary/integrated approach is largely the result of the fact that wetlands cannot be studied in isolation of upland areas that contribute surface and subsurface water, solutes, sediments, and nutrients into wetland basins. However, challenges still remain in thoroughly integrating the wetland sciences with scientific disciplines involved in upland studies, especially those involved with agriculture, development, and other land-conversion activities that influence wetland hydrology, chemistry, and sedimentation. One way to facilitate this integration is to develop an understanding of how human activities affect wetland ecosystem services, especially the trade-offs and synergisms that occur when land-use changes are made. Used in this context, an understanding of the real costs of managing for a particular ecosystem service or groups of services can be determined and quantified in terms of reduced delivery of other services and in overall sustainability of the wetland and the landscapes that support them. In this chapter, we discuss some of the more salient aspects of a few common wetland types to give the reader some background on the diversity of functions that wetlands perform and the specific ecosystem services they provide to society. Wetlands are among the most complex ecosystems on the planet, and it is often difficult to communicate to a diverse public all of the positive services wetlands provide to mankind. Our goal is to help the reader develop an understanding that management options can be approached as societal choices where decisions can be made within a spatial and temporal context to identify trade-offs, synergies, and effects on long-term sustainability of wetland ecosystems. This will be especially relevant as we move into alternate climate futures where our portfolio of management options for mitigating damage to ecosystem function or detrimental cascading effects must be diverse and effective.
Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems
Barnosky, Anthony D.; Hadly, Elizabeth A.; Head, Jason; Gonzalez, Patrick; Polly, P. David; Lawing, A. Michelle; Eronen, Jussi T.; Ackerly, David D.; Alex, Ken; Biber, Eric; Blois, Jessica L.; Brashares, Justin; Ceballos, Gerardo; Davis, Edward; Dietl, Gregory P.; Dirzo, Rodolfo; Doremus, Holly; Fortelius, Mikael; Greene, Harry W.; Hellmann, Jessica; Hickler, Thomas; Jackson, Stephen T.; Kemp, Melissa; Koch, Paul L.; Kremen, Claire; Lindsey, Emily L.; Looy, Cindy; Marshall, Charles R.; Mendenhall, Chase; Mulch, Andreas; Mychajliw, Alexis M.; Nowak, Carsten; Ramakrishnan, Uma; Schnitzler, Jan; Das Shrestha, Kashish; Solari, Katherine; Stegner, Lynn; Stegner, M. Allison; Stenseth, Nils Chr.; Wake, Marvalee H.; Zhang, Zhibin
2017-01-01
The current impacts of humanity on nature are rapid and destructive, but species turnover and change have occurred throughout the history of life. Although there is much debate about the best approaches to take in conservation, ultimately, we need to permit or enhance the resilience of natural systems so that they can continue to adapt and function into the future. In a Review, Barnosky et al. argue that the best way to do this is to look back at paleontological history as a way to understand how ecological resilience is maintained, even in the face of change.
Goldman, Rebecca L; Tallis, Heather
2009-04-01
Human modifications of the environment are growing in number and geographic extent, expanding to all of the Earth's surfaces and affecting the vast majority of the Earth's natural resources. Increases in demand for resources, growing levels of poverty, and more extensive urbanization, among other changes, lead to a need to move beyond parks and classic conservation approaches to incorporate humans and working landscapes more directly in conservation efforts. One approach to do this is to focus on ecosystem services, the benefits ecosystems provide to humans. Here conservation projects that focus only on biodiversity are analytically compared with those that include ecosystem-service goals to dispel myths and explore promises. Projects conducted by The Nature Conservancy, the world's largest conservation organization, are used, and it is demonstrated that not only do ecosystem-service approaches engage new landscapes, stakeholders, and funding sources, but that they do so without neglecting traditional biodiversity goals and the traditional approaches of protection and preservation. Seven case studies that uniquely create a broker-type structure to determine how to distribute money for the provision of particular services to the satisfaction of a wide range of stakeholder interests are focused on. It is found that all use local, independent leadership to initiate partnership formation, which then leads to the creation of a separate institutional entity that has legal rights to determine fund provision. The activities encouraged by these entities, and which therefore appear to satisfy a wide array of interests, are supporting education, rewarding best management practice, creating jobs, and monitoring outcomes.
The National Atlas of Ecosystem Services: Spatially Explicit Characterization of Ecosystem Services
The US EPA’s Ecosystem Services Research Program (ESRP) is conducting transdisciplinary research to develop tools to enable decision-makers at all levels of governance to proactively conserve ecosystem services. One of these tools is a National Atlas of Ecosystem Services which ...
E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Joseph J. O' Brien; Analie Barnett; Robert J. Mitchell
2016-01-01
Understanding plantâplant facilitation is critical for predicting how plant community function will respond to changing disturbance and climate. In longleaf pine (Pinus palustris Mill.) ecosystems of the southeastern United States, understanding processes that affect pine reproduction is imperative for conservation efforts that aim to maintain...
Growth and longevity in freshwater mussels: evolutionary and conservation implications
Wendell R. Haag; Andrew L. Rypel
2010-01-01
The amount of energy allocated to growth versus other functions is a fundamental feature of an organismâs life history. Constraints on energy availability result in characteristic trade-offs among life-history traits and reflect strategies by which organisms adapt to their environments. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems but...
USDA-ARS?s Scientific Manuscript database
A key assumption in projections of future food supply and ecosystem function is that elevated [CO2], through reduced stomatal conductance (gs), results in lower water use, conservation of soil moisture and amelioration of losses in productivity due to drought stress. A 5-year dataset from the soybea...
Winston Paul Smith; David N. Pashley; [Editors
1994-01-01
Today's land stewards are faced with the challenge of managing natural resources in a social climate with increasing expectations of accountability for an even broader spectrum of ecological and social values. The "buzz" words of days past (i.e., biodiversity, wetland values and functions) are becoming the realities of ecosystem management. Nowhere is...
Trophic models: What do we learn about Celtic Sea and Bay of Biscay ecosystems?
NASA Astrophysics Data System (ADS)
Moullec, Fabien; Gascuel, Didier; Bentorcha, Karim; Guénette, Sylvie; Robert, Marianne
2017-08-01
Trophic models are key tools to go beyond the single-species approaches used in stock assessments to adopt a more holistic view and implement the Ecosystem Approach to Fisheries Management (EAFM). This study aims to: (i) analyse the trophic functioning of the Celtic Sea and the Bay of Biscay, (ii) investigate ecosystem changes over the 1980-2013 period and, (iii) explore the response to management measures at the food web scale. Ecopath models were built for each ecosystem for years 1980 and 2013, and Ecosim models were fitted to time series data of biomass and catches. EcoTroph diagnosis showed that in both ecosystems, fishing pressure focuses on high trophic levels (TLs) and, to a lesser extent, on intermediate TLs. However, the interplay between local environmental conditions, species composition and ecosystem functioning could explain the different responses to fisheries management observed between these two contiguous ecosystems. Indeed, over the study period, the ecosystem's exploitation status has improved in the Bay of Biscay but not in the Celtic Sea. This improvement does not seem to be sufficient to achieve the objectives of an EAFM, as high trophic levels were still overexploited in 2013 and simulations conducted with Ecosim in the Bay of Biscay indicate that at current fishing effort the biomass will not be rebuilt by 2030. The ecosystem's response to a reduction in fishing mortality depends on which trophic levels receive protection. Reducing fishing mortality on pelagic fish, instead of on demersal fish, appears more efficient at maximising catch and total biomass and at conserving both top-predator and intermediate TLs. Such advice-oriented trophic models should be used on a regular basis to monitor the health status of marine food webs and analyse the trade-offs between multiple objectives in an ecosystem-based fisheries management context.
NASA Astrophysics Data System (ADS)
Chen, Duan; Chen, Qiuwen; Li, Ruonan; Blanckaert, Koen; Cai, Desuo
2014-06-01
Ecologically-friendly reservoir operation procedures aim to conserve key ecosystem properties in the rivers, while minimizing the sacrifice of socioeconomic interests. This study focused on the Jinping cascaded reservoirs as a case study. An optimization model was developed to explore a balance between the ecological flow requirement (EFR) of a target fish species ( Schizothorax chongi) in the dewatered natural channel section, and annual power production. The EFR for the channel was determined by the Tennant method and a fish habitat model, respectively. The optimization model was solved by using an adaptive real-coded genetic algorithm. Several operation scenarios corresponding to the ecological flow series were evaluated using the optimization model. Through comparisons, an optimal operational scheme, which combines relatively low power production loss with a preferred ecological flow regime in the dewatered channel, is proposed for the cascaded reservoirs. Under the recommended scheme, the discharge into the Dahewan river reach in the dry season ranges from 36 to 50 m3/s. This will enable at least 50% of the target fish habitats in the channel to be conserved, at a cost of only 2.5% annual power production loss. The study demonstrates that the use of EFRs is an efficient approach to the optimization of reservoir operation in an ecologically friendly way. Similar modeling, for other important fish species and ecosystem functions, supplemented by field validation of results, is needed in order to secure the long-term conservation of the affected river ecosystem.
Using return on investment to maximize conservation effectiveness in Argentine grasslands
Murdoch, William; Ranganathan, Jai; Polasky, Stephen; Regetz, James
2010-01-01
The rapid global loss of natural habitats and biodiversity, and limited resources, place a premium on maximizing the expected benefits of conservation actions. The scarcity of information on the fine-grained distribution of species of conservation concern, on risks of loss, and on costs of conservation actions, especially in developing countries, makes efficient conservation difficult. The distribution of ecosystem types (unique ecological communities) is typically better known than species and arguably better represents the entirety of biodiversity than do well-known taxa, so we use conserving the diversity of ecosystem types as our conservation goal. We define conservation benefit to include risk of conversion, spatial effects that reward clumping of habitat, and diminishing returns to investment in any one ecosystem type. Using Argentine grasslands as an example, we compare three strategies: protecting the cheapest land (“minimize cost”), maximizing conservation benefit regardless of cost (“maximize benefit”), and maximizing conservation benefit per dollar (“return on investment”). We first show that the widely endorsed goal of saving some percentage (typically 10%) of a country or habitat type, although it may inspire conservation, is a poor operational goal. It either leads to the accumulation of areas with low conservation benefit or requires infeasibly large sums of money, and it distracts from the real problem: maximizing conservation benefit given limited resources. Second, given realistic budgets, return on investment is superior to the other conservation strategies. Surprisingly, however, over a wide range of budgets, minimizing cost provides more conservation benefit than does the maximize-benefit strategy. PMID:21098281
Giannini, Tereza C.; Tambosi, Leandro R.; Acosta, André L.; Jaffé, Rodolfo; Saraiva, Antonio M.; Imperatriz-Fonseca, Vera L.; Metzger, Jean Paul
2015-01-01
Ecosystem services provided by mobile agents are increasingly threatened by the loss and modification of natural habitats and by climate change, risking the maintenance of biodiversity, ecosystem functions, and human welfare. Research oriented towards a better understanding of the joint effects of land use and climate change over the provision of specific ecosystem services is therefore essential to safeguard such services. Here we propose a methodological framework, which integrates species distribution forecasts and graph theory to identify key conservation areas, which if protected or restored could improve habitat connectivity and safeguard ecosystem services. We applied the proposed framework to the provision of pollination services by a tropical stingless bee (Melipona quadrifasciata), a key pollinator of native flora from the Brazilian Atlantic Forest and important agricultural crops. Based on the current distribution of this bee and that of the plant species used to feed and nest, we projected the joint distribution of bees and plants in the future, considering a moderate climate change scenario (following IPPC). We then used this information, the bee’s flight range, and the current mapping of Atlantic Forest remnants to infer habitat suitability and quantify local and regional habitat connectivity for 2030, 2050 and 2080. Our results revealed north to south and coastal to inland shifts in the pollinator distribution during the next 70 years. Current and future connectivity maps unraveled the most important corridors, which if protected or restored, could facilitate the dispersal and establishment of bees during distribution shifts. Our results also suggest that coffee plantations from eastern São Paulo and southern Minas Gerais States could suffer a pollinator deficit in the future, whereas pollination services seem to be secured in southern Brazil. Landowners and governmental agencies could use this information to implement new land use schemes. Overall, our proposed methodological framework could help design novel conservational and agricultural practices that can be crucial to conserve ecosystem services by buffering the joint effect of habitat configuration and climate change. PMID:26091014
NASA Astrophysics Data System (ADS)
Zhang, H.; Fan, J.
2015-12-01
The grassland restoration areas in China, most of which was located in arid and semi-arid areas, are affected by climate change and anthropogenic activities. Using the 3S (RS, GIS, GPS) technologies, quantitative analysis method of landscape patterns and ecological simulation, this study examines the spatiotemporal characteristics of land use/ land cover and ecosystem functions change in the grassland restoration areas in China from 2000 to 2010. We apply two parameters land use transfer matrix and land use dynamic degree to explore the speed and regional differentiation of land use change. We propose vegetation coverage, net primary production (NPP), soil and water conservation capacity to assess the ecosystem functions. This study analyzes the characteristics of landscape patterns at the class and landscape levels and explores the ecological effect of land use pattern and regional ecological processes. The results show that: (1) Grassland and others were the main landscape types in the study area in the past decade. The ecosystem structure was stable. About 0.37% of the total grassland area in 2000 experienced change in land use / land cover types. The area of woodlands, wetlands, farmlands, and built-up areas expanded. The area of others has declined. (2) The dynamic degree of regional land use was less than one percent in the recent ten years. The speed of land use and land cover change was low, and regional differentiation of change between the provinces was small. (3) The matrix of the landscape did not change in the study area. Landscape fragmentation index values decreased progressively; landscape diversity rose continuously; landscape aggregation and continuity decreased slightly; the landscape maintained relative integrity. (4) Ecosystem functions has increased as a whole. The vegetation coverages with significant increase (with a 1.99% yr-1 slope of regression) in the total study area; NPP has a fluctuating and increasing tendency, ranging from 218.23 gC·m-2yr-1 in 2000, to 226.30 gC·m-2yr-1 in 2010, with a 3.70% increase; Soil and water conservation capacity has showed an obvious increment. (5) The grassland restoration program implementation evidently improved the structure and stability of the land use/ land cover. The climatic variations (temperature and precipitation) promoted vegetation growth.
The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties
NASA Astrophysics Data System (ADS)
Bustamante, María; Tajadura, Javier; Díez, Isabel; Saiz-Salinas, José Ignacio
2017-12-01
Canopy-forming seaweeds provide specific habitats with key ecological properties and are facing severe declines worldwide with unforeseeable consequences for ecosystem processes. Investigating the loss of such natural habitats in order to develop management strategies for conservation is a major challenge in marine ecological research. This study investigated the shallow rocky bottoms of the southern Bay of Biscay at two sampling times with a view to identifying the effect of canopy seaweed availability on the taxonomic and functional properties of invertebrate multivariate structure, abundance, density, diversity and evenness. The multivariate taxonomic and functional structure of assemblages changed significantly according to canopy availability in terms of taxa and functional groups abundance, but no substantial change was observed in composition. Biogenic habitat simplification resulted in a decrease in total invertebrate abundance and in taxonomic and functional density and diversity, whilst no effects were observed in taxonomic and functional evenness. Loss of canopy involved an impoverishment of the whole community particularly for epiphytic colonial sessile suspension-feeders, but it also extended to non-epiphytic forms. Our results emphasize the importance of canopy decline as a major driver of changes in benthic ecosystem properties and highlight that biogenic space provided by canopy is a limiting resource for the development of rocky subtidal invertebrates.
NASA Astrophysics Data System (ADS)
Erickson, J. D.; Gross, L.; Agosto Filion, N.; Bagstad, K.; Voigt, B. G.; Johnson, G.
2010-12-01
The modification of hydrologic systems in coffee-dominated landscapes varies widely according to the degree of shade trees incorporated in coffee farms. Compared to mono-cropping systems, shade coffee can produce both on- and off-farm benefits in the form of soil retention, moderation of sediment transport, and lower hydropower generating costs. The Pico Duarte Coffee Region and surrounding Madres de Las Aguas (Mother of Waters) Conservation Area in the Dominican Republic is emblematic of the challenges and opportunities of ecosystem service management in coffee landscapes. Shade coffee poly-cultures in the region play an essential role in ensuring ecosystem function to conserve water resources, as well as provide habitat for birds, sequester carbon, and provide consumptive resources to households. To model the provision, use, and flow of ecosystem services from coffee farms in the region, an application of the Artificial Intelligence for Ecosystem Services (ARIES) model was developed with particular focus on sediment regulation. ARIES incorporates an array of techniques from data mining, image analysis, neural networks, Bayesian statistics, information theory, and expert systems to model the production, delivery, and demand for ecosystem services. Geospatial data on slope, soils, and vegetation cover is combined with on-farm data collection of coffee production, tree diversity, and intercropping of household food. Given hydropower production and river recreation in the region, the management of sedimentation through on-farm practices has substantial, currently uncompensated value that has received recent attention as the foundation for a payment for ecosystem services system. Scenario analysis of the implications of agro-forestry management choices on farmer livelihoods and the multiple beneficiaries of farm-provided hydrological services provide a foundation for ongoing discussions in the region between local, national, and international interests.
Ecosystem services provided by groundwater dependent wetlands in karst areas
NASA Astrophysics Data System (ADS)
Massimo Delle Grazie, Fabio; Gill, Laurence
2017-04-01
Ecosystem services provided by groundwater dependent wetlands in karst areas Turloughs are topographic depressions in karst, which are intermittently flooded on an annual cycle via groundwater sources and have substrate and/or ecological communities characteristic of wetlands. Turloughs are designated a Priority Habitat in Annex 1 of the EU Habitats Directive (92/43/EEC) as well as GWDTEs under the Water Framework Directive (WFD). Hydrology is the primary driver of these unique ecosystems and so a rigorous understanding of the flooding regime is required in order to assess their conservation and future sustainability. This research aims to identify and quantify the ecosystem services associated with turloughs, particularly in relation to the need for habitat conservation in the face of external pressures associated with agriculture, road drainage schemes, water supply and wastewater disposal. The research focuses primarily on quantifying the ecosystem functions responsible for producing terrestrial hydrologic and climatic services, as well as intrinsic biodiversity services, and uses this context to lay out a blueprint for a more detailed ecosystem service assessment. These services have been quantified in appropriate units (biophysical or otherwise), based on actual or potential sustainable use levels. Available data and field studies have been used to assess the hydrological conditions necessary to sustain the biodiversity of vegetation as well as to better understand the connections between hydrology and biogeochemical cycles. The benefits of the turlough services have then been analyzed and quantified in appropriate units (ecological, socio-cultural and economic indicators) as well as monetary values. This has been done using the inVEST tool. InVEST includes models for quantifying, mapping, and valuing the benefits provided by terrestrial, freshwater, and marine systems. In particular the Habitat Risk Assessment and the Nutrient Delivery Ratio modules have been used.
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.
Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C
2008-08-27
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J
2012-12-01
An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.
Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew
2011-01-01
Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...
Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes.
