Science.gov

Sample records for conserved actinobacteria-specific protein

  1. Structural and phylogenetic analysis of a conserved actinobacteria-specific protein (ASP1; SCO1997) from Streptomyces coelicolor

    PubMed Central

    Gao, Beile; Sugiman-Marangos, Seiji; Junop, Murray S; Gupta, Radhey S

    2009-01-01

    Background The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known. Results Here we report the first characterization of one of the 5 actinobacteria-specific proteins, ASP1 (Gene ID: SCO1997) from Streptomyces coelicolor. The X-ray crystal structure of ASP1 was determined at 2.2 Ǻ. The overall structure of ASP1 retains a similar fold to the large NP-1 family of nucleoside phosphorylase enzymes; however, the function is not related. Further comparative analysis revealed two regions expected to be important for protein function: a central, divalent metal ion binding pore, and a highly conserved elbow shaped helical region at the C-terminus. Sequence analyses revealed that ASP1 is paralogous to another actinobacteria-specific protein ASP2 (SCO1662 from S. coelicolor) and that both proteins likely carry out similar function. Conclusion Our structural data in combination with sequence analysis supports the idea that two of the 5 actinobacteria-specific proteins, ASP1 and ASP2, mediate similar function. This function is predicted to be novel since the structures of these proteins do not match any known protein with or without known function. Our results suggest that this function could involve divalent metal ion binding/transport. PMID:19515238

  2. Structural and Phylogenetic Analysis of a Conserved Actinobacteria-Specific Protein (ASP1; SCO1997) from Streptomyces Coelicolor

    SciTech Connect

    Gao, B.; Sugiman-Marangos, S; Junop, M; Gupta, R

    2009-01-01

    The Actinobacteria phylum represents one of the largest and most diverse groups of bacteria, encompassing many important and well-characterized organisms including Streptomyces, Bifidobacterium, Corynebacterium and Mycobacterium. Members of this phylum are remarkably diverse in terms of life cycle, morphology, physiology and ecology. Recent comparative genomic analysis of 19 actinobacterial species determined that only 5 genes of unknown function uniquely define this large phylum [1]. The cellular functions of these actinobacteria-specific proteins (ASP) are not known.

  3. Conserved herpesvirus protein kinases

    PubMed Central

    Gershburg, Edward; Pagano, Joseph S.

    2008-01-01

    Conserved herpesviral protein kinases (CHPKs) are a group of enzymes conserved throughout all subfamilies of Herpesviridae. Members of this group are serine/threonine protein kinases that are likely to play a conserved role in viral infection by interacting with common host cellular and viral factors; however along with a conserved role, individual kinases may have unique functions in the context of viral infection in such a way that they are only partially replaceable even by close homologues. Recent studies demonstrated that CHPKs are crucial for viral infection and suggested their involvement in regulation of numerous processes at various infection steps (primary infection, nuclear egress, tegumentation), although the mechanisms of this regulation remain unknown. Notwithstanding, recent advances in discovery of new CHPK targets, and studies of CHPK knockout phenotypes have raised their attractiveness as targets for antiviral therapy. A number of compounds have been shown to inhibit the activity of human cytomegalovirus (HCMV)-encoded UL97 protein kinase and exhibit a pronounced antiviral effect, although the same compounds are inactive against Epstein-Barr Virus (EBV)-encoded protein kinase BGLF4, illustrating the fact that low homology between the members of this group complicates development of compounds targeting the whole group, and suggesting that individualized, structure-based inhibitor design will be more effective. Determination of CHPK structures will greatly facilitate this task. PMID:17881303

  4. Protein modules conserved since LUCA.

    PubMed

    Sobolevsky, Yehoshua; Trifonov, Edward N

    2006-11-01

    Universal scale of the sequence conservation has been recently introduced based on omnipresence of the protein sequence motifs across species. A large spectrum of short sequences, up to eight residues has been found to reside in all or almost all prokaryotic organisms. By this discovery a principally novel quantitative approach is introduced to the problem of reconstruction of the last universal common ancestor (LUCA). The most conserved elements (protein modules) with defined structures and sequences harboring the omnipresent motifs are outlined in this work, by combining the sequence and protein crystal structure data. The structurally conserved modules involve 25-30 amino acid residues and have appearance of closed loops, loop-n-lock structures. This confirms earlier conclusions on the loop-fold structure of globular proteins. Many of the topmost conserved modules represent the primary closed loop prototypes, that have been derived by whole genome sequence searches. The data presented, thus, make a basis for further developments toward the earliest stages of protein evolution.

  5. Conserved initiator proteins in eukaryotes.

    PubMed

    Gavin, K A; Hidaka, M; Stillman, B

    1995-12-08

    The origin recognition complex (ORC), a multisubunit protein identified in Saccharomyces cerevisiae, binds to chromosomal replicators and is required for the initiation of cellular DNA replication. Complementary DNAs (cDNAs) encoding proteins related to the two largest subunits of ORC were cloned from various eukaryotes. The cDNAs encoding proteins related to S. cerevisiae Orc1p were cloned from the budding yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and human cells. These proteins show similarity to regulators of the S and M phases of the cell cycle. Genetic analysis of orc1+ from S. pombe reveals that it is essential for cell viability. The cDNAs encoding proteins related to S. cerevisiae Orc2p were cloned from Arabidopsis thaliana, Caenorhabditis elegans, and human cells. The human ORC-related proteins interact in vivo to form a complex. These studies studies suggest that ORC subunits are conserved and that the role of ORC is a general feature of eukaryotic DNA replication.

  6. Protein sectors: statistical coupling analysis versus conservation.

    PubMed

    Teşileanu, Tiberiu; Colwell, Lucy J; Leibler, Stanislas

    2015-02-01

    Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed "sectors". The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation.

  7. Conserved intron positions in ancient protein modules

    PubMed Central

    de Roos, Albert DG

    2007-01-01

    Background The timing of the origin of introns is of crucial importance for an understanding of early genome architecture. The Exon theory of genes proposed a role for introns in the formation of multi-exon proteins by exon shuffling and predicts the presence of conserved splice sites in ancient genes. In this study, large-scale analysis of potential conserved splice sites was performed using an intron-exon database (ExInt) derived from GenBank. Results A set of conserved intron positions was found by matching identical splice sites sequences from distantly-related eukaryotic kingdoms. Most amino acid sequences with conserved introns were homologous to consensus sequences of functional domains from conserved proteins including kinases, phosphatases, small GTPases, transporters and matrix proteins. These included ancient proteins that originated before the eukaryote-prokaryote split, for instance the catalytic domain of protein phosphatase 2A where a total of eleven conserved introns were found. Using an experimental setup in which the relation between a splice site and the ancientness of its surrounding sequence could be studied, it was found that the presence of an intron was positively correlated to the ancientness of its surrounding sequence. Intron phase conservation was linked to the conservation of the gene sequence and not to the splice site sequence itself. However, no apparent differences in phase distribution were found between introns in conserved versus non-conserved sequences. Conclusion The data confirm an origin of introns deep in the eukaryotic branch and is in concordance with the presence of introns in the first functional protein modules in an 'Exon theory of genes' scenario. A model is proposed in which shuffling of primordial short exonic sequences led to the formation of the first functional protein modules, in line with hypotheses that see the formation of introns integral to the origins of genome evolution. Reviewers This article was

  8. Protein interface conservation across structure space

    PubMed Central

    Zhang, Qiangfeng Cliff; Petrey, Donald; Norel, Raquel; Honig, Barry H.

    2010-01-01

    With the advent of Systems Biology, the prediction of whether two proteins form a complex has become a problem of increased importance. A variety of experimental techniques have been applied to the problem, but three-dimensional structural information has not been widely exploited. Here we explore the range of applicability of such information by analyzing the extent to which the location of binding sites on protein surfaces is conserved among structural neighbors. We find, as expected, that interface conservation is most significant among proteins that have a clear evolutionary relationship, but that there is a significant level of conservation even among remote structural neighbors. This finding is consistent with recent evidence that information available from structural neighbors, independent of classification, should be exploited in the search for functional insights. The value of such structural information is highlighted through the development of a new protein interface prediction method, PredUs, that identifies what residues on protein surfaces are likely to participate in complexes with other proteins. The performance of PredUs, as measured through comparisons with other methods, suggests that relationships across protein structure space can be successfully exploited in the prediction of protein-protein interactions. PMID:20534496

  9. Evolutionary Conserved Positions Define Protein Conformational Diversity

    PubMed Central

    Saldaño, Tadeo E.; Monzon, Alexander M.; Parisi, Gustavo; Fernandez-Alberti, Sebastian

    2016-01-01

    Conformational diversity of the native state plays a central role in modulating protein function. The selection paradigm sustains that different ligands shift the conformational equilibrium through their binding to highest-affinity conformers. Intramolecular vibrational dynamics associated to each conformation should guarantee conformational transitions, which due to its importance, could possibly be associated with evolutionary conserved traits. Normal mode analysis, based on a coarse-grained model of the protein, can provide the required information to explore these features. Herein, we present a novel procedure to identify key positions sustaining the conformational diversity associated to ligand binding. The method is applied to an adequate refined dataset of 188 paired protein structures in their bound and unbound forms. Firstly, normal modes most involved in the conformational change are selected according to their corresponding overlap with structural distortions introduced by ligand binding. The subspace defined by these modes is used to analyze the effect of simulated point mutations on preserving the conformational diversity of the protein. We find a negative correlation between the effects of mutations on these normal mode subspaces associated to ligand-binding and position-specific evolutionary conservations obtained from multiple sequence-structure alignments. Positions whose mutations are found to alter the most these subspaces are defined as key positions, that is, dynamically important residues that mediate the ligand-binding conformational change. These positions are shown to be evolutionary conserved, mostly buried aliphatic residues localized in regular structural regions of the protein like β-sheets and α-helix. PMID:27008419

  10. Fourier Analysis of Conservation Patterns in Protein Secondary Structure.

    PubMed

    Palaniappan, Ashok; Jakobsson, Eric

    2017-01-01

    Residue conservation is a common observation in alignments of protein families, underscoring positions important in protein structure and function. Though many methods measure the level of conservation of particular residue positions, currently we do not have a way to study spatial oscillations occurring in protein conservation patterns. It is known that hydrophobicity shows spatial oscillations in proteins, which is characterized by computing the hydrophobic moment of the protein domains. Here, we advance the study of moments of conservation of protein families to know whether there might exist spatial asymmetry in the conservation patterns of regular secondary structures. Analogous to the hydrophobic moment, the conservation moment is defined as the modulus of the Fourier transform of the conservation function of an alignment of related protein, where the conservation function is the vector of conservation values at each column of the alignment. The profile of the conservation moment is useful in ascertaining any periodicity of conservation, which might correlate with the period of the secondary structure. To demonstrate the concept, conservation in the family of potassium ion channel proteins was analyzed using moments. It was shown that the pore helix of the potassium channel showed oscillations in the moment of conservation matching the period of the α-helix. This implied that one side of the pore helix was evolutionarily conserved in contrast to its opposite side. In addition, the method of conservation moments correctly identified the disposition of the voltage sensor of voltage-gated potassium channels to form a 310 helix in the membrane.

  11. Conservation of complex knotting and slipknotting patterns in proteins.

    PubMed

    Sułkowska, Joanna I; Rawdon, Eric J; Millett, Kenneth C; Onuchic, Jose N; Stasiak, Andrzej

    2012-06-26

    While analyzing all available protein structures for the presence of knots and slipknots, we detected a strict conservation of complex knotting patterns within and between several protein families despite their large sequence divergence. Because protein folding pathways leading to knotted native protein structures are slower and less efficient than those leading to unknotted proteins with similar size and sequence, the strict conservation of the knotting patterns indicates an important physiological role of knots and slipknots in these proteins. Although little is known about the functional role of knots, recent studies have demonstrated a protein-stabilizing ability of knots and slipknots. Some of the conserved knotting patterns occur in proteins forming transmembrane channels where the slipknot loop seems to strap together the transmembrane helices forming the channel.

  12. Conservation and diversification of Msx protein in metazoan evolution.

    PubMed

    Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun

    2008-01-01

    Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family

  13. RNA polymerase II conserved protein domains as platforms for protein-protein interactions

    PubMed Central

    García-López, M Carmen

    2011-01-01

    RNA polymerase II establishes many protein-protein interactions with transcriptional regulators to coordinate gene expression, but little is known about protein domains involved in the contact with them. We use a new approach to look for conserved regions of the RNA pol II of S. cerevisiae located at the surface of the structure of the complex, hypothesizing that they might be involved in the interaction with transcriptional regulators. We defined five different conserved domains and demonstrate that all of them make contact with transcriptional regulators. PMID:21922063

  14. Sequence and structure conservation in a protein core.

    PubMed

    Rodionov, M A; Blundell, T L

    1998-11-15

    In order to study structural aspects of sequence conservation in families of homologous proteins, we have analyzed structurally aligned sequences of 585 proteins grouped into 128 homologous families. The conservation of a residue in a family is defined as the average residue similarity in a given position of aligned sequences. The residue similarities were expressed in the form of log-odd substitution tables that take into account the environments of amino acids in three-dimensional structures. The protein core is defined as those residues that have less then 7% solvent accessibility. The density of a protein core is described in terms of atom packing, which is investigated as a criterion for residue substitution and conservation. Although there is no significant correlation between sequence conservation and average atom packing around nonpolar residues such as leucine, valine and isoleucine, a significant correlation is observed for polar residues in the protein core. This may be explained by the hydrogen bonds in which polar residues are involved; the better their protection from water access the more stable should be the structure in that position.

  15. CDD: a Conserved Domain Database for protein classification.

    PubMed

    Marchler-Bauer, Aron; Anderson, John B; Cherukuri, Praveen F; DeWeese-Scott, Carol; Geer, Lewis Y; Gwadz, Marc; He, Siqian; Hurwitz, David I; Jackson, John D; Ke, Zhaoxi; Lanczycki, Christopher J; Liebert, Cynthia A; Liu, Chunlei; Lu, Fu; Marchler, Gabriele H; Mullokandov, Mikhail; Shoemaker, Benjamin A; Simonyan, Vahan; Song, James S; Thiessen, Paul A; Yamashita, Roxanne A; Yin, Jodie J; Zhang, Dachuan; Bryant, Stephen H

    2005-01-01

    The Conserved Domain Database (CDD) is the protein classification component of NCBI's Entrez query and retrieval system. CDD is linked to other Entrez databases such as Proteins, Taxonomy and PubMed, and can be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. CD-Search, which is available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, is a fast, interactive tool to identify conserved domains in new protein sequences. CD-Search results for protein sequences in Entrez are pre-computed to provide links between proteins and domain models, and computational annotation visible upon request. Protein-protein queries submitted to NCBI's BLAST search service at http://www.ncbi.nlm.nih.gov/BLAST are scanned for the presence of conserved domains by default. While CDD started out as essentially a mirror of publicly available domain alignment collections, such as SMART, Pfam and COG, we have continued an effort to update, and in some cases replace these models with domain hierarchies curated at the NCBI. Here, we report on the progress of the curation effort and associated improvements in the functionality of the CDD information retrieval system.

  16. Conservation of Telomere protein complexes: Shuffling through Evolution

    PubMed Central

    Linger, Benjamin R.; Price, Carolyn M.

    2009-01-01

    The rapid evolution of telomere proteins has hindered identification of orthologs from diverse species and created the impression that certain groups of eukaryotes have largely non-overlapping sets of telomere proteins. However, the recent identification of additional telomere proteins from various model organisms has dispelled this notion by expanding our understanding of the composition, architecture and range of telomere protein complexes present in individual species. It is now apparent that versions of the budding yeast CST complex and mammalian shelterin are present in multiple phyla. While the precise subunit composition and architecture of these complexes vary between species, the general function is often conserved. Despite the overall conservation of telomere protein complexes, there is still considerable species specific variation, with some organisms having lost a particular subunit or even an entire complex. In some cases, complex components appear to have migrated between the telomere and the telomerase RNP. Finally, gene duplication has created telomere protein paralogs with novel functions. While one paralog may be part of a conserved telomere protein complex and have the expected function, the other paralog may serve in a completely different aspect of telomere biology. PMID:19839711

  17. Deep conservation of human protein tandem repeats within the eukaryotes.

    PubMed

    Schaper, Elke; Gascuel, Olivier; Anisimova, Maria

    2014-05-01

    Tandem repeats (TRs) are a major element of protein sequences in all domains of life. They are particularly abundant in mammals, where by conservative estimates one in three proteins contain a TR. High generation-scale duplication and deletion rates were reported for nucleic TR units. However, it is not known whether protein TR units can also be frequently lost or gained providing a source of variation for rapid adaptation of protein function, or alternatively, tend to have conserved TR unit configurations over long evolutionary times. To obtain a systematic picture, we performed a proteome-wide analysis of the mode of evolution for human protein TRs. For this purpose, we propose a novel method for the detection of orthologous TRs based on circular profile hidden Markov models. For all detected TRs, we reconstructed bispecies TR unit phylogenies across 61 eukaryotes ranging from human to yeast. Moreover, we performed additional analyses to correlate functional and structural annotations of human TRs with their mode of evolution. Surprisingly, we find that the vast majority of human TRs are ancient, with TR unit number and order preserved intact since distant speciation events. For example, ≥ 61% of all human TRs have been strongly conserved at least since the root of all mammals, approximately 300 Ma. Further, we find no human protein TR that shows evidence for strong recent duplications and deletions. The results are in contrast to the high generation-scale mutability of nucleic TRs. Presumably, most protein TRs fold into stable and conserved structures that are indispensable for the function of the TR-containing protein. All of our data and results are available for download from http://www.atgc-montpellier.fr/TRE.

  18. Short Communication Molecular conservation of the mammalian leptin protein.

    PubMed

    Gabriel, J E; Lidani, K C F

    2015-01-16

    In this study, we comparatively assessed multiple sequences of the leptin protein from different animal species to establish new insights into conservation degree of biological sequences and evolutionary biology among mammals using computational biology tools. First, amino acid sequences of the leptin protein from Homo sapiens (human, P41159), Sus scrofa (wild pig, Q29406), Felis catus (domestic cat, Q29406), Rattus norvegicus (rat, P50596), and Mus musculus (mouse, P41160) were randomly searched in the high-quality annotated and non-redundant protein sequence database UniProtKB/Swiss-Prot. A dendogram showing the evolutionary relationships among specimens was constructed from the sequences of interest using the Mega 6.0 software with the neighbor-joining method. The resulting tree presenting the evolutionary relationships among specimens inferred from amino acid sequences of the leptin protein in mammals demonstrated 2 main branches: 1 cluster including the rat and mouse species (0.02) and a second cluster containing both wild pig and domestic cat species grouped in a sub-branch (0.04 and 0.06, respectively), linking them to the human sequence (0.08). These findings were reinforced by comparing estimates of evolutionary divergence among leptin sequences analyzed. Based on comparative analyses of multiple sequence alignments in the present study, there was a stronger conservation degree of the leptin protein in evolutionarily close species and several conservative changes along the sequences of interest, revealing information regarding the evolutionary biology among mammals.

  19. Functional and Structural Analysis of the Conserved EFhd2 Protein

    PubMed Central

    Acosta, Yancy Ferrer; Rodríguez Cruz, Eva N.; Vaquer, Ana del C.; Vega, Irving E.

    2013-01-01

    EFhd2 is a novel protein conserved from C. elegans to H. sapiens. This novel protein was originally identified in cells of the immune and central nervous systems. However, it is most abundant in the central nervous system, where it has been found associated with pathological forms of the microtubule-associated protein tau. The physiological or pathological roles of EFhd2 are poorly understood. In this study, a functional and structural analysis was carried to characterize the molecular requirements for EFhd2’s calcium binding activity. The results showed that mutations of a conserved aspartate on either EF-hand motif disrupted the calcium binding activity, indicating that these motifs work in pair as a functional calcium binding domain. Furthermore, characterization of an identified single-nucleotide polymorphisms (SNP) that introduced a missense mutation indicates the importance of a conserved phenylalanine on EFhd2 calcium binding activity. Structural analysis revealed that EFhd2 is predominantly composed of alpha helix and random coil structures and that this novel protein is thermostable. EFhd2’s thermo stability depends on its N-terminus. In the absence of the N-terminus, calcium binding restored EFhd2’s thermal stability. Overall, these studies contribute to our understanding on EFhd2 functional and structural properties, and introduce it into the family of canonical EF-hand domain containing proteins. PMID:22973849

  20. Conservation of protein structure over four billion years

    PubMed Central

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M.; Gaucher, Eric A.; Sanchez-Ruiz, Jose M.; Gavira, Jose A.