D'agata, Stéphanie; Vigliola, Laurent; Graham, Nicholas A J; Wantiez, Laurent; Parravicini, Valeriano; Villéger, Sébastien; Mou-Tham, Gerard; Frolla, Philippe; Friedlander, Alan M; Kulbicki, Michel; Mouillot, David
2016-12-14
High species richness is thought to support the delivery of multiple ecosystem functions and services under changing environments. Yet, some species might perform unique functional roles while others are redundant. Thus, the benefits of high species richness in maintaining ecosystem functioning are uncertain if functions have little redundancy, potentially leading to high vulnerability of functions. We studied the natural propensity of assemblages to be functionally buffered against loss prior to fishing activities, using functional trait combinations, in coral reef fish assemblages across unfished wilderness areas of the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia. Fish functional diversity in these wilderness areas is highly vulnerable to fishing, explained by species- and abundance-based redundancy packed into a small combination of traits, leaving most other trait combinations (60%) sensitive to fishing, with no redundancy. Functional vulnerability peaks for mobile and sedentary top predators, and large species in general. Functional vulnerability decreases for certain functional entities in New Caledonia, where overall functional redundancy was higher. Uncovering these baseline patterns of functional vulnerability can offer early warning signals of the damaging effects from fishing, and may serve as baselines to guide precautionary and even proactive conservation actions. © 2016 The Author(s).
Unexpected high vulnerability of functions in wilderness areas: evidence from coral reef fishes
Vigliola, Laurent; Graham, Nicholas A. J.; Wantiez, Laurent; Parravicini, Valeriano; Villéger, Sébastien; Mou-Tham, Gerard; Frolla, Philippe; Friedlander, Alan M.; Kulbicki, Michel; Mouillot, David
2016-01-01
High species richness is thought to support the delivery of multiple ecosystem functions and services under changing environments. Yet, some species might perform unique functional roles while others are redundant. Thus, the benefits of high species richness in maintaining ecosystem functioning are uncertain if functions have little redundancy, potentially leading to high vulnerability of functions. We studied the natural propensity of assemblages to be functionally buffered against loss prior to fishing activities, using functional trait combinations, in coral reef fish assemblages across unfished wilderness areas of the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia. Fish functional diversity in these wilderness areas is highly vulnerable to fishing, explained by species- and abundance-based redundancy packed into a small combination of traits, leaving most other trait combinations (60%) sensitive to fishing, with no redundancy. Functional vulnerability peaks for mobile and sedentary top predators, and large species in general. Functional vulnerability decreases for certain functional entities in New Caledonia, where overall functional redundancy was higher. Uncovering these baseline patterns of functional vulnerability can offer early warning signals of the damaging effects from fishing, and may serve as baselines to guide precautionary and even proactive conservation actions. PMID:27928042
Petrovan, Silviu O; Schmidt, Benedikt R
2016-01-01
Rare and threatened species are the most frequent focus of conservation science and action. With the ongoing shift from single-species conservation towards the preservation of ecosystem services, there is a greater need to understand abundance trends of common species because declines in common species can disproportionately impact ecosystems function. We used volunteer-collected data in two European countries, the United Kingdom (UK) and Switzerland, since the 1970s to assess national and regional trends for one of Europe's most abundant amphibian species, the common toad (Bufo bufo). Millions of toads were moved by volunteers across roads during this period in an effort to protect them from road traffic. For Switzerland, we additionally estimated trends for the common frog (Rana temporaria), a similarly widespread and common amphibian species. We used state-space models to account for variability in detection and effort and included only populations with at least 5 years of data; 153 populations for the UK and 141 for Switzerland. Common toads declined continuously in each decade in both countries since the 1980s. Given the declines, this common species almost qualifies for International Union for the Conservation of Nature (IUCN) red-listing over this period despite volunteer conservation efforts. Reasons for the declines and wider impacts remain unknown. By contrast, common frog populations were stable or increasing in Switzerland, although there was evidence of declines after 2003. "Toads on Roads" schemes are vital citizen conservation action projects, and the data from such projects can be used for large scale trend estimations of widespread amphibians. We highlight the need for increased research into the status of common amphibian species in addition to conservation efforts focusing on rare and threatened species.
Grazing-induced losses of biodiversity affect the transpiration of an arid ecosystem.
Verón, Santiago R; Paruelo, José M; Oesterheld, Martín
2011-02-01
Degradation processes often lead to species loss. Such losses would impact on ecosystem functioning depending on the extinction order and the functional and structural aspects of species. For the Patagonian arid steppe, we used a simulation model to study the effects of species loss on the rate and variability (i.e. stability) of transpiration as a key attribute of ecosystem functioning. We addressed (1) the differences between the overgrazing extinction order and other potential orders, and (2) the role of biomass abundance, biomass distribution, and functional diversity on the effect of species loss due to overgrazing. We considered a community composed of ten species which were assigned an order of extinction due to overgrazing based on their preference by livestock. We performed four model simulations to test for overgrazing effects through different combinations of species loss, and reductions of biomass and functional diversity. In general, transpiration rate and variability were positively associated to species richness and remained fairly constant until half the species were lost by overgrazing. The extinction order by overgrazing was the most conservative of all possible orders. The amount of biomass was more important than functional diversity in accounting for the impacts of species richness on transpiration. Our results suggest that, to prevent Patagonian steppes from shifting to stable, low-production systems (by overgrazing), maintaining community biomass is more important than preserving species richness or species functional diversity.
Rode, Julian; Wittmer, Heidi; Emerton, Lucy; Schröter-Schlaack, Christoph
2016-09-01
Economic instruments that promise "win-win" solutions for both biodiversity conservation and human livelihoods have become increasingly popular over recent years. There however remains a gap in terms of practical and policy-relevant guidance about appropriate approaches that take into account the local needs and the specific cultural, legal, and ecological context in which such instruments are being developed and applied. This paper presents a step-by-step framework that helps conservation and development planners and practitioners to identify economic instruments that can promote pro-conservation behaviour in a specific setting. The concept of 'ecosystem service opportunities' builds on, and brings together, general economic principles and an ecosystem services perspective. The framework was designed to also address a number of concerns regarding economic approaches in order to help practitioners recognise the potentials and limits of economic approaches to nature conservation. The framework is illustrated by its application within the realm of a biodiversity conservation project in Thailand.
NASA Astrophysics Data System (ADS)
van Dam, A.; Gettel, G. M.; Kipkemboi, J.; Rahman, M. M.
2011-12-01
Papyrus wetlands in East Africa provide ecosystem services supporting the livelihoods of millions but are rapidly degrading due to economic development. For ecosystem conservation, an integrated understanding of the natural and social processes driving ecosystem change is needed. This research focuses on integrating the causal relationships between hydrology, ecosystem function, and livelihood sustainability in Nyando wetland, western Kenya. Livelihood sustainability is based on ecosystem services that include plant and animal harvest for building material and food, conversion of wetlands to crop and grazing land, water supply, and water quality regulation. Specific objectives were: to integrate studies of hydrology, ecology, and livelihood activities using a Bayesian Network (BN) model and include stakeholder involvement in model development. The BN model (Netica 4.16) had 35 nodes with seven decision nodes describing demography, economy, papyrus market, and rainfall, and two target nodes describing ecosystem function (defined by groundwater recharge, nutrient and sediment retention, and biodiversity) and livelihood sustainability (drinking water supply, crop production, livestock production, and papyrus yield). The conditional probability tables were populated using results of ecohydrological and socio-economic field work and consultations with stakeholders. The model was evaluated for an average year with decision node probabilities set according to data from research, expert opinion, and stakeholders' views. Then, scenarios for dry and wet seasons and for economic development (low population growth and unemployment) and policy development (more awareness of wetland value) were evaluated. In an average year, the probability for maintaining a "good" level of sediment and nutrient retention functions, groundwater recharge, and biodiversity was about 60%. ("Good" is defined by expert opinion based on ongoing field research.) In the dry season, the probability was reduced to about 40% and in the wet season increased to about 85%. Both ecosystem functions and livelihood sustainability were most sensitive to flooding and the human pressure, notably the area of crop conversion, grazing pressure, and papyrus harvest. Flooded conditions limit cropping, livestock herding and vegetation harvesting but have a strong positive effect on ecosystem function. Preliminary results suggest that the effects of economic and policy development on ecosystem function and livelihood sustainability were negligible, but more data on these aspects will be included in further model development. The advantage of this modeling approach, which integrates data from hydrological, ecological, and socio-economic studies, is that it highlights the relative effect of hydrologic conditions and socio-economic pressures on ecosystem function. This model is static, however, with long-term changes in climate and exploitation levels superimposed on seasonal hydrology dynamics. Further work should address this issue as well as further constrain probabilities at each node as field research continues.
National Wildlife Refuges: Portals to conservation
Joseph F. McCauley
2014-01-01
Scientific uncertainty regarding the potential effects of climate change on natural ecosystems will make it increasingly challenging for the National Wildlife Refuge System to fulfill its mission to conserve wildlife and fish habitat across the diverse ecosystems of the United States. This is especially true in the contiguous 48 states, where 70 percent of the land and...
Strengthening the case for saproxylic arthropod conservation: a call for ecosystem services research
Michael Ulyshen
2013-01-01
While research on the ecosystem services provided by biodiversity is becoming widely embraced as an important tool in conservation, the services provided by saproxylic arthropods - an especially diverse and threatened assemblage dependent on dead or dying wood - remain unmeasured. A conceptual model depicting the reciprocal relationships between dead wood and...
Spatial pattern enhances ecosystem functioning in an African savanna.
Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M
2010-05-25
The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.
Climate change, cranes, and temperate floodplain ecosystems
King, Sammy L.
2010-01-01
Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.
Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts.
Abelson, Avigdor; Halpern, Benjamin S; Reed, Daniel C; Orth, Robert J; Kendrick, Gary A; Beck, Michael W; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A
2016-02-01
Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology , the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social-ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success.
Upgrading Marine Ecosystem Restoration Using Ecological‐Social Concepts
Abelson, Avigdor; Halpern, Benjamin S.; Reed, Daniel C.; Orth, Robert J.; Kendrick, Gary A.; Beck, Michael W.; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J.; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A.
2015-01-01
Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social–ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success. PMID:26977115
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
NASA Astrophysics Data System (ADS)
Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.
2009-08-01
Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.
[Effects of land use change on carbon storage in terrestrial ecosystem].
Yang, Jingcheng; Han, Xingguo; Huang, Jianhui; Pan, Qingmin
2003-08-01
Terrestrial ecosystem is an important carbon pool, which plays a crucial role in carbon biogeochemical cycle. Human activities such as fossil fuel combustion and land use change have resulted in carbon fluxes from terrestrial ecosystem to the atmosphere, which increased the atmospheric CO2 concentration, and reinforced the greenhouse effect. Land use change affects the structure and function of the terrestrial ecosystem, which causes its change of carbon storage. To a great extent, the change of carbon storage lies in the type of ecosystem and the change of land use patterns. The conversion of forest to agricultural land and pasture causes a large reduction of carbon storage in vegetation and soil, and the decrease of soil carbon concentration is mainly caused by the reduction of detritus, the acceleration of soil organic matter decomposition, and the destroy of physical protection to organic matter due to agricultural practices. The loss of soil organic matter appears at the early stage after deforestation, and the loss rate is influenced by many factors and soil physical, chemical and biological processes. The conversion of agricultural land and pasture to forest and many conservative agricultural practices can sequester atmospheric carbon in vegetation and soil. Vegetation can sequester large amounts of carbon from atmosphere, while carbon accumulation in soil varies greatly because of farming history and soil spatial heterogeneity. Conservative agricultural practices such as no-tillage, reasonable cropping system, and fertilization can influence soil physical and chemical characters, plant growth, quality and quantity of stubble, and soil microbial biomass and its activity, and hence, maintain and increase soil carbon concentration.
[Ecosystem services of Chongyi Hakka Terraces].
Miao, Jian Qun; Wang, Zhi Qiang; Yang, Wen Ting; Sun, Song; Huang, Guo Qin
2017-05-18
An economic evaluation of the main ecosystem services of Chongyi Hakka Terraces can help to demonstrate the contributions of the terrace system to Hakka society, on the basis of which the protection of Hakka Terrace system could be undertaken by the local government. In view of the social and economic characteristics of Chongyi Hakka Terrace ecosystem and its location, an index system was established to evaluate the service function, and a qualitative analysis was conducted for these functions and their importance. Besides, based on the data collected in 2014, with a combination of physical quality and economic value, a quantitative analysis was carried out for its nine ser-vice indicators. The findings were as follows: firstly, among the nine evaluation indicators, the phy-sical quality and the economic value of soil conservation both ranked the highest, the former being 76457 kg·hm -2 and the latter 105033 yuan·hm -2 , accounting respectively for 72.2% and 30.0% of the total mass and total value of the Hakka Terrace ecosystem. Secondly, the unique service functions of Hakka Terrace ecosystem could be embodied in its cultural heritage and landscape, the corresponding economic values reaching up to 100000 yuan·hm -2 and 46333 yuan·hm -2 respectively, ranking the second and third highest among the nine indicators. Thirdly, the agricultural pro-ducts from the Hakka Terrace were vital welfare for the local residents, but their physical quality and the economic value only accounted for 6.1% and 10.4% of its total mass and total value respectively. As a result, the service functions of the Hakka Terrace ecosystem would be dramatically undervalued with respect to agricultural products only. These economic figures could reveal the huge contributions which the Hakka Terrace ecosystem had made to the society, not only raising awareness of the necessity to preserve the agricultural heritage by the administrators and the public, but also providing efficient data support for the government when making ecological compensation criteria for the Hakka Terrace system.
A meta-analysis of functional group responses to forest recovery outside of the tropics.
Spake, Rebecca; Ezard, Thomas H G; Martin, Philip A; Newton, Adrian C; Doncaster, C Patrick
2015-12-01
Both active and passive forest restoration schemes are used in degraded landscapes across the world to enhance biodiversity and ecosystem service provision. Restoration is increasingly also being implemented in biodiversity offset schemes as compensation for loss of natural habitat to anthropogenic development. This has raised concerns about the value of replacing old-growth forest with plantations, motivating research on biodiversity recovery as forest stands age. Functional diversity is now advocated as a key metric for restoration success, yet it has received little analytical attention to date. We conducted a meta-analysis of 90 studies that measured differences in species richness for functional groups of fungi, lichens, and beetles between old-growth control and planted or secondary treatment forests in temperate, boreal, and Mediterranean regions. We identified functional-group-specific relationships in the response of species richness to stand age after forest disturbance. Ectomycorrhizal fungi averaged 90 years for recovery to old-growth values (between 45 years and unrecoverable at 95% prediction limits), and epiphytic lichens took 180 years to reach 90% of old-growth values (between 140 years and never for recovery to old-growth values at 95% prediction limits). Non-saproxylic beetle richness, in contrast, decreased as stand age of broadleaved forests increased. The slow recovery by some functional groups essential to ecosystem functioning makes old-growth forest an effectively irreplaceable biodiversity resource that should be exempt from biodiversity offsetting initiatives. © 2015 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
The fishery resources of the Mississippi River: A model for conservation and management
Schramm, Harold L.
2017-01-01
The Mississippi River is a multijurisdictional and multiuse resource that has been variously altered and is foremost managed for navigation and flood control throughout much of its 3,734‐km passage from its origin at Lake Itasca, Minnesota, to its outlet at the Gulf of Mexico. Despite alterations summarized herein, the native fish fauna remains largely intact and only five nonnative species have colonized segments of the river. Diverse habitats still remain, but loss of habitat, declining habitat suitability, and reduced floodplain functionality warrant concern. Fisheries monitoring and assessment, ecological research, and habitat rehabilitation vary from adequate in the upper reaches of the river to minimal in the lower reaches of the river, and these efforts parallel the recreational use, local values, and visibility of the river. A conceptual model is proposed to depict the value of the social, economic, and many ecosystem services the Mississippi River ecosystem offers that can be used to achieve the social and economic support needed to conserve and restore this valuable fishery resource.
Large-scale marine ecosystem change and the conservation of marine mammals
O'Shea, T.J.; Odell, D.K.
2008-01-01
Papers in this Special Feature stem from a symposium on large-scale ecosystem change and the conservation of marine mammals convened at the 86th Annual Meeting of the American Society of Mammalogists in June 2006. Major changes are occurring in multiple aspects of the marine environment at unprecedented rates, within the life spans of some individual marine mammals. Drivers of change include shifts in climate, acoustic pollution, disturbances to trophic structure, fisheries interactions, harmful algal blooms, and environmental contaminants. This Special Feature provides an in-depth examination of 3 issues that are particularly troublesome. The 1st article notes the huge spatial and temporal scales of change to which marine mammals are showing ecological responses, and how these species can function as sentinels of such change. The 2nd paper describes the serious problems arising from conflicts with fisheries, and the 3rd contribution reviews the growing issues associated with underwater noise. ?? 2008 American Society of Mammalogists.
Ecosystems science: Genes to landscapes
,
2018-05-09
Bountiful fisheries, healthy and resilient wildlife, flourishing forests and vibrant grasslands are coveted resources that benefit all Americans. U.S. Geological Survey (USGS) science supports the conservation and management of the Nation’s fish and wildlife, and the landscapes they inhabit. Our biological resources—ecosystems and the wild things that live in them—are the foundation of our conservation heritage and an economic asset to current and future generations of Americans.The USGS Ecosystems Mission Area, the biological research arm of the Department of the Interior (DOI), provides science to help America achieve sustainable management and conservation of its biological resources. This work is done within the broader mission of the USGS—to serve the Nation with science that advances understanding of our natural resources, informs land and water stewardship, and helps safeguard communities from natural and environmental hazards. The Ecosystems Mission Area provides research, technical assistance, and education conducted by Cooperative Research Units and Science Centers located in nearly every State.The quality of life and economic strength in America hinges on healthy ecosystems that support living things and natural processes. Ecosystem science better enables society to understand how and why ecosystems change and to guide actions that can prevent damage to, and restore and sustain ecosystems. It is through this knowledge that informed decisions are made about natural resources that can enhance our Nation’s economic and environmental well-being.
Eldridge, David J; Delgado-Baquerizo, Manuel; Woodhouse, Jason N; Neilan, Brett A
2016-11-01
The effects of mammalian ecosystem engineers on soil microbial communities and ecosystem functions in terrestrial ecosystems are poorly known. Disturbance from livestock has been widely reported to reduce soil function, but disturbance by animals that forage in the soil may partially offset these negative effects of livestock, directly and/or indirectly by shifting the composition and diversity of soil microbial communities. Understanding the role of disturbance from livestock and ecosystem engineers in driving soil microbes and functions is essential for formulating sustainable ecosystem management and conservation policies. We compared soil bacterial community composition and enzyme concentrations within four microsites: foraging pits of two vertebrates, the indigenous short-beaked echidna (Tachyglossus aculeatus) and the exotic European rabbit (Oryctolagus cuniculus), and surface and subsurface soils along a gradient in grazing-induced disturbance in an arid woodland. Microbial community composition varied little across the disturbance gradient, but there were substantial differences among the four microsites. Echidna pits supported a lower relative abundance of Acidobacteria and Cyanobacteria, but a higher relative abundance of Proteobacteria than rabbit pits and surface microsites. Moreover, these microsite differences varied with disturbance. Rabbit pits had a similar profile to the subsoil or the surface soils under moderate and high, but not low disturbance. Overall, echidna foraging pits had the greatest positive effect on function, assessed as mean enzyme concentrations, but rabbits had the least. The positive effects of echidna foraging on function were indirectly driven via microbial community composition. In particular, increasing activity was positively associated with increasing relative abundance of Proteobacteria, but decreasing Acidobacteria. Our study suggests that soil disturbance by animals may offset, to some degree, the oft-reported negative effects of grazing-induced disturbance on soil function. Further, our results suggest that most of this effect will be derived from echidnas, with little positive effects due to rabbits. Activities that enhance the habitat for echidnas or reduce rabbit populations are likely to have a positive effect on soil function in these systems. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
The use of quantitative models in sea otter conservation
Tinker, M. Tim
2015-01-01
Sea otters are good indicators of ocean health. In addition, they are a keystone species, offering a stabilizing effect on ecosystem, controlling sea urchin populations that would otherwise inflict damage to kelp forest ecosystems. The kelp forest ecosystem is crucial for marine organisms and contains coastal erosion. With the concerns about the imperiled status of sea otter populations in California, Aleutian Archipelago and coastal areas of Russia and Japan, the last several years have shown growth of interest culturally and politically in the status and preservation of sea otter populations. Sea Otter Conservation brings together the vast knowledge of well-respected leaders in the field, offering insight into the more than 100 years of conservation and research that have resulted in recovery from near extinction. This publication assesses the issues influencing prospects for continued conservation and recovery of the sea otter populations and provides insight into how to handle future global changes.
Measuring ecological function on California's rangelands
NASA Astrophysics Data System (ADS)
Porzig, E.
2016-12-01
There is a need for a better understanding of ecosystem processes on rangelands and how management decisions influence these processes on scales that are both ecologically and socially relevant. Point Blue Conservation Science's Rangeland Monitoring Network is a coordinated effort to collect standardized data on birds, vegetation, and soils on rangelands throughout California. We work with partners, including private landowners, land trusts, state and federal agencies, and others, to measure bird and plant abundance and diversity and three soil dynamic properties (water infiltration, bulk density, and organic carbon). Here, we present data from our first two years of monitoring on over 50 ranches in 17 counties. By collecting data on the scope and scale of variation in ecological function across rangelands and the relationship with management practices, we aim to advance rangeland management, restoration, and conservation.
From principles to practice: a spatial approach to systematic conservation planning in the deep sea.
Wedding, L M; Friedlander, A M; Kittinger, J N; Watling, L; Gaines, S D; Bennett, M; Hardy, S M; Smith, C R
2013-12-22
Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion-Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km(2)) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management.
From principles to practice: a spatial approach to systematic conservation planning in the deep sea
Wedding, L. M.; Friedlander, A. M.; Kittinger, J. N.; Watling, L.; Gaines, S. D.; Bennett, M.; Hardy, S. M.; Smith, C. R.
2013-01-01
Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion–Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km2) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management. PMID:24197407
Guiding concepts for park and wilderness stewardship in an era of global environmental change
Hobbs, Richard J.; Cole, David N.; Yung, Laurie; Zavaleta, Erika S.; Aplet, Gregory H.; Chapin, F. Stuart; Landres, Peter B.; Parsons, David J.; Stephenson, Nathan L.; White, Peter S.; Graber, David M.; Higgs, Eric S.; Millar, Constance I.; Randall, John M.; Tonnessen, Kathy A.; Woodley, Stephen
2010-01-01
The major challenge to stewardship of protected areas is to decide where, when, and how to intervene in physical and biological processes, to conserve what we value in these places. To make such decisions, planners and managers must articulate more clearly the purposes of parks, what is valued, and what needs to be sustained. A key aim for conservation today is the maintenance and restoration of biodiversity, but a broader range of values are also likely to be considered important, including ecological integrity, resilience, historical fidelity (ie the ecosystem appears and functions much as it did in the past), and autonomy of nature. Until recently, the concept of "naturalness" was the guiding principle when making conservation-related decisions in park and wilderness ecosystems. However, this concept is multifaceted and often means different things to different people, including notions of historical fidelity and autonomy from human influence. Achieving the goal of nature conservation intended for such areas requires a clear articulation of management objectives, which must be geared to the realities of the rapid environmental changes currently underway. We advocate a pluralistic approach that incorporates a suite of guiding principles, including historical fidelity, autonomy of nature, ecological integrity, and resilience, as well as managing with humility. The relative importance of these guiding principles will vary, depending on management goals and ecological conditions.
Evaluating robustness in rank-based risk assessments of freshwater ecosystems
Mattson, K.M.; Angermeier, Paul
2007-01-01
Conservation planning aims to protect biodiversity by sustainng the natural physical, chemical, and biological processes within representative ecosystems. Often data to measure these components are inadequate or unavailable. The impact of human activities on ecosystem processes complicates integrity assessments and might alter ecosystem organization at multiple spatial scales. Freshwater conservation targets, such as populations and communities, are influenced by both intrinsic aquatic properties and the surrounding landscape, and locally collected data might not accurately reflect potential impacts. We suggest that changes in five major biotic drivers—energy sources, physical habitat, flow regime, water quality, and biotic interactions—might be used as surrogates to inform conservation planners of the ecological integrity of freshwater ecosystems. Threats to freshwater systems might be evaluated based on their impact to these drivers to provide an overview of potential risk to conservation targets. We developed a risk-based protocol, the Ecological Risk Index (ERI), to identify watersheds with least/most risk to conservation targets. Our protocol combines risk-based components, specifically the frequency and severity of human-induced stressors, with biotic drivers and mappable land- and water-use data to provide a summary of relative risk to watersheds. We illustrate application of our protocol with a case study of the upper Tennessee River basin, USA. Differences in risk patterns among the major drainages in the basin reflect dominant land uses, such as mining and agriculture. A principal components analysis showed that localized, moderately severe threats accounted for most of the threat composition differences among our watersheds. We also found that the relative importance of threats is sensitive to the spatial grain of the analysis. Our case study demonstrates that the ERI is useful for evaluating the frequency and severity of ecosystemwide risk, which can inform local and regional conservation planning.
Ecosystem Services Modeling as a Tool for Defining Priority Areas for Conservation.
Duarte, Gabriela Teixeira; Ribeiro, Milton Cezar; Paglia, Adriano Pereira
2016-01-01
Conservationists often have difficulty obtaining financial and social support for protected areas that do not demonstrate their benefits for society. Therefore, ecosystem services have gained importance in conservation science in the last decade, as these services provide further justification for appropriate management and conservation of natural systems. We used InVEST software and a set of GIS procedures to quantify, spatialize and evaluated the overlap between ecosystem services-carbon stock and sediment retention-and a biodiversity proxy-habitat quality. In addition, we proposed a method that serves as an initial approach of a priority areas selection process. The method considers the synergism between ecosystem services and biodiversity conservation. Our study region is the Iron Quadrangle, an important Brazilian mining province and a conservation priority area located in the interface of two biodiversity hotspots, the Cerrado and Atlantic Forest biomes. The resultant priority area for the maintenance of the highest values of ecosystem services and habitat quality was about 13% of the study area. Among those priority areas, 30% are already within established strictly protected areas, and 12% are in sustainable use protected areas. Following the transparent and highly replicable method we proposed in this study, conservation planners can better determine which areas fulfill multiple goals and can locate the trade-offs in the landscape. We also gave a step towards the improvement of the habitat quality model with a topography parameter. In areas of very rugged topography, we have to consider geomorfometric barriers for anthropogenic impacts and for species movement and we must think beyond the linear distances. Moreover, we used a model that considers the tree mortality caused by edge effects in the estimation of carbon stock. We found low spatial congruence among the modeled services, mostly because of the pattern of sediment retention distribution.
Ecosystem Services Modeling as a Tool for Defining Priority Areas for Conservation
Duarte, Gabriela Teixeira; Ribeiro, Milton Cezar; Paglia, Adriano Pereira
2016-01-01
Conservationists often have difficulty obtaining financial and social support for protected areas that do not demonstrate their benefits for society. Therefore, ecosystem services have gained importance in conservation science in the last decade, as these services provide further justification for appropriate management and conservation of natural systems. We used InVEST software and a set of GIS procedures to quantify, spatialize and evaluated the overlap between ecosystem services—carbon stock and sediment retention—and a biodiversity proxy–habitat quality. In addition, we proposed a method that serves as an initial approach of a priority areas selection process. The method considers the synergism between ecosystem services and biodiversity conservation. Our study region is the Iron Quadrangle, an important Brazilian mining province and a conservation priority area located in the interface of two biodiversity hotspots, the Cerrado and Atlantic Forest biomes. The resultant priority area for the maintenance of the highest values of ecosystem services and habitat quality was about 13% of the study area. Among those priority areas, 30% are already within established strictly protected areas, and 12% are in sustainable use protected areas. Following the transparent and highly replicable method we proposed in this study, conservation planners can better determine which areas fulfill multiple goals and can locate the trade-offs in the landscape. We also gave a step towards the improvement of the habitat quality model with a topography parameter. In areas of very rugged topography, we have to consider geomorfometric barriers for anthropogenic impacts and for species movement and we must think beyond the linear distances. Moreover, we used a model that considers the tree mortality caused by edge effects in the estimation of carbon stock. We found low spatial congruence among the modeled services, mostly because of the pattern of sediment retention distribution. PMID:27145031
Local Knowledge and Conservation of Seagrasses in the Tamil Nadu State of India
2011-01-01
Local knowledge systems are not considered in the conservation of fragile seagrass marine ecosystems. In fact, little is known about the utility of seagrasses in local coastal communities. This is intriguing given that some local communities rely on seagrasses to sustain their livelihoods and have relocated their villages to areas with a rich diversity and abundance of seagrasses. The purpose of this study is to assist in conservation efforts regarding seagrasses through identifying Traditional Ecological Knowledge (TEK) from local knowledge systems of seagrasses from 40 coastal communities along the eastern coast of India. We explore the assemblage of scientific and local traditional knowledge concerning the 1. classification of seagrasses (comparing scientific and traditional classification systems), 2. utility of seagrasses, 3. Traditional Ecological Knowledge (TEK) of seagrasses, and 4. current conservation efforts for seagrass ecosystems. Our results indicate that local knowledge systems consist of a complex classification of seagrass diversity that considers the role of seagrasses in the marine ecosystem. This fine-scaled ethno-classification gives rise to five times the number of taxa (10 species = 50 local ethnotaxa), each with a unique role in the ecosystem and utility within coastal communities, including the use of seagrasses for medicine (e.g., treatment of heart conditions, seasickness, etc.), food (nutritious seeds), fertilizer (nutrient rich biomass) and livestock feed (goats and sheep). Local communities are concerned about the loss of seagrass diversity and have considerable local knowledge that is valuable for conservation and restoration plans. This study serves as a case study example of the depth and breadth of local knowledge systems for a particular ecosystem that is in peril. Key words: local health and nutrition, traditional ecological knowledge (TEK), conservation and natural resources management, consensus, ethnomedicine, ethnotaxa, cultural heritage PMID:22112297
Costanza, Jennifer; Terando, Adam J.; McKerrow, Alexa; Collazo, Jaime A.
2015-01-01
Managing ecosystems for resilience and sustainability requires understanding how they will respond to future anthropogenic drivers such as climate change and urbanization. In fire-dependent ecosystems, predicting this response requires a focus on how these drivers will impact fire regimes. Here, we use scenarios of climate change, urbanization and management to simulate the future dynamics of the critically endangered and fire-dependent longleaf pine (Pinus palustris) ecosystem. We investigated how climate change and urbanization will affect the ecosystem, and whether the two conservation goals of a 135% increase in total longleaf area and a doubling of fire-maintained open-canopy habitat can be achieved in the face of these drivers. Our results show that while climatic warming had little effect on the wildfire regime, and thus on longleaf pine dynamics, urban growth led to an 8% reduction in annual wildfire area. The management scenarios we tested increase the ecosystem's total extent by up to 62% and result in expansion of open-canopy longleaf by as much as 216%, meeting one of the two conservation goals for the ecosystem. We find that both conservation goals for this ecosystem, which is climate-resilient but vulnerable to urbanization, are only attainable if a greater focus is placed on restoration of non-longleaf areas as opposed to maintaining existing longleaf stands. Our approach demonstrates the importance of accounting for multiple relevant anthropogenic threats in an ecosystem-specific context in order to facilitate more effective management actions.
NASA Astrophysics Data System (ADS)
Tomczyk, Aleksandra; Ewertowski, Marek
2014-05-01
The importance of conserving the natural environment has been known for a long time. It can be fulfilled by designation of protected areas as well as proper management of broader landscapes. During past two decades, conservation has shifted from a predominantly species- and habitat-focus to a more holistic "ecosystem approach" with an emphasis on "ecosystem services", which underpin the benefits which society can obtain (directly or indirectly) from ecosystems. This study aims to investigate and compare existing land use prioritization models and to develop new GIS-based frameworks for analysis for different spatial scales. Research were carried out in several conservation areas in UK and Poland. Main focus was on regulating (including regulation of soil erosion and landslide susceptibility) and recreation services. A new GIS-based model was developed which enabled to analysis of this services. Different spatial scales, ranging from whole conservation areas to single catchments were chosen for mapping and quantifying. Based on different scenarios three sets of ecosystem services were calculated. Data contained specific land-cover/land-use resulting from the different strategy of the natural conservation for each of the study sites. Modelling was carried out based on the trends identified on the basis of past changes in land-use/land-cover (based on analysis of time-series satellite images), and the probability of a particular class of land-use/land-cover for the chosen scenario. Comparison between results revealed ecosystem service tradeoffs (when the obtaining of one service results in the reducing of another service) and synergies (when multiple services can be provides simultaneously). Results of the study shows where (and under which condition): (1) conservation areas can accommodate more visitors and in the same time provide regulation of soil erosion and protection against landslide developments, (2) further development of recreation services will lead to inevitable degradation of environment. Based on these results several further activities were proposed: from changing of conservation strategy for some part of the areas to changing of the land cover/land use.
Benchmarking Terrestrial Ecosystem Models in the South Central US
NASA Astrophysics Data System (ADS)
Kc, M.; Winton, K.; Langston, M. A.; Luo, Y.
2016-12-01
Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study was conducted to find the state of the science of ecosystem models in the South-Central region of US. The ecosystem models were benchmarked using ILAMB diagnostic package developed as a result of International Land Model Benchmarking (ILAMB) project on four main categories; viz, Ecosystem and Carbon Cycle, Hydrology Cycle, Radiation and Energy Cycle and Climate forcings. A cumulative assessment was generated with weighted seven different skill assessment metrics for the ecosystem models. This synthesis on the current state of the science of ecosystem modeling in the South-Central region of US will be highly useful towards coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.
Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine
2017-12-14
The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.
Engineering a plant community to deliver multiple ecosystem services.
Storkey, Jonathan; Döring, Thomas; Baddeley, John; Collins, Rosemary; Roderick, Stephen; Jones, Hannah; Watson, Christine
2015-06-01
The sustainable delivery of multiple ecosystem services requires the management of functionally diverse biological communities. In an agricultural context, an emphasis on food production has often led to a loss of biodiversity to the detriment of other ecosystem services such as the maintenance of soil health and pest regulation. In scenarios where multiple species can be grown together, it may be possible to better balance environmental and agronomic services through the targeted selection of companion species. We used the case study of legume-based cover crops to engineer a plant community that delivered the optimal balance of six ecosystem services: early productivity, regrowth following mowing, weed suppression, support of invertebrates, soil fertility building (measured as yield of following crop), and conservation of nutrients in the soil. An experimental species pool of 12 cultivated legume species was screened for a range of functional traits and ecosystem services at five sites across a geographical gradient in the United Kingdom. All possible species combinations were then analyzed, using a process-based model of plant competition, to identify the community that delivered the best balance of services at each site. In our system, low to intermediate levels of species richness (one to four species) that exploited functional contrasts in growth habit and phenology were identified as being optimal. The optimal solution was determined largely by the number of species and functional diversity represented by the starting species pool, emphasizing the importance of the initial selection of species for the screening experiments. The approach of using relationships between functional traits and ecosystem services to design multifunctional biological communities has the potential to inform the design of agricultural systems that better balance agronomic and environmental services and meet the current objective of European agricultural policy to maintain viable food production in the context of the sustainable management of natural resources.
NASA Astrophysics Data System (ADS)
Vina, A.; Tuanmu, M.; Yang, W.; Liu, J.
2012-12-01
Human activities continue to induce the degradation of natural ecosystems, thus threatening not only the long-term survival of many wildlife species around the world, but also the resilience of natural ecosystems to global environmental changes. In response, many conservation efforts are emerging as adaptive strategies for coping with the degradation of natural ecosystems. Among them, the establishment of nature reserves is considered to be the most effective. However the effectiveness of nature reserves depends on the type and intensity of human activities occurring within their boundaries. But many of these activities constitute important livelihood systems for local human populations. Therefore, to enhance the effectiveness of conservation actions without significantly affecting local livelihood systems, it is essential to understand the complexity of human-nature interactions and their effects on the spatio-temporal dynamics of natural ecosystems. In this study, we evaluated the relation between giant panda habitat dynamics, conservation efforts and human activities in Wolong Nature Reserve for Giant Pandas, Sichuan Province, China. This reserve supports ca. 10% of the entire wild giant panda population but is also home to ca. 4,900 local residents. The spatio-temporal dynamics of giant panda habitat over the last four decades were analyzed using a time series of remotely sensed imagery acquired by different satellite sensor systems, including the Landsat Multi-Spectral Scanner, the Landsat Thematic Mapper and the Moderate Resolution Imaging Spectroradiometer (MODIS). Our assessment suggests that when local residents were actively involved in conservation efforts (through a payment for ecosystem services scheme established since around 2000) panda habitat started to recover, thus enhancing the resilience capacity of natural ecosystems in the Reserve. This reversed a long-term (> 30 years) trend of panda habitat degradation. The study not only has direct implications for wildlife habitat conservation but also increases our understanding of the complexity of human-nature interactions and their effects on the resilience of natural ecosystems.
Focusing ecological research for conservation.
Cristescu, Bogdan; Boyce, Mark S
2013-11-01
Ecologists are increasingly actively involved in conservation. We identify five key topics from a broad sweep of ecology that merit research attention to meet conservation needs. We examine questions from landscape ecology, behavioral ecology, ecosystem dynamics, community ecology, and nutrient cycling related to key topics. Based on literature review and publication trend assessment, consultation with colleagues, and roundtable discussions at the 24th International Congress for Conservation Biology, focused research on the following topics could benefit conservation while advancing ecological understanding: 1. Carbon sequestration, requiring increased linkages to biodiversity conservation; 2. Ecological invasiveness, challenging our ability to find solutions to ecological aliens; 3. Individual variation, having applications in the conservation of rare species; 4. Movement of organisms, integrating ecological processes across landscapes and scales and addressing habitat fragmentation; and 5. Trophic-level interactions, driving ecological dynamics at the ecosystem-level. Addressing these will require cross-disciplinary research under the overarching framework of conservation ecology.
J.M. Rice; C.B. Halpern; J.A. Antos; J.A. Jones
2012-01-01
Tree invasions of grasslands are occurring globally, with profound consequences for ecosystem structure and function. We explore the spatio-temporal dynamics of tree invasion of a montane meadow in the Cascade Mountains of Oregon, where meadow loss is a conservation concern. We examine the early stages of invasion, where extrinsic and intrinsic processes can be clearly...
Agroforestry landscapes and global change: landscape ecology tools for management and conservation
Guillermo Martinez Pastur; Emilie Andrieu; Louis R. Iverson; Pablo Luis Peri
2012-01-01
Forest ecosystems are impacted by multiple uses under the influence of global drivers, and where landscape ecology tools may substantially facilitate the management and conservation of the agroforestry ecosystems. The use of landscape ecology tools was described in the eight papers of the present special issue, including changes in forested landscapes due to...