    2013-01-01

    SUMMARY Little is known with certainty about the evolution of protein structures in general and the degree of protein structure conservation over planetary time scales in particular. Here we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating back up to ~4 billion years before present. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold while only small structural changes have occurred over 4 billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods of time and is followed by long periods of structural stasis. PMID:23932589

  1. Conservation of protein structure over four billion years.

    PubMed

    Ingles-Prieto, Alvaro; Ibarra-Molero, Beatriz; Delgado-Delgado, Asuncion; Perez-Jimenez, Raul; Fernandez, Julio M; Gaucher, Eric A; Sanchez-Ruiz, Jose M; Gavira, Jose A

    2013-09-03

    Little is known about the evolution of protein structures and the degree of protein structure conservation over planetary time scales. Here, we report the X-ray crystal structures of seven laboratory resurrections of Precambrian thioredoxins dating up to approximately four billion years ago. Despite considerable sequence differences compared with extant enzymes, the ancestral proteins display the canonical thioredoxin fold, whereas only small structural changes have occurred over four billion years. This remarkable degree of structure conservation since a time near the last common ancestor of life supports a punctuated-equilibrium model of structure evolution in which the generation of new folds occurs over comparatively short periods and is followed by long periods of structural stasis.

  2. Genomic analysis of membrane protein families: abundance and conserved motifs

    PubMed Central

    Liu, Yang; Engelman, Donald M; Gerstein, Mark

    2002-01-01

    Background Polytopic membrane proteins can be related to each other on the basis of the number of transmembrane helices and sequence similarities. Building on the Pfam classification of protein domain families, and using transmembrane-helix prediction and sequence-similarity searching, we identified a total of 526 well-characterized membrane protein families in 26 recently sequenced genomes. To this we added a clustering of a number of predicted but unclassified membrane proteins, resulting in a total of 637 membrane protein families. Results Analysis of the occurrence and composition of these families revealed several interesting trends. The number of assigned membrane protein domains has an approximately linear relationship to the total number of open reading frames (ORFs) in 26 genomes studied. Caenorhabditis elegans is an apparent outlier, because of its high representation of seven-span transmembrane (7-TM) chemoreceptor families. In all genomes, including that of C. elegans, the number of distinct membrane protein families has a logarithmic relation to the number of ORFs. Glycine, proline, and tyrosine locations tend to be conserved in transmembrane regions within families, whereas isoleucine, valine, and methionine locations are relatively mutable. Analysis of motifs in putative transmembrane helices reveals that GxxxG and GxxxxxxG (which can be written GG4 and GG7, respectively; see Materials and methods) are among the most prevalent. This was noted in earlier studies; we now find these motifs are particularly well conserved in families, however, especially those corresponding to transporters, symporters, and channels. Conclusions We carried out a genome-wide analysis on patterns of the classified polytopic membrane protein families and analyzed the distribution of conserved amino acids and motifs in the transmembrane helix regions in these families. PMID:12372142

  3. Functional conservation of an ancestral Pellino protein in helminth species

    PubMed Central

    Cluxton, Christopher D.; Caffrey, Brian E.; Kinsella, Gemma K.; Moynagh, Paul N.; Fares, Mario A.; Fallon, Padraic G.

    2015-01-01

    The immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster. The TLR pathway is ubiquitous and controls sensitivity to pathogen-associated molecular patterns (PAMPs) in eukaryotes. There is, however, a marked absence of this pathway from the plathyhelminthes, with the exception of the Pellino protein family, which is present in a number of species from this phylum. Helminth Pellino proteins are conserved having high similarity, both at the sequence and predicted structural protein level, with that of human Pellino proteins. Pellino from a model helminth, Schistosoma mansoni Pellino (SmPellino), was shown to bind and poly-ubiquitinate human IRAK-1, displaying E3 ligase activity consistent with its human counterparts. When transfected into human cells SmPellino is functional, interacting with signaling proteins and modulating mammalian signaling pathways. Strict conservation of a protein family in species lacking its niche signalling pathway is rare and provides a platform to examine the ancestral functions of Pellino proteins that may translate into novel mechanisms of immune regulation in humans. PMID:26120048

  4. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces.

    PubMed

    Aytuna, A Selim; Gursoy, Attila; Keskin, Ozlem

    2005-06-15

    Elucidation of the full network of protein-protein interactions is crucial for understanding of the principles of biological systems and processes. Thus, there is a need for in silico methods for predicting interactions. We present a novel algorithm for automated prediction of protein-protein interactions that employs a unique bottom-up approach combining structure and sequence conservation in protein interfaces. Running the algorithm on a template dataset of 67 interfaces and a sequentially non-redundant dataset of 6170 protein structures, 62 616 potential interactions are predicted. These interactions are compared with the ones in two publicly available interaction databases (Database of Interacting Proteins and Biomolecular Interaction Network Database) and also the Protein Data Bank. A significant number of predictions are verified in these databases. The unverified ones may correspond to (1) interactions that are not covered in these databases but known in literature, (2) unknown interactions that actually occur in nature and (3) interactions that do not occur naturally but may possibly be realized synthetically in laboratory conditions. Some unverified interactions, supported significantly with studies found in the literature, are discussed. http://gordion.hpc.eng.ku.edu.tr/prism agursoy@ku.edu.tr; okeskin@ku.edu.tr.

  5. Conservation of ciliary proteins in plants with no cilia

    PubMed Central

    2011-01-01

    Background Eukaryotic cilia are complex, highly conserved microtubule-based organelles with a broad phylogenetic distribution. Cilia were present in the last eukaryotic common ancestor and many proteins involved in cilia function have been conserved through eukaryotic diversification. However, cilia have also been lost multiple times in different lineages, with at least two losses occurring within the land plants. Whereas all non-seed plants produce cilia for motility of male gametes, some gymnosperms and all angiosperms lack cilia. During these evolutionary losses, proteins with ancestral ciliary functions may be lost or co-opted into different functions. Results Here we identify a core set of proteins with an inferred ciliary function that are conserved in ciliated eukaryotic species. We interrogate this genomic dataset to identify proteins with a predicted ancestral ciliary role that have been maintained in non-ciliated land plants. In support of our prediction, we demonstrate that several of these proteins have a flagellar localisation in protozoan trypanosomes. The phylogenetic distribution of these genes within the land plants indicates evolutionary scenarios of either sub- or neo-functionalisation and expression data analysis shows that these genes are highly expressed in Arabidopsis thaliana pollen cells. Conclusions A large number of proteins possess a phylogenetic ciliary profile indicative of ciliary function. Remarkably, many genes with an ancestral ciliary role are maintained in non-ciliated land plants. These proteins have been co-opted to perform novel functions, most likely before the loss of cilia, some of which appear related to the formation of the male gametes. PMID:22208660

  6. Role of conservative mutations in protein multi-property adaptation

    PubMed Central

    Rodriguez-Larrea, David; Perez-Jimenez, Raul; Sanchez-Romero, Inmaculada; Delgado-Delgado, Asuncion; Fernandez, Julio M.; Sanchez-Ruiz, Jose M.

    2010-01-01

    Protein physicochemical properties must undergo complex changes during evolution, as a response to modifications in the organism environment, the result of the proteins taking up new roles or because of the need to cope with the evolution of molecular interacting partners. Recent work has emphasized the role of stability and stability–function trade-offs in these protein adaptation processes. In the present study, on the other hand, we report that combinations of a few conservative, high-frequency-of-fixation mutations in the thioredoxin molecule lead to largely independent changes in both stability and the diversity of catalytic mechanisms, as revealed by single-molecule atomic force spectroscopy. Furthermore, the changes found are evolutionarily significant, as they combine typically hyperthermophilic stability enhancements with modulations in function that span the ranges defined by the quite different catalytic patterns of thioredoxins from bacterial and eukaryotic origin. These results suggest that evolutionary protein adaptation may use, in some cases at least, the potential of conservative mutations to originate a multiplicity of evolutionarily allowed mutational paths leading to a variety of protein modulation patterns. In addition the results support the feasibility of using evolutionary information to achieve protein multi-feature optimization, an important biotechnological goal. PMID:20446918

  7. Conserved Cysteine Residues Provide a Protein-Protein Interaction Surface in Dual Oxidase (DUOX) Proteins*

    PubMed Central

    Meitzler, Jennifer L.; Hinde, Sara; Bánfi, Botond; Nauseef, William M.; Ortiz de Montellano, Paul R.

    2013-01-01

    Intramolecular disulfide bond formation is promoted in oxidizing extracellular and endoplasmic reticulum compartments and often contributes to protein stability and function. DUOX1 and DUOX2 are distinguished from other members of the NOX protein family by the presence of a unique extracellular N-terminal region. These peroxidase-like domains lack the conserved cysteines that confer structural stability to mammalian peroxidases. Sequence-based structure predictions suggest that the thiol groups present are solvent-exposed on a single protein surface and are too distant to support intramolecular disulfide bond formation. To investigate the role of these thiol residues, we introduced four individual cysteine to glycine mutations in the peroxidase-like domains of both human DUOXs and purified the recombinant proteins. The mutations caused little change in the stabilities of the monomeric proteins, supporting the hypothesis that the thiol residues are solvent-exposed and not involved in disulfide bonds that are critical for structural integrity. However, the ability of the isolated hDUOX1 peroxidase-like domain to dimerize was altered, suggesting a role for these cysteines in protein-protein interactions that could facilitate homodimerization of the peroxidase-like domain or, in the full-length protein, heterodimeric interactions with a maturation protein. When full-length hDUOX1 was expressed in HEK293 cells, the mutations resulted in decreased H2O2 production that correlated with a decreased amount of the enzyme localized to the membrane surface rather than with a loss of activity or with a failure to synthesize the mutant proteins. These results support a role for the cysteine residues in intermolecular disulfide bond formation with the DUOX maturation factor DUOXA1. PMID:23362256

  8. Evolutionary conservation of heavy chain protein transfer between glycosaminoglycans.

    PubMed

    Sanggaard, Kristian W; Hansen, Lone; Scavenius, Carsten; Wisniewski, Hans-Georg; Kristensen, Torsten; Thøgersen, Ida B; Enghild, Jan J

    2010-04-01

    The bikunin proteins are composed of heavy chains (HCs) covalently linked to a chondroitin sulfate chain originating from Ser-10 of bikunin. Tumor necrosis factor stimulated gene-6 protein (TSG-6)/heavy chain 2 (HC2) cleaves this unique cross-link and transfers the HCs to hyaluronan and other glycosaminoglycans via a covalent HC*TSG-6 intermediate. In the present study, we have investigated if this reaction is evolutionary conserved based on the hypothesis that it is of fundamental importance. The results revealed that plasma/serum samples from mammal, bird, and reptile were able to form TSG-6 complexes suggesting the presence of proteins with the same function as the human bikunin proteins. To substantiate this, the complex forming protein from Gallus gallus (Gg) plasma was purified and identified as a Gg homolog of human HC2*bikunin. In addition, Gg pre-alpha-inhibitor and smaller amount of high molecular weight forms composed of bikunin and two HCs were purified. Like the human bikunin proteins, the purified Gg proteins were all stabilized by a protein-glycosaminoglycan-protein cross-link, i.e. the HCs were covalently attached to a chondroitin sulfate originating from bikunin. Furthermore, the complex formed between Gg HC2*bikunin and human TSG-6 appeared to be identical to that of the human proteins. Akin to human, Gg HC2 was further transferred to hyaluronan when present, and when incubated in vitro, Gg pre-alpha-inhibitor and TSG-6, failed to form the intermediate covalent complex, essential for HC transfer. Significantly, Gg HC2, analogous to human HC2, promoted complex formation between human HC3 and human TSG-6, substantiating the evolutionary conservation of these interactions. The present study demonstrates that the unique interactions between bikunin proteins, glycosaminoglycans, and TSG-6 are evolutionary conserved, emphasizing the physiological importance of the TSG-6/HC2-mediated HC-transfer reaction. In addition, the data show that the evolution of

  9. Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera

    PubMed Central

    Zhu, Jiao; Iovinella, Immacolata; Dani, Francesca Romana; Liu, Yu-Ling; Huang, Ling-Qiao; Liu, Yang; Wang, Chen-Zhu; Pelosi, Paolo; Wang, Guirong

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are endowed with several different functions besides being carriers for pheromones and odorants. Based on a previous report of a CSP acting as surfactant in the proboscis of the moth Helicoverpa armigera, we revealed the presence of orthologue proteins in two other moths Plutella xylostella and Chilo suppressalis, as well as two butterflies Papilio machaon and Pieris rapae, using immunodetection and proteomic analysis. The unusual conservation of these proteins across large phylogenetic distances indicated a common specific function for these CSPs. This fact prompted us to search for other functions of these proteins and discovered that CSPs are abundantly expressed in the eyes of H. armigera and possibly involved as carriers for carotenoids and visual pigments. This hypothesis is supported by ligand-binding experiments and docking simulations with retinol and β-carotene. This last orange pigment, occurring in many fruits and vegetables, is an antioxidant and the precursor of visual pigments. We propose that structurally related CSPs solubilise nutritionally important carotenoids in the proboscis, while they act as carriers of both β-carotene and its derived products 3-hydroxyretinol and 3-hydroxyretinal in the eye. The use of soluble olfactory proteins, such as CSPs, as carriers for visual pigments in insects, here reported for the first time, parallels the function of retinol-binding protein in vertebrates, a lipocalin structurally related to vertebrate odorant-binding proteins. PMID:27877091

  10. Conserved Odorant-Binding Proteins from Aphids and Eavesdropping Predators

    PubMed Central

    Vandermoten, Sophie; Francis, Frédéric; Haubruge, Eric; Leal, Walter S.

    2011-01-01

    Background The sesquiterpene (E)-ß-farnesene is the main component of the alarm pheromone system of various aphid species studied to date, including the English grain aphid, Sitobion avenae. Aphid natural enemies, such as the marmalade hoverfly Episyrphus balteatus and the multicolored Asian lady beetle Harmonia axyridis, eavesdrop on aphid chemical communication and utilize (E)-ß-farnesene as a kairomone to localize their immediate or offspring preys. These aphid-predator systems are important models to study how the olfactory systems of distant insect taxa process the same chemical signal. We postulated that odorant-binding proteins (OBPs), which are highly expressed in insect olfactory tissues and involved in the first step of odorant reception, have conserved regions involved in binding (E)-ß-farnesene. Methodology We cloned OBP genes from the English grain aphid and two major predators of this aphid species. We then expressed these proteins and compare their binding affinities to the alarm pheromone/kairomone. By using a fluorescence reporter, we tested binding of (E)-ß-farnesene and other electrophysiologically and behaviorally active compounds, including a green leaf volatile attractant. Conclusion We found that OBPs from disparate taxa of aphids and their predators are highly conserved proteins, with apparently no orthologue genes in other insect species. Properly folded, recombinant proteins from the English grain aphid, SaveOBP3, and the marmalade hoverfly, EbalOBP3, specifically bind (E)-ß-farnesene with apparent high affinity. For the first time we have demonstrated that insect species belonging to distinct Orders have conserved OBPs, which specifically bind a common semiochemical and has no binding affinity for related compounds. PMID:21912599

  11. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation

    NASA Astrophysics Data System (ADS)

    Santos, André A.; Venceslau, Sofia S.; Grein, Fabian; Leavitt, William D.; Dahl, Christiane; Johnston, David T.; Pereira, Inês A. C.

    2015-12-01

    Microbial sulfate reduction has governed Earth’s biogeochemical sulfur cycle for at least 2.5 billion years. However, the enzymatic mechanisms behind this pathway are incompletely understood, particularly for the reduction of sulfite—a key intermediate in the pathway. This critical reaction is performed by DsrAB, a widespread enzyme also involved in other dissimilatory sulfur metabolisms. Using in vitro assays with an archaeal DsrAB, supported with genetic experiments in a bacterial system, we show that the product of sulfite reduction by DsrAB is a protein-based trisulfide, in which a sulfite-derived sulfur is bridging two conserved cysteines of DsrC. Physiological studies also reveal that sulfate reduction rates are determined by cellular levels of DsrC. Dissimilatory sulfate reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation.

  12. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation.

    PubMed

    Santos, André A; Venceslau, Sofia S; Grein, Fabian; Leavitt, William D; Dahl, Christiane; Johnston, David T; Pereira, Inês A C

    2015-12-18

    Microbial sulfate reduction has governed Earth's biogeochemical sulfur cycle for at least 2.5 billion years. However, the enzymatic mechanisms behind this pathway are incompletely understood, particularly for the reduction of sulfite-a key intermediate in the pathway. This critical reaction is performed by DsrAB, a widespread enzyme also involved in other dissimilatory sulfur metabolisms. Using in vitro assays with an archaeal DsrAB, supported with genetic experiments in a bacterial system, we show that the product of sulfite reduction by DsrAB is a protein-based trisulfide, in which a sulfite-derived sulfur is bridging two conserved cysteines of DsrC. Physiological studies also reveal that sulfate reduction rates are determined by cellular levels of DsrC. Dissimilatory sulfate reduction couples the four-electron reduction of the DsrC trisulfide to energy conservation.

  13. Domain conservation in several volvocalean cell wall proteins.

    PubMed

    Woessner, J P; Molendijk, A J; van Egmond, P; Klis, F M; Goodenough, U W; Haring, M A

    1994-11-01

    Based on our previous work demonstrating that (SerPro)x epitopes are common to extensin-like cell wall proteins in Chlamydomonas' reinhardtii, we looked for similar proteins in the distantly related species C. eugametos. Using a polyclonal antiserum against a (SerPro)10 oligopeptide, we found distinct sets of stage-specific polypeptides immunoprecipitated from in vitro translations of C. eugametos RNA. Screening of a C. eugametos cDNA expression library with the antiserum led to the isolation of a cDNA (WP6) encoding a (SerPro)x-rich multidomain wall protein. Analysis of a similarly selected cDNA (VSP-3) from a C. reinhardtii cDNA expression library revealed that it also coded for a (SerPro)x-rich multidomain wall protein. The C-terminal rod domains of VSP-3 and WP6 are highly homologous, while the N-terminal domains are dissimilar; however, the N-terminal domain of VSP-3 is homologous to the globular domain of a cell wall protein from Volvox carteri. Exon shuffling might be responsible for this example of domain conservation over 350 million years of volvocalean cell wall protein evolution.

  14. Evolutionary conservation and diversification of Rh family genes and proteins

    PubMed Central

    Huang, Cheng-Han; Peng, Jianbin

    2005-01-01

    Rhesus (Rh) proteins were first identified in human erythroid cells and recently in other tissues. Like ammonia transporter (Amt) proteins, their only homologues, Rh proteins have the 12 transmembrane-spanning segments characteristic of transporters. Many think Rh and Amt proteins transport the same substrate, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{3}/{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document}, whereas others think that Rh proteins transport CO2 and Amt proteins NH3. In the latter view, Rh and Amt are different biological gas channels. To reconstruct the phylogeny of the Rh family and study its coexistence with and relationship to Amt in depth, we analyzed 111 Rh genes and 260 Amt genes. Although Rh and Amt are found together in organisms as diverse as unicellular eukaryotes and sea squirts, Rh genes apparently arose later, because they are rare in prokaryotes. However, Rh genes are prominent in vertebrates, in which Amt genes disappear. In organisms with both types of genes, Rh had apparently diverged away from Amt rapidly and then evolved slowly over a long period. Functionally divergent amino acid sites are clustered in transmembrane segments and around the gas-conducting lumen recently identified in Escherichia coli AmtB, in agreement with Rh proteins having new substrate specificity. Despite gene duplications and mutations, the Rh paralogous groups all have apparently been subject to strong purifying selection indicating functional conservation. Genes encoding the classical Rh proteins in mammalian red cells show higher nucleotide substitution rates at nonsynonymous codon positions than other Rh genes, a finding that suggests a possible role for these proteins in red cell morphogenetic evolution. PMID:16227429

  15. Evolutionary conservation and diversification of Rh family genes and proteins.

    PubMed

    Huang, Cheng-Han; Peng, Jianbin

    2005-10-25

    Rhesus (Rh) proteins were first identified in human erythroid cells and recently in other tissues. Like ammonia transporter (Amt) proteins, their only homologues, Rh proteins have the 12 transmembrane-spanning segments characteristic of transporters. Many think Rh and Amt proteins transport the same substrate, NH(3)/NH(4)(+), whereas others think that Rh proteins transport CO(2) and Amt proteins NH(3). In the latter view, Rh and Amt are different biological gas channels. To reconstruct the phylogeny of the Rh family and study its coexistence with and relationship to Amt in depth, we analyzed 111 Rh genes and 260 Amt genes. Although Rh and Amt are found together in organisms as diverse as unicellular eukaryotes and sea squirts, Rh genes apparently arose later, because they are rare in prokaryotes. However, Rh genes are prominent in vertebrates, in which Amt genes disappear. In organisms with both types of genes, Rh had apparently diverged away from Amt rapidly and then evolved slowly over a long period. Functionally divergent amino acid sites are clustered in transmembrane segments and around the gas-conducting lumen recently identified in Escherichia coli AmtB, in agreement with Rh proteins having new substrate specificity. Despite gene duplications and mutations, the Rh paralogous groups all have apparently been subject to strong purifying selection indicating functional conservation. Genes encoding the classical Rh proteins in mammalian red cells show higher nucleotide substitution rates at nonsynonymous codon positions than other Rh genes, a finding that suggests a possible role for these proteins in red cell morphogenetic evolution.