Multiple drivers of decline in the global status of freshwater crayfish (Decapoda:Astacidea)
Nadia I. Richman; Monika Böhm; Susan B. Adams; Fernando Alvarez; Elizabeth A. Bergey; John J. S. Bunn; Quinton Burnham; Jay Cordeiro; Jason Coughran; Keith A. Crandall; Kathryn L. Dawkins; Robert J. DiStefano; Niall E. Doran; Lennart Edsman; Arnold G. Eversole; Leopold Füreder; James M. Furse; Francesca Gherardi; Premek Hamr; David M. Holdich; Pierre Horwitz; Kerrylyn Johnston; Clive M. Jones; Julia P. G. Jones; Robert L. Jones; Thomas G. Jones; Tadashi Kawai; Susan Lawler; Marilu López-Mejía; Rebecca M. Miller; Carlos Pedraza-Lara; Julian D. Reynolds; Alastair M. M. Richardson; Mark B. Schultz; Guenter A. Schuster; Peter J. Sibley; Catherine Souty-Grosset; Christopher A. Taylor; Roger F. Thoma; Jerry Walls; Todd S. Walsh; Ben Cohen
2015-01-01
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the worldâs 590...
Chapter 6: Ecology and Biodiversity
Patricia N. Manley; Dennis D. Murphy; Seth Bigelow; Sudeep Chandra
2010-01-01
The integrity of animal and plant communities serves as a critical measure of the effectiveness of policies designed to protect and restore ecosystem processes in the Lake Tahoe basin. The conservation of plants and animals in the Tahoe basin is utterly dependent on the conservation of its terrestrial and aquatic ecosystems; so, in many ways, the research agenda that...
Identifying species conservation strategies to reduce disease-associated declines
Gerber, Brian D.; Converse, Sarah J.; Muths, Erin L.; Crockett, Harry J.; Mosher, Brittany A.; Bailey, Larissa L.
2018-01-01
Emerging infectious diseases (EIDs) are a salient threat to many animal taxa, causing local and global extinctions, altering communities and ecosystem function. The EID chytridiomycosis is a prominent driver of amphibian declines, which is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). To guide conservation policy, we developed a predictive decision-analytic model that combines empirical knowledge of host-pathogen metapopulation dynamics with expert judgment regarding effects of management actions, to select from potential conservation strategies. We apply our approach to a boreal toad (Anaxyrus boreas boreas) and Bd system, identifying optimal strategies that balance tradeoffs in maximizing toad population persistence and landscape-level distribution, while considering costs. The most robust strategy is expected to reduce the decline of toad breeding sites from 53% to 21% over 50 years. Our findings are incorporated into management policy to guide conservation planning. Our online modeling application provides a template for managers of other systems challenged by EIDs.
Coastal Marsh Monitoring for Persistent Saltwater Intrusion
NASA Technical Reports Server (NTRS)
Hall, Callie M.
2008-01-01
This viewgraph presentation reviews NASA's work on the project that supports the Gulf of Mexico Alliance (GOMA) Governors Action Plan to monitor the coastal wetlands for saltwater intrusion. The action items that relate to the task are: (1) Obtain information on projected relative sea level rise, subsidence, and storm vulnerability to help prioritize conservation projects, including restoration, enhancement, and acquisition, and (2) Develop and apply ecosystem models to forecast the habitat structure and succession following hurricane disturbance and changes in ecological functions and services that impact vital socio-economic aspects of coastal systems. The objectives of the program are to provide resource managers with remote sensing products that support ecosystem forecasting models requiring salinity and inundation data. Specifically, the proposed work supports the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management.
Effects of payments for ecosystem services on wildlife habitat recovery.
Tuanmu, Mao-Ning; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Shortridge, Ashton M; Liu, Jianguo
2016-08-01
Conflicts between local people's livelihoods and conservation have led to many unsuccessful conservation efforts and have stimulated debates on policies that might simultaneously promote sustainable management of protected areas and improve the living conditions of local people. Many government-sponsored payments-for-ecosystem-services (PES) schemes have been implemented around the world. However, few empirical assessments of their effectiveness have been conducted, and even fewer assessments have directly measured their effects on ecosystem services. We conducted an empirical and spatially explicit assessment of the conservation effectiveness of one of the world's largest PES programs through the use of a long-term empirical data set, a satellite-based habitat model, and spatial autoregressive analyses on direct measures of change in an ecosystem service (i.e., the provision of wildlife species habitat). Giant panda (Ailuropoda melanoleuca) habitat improved in Wolong Nature Reserve of China after the implementation of the Natural Forest Conservation Program. The improvement was more pronounced in areas monitored by local residents than those monitored by the local government, but only when a higher payment was provided. Our results suggest that the effectiveness of a PES program depends on who receives the payment and on whether the payment provides sufficient incentives. As engagement of local residents has not been incorporated in many conservation strategies elsewhere in China or around the world, our results also suggest that using an incentive-based strategy as a complement to command-and-control, community- and norm-based strategies may help achieve greater conservation effectiveness and provide a potential solution for the park versus people conflict. © 2016 Society for Conservation Biology.
Coral identity underpins architectural complexity on Caribbean reefs.
Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A
2011-09-01
The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.
Wilzbach, M.A.; Mather, M. E.; Folt, C.L.; Moore, A.; Naiman, R.J.; Youngson, A.F.; McMenemy, J.
1998-01-01
Incorporating human impacts into conservation plans is critical to protect natural resources. Using a model that examines how anthropogenic changes might be proactively influenced to promote conservation, we argue that a denser human population does not spell inevitable doom for Atlantic salmon (Salmo salar). Humans affect the Atlantic salmon ecosystem deleteriously through landscape alteration, exploitation, external inputs, and resource competition. An intact ecosystem provides positive feedback to society by providing food, ecosystem services, and improving the quality of life. As Atlantic salmon and associated ecosystem benefits are increasingly valued by society, policies, laws, and regulations that protect salmon populations and habitats are codified into a 'control system' or institutional infrastructure. Via research that helps maintain wild salmon populations and in informing the public about the benefits of a healthy Atlantic salmon ecosystem, scientists can influence public attitudes and facilitate the implementation of environmental policies that moderate harmful anthropogenic changes. Because exchange among scientists is of paramount importance in increasing our understanding of important interrelationships between humans and fish, we recommend the establishment of an international salmon organizational for research.
Functional diversity, succession, and human-mediated disturbances in raised bog vegetation.
Dyderski, Marcin K; Czapiewska, Natalia; Zajdler, Mateusz; Tyborski, Jarosław; Jagodziński, Andrzej M
2016-08-15
Raised and transitional bogs are one of the most threatened types of ecosystem, due to high specialisation of biota, associated with adaptations to severe environmental conditions. The aim of the study was to characterize the relationships between functional diversity (reflecting ecosystem-shaping processes) of raised bog plant communities and successional gradients (expressed as tree dimensions) and to show how impacts of former clear cuts may alter these relationships in two raised bogs in 'Bory Tucholskie' National Park (N Poland). Herbaceous layers of the plant communities were examined by floristic relevés (25m(2)) on systematically established transects. We also assessed patterns of tree ring widths. There were no relationships between vegetation functional diversity components and successional progress: only functional dispersion was negatively, but weakly, correlated with median DBH. Lack of these relationships may be connected with lack of prevalence of habitat filtering and low level of competition over all the successional phases. Former clear cuts, indicated by peaks of tree ring width, influenced the growth of trees in the bogs studied. In the bog with more intensive clear cuts we found more species with higher trophic requirements, which may indicate nutrient influx. However, we did not observe differences in vegetation patterns, functional traits or functional diversity indices between the two bogs studied. We also did not find an influence of clear cut intensity on relationships between functional diversity indices and successional progress. Thus, we found that alteration of the ecosystems studied by neighbourhood clear cuts did not affect the bogs strongly, as the vegetation was resilient to these impacts. Knowledge of vegetation resilience after clear cuts may be crucial for conservation planning in raised bog ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jackson, L.
2011-12-01
Many agricultural landscapes in the temperate zone are dominated by agroecosystems that are managed with high inputs of agrochemicals, including synthetic nitrogen (N) fertilizers. The process of agricultural intensification increases crop production per unit area, but also often results in loss of environmental quality (such as N contamination of waters, eutrophication, atmospheric N deposition, and emissions of nitrous oxide (N2O), a potent greenhouse gas). Loss of biodiversity and its 'functional homogenization' is another concern. Not only does little land in these landscapes remain in natural ecosystems, but there are negative off-site impacts of intensive agriculture on non-target organisms. Segregating agroecosystems with high-input agricultural production from natural ecosystems (land sparing) is one view to support both food security and biodiversity conservation. But proponents of land sparing rarely address the loss of other ecosystem services, such as those related to environmental quality, health, and human well-being (e.g., livelihoods and cultural values). An emerging view is that increased reliance on ecological processes in agroecosystems ('ecological intensification') is more feasible when the landscape mosaic includes planned and unplanned biodiversity. This requires research on how to support multiple ecosystem services through the integration of agricultural production and biodiversity conservation in the same landscape, and how ecological and physico-chemical processes at various spatial scales are interlinked. It is an enormous challenge to increase reliance on ecological processes for N availability for crop productivity. There are skeptics who think that this will be detrimental for food security, despite benefits for other types of ecosystem services. Using examples from agricultural landscapes in California, mechanisms for ecologically-based N cycling will be discussed, such as: 1) increasing the reservoir of soil organic N and the dynamic turnover and supply of N via soil microbial N transformations and root symbioses; 2) developing farming systems that rely on crop rotations and functional groups that increase N supply and retention; 3) minimizing N losses through better understanding of agroecosystem biogeochemistry; and 4) overcoming the problems associated with open N cycles in agroecosystems with landscape features such buffer strips, managed riparian corridors, and patchy land use types. The capacity to compensate for high non-renewable inputs in specific farming situations will be addressed, along with factors that increase the capacity for different types of farmers to adopt N management practices that enhance the provision of multiple types of ecosystem services.
[Effects of land use changes on soil water conservation in Hainan Island, China].
Wen, Zhi; Zhao, He; Liu, Lei; OuYang, Zhi Yun; Zheng, Hua; Mi, Hong Xu; Li, Yan Min
2017-12-01
In tropical areas, a large number of natural forests have been transformed into other plantations, which affected the water conservation function of terrestrial ecosystems. In order to clari-fy the effects of land use changes on soil water conservation function, we selected four typical land use types in the central mountainous region of Hainan Island, i.e., natural forests with stand age greater than 100 years (VF), secondary forests with stand age of 10 years (SF), areca plantations with stand age of 12 years (AF) and rubber plantations with stand age of 35 years (RF). The effects of land use change on soil water holding capacity and water conservation (presented by soil water index, SWI) were assessed. The results showed that, compared with VF, the soil water holding capacity index of other land types decreased in the top soil layer (0-10 cm). AF had the lowest soil water holding capacity in all soil layers. Soil water content and maximum water holding capacity were significantly related to canopy density, soil organic matter and soil bulk density, which indicated that canopy density, soil organic matter and compactness were important factors influencing soil water holding capacity. Compared to VF, soil water conservation of SF, AF and RF were reduced by 27.7%, 54.3% and 11.5%, respectively. The change of soil water conservation was inconsistent in different soil layers. Vegetation canopy density, soil organic matter and soil bulk density explained 83.3% of the variance of soil water conservation. It was suggested that land use conversion had significantly altered soil water holding capacity and water conservation function. RF could keep the soil water better than AF in the research area. Increasing soil organic matter and reducing soil compaction would be helpful to improve soil water holding capacity and water conservation function in land management.
NASA Astrophysics Data System (ADS)
Pérez-Luque, A. J.; Pérez-Pérez, R.; Bonet-García, F. J.; Magaña, P. J.
2015-05-01
The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.
Page, Girija; Bellotti, Bill
2015-05-15
Optimal participation in market-based instruments such as PES (payment for ecosystem services) schemes is a necessary precondition for achieving large scale cost-effective conservation goals from agricultural landscapes. However farmers' willingness to participate in voluntary conservation programmes is influenced by psychological, financial and social factors and these need to be assessed on a case-by-case basis. In this research farmers' values towards on-farm ecosystem services, motivations and perceived impediments to participation in conservation programmes are identified in two local land services regions in Australia using surveys. Results indicated that irrespective of demographics such as age, gender, years farmed, area owned and annual gross farm income, farmers valued ecosystem services important for future sustainability. Non-financial motivations had significant associations with farmer's perceptions regarding attitudes and values towards the environment and participation in conservation-related programmes. Farmer factors such as lack of awareness and unavailability of adequate information were correlated with non-participation in conservation-based programmes. In the current political context, government uncertainty regarding schemes especially around carbon sequestration and reduction was the most frequently cited impediment that could deter participation. Future research that explores willingness of farmers towards participation in various types of PES programmes developed around carbon reduction, water quality provision and biodiversity conservation, and, duration of the contract and payment levels that are attractive to the farmers will provide insights for developing farmer-friendly PES schemes in the region. Copyright © 2015 Elsevier B.V. All rights reserved.
Global environmental change effects on ecosystems: the importance of land-use legacies.
Perring, Michael P; De Frenne, Pieter; Baeten, Lander; Maes, Sybryn L; Depauw, Leen; Blondeel, Haben; Carón, María M; Verheyen, Kris
2016-04-01
One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. © 2015 John Wiley & Sons Ltd.
List identifies threatened ecosystems
NASA Astrophysics Data System (ADS)
Showstack, Randy
2012-09-01
The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”
Estimating the value of non-use benefits from small changes in the provision of ecosystem services.
Dutton, Adam; Edwards-Jones, Gareth; Macdonald, David W
2010-12-01
The unit of trade in ecosystem services is usually the use of a proportion of the parcels of land associated with a given service. Valuing small changes in the provision of an ecosystem service presents obstacles, particularly when the service provides non-use benefits, as is the case with conservation of most plants and animals. Quantifying non-use values requires stated-preference valuations. Stated-preference valuations can provide estimates of the public's willingness to pay for a broad conservation goal. Nevertheless, stated-preference valuations can be expensive and do not produce consistent measures for varying levels of provision of a service. Additionally, the unit of trade, land use, is not always linearly related to the level of ecosystem services the land might provide. To overcome these obstacles, we developed a method to estimate the value of a marginal change in the provision of a non-use ecosystem service--in this case conservation of plants or animals associated with a given land-cover type. Our method serves as a tool for calculating transferable valuations of small changes in the provision of ecosystem services relative to the existing provision. Valuation is achieved through stated-preference investigations, calculation of a unit value for a parcel of land, and the weighting of this parcel by its ability to provide the desired ecosystem service and its effect on the ability of the surrounding land parcels to provide the desired service. We used the water vole (Arvicola terrestris) as a case study to illustrate the method. The average present value of a meter of water vole habitat was estimated at UK £ 12, but the marginal value of a meter (based on our methods) could range between £ 0 and £ 40 or more. © 2010 Society for Conservation Biology.
Preserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy.
Bowen, B W
1999-12-01
The scientific foundations of conservation policy are the subject of a recent tripolar debate, with systematists arguing for the primacy of phylogenetic rankings, ecologists arguing for protection at the level of populations or ecosystems, and evolutionary biologists urging more attention for the factors that enhance adaptation and biodiversity. In the field of conservation genetics, this controversy is manifested in the diverse viewpoints of molecular systematists, population biologists, and evolutionary (and quantitative) geneticists. A resolution of these viewpoints is proposed here, based on the premise that preserving particular objects (genes, species, or ecosystems) is not the ultimate goal of conservation. In order to be successful, conservation efforts must preserve the processes of life. This task requires the identification and protection of diverse branches in the tree of life (phylogenetics), the maintenance of life-support systems for organisms (ecology), and the continued adaptation of organisms to changing environments (evolution). None of these objectives alone is sufficient to preserve the threads of life across time. Under this temporal perspective, molecular genetic technologies have applications in all three conservation agendas; DNA sequence comparisons serve the phylogenetic goals, population genetic markers serve the ecological goals, quantitative genetics and genome explorations serve the evolutionary goals.
Creating a Liveable City - Eco-services, Systems and Place
NASA Astrophysics Data System (ADS)
Hamilton, R. J.; Dean, M.; Birtles, P. J.; Hore, J.; Dahlenburg, J.
2014-12-01
The use of an ecosystem service framework for natural resource management has gained increasing traction in the public sector. This is of especial interest in cities as residual ecosystems - typically located along creeks and estuaries, or remaining in scattered pockets throughout the urban area - offer some of the highest value social and economic returns per capita for the land area they occupy, yet are often impractical to manage from more traditional approaches to conservation. We posit that the well-being of humans and other species is the outcome of healthy, functioning ecosystems, and that, from a policy perspective, it is essential to consider services in this context. We arrange ecosystem services into three categories: life-enabling, life-sustaining and life-fulfilling, in a modification to the categories of the Millennium Ecosystem Assessment, and identify additional eco-services unique to urban areas. At local scale, these contribute to the well-being of city residents and positively affect quality of life, forming essential elements of urban liveability. However, dynamics of co-located built and natural environments challenge the capacity of ecosystems to function and provide their full suite of services. Using Sydney as an example, we outline a modular framework of socio-ecological systems and places to show how eco-services supporting liveability can be considered in conceptual and physical space. At a policy level, framing systems-based management objectives that protect, improve and re-discover desirable ecosystem services within the city (as opposed to further increasing the environmental footprint outside), will allow for unique, positive, socially-enabling outcomes for urban centres, in Australia, and globally.
Linking social norms to efficient conservation investment in payments for ecosystem services
Chen, Xiaodong; Lupi, Frank; He, Guangming; Liu, Jianguo
2009-01-01
An increasing amount of investment has been devoted to protecting and restoring ecosystem services worldwide. The efficiency of conservation investments, including payments for ecosystem services (PES), has been found to be affected by biological, political, economic, demographic, and social factors, but little is known about the effects of social norms at the neighborhood level. As a first attempt to quantify the effects of social norms, we studied the effects of a series of possible factors on people's intentions of maintaining forest on their Grain-to-Green Program (GTGP) land plots if the program ends. GTGP is one of the world's largest PES programs and plays an important role in global conservation efforts. Our study was conducted in China's Wolong Nature Reserve, home to the world-famous endangered giant pandas and >4,500 farmers. We found that, in addition to conservation payment amounts and program duration, social norms at the neighborhood level had significant impacts on program re-enrollment, suggesting that social norms can be used to leverage participation to enhance the sustainability of conservation benefits from PES programs. Moreover, our results demonstrate that economic and demographic trends also have profound implications for sustainable conservation. Thus, social norms should be incorporated with economic and demographic trends for efficient conservation investments. PMID:19564610
Linking social norms to efficient conservation investment in payments for ecosystem services.
Chen, Xiaodong; Lupi, Frank; He, Guangming; Liu, Jianguo
2009-07-14
An increasing amount of investment has been devoted to protecting and restoring ecosystem services worldwide. The efficiency of conservation investments, including payments for ecosystem services (PES), has been found to be affected by biological, political, economic, demographic, and social factors, but little is known about the effects of social norms at the neighborhood level. As a first attempt to quantify the effects of social norms, we studied the effects of a series of possible factors on people's intentions of maintaining forest on their Grain-to-Green Program (GTGP) land plots if the program ends. GTGP is one of the world's largest PES programs and plays an important role in global conservation efforts. Our study was conducted in China's Wolong Nature Reserve, home to the world-famous endangered giant pandas and >4,500 farmers. We found that, in addition to conservation payment amounts and program duration, social norms at the neighborhood level had significant impacts on program re-enrollment, suggesting that social norms can be used to leverage participation to enhance the sustainability of conservation benefits from PES programs. Moreover, our results demonstrate that economic and demographic trends also have profound implications for sustainable conservation. Thus, social norms should be incorporated with economic and demographic trends for efficient conservation investments.