  16. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes.

    PubMed

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-11-01

    Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.

  17. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    PubMed

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  18. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life

    PubMed Central

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-01-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. PMID:27501943

  19. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    PubMed

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. A conserved patch of hydrophobic amino acids modulates Myb activity by mediating protein-protein interactions.

    PubMed

    Dukare, Sandeep; Klempnauer, Karl-Heinz

    2016-07-01

    The transcription factor c-Myb plays a key role in the control of proliferation and differentiation in hematopoietic progenitor cells and has been implicated in the development of leukemia and certain non-hematopoietic tumors. c-Myb activity is highly dependent on the interaction with the coactivator p300 which is mediated by the transactivation domain of c-Myb and the KIX domain of p300. We have previously observed that conservative valine-to-isoleucine amino acid substitutions in a conserved stretch of hydrophobic amino acids have a profound effect on Myb activity. Here, we have explored the function of the hydrophobic region as a mediator of protein-protein interactions. We show that the hydrophobic region facilitates Myb self-interaction and binding of the histone acetyl transferase Tip60, a previously identified Myb interacting protein. We show that these interactions are affected by the valine-to-isoleucine amino acid substitutions and suppress Myb activity by interfering with the interaction of Myb and the KIX domain of p300. Taken together, our work identifies the hydrophobic region in the Myb transactivation domain as a binding site for homo- and heteromeric protein interactions and leads to a picture of the c-Myb transactivation domain as a composite protein binding region that facilitates interdependent protein-protein interactions of Myb with regulatory proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Conservation of Oxidative Protein Stabilization in an Insect Homologue of Parkinsonism-Associated Protein DJ-1

    SciTech Connect

    Lin, Jiusheng; Prahlad, Janani; Wilson, Mark A.

    2012-08-21

    DJ-1 is a conserved, disease-associated protein that protects against oxidative stress and mitochondrial damage in multiple organisms. Human DJ-1 contains a functionally essential cysteine residue (Cys106) whose oxidation is important for regulating protein function by an unknown mechanism. This residue is well-conserved in other DJ-1 homologues, including two (DJ-1{alpha} and DJ-1{beta}) in Drosophila melanogaster. Because D. melanogaster is a powerful model system for studying DJ-1 function, we have determined the crystal structure and impact of cysteine oxidation on Drosophila DJ-1{beta}. The structure of D. melanogaster DJ-1{beta} is similar to that of human DJ-1, although two important residues in the human protein, Met26 and His126, are not conserved in DJ-1{beta}. His126 in human DJ-1 is substituted with a tyrosine in DJ-1{beta}, and this residue is not able to compose a putative catalytic dyad with Cys106 that was proposed to be important in the human protein. The reactive cysteine in DJ-1 is oxidized readily to the cysteine-sulfinic acid in both flies and humans, and this may regulate the cytoprotective function of the protein. We show that the oxidation of this conserved cysteine residue to its sulfinate form (Cys-SO{sub 2{sup -}}) results in considerable thermal stabilization of both Drosophila DJ-1{beta} and human DJ-1. Therefore, protein stabilization is one potential mechanism by which cysteine oxidation may regulate DJ-1 function in vivo. More generally, most close DJ-1 homologues are likely stabilized by cysteine-sulfinic acid formation but destabilized by further oxidation, suggesting that they are biphasically regulated by oxidative modification.

  2. Nitrogen conservation in starvation revisited: protein sparing with intravenous fructose.

    PubMed

    Gelfand, R A; Sherwin, R S

    1986-01-01

    The provision of small amounts of glucose during fasting is known to spare body protein and to attenuate markedly the metabolic response to starvation. These actions, which are not shared by fat, are generally thought to depend on the ability of exogenous glucose to stimulate insulin secretion. To determine whether fructose, a very weak insulin secretagogue, will also conserve nitrogen and alter the response to fasting, we infused small amounts of fructose, 100 g/d (375 kcal), into 7 obese subjects during a 10-day fast: 4 received fructose days 7 to 10, and 3 received fructose days 1 to 7. Fructose virtually abolished (all P less than 0.05-0.01) the fasting induced: (a) fall in glucose and insulin and rise in glucagon, (b) fall in triiodothyronine, (c) ketosis and acidosis, (d) increased ammonia excretion, (e) hyperuricemia (and hypouricosuria), and (f) fall in plasma alanine and rise in branched chain amino acids. Fructose also significantly reduced urinary sodium loss. Moreover, fructose exerted a prominent protein-sparing action, even though plasma insulin concentrations never exceeded postabsorptive levels. Excretion of total nitrogen was reduced by 40% to 50% during periods of fructose infusion, reflecting significant suppression of both urea and ammonia generation (all P less than 0.05-0.01). Most plasma glucogenic amino acids rose significantly during fructose administration. We conclude that low-dose fructose infusion essentially abolishes the entire hormone-substrate response to fasting, and spares body protein without raising insulin above postabsorptive levels.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Conserved Pyridoxal Protein That Regulates Ile and Val Metabolism

    PubMed Central

    Iimori, Jumpei; Takayama, Sayuri; Moriyama, Akihito; Yamauchi, Ayako; Hemmi, Hisashi; Yoshimura, Tohru

    2013-01-01

    Escherichia coli YggS is a member of the highly conserved uncharacterized protein family that binds pyridoxal 5′-phosphate (PLP). To assist with the functional assignment of the YggS family, in vivo and in vitro analyses were performed using a yggS-deficient E. coli strain (ΔyggS) and a purified form of YggS, respectively. In the stationary phase, the ΔyggS strain exhibited a completely different intracellular pool of amino acids and produced a significant amount of l-Val in the culture medium. The log-phase ΔyggS strain accumulated 2-ketobutyrate, its aminated compound 2-aminobutyrate, and, to a lesser extent, l-Val. It also exhibited a 1.3- to 2.6-fold increase in the levels of Ile and Val metabolic enzymes. The fact that similar phenotypes were induced in wild-type E. coli by the exogenous addition of 2-ketobutyrate and 2-aminobutyrate indicates that the 2 compounds contribute to the ΔyggS phenotypes. We showed that the initial cause of the keto acid imbalance was the reduced availability of coenzyme A (CoA); supplementation with pantothenate, which is a CoA precursor, fully reversed phenotypes conferred by the yggS mutation. The plasmid-borne expression of YggS and orthologs from Bacillus subtilis, Saccharomyces cerevisiae, and humans fully rescued the ΔyggS phenotypes. Expression of a mutant YggS lacking PLP-binding ability, however, did not reverse the ΔyggS phenotypes. These results demonstrate for the first time that YggS controls Ile and Val metabolism by modulating 2-ketobutyrate and CoA availability. Its function depends on PLP, and it is highly conserved in a wide range species, from bacteria to humans. PMID:24097949

  4. Conservation.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  5. Conservation.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  6. Choristoneura fumiferana Granulovirus p74 protein, a highly conserved baculoviral envelope protein.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Tazi, Samia; Giannopoulos, Paresa N; Guertin, Claude

    2003-09-30

    A gene that encodes a homologue to baculoviral p74, an envelope-associated viral structural protein, has been identified and sequenced on the genome of Choristoneura fumiferana granulovirus (ChfuGV). A part of the ChfuGV p74 gene was located on an 8.9 kb BamHI subgenomic fragment using different sets of degenerated primers. These were designed using the results of the protein sequencing of a major 74 kDa structural protein that is associated with the occlusion-derived virus (ODV). The gene has a 1992 nucleotide (nt) open-reading frame (ORF) that encodes a protein with 663 amino acids with a predicted molecular mass of 74,812 Da. Comparative studies revealed the presence of two major conserved regions in the ChfuGV p74 protein. This study also shows that all of the p74 proteins contain two putative transmembrane domains at their C-terminal segments. At the nucleotide sequence level, two late promoter motifs (TAAG and GTAAG) were located upstream of the first ATG of the p74 gene. The gene contained a canonical poly(A) signal, AATAAA, at its 3 non-translated region. A phylogenetic tree for baculoviral p74 was constructed using a maximum parsimony analysis. The phylogenetic estimation demonstrated that ChfuGV p74 is related the closest to those of Cydia pomonella granulovirus (CpGV) and Phthorimaea operculella granulovirus (PhopGV).

  7. Evolutionary conservation and predicted structure of the Drosophila extra sex combs repressor protein.

    PubMed Central

    Ng, J; Li, R; Morgan, K; Simon, J

    1997-01-01

    The Drosophila extra sex combs (esc) protein, a member of the Polycomb group (PcG), is a transcriptional repressor of homeotic genes. Genetic studies have shown that esc protein is required in early embryos at about the time that other PcG proteins become engaged in homeotic gene repression. The esc protein consists primarily of multiple copies of the WD repeat, a motif that has been implicated in protein-protein interaction. To further investigate the domain organization of esc protein, we have isolated and characterized esc homologs from divergent insect species. We report that esc protein is highly conserved in housefly (72% identical to Drosophila esc), butterfly (55% identical), and grasshopper (56% identical). We show that the butterfly homolog provides esc function in Drosophila, indicating that the sequence similarities reflect functional conservation. Homology modeling using the crystal structure of another WD repeat protein, the G-protein beta-subunit, predicts that esc protein adopts a beta-propeller structure. The sequence comparisons and modeling suggest that there are seven WD repeats in esc protein which together form a seven-bladed beta-propeller. We locate the conserved regions in esc protein with respect to this predicted structure. Site-directed mutagenesis of specific loops, predicted to extend from the propeller surface, identifies conserved parts of esc protein required for function in vivo. We suggest that these regions might mediate physical interaction with esc partner proteins. PMID:9343430

  8. Conservation of the three-dimensional structure in non-homologous or unrelated proteins.

    PubMed

    Sousounis, Konstantinos; Haney, Carl E; Cao, Jin; Sunchu, Bharath; Tsonis, Panagiotis A

    2012-08-02

    In this review, we examine examples of conservation of protein structural motifs in unrelated or non-homologous proteins. For this, we have selected three DNA-binding motifs: the histone fold, the helix-turn-helix motif, and the zinc finger, as well as the globin-like fold. We show that indeed similar structures exist in unrelated proteins, strengthening the concept that three-dimensional conservation might be more important than the primary amino acid sequence.

  9. Hierarchical partitioning of metazoan protein conservation profiles provides new functional insights.

    PubMed

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the "universal proteins", those with homologues in all 17 other species, and of the "non-universal proteins". A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the "tree of life" (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the "life style" of the related clades. Most previous approaches for studying function and conservation are "bottom up", studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is "top down". We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life.

  10. Forage Management Effects on Protein and Fiber Fractions, Protein Degradability, and Dry Matter Yield of Red Clover Conserved as Silage

    USDA-ARS?s Scientific Manuscript database

    Due to the action of o-quinones formed via polyphenol oxidase, conserved red clover (Trifolium pratense L.) contains abundant rumen undegradable protein (RUP), but inadequate rumen degradable protein (RDP) for dairy cattle. This study examined how forage management influences RDP, RUP, crude protein...

  11. Protein sequence conservation and stable molecular evolution reveals influenza virus nucleoprotein as a universal druggable target.

    PubMed

    Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-08-01

    The high mutation rate in influenza virus genome and appearance of drug resistance calls for a constant effort to identify alternate drug targets and develop new antiviral strategies. The internal proteins of the virus can be exploited as a potential target for therapeutic interventions. Among these, the nucleoprotein (NP) is the most abundant protein that provides structural and functional support to the viral replication machinery. The current study aims at analysis of protein sequence polymorphism patterns, degree of molecular evolution and sequence conservation as a function of potential druggability of nucleoprotein. We analyzed a universal set of amino acid sequences, (n=22,000) and, in order to identify and correlate the functionally conserved, druggable regions across different parameters, classified them on the basis of host organism, strain type and continental region of sample isolation. The results indicated that around 95% of the sequence length was conserved, with at least 7 regions conserved across the protein among various classes. Moreover, the highly variable regions, though very limited in number, were found to be positively selected indicating, thereby, the high degree of protein stability against various hosts and spatio-temporal references. Furthermore, on mapping the conserved regions on the protein, 7 drug binding pockets in the functionally important regions of the protein were revealed. The results, therefore, collectively indicate that nucleoprotein is a highly conserved and stable viral protein that can potentially be exploited for development of broadly effective antiviral strategies.

  12. Caenorhabditis elegans SMA-10/LRIG is a conserved transmembrane protein that enhances bone morphogenetic protein signaling.

    PubMed

    Gumienny, Tina L; Macneil, Lesley; Zimmerman, Cole M; Wang, Huang; Chin, Lena; Wrana, Jeffrey L; Padgett, Richard W

    2010-05-20

    Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP-like receptor signaling. SMA-10 acts genetically in a BMP-like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors.

  13. Caenorhabditis elegans SMA-10/LRIG Is a Conserved Transmembrane Protein that Enhances Bone Morphogenetic Protein Signaling

    PubMed Central

    Gumienny, Tina L.; MacNeil, Lesley; Zimmerman, Cole M.; Wang, Huang; Chin, Lena; Wrana, Jeffrey L.; Padgett, Richard W.

    2010-01-01

    Bone morphogenetic protein (BMP) pathways control an array of developmental and homeostatic events, and must themselves be exquisitely controlled. Here, we identify Caenorhabditis elegans SMA-10 as a positive extracellular regulator of BMP–like receptor signaling. SMA-10 acts genetically in a BMP–like (Sma/Mab) pathway between the ligand DBL-1 and its receptors SMA-6 and DAF-4. We cloned sma-10 and show that it has fifteen leucine-rich repeats and three immunoglobulin-like domains, hallmarks of an LRIG subfamily of transmembrane proteins. SMA-10 is required in the hypodermis, where the core Sma/Mab signaling components function. We demonstrate functional conservation of LRIGs by rescuing sma-10(lf) animals with the Drosophila ortholog lambik, showing that SMA-10 physically binds the DBL-1 receptors SMA-6 and DAF-4 and enhances signaling in vitro. This interaction is evolutionarily conserved, evidenced by LRIG1 binding to vertebrate receptors. We propose a new role for LRIG family members: the positive regulation of BMP signaling by binding both Type I and Type II receptors. PMID:20502686

  14. Hierarchical Partitioning of Metazoan Protein Conservation Profiles Provides New Functional Insights

    PubMed Central

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the “universal proteins”, those with homologues in all 17 other species, and of the “non-universal proteins”. A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the “tree of life” (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the “life style” of the related clades. Most previous approaches for studying function and conservation are “bottom up”, studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is “top down”. We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life. PMID:24594619

  15. Structure-sequence based analysis for identification of conserved regions in proteins

    DOEpatents

    Zemla, Adam T; Zhou, Carol E; Lam, Marisa W; Smith, Jason R; Pardes, Elizabeth

    2013-05-28

    Disclosed are computational methods, and associated hardware and software products for scoring conservation in a protein structure based on a computationally identified family or cluster of protein structures. A method of computationally identifying a family or cluster of protein structures in also disclosed herein.

  16. Conservation of coevolving protein interfaces bridges prokaryote-eukaryote homologies in the twilight zone.

    PubMed

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-12-27

    Protein-protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein-protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein-protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein-protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach.

  17. A survey of conservation of sea spider and Drosophila Hox protein activities.

    PubMed

    Saadaoui, Mehdi; Litim-Mecheri, Isma; Macchi, Meiggie; Graba, Yacine; Maurel-Zaffran, Corinne

    2015-11-01

    Hox proteins have well-established functions in development and evolution, controlling the final morphology of bilaterian animals. The common phylogenetic origin of Hox proteins and the associated evolutionary diversification of protein sequences provide a unique framework to explore the relationship between changes in protein sequence and function. In this study, we aimed at questioning how sequence variation within arthropod Hox proteins influences function. This was achieved by exploring the functional impact of sequence conservation/divergence of the Hox genes, labial, Sex comb reduced, Deformed, Ultrabithorax and abdominalA from two distant arthropods, the sea spider and the well-studied Drosophila. Results highlight a correlation between sequence conservation within the homeodomain and the degree of functional conservation, and identify a novel functional domain in the Labial protein.

  18. Fold of the conserved DTC domain in deltex proteins

    SciTech Connect

    Obiero, Josiah; Walker, John R.; Dhe-Paganon, Sirano

    2012-04-30

    Human Deltex 3-like (DTX3L) is a member of the Deltex family of proteins. Initially identified as a B-lymphoma and BAL-associated protein, DTX3L is an E3 ligase that regulates subcellular localization of its partner protein, BAL, by a dynamic nucleocytoplasmic trafficking mechanism. Unlike other members of the Deltex family of proteins, DTX3L lacks the highly basic N-terminal motif and the central proline-rich motif present in other Deltex proteins, and instead contains other unique N-terminal domains. The C-terminal domains are, however, homologous with other members of the Deltex family of proteins; these include a RING domain and a previously unidentified C-terminal domain. In this study, we report the high-resolution crystal structure of this previously uncharacterized C-terminal domain of human DTX3L, which we term the Deltex C-terminal domain.

  19. How Similar Are Protein Folding and Protein Binding Nuclei? Examination of Vibrational Motions of Energy Hot Spots and Conserved Residues

    PubMed Central

    Haliloglu, Turkan; Keskin, Ozlem; Ma, Buyong; Nussinov, Ruth

    2005-01-01

    The underlying physico-chemical principles of the interactions between domains in protein folding are similar to those between protein molecules in binding. Here we show that conserved residues and experimental hot spots at intermolecular binding interfaces overlap residues that vibrate with high frequencies. Similarly, conserved residues and hot spots are found in protein cores and are also observed to vibrate with high frequencies. In both cases, these residues contribute significantly to the stability. Hence, these observations validate the proposition that binding and folding are similar processes. In both packing plays a critical role, rationalizing the residue conservation and the experimental alanine scanning hot spots. We further show that high-frequency vibrating residues distinguish between protein binding sites and the remainder of the protein surface. PMID:15596504

  20. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover.

    PubMed

    Cambridge, Sidney B; Gnad, Florian; Nguyen, Chuong; Bermejo, Justo Lorenzo; Krüger, Marcus; Mann, Matthias

    2011-12-02

    The turnover of each protein in the mammalian proteome is a functionally important characteristic. Here, we employed high-resolution mass spectrometry to quantify protein dynamics in nondividing mammalian cells. The ratio of externally supplied versus endogenous amino acids to de novo protein synthesis was about 17:1. Using subsaturating SILAC labeling, we obtained accurate turnover rates of 4106 proteins in HeLa and 3528 proteins in C2C12 cells. Comparison of these human and mouse cell lines revealed a highly significant turnover correlation of protein orthologs and thus high species conservation. Functionally, we observed statistically significant trends for the turnover of phosphoproteins and gene ontology categories that showed extensive covariation between mouse and human. Likewise, the members of some protein complexes, such as the proteasome, have highly similar turnover rates. The high species conservation and the low complex variances thus imply great regulatory fine-tuning of protein turnover.