Fishing for Novel Approaches to Ecosystem Service Forecasts
The ecosystem service concept provides a powerful framework for conserving species and the environments they depend upon. Describing current distributions of ecosystem services and forecasting their future distributions have therefore become central objectives in many conservati...
Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
Asrar, G.
2008-05-01
Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances in genomic, genetics, breeding and applied biotechnologies are a key to our ability to address these challenges. We must also continue to develop agronomic practices that sustain the integrity of natural resources and conserve energy on one-hand while maximizing agricultural production per unit area of land on the other hand. This will require managing agricultural ecosystems for their multiple functions and services together, instead of looking at each function/service in isolation. In this presentation, we will provide an overview of the scientific and technical knowledge required for sustainable management of agricultural ecosystems and associated natural resources. We will describe the soil, water and energy research needs/priorities in agriculture. We will also provide some examples of recent accomplishments and future directions in developing decision support tools for assessing the impacts of weather and climate variations and change, and their risk to agricultural ecosystems. We will then focus on opportunities and challenges associated with measurement, monitoring and modeling of soil moisture and its use in management and operation of agricultural ecosystems. The overall intent of this presentation is to stimulate some discussion on future directions and priorities for soil, water and energy research in agricultural ecosystems, and how the knowledge we gain from this research can be conveyed to the users for risk assessment, decision making, and multi-service ecosystem management purposes.
Importance of including cultural practices in ecological restoration.
Wehi, Priscilla M; Lord, Janice M
2017-10-01
Ecosystems worldwide have a long history of use and management by indigenous cultures. However, environmental degradation can reduce the availability of culturally important resources. Ecological restoration aims to repair damage to ecosystems caused by human activity, but it is unclear how often restoration projects incorporate the return of harvesting or traditional life patterns for indigenous communities. We examined the incorporation of cultural use of natural resources into ecological restoration in the context of a culturally important but protected New Zealand bird; among award-winning restoration projects in Australasia and worldwide; and in the peer-reviewed restoration ecology literature. Among New Zealand's culturally important bird species, differences in threat status and availability for hunting were large. These differences indicate the values of a colonizing culture can inhibit harvesting by indigenous people. In Australasia among award-winning ecological restoration projects, <17% involved human use of restored areas beyond aesthetic or recreational use, despite many projects encouraging community participation. Globally, restoration goals differed among regions. For example, in North America, projects were primarily conservation oriented, whereas in Asia and Africa projects frequently focused on restoring cultural harvesting. From 1995 to 2014, the restoration ecology literature contained few references to cultural values or use. We argue that restoration practitioners are missing a vital component for reassembling functional ecosystems. Inclusion of sustainably harvestable areas within restored landscapes may allow for the continuation of traditional practices that shaped ecosystems for millennia, and also aid project success by ensuring community support. © 2017 Society for Conservation Biology.
Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M
2017-08-14
Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.
Prioritizing Land and Sea Conservation Investments to Protect Coral Reefs
Klein, Carissa J.; Ban, Natalie C.; Halpern, Benjamin S.; Beger, Maria; Game, Edward T.; Grantham, Hedley S.; Green, Alison; Klein, Travis J.; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P.
2010-01-01
Background Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Methodology/Principal Findings Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Conclusions/Significance Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems. PMID:20814570
Prioritizing land and sea conservation investments to protect coral reefs.
Klein, Carissa J; Ban, Natalie C; Halpern, Benjamin S; Beger, Maria; Game, Edward T; Grantham, Hedley S; Green, Alison; Klein, Travis J; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P
2010-08-30
Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.
NASA Astrophysics Data System (ADS)
Hayati, R. S.
2017-02-01
This research aim is develop the potential of Taka Bonerate National Park as learning resources through edutourism with scientific approach to improve student learning outcomes. Focus of student learning outcomes are students psychomotor abilities and comprehension on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics. The edutourism development products are teacher manual, edutourism worksheet, material booklet, guide’s manual, and Taka Bonerate National Park governor manual. The method to develop edutourism products is ADDIE research and development model that consist of analysis, design, development and production, implementation, and evaluation step. The subjects in the implementation step were given a pretest and posttest and observation sheet to see the effect of edutourism Taka Bonerate National Park through scientific approach to student learning outcomes on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics. The data were analyzed qualitative descriptively. The research result is edutourism Taka Bonerate National Park through scientific approach can improve students learning outcomes on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics. Edutourism Taka Bonerate National Park can be an alternative of learning method on Biodiversity of Marine Biota, Corals Ecosystem, and Conservation topics.
Pleistocene rewilding: an optimistic agenda for twenty-first century conservation.
Josh Donlan, C; Berger, Joel; Bock, Carl E; Bock, Jane H; Burney, David A; Estes, James A; Foreman, Dave; Martin, Paul S; Roemer, Gary W; Smith, Felisa A; Soulé, Michael E; Greene, Harry W
2006-11-01
Large vertebrates are strong interactors in food webs, yet they were lost from most ecosystems after the dispersal of modern humans from Africa and Eurasia. We call for restoration of missing ecological functions and evolutionary potential of lost North American megafauna using extant conspecifics and related taxa. We refer to this restoration as Pleistocene rewilding; it is conceived as carefully managed ecosystem manipulations whereby costs and benefits are objectively addressed on a case-by-case and locality-by-locality basis. Pleistocene rewilding would deliberately promote large, long-lived species over pest and weed assemblages, facilitate the persistence and ecological effectiveness of megafauna on a global scale, and broaden the underlying premise of conservation from managing extinction to encompass restoring ecological and evolutionary processes. Pleistocene rewilding can begin immediately with species such as Bolson tortoises and feral horses and continue through the coming decades with elephants and Holarctic lions. Our exemplar taxa would contribute biological, economic, and cultural benefits to North America. Owners of large tracts of private land in the central and western United States could be the first to implement this restoration. Risks of Pleistocene rewilding include the possibility of altered disease ecology and associated human health implications, as well as unexpected ecological and sociopolitical consequences of reintroductions. Establishment of programs to monitor suites of species interactions and their consequences for biodiversity and ecosystem health will be a significant challenge. Secure fencing would be a major economic cost, and social challenges will include acceptance of predation as an overriding natural process and the incorporation of pre-Columbian ecological frameworks into conservation strategies.
2018-01-01
Rapid urbanization and agricultural development has resulted in the degradation of ecosystems, while also negatively impacting ecosystem services (ES) and urban sustainability. Identifying conservation priorities for ES and applying reasonable management strategies have been found to be effective methods for mitigating this phenomenon. The purpose of this study is to propose a comprehensive framework for identifying ES conservation priorities and associated management strategies for these planning areas. First, we incorporated 10 ES indicators within a systematic conservation planning (SCP) methodology in order to identify ES conservation priorities with high irreplaceability values based on conservation target goals associated with the potential distribution of ES indicators. Next, we assessed the efficiency of the ES conservation priorities for meeting the designated conservation target goals. Finally, ES conservation priorities were clustered into groups using a K-means clustering analysis in an effort to identify the dominant ES per location before formulating management strategies. We effectively identified 12 ES priorities to best represent conservation target goals for the ES indicators. These 12 priorities had a total areal coverage of 13,364 km2 representing 25.16% of the study area. The 12 priorities were further clustered into five significantly different groups (p-values between groups < 0.05), which helped to refine management strategies formulated to best enhance ES across the study area. The proposed method allows conservation and management plans to easily adapt to a wide variety of quantitative ES target goals within urban and agricultural areas, thereby preventing urban and agriculture sprawl and guiding sustainable urban development. PMID:29682412
Qu, Yi; Lu, Ming
2018-01-01
Rapid urbanization and agricultural development has resulted in the degradation of ecosystems, while also negatively impacting ecosystem services (ES) and urban sustainability. Identifying conservation priorities for ES and applying reasonable management strategies have been found to be effective methods for mitigating this phenomenon. The purpose of this study is to propose a comprehensive framework for identifying ES conservation priorities and associated management strategies for these planning areas. First, we incorporated 10 ES indicators within a systematic conservation planning (SCP) methodology in order to identify ES conservation priorities with high irreplaceability values based on conservation target goals associated with the potential distribution of ES indicators. Next, we assessed the efficiency of the ES conservation priorities for meeting the designated conservation target goals. Finally, ES conservation priorities were clustered into groups using a K-means clustering analysis in an effort to identify the dominant ES per location before formulating management strategies. We effectively identified 12 ES priorities to best represent conservation target goals for the ES indicators. These 12 priorities had a total areal coverage of 13,364 km 2 representing 25.16% of the study area. The 12 priorities were further clustered into five significantly different groups ( p -values between groups < 0.05), which helped to refine management strategies formulated to best enhance ES across the study area. The proposed method allows conservation and management plans to easily adapt to a wide variety of quantitative ES target goals within urban and agricultural areas, thereby preventing urban and agriculture sprawl and guiding sustainable urban development.
Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions.
Mtwana Nordlund, Lina; Koch, Evamaria W; Barbier, Edward B; Creed, Joel C
2016-01-01
Threats to and loss of seagrass ecosystems globally, impact not only natural resources but also the lives of people who directly or indirectly depend on these systems. Seagrass ecosystems play a multi-functional role in human well-being, e.g. food through fisheries, control of erosion and protection against floods. Quantifying these services reveals their contributions to human well-being and helps justify seagrass conservation. There has been no comprehensive assessment as to whether seagrass ecosystem services are perceived to vary over the globe or amongst genera. Our study compiles the most complete list of ecosystem services provided by seagrasses so far, including bioregional- and genus-specific information from expert opinion and published studies. Several seagrass ecosystem services vary considerably in their (known) provision across genera and over the globe. Seagrasses genera are clearly not all equal with regard to the ecosystem services they provide. As seagrass genera are not evenly distributed over all bioregions, the presence of an ecosystem service sometimes depends on the genera present. Larger sized seagrass genera (e.g. Posidonia, Enhalus) are perceived to provide more substantial and a wider variety of ecosystem services than smaller species (e.g. Halophila, Lepilaena). Nevertheless, smaller species provide important services. Our findings point out data gaps, provide new insight for more efficient management and recommend caution in economic valuation of seagrass services worldwide.
Seagrass Ecosystem Services and Their Variability across Genera and Geographical Regions
Mtwana Nordlund, Lina; Barbier, Edward B.; Creed, Joel C.
2016-01-01
Threats to and loss of seagrass ecosystems globally, impact not only natural resources but also the lives of people who directly or indirectly depend on these systems. Seagrass ecosystems play a multi-functional role in human well-being, e.g. food through fisheries, control of erosion and protection against floods. Quantifying these services reveals their contributions to human well-being and helps justify seagrass conservation. There has been no comprehensive assessment as to whether seagrass ecosystem services are perceived to vary over the globe or amongst genera. Our study compiles the most complete list of ecosystem services provided by seagrasses so far, including bioregional- and genus-specific information from expert opinion and published studies. Several seagrass ecosystem services vary considerably in their (known) provision across genera and over the globe. Seagrasses genera are clearly not all equal with regard to the ecosystem services they provide. As seagrass genera are not evenly distributed over all bioregions, the presence of an ecosystem service sometimes depends on the genera present. Larger sized seagrass genera (e.g. Posidonia, Enhalus) are perceived to provide more substantial and a wider variety of ecosystem services than smaller species (e.g. Halophila, Lepilaena). Nevertheless, smaller species provide important services. Our findings point out data gaps, provide new insight for more efficient management and recommend caution in economic valuation of seagrass services worldwide. PMID:27732600
[Ecological regulation services of Hainan Island ecosystem and their valuation].
Ouyang, Zhiyun; Zhao, Tongqian; Zhao, Jingzhu; Xiao, Han; Wang, Xiaoke
2004-08-01
Ecosystem services imply the natural environmental conditions on which human life relies for existence, and their effectiveness formed and sustained by ecosystem and its ecological processes. In newly research reports, they were divided into four groups, i. e., provisioning services, regulation services, cultural services, and supporting services. To assess and valuate ecosystem services is the foundation of regional environmental reserve and development. Taking Hainan Island as an example and based on the structure and processes of natural ecosystem, this paper discussed the proper methods for regulation services assessment. The ecosystems were classified into 13 types including valley rain forest, mountainous rain forest, tropical monsoon forest, mountainous coppice forest, mountainous evergreen forest, tropical coniferous forest, shrubs, plantation, timber forest, windbreak forest, mangrove, savanna, and cropland, and then, the regulation services and their economic values of Hainan Island ecosystem were assessed and evaluated by terms of water-holding, soil conservancy, nutrient cycle, C fixation, and windbreak function. The economic value of the regulation services of Hainan Island ecosystem was estimated as 2035.88 x 10(8)-2153.39 x 10(8) RMB yuan, 8 times higher to its provisioning services (wood and agricultural products) which were estimated as only 254.06 x 10(8) RMB yuan. The result implied that ecosystem regulation services played an even more important role in the sustainable development of society and economy in Hainan Island.
Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.
Magris, Rafael A; Heron, Scott F; Pressey, Robert L
2015-01-01
Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985-2009) and projected (2010-2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.
Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M
2014-08-01
Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. © 2014 Society for Conservation Biology.
Sagarin, Raphael D; Crowder, Larry B
2009-02-01
Over the last decade, 2 major U.S. commissions on ocean policy and a wide range of independent sources have argued that ocean ecosystems are in a period of crisis and that current policies are inadequate to prevent further ecological damage. These sources have advocated ecosystem-based management as an approach to address conservation issues in the oceans, but managers remain uncertain as to how to implement ecosystem-based approaches in the real world. We argue that the philosophies of Edward F. Ricketts, a mid-20th-century marine ecologist, offer a framework and clear guidance for taking an ecosystem approach to marine conservation. Ricketts' philosophies, which were grounded in basic observations of natural history, espoused building a holistic picture of the natural world, including the influence of humans, through repeated observation. This approach, when applied to conservation, grounds management in what is observable in nature, encourages early action in the face of uncertainty, and supports an adaptive approach to management as new information becomes available. Ricketts' philosophy of "breaking through," which focuses on getting beyond crisis and conflict through honest debate of different parties' needs (rather than forcing compromise of differing positions), emphasizes the social dimension of natural resource management. New observational technologies, long-term ecological data sets, and especially advances in the social sciences made available since Ricketts' time greatly enhance the utility of Ricketts' philosophy of marine conservation.
Hanser, S.E.; Leu, M.; Knick, S.T.; Aldridge, Cameron L.
2011-01-01
The Wyoming Basins are one of the remaining strongholds of the sagebrush ecosystem. However, like most sagebrush habitats, threats to this region are numerous. This book adds to current knowledge about the regional status of the sagebrush ecosystem, the distribution of habitats, the threats to the ecosystem, and the influence of threats and habitat conditions on occurrence and abundance of sagebrush associated fauna and flora in the Wyoming Basins. Comprehensive methods are outlined for use in data collection and monitoring of wildlife and plant populations. Field and spatial data are integrated into a spatially explicit analytical framework to develop models of species occurrence and abundance for the egion. This book provides significant new information on distributions, abundances, and habitat relationships for a number of species of conservation concern that depend on sagebrush in the region. The tools and models presented in this book increase our understanding of impacts from land uses and can contribute to the development of comprehensive management and conservation strategies.
NASA Astrophysics Data System (ADS)
Horion, Stephanie; Ivits, Eva; Verzandvoort, Simone; Fensholt, Rasmus
2017-04-01
Ongoing pressures on European land are manifold with extreme climate events and non-sustainable use of land resources being amongst the most important drivers altering the functioning of the ecosystems. The protection and conservation of European natural capital is one of the key objectives of the 7th Environmental Action Plan (EAP). The EAP stipulates that European land must be managed in a sustainable way by 2020 and the UN Sustainable development goals define a Land Degradation Neutral world as one of the targets. This implies that land degradation (LD) assessment of European ecosystems must be performed repeatedly allowing for the assessment of the current state of LD as well as changes compared to a baseline adopted by the UNCCD for the objective of land degradation neutrality. However, scientifically robust methods are still lacking for large-scale assessment of LD and repeated consistent mapping of the state of terrestrial ecosystems. Historical land degradation assessments based on various methods exist, but methods are generally non-replicable or difficult to apply at continental scale (Allan et al. 2007). The current lack of research methods applicable at large spatial scales is notably caused by the non-robust definition of LD, the scarcity of field data on LD, as well as the complex inter-play of the processes driving LD (Vogt et al., 2011). Moreover, the link between LD and changes in land use (how land use changes relates to change in vegetation productivity and ecosystem functioning) is not straightforward. In this study we used the segmented trend method developed by Horion et al. (2016) for large-scale systematic assessment of hotspots of change in ecosystem functioning in relation to LD. This method alleviates shortcomings of widely used linear trend model that does not account for abrupt change, nor adequately captures the actual changes in ecosystem functioning (de Jong et al. 2013; Horion et al. 2016). Here we present a new methodology for assessing gradual and abrupt changes in ecosystem functioning in Europe. Based on segmented trend analysis of water-use efficiency (WUE) time series, an Ecosystem Change Type (ECT) map was produced over Europe at 1km resolution for the period 1999 to 2013. An analysis of auxiliary data on land use/cover change, drought trends, and soil threats was performed over hotspot areas to better understand the observed changes in ecosystem functioning and their driving mechanisms. The ECT map was validated using the case study sites from the EU-funded RECARE project. Overall, the ECT map accurately highlighted areas characterized by a major change in pathways of ecosystem functioning as well as indicated the type and timing of changes. Allan, R. et al. (2007). Climate and land degradation. Verlag Berlin Heidelberg: Springer. de Jong, R et al. (2013). Remote Sensing, 5, 1117-1133 Horion, S. et al. (2016). Global Change Biology, 22, 2801-2817 Vogt, J. V et al. (2011). Land Degradation & Development, 22: 150-165.
Mapping the economic costs and benefits of conservation.
Naidoo, Robin; Ricketts, Taylor H
2006-10-01
Resources for biodiversity conservation are severely limited, requiring strategic investment. Understanding both the economic benefits and costs of conserving ecosystems will help to allocate scarce dollars most efficiently. However, although cost-benefit analyses are common in many areas of policy, they are not typically used in conservation planning. We conducted a spatial evaluation of the costs and benefits of conservation for a landscape in the Atlantic forests of Paraguay. We considered five ecosystem services (i.e., sustainable bushmeat harvest, sustainable timber harvest, bioprospecting for pharmaceutical products, existence value, and carbon storage in aboveground biomass) and compared them to estimates of the opportunity costs of conservation. We found a high degree of spatial variability in both costs and benefits over this relatively small (approximately 3,000 km(2)) landscape. Benefits exceeded costs in some areas, with carbon storage dominating the ecosystem service values and swamping opportunity costs. Other benefits associated with conservation were more modest and exceeded costs only in protected areas and indigenous reserves. We used this cost-benefit information to show that one potential corridor between two large forest patches had net benefits that were three times greater than two otherwise similar alternatives. Spatial cost-benefit analysis can powerfully inform conservation planning, even though the availability of relevant data may be limited, as was the case in our study area. It can help us understand the synergies between biodiversity conservation and economic development when the two are indeed aligned and to clearly understand the trade-offs when they are not.