  1. Homologs of the yeast Tvp38 vesicle-associated protein are conserved in chloroplasts and cyanobacteria

    PubMed Central

    Keller, Rebecca; Schneider, Dirk

    2013-01-01

    Vesicle transfer processes in eukaryotes depend on specific proteins, which mediate the selective packing of cargo molecules for subsequent release out of the cells after vesicle fusion to the plasma membrane. The protein Tvp38 is conserved in yeasts and higher eukaryotes and potentially involved in vesicle transfer processes at the Golgi membrane. Members of the so-called “SNARE-associated proteins of the Tvp38-family” have also been identified in prokaryotes and those belong to the DedA protein family. Tvp38/DedA proteins are also conserved in cyanobacteria and chloroplasts. While only a single member of this family appears to be present in chloroplasts, cyanobacterial genomes typically encode multiple homologous proteins. Mainly based on our understanding of the DedA-homologous proteins of Escherichia coli, it appears likely that the function of these proteins in chloroplast and cyanobacteria involves stabilizing and organizing the structure of internal membrane systems. PMID:24312110

  2. Conservation of Domain Structure in a Fast-Evolving Heterochromatic SUUR Protein in Drosophilids

    PubMed Central

    Yurlova, Anna A.; Makunin, Igor V.; Kolesnikova, Tatyana D.; Posukh, Olga V.; Belyaeva, Elena S.; Zhimulev, Igor F.

    2009-01-01

    Different genomic regions replicate at a distinct time during S-phase. The SuUR mutation alters replication timing and the polytenization level of intercalary and pericentric heterochromatin in Drosophila melanogaster salivary gland polytene chromosomes. We analyzed SuUR in different insects, identified conserved regions in the protein, substituted conserved amino acid residues, and studied effects of the mutations on SUUR function. SuUR orthologs were identified in all sequenced drosophilids, and a highly divergent ortholog was found in the mosquito genome. We demonstrated that SUUR evolves at very high rate comparable with that of Transformer. Remarkably, upstream ORF within 5′ UTR of the gene is more conserved than SUUR in drosophilids, but it is absent in the mosquito. The domain structure and charge of SUUR are maintained in drosophilids despite the high divergence of the proteins. The N-terminal part of SUUR with similarity to the SNF2/SWI2 proteins displays the highest level of conservation. Mutation of two conserved amino acid residues in this region impairs binding of SUUR to polytene chromosomes and reduces the ability of the protein to cause DNA underreplication. The least conserved middle part of SUUR interacting with HP1 retains positively and negatively charged clusters and nuclear localization signals. The C terminus contains interlacing conserved and variable motifs. Our results suggest that SUUR domains evolve with different rates and patterns but maintain their features. PMID:19596903

  3. EVEREST: a collection of evolutionary conserved protein domains

    PubMed Central

    Portugaly, Elon; Linial, Nathan; Linial, Michal

    2007-01-01

    Protein domains are subunits of proteins that recur throughout the protein world. There are many definitions attempting to capture the essence of a protein domain, and several systems that identify protein domains and classify them into families. EVEREST, recently described in Portugaly et al. (2006) BMC Bioinformatics, 7, 277, is one such system that performs the task automatically, using protein sequence alone. Herein we describe EVEREST release 2.0, consisting of 20 029 families, each defined by one or more HMMs. The current EVEREST database was constructed by scanning UniProt 8.1 and all PDB sequences (total over 3 000 000 sequences) with each of the EVEREST families. EVEREST annotates 64% of all sequences, and covers 59% of all residues. EVEREST is available at . The website provides annotations given by SCOP, CATH, Pfam A and EVEREST. It allows for browsing through the families of each of those sources, graphically visualizing the domain organization of the proteins in the family. The website also provides access to analyzes of relationships between domain families, within and across domain definition systems. Users can upload sequences for analysis by the set of EVEREST families. Finally an advanced search form allows querying for families matching criteria regarding novelty, phylogenetic composition and more. PMID:17099230

  4. EVEREST: a collection of evolutionary conserved protein domains.

    PubMed

    Portugaly, Elon; Linial, Nathan; Linial, Michal

    2007-01-01

    Protein domains are subunits of proteins that recur throughout the protein world. There are many definitions attempting to capture the essence of a protein domain, and several systems that identify protein domains and classify them into families. EVEREST, recently described in Portugaly et al. (2006) BMC Bioinformatics, 7, 277, is one such system that performs the task automatically, using protein sequence alone. Herein we describe EVEREST release 2.0, consisting of 20,029 families, each defined by one or more HMMs. The current EVEREST database was constructed by scanning UniProt 8.1 and all PDB sequences (total over 3,000,000 sequences) with each of the EVEREST families. EVEREST annotates 64% of all sequences, and covers 59% of all residues. EVEREST is available at http://www.everest.cs.huji.ac.il/. The website provides annotations given by SCOP, CATH, Pfam A and EVEREST. It allows for browsing through the families of each of those sources, graphically visualizing the domain organization of the proteins in the family. The website also provides access to analyzes of relationships between domain families, within and across domain definition systems. Users can upload sequences for analysis by the set of EVEREST families. Finally an advanced search form allows querying for families matching criteria regarding novelty, phylogenetic composition and more.

  5. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality

    PubMed Central

    Wu, Nicholas C.; Olson, C. Anders; Du, Yushen; Le, Shuai; Tran, Kevin; Remenyi, Roland; Gong, Danyang; Al-Mawsawi, Laith Q.; Qi, Hangfei; Wu, Ting-Ting; Sun, Ren

    2015-01-01

    Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. PMID:26132554

  6. TOPDOM: database of conservatively located domains and motifs in proteins.

    PubMed

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

    PubMed Central

    van Nocker, Steven; Ludwig, Philip

    2003-01-01

    Background The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. Results We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. Conclusions Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions. PMID:14672542

  8. Conservation of coevolving protein interfaces bridges prokaryote–eukaryote homologies in the twilight zone

    PubMed Central

    Rodriguez-Rivas, Juan; Marsili, Simone; Juan, David; Valencia, Alfonso

    2016-01-01

    Protein–protein interactions are fundamental for the proper functioning of the cell. As a result, protein interaction surfaces are subject to strong evolutionary constraints. Recent developments have shown that residue coevolution provides accurate predictions of heterodimeric protein interfaces from sequence information. So far these approaches have been limited to the analysis of families of prokaryotic complexes for which large multiple sequence alignments of homologous sequences can be compiled. We explore the hypothesis that coevolution points to structurally conserved contacts at protein–protein interfaces, which can be reliably projected to homologous complexes with distantly related sequences. We introduce a domain-centered protocol to study the interplay between residue coevolution and structural conservation of protein–protein interfaces. We show that sequence-based coevolutionary analysis systematically identifies residue contacts at prokaryotic interfaces that are structurally conserved at the interface of their eukaryotic counterparts. In turn, this allows the prediction of conserved contacts at eukaryotic protein–protein interfaces with high confidence using solely mutational patterns extracted from prokaryotic genomes. Even in the context of high divergence in sequence (the twilight zone), where standard homology modeling of protein complexes is unreliable, our approach provides sequence-based accurate information about specific details of protein interactions at the residue level. Selected examples of the application of prokaryotic coevolutionary analysis to the prediction of eukaryotic interfaces further illustrate the potential of this approach. PMID:27965389

  9. Identification of conserved surface proteins as novel antigenic vaccine candidates of Actinobacillus pleuropneumoniae.

    PubMed

    Chen, Xiabing; Xu, Zhuofei; Li, Lu; Chen, Huanchun; Zhou, Rui

    2012-12-01

    Actinobacillus pleuropneumoniae is an important swine respiratory pathogen causing great economic losses worldwide. Identification of conserved surface antigenic proteins is helpful for developing effective vaccines. In this study, a genome-wide strategy combined with bioinformatic and experimental approaches, was applied to discover and characterize surface-associated immunogenic proteins of A. pleuropneumoniae. Thirty nine genes encoding outer membrane proteins (OMPs) and lipoproteins were identified by comparative genomics and gene expression profiling as being-highly conserved and stably transcribed in the different serotypes of A. pleuropneumoniae reference strains. Twelve of these conserved proteins were successfully expressed in Escherichia coli and their immunogenicity was estimated by homologous challenge in the mouse model, and then three of these proteins (APJL_0126, HbpA and OmpW) were further tested in the natural host (swine) by homologous and heterologous challenges. The results showed that these proteins could induce high titers of antibodies, but vaccination with each protein individually elicited low protective immunity against A. pleuropneumoniae. This study gives novel insights into immunogenicity of the conserved OMPs and lipoproteins of A. pleuropneumoniae. Although none of the surface proteins characterized in this study could individually induce effective protective immunity against A. pleuropneumoniae, they are potential candidates for subunit vaccines in combination with Apx toxins.

  10. Analysis of evolutionary conservation patterns and their influence on identifying protein functional sites.

    PubMed

    Fang, Chun; Noguchi, Tamotsu; Yamana, Hayato

    2014-10-01

    Evolutionary conservation information included in position-specific scoring matrix (PSSM) has been widely adopted by sequence-based methods for identifying protein functional sites, because all functional sites, whether in ordered or disordered proteins, are found to be conserved at some extent. However, different functional sites have different conservation patterns, some of them are linear contextual, some of them are mingled with highly variable residues, and some others seem to be conserved independently. Every value in PSSMs is calculated independently of each other, without carrying the contextual information of residues in the sequence. Therefore, adopting the direct output of PSSM for prediction fails to consider the relationship between conservation patterns of residues and the distribution of conservation scores in PSSMs. In order to demonstrate the importance of combining PSSMs with the specific conservation patterns of functional sites for prediction, three different PSSM-based methods for identifying three kinds of functional sites have been analyzed. Results suggest that, different PSSM-based methods differ in their capability to identify different patterns of functional sites, and better combining PSSMs with the specific conservation patterns of residues would largely facilitate the prediction.

  11. Structural consequences of chromophore formation and exploration of conserved lid residues amongst naturally occurring fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Zimmer, Matthew H.; Li, Binsen; Shahid, Ramza; Peshkepija, Paola; Zimmer, Marc

    2014-01-01

    Computational methods were used to generate the lowest energy conformations of the immature precyclized forms of the 28 naturally occurring GFP-like proteins deposited in the pdb. In all 28 GFP-like proteins, the beta-barrel contracts upon chromophore formation and becomes more rigid. Our prior analysis of over 260 distinct naturally occurring GFP-like proteins revealed that most of the conserved residues are located in the top and bottom of the barrel in the turns between the β-sheets (Ong et al. 2011) [1]. Structural analyses, molecular dynamics simulations and the Anisotropic Network Model were used to explore the role of these conserved lid residues as possible folding nuclei. Our results are internally consistent and show that the conserved residues in the top and bottom lids undergo relatively less translational movement than other lid residues, and a number of these residues may play an important role as hinges or folding nuclei in the fluorescent proteins.

  12. Structural Conservation of the Myoviridae Phage Tail Sheath Protein Fold

    SciTech Connect

    Aksyuk, Anastasia A.; Kurochkina, Lidia P.; Fokine, Andrei; Forouhar, Farhad; Mesyanzhinov, Vadim V.; Tong, Liang; Rossmann, Michael G.

    2012-02-21

    Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 {angstrom} diameter icosahedral head and a 2000 {angstrom}-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 {angstrom} resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 {angstrom} resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.

  13. Non-local residue-residue contacts in proteins are more conserved than local ones.

    PubMed

    Noivirt-Brik, Orly; Hazan, Gershon; Unger, Ron; Ofran, Yanay

    2013-02-01

    Non-covalent residue-residue contacts drive the folding of proteins and stabilize them. They may be local-i.e. involve residues that are close in sequence, or non-local. It has been suggested that, in most proteins, local contacts drive protein folding by providing crucial constraints of the conformational space, thus allowing proteins to fold. We compared residues that are involved in local contacts to residues that are involved in non-local contacts and found that, in most proteins, residues in non-local contacts are significantly more conserved evolutionarily than residues in local contacts. Moreover, non-local contacts are more structurally conserved: a contact between positions that are distant in sequence is more likely to exist in many structural homologues compared with a contact between positions that are close in sequence. These results provide new insights into the mechanisms of protein folding and may allow for better prediction of critical intra-chain contacts.

  14. SdhE Is a Conserved Protein Required for Flavinylation of Succinate Dehydrogenase in Bacteria*

    PubMed Central

    McNeil, Matthew B.; Clulow, James S.; Wilf, Nabil M.; Salmond, George P. C.; Fineran, Peter C.

    2012-01-01

    Conserved uncharacterized genes account for ∼30% of genes in both eukaryotic and bacterial genomes and are predicted to encode what are often termed “conserved hypothetical proteins.” Many of these proteins have a wide phylogenetic distribution and might play important roles in conserved cellular pathways. Using the bacterium Serratia as a model system, we have investigated two conserved uncharacterized proteins, YgfY (a DUF339 protein, renamed SdhE; succinate dehydrogenase protein E) and YgfX (a DUF1434 protein). SdhE was required for growth on succinate as a sole carbon source and for the function, but not stability, of succinate dehydrogenase, an important component of the electron transport chain and the tricarboxylic acid cycle. SdhE interacted with the flavoprotein SdhA, directly bound the flavin adenine dinucleotide co-factor, and was required for the flavinylation of SdhA. This is the first demonstration of a protein required for FAD incorporation in bacteria. Furthermore, the loss of SdhE was highly pleiotropic, suggesting that SdhE might flavinylate other flavoproteins. Our findings are of wide importance to central metabolism because SdhE homologues are present in α-, β-, and γ-proteobacteria and multiple eukaryotes, including humans and yeast. PMID:22474332

  15. Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix

    PubMed Central

    Garg, Sriram; Stölting, Jan; Zimorski, Verena; Rada, Petr; Tachezy, Jan; Martin, William F.; Gould, Sven B.

    2015-01-01

    The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import. PMID:26338186

  16. The Hsp90-Dependent Proteome Is Conserved and Enriched for Hub Proteins with High Levels of Protein–Protein Connectivity

    PubMed Central

    Swamy, Krishna B.S.; Yu, Jau-Song; Schuyler, Scott C.; Leu, Jun-Yi

    2014-01-01

    Hsp90 is one of the most abundant and conserved proteins in the cell. Reduced levels or activity of Hsp90 causes defects in many cellular processes and also reveals genetic and nongenetic variation within a population. Despite information about Hsp90 protein–protein interactions, a global view of the Hsp90-regulated proteome in yeast is unavailable. To investigate the degree of dependency of individual yeast proteins on Hsp90, we used the “stable isotope labeling by amino acids in cell culture” method coupled with mass spectrometry to quantify around 4,000 proteins in low-Hsp90 cells. We observed that 904 proteins changed in their abundance by more than 1.5-fold. When compared with the transcriptome of the same population of cells, two-thirds of the misregulated proteins were observed to be affected posttranscriptionally, of which the majority were downregulated. Further analyses indicated that the downregulated proteins are highly conserved and assume central roles in cellular networks with a high number of protein interacting partners, suggesting that Hsp90 buffers genetic and nongenetic variation through regulating protein network hubs. The downregulated proteins were enriched for essential proteins previously not known to be Hsp90-dependent. Finally, we observed that downregulation of transcription factors and mating pathway components by attenuating Hsp90 function led to decreased target gene expression and pheromone response, respectively, providing a direct link between observed proteome regulation and cellular phenotypes. PMID:25316598

  17. Evolutionary Conservation of a GPCR-Independent Mechanism of Trimeric G Protein Activation

    PubMed Central

    Coleman, Brantley D.; Marivin, Arthur; Parag-Sharma, Kshitij; DiGiacomo, Vincent; Kim, Seongseop; Pepper, Judy S.; Casler, Jason; Nguyen, Lien T.; Koelle, Michael R.; Garcia-Marcos, Mikel

    2016-01-01

    Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA–G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans. PMID:26659249

  18. Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein.

    PubMed

    Tuteja, Narendra; Umate, Pavan; Tuteja, Renu

    2010-06-01

    Homology-based three-dimensional model for Pisum sativum sieve element occlusion 1 (Ps.SEO1) (forisomes) protein was constructed. A stretch of amino acids (residues 320 to 456) which is well conserved in all known members of forisomes proteins was used to model the 3D structure of Ps.SEO1. The structural prediction was done using Protein Homology/analogY Recognition Engine (PHYRE) web server. Based on studies of local sequence alignment, the thioredoxin-fold containing protein [Structural Classification of Proteins (SCOP) code d1o73a_], a member of the glutathione peroxidase family was selected as a template for modeling the spatial structure of Ps.SEO1. Selection was based on comparison of primary sequence, higher match quality and alignment accuracy. Motif 1 (EVF) is conserved in Ps.SEO1, Vicia faba (Vf.For1) and Medicago truncatula (Mt.SEO3); motif 2 (KKED) is well conserved across all forisomes proteins and motif 3 (IGYIGNP) is conserved in Ps.SEO1 and Vf.For1.

  19. Ion Channel Activity of Vpu Proteins Is Conserved throughout Evolution of HIV-1 and SIV

    PubMed Central

    Greiner, Timo; Bolduan, Sebastian; Hertel, Brigitte; Groß, Christine; Hamacher, Kay; Schubert, Ulrich; Moroni, Anna; Thiel, Gerhard

    2016-01-01

    The human immunodeficiency virus type 1 (HIV-1) protein Vpu is encoded exclusively by HIV-1 and related simian immunodeficiency viruses (SIVs). The transmembrane domain of the protein has dual functions: it counteracts the human restriction factor tetherin and forms a cation channel. Since these two functions are causally unrelated it remains unclear whether the channel activity has any relevance for viral release and replication. Here we examine structure and function correlates of different Vpu homologs from HIV-1 and SIV to understand if ion channel activity is an evolutionary conserved property of Vpu proteins. An electrophysiological testing of Vpus from different HIV-1 groups (N and P) and SIVs from chimpanzees (SIVcpz), and greater spot-nosed monkeys (SIVgsn) showed that they all generate channel activity in HEK293T cells. This implies a robust and evolutionary conserved channel activity and suggests that cation conductance may also have a conserved functional significance. PMID:27916968

  20. Ion Channel Activity of Vpu Proteins Is Conserved throughout Evolution of HIV-1 and SIV.

    PubMed

    Greiner, Timo; Bolduan, Sebastian; Hertel, Brigitte; Groß, Christine; Hamacher, Kay; Schubert, Ulrich; Moroni, Anna; Thiel, Gerhard

    2016-12-01

    The human immunodeficiency virus type 1 (HIV-1) protein Vpu is encoded exclusively by HIV-1 and related simian immunodeficiency viruses (SIVs). The transmembrane domain of the protein has dual functions: it counteracts the human restriction factor tetherin and forms a cation channel. Since these two functions are causally unrelated it remains unclear whether the channel activity has any relevance for viral release and replication. Here we examine structure and function correlates of different Vpu homologs from HIV-1 and SIV to understand if ion channel activity is an evolutionary conserved property of Vpu proteins. An electrophysiological testing of Vpus from different HIV-1 groups (N and P) and SIVs from chimpanzees (SIVcpz), and greater spot-nosed monkeys (SIVgsn) showed that they all generate channel activity in HEK293T cells. This implies a robust and evolutionary conserved channel activity and suggests that cation conductance may also have a conserved functional significance.

  1. Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins

    PubMed Central

    Straub, Daniel

    2017-01-01

    MicroProteins are small single-domain proteins that act by engaging their targets into different, sometimes nonproductive protein complexes. In order to identify novel microProteins in any sequenced genome of interest, we have developed miPFinder, a program that identifies and classifies potential microProteins. In the past years, several microProteins have been discovered in plants where they are mainly involved in the regulation of development by fine-tuning transcription factor activities. The miPFinder algorithm identifies all up to date known plant microProteins and extends the microProtein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known microProtein genes originated from large ancestral genes by gene duplication, mutation and subsequent degradation. Gene ontology analysis shows that putative microProtein ancestors are often located in the nucleus, and involved in DNA binding and formation of protein complexes. Additionally, microProtein candidates act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals. PMID:28338802

  2. Identification of the conserved hypothetical protein BPSL0317 in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Yusoff, Nur Syamimi; Damiri, Nadzirah; Firdaus-Raih, Mohd

    2014-09-01

    Burkholderia pseudomallei K96243 is the causative agent of melioidosis, a disease which is endemic in Northern Australia and Southeastern Asia. The genome encodes several essential proteins including those currently annotated as hypothetical proteins. We studied the conservation and the essentiality of expressed hypothetical proteins in normal and different stress conditions. Based on the comparative genomics, we identified a hypothetical protein, BPSL0317, a potential essential gene that is being expressed in all normal and stress conditions. BPSL0317 is also phylogenetically conserved in the Burkholderiales order suggesting that this protein is crucial for survival among the order's members. BPSL0317 therefore has a potential to be a candidate antimicrobial drug target for this group of bacteria.

  3. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B.