Mapping the Economic Costs and Benefits of Conservation
Naidoo, Robin; Ricketts, Taylor H
2006-01-01
Resources for biodiversity conservation are severely limited, requiring strategic investment. Understanding both the economic benefits and costs of conserving ecosystems will help to allocate scarce dollars most efficiently. However, although cost-benefit analyses are common in many areas of policy, they are not typically used in conservation planning. We conducted a spatial evaluation of the costs and benefits of conservation for a landscape in the Atlantic forests of Paraguay. We considered five ecosystem services (i.e., sustainable bushmeat harvest, sustainable timber harvest, bioprospecting for pharmaceutical products, existence value, and carbon storage in aboveground biomass) and compared them to estimates of the opportunity costs of conservation. We found a high degree of spatial variability in both costs and benefits over this relatively small (~3,000 km2) landscape. Benefits exceeded costs in some areas, with carbon storage dominating the ecosystem service values and swamping opportunity costs. Other benefits associated with conservation were more modest and exceeded costs only in protected areas and indigenous reserves. We used this cost-benefit information to show that one potential corridor between two large forest patches had net benefits that were three times greater than two otherwise similar alternatives. Spatial cost-benefit analysis can powerfully inform conservation planning, even though the availability of relevant data may be limited, as was the case in our study area. It can help us understand the synergies between biodiversity conservation and economic development when the two are indeed aligned and to clearly understand the trade-offs when they are not. PMID:17076583
Hogan, Dianna; Arthaud, Greg; Pattison, Malka; Sayre, Roger G.; Shapiro, Carl
2010-01-01
The analytical framework for understanding ecosystem services in conservation, resource management, and development decisions is multidisciplinary, encompassing a combination of the natural and social sciences. This report summarizes a workshop on 'Developing an Analytical Framework: Incorporating Ecosystem Services into Decision Making,' which focused on the analytical process and on identifying research priorities for assessing ecosystem services, their production and use, their spatial and temporal characteristics, their relationship with natural systems, and their interdependencies. Attendees discussed research directions and solutions to key challenges in developing the analytical framework. The discussion was divided into two sessions: (1) the measurement framework: quantities and values, and (2) the spatial framework: mapping and spatial relationships. This workshop was the second of three preconference workshops associated with ACES 2008 (A Conference on Ecosystem Services): Using Science for Decision Making in Dynamic Systems. These three workshops were designed to explore the ACES 2008 theme on decision making and how the concept of ecosystem services can be more effectively incorporated into conservation, restoration, resource management, and development decisions. Preconference workshop 1, 'Developing a Vision: Incorporating Ecosystem Services into Decision Making,' was held on April 15, 2008, in Cambridge, MA. In preconference workshop 1, participants addressed what would have to happen to make ecosystem services be used more routinely and effectively in conservation, restoration, resource management, and development decisions, and they identified some key challenges in developing the analytical framework. Preconference workshop 3, 'Developing an Institutional Framework: Incorporating Ecosystem Services into Decision Making,' was held on October 30, 2008, in Albuquerque, NM; participants examined the relationship between the institutional framework and the use of ecosystem services in decision making.
Constanze Buhk; Martin Alt; Manuel J. Steinbauer; Carl Beierkuhnlein; Steve Warren; Anke Jentsch
2017-01-01
The prevention of biodiversity loss in agricultural landscapes to protect ecosystem stability and functions is of major importance to stabilize overall diversity. Intense agriculture leads to a loss in species richness and homogenization of species pools, but the processes behind are poorly understood due to a lack of systematic case studies: The specific...
Looking for hotspots of marine metacommunity connectivity: a methodological framework
Melià, Paco; Schiavina, Marcello; Rossetto, Marisa; Gatto, Marino; Fraschetti, Simonetta; Casagrandi, Renato
2016-01-01
Seascape connectivity critically affects the spatiotemporal dynamics of marine metacommunities. Understanding how connectivity patterns emerge from physically and biologically-mediated interactions is therefore crucial to conserve marine ecosystem functions and biodiversity. Here, we develop a set of biophysical models to explore connectivity in assemblages of species belonging to a typical Mediterranean community (Posidonia oceanica meadows) and characterized by different dispersing traits. We propose a novel methodological framework to synthesize species-specific results into a set of community connectivity metrics and show that spatiotemporal variation in magnitude and direction of the connections, as well as interspecific differences in dispersing traits, are key factors structuring community connectivity. We eventually demonstrate how these metrics can be used to characterize the functional role of each marine area in determining patterns of community connectivity at the basin level and to support marine conservation planning. PMID:27029563
Looking for hotspots of marine metacommunity connectivity: a methodological framework
NASA Astrophysics Data System (ADS)
Melià, Paco; Schiavina, Marcello; Rossetto, Marisa; Gatto, Marino; Fraschetti, Simonetta; Casagrandi, Renato
2016-03-01
Seascape connectivity critically affects the spatiotemporal dynamics of marine metacommunities. Understanding how connectivity patterns emerge from physically and biologically-mediated interactions is therefore crucial to conserve marine ecosystem functions and biodiversity. Here, we develop a set of biophysical models to explore connectivity in assemblages of species belonging to a typical Mediterranean community (Posidonia oceanica meadows) and characterized by different dispersing traits. We propose a novel methodological framework to synthesize species-specific results into a set of community connectivity metrics and show that spatiotemporal variation in magnitude and direction of the connections, as well as interspecific differences in dispersing traits, are key factors structuring community connectivity. We eventually demonstrate how these metrics can be used to characterize the functional role of each marine area in determining patterns of community connectivity at the basin level and to support marine conservation planning.
Gleason, Robert A.; Laubhan, Murray K.; Euliss, Ned H.
2008-01-01
Implementation of the U.S. Department of Agriculture (USDA) Conservation Reserve Program (CRP) and Wetlands Reserve Program (WRP) has resulted in the restoration of approximately 2,200,000 ha (5,436,200 acres) of wetland and grassland habitats in the Prairie Pothole Region. These restored habitats are known to provide various ecosystem services; however, little work has been conducted to quantify and verify benefits on program lands (lands enrolled in the CRP and WRP) in agriculturally dominated landscapes of the Prairie Pothole Region. To address this need, the U.S. Geological Survey (USGS), in collaboration with the USDA Farm Service Agency and Natural Resources Conservation Service, initiated a study to develop and apply approaches to quantify changes in ecosystem services resulting from wetland restoration activities funded by the USDA. To accomplish this goal, the USGS conducted a comprehensive, stratified survey of 204 catchments (wetland and surrounding uplands contributing runoff to the wetland) in 1997 and 270 catchments in 2004 to gather data necessary for estimating various ecosystem services. In 1997 and 2004, the surveys included catchments with seasonal and semipermanent wetlands that were restored as part of USDA conservation programs, as well as nonprogram catchments in native prairie. Additionally, in 2004 data collection was expanded to include temporary wetlands for all treatments and nonprogram cropped catchments for all wetland classes: temporary, seasonal, and semipermanent. A key element in the sample design is that catchments span an alteration gradient ranging from highly altered, such as cropland, to minimally altered, such as native prairie. Therefore, we evaluated restoration programs by comparing changes in program (restored) catchments to nonprogram (cropland and native prairie) catchments. Information collected during both surveys included easily measured soil, vegetation, and morphological variables that were used to estimate the following ecosystem services: plant community quality and richness, carbon sequestration, floodwater storage, sediment and nutrient reduction, and potential wildlife habitat suitability. In this report, we evaluate the extent that these ecosystem services changed in restored wetlands relative to cropland and native prairie baselines. In most cases, our results indicate restoration activities funded by the USDA have positively influenced ecosystem services in comparison to a cropped wetland baseline; however, most benefits were only considered at a site-specific scale, and better quantification of off-site benefits associated with conservation programs will require detailed spatial data on all land areas enrolled in conservation programs.
Endangered species management and ecosystem restoration: Finding the common ground
Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.
2016-01-01
Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose strategies for moderating harmful effects of restoration while meeting the needs of both endangered species and the imperiled native marsh ecosystem.
2015-01-01
Marine protected areas are aimed to protect and conserve key ecosystems for the provision of a number of ecosystem services that are the basis for numerous economic activities. Among the several services that these areas provide, the capacity of sequestering (capturing and storing) organic carbon is a regulating service, provided mainly by mangroves and seagrasses, that gains importance as alternatives for mitigating global warming become a priority in the international agenda. The objective of this study is to value the services associated with the capture and storage of oceanic carbon, known as Blue Carbon, provided by a new network of marine protected areas in Colombia. We approach the monetary value associated to these services through the simulation of a hypothetical market for oceanic carbon. To do that, we construct a benefit function that considers the capacity of mangroves and seagrasses for capturing and storing blue carbon, and simulate scenarios for the variation of key variables such as the market carbon price, the discount rate, the natural rate of loss of the ecosystems, and the expectations about the post-Kyoto negotiations. The results indicate that the expected benefits associated to carbon capture and storage provided by these ecosystems are substantial but highly dependent on the expectations in terms of the negotiations surrounding the extension of the Kyoto Protocol and the dynamics of the carbon credit’s demand and supply. We also find that the natural loss rate of these ecosystems does not seem to have a significant effect on the annual value of the benefits. This approach constitutes one of the first attempts to value blue carbon as one of the services provided by conservation. PMID:26018814
Science, Communities, and Decision Making: How Can We Learn to Dance with Many Partners?
Liette Vasseur
2006-01-01
Ecosystem management, also called integrated management can be defined as integrated careful and skilful use, development, and protection of ecosystems using ecological, economic, social and managerial principles to sustain ecosystem integrity and desired conditions, uses, products, values, and services over the long term. Although ecosystem or conservation management...
The Missouri Ozark Forest Ecosystem Project: past, present, and future
Brian L. Brookshire; Randy Jensen; Daniel C. Dey
1997-01-01
In 1989, the Missouri Department of Conservation initiated a research project to examine the impacts of forest management practices on multiple ecosystem components. The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape experiment comparing the impacts of even-aged management, uneven-aged management, and no harvesting on a wide array of ecosystem...
Disturbance ecology of high-elevation five-needle pine ecosystems in western North America
Elizabeth M. Campbell; Robert E. Keane; Evan R. Larson; Michael P. Murray; Anna W. Schoettle; Carmen Wong
2011-01-01
This paper synthesizes existing information about the disturbance ecology of high-elevation five-needle pine ecosystems, describing disturbances regimes, how they are changing or are expected to change, and the implications for ecosystem persistence. As it provides the context for ecosystem conservation/restoration programs, we devote particular attention to wildfire...
Toward a rational exuberance for ecosystem services markets
Jeffrey D. Kline; Marisa J. Mazzotta; Trista M. Patterson
2009-01-01
Ecosystem services markets have become a popular topic among environmental policymakers and ecosystem protection advocates. Their proponents view markets as a promising new way to finance conservation of threatened ecosystems worldwide at a time when the need for additional protection seems especially critical. Their advocates in forestry promise that such markets will...
Quantifying and Mapping Habitat-Based Biodiversity Metrics Within an Ecosystem Services Framework
Ecosystem services have become a key issue of this century in resource management, conservation planning, human well-being, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with econom...
The quest for a mechanistic understanding of biodiversity–ecosystem services relationships
Duncan, Clare; Thompson, Julian R.; Pettorelli, Nathalie
2015-01-01
Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B–ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity–ecosystem functioning (B–EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B–ES research to look towards underlying B–EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B–EF findings to identify key areas for future developments in B–ES research. We highlight a means by which B–ES research may begin to identify how and when multiple underlying B–EF relationships may scale to final ES delivery and trade-offs. PMID:26468240
The quest for a mechanistic understanding of biodiversity-ecosystem services relationships.
Duncan, Clare; Thompson, Julian R; Pettorelli, Nathalie
2015-10-22
Ecosystem services (ES) approaches to biodiversity conservation are currently high on the ecological research and policy agendas. However, despite a wealth of studies into biodiversity's role in maintaining ES (B-ES relationships) across landscapes, we still lack generalities in the nature and strengths of these linkages. Reasons for this are manifold, but can largely be attributed to (i) a lack of adherence to definitions and thus a confusion between final ES and the ecosystem functions (EFs) underpinning them, (ii) a focus on uninformative biodiversity indices and singular hypotheses and (iii) top-down analyses across large spatial scales and overlooking of context-dependency. The biodiversity-ecosystem functioning (B-EF) field provides an alternate context for examining biodiversity's mechanistic role in shaping ES, focusing on species' characteristics that may drive EFs via multiple mechanisms across contexts. Despite acknowledgements of a need for B-ES research to look towards underlying B-EF linkages, the connections between these areas of research remains weak. With this review, we pull together recent B-EF findings to identify key areas for future developments in B-ES research. We highlight a means by which B-ES research may begin to identify how and when multiple underlying B-EF relationships may scale to final ES delivery and trade-offs. © 2015 The Author(s).
NASA Astrophysics Data System (ADS)
Levin, L. A.
2012-12-01
The ocean's deep continental margins (200 - 3000 m) extend for over 150,000 km and cover 45 million square km. Once considered monotonous and of limited environmental value, we now recognize that they are highly heterogeneous and that the diverse habitats and organisms provide key ecological functions and ecosystem services. Driven by increasing CO2 in the atmosphere, continental slopes are experiencing rapid changes in temperature, oxygen and pH. At the same time they are increasingly exploited for their fisheries, energy and mineral resources. This talk will highlight natural- and climate-change induced hypoxia, acidification and warming on upwelling margins. Natural variations in space and time provide lessons about the evolutionary and ecological responses of animals, communities and ecosystems to individual and multiple stressors. We ask, to what extent do they foretell the future? The overprint of stress from climate change is likely to increase ecosystem vulnerability to human disturbance from oil and gas extraction, fishing and minerals mining, with threats to biodiversity and lowered resilience. These challenges demand a global commitment to improved stewardship of deep-ocean ecosystems and resources. Sustaining the integrity of the deep ocean will require integration of oceanography, biodiversity and conservation science, technology, informatics, economics, policy, law and communication, as well as engagement of stakeholders.
Understanding Amphibian Declines Through Geographic Approaches
Gallant, Alisa
2006-01-01
Growing concern over worldwide amphibian declines warrants serious examination. Amphibians are important to the proper functioning of ecosystems and provide many direct benefits to humans in the form of pest and disease control, pharmaceutical compounds, and even food. Amphibians have permeable skin and rely on both aquatic and terrestrial ecosystems during different seasons and stages of their lives. Their association with these ecosystems renders them likely to serve as sensitive indicators of environmental change. While much research on amphibian declines has centered on mysterious causes, or on causes that directly affect humans (global warming, chemical pollution, ultraviolet-B radiation), most declines are the result of habitat loss and habitat alteration. Improving our ability to characterize, model, and monitor the interactions between environmental variables and amphibian habitats is key to addressing amphibian conservation. In 2000, the U.S. Geological Survey (USGS) initiated the Amphibian Research and Monitoring Initiative (ARMI) to address issues surrounding amphibian declines.
Majumder, Biswanath; Baraneedharan, Ulaganathan; Thiyagarajan, Saravanan; Radhakrishnan, Padhma; Narasimhan, Harikrishna; Dhandapani, Muthu; Brijwani, Nilesh; Pinto, Dency D; Prasath, Arun; Shanthappa, Basavaraja U; Thayakumar, Allen; Surendran, Rajagopalan; Babu, Govind K; Shenoy, Ashok M; Kuriakose, Moni A; Bergthold, Guillaume; Horowitz, Peleg; Loda, Massimo; Beroukhim, Rameen; Agarwal, Shivani; Sengupta, Shiladitya; Sundaram, Mallikarjun; Majumder, Pradip K
2015-02-27
Predicting clinical response to anticancer drugs remains a major challenge in cancer treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here we report the engineering of personalized tumour ecosystems that contextually conserve the tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants maintained in defined tumour grade-matched matrix support and autologous patient serum. The functional response of tumour ecosystems, engineered from 109 patients, to anticancer drugs, together with the corresponding clinical outcomes, is used to train a machine learning algorithm; the learned model is then applied to predict the clinical response in an independent validation group of 55 patients, where we achieve 100% sensitivity in predictions while keeping specificity in a desired high range. The tumour ecosystem and algorithm, together termed the CANScript technology, can emerge as a powerful platform for enabling personalized medicine.
Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems
Bond, William J.; Keeley, Jon E.
2005-01-01
It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.
Managing for Nature Conservation: from genes to ecosystems
Constance I. Millar; Lawrence D. Ford
1988-01-01
At many universities nationwide, the new discipline of conservation biology has sparked broad interest. Recently developed courses, like the field of conservation biology itself, have successfully brought together biologists from many disciplines, not just in one classroom, but united by an urgent goal–nature conservation.
Status and ecological effects of the world's largest carnivores.
Ripple, William J; Estes, James A; Beschta, Robert L; Wilmers, Christopher C; Ritchie, Euan G; Hebblewhite, Mark; Berger, Joel; Elmhagen, Bodil; Letnic, Mike; Nelson, Michael P; Schmitz, Oswald J; Smith, Douglas W; Wallach, Arian D; Wirsing, Aaron J
2014-01-10
Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth's largest carnivores and all that depends upon them, including humans.
Improving genetic conservation of tree species
Pam Allenstein; Jennifer DeWoody; David Gwaze; Valerie Hipkins; Gary Man; Anna Schoettle; Kirsty Shaw; Murphy Westwood
2017-01-01
The aim of this workshop breakout group session was to review significant gaps within each of three major themes (In-situ Conservation, Ex-situ Conservation, and Restoration of Species and Ecosystems) and to identify actionable solutions to move genetic conservation efforts forward. In order to identify solutions and action items for the tree conservation community,...
Alternative stable states and the sustainability of forests, grasslands, and agriculture
Henderson, Kirsten A.; Bauch, Chris T.; Anand, Madhur
2016-01-01
Endangered forest–grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human–environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations—especially for forests—due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human–environment mosaic ecosystems. PMID:27956605
Alternative stable states and the sustainability of forests, grasslands, and agriculture.
Henderson, Kirsten A; Bauch, Chris T; Anand, Madhur
2016-12-20
Endangered forest-grassland mosaics interspersed with expanding agriculture and silviculture occur across many parts of the world, including the southern Brazilian highlands. This natural mosaic ecosystem is thought to reflect alternative stable states driven by threshold responses of recruitment to fire and moisture regimes. The role of adaptive human behavior in such systems remains understudied, despite its pervasiveness and the fact that such ecosystems can exhibit complex dynamics. We develop a nonlinear mathematical model of coupled human-environment dynamics in mosaic systems and social processes regarding conservation and economic land valuation. Our objective is to better understand how the coupled dynamics respond to changes in ecological and social conditions. The model is parameterized with southern Brazilian data on mosaic ecology, land-use profits, and questionnaire results concerning landowner preferences and conservation values. We find that the mosaic presently resides at a crucial juncture where relatively small changes in social conditions can generate a wide variety of possible outcomes, including complete loss of mosaics; large-amplitude, long-term oscillations between land states that preclude ecosystem stability; and conservation of the mosaic even to the exclusion of agriculture/silviculture. In general, increasing the time horizon used for conservation decision making is more likely to maintain mosaic stability. In contrast, increasing the inherent conservation value of either forests or grasslands is more likely to induce large oscillations-especially for forests-due to feedback from rarity-based conservation decisions. Given the potential for complex dynamics, empirically grounded nonlinear dynamical models should play a larger role in policy formulation for human-environment mosaic ecosystems.
Solutions for ecosystem-level protection of ocean systems under climate change.