    PubMed

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-04-03

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Evolutionarily Conserved Binding of Translationally Controlled Tumor Protein to Eukaryotic Elongation Factor 1B*

    PubMed Central

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-01-01

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. PMID:25635048

  5. Identification of obscure yet conserved actin-associated proteins in Giardia lamblia.

    PubMed

    Paredez, Alexander R; Nayeri, Arash; Xu, Jennifer W; Krtková, Jana; Cande, W Zacheus

    2014-06-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton.

  6. Identification of Obscure yet Conserved Actin-Associated Proteins in Giardia lamblia

    PubMed Central

    Nayeri, Arash; Xu, Jennifer W.; Krtková, Jana; Cande, W. Zacheus

    2014-01-01

    Consistent with its proposed status as an early branching eukaryote, Giardia has the most divergent actin of any eukaryote and lacks core actin regulators. Although conserved actin-binding proteins are missing from Giardia, its actin is utilized similarly to that of other eukaryotes and functions in core cellular processes such as cellular organization, endocytosis, and cytokinesis. We set out to identify actin-binding proteins in Giardia using affinity purification coupled with mass spectroscopy (multidimensional protein identification technology [MudPIT]) and have identified >80 putative actin-binding proteins. Several of these have homology to conserved proteins known to complex with actin for functions in the nucleus and flagella. We validated localization and interaction for seven of these proteins, including 14-3-3, a known cytoskeletal regulator with a controversial relationship to actin. Our results indicate that although Giardia lacks canonical actin-binding proteins, there is a conserved set of actin-interacting proteins that are evolutionarily indispensable and perhaps represent some of the earliest functions of the actin cytoskeleton. PMID:24728194

  7. Proteomic Analysis of Pathogenic Fungi Reveals Highly Expressed Conserved Cell Wall Proteins.

    PubMed

    Champer, Jackson; Ito, James I; Clemons, Karl V; Stevens, David A; Kalkum, Markus

    2016-03-01

    We are presenting a quantitative proteomics tally of the most commonly expressed conserved fungal proteins of the cytosol, the cell wall, and the secretome. It was our goal to identify fungi-typical proteins that do not share significant homology with human proteins. Such fungal proteins are of interest to the development of vaccines or drug targets. Protein samples were derived from 13 fungal species, cultured in rich or in minimal media; these included clinical isolates of Aspergillus, Candida, Mucor, Cryptococcus, and Coccidioides species. Proteomes were analyzed by quantitative MS(E) (Mass Spectrometry-Elevated Collision Energy). Several thousand proteins were identified and quantified in total across all fractions and culture conditions. The 42 most abundant proteins identified in fungal cell walls or supernatants shared no to very little homology with human proteins. In contrast, all but five of the 50 most abundant cytosolic proteins had human homologs with sequence identity averaging 59%. Proteomic comparisons of the secreted or surface localized fungal proteins highlighted conserved homologs of the Aspergillus fumigatus proteins 1,3-β-glucanosyltransferases (Bgt1, Gel1-4), Crf1, Ecm33, EglC, and others. The fact that Crf1 and Gel1 were previously shown to be promising vaccine candidates, underlines the value of the proteomics data presented here.

  8. Unusual conservation among genes encoding small secreted salivary gland proteins from a gall midge.

    PubMed

    Chen, Ming-Shun; Liu, Xuming; Yang, Ziheng; Zhao, Huixian; Shukle, Richard H; Stuart, Jeffrey J; Hulbert, Scot

    2010-09-28

    In most protein-coding genes, greater sequence variation is observed in noncoding regions (introns and untranslated regions) than in coding regions due to selective constraints. During characterization of genes and transcripts encoding small secreted salivary gland proteins (SSSGPs) from the Hessian fly, we found exactly the opposite pattern of conservation in several families of genes: the non-coding regions were highly conserved, but the coding regions were highly variable. Seven genes from the SSSGP-1 family are clustered as one inverted and six tandem repeats within a 15 kb region of the genome. Except for SSSGP-1A2, a gene that encodes a protein identical to that encoded by SSSGP-1A1, the other six genes consist of a highly diversified, mature protein-coding region as well as highly conserved regions including the promoter, 5'- and 3'-UTRs, a signal peptide coding region, and an intron. This unusual pattern of highly diversified coding regions coupled with highly conserved regions in the rest of the gene was also observed in several other groups of SSSGP-encoding genes or cDNAs. The unusual conservation pattern was also found in some of the SSSGP cDNAs from the Asian rice gall midge, but not from the orange wheat blossom midge. Strong positive selection was one of the forces driving for diversification whereas concerted homogenization was likely a mechanism for sequence conservation. Rapid diversification in mature SSSGPs suggests that the genes are under selection pressure for functional adaptation. The conservation in the noncoding regions of these genes including introns also suggested potential mechanisms for sequence homogenization that are not yet fully understood. This report should be useful for future studies on genetic mechanisms involved in evolution and functional adaptation of parasite genes.

  9. The evolutionarily dynamic IFN-inducible GTPase proteins play conserved immune functions in vertebrates and cephalochordates.

    PubMed

    Li, Guang; Zhang, Juyong; Sun, Yi; Wang, Hua; Wang, Yiquan

    2009-07-01

    Interferon (IFN)-inducible GTPases currently include four families of proteins: myxovirus resistant proteins (Mxs), guanylate-binding proteins (GBPs), immunity-related GTPase proteins (IRGs), and very large inducible GTPase proteins (VLIGs). They are all under conserved regulation by IFNs in humans and mice and play a critical role in preventing microbial infections. However, differences between vertebrates are poorly characterized, and their evolutionary origins have not been studied in detail. In this study, we performed comparative genomic analysis of the four families in 18 representative animals that yielded several unexpected results. Firstly, we found that Mx, GBP, and IRG protein families arose before the divergence of chordate subphyla, but VLIG emerged solely in vertebrates. Secondly, IRG, GBP, and VLIG families have experienced a high rate of gene gain and loss during the evolution, with the GBP family being lost entirely in two pufferfish and VLIG family lost in primates and carnivores. Thirdly, the regulation of these genes by IFNs is highly conserved throughout vertebrates although the VLIG protein sequences in fish have lost the first 870 amino acid residues. Finally, amphioxus IFN-inducible GTPase genes are all highly expressed in immune-related organs such as gill, liver, and intestine and are upregulated after challenge with PolyI:C and pathogens, although no IFNs or their receptors were detected in the current amphioxus genome database. These results suggest that IFN-inducible GTPase genes play conserved immune functions both in vertebrates and in cephalochordates.

  10. Conserved ram seminal plasma proteins bind to the sperm membrane and repair cryopreservation damage.

    PubMed

    Bernardini, A; Hozbor, F; Sanchez, E; Fornés, M W; Alberio, R H; Cesari, A

    2011-08-01

    Whole seminal plasma (SP) enhances the function and fertility of frozen/thawed ram sperm. The objective of the current study was to investigate whether SP proteins capable of binding to molecules from the sperm plasma membrane were conserved among ram breeds, and whether these proteins were sufficient to overcome cryopreservation-induced reductions in sperm quality. Whole ram SP, obtained from rams of various breeds, improved progressive motility of frozen/thawed sperm at all times evaluated (P < 0.05); however, it did not improve total motility (15 min, P = 0.480; 30 min, P = 0.764; and 45 min, P = 0.795). To identify SP proteins responsible for this effect, a new method was developed to retain SP proteins that bound specifically to the sperm membrane by immobilization of sperm membrane proteins. These proteins specifically bound to the sperm surface, especially the acrosomal region. Lactotransferrin, epididymal secretory protein E1, Synaptosomal-associated protein 29, and RSVP-20 were identified (mass spectrometry) in this fraction. The retained SP proteins fraction repaired ultrastructural damage of frozen/thawed sperm and, with the addition of fructose, significantly improved motility of frozen/thawed sperm. We concluded that SP proteins that bound to the sperm membrane were conserved among ram breeds, and that when added to frozen/thawed semen (along with an energy source), they repaired ram sperm damage and enhanced sperm motility. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Screening and expression of selected taxonomically conserved and unique hypothetical proteins in Burkholderia pseudomallei K96243

    NASA Astrophysics Data System (ADS)

    Akhir, Nor Azurah Mat; Nadzirin, Nurul; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2015-09-01

    Hypothetical proteins of bacterial pathogens represent a large numbers of novel biological mechanisms which could belong to essential pathways in the bacteria. They lack functional characterizations mainly due to the inability of sequence homology based methods to detect functional relationships in the absence of detectable sequence similarity. The dataset derived from this study showed 550 candidates conserved in genomes that has pathogenicity information and only present in the Burkholderiales order. The dataset has been narrowed down to taxonomic clusters. Ten proteins were selected for ORF amplification, seven of them were successfully amplified, and only four proteins were successfully expressed. These proteins will be great candidates in determining the true function via structural biology.

  12. Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization.

    PubMed

    Lemos, C L; Sampaio, P; Maiato, H; Costa, M; Omel'yanchuk, L V; Liberal, V; Sunkel, C E

    2000-07-17

    Through mutational analysis in Drosopjila we have identified the gene multiple asters (mast), which encodes a new 165 kDa protein. mast mutant neuroblasts are highly polyploid and show severe mitotic abnormalities including the formation of mono- and multi-polar spindles organized by an irregular number of microtubule-organizing centres of abnormal size and shape. The mast gene product is evolutionarily conserved since homologues were identified from yeast to man, revealing a novel protein family. Antibodies against Mast and analysis of tissue culture cells expressing an enhanced green fluorescent protein-Mast fusion protein show that during mitosis, this protein localizes to centrosomes, the mitotic spindle, centromeres and spindle midzone. Microtubule-binding assays indicate that Mast is a microtubule-associated protein displaying strong affinity for polymerized microtubules. The defects observed in the mutant alleles and the intracellular localization of the protein suggest that Mast plays an essential role in centrosome separation and organization of the bipolar mitotic spindle.

  13. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7

    PubMed Central

    Hussain, Rawaa H.; Zawawi, Mariam; Bayfield, Mark A.

    2013-01-01

    The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3′OH-dependent trailer binding/protection and a UUU-3′OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3′OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily. PMID:23887937

  14. Conservation of RNA chaperone activity of the human La-related proteins 4, 6 and 7.

    PubMed

    Hussain, Rawaa H; Zawawi, Mariam; Bayfield, Mark A

    2013-10-01

    The La module is a conserved tandem arrangement of a La motif and RNA recognition motif whose function has been best characterized in genuine La proteins. The best-characterized substrates of La proteins are pre-tRNAs, and previous work using tRNA mediated suppression in Schizosaccharomyces pombe has demonstrated that yeast and human La enhance the maturation of these using two distinguishable activities: UUU-3'OH-dependent trailer binding/protection and a UUU-3'OH independent activity related to RNA chaperone function. The La module has also been identified in several conserved families of La-related proteins (LARPs) that engage other RNAs, but their mode of RNA binding and function(s) are not well understood. We demonstrate that the La modules of the human LARPs 4, 6 and 7 are also active in tRNA-mediated suppression, even in the absence of stable UUU-3'OH trailer protection. Rather, the capacity of these to enhance pre-tRNA maturation is associated with RNA chaperone function, which we demonstrate to be a conserved activity for each hLARP in vitro. Our work reveals insight into the mechanisms by which La module containing proteins discriminate RNA targets and demonstrates that RNA chaperone activity is a conserved function across representative members of the La motif-containing superfamily.

  15. Unconventional conservation among genes encoding small secreted salivary sland proteins from a gall midge

    USDA-ARS?s Scientific Manuscript database

    Due to functional constraints associated with protein-coding sequences, introns and the 3’-untranslated region (UTR) of most genes vary the most, followed by the 5’-UTR. The coding region is the most conserved due to stronger functional constraints. During characterization of transcripts and gene...

  16. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  17. Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants1[W][OA

    PubMed Central

    Xu, Lin; Carrie, Chris; Law, Simon R.; Murcha, Monika W.; Whelan, James

    2013-01-01

    The dual-targeting ability of a variety of proteins from Physcomitrella patens, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) was tested to determine when dual targeting arose and to what extent it was conserved in land plants. Overall, the targeting ability of over 80 different proteins from rice and P. patens, representing 42 dual-targeted proteins in Arabidopsis, was tested. We found that dual targeting arose early in land plant evolution, as it was evident in many cases with P. patens proteins that were conserved in rice and Arabidopsis. Furthermore, we found that the acquisition of dual-targeting ability is still occurring, evident in P. patens as well as rice and Arabidopsis. The loss of dual-targeting ability appears to be rare, but does occur. Ascorbate peroxidase represents such an example. After gene duplication in rice, individual genes encode proteins that are targeted to a single organelle. Although we found that dual targeting was generally conserved, the ability to detect dual-targeted proteins differed depending on the cell types used. Furthermore, it appears that small changes in the targeting signal can result in a loss (or gain) of dual-targeting ability. Overall, examination of the targeting signals within this study did not reveal any clear patterns that would predict dual-targeting ability. The acquisition of dual-targeting ability also appears to be coordinated between proteins. Mitochondrial intermembrane space import and assembly protein40, a protein involved in oxidative folding in mitochondria and peroxisomes, provides an example where acquisition of dual targeting is accompanied by the dual targeting of substrate proteins. PMID:23257241

  18. Acquisition, conservation, and loss of dual-targeted proteins in land plants.

    PubMed

    Xu, Lin; Carrie, Chris; Law, Simon R; Murcha, Monika W; Whelan, James

    2013-02-01

    The dual-targeting ability of a variety of proteins from Physcomitrella patens, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) was tested to determine when dual targeting arose and to what extent it was conserved in land plants. Overall, the targeting ability of over 80 different proteins from rice and P. patens, representing 42 dual-targeted proteins in Arabidopsis, was tested. We found that dual targeting arose early in land plant evolution, as it was evident in many cases with P. patens proteins that were conserved in rice and Arabidopsis. Furthermore, we found that the acquisition of dual-targeting ability is still occurring, evident in P. patens as well as rice and Arabidopsis. The loss of dual-targeting ability appears to be rare, but does occur. Ascorbate peroxidase represents such an example. After gene duplication in rice, individual genes encode proteins that are targeted to a single organelle. Although we found that dual targeting was generally conserved, the ability to detect dual-targeted proteins differed depending on the cell types used. Furthermore, it appears that small changes in the targeting signal can result in a loss (or gain) of dual-targeting ability. Overall, examination of the targeting signals within this study did not reveal any clear patterns that would predict dual-targeting ability. The acquisition of dual-targeting ability also appears to be coordinated between proteins. Mitochondrial intermembrane space import and assembly protein40, a protein involved in oxidative folding in mitochondria and peroxisomes, provides an example where acquisition of dual targeting is accompanied by the dual targeting of substrate proteins.

  19. Sequence-related human proteins cluster by degree of evolutionary conservation

    NASA Astrophysics Data System (ADS)

    Mrowka, Ralf; Patzak, Andreas; Herzel, Hanspeter; Holste, Dirk

    2004-11-01

    Gene duplication followed by adaptive evolution is thought to be a central mechanism for the emergence of novel genes. To illuminate the contribution of duplicated protein-coding sequences to the complexity of the human genome, we study the connectivity of pairwise sequence-related human proteins and construct a network (N) of linked protein sequences with shared similarities. We find that (i) the connectivity distribution P(k) for k sequence-related proteins decays as a power law P(k)˜k-γ with γ≈1.2 , (ii) the top rank of N consists of a single large cluster of proteins (≈70%) , while bottom ranks consist of multiple isolated clusters, and (iii) structural characteristics of N show both a high degree of clustering and an intermediate connectivity (“small-world” features). We gain further insight into structural properties of N by studying the relationship between the connectivity distribution and the phylogenetic conservation of proteins in bacteria, plants, invertebrates, and vertebrates. We find that (iv) the proportion of sequence-related proteins increases with increasing extent of evolutionary conservation. Our results support that small-world network properties constitute a footprint of an evolutionary mechanism and extend the traditional interpretation of protein families.

  20. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani.

    PubMed

    Enany, Shymaa

    2014-01-01

    The progress in biological technologies has led to rapid accumulation of microbial genomic sequences with a vast number of uncharacterized genes. Proteins encoded by these genes are usually uncharacterized, hypothetical, and/or conserved. In Clostridium tetani (C. tetani), these proteins constitute up to 50% of the expressed proteins. In this regard, understanding the functions and the structures of these proteins is crucially important, particularly in C. tetani, which is a medically important pathogen. Here, we used a variety of bioinformatics tools and databases to analyze 10 hypothetical and conserved proteins in C. tetani. We were able to provide a detailed overview of the functional contributions of some of these proteins in several cellular functions, including (1) evolving antibiotic resistance, (2) interaction with enzymes pathways, and (3) involvement in drug transportation. Among these candidates, we postulated the involvement of one of these hypothetical proteins in the pathogenic activity of tetanus. The structural and functional prediction of these proteins should serve in uncovering and better understanding the function of C. tetani cells to ultimately discover new possible drug targets.

  1. Evolutionary conservation of mammalian sperm proteins associates with overall, not tyrosine, phosphorylation in human spermatozoa.

    PubMed

    Schumacher, Julia; Ramljak, Sanja; Asif, Abdul R; Schaffrath, Michael; Zischler, Hans; Herlyn, Holger

    2013-12-06

    We investigated possible associations between sequence evolution of mammalian sperm proteins and their phosphorylation status in humans. As a reference, spermatozoa from three normozoospermic men were analyzed combining two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry. We identified 99 sperm proteins (thereof 42 newly described) and determined the phosphorylation status for most of them. Sequence evolution was studied across six mammalian species using nonsynonymous/synonymous rate ratios (dN/dS) and amino acid distances. Site-specific purifying selection was assessed employing average ratios of evolutionary rates at phosphorylated versus nonphosphorylated amino acids (α). According to our data, mammalian sperm proteins do not show statistically significant sequence conservation difference, no matter if the human ortholog is a phosphoprotein with or without tyrosine (Y) phosphorylation. In contrast, overall phosphorylation of human sperm proteins, i.e., phosphorylation at serine (S), threonine (T), and/or Y residues, associates with above-average conservation of sequences. Complementary investigations suggest that numerous protein-protein interactants constrain sequence evolution of sperm phosphoproteins. Although our findings reject a special relevance of Y phosphorylation for sperm functioning, they still indicate that overall phosphorylation substantially contributes to proper functioning of sperm proteins. Hence, phosphorylated sperm proteins might be considered as prime candidates for diagnosis and treatment of reduced male fertility.

  2. The evolutionary origins and catalytic importance of conserved electrostatic networks within TIM-barrel proteins.

    PubMed

    Livesay, Dennis R; La, David

    2005-05-01

    Conservation of function is the basic tenet of protein evolution. Conservation of key electrostatic properties is a frequently employed mechanism that leads to conserved function. In a previous report, we identified several conserved electrostatic properties in four protein families and one functionally diverse enzyme superfamily. In this report, we demonstrate the evolutionary and catalytic importance of electrostatic networks in three ubiquitous metabolic enzymes: triosephosphate isomerase, enolase, and transaldolase. Evolutionary importance is demonstrated using phylogenetic motifs (sequence fragments that parallel the overall familial phylogeny). Phylogenetic motifs frequently correspond to both catalytic residues and conserved interactions that fine-tune catalytic residue pKa values. Further, in the case of triosephosphate isomerase, quantitative differences in the catalytic Glu169 pKa values parallel subfamily differentiation. Finally, phylogenetic motifs are shown to structurally cluster around the active sites of eight different TIM-barrel families. Depending upon the mechanistic requisites of each reaction catalyzed, interruptions to the canonical fold may or may not be identified as phylogenetic motifs.