Queirós, Ana M; Huebert, Klaus B; Keyl, Friedemann; Fernandes, Jose A; Stolte, Willem; Maar, Marie; Kay, Susan; Jones, Miranda C; Hamon, Katell G; Hendriksen, Gerrit; Vermard, Youen; Marchal, Paul; Teal, Lorna R; Somerfield, Paul J; Austen, Melanie C; Barange, Manuel; Sell, Anne F; Allen, Icarus; Peck, Myron A
2016-12-01
The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans. © 2016 John Wiley & Sons Ltd.
Ricca, Mark A; Coates, Peter S; Gustafson, K Benjamin; Brussee, Brianne E; Chambers, Jeanne C; Espinosa, Shawn P; Gardner, Scott C; Lisius, Sherri; Ziegler, Pilar; Delehanty, David J; Casazza, Michael L
2018-06-01
Managers require quantitative yet tractable tools that identify areas for restoration yielding effective benefits for targeted wildlife species and the ecosystems they inhabit. As a contemporary example of high national significance for conservation, the persistence of Greater Sage-grouse (Centrocercus urophasianus) in the Great Basin is compromised by strongly interacting stressors of conifer expansion, annual grass invasion, and more frequent wildfires occurring in sagebrush ecosystems. Associated restoration treatments to a sagebrush-dominated state are often costly and may yield relatively little ecological benefit to sage-grouse if implemented without estimating how Sage-grouse may respond to treatments, or do not consider underlying processes influencing sagebrush ecosystem resilience to disturbance and resistance to invasive species. Here, we describe example applications of a spatially explicit conservation planning tool (CPT) to inform prioritization of: (1) removal of conifers (i.e., pinyon-juniper); and (2) wildfire restoration aimed at improving habitat conditions for the Bi-State Distinct Population Segment of Sage-grouse along the California-Nevada state line. The CPT measures ecological benefits to sage-grouse for a given management action through a composite index comprised of resource selection functions and estimates of abundance and space use. For pinyon-juniper removal, we simulated changes in land-cover composition following the removal of sparse trees with intact understories, and ranked treatments on the basis of changes in ecological benefits per dollar-unit of cost. For wildfire restoration, we formulated a conditional model to simulate scenarios for land cover changes (e.g., sagebrush to annual grass) given estimated fire severity and underlying ecosystem processes influencing resilience to disturbance and resistance to invasion by annual grasses. For both applications, we compared CPT rankings to land cover changes along with sagebrush resistance and resilience metrics. Model results demonstrated how the CPT can be an important step in identifying management projects that yield the highest quantifiable benefit to Sage-grouse while avoiding costly misallocation of resources, and highlight the importance of considering changes in sage-grouse ecological response and factors influencing sagebrush ecosystem resilience to disturbance and resistance to invasion. This unique framework can be adopted to help inform other management questions aimed at improving habitat for other species across sagebrush and other ecosystems. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
NASA Astrophysics Data System (ADS)
Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.
2008-11-01
Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered via appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scales, for atmospheric CO2 mitigation and supporting, and provisioning ecosystem services, respectively. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, as evidence suggests that both may be inter-linked, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategised at the national or sub-national levels to improve C storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.
Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P
2017-09-01
Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.
Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems
Bode, Michael; Atkinson, Scott; Klein, Carissa J.; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P.
2017-01-01
Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions—protection on land, protection in the ocean, restoration on land, or restoration in the ocean—to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social–ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land–ocean systems can proceed without complex modelling. PMID:28877168
Alvarez-Añorve, Mariana Y; Quesada, Mauricio; Sánchez-Azofeifa, G Arturo; Avila-Cabadilla, Luis Daniel; Gamon, John A
2012-05-01
The function of most ecosystems has been altered by human activities. To asses the recovery of plant communities, we must evaluate the recovery of plant functional traits. The seasonally dry tropical forest (SDTF), a highly threatened ecosystem, is assumed to recover relatively quickly from disturbance, but an integrated evaluation of recovery in floristic, structural, and functional terms has not been performed. In this study we aimed to (a) compare SDTF plant functional, floristic, and structural change along succession; (b) identify tree functional groups; and (c) explore the spectral properties of different successional stages. Across a SDTF successional gradient, we evaluated the change of species composition, vegetation structure, and leaf spectral reflectance and functional traits (related to water use, light acquisition, nutrient conservation, and CO(2) acquisition) of 25 abundant tree species. A complete recovery of SDTF takes longer than the time period inferred from floristic or structural data. Plant functional traits changed along succession from those that maximize photoprotection and heat dissipation in early succession, where temperature is an environmental constraint, to those that enhance light acquisition in late succession, where light may be limiting. A spectral indicator of plant photosynthetic performance (photochemical reflectance index) discriminated between early and late succession. This constitutes a foundation for further exploration of remote sensing technologies for studying tropical succession. A functional approach should be incorporated as a regular descriptor of forest succession because it provides a richer understanding of vegetation dynamics than is offered by either the floristic or structural approach alone.
Yang, Wen-yan; Zhou, Zhong-xue
2014-12-01
With the urban eco-environment increasingly deteriorating, the ecosystem services provided by modern urban agriculture are exceedingly significant to maintain and build more suitable environment in a city. Taking Xi' an metropolitan as the study area, based on remote sensing data, DEM data and the economic and social statistics data, the water and soil conservation service of the agricultural ecosystems was valued employing the remote sensing and geographic information system method, covering the reduction values on land waste, soil fertility loss and sediment loss from 2000 to 2011, and analyzed its changes in time and space. The results showed that during the study period, the total value of water and soil conservation service provided by agricultural systems in Xi' an metropolitan was increased by 46,086 and 33.008 billion yuan respectively from period of 2000 to 2005 and from 2005 to 2011. The cultivated land (including grains, vegetables and other farming land), forest (including orchard) and grassland provided higher value on the water and soil conservation service than waters and other land use. Ecosystem service value of water and soil conserva- tion provided by agriculture was gradually decreasing from the southern to the northern in Xi' an metropolitan. There were significantly positive relationship between the ecosystem service value and the vegetation coverage. Forest, orchard and grassland distributed intensively in the southern which had higher vegetation coverage than in northern where covered by more cultivated land, sparse forest and scattered orchard. There were significantly negative correlation between the urbanization level and the value of water and soil conservation. The higher level of urbanization, the lower value there was from built-up area to suburban and to countryside within Xi' an metropolitan.
Sun, Zhigao; Sun, Wenguang; Tong, Chuan; Zeng, Congsheng; Yu, Xiang; Mou, Xiaojie
2015-06-01
China has approximately 5.80×10(6)ha coastal wetlands by 2014, accounting for 10.82% of the total area of natural wetlands. Healthy coastal wetland ecosystems play an important role in guaranteeing the territory ecological security and the sustainable development of coastal zone in China. In this paper, the natural geography and the past and present status of China's coastal wetlands were introduced and the five stages (1950s-1970s, 1980s-1991, 1992-2002, 2003-2010 and 2011-present) of China's coastal wetlands conservation from the foundation of the People's Republic in 1949 to present were distinguished and reviewed. Over the past decades, China has made great efforts in coastal wetland conservation, as signified by the implementation of coastal wetland restoration projects, the construction of coastal wetland nature reserves, the practice of routine ecological monitoring and two national wetland surveys, the promulgation of local wetland conservation statutes and specific regulations, the coordination mechanism to enhance management capacity, the wide development of coastal wetland research and public participation, and the extensive communication to strengthen international cooperation. Nonetheless, six major issues recently emerged in China's coastal wetland conservation are evidently existed, including the increasing threats of pollution and human activities, the increasing adverse effects of threaten factors on ecosystem function, the increasing threats of coastal erosion and sea-level rising, the insufficient funding for coastal wetlands conservation, the imperfect legal and management system for coastal wetlands, and the insufficient education, research and international cooperation. Although the threats and pressures on coastal wetlands conservation are still apparent, the future of China's coastal wetlands looks promising since the Chinese government understands that the sustainable development in coastal zone requires new attitudes, sound policies and concerted efforts at all levels. The major strategies for future improvement of China's coastal wetland conservation include: exploring effective measures in response to major threaten factors; improving the conservation and compensation system for coastal wetlands; strengthening coastal wetland legislation and management; increasing funds for coastal wetland conservation and research; and strengthening coastal wetland education and international cooperation. Copyright © 2015 Elsevier Ltd. All rights reserved.
This dataset was produced by a joint effort of New Mexico State University (NMSU), the U.S. Environmental Protection Agency (EPA), and the U.S. Geological Survey (USGS) to support research and online mapping activities related to EnviroAtlas. Ecosystem services, i.e., services provided to humans from ecological systems, have become a key issue of this century in resource management, conservation planning, and environmental decision analysis. Mapping and quantifying ecosystem services have become strategic national interests for integrating ecology with economics to help understand the effects of human policies and actions and their subsequent impacts on both ecosystem function and human well-being. Some aspects of biodiversity are valued by humans in varied ways, and thus are important to include in any assessment that seeks to identify and quantify the benefits of ecosystems to humans. Some biodiversity metrics clearly reflect ecosystem services (e.g., abundance and diversity of harvestable species), whereas others may reflect indirect and difficult to quantify relationships to services (e.g., relevance of species diversity to ecosystem resilience, or cultural and aesthetic values). Wildlife habitat has been modeled at broad spatial scales and can be used to map a number of biodiversity metrics. We map 15 biodiversity metrics reflecting ecosystem services or other aspects of biodiversity for bird species. Metrics include all bird species richness, lists identif
Australian shellfish ecosystems: Past distribution, current status and future direction.
Gillies, Chris L; McLeod, Ian M; Alleway, Heidi K; Cook, Peter; Crawford, Christine; Creighton, Colin; Diggles, Ben; Ford, John; Hamer, Paul; Heller-Wagner, Gideon; Lebrault, Emma; Le Port, Agnès; Russell, Kylie; Sheaves, Marcus; Warnock, Bryn
2018-01-01
We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.
Positive biodiversity-productivity relationship predominant in global forests.
Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B
2016-10-14
The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.
Status of the US EPA’s National Atlas of Ecosystem Services
The US Environmental Protection Agency’s (USEPA) Ecosystem Services Research Program (ESRP) is focused on transdisciplinary research to develop tools to enable decision-makers at all levels of governance to proactively conserve ecosystems services. A major product from the ESRP ...
76 FR 61695 - Gulf of Mexico Regional Ecosystem Restoration Strategy (Preliminary)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... through Executive Order 13554 for the purpose of coordinating the long-term conservation and restoration... Ecosystem Restoration Strategy (Preliminary) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Ecosystem Restoration Strategy (Preliminary) for public review and feedback. The document is available at...
Summoning compassion to address the challenges of conservation.
Wallach, Arian D; Bekoff, Marc; Batavia, Chelsea; Nelson, Michael P; Ramp, Daniel
2018-04-27
Conservation practice is informed by science, but also reflects ethical beliefs about how we ought to value and interact with the Earth's biota. As human activities continue to drive extinctions and diminish critical life-sustaining ecosystem processes, achieving conservation goals becomes increasingly urgent. In our determination to react decisively, conservation challenges can be handled without due deliberation, particularly when wildlife individuals are sacrificed "for the greater good" of wildlife collectives (populations, species, ecosystems). With growing recognition of the widespread sentience and sapience of many nonhuman animals, standard conservation practices that categorically prioritize collectives without due consideration for the wellbeing of individuals are ethically untenable. Here we highlight three overarching ethical orientations characterizing current and historical practices in conservation that suppress compassion: instrumentalism, collectivism, and nativism. We illustrate how establishing a commitment to compassion could re-orient conservation in more ethically expansive directions, which incorporate recognition of the intrinsic value of wildlife, the sentience of nonhuman animals, and the values of novel ecosystems, introduced species and their members. A compassionate conservation approach allays practices that intentionally and unnecessarily harm wildlife individuals, while aligning with critical conservation goals. Although the urgency of achieving effective outcomes for solving major conservation problems may enhance the appeal of quick and harsh measures, the costs are too high. Continuing to justify moral indifference when causing the suffering of wildlife individuals, particularly those who possess sophisticated capacities for emotion, consciousness, and sociality, risks estranging conservation practice from prevailing, and appropriate, social values. As conservationists and compassionate beings, we must demonstrate concern for both the long-term persistence of collectives and the wellbeing of individuals, prioritizing strategies that do both. This article is protected by copyright. All rights reserved.
REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy.
Kareiva, Peter; Groves, Craig; Marvier, Michelle
2014-10-01
The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries 'to conserve the lands and waters on which all life depends'. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as 'Conservation by Design' that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted. Synthesis and applications . Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions and strategies, and in turn the evolving practice of conservation has altered the type of science sought by TNC in order to maximize its conservation effectiveness.
REVIEW: The evolving linkage between conservation science and practice at The Nature Conservancy
Kareiva, Peter; Groves, Craig; Marvier, Michelle
2014-01-01
The Nature Conservancy (TNC) was founded by ecologists as a United States land trust to purchase parcels of habitat for the purpose of scientific study. It has evolved into a global organization working in 35 countries ‘to conserve the lands and waters on which all life depends’. TNC is now the world 's largest conservation non-governmental organization (NGO), an early adopter of advances in ecological theory and a producer of new science as a result of practising conservation.The Nature Conservancy 's initial scientific innovation was the use of distributional data for rare species and ecological communities to systematically target lands for conservation. This innovation later evolved into a more rigorous approach known as ‘Conservation by Design’ that contained elements of systematic conservation planning, strategic planning and monitoring and evaluation.The next scientific transition at TNC was a move to landscape-scale projects, motivated by ideas from landscape ecology. Because the scale at which land could be set aside in areas untouched by humans fell far short of the spatial scale demanded by conservation, TNC became involved with best management practices for forestry, grazing, agriculture, hydropower and other land uses.A third scientific innovation at TNC came with the pursuit of multiobjective planning that accounts for economic and resource needs in the same plans that seek to protect biodiversity.The Millennium Ecosystem Assessment prompted TNC to become increasingly concerned with ecosystem services and the material risk to people posed by ecosystem deterioration.Finally, because conservation depends heavily upon negotiation, TNC has recently recruited social scientists, economists and communication experts. One aspect still missing, however, is a solid scientific understanding of thresholds that should be averted.Synthesis and applications. Over its 60-plus year history, scientific advances have informed The Nature Conservancy (TNC) 's actions and strategies, and in turn the evolving practice of conservation has altered the type of science sought by TNC in order to maximize its conservation effectiveness. PMID:25641980
Paradigm shifts in fish conservation: moving to the ecosystem services concept.
Cowx, I G; Portocarrero Aya, M
2011-12-01
Various factors constrain the existence and development of inland fishes and fisheries, such as pollution, habitat degradation, alien invasive species, local user conflicts, low social priority and inadequate research and funding. In many cases, however, degradation of the environment and loss of aquatic habitat are the predominant concerns for the conservation of freshwater aquatic biota. The need for concerted effort to prevent and reduce environmental degradation, as well as protection of freshwater fishes and fisheries as renewable common pool resources or entities in their own right, are the greatest challenges facing the conservation of fishes in inland waters. Unfortunately, traditional conservation practices such as regulation of exploitation, protected areas and habitat restoration have failed to arrest the alarming increase in number of threatened freshwater fish species worldwide. This paper examines the shifting paradigm of fisheries management from rule-based regulation, through fishery enhancement towards the ecosystem approach to fisheries, with reference to inland waters, and how the emerging concept of ecosystem services coupled with traditional fish conservation management practices, institutional restructuring and integrated management planning should provide a more sustainable thrust to formulation and promotion of fish conservation initiatives. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Hitchman, Sean M.; Mather, Martha E.; Smith, Joseph M.; Fencl, Jane S.
2018-01-01
Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide.
Hitchman, Sean M; Mather, Martha E; Smith, Joseph M; Fencl, Jane S
2018-04-01
Conserving native biodiversity depends on restoring functional habitats in the face of human-induced disturbances. Low-head dams are a ubiquitous human impact that degrades aquatic ecosystems worldwide. To improve our understanding of how low-head dams impact habitat and associated biodiversity, our research examined complex interactions among three spheres of the total environment. i.e., how low-head dams (anthroposphere) affect aquatic habitat (hydrosphere), and native biodiversity (biosphere) in streams and rivers. Creation of lake-like habitats upstream of low-head dams is a well-documented major impact of dams. Alterations downstream of low head dams also have important consequences, but these downstream dam effects are more challenging to detect. In a multidisciplinary field study at five dammed and five undammed sites within the Neosho River basin, KS, we tested hypotheses about two types of habitat sampling (transect and mosaic) and two types of statistical analyses (analysis of covariance and path analysis). We used fish as our example of biodiversity alteration. Our research provided three insights that can aid environmental professionals who seek to conserve and restore fish biodiversity in aquatic ecosystems threatened by human modifications. First, a mosaic approach identified habitat alterations below low-head dams (e.g. increased proportion of riffles) that were not detected using the more commonly-used transect sampling approach. Second, the habitat mosaic approach illustrated how low-head dams reduced natural variation in stream habitat. Third, path analysis, a statistical approach that tests indirect effects, showed how dams, habitat, and fish biodiversity interact. Specifically, path analysis revealed that low-head dams increased the proportion of riffle habitat below dams, and, as a result, indirectly increased fish species richness. Furthermore, the pool habitat that was created above low-head dams dramatically decreased fish species richness. As we show here, mosaic habitat sampling and path analysis can help conservation practitioners improve science-based management plans for disturbed aquatic systems worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.
Minteer, Ben A; Collins, James P
2013-01-01
Ethical obligations to animals in conservation research and management are manifold and often conflicting. Animal welfare concerns often clash with the ethical imperative to understand and conserve a population or ecosystem through research and management intervention. The accelerating pace and impact of global environmental change, especially climate change, complicates our understanding of these obligations. One example is the blurring of the distinction between ex situ (zoo- and aquarium-based) conservation and in situ (field-based) approaches as zoos and aquariums become more active in field conservation work and as researchers and managers consider more intensive interventions in wild populations and ecosystems to meet key conservation goals. These shifts, in turn, have consequences for our traditional understanding of the ethics of wildlife research and management, including our relative weighting of animal welfare and conservation commitments across rapidly evolving ex situ and in situ contexts. Although this changing landscape in many ways supports the increased use of captive wildlife in conservation-relevant research, it raises significant ethical concerns about human intervention in populations and ecosystems, including the proper role of zoos and aquariums as centers for animal research and conservation in the coming decades. Working through these concerns requires a pragmatic approach to ethical analysis, one that is able to make trade-offs among the many goods at stake (e.g., animal welfare, species viability, and ecological integrity) as we strive to protect species from further decline and extinction in this century.
ERIC Educational Resources Information Center
Torkar, Gregor
2016-01-01
Alarming declines in biodiversity have encouraged scientists to begin promoting the idea of the services ecosystems offer to humans in order to gain support for conservation. The concept of ecosystem services is designed to communicate societal dependence on various natural ecosystems. Schools play an important role in educating students to be…
Wild canids as sentinels of ecological health: a conservation medicine perspective
Aguirre, A Alonso
2009-01-01
The extinction of species across the globe is accelerating, directly or indirectly due to human activities. Biological impoverishment, habitat fragmentation, climate change, increasing toxification, and the rapid global movement of people and other living organisms have worked synergistically to diminish ecosystem function. This has resulted in unprecedented levels of disease emergence, driven by human-induced environmental degradation, which poses a threat to the survival and health of biodiversity. The emerging discipline of conservation medicine addresses these concerns through the following entities: humans; global climate; habitat destruction and alteration; biodiversity, including wildlife populations; domestic animals; and pathogens, parasites and pollutants. Furthermore, conservation medicine focuses on explicit linkages between these entities. As a crisis discipline, the usefulness of conservation medicine ultimately will depend on its applicability to solving problems. The perspectives and scientific findings of conservation medicine provide input into biomedical education; and policy and management of ecosystems, habitats and imperiled species. A sentinel species is one that has presented itself, or has been selected, to provide insight into the state (health) of an ecosystem, based on user-defined (e.g., researchers, conservationists or policymakers) objectives (e.g., disease, parasites, toxics, climate change, habitat destruction), coupled with the utility and vulnerability of this species to the perceived stress. The scientific information generated by the sentinel species should empower stakeholders and decision-makers to take mitigative action or support predictive capabilities; the "utility" of the species selected should consider its value and relevance to conservationists and to society at large (e.g., education and outreach; social sciences). Wild canids may serve as excellent sentinel species of emerging canine vector-borne diseases. Several canine vector-borne diseases or antibodies to these pathogens have been identified in wild canids including visceral leishmaniosis, Lyme disease, heartworm, hepatozoonosis and anaplasmosis to name a few. These reports are relatively recent as they relate to wildlife-domestic animal interactions, globalisation, translocations, habitat fragmentation and climate change. These pathogens and their relationship to wild canids are described herein. Further research needs to be performed to elucidate the role of the 36 extant species of wild canids in the epidemiology of canine vector-borne diseases. PMID:19426446
Wild canids as sentinels of ecological health: a conservation medicine perspective.
Aguirre, A Alonso
2009-03-26
The extinction of species across the globe is accelerating, directly or indirectly due to human activities. Biological impoverishment, habitat fragmentation, climate change, increasing toxification, and the rapid global movement of people and other living organisms have worked synergistically to diminish ecosystem function. This has resulted in unprecedented levels of disease emergence, driven by human-induced environmental degradation, which poses a threat to the survival and health of biodiversity. The emerging discipline of conservation medicine addresses these concerns through the following entities: humans; global climate; habitat destruction and alteration; biodiversity, including wildlife populations; domestic animals; and pathogens, parasites and pollutants. Furthermore, conservation medicine focuses on explicit linkages between these entities. As a crisis discipline, the usefulness of conservation medicine ultimately will depend on its applicability to solving problems. The perspectives and scientific findings of conservation medicine provide input into biomedical education; and policy and management of ecosystems, habitats and imperiled species. A sentinel species is one that has presented itself, or has been selected, to provide insight into the state (health) of an ecosystem, based on user-defined (e.g., researchers, conservationists or policymakers) objectives (e.g., disease, parasites, toxics, climate change, habitat destruction), coupled with the utility and vulnerability of this species to the perceived stress. The scientific information generated by the sentinel species should empower stakeholders and decision-makers to take mitigative action or support predictive capabilities; the "utility" of the species selected should consider its value and relevance to conservationists and to society at large (e.g., education and outreach; social sciences). Wild canids may serve as excellent sentinel species of emerging canine vector-borne diseases. Several canine vector-borne diseases or antibodies to these pathogens have been identified in wild canids including visceral leishmaniosis, Lyme disease, heartworm, hepatozoonosis and anaplasmosis to name a few. These reports are relatively recent as they relate to wildlife-domestic animal interactions, globalisation, translocations, habitat fragmentation and climate change. These pathogens and their relationship to wild canids are described herein. Further research needs to be performed to elucidate the role of the 36 extant species of wild canids in the epidemiology of canine vector-borne diseases.
Resende, F M; Fernandes, G W; Andrade, D C; Néder, H D
2017-11-01
Considering that the economic valuation of ecosystem services is a useful approach to support the conservation of natural areas, we aimed to estimate the monetary value of the benefits provided by a protected area in southeast Brazil, the Serra do Cipó National Park. We calculated the visitor's willingness to pay to conserve the ecosystems of the protected area using the contingent valuation method. Located in a region under intense anthropogenic pressure, the Serra do Cipó National Park is mostly composed of rupestrian grassland ecosystems, in addition to other Cerrado physiognomies. We conducted a survey consisting of 514 interviews with visitors of the region and found that the mean willingness to pay was R$ 7.16 year-1, which corresponds to a total of approximately R$ 716,000.00 year-1. We detected that per capita income, the household size, the level of interest in environmental issues and the place of origin influenced the likelihood that individuals are willing to contribute to the conservation of the park, as well as the value of the stated willingness to pay. This study conveys the importance of conserving rupestrian grassland and other Cerrado physiognomies to decision makers and society.
Restoration planning to guide Aichi targets in a megadiverse country.
Tobón, Wolke; Urquiza-Haas, Tania; Koleff, Patricia; Schröter, Matthias; Ortega-Álvarez, Rubén; Campo, Julio; Lindig-Cisneros, Roberto; Sarukhán, José; Bonn, Aletta
2017-10-01
Ecological restoration has become an important strategy to conserve biodiversity and ecosystems services. To restore 15% of degraded ecosystems as stipulated by the Convention on Biological Diversity Aichi target 15, we developed a prioritization framework to identify potential priority sites for restoration in Mexico, a megadiverse country. We used the most current biological and environmental data on Mexico to assess areas of biological importance and restoration feasibility at national scale and engaged stakeholders and experts throughout the process. We integrated 8 criteria into 2 components (i.e., biological importance and restoration feasibility) in a spatial multicriteria analysis and generated 11 scenarios to test the effect of assigning different component weights. The priority restoration sites were distributed across all terrestrial ecosystems of Mexico; 64.1% were in degraded natural vegetation and 6% were in protected areas. Our results provide a spatial guide to where restoration could enhance the persistence of species of conservation concern and vulnerable ecosystems while maximizing the likelihood of restoration success. Such spatial prioritization is a first step in informing policy makers and restoration planners where to focus local and large-scale restoration efforts, which should additionally incorporate social and monetary cost-benefit considerations. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
Managing Artificially Drained Low-Gradient Agricultural Headwaters for Enhanced Ecosystem Functions
Pierce, Samuel C.; Kröger, Robert; Pezeshki, Reza
2012-01-01
Large tracts of lowlands have been drained to expand extensive agriculture into areas that were historically categorized as wasteland. This expansion in agriculture necessarily coincided with changes in ecosystem structure, biodiversity, and nutrient cycling. These changes have impacted not only the landscapes in which they occurred, but also larger water bodies receiving runoff from drained land. New approaches must append current efforts toward land conservation and restoration, as the continuing impacts to receiving waters is an issue of major environmental concern. One of these approaches is agricultural drainage management. This article reviews how this approach differs from traditional conservation efforts, the specific practices of drainage management and the current state of knowledge on the ecology of drainage ditches. A bottom-up approach is utilized, examining the effects of stochastic hydrology and anthropogenic disturbance on primary production and diversity of primary producers, with special regard given to how management can affect establishment of macrophytes and how macrophytes in agricultural landscapes alter their environment in ways that can serve to mitigate non-point source pollution and promote biodiversity in receiving waters. PMID:24832519
Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I.; Midgley, Guy
2016-01-01
Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world. PMID:27227671
Bourne, Amanda; Holness, Stephen; Holden, Petra; Scorgie, Sarshen; Donatti, Camila I; Midgley, Guy
2016-01-01
Climate change adds an additional layer of complexity to existing sustainable development and biodiversity conservation challenges. The impacts of global climate change are felt locally, and thus local governance structures will increasingly be responsible for preparedness and local responses. Ecosystem-based adaptation (EbA) options are gaining prominence as relevant climate change solutions. Local government officials seldom have an appropriate understanding of the role of ecosystem functioning in sustainable development goals, or access to relevant climate information. Thus the use of ecosystems in helping people adapt to climate change is limited partially by the lack of information on where ecosystems have the highest potential to do so. To begin overcoming this barrier, Conservation South Africa in partnership with local government developed a socio-ecological approach for identifying spatial EbA priorities at the sub-national level. Using GIS-based multi-criteria analysis and vegetation distribution models, the authors have spatially integrated relevant ecological and social information at a scale appropriate to inform local level political, administrative, and operational decision makers. This is the first systematic approach of which we are aware that highlights spatial priority areas for EbA implementation. Nodes of socio-ecological vulnerability are identified, and the inclusion of areas that provide ecosystem services and ecological resilience to future climate change is innovative. The purpose of this paper is to present and demonstrate a methodology for combining complex information into user-friendly spatial products for local level decision making on EbA. The authors focus on illustrating the kinds of products that can be generated from combining information in the suggested ways, and do not discuss the nuance of climate models nor present specific technical details of the model outputs here. Two representative case studies from rural South Africa demonstrate the replicability of this approach in rural and peri-urban areas of other developing and least developed countries around the world.
NASA Astrophysics Data System (ADS)
Coetsee, Corli; Jacobs, Shayne; Govender, Navashni
2012-02-01
Nitrogen (N) is a major control on primary productivity and hence on the productivity and diversity of secondary producers and consumers. As such, ecosystem structure and function cannot be understood without a comprehensive understanding of N cycling and dynamics. This overview describes the factors that govern N distribution and dynamics and the consequences that variable N dynamics have for structure, function and thresholds of potential concern (TPCs) for management of a semiarid southern African savanna. We focus on the Kruger National Park (KNP), a relatively intact savanna, noted for its wide array of animal and plant species and a prized tourist destination. KNP's large size ensures integrity of most ecosystem processes and much can be learned about drivers of ecosystem structure and function using this park as a baseline. Our overview shows that large scale variability in substrates exists, but do not necessarily have predictable consequences for N cycling. The impact of major drivers such as fire is complex; at a landscape scale little differences in stocks and cycling were found, though at a smaller scale changes in woody cover can lead to concomitant changes in total N. Contrasting impacts of browsers and grazers on N turnover has been recorded. Due to the complexity of this ecosystem, we conclude that it will be complicated to draw up TPCs for most transformations and pools involved with the N cycle. However, we highlight in which cases the development of TPCs will be possible.
González, Ezequiel; Salvo, Adriana; Valladares, Graciela
2015-02-01
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.
50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...
50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...
50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...
50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...
50 CFR 665.220 - Hawaii coral reef ecosystem fisheries. [Reserved
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 11 2011-10-01 2011-10-01 false Hawaii coral reef ecosystem fisheries. [Reserved] 665.220 Section 665.220 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL... PACIFIC Hawaii Fisheries § 665.220 Hawaii coral reef ecosystem fisheries. [Reserved] ...
Common ground for biodiversity and ecosystem services: the “partial protection” challenge
Faith, Daniel P
2012-01-01
New global initiatives require clarity about similarities and differences between biodiversity and ecosystem services. One argument is that ecosystem services capture utilitarian values, while biodiversity captures intrinsic values. However, the concept of biodiversity equally emerges from anthropogenic use values. Measures of biodiversity indicate broad option values, and so provide different information about future uses and benefits. Such differences nevertheless can be the basis for “common ground” for biodiversity and ecosystem services. Systematic conservation planning and related frameworks acknowledge such differences through effective trade-offs and synergies among different values of society. The early work on regional biodiversity trade-offs includes a little-explored aspect that could enhance this common ground. Regional planning here takes into account the “partial protection” of biodiversity provided by some land uses. Common-ground will be promoted by better integrating the ecosystem services and biodiversity conservation offered by ecosystems at the “natural end of the spectrum” with the partial protection and other benefits/services provided by more intensively-transformed places. PMID:24358821
Louys, Julien; Corlett, Richard T; Price, Gilbert J; Hawkins, Stuart; Piper, Philip J
2014-01-01
Alarm over the prospects for survival of species in a rapidly changing world has encouraged discussion of translocation conservation strategies that move beyond the focus of ‘at-risk’ species. These approaches consider larger spatial and temporal scales than customary, with the aim of recreating functioning ecosystems through a combination of large-scale ecological restoration and species introductions. The term ‘rewilding’ has come to apply to this large-scale ecosystem restoration program. While reintroductions of species within their historical ranges have become standard conservation tools, introductions within known paleontological ranges—but outside historical ranges—are more controversial, as is the use of taxon substitutions for extinct species. Here, we consider possible conservation translocations for nine large-bodied taxa in tropical Asia-Pacific. We consider the entire spectrum of conservation translocation strategies as defined by the IUCN in addition to rewilding. The taxa considered are spread across diverse taxonomic and ecological spectra and all are listed as ‘endangered’ or ‘critically endangered’ by the IUCN in our region of study. They all have a written and fossil record that is sufficient to assess past changes in range, as well as ecological and environmental preferences, and the reasons for their decline, and they have all suffered massive range restrictions since the late Pleistocene. General principles, problems, and benefits of translocation strategies are reviewed as case studies. These allowed us to develop a conservation translocation matrix, with taxa scored for risk, benefit, and feasibility. Comparisons between taxa across this matrix indicated that orangutans, tapirs, Tasmanian devils, and perhaps tortoises are the most viable taxa for translocations. However, overall the case studies revealed a need for more data and research for all taxa, and their ecological and environmental needs. Rewilding the Asian-Pacific tropics remains a controversial conservation strategy, and would be difficult in what is largely a highly fragmented area geographically. PMID:25540698
Ecosystem change and human health: implementation economics and policy
Kramer, R. A.; Vincent, J. R.
2017-01-01
Several recent initiatives such as Planetary Health, EcoHealth and One Health claim that human health depends on flourishing natural ecosystems. However, little has been said about the operational and implementation challenges of health-oriented conservation actions on the ground. We contend that ecological–epidemiological research must be complemented by a form of implementation science that examines: (i) the links between specific conservation actions and the resulting ecological changes, and (ii) how this ecological change impacts human health and well-being, when human behaviours are considered. Drawing on the policy evaluation tradition in public economics, first, we present three examples of recent social science research on conservation interventions that affect human health. These examples are from low- and middle-income countries in the tropics and subtropics. Second, drawing on these examples, we present three propositions related to impact evaluation and non-market valuation that can help guide future multidisciplinary research on conservation and human health. Research guided by these propositions will allow stakeholders to determine how ecosystem-mediated strategies for health promotion compare with more conventional biomedical prevention and treatment strategies for safeguarding health. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438919
Jennings, Simon; Smith, Anthony D M; Fulton, Elizabeth A; Smith, David C
2014-08-01
The emergence of an ecosystem approach to fisheries (EAF) was characterized by the adoption of objectives for maintaining ecosystem health alongside those for fisheries. The EAF was expected to meet some aspirations for biodiversity conservation, but health was principally linked to sustainable use rather than lower levels of human impact. Consequently, while policies including EAF concepts identified objectives for fisheries management and biodiversity conservation, the wording often reflected unresolved societal and political debates about objectives and gave imprecise guidance on addressing inevitable trade-offs. Despite scientific progress in making trade-offs and consequences explicit, there remain substantial differences in interpretations of acceptable impact, responses to uncertainty and risk, and the use of management measures by groups accountable for fisheries management and biodiversity conservation. Within and among nations and regions, these differences are influenced by the contribution of fisheries, aquaculture, farming, and trade to food security, consumers' options, and other social, economic, and environmental factors. Notwithstanding, mutual understanding of the motivations and norms of fisheries management and biodiversity conservation groups is increasing, and interactions between these groups have likely supported more progress toward meeting their stated objectives than would have otherwise been achievable. © 2014 New York Academy of Sciences.
Ecosystem change and human health: implementation economics and policy.
Pattanayak, S K; Kramer, R A; Vincent, J R
2017-06-05
Several recent initiatives such as Planetary Health , EcoHealth and One Health claim that human health depends on flourishing natural ecosystems. However, little has been said about the operational and implementation challenges of health-oriented conservation actions on the ground. We contend that ecological-epidemiological research must be complemented by a form of implementation science that examines: (i) the links between specific conservation actions and the resulting ecological changes, and (ii) how this ecological change impacts human health and well-being, when human behaviours are considered. Drawing on the policy evaluation tradition in public economics, first, we present three examples of recent social science research on conservation interventions that affect human health. These examples are from low- and middle-income countries in the tropics and subtropics. Second, drawing on these examples, we present three propositions related to impact evaluation and non-market valuation that can help guide future multidisciplinary research on conservation and human health. Research guided by these propositions will allow stakeholders to determine how ecosystem-mediated strategies for health promotion compare with more conventional biomedical prevention and treatment strategies for safeguarding health.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-03
...] Endangered and Threatened Wildlife and Plants; Draft Conservation Strategy for the Northern Continental... availability of a draft Conservation Strategy for the Northern Continental Divide Ecosystem grizzly bear (Ursus.... ADDRESSES: An electronic copy of the draft Conservation Strategy for the Northern Continental Divide grizzly...
Ask not what nature can do for you: A critique of ecosystem services as a communication strategy
Bekessy, Sarah A.; Runge, Michael C.; Kusmanoff, Alex; Keith, David A.; Wintle, Brendan A.
2018-01-01
Given the urgent need to raise public awareness on biodiversity issues, we review the effectiveness of “ecosystem services” as a frame for promoting biodiversity conservation. Since its inception as a communications tool in the 1970s, the concept of ecosystem services has become pervasive in biodiversity policy. While the goal of securing ecosystem services is absolutely legitimate, we argue that it has had limited success as a vehicle for securing public interest and support for nature, which is crucial to securing long-term social mandates for protection. Emerging evidence suggests that focusing on ecosystem services rather than the intrinsic value of nature is unlikely to be effective in bolstering public support for nature conservation. Theory to guide effective communication about nature is urgently needed. In the mean-time, communicators should reflect on their objectives and intended audience and revisit the way nature is framed to ensure maximum resonance.
Eads, David A.; Biggins, Dean E.
2015-01-01
Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research.
NASA Astrophysics Data System (ADS)
Thorsson, Johann; Petursdottir, Thorunn
2015-04-01
Soils are one of the main fundamental bodies of terrestrial ecosystems. Soil functions contribute substantially to the ecosystem services humans and all other living beings depend on. Current soil threats are in most cases related to anthropogenic impacts and derived environmental pressures. For instance, overexploitation has in many cases damaged ecosystem resilience, affected current equilibrium and caused severe soil degradation. The resulting dysfunctional ecosystems are incapable of providing necessary ecosystem services. In such cases ecosystem restoration is necessary to restore ecosystem functions and ecological succession. The Mt. Hekla area in Iceland is an example of land suffering from accelerated erosion amplified by anthropogenic impacts. The area is 900 km2 located in South Iceland in the vicinity of the volcano Mt. Hekla. Today over 40% of the area is classified as eroded but historical documents indicate that vast part of the area were fertile and vegetated at the time of settlement, 1100 years ago; hence was able to withstand the geological disturbances occurring prior to the arrival of man as is obvious from the pristine woody patches still remaining. Severe soil degradation followed the large-scale deforestation and overgrazing that took place within the area. The initial land degradation event is considered to have occurred in the 11th century, but has been ongoing since then in several episodes. The Þjórsá glacial river flows through the area and carries enormous amounts of sediments every year. After the deforestation, the ecosystem resilience was damaged and the land left exposed to the elements. Eventually large scale wind erosion started, followed with water erosion and increased impact of freeze-thaw processes. The Soil Conservation Service of Iceland started working in the area in the early 20th century and land reclamation operations have been ongoing until this day. Considerable successes have been made as is manifested in the fact that sandstorms, once frequent, do not occur any more in the area. A governmental project (the "Mt. Hekla Forest") has been ongoing since 2007 focusing explicitly on this area. The project's main aim is to restore ecosystem services and increase the system resilience towards volcanic eruptions and other potential natural hazards. In this presentation we will discuss the causes for the ecosystem collapse in the Hekla area in further details and the social-ecological context of the restoration activities implemented.