  3. Weak conservation of structural features in the interfaces of homologous transient protein–protein complexes

    PubMed Central

    Sudha, Govindarajan; Singh, Prashant; Swapna, Lakshmipuram S; Srinivasan, Narayanaswamy

    2015-01-01

    Residue types at the interface of protein–protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures. PMID:26311309

  4. Expanding the Kinome World: A New Protein Kinase Family Widely Conserved in Bacteria.

    PubMed

    Nguyen, Hien-Anh; El Khoury, Takla; Guiral, Sébastien; Laaberki, Maria-Halima; Candusso, Marie-Pierre; Galisson, Frédéric; Foucher, Anne-Emmanuelle; Kesraoui, Salsabil; Ballut, Lionel; Vallet, Sylvain; Orelle, Cédric; Zucchini, Laure; Martin, Juliette; Page, Adeline; Attieh, Jihad; Aghajari, Nushin; Grangeasse, Christophe; Jault, Jean-Michel

    2017-10-13

    Fine tuning of signaling pathways is essential for cells to cope with sudden environmental variations. This delicate balance is maintained in particular by protein kinases that control the activity of target proteins by reversible phosphorylation. In addition to homologous eukaryotic enzymes, bacteria have evolved some specific Ser/Thr/Tyr protein kinases without any structural resemblance to their eukaryotic counterparts. Here, we show that a previously identified family of ATPases, broadly conserved among bacteria, is in fact a new family of protein kinases with a Ser/Thr/Tyr kinase activity. A prototypic member of this family, YdiB from Bacillus subtilis, is able to autophosphorylate and to phosphorylate a surrogate substrate, the myelin basic protein. Two crystal structures of YdiB were solved (1.8 and 2.0Å) that display a unique ATP-binding fold unrelated to known protein kinases, although a conserved HxD motif is reminiscent of that found in Hanks-type protein kinases. The effect of mutations of conserved residues further highlights the unique nature of this new protein kinase family that we name ubiquitous bacterial kinase. We investigated the cellular role of YdiB and showed that a ∆ydiB mutant was more sensitive to paraquat treatment than the wild type, with ~13% of cells with an aberrant morphology. In addition, YdiE, which is known to participate with both YdiC and YdiB in an essential chemical modification of some specific tRNAs, is phosphorylated in vitro by YdiB. These results expand the boundaries of the bacterial kinome and support the involvement of YdiB in protein translation and resistance to oxidative stress in B. subtilis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Conservation of proteins involved in oocyst wall formation in Eimeria maxima, Eimeria tenella and Eimeria acervulina.

    PubMed

    Belli, Sabina I; Ferguson, David J P; Katrib, Marilyn; Slapetova, Iveta; Mai, Kelly; Slapeta, Jan; Flowers, Sarah A; Miska, Kate B; Tomley, Fiona M; Shirley, Martin W; Wallach, Michael G; Smith, Nicholas C

    2009-08-01

    Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E. maxima, Eimeria tenella and Eimeria acervulina. Homologous genes for two major gametocyte proteins - GAM56 and GAM82 - were found in E. maxima, E. tenella and E. acervulina. Alignment of the predicted protein sequences of these genes reveals that, as well as sharing regions of tyrosine richness, strong homology exists in their amino-terminal regions, where protective antibodies bind. This study confirms the conservation of the roles of GAM56 and GAM82 in oocyst wall formation and shows that antibodies to gametocyte antigens of E. maxima cross-react with homologous proteins in other species, helping to explain cross-species maternal immunity.

  6. The evolutionarily conserved Krueppel-associated box domain defines a subfamily of eukaryotic multifingered proteins

    SciTech Connect

    Bellefroid, E.J.; Poncelet, D.A.; Lecocq, P.J.; Revelant, O.; Martial, J.A. )

    1991-05-01

    The authors have previously shown that the human genome includes hundreds of genes coding for putative factors related to the Krueppel zinc-finger protein, which regulates Drosophila segmentation. They report herein that about one-third of these genes code for proteins that share a very conserved region of about 75 amino acids in their N-terminal nonfinger portion. Homologous regions are found in a number of previously described finger proteins, including mouse Zfp-1 and Xenopus Xfin. They named this region the Krueppel-associated box (KRAB). This domain has the potential to form two amphipathic {alpha}-helices. Southern blot analysis of zoo blots suggests that the Krueppel-associated box is highly conserved during evolution. Northern blot analysis shows that these genes are expressed in most adult tissues and are down-regulated during in vitro terminal differentiation of human myeloid cells.

  7. A conserved domain targets exported PHISTb family proteins to the periphery of Plasmodium infected erythrocytes

    PubMed Central

    Tarr, Sarah J.; Moon, Robert W.; Hardege, Iris; Osborne, Andrew R.

    2014-01-01

    During blood-stage infection, malaria parasites export numerous proteins to the host erythrocyte. The Poly-Helical Interspersed Sub-Telomeric (PHIST) proteins are an exported family that share a common ‘PRESAN’ domain, and include numerous members in Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. In P. falciparum, PHIST proteins have been implicated in protein trafficking and intercellular communication. A number of PHIST proteins are essential for parasite survival. Here, we identify nine members of the PHISTb sub-class of PHIST proteins, including one protein known to be essential for parasite survival, that localise to the erythrocyte periphery. These proteins have solubility characteristics consistent with their association with the erythrocyte cytoskeleton. Together, an extended PRESAN domain, comprising the PRESAN domain and preceding sequence, form a novel targeting-domain that is sufficient to localise a protein to the erythrocyte periphery. We validate the role of this domain in RESA, thus identifying a cytoskeleton-binding domain in RESA that functions independently of its known spectrin-binding domain. Our data suggest that some PHISTb proteins may act as cross-linkers of the erythrocyte cytoskeleton. We also show for the first time that peripherally-localised PHISTb proteins are encoded in genomes of P. knowlesi and vivax indicating a conserved role for the extended PRESAN domain of these proteins in targeting to the erythrocyte periphery. PMID:25106850

  8. Hydration in drug design. 3. Conserved water molecules at the ligand-binding sites of homologous proteins.

    PubMed

    Poornima, C S; Dean, P M

    1995-12-01

    Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of 'binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.

  9. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    SciTech Connect

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-09-05

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteins in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.

  10. Protein E of Haemophilus influenzae is a ubiquitous highly conserved adhesin.

    PubMed

    Singh, Birendra; Brant, Marta; Kilian, Mogens; Hallström, Björn; Riesbeck, Kristian

    2010-02-01

    Protein E (PE) of nontypeable Haemophilus influenzae (NTHi) is involved in adhesion and activation of epithelial cells. A total of 186 clinical NTHi isolates, encapsulated H. influenzae, and culture collection strains were analyzed. PE was highly conserved in both NTHi and encapsulated H. influenzae (96.9%-100% identity without the signal peptide). PE also existed in other members of the genus Pasteurellaceae. The epithelial cell binding region (amino acids 84-108) was completely conserved. Phylogenetic analysis of the pe sequence separated Haemophilus species into 2 separate clusters. Importantly, PE was expressed in 98.4% of all NTHi (126 isolates) independently of the growth phase.

  11. Interaction network containing conserved and essential protein complexes in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Butland, Gareth; Peregrín-Alvarez, José Manuel; Li, Joyce; Yang, Wehong; Yang, Xiaochun; Canadien, Veronica; Starostine, Andrei; Richards, Dawn; Beattie, Bryan; Krogan, Nevan; Davey, Michael; Parkinson, John; Greenblatt, Jack; Emili, Andrew

    2005-02-01

    Proteins often function as components of multi-subunit complexes. Despite its long history as a model organism, no large-scale analysis of protein complexes in Escherichia coli has yet been reported. To this end, we have targeted DNA cassettes into the E. coli chromosome to create carboxy-terminal, affinity-tagged alleles of 1,000 open reading frames (~ 23% of the genome). A total of 857 proteins, including 198 of the most highly conserved, soluble non-ribosomal proteins essential in at least one bacterial species, were tagged successfully, whereas 648 could be purified to homogeneity and their interacting protein partners identified by mass spectrometry. An interaction network of protein complexes involved in diverse biological processes was uncovered and validated by sequential rounds of tagging and purification. This network includes many new interactions as well as interactions predicted based solely on genomic inference or limited phenotypic data. This study provides insight into the function of previously uncharacterized bacterial proteins and the overall topology of a microbial interaction network, the core components of which are broadly conserved across Prokaryota.

  12. A conserved 19-kDa Eimeria tenella antigen is a profilin-like protein.

    PubMed

    Fetterer, R H; Miska, K B; Jenkins, M C; Barfield, R C

    2004-12-01

    A wide range of recombinant proteins from Eimeria species have been reported to offer some degree of protection against infection and disease, but the specific biological function of these proteins is largely unknown. Previous studies have demonstrated a 19-kDa protein of unknown function designated SZ-1 in sporozoites and merozoites of Eimeria acervulina that can be used to confer partial protection against coccidiosis. Reverse transcriptase-polymerase chain reaction indicated that the gene for SZ-1 is expressed by all the asexual stages of Eimeria tenella. Rabbit antisera to recombinant SZ-1 recognized an approximately 19-kDa protein from extracts of E. tenella sporozoites, merozoites, sporulated oocysts, and oocysts in various stages of sporulation. Immunofluorescence antibody staining indicated specific staining of E. tenella sporozoites and merozoites. Staining was most intense in the cytoplasm of the posterior end of the parasite. The primary amino acid sequence of the gene for E. tenella SZ-1 deduced from the E. tenella genome indicated a conserved domain for the actin-regulatory protein profilin. A conserved binding site for poly-L-proline (PLP), characteristic of profilin was also observed. SZ-1 was separated from soluble extract of E. tenella proteins by affinity chromatography using a PLP ligand, confirming the ability of SZ-1 to bind PLP. SZ-1 also partially inhibited the polymerization of actin. The current results are consistent with the classification of SZ-1 as a profilin-related protein.

  13. Search for conserved amino acid residues of the α-crystallin proteins of vertebrates.

    PubMed

    Shiliaev, Nikita G; Selivanova, Olga M; Galzitskaya, Oxana V

    2016-04-01

    [Formula: see text]-crystallin is the major eye lens protein and a member of the small heat-shock protein (sHsp) family. [Formula: see text]-crystallins have been shown to support lens clarity by preventing the aggregation of lens proteins. We performed the bioinformatics analysis of [Formula: see text]-crystallin sequences from vertebrates to find conserved amino acid residues as the three-dimensional (3D) structure of [Formula: see text]-crystallin is not identified yet. We are the first who demonstrated that the N-terminal region is conservative along with the central domain for vertebrate organisms. We have found that there is correlation between the conserved and structured regions. Moreover, amyloidogenic regions also correspond to the structured regions. We analyzed the amino acid composition of [Formula: see text]-crystallin A and B chains. Analyzing the occurrence of each individual amino acid residue, we have found that such amino acid residues as leucine, serine, lysine, proline, phenylalanine, histidine, isoleucine, glutamic acid, and valine change their content simultaneously in A and B chains in different classes of vertebrates. Aromatic amino acids occur more often in [Formula: see text]-crystallins from vertebrates than on the average in proteins among 17 animal proteomes. We obtained that the identity between A and B chains in the mammalian group is 0.35, which is lower than the published 0.60.

  14. Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved

    PubMed Central

    Chen, Miao-Hsueh; Wilson, Christopher W.; Li, Ya-Jun; Law, Kelvin King Lo; Lu, Chi-Sheng; Gacayan, Rhodora; Zhang, Xiaoyun; Hui, Chi-chung; Chuang, Pao-Tien

    2009-01-01

    A central question in Hedgehog (Hh) signaling is how evolutionarily conserved components of the pathway might use the primary cilium in mammals but not fly. We focus on Suppressor of fused (Sufu), a major Hh regulator in mammals, and reveal that Sufu controls protein levels of full-length Gli transcription factors, thus affecting the production of Gli activators and repressors essential for graded Hh responses. Surprisingly, despite ciliary localization of most Hh pathway components, regulation of Gli protein levels by Sufu is cilium-independent. We propose that Sufu-dependent processes in Hh signaling are evolutionarily conserved. Consistent with this, Sufu regulates Gli protein levels by antagonizing the activity of Spop, a conserved Gli-degrading factor. Furthermore, addition of zebrafish or fly Sufu restores Gli protein function in Sufu-deficient mammalian cells. In contrast, fly Smo is unable to translocate to the primary cilium and activate the mammalian Hh pathway. We also uncover a novel positive role of Sufu in regulating Hh signaling, resulting from its control of both Gli activator and repressor function. Taken together, these studies delineate important aspects of cilium-dependent and cilium-independent Hh signal transduction and provide significant mechanistic insight into Hh signaling in diverse species. PMID:19684112

  15. Click chemistry for the conservation of cellular structures and fluorescent proteins: ClickOx.

    PubMed

    Löschberger, Anna; Niehörster, Thomas; Sauer, Markus

    2014-05-01

    Reactive oxygen species (ROS), including hydrogen peroxide, are known to cause structural damage not only in living, but also in fixed, cells. Copper-catalyzed azide-alkyne cycloaddition (click chemistry) is known to produce ROS. Therefore, fluorescence imaging of cellular structures, such as the actin cytoskeleton, remains challenging when combined with click chemistry protocols. In addition, the production of ROS substantially weakens the fluorescence signal of fluorescent proteins. This led us to develop ClickOx, which is a new click chemistry protocol for improved conservation of the actin structure and better conservation of the fluorescence signal of green fluorescent protein (GFP)-fusion proteins. Herein we demonstrate that efficient oxygen removal by addition of an enzymatic oxygen scavenger system (ClickOx) considerably reduces ROS-associated damage during labeling of nascent DNA with ATTO 488 azide by Cu(I)-catalyzed click chemistry. Standard confocal and super-resolution fluorescence images of phalloidin-labeled actin filaments and GFP/yellow fluorescent protein-labeled cells verify the conservation of the cytoskeleton microstructure and fluorescence intensity, respectively. Thus, ClickOx can be used advantageously for structure preservation in conventional and most notably in super-resolution microscopy methods.

  16. Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila.

    PubMed Central

    Clark, R F; Elgin, S C

    1992-01-01

    The Su(var)205 gene of Drosophila melanogaster encodes heterochromatin protein 1 (HP1), a protein located preferentially within beta-heterochromatin. Mutation of this gene has been associated with dominant suppression of position-effect variegation. We have cloned and sequenced the gene encoding HP1 from Drosophila virilis, a distantly related species. Comparison of the predicted amino acid sequence with Drosophila melanogaster HP1 shows two regions of strong homology, one near the N-terminus (57/61 amino acids identical) and the other near the C-terminus (62/68 amino acids identical) of the protein. Little homology is seen in the 5' and 3' untranslated portions of the gene, as well as in the intronic sequences, although intron/exon boundaries are generally conserved. A comparison of the deduced amino acid sequences of HP1-like proteins from other species shows that the cores of the N-terminal and C-terminal domains have been conserved from insects to mammals. The high degree of conservation suggests that these N- and C-terminal domains could interact with other macromolecules in the formation of the condensed structure of heterochromatin. Images PMID:1461737

  17. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein.

    PubMed Central

    Zhang, Dang-Quan; Liu, Bing; Feng, Dong-Ru; He, Yan-Ming; Wang, Shu-Qi; Wang, Hong-Bin; Wang, Jin-Fa

    2004-01-01

    The approximately 24-amino-acid leucine-rich tandem repeat motif (PXXXXXLXXLXXLXLSXNXLXGXI) of carrot antifreeze protein comprises most of the processed protein and should contribute at least partly to the ice-binding site. Structural predictions using publicly available online sources indicated that the theoretical three-dimensional model of this plant protein includes a 10-loop beta-helix containing the approximately 24-amino-acid tandem repeat. This theoretical model indicated that conservative asparagine residues create putative ice-binding sites with surface complementarity to the 1010 prism plane of ice. We used site-specific mutagenesis to test the importance of these residues, and observed a distinct loss of thermal hysteresis activity when conservative asparagines were replaced with valine or glutamine, whereas a large increase in thermal hysteresis was observed when phenylalanine or threonine residues were replaced with asparagine, putatively resulting in the formation of an ice-binding site. These results confirmed that the ice-binding site of carrot antifreeze protein consists of conservative asparagine residues in each beta-loop. We also found that its thermal hysteresis activity is directly correlated with the length of its asparagine-rich binding site, and hence with the size of its ice-binding face. PMID:14531728

  18. Polyclonal antibody against conserved sequences of mce1A protein blocks MTB infection in macrophages.

    PubMed

    Sivagnanam, Sasikala; Namasivayam, Nalini; Chellam, Rajamanickam

    2012-03-01

    The pathogenesis of Mycobacterium tuberculosis is largely due to its ability to enter and survive within human macrophages. It is suggested that a specific protein namely mammalian cell entry protein is involved in the pathogenesis and the specific gene for this protein mce1A has been identified in several pathogenic organisms such as Rickettsia, Shigella, Escherichia coli, Helicobacter, Streptomyces, Klebsiella, Vibrio, Neisseria, Rhodococcus, Nocardioides, Saccharopolyspora erthyrae, and Pseudomonas. Analysis of mce1 operons in the above mentioned organisms through bioinformatics tools has revealed the presence of unique sequences (conserved regions) suggesting that these sequences may be involved in the process of infection. Presently, the mce1A full-length (1,365 bp) region from Mycobacterium bovis and its conserved regions (303 bp) were cloned in to an expression vector and the purified expressed proteins of molecular weight ~47 and ~11 kDa, respectively, were injected to rabbits to raise the polyclonal antibodies. The purified polyclonal antibodies were checked for their ability to inhibit the Mycobacterium infection in cultured human macrophages. In macrophage invasion assay, when antibody added at high concentration, decrease in viable counts was observed in all cell cultures within the first 5 days after infection, where the intracellular bacterial CFU obtained from the infected MTB increased by the 3rd day at low concentration of antibody. The macrophage invasion assay has indicated that the purified antibodies of mce1A conserved region can inhibit the infection of Mycobacterium.

  19. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure.

    PubMed

    Capra, John A; Laskowski, Roman A; Thornton, Janet M; Singh, Mona; Funkhouser, Thomas A

    2009-12-01

    Identifying a protein's functional sites is an important step towards characterizing its molecular function. Numerous structure- and sequence-based methods have been developed for this problem. Here we introduce ConCavity, a small molecule binding site prediction algorithm that integrates evolutionary sequence conservation estimates with structure-based methods for identifying protein surface cavities. In large-scale testing on a diverse set of single- and multi-chain protein structures, we show that ConCavity substantially outperforms existing methods for identifying both 3D ligand binding pockets and individual ligand binding residues. As part of our testing, we perform one of the first direct comparisons of conservation-based and structure-based methods. We find that the two approaches provide largely complementary information, which can be combined to improve upon either approach alone. We also demonstrate that ConCavity has state-of-the-art performance in predicting catalytic sites and drug binding pockets. Overall, the algorithms and analysis presented here significantly improve our ability to identify ligand binding sites and further advance our understanding of the relationship between evolutionary sequence conservation and structural and functional attributes of proteins. Data, source code, and prediction visualizations are available on the ConCavity web site (http://compbio.cs.princeton.edu/concavity/).

  20. Properties of Sequence Conservation in Upstream Regulatory and Protein Coding Sequences among Paralogs in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Richardson, Dale N.; Wiehe, Thomas

    Whole genome duplication (WGD) has catalyzed the formation of new species, genes with novel functions, altered expression patterns, complexified signaling pathways and has provided organisms a level of genetic robustness. We studied the long-term evolution and interrelationships of 5’ upstream regulatory sequences (URSs), protein coding sequences (CDSs) and expression correlations (EC) of duplicated gene pairs in Arabidopsis. Three distinct methods revealed significant evolutionary conservation between paralogous URSs and were highly correlated with microarray-based expression correlation of the respective gene pairs. Positional information on exact matches between sequences unveiled the contribution of micro-chromosomal rearrangements on expression divergence. A three-way rank analysis of URS similarity, CDS divergence and EC uncovered specific gene functional biases. Transcription factor activity was associated with gene pairs exhibiting conserved URSs and divergent CDSs, whereas a broad array of metabolic enzymes was found to be associated with gene pairs showing diverged URSs but conserved CDSs.

  1. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses

    PubMed Central

    Zamora, Miguel; Méndez-López, Eduardo; Agirrezabala, Xabier; Cuesta, Rebeca; Lavín, José L.; Sánchez-Pina, M. Amelia; Aranda, Miguel A.; Valle, Mikel

    2017-01-01

    Potyviruses constitute the second largest genus of plant viruses and cause important economic losses in a large variety of crops; however, the atomic structure of their particles remains unknown. Infective potyvirus virions are long flexuous filaments where coat protein (CP) subunits assemble in helical mode bound to a monopartite positive-sense single-stranded RNA [(+)ssRNA] genome. We present the cryo-electron microscopy (cryoEM) structure of the potyvirus watermelon mosaic virus at a resolution of 4.0 Å. The atomic model shows a conserved fold for the CPs of flexible filamentous plant viruses, including a universally conserved RNA binding pocket, which is a potential target for antiviral compounds. This conserved fold of the CP is widely distributed in eukaryotic viruses and is also shared by nucleoproteins of enveloped viruses with segmented (−)ssRNA (negative-sense ssRNA) genomes, including influenza viruses.

  2. Potyvirus virion structure shows conserved protein fold and RNA binding site in ssRNA viruses.

    PubMed

    Zamora, Miguel; Méndez-López, Eduardo; Agirrezabala, Xabier; Cuesta, Rebeca; Lavín, José L; Sánchez-Pina, M Amelia; Aranda, Miguel A; Valle, Mikel

    2017-09-01

    Potyviruses constitute the second largest genus of plant viruses and cause important economic losses in a large variety of crops; however, the atomic structure of their particles remains unknown. Infective potyvirus virions are long flexuous filaments where coat protein (CP) subunits assemble in helical mode bound to a monopartite positive-sense single-stranded RNA [(+)ssRNA] genome. We present the cryo-electron microscopy (cryoEM) structure of the potyvirus watermelon mosaic virus at a resolution of 4.0 Å. The atomic model shows a conserved fold for the CPs of flexible filamentous plant viruses, including a universally conserved RNA binding pocket, which is a potential target for antiviral compounds. This conserved fold of the CP is widely distributed in eukaryotic viruses and is also shared by nucleoproteins of enveloped viruses with segmented (-)ssRNA (negative-sense ssRNA) genomes, including influenza viruses.

  3. Variants within the yeast Ty sequence family encode a class of structurally conserved proteins.

    PubMed Central

    Fulton, A M; Mellor, J; Dobson, M J; Chester, J; Warmington, J R; Indge, K J; Oliver, S G; de la Paz, P; Wilson, W; Kingsman, A J

    1985-01-01

    The Ty transposable elements of Saccharomyces cerevisiae form a heterogeneous family within which two broad structural classes (I and II) exist. The two classes differ by two large substitutions and many restriction sites. We show that, like class I elements a class II element, Tyl-17, also appears to contain at least two major protein coding regions, designated TYA and TYB, and the organisational relationship of these regions has been conserved. The TYA genes of both classes encode proteins, designated p1 proteins, with an approximate molecular weight of 50 Kd and, despite considerable variation between the TYA regions at the DNA level, the structures of these proteins are remarkably similar. These observations strongly suggest that the p1 proteins of Ty elements are functionally significant and that they have been subject to selection. Images PMID:2989787

  4. NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins.

    PubMed

    Almeida, Marcius S; Herrmann, Torsten; Peti, Wolfgang; Wilson, Ian A; Wüthrich, Kurt

    2005-11-01

    The NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima represents an alpha/beta-topology formed by the regular secondary structures alpha1-beta1-beta2-alpha2-beta3-beta4-alpha3- beta5-3(10)-alpha4, with a small anti-parallel beta-sheet of beta-strands 1 and 2, and a mixed parallel/anti-parallel beta-sheet of beta-strands 3-5. Similar folds have previously been observed in other proteins, with amino acid sequence identity as low as 3% and a variety of different functions. There are also 216 sequence homologs of TM0487, which all have the signature sequence of domains of unknown function 59 (DUF59), for which no three-dimensional structures have as yet been reported. The TM0487 structure thus presents a platform for homology modeling of this large group of DUF59 proteins. Conserved among most of the DUF59s are 13 hydrophobic residues, which are clustered in the core of TM0487. A putative active site of TM0487 consisting of residues D20, E22, L23, T51, T52, and C55 is conserved in 98 of the 216 DUF59 sequences. Asp20 is buried within the proposed active site without any compensating positive charge, which suggests that its pK(a) value may be perturbed. Furthermore, the DUF59 family includes ORFs that are part of a conserved chromosomal group of proteins predicted to be involved in Fe-S cluster metabolism.

  5. Comparative Proteomics Reveals a Significant Bias Toward Alternative Protein Isoforms with Conserved Structure and Function

    PubMed Central

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L.

    2012-01-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is

  6. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.

    PubMed

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L

    2012-09-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of "novel" and "putative" protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and

  7. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    PubMed

    Bell, Russell; Hubbard, Alan; Chettier, Rakesh; Chen, Di; Miller, John P; Kapahi, Pankaj; Tarnopolsky, Mark; Sahasrabuhde, Sudhir; Melov, Simon; Hughes, Robert E

    2009-03-01

    We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  8. Mining the Giardia genome and proteome for conserved and unique basal body proteins

    PubMed Central

    Lauwaet, Tineke; Smith, Alias J.; Reiner, David S.; Romijn, Edwin P.; Wong, Catherine C. L.; Davids, Barbara J.; Shah, Sheila A.; Yates, John R.; Gillin, Frances D.

    2015-01-01

    Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterized by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signaling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localization in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localize with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localize to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signaling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles. PMID:21723868

  9. Conserved lamin A protein expression in differentiated cells in the earthworm Eudrilus eugeniae.

    PubMed

    Kalidas, Ramamoorthy M; Raja, Subramanian Elaiya; Mydeen, Sheik Abdul Kader Nagoor Meeran; Samuel, Selvan Christyraj Johnson Retnaraj; Durairaj, Selvan Christyraj Jackson; Nino, Gopi D; Palanichelvam, Karuppaiah; Vaithi, Arumugaswami; Sudhakar, Sivasubramaniam

    2015-09-01

    Lamin A is an intermediate filament protein found in most of the differentiated vertebrate cells but absent in stem cells. It shapes the skeletal frame structure beneath the inner nuclear membrane of the cell nucleus. As there are few studies of the expression of lamin A in invertebrates, in the present work, we have analyzed the sequence, immunochemical conservation and expression pattern of lamin A protein in the earthworm Eudrilus eugeniae, a model organism for tissue regeneration. The expression of lamin A has been confirmed in E. eugeniae by immunoblot. Its localization in the nuclear membrane has been observed by immunohistochemistry using two different rabbit anti-sera raised against human lamin A peptides, which are located at the C-terminus of the lamin A protein. These two antibodies detected 70 kDa lamin A protein in mice and a single 65 kDa protein in the earthworm. The Oct-4 positive undifferentiated blastemal tissues of regenerating earthworm do not express lamin A, while the Oct-4 negative differentiated cells express lamin A. This pattern was also confirmed in the earthworm prostate gland. The present study is the first evidence for the immunochemical identification of lamin A and Oct-4 in the earthworm. Along with the partial sequence obtained from the earthworm genome, the present results suggest that lamin A protein and its expression pattern is conserved from the earthworm to humans.

  10. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins

    PubMed Central

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins. PMID:26439842

  11. A Conserved Mechanism for Centromeric Nucleosome Recognition by Centromere Protein CENP-C

    PubMed Central

    Kato, Hidenori; Jiang, Jiansheng; Zhou, Bing-Rui; Rozendaal, Marieke; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T. Sam; Straight, Aaron F.; Bai, Yawen

    2013-01-01

    Chromosome segregation during mitosis requires assembly of the kinetochore complex at the centromere. Key to kinetochore assembly is the specific recognition of the histone variant CENP-A in the centromeric nucleosome by centromere protein C (CENP-C). We have defined the determinants of this recognition mechanism and discovered that CENP-C binds a hydrophobic region in the CENP-A tail and docks onto the acidic patch of histone H2A/H2B. We further find that the more broadly conserved CENP-C motif uses the same mechanism for CENP-A nucleosome recognition. Our findings reveal a conserved mechanism for protein recruitment to centromeres and a histone recognition mode whereby a disordered peptide binds the histone tail through nucleosome-docking-facilitated hydrophobic interactions. PMID:23723239

  12. Novel hexamerization motif is discovered in a conserved cytoplasmic protein from Salmonella typhimurium.

    SciTech Connect

    Petrova, T.; Cuff, M.; Wu, R.; Kim, Y.; Holzle, D.; Joachimiak, A.; Biosciences Division; Inst. of Mathematical Problems of Biology

    2007-01-01

    The cytoplasmic protein Stm3548 of unknown function obtained from a strain of Salmonella typhimurium was determined by X-ray crystallography at a resolution of 2.25 A. The asymmetric unit contains a hexamer of structurally identical monomers. The monomer is a globular domain with a long beta-hairpin protrusion that distinguishes this structure. This beta-hairpin occupies a central position in the hexamer, and its residues participate in the majority of interactions between subunits of the hexamer. We suggest that the structure of Stm3548 presents a new hexamerization motif. Because the residues participating in interdomain interactions are highly conserved among close members of protein family DUF1355 and buried solvent accessible area for the hexamer is significant, the hexamer is most likely conserved as well. A light scattering experiment confirmed the presence of hexamer in solution.

  13. SSDP1 gene encodes a protein with a conserved N-terminal FORWARD domain.

    PubMed

    Bayarsaihan, Dashzeveg

    2002-09-23

    I describe the characterization of mouse, human and chicken SSDP1 orthologs that encode a highly conserved protein with over 90% identity at the amino acid level. Structurally, the protein consists of a well-preserved FWD (FORWARD)-domain at the N-terminal end and a proline-, glycine-, methionine- and serine-rich sequence in the central and C-terminal regions. The FORWARD domain, comprised of three alpha-helices, is characterized by the presence of a FWD-box of unknown function conserved not only in vertebrates, but also in nematode, plants, fly and yeast. Human SSDP1 spans about 200 kb on the chromosome 1p31-p32 region and consists of 17 exons. The SSDP1 mRNA transcripts are distributed ubiquitously in adult human and mouse tissues.

  14. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize

    PubMed Central

    Musungu, Bryan; Bhatnagar, Deepak; Brown, Robert L.; Fakhoury, Ahmad M.; Geisler, Matt

    2015-01-01

    Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM) is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs) that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize. PMID:26089837

  15. p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families.

    PubMed

    Garcia-Ranea, J A; Mirey, Gladys; Camonis, Jacques; Valencia, Alfonso

    2002-10-09

    We identified families of proteins characterized by the presence of a domain similar to human p23 protein, which include proteins such as Sgt1, involved in the yeast kinetochore assembly; melusin, involved in specific interactions with the cytoplasmic integrin beta1 domain; Rar1, related to pathogenic resistance in plants, and to development in animals; B5+B5R flavo-hemo cytochrome NAD(P)H oxidoreductase type B in humans and mice; and NudC, involved in nucleus migration during mitosis. We also found that p23 and the HSP20/alpha-crystallin family of heat shock proteins, which share the same three-dimensional folding, show a pattern of conserved residues that points to a common origin in the evolution of both protein domains. The p23 and HSP20/alpha-crystallin phylogenetic relationship and their similar role in chaperone activity suggest a common function, probably involving protein-protein interaction, for those proteins containing p23-like domains.

  16. Conserved Hydration Sites in Pin1 Reveal a Distinctive Water Recognition Motif in Proteins.

    PubMed

    Barman, Arghya; Smitherman, Crystal; Souffrant, Michael; Gadda, Giovanni; Hamelberg, Donald

    2016-01-25

    Structurally conserved water molecules are important for biomolecular stability, flexibility, and function. X-ray crystallographic studies of Pin1 have resolved a number of water molecules around the enzyme, including two highly conserved water molecules within the protein. The functional role of these localized water molecules remains unknown and unexplored. Pin1 catalyzes cis/trans isomerizations of peptidyl prolyl bonds that are preceded by a phosphorylated serine or threonine residue. Pin1 is involved in many subcellular signaling processes and is a potential therapeutic target for the treatment of several life threatening diseases. Here, we investigate the significance of these structurally conserved water molecules in the catalytic domain of Pin1 using molecular dynamics (MD) simulations, free energy calculations, analysis of X-ray crystal structures, and circular dichroism (CD) experiments. MD simulations and free energy calculations suggest the tighter binding water molecule plays a crucial role in maintaining the integrity and stability of a critical hydrogen-bonding network in the active site. The second water molecule is exchangeable with bulk solvent and is found in a distinctive helix-turn-coil motif. Structural bioinformatics analysis of nonredundant X-ray crystallographic protein structures in the Protein Data Bank (PDB) suggest this motif is present in several other proteins and can act as a water site, akin to the calcium EF hand. CD experiments suggest the isolated motif is in a distorted PII conformation and requires the protein environment to fully form the α-helix-turn-coil motif. This study provides valuable insights into the role of hydration in the structural integrity of Pin1 that can be exploited in protein engineering and drug design.

  17. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins.

    PubMed

    Michishita, Eriko; Park, Jean Y; Burneskis, Jenna M; Barrett, J Carl; Horikawa, Izumi

    2005-10-01

    Sir2 is a NAD+-dependent protein deacetylase that extends lifespan in yeast and worms. This study examines seven human proteins homologous to Sir2 (SIRT1 through SIRT7) for cellular localization, expression profiles, protein deacetylation activity, and effects on human cell lifespan. We found that: 1) three nuclear SIRT proteins (SIRT1, SIRT6, and SIRT7) show different subnuclear localizations: SIRT6 and SIRT7 are associated with heterochromatic regions and nucleoli, respectively, where yeast Sir2 functions; 2) SIRT3, SIRT4, and SIRT5 are localized in mitochondria, an organelle that links aging and energy metabolism; 3) cellular p53 is a major in vivo substrate of SIRT1 deacetylase, but not the other six SIRT proteins; 4) SIRT1, but not the other two nuclear SIRT proteins, shows an in vitro deacetylase activity on histone H4 and p53 peptides; and 5) overexpression of any one of the seven SIRT proteins does not extend cellular replicative lifespan in normal human fibroblasts or prostate epithelial cells. This study supports the notion that multiple human SIRT proteins have evolutionarily conserved and nonconserved functions at different cellular locations and reveals that the lifespan of normal human cells, in contrast to that of lower eukaryotes, cannot be manipulated by increased expression of a single SIRT protein.

  18. Remote homology detection of integral membrane proteins using conserved sequence features.

    PubMed

    Bernsel, Andreas; Viklund, Håkan; Elofsson, Arne

    2008-05-15

    Compared with globular proteins, transmembrane proteins are surrounded by a more intricate environment and, consequently, amino acid composition varies between the different compartments. Existing algorithms for homology detection are generally developed with globular proteins in mind and may not be optimal to detect distant homology between transmembrane proteins. Here, we introduce a new profile-profile based alignment method for remote homology detection of transmembrane proteins in a hidden Markov model framework that takes advantage of the sequence constraints placed by the hydrophobic interior of the membrane. We expect that, for distant membrane protein homologs, even if the sequences have diverged too far to be recognized, the hydrophobicity pattern and the transmembrane topology are better conserved. By using this information in parallel with sequence information, we show that both sensitivity and specificity can be substantially improved for remote homology detection in two independent test sets. In addition, we show that alignment quality can be improved for the most distant homologs in a public dataset of membrane protein structures. Applying the method to the Pfam domain database, we are able to suggest new putative evolutionary relationships for a few relatively uncharacterized protein domain families, of which several are confirmed by other methods. The method is called Searcher for Homology Relationships of Integral Membrane Proteins (SHRIMP) and is available for download at http://www.sbc.su.se/shrimp/. 2007 Wiley-Liss, Inc.

  19. S-Bacillithiolation Protects Conserved and Essential Proteins Against Hypochlorite Stress in Firmicutes Bacteria

    PubMed Central

    Chi, Bui Khanh; Roberts, Alexandra A.; Huyen, Tran Thi Thanh; Bäsell, Katrin; Becher, Dörte; Albrecht, Dirk; Hamilton, Chris J.

    2013-01-01

    Abstract Aims: Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)–tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B. megaterium, B. pumilus, B. amyloliquefaciens, and Staphylococcus carnosus and also measured the BSH/oxidized bacillithiol disulfide (BSSB) redox ratio after NaOCl stress. Results: In total, 54 proteins with characteristic S-bacillithiolation (SSB) sites were identified, including 29 unique proteins and eight proteins conserved in two or more of these bacteria. The methionine synthase MetE is the most abundant S-bacillithiolated protein in Bacillus species after NaOCl exposure. Further, S-bacillithiolated proteins include the translation elongation factor EF-Tu and aminoacyl-tRNA synthetases (ThrS), the DnaK and GrpE chaperones, the two-Cys peroxiredoxin YkuU, the ferredoxin–NADP+ oxidoreductase YumC, the inorganic pyrophosphatase PpaC, the inosine-5′-monophosphate dehydrogenase GuaB, proteins involved in thiamine biosynthesis (ThiG and ThiM), queuosine biosynthesis (QueF), biosynthesis of aromatic amino acids (AroA and AroE), serine (SerA), branched-chain amino acids (YwaA), and homocysteine (LuxS and MetI). The thioredoxin-like proteins, YphP and YtxJ, are S-bacillithiolated at their active sites, suggesting a function in the de-bacillithiolation process. S-bacillithiolation is accompanied by a two-fold increase in the BSSB level and a decrease in the BSH/BSSB redox ratio in B. subtilis. Innovation: Many essential and conserved proteins, including the dominant MetE, were identified in the S-bacillithiolome of different Bacillus species and S. carnosus using shotgun-LC-MS/MS analyses. Conclusion: S-bacillithiolation is a widespread redox control mechanism among Firmicutes bacteria that protects

  20. A conserved NAD(+) binding pocket that regulates protein-protein interactions during aging.

    PubMed

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD(+) (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD(+) to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD(+) concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD(+) Thus, NAD(+) directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging.

  1. An Efficient Docking Algorithm Using Conserved Residue Information to Study Protein-Protein Interactions

    DTIC Science & Technology

    2004-12-01

    employ genetic algorithms . In principle, calculation of the free energy change upon binding of two proteins should allow determination of the... Genetic Algorithm Approach to Protein Docking in CAPRI round 1. Proteins 52: 10-14. Glaser, F., Pupko, T., Paz, I., Bell, R.E., Bechor-Shental, D... genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19: 1639-1662. Palma, P.N., Krippahl, L., Wampler

  2. An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system.

    PubMed

    Kloepper, Tobias H; Kienle, C Nickias; Fasshauer, Dirk

    2007-09-01

    Proteins of the SNARE (soluble N-ethylmalemide-sensitive factor attachment protein receptor) family are essential for the fusion of transport vesicles with an acceptor membrane. Despite considerable sequence divergence, their mechanism of action is conserved: heterologous sets assemble into membrane-bridging SNARE complexes, in effect driving membrane fusion. Within the cell, distinct functional SNARE units are involved in different trafficking steps. These functional units are conserved across species and probably reflect the conservation of the particular transport step. Here, we have systematically analyzed SNARE sequences from 145 different species and have established a highly accurate classification for all SNARE proteins. Principally, all SNAREs split into four basic types, reflecting their position in the four-helix bundle complex. Among these four basic types, we established 20 SNARE subclasses that probably represent the original repertoire of a eukaryotic cenancestor. This repertoire has been modulated independently in different lines of organisms. Our data are in line with the notion that the ur-eukaryotic cell was already equipped with the various compartments found in contemporary cells. Possibly, the development of these compartments is closely intertwined with episodes of duplication and divergence of a prototypic SNARE unit.

  3. Functional Significance May Underlie the Taxonomic Utility of Single Amino Acid Substitutions in Conserved Proteins

    PubMed Central

    Wagner, Gerd K.; Wu, Qiong; Huber, Katharina T.

    2010-01-01

    We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of β-tubulin. Our analysis identified one amino acid substitution—β-tubulin F224—which was highly lineage specific. Investigation of β-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the β-tubulin Neighbor-Net and demonstrated a fundamental division between core β-tubulins (plant-like) and divergent β-tubulins (animal and fungal). F224 was almost completely restricted to the core β-tubulins, while divergent β-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of β-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core β-tubulins and Y-type, divergent β-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins. Electronic supplementary material The online version of this article (doi:10.1007/s00239-010-9338-y) contains supplementary material, which is available to authorized users. PMID:20386893

  4. Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales)

    PubMed Central

    Gupta, Radhey S

    2006-01-01

    Background The epsilon proteobacteria, which include many important human pathogens, are presently recognized solely on the basis of their branching in rRNA trees. No unique molecular or biochemical characteristics specific for this group are known. Results Comparative analyses of proteins in the genomes of Wolinella succinogenes DSM 1740 and Campylobacter jejuni RM1221 against all available sequences have identified a large number of proteins that are unique to various epsilon proteobacteria (Campylobacterales), but whose homologs are not detected in other organisms. Of these proteins, 49 are uniquely found in nearly all sequenced epsilon-proteobacteria (viz. Helicobacter pylori (26695 and J99), H. hepaticus, C. jejuni (NCTC 11168, RM1221, HB93-13, 84-25, CF93-6, 260.94, 11168 and 81-176), C. lari, C. coli, C. upsaliensis, C. fetus, W. succinogenes DSM 1740 and Thiomicrospira denitrificans ATCC 33889), 11 are unique for the Wolinella and Helicobacter species (i.e. Helicobacteraceae family) and many others are specific for either some or all of the species within the Campylobacter genus. The primary sequences of many of these proteins are highly conserved and provide novel resources for diagnostics and therapeutics. We also report four conserved indels (i.e. inserts or deletions) in widely distributed proteins (viz. B subunit of exinuclease ABC, phenylalanyl-tRNA synthetase, RNA polymerase β '-subunit and FtsH protein) that are specific for either all epsilon proteobacteria or different subgroups. In addition, a rare genetic event that caused fusion of the genes for the largest subunits of RNA polymerase (rpoB and rpoC) in Wolinella and Helicobacter is also described. The inter-relationships amongst Campylobacterales as deduced from these molecular signatures are in accordance with the phylogenetic trees based on the 16S rRNA and concatenated sequences for nine conserved proteins. Conclusion These molecular signatures provide novel tools for identifying and

  5. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    PubMed Central

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  6. Conserved RNA-binding proteins required for dendrite morphogenesis in Caenorhabditis elegans sensory neurons.

    PubMed

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A; Kerr, Genevieve; Wells, Kristen L; Younes, Serena; Mortimer, Nathan T; Olesnicky, Eugenia C; Killian, Darrell J

    2015-02-10

    The regulation of dendritic branching is critical for sensory reception, cell-cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans.

  7. Peroxisomal protein import is conserved between yeast, plants, insects and mammals.

    PubMed

    Gould, S J; Keller, G A; Schneider, M; Howell, S H; Garrard, L J; Goodman, J M; Distel, B; Tabak, H; Subramani, S

    1990-01-01

    We have previously demonstrated that firefly luciferase can be imported into peroxisomes of both insect and mammalian cells. To determine whether the process of protein transport into the peroxisome is functionally similar in more widely divergent eukaryotes, the cDNA encoding firefly luciferase was expressed in both yeast and plant cells. Luciferase was translocated into peroxisomes in each type of organism. Experiments were also performed to determine whether a yeast peroxisomal protein could be transported to peroxisomes in mammalian cells. We observed that a C-terminal segment of the yeast (Candida boidinii) peroxisomal protein PMP20 could act as a peroxisomal targeting signal in mammalian cells. These results suggest that at least one mechanism of protein translocation into peroxisomes has been conserved throughout eukaryotic evolution.

  8. Peroxisomal protein import is conserved between yeast, plants, insects and mammals.

    PubMed Central

    Gould, S J; Keller, G A; Schneider, M; Howell, S H; Garrard, L J; Goodman, J M; Distel, B; Tabak, H; Subramani, S

    1990-01-01

    We have previously demonstrated that firefly luciferase can be imported into peroxisomes of both insect and mammalian cells. To determine whether the process of protein transport into the peroxisome is functionally similar in more widely divergent eukaryotes, the cDNA encoding firefly luciferase was expressed in both yeast and plant cells. Luciferase was translocated into peroxisomes in each type of organism. Experiments were also performed to determine whether a yeast peroxisomal protein could be transported to peroxisomes in mammalian cells. We observed that a C-terminal segment of the yeast (Candida boidinii) peroxisomal protein PMP20 could act as a peroxisomal targeting signal in mammalian cells. These results suggest that at least one mechanism of protein translocation into peroxisomes has been conserved throughout eukaryotic evolution. Images Fig. 1. Fig. 2. Fig. 3. PMID:2104803

  9. Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin

    SciTech Connect

    Fleishman, Sarel J.; Whitehead, Timothy A.; Ekiert, Damian C.; Dreyfus, Cyrille; Corn, Jacob E.; Strauch, Eva-Maria; Wilson, Ian A.; Baker, David

    2011-09-28

    We describe a general computational method for designing proteins that bind a surface patch of interest on a target macromolecule. Favorable interactions between disembodied amino acid residues and the target surface are identified and used to anchor de novo designed interfaces. The method was used to design proteins that bind a conserved surface patch on the stem of the influenza hemagglutinin (HA) from the 1918 H1N1 pandemic virus. After affinity maturation, two of the designed proteins, HB36 and HB80, bind H1 and H5 HAs with low nanomolar affinity. Further, HB80 inhibits the HA fusogenic conformational changes induced at low pH. The crystal structure of HB36 in complex with 1918/H1 HA revealed that the actual binding interface is nearly identical to that in the computational design model. Such designed binding proteins may be useful for both diagnostics and therapeutics.

  10. Members of the evolutionarily conserved PMT family of protein O-mannosyltransferases form distinct protein complexes among themselves.

    PubMed

    Girrbach, Verena; Strahl, Sabine

    2003-04-04

    Protein O-mannosyltransferases (PMTs) initiate the assembly of O-mannosyl glycans, an essential protein modification. Since PMTs are evolutionarily conserved in fungi but are absent in green plants, the PMT family is a putative target for new antifungal drugs, particularly in fighting the threat of phytopathogenic fungi. The PMT family is phylogenetically classified into PMT1, PMT2, and PMT4 subfamilies, which differ in protein substrate specificity. In the model organism Saccharomyces cerevisiae as well as in many other fungi the PMT family is highly redundant, and only the simultaneous deletion of PMT1/PMT2 and PMT4 subfamily members is lethal. In this study we analyzed the molecular organization of PMT family members in S. cerevisiae. We show that members of the PMT1 subfamily (Pmt1p and Pmt5p) interact in pairs with members of the PMT2 subfamily (Pmt2p and Pmt3p) and that Pmt1p-Pmt2p and Pmt5p-Pmt3p complexes represent the predominant forms. Under certain physiological conditions, however, Pmt1p interacts also with Pmt3p, and Pmt5p with Pmt2p, suggesting a compensatory cooperation that guarantees the maintenance of O-mannosylation. Unlike the PMT1/PMT2 subfamily members, the single member of the PMT4 subfamily (Pmt4p) acts as a homomeric complex. Using mutational analyses we demonstrate that the same conserved protein domains underlie both heteromeric and homomeric interactions, and we identify an invariant arginine residue of transmembrane domain two as essential for the formation and/or stability of PMT complexes in general. Our data suggest that protein-protein interactions between the PMT family members offer a point of attack to shut down overall protein O-mannosylation in fungi.

  11. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families

    PubMed Central

    Pei, Jimin; Li, Wenlin; Kinch, Lisa N; Grishin, Nick V

    2014-01-01

    The heme-copper oxidase (HCO) superfamily includes HCOs in aerobic respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices (TMHs) arranged in three-fold rotational pseudosymmetry, with six conserved histidines for heme and metal binding. Using sensitive sequence similarity searches, we detected a number of novel HCO/NOR homologs and named them HCO Homology (HCOH) proteins. Several HCOH families possess only four TMHs that exhibit the most pronounced similarity to the last four TMHs (TMHs 9–12) of HCOs/NORs. Encoded by independent genes, four-TMH HCOH proteins represent a single evolutionary unit (EU) that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1–4, TMHs 5–8, and TMHs 9–12. Single-EU HCOH proteins could form homotrimers or heterotrimers to maintain the general structure and ligand-binding sites defined by the HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 12-TMHs and three EUs. Most three-EU HCOH proteins possess two conserved histidines and could bind a single heme. Limited experimental studies and genomic context analysis suggest that many HCOH proteins could function in the denitrification pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) proteins. Gene duplication, fusion, and fission likely play important roles in the evolution of HCOs/NORs and HCOH proteins. PMID:24931479

  12. Identification of isp, a locus encoding an immunogenic secreted protein conserved among group A streptococci.

    PubMed Central

    McIver, K S; Subbarao, S; Kellner, E M; Heath, A S; Scott, J R

    1996-01-01

    The protein Mga (mga), which is required for transcription of several virulence genes of group A streptococci (GAS), including the antiphagocytic M protein, was suggested to act as the response regulator element of a bacterial two-component pathway. To investigate whether a gene encoding a cognate sensor protein is located upstream of mga, 3.1 kb of DNA 5' of the mga translational start site was cloned from serotype M6 GAS strain JRS4. Sequence analysis of this region revealed two adjacent open reading frames, a previously described orf and a new locus, isp (immunogenic secreted protein), which could encode proteins of 9 and 59 kDa, respectively. Inactivation of either open reading frame had no significant effect on transcription of the gene encoding M protein (emm) under normal growth conditions, suggesting that neither isp nor orf is involved in the Mga regulatory circuit. A protein migrating at an apparent molecular weight of 65,000 was produced when isp was transcribed and translated in vitro. The predicted isp product (Isp) contains an amino-terminal signal sequence region homologous to that found in bacterial secreted proteins, and expression of isp in Escherichia coli resulted in the presence of Isp in the periplasmic fraction. Convalescent-phase serum from a patient with an active GAS infection recognized forms of Isp both from the periplasm of E. coli and the supernatant of a GAS strain. Both isp and orf are highly conserved among strains of GAS, as shown by hybridization analyses. PMID:8698478

  13. Crystal Structure of VC0702 at 2.0 Angstrom: Conserved Hypothetical Protein from Vibrio Cholerae

    SciTech Connect

    Ni,S.; Forouhar, F.; Bussiere, D.; Robinson, H.; Kennedy, M.

    2006-01-01

    VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a three-gene operon containing the MbaA gene that encodes for a GGDEF and EAL domain-containing protein which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0 Angstroms and refined to R{sub work} = 22.8% and R{sub free} = 26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C2221 space group with dimensions of a = 66.61 Angstroms, b = 88.118 Angstroms, and c = 118.35 Angstroms with a homodimer in the asymmetric unit. VC0702, which forms a mixed {alpha} + {beta} three-layered {alpha}{beta}{alpha} sandwich, belongs to the Pfam DUF84 and COG1986 families of proteins. Sequence conservation within the DUF84 and COG1986 families was used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeschii, which has been identified as a novel NTPase that binds NTP in a deep cleft similarly located to the conserved patch of surface residues that define an analogous cleft in VC0702. Collectively, the data suggest that VC0702 may have a biochemical function that involves NTP binding and phosphatase activity of some kind, and is likely involved in regulation of the signaling pathway that controls biofilm formation and maintenance in Vibrio cholerae.

  14. Topologically Conserved Residues Direct Heme Transport in HRG-1-related Proteins*

    PubMed Central

    Yuan, Xiaojing; Protchenko, Olga; Philpott, Caroline C.; Hamza, Iqbal

    2012-01-01

    Caenorhabditis elegans and human HRG-1-related proteins are conserved, membrane-bound permeases that bind and translocate heme in metazoan cells via a currently uncharacterized mechanism. Here, we show that cellular import of heme by HRG-1-related proteins from worms and humans requires strategically located amino acids that are topologically conserved across species. We exploit a heme synthesis-defective Saccharomyces cerevisiae mutant to model the heme auxotrophy of C. elegans and demonstrate that, under heme-deplete conditions, the endosomal CeHRG-1 requires both a specific histidine in the predicted second transmembrane domain (TMD2) and the FARKY motif in the C terminus tail for heme transport. By contrast, the plasma membrane CeHRG-4 transports heme by utilizing a histidine in the exoplasmic (E2) loop and the FARKY motif. Optimal activity under heme-limiting conditions, however, requires histidine in the E2 loop of CeHRG-1 and tyrosine in TMD2 of CeHRG-4. An analogous system exists in humans, because mutation of the synonymous histidine in TMD2 of hHRG-1 eliminates heme transport activity, implying an evolutionary conserved heme transport mechanism that predates vertebrate origins. Our results support a model in which heme is translocated across membranes facilitated by conserved amino acids positioned on the exoplasmic, cytoplasmic, and transmembrane regions of HRG-1-related proteins. These findings may provide a framework for understanding the structural basis of heme transport in eukaryotes and human parasites, which rely on host heme for survival. PMID:22174408

  15. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    PubMed

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation.IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  16. Control of B cell production by the adaptor protein lnk. Definition Of a conserved family of signal-modulating proteins.

    PubMed

    Takaki, S; Sauer, K; Iritani, B M; Chien, S; Ebihara, Y; Tsuji, K; Takatsu, K; Perlmutter, R M

    2000-11-01

    Lnk is an SH2 domain-containing adaptor protein expressed preferentially in lymphocytes. To illuminate the importance of Lnk, we generated lnk(-/-) mice. Whereas T cell development was unaffected, pre-B and immature B cells accumulated in the spleens. In the bone marrow, B-lineage cells were proportionately increased, reflecting enhanced production of pro-B cells that resulted in part from hypersensitivity of precursors to SCF, the ligand for c-kit. Hence, Lnk ordinarily acts to regulate B cell production. Further characterization of lnk(-/-) mice also revealed that full-length Lnk is a 68 kDa protein containing a conserved proline-rich region and a PH domain. Lnk is a representative of a multigene adaptor protein family whose members act, by analogy with Lnk, to modulate intracellular signaling.

  17. A Conserved Region between the Heptad Repeats of Paramyxovirus Fusion Proteins is Critical for Proper F Protein Folding†

    PubMed Central

    Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.

    2008-01-01

    Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875

  18. Structure of YqgQ Protein from Bacillus subtilis, a Conserved Hypothetical Protein

    SciTech Connect

    Lakshminarasimhan, D.; Eswaramoorthy, S; Burley, S; Swaminathan, S

    2010-01-01

    The crystal structure of the hypothetical protein YqgQ from Bacillus subtilis has been determined to 2.1 {angstrom} resolution. The crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 51.85, b = 41.25, c = 55.18 {angstrom}, {beta} = 113.4{sup o}, and contained three protein molecules in the asymmetric unit. The structure was determined by the single-wavelength anomalous dispersion method using selenium-labeled protein and was refined to a final R factor of 24.7% (R{sub free} = 28.0%). The protein molecule mainly comprises a three-helical bundle. Its putative function is inferred to be single-stranded nucleic acid binding based on sequence and structural homology.

  19. A Conserved Apicomplexan Microneme Protein Contributes to Toxoplasma gondii Invasion and Virulence

    PubMed Central

    Huynh, My-Hang; Boulanger, Martin J.

    2014-01-01

    The obligate intracellular parasite Toxoplasma gondii critically relies on host cell invasion during infection. Proteins secreted from the apical micronemes are central components for host cell recognition, invasion, egress, and virulence. Although previous work established that the sporozoite protein with an altered thrombospondin repeat (SPATR) is a micronemal protein conserved in other apicomplexan parasites, including Plasmodium, Neospora, and Eimeria, no genetic evidence of its contribution to invasion has been reported. SPATR contains a predicted epidermal growth factor domain and two thrombospondin type 1 repeats, implying a role in host cell recognition. In this study, we assess the contribution of T. gondii SPATR (TgSPATR) to T. gondii invasion by genetically ablating it and restoring its expression by genetic complementation. Δspatr parasites were ∼50% reduced in invasion compared to parental strains, a defect that was reversed in the complemented strain. In mouse virulence assays, Δspatr parasites were significantly attenuated, with ∼20% of mice surviving infection. Given the conservation of this protein among the Apicomplexa, we assessed whether the Plasmodium falciparum SPATR ortholog (PfSPATR) could complement the absence of the TgSPATR. Although PfSPATR showed correct micronemal localization, it did not reverse the invasion deficiency of Δspatr parasites, because of an apparent failure in secretion. Overall, the results suggest that TgSPATR contributes to invasion and virulence, findings that have implications for the many genera and life stages of apicomplexans that express SPATR. PMID:25092910

  20. Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50

    PubMed Central

    Yang, Yong; Cochran, Deborah A.; Gargano, Mary D.; King, Iryna; Samhat, Nayef K.; Burger, Benjain P.; Sabourin, Katherine R.; Hou, Yuqing; Awata, Junya; Parry, David A.D.; Marshall, Wallace F.; Witman, George B.; Lu, Xiangyi

    2011-01-01

    Eukaryotic cilia and flagella are vital sensory and motile organelles. The calcium channel PKD2 mediates sensory perception on cilia and flagella, and defects in this can contribute to ciliopathic diseases. Signaling from Pkd2-dependent Ca2+ rise in the cilium to downstream effectors may require intermediary proteins that are largely unknown. To identify these proteins, we carried out genetic screens for mutations affecting Drosophila melanogaster sperm storage, a process mediated by Drosophila Pkd2. Here we show that a new mutation lost boys (lobo) encodes a conserved flagellar protein CG34110, which corresponds to vertebrate Ccdc135 (E = 6e-78) highly expressed in ciliated respiratory epithelia and sperm, and to FAP50 (E = 1e-28) in the Chlamydomonas reinhardtii flagellar proteome. CG34110 localizes along the fly sperm flagellum. FAP50 is tightly associated with the outer doublet microtubules of the axoneme and appears not to be a component of the central pair, radial spokes, dynein arms, or structures defined by the mbo waveform mutants. Phenotypic analyses indicate that both Pkd2 and lobo specifically affect sperm movement into the female storage receptacle. We hypothesize that the CG34110/Ccdc135/FAP50 family of conserved flagellar proteins functions within the axoneme to mediate Pkd2-dependent processes in the sperm flagellum and other motile cilia. PMID:21289096

  1. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense.

    PubMed

    Wiedenheft, Blake; Zhou, Kaihong; Jinek, Martin; Coyle, Scott M; Ma, Wendy; Doudna, Jennifer A

    2009-06-10

    Acquired immunity in prokaryotes is achieved by integrating short fragments of foreign nucleic acids into clustered regularly interspaced short palindromic repeats (CRISPRs). This nucleic acid-based immune system is mediated by a variable cassette of up to 45 protein families that represent distinct immune system subtypes. CRISPR-associated gene 1 (cas1) encodes the only universally conserved protein component of CRISPR immune systems, yet its function is unknown. Here we show that the Cas1 protein is a metal-dependent DNA-specific endonuclease that produces double-stranded DNA fragments of approximately 80 base pairs in length. The 2.2 A crystal structure of the Cas1 protein reveals a distinct fold and a conserved divalent metal ion-binding site. Mutation of metal ion-binding residues, chelation of metal ions, or metal-ion substitution inhibits Cas1-catalyzed DNA degradation. These results provide a foundation for understanding how Cas1 contributes to CRISPR function, perhaps as part of the machinery for processing foreign nucleic acids.

  2. Chicken guanylate-binding protein. Conservation of GTPase activity and induction by cytokines.

    PubMed

    Schwemmle, M; Kaspers, B; Irion, A; Staeheli, P; Schultz, U

    1996-04-26

    To gain further insights into the cytokine network of birds, we used polymerase chain reaction technology to clone a cDNA that codes for a chicken homolog of the interferon-induced guanylate-binding proteins (GBPs). In its N-terminal moiety, the 64-kDa chicken GBP contains two sequence blocks of 100 and 19 amino acids, respectively, that are about 70% identical to mammalian GBPs. The first region includes two motifs of the canonical GTP-binding consensus element. The other parts of chicken GBP are poorly conserved, except for a CAAX motif at the extreme C terminus which might signal isoprenylation. Like mammalian GBPs, recombinant chicken GBP specifically bound to agarose-immobilized guanine nucleotides and hydrolyzed GTP to both GDP and GMP. Regulation by interferons was also conserved: chicken GBP RNA was barely detectable in uninduced chicken cells. Low GBP RNA levels were found in cells treated with type I interferon, whereas very high levels were observed in cells treated with supernatant of a chicken T cell line that secretes a gamma-interferon-like activity. Together with recent phylogenetic studies of interferon genes, these results suggest that in spite of low sequence conservation, the various components of the avian interferon system are functionally well conserved.

  3. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    SciTech Connect

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene.

  4. Evolutionary conservation and variation of protein folding pathways. Two protease inhibitor homologues from black mamba venom.

    PubMed

    Hollecker, M; Creighton, T E

    1983-08-05

    The pathways of unfolding and refolding of three homologous proteins are shown to be closely related. This implies that folding pathways, as well as the final folded conformation, have been largely conserved during the presumed evolutionary divergence of these proteins from a common ancestor. The pathways of the homologous proteins I and K from black mamba venom were determined here, using the disulphide interaction between their six cysteine residues to trap and identify the intermediate states, and are compared with those determined previously in the same way for the homologous bovine pancreatic trypsin inhibitor. The major one- and two-disulphide intermediates are the same with all three proteins; their kinetic roles are similar, although there are differences in the rates at which they are interconverted and in the minor intermediates that accumulate. As a consequence, different pathways may predominate with another homologous protein, even though the various most favourable pathways are the same. The energetics of the folding transitions and the stabilities of the folded states differ substantially for the three proteins. The differences in stabilities of the fully folded states are primarily reflected kinetically in the rate-determining rearrangements of the native-like conformation; the rates and equilibria of the other steps are not affected markedly. With the less stable proteins, the direct folding pathway of sequential formation of the three correct disulphide bonds becomes significant and is the most facile when considered on a solely intramolecular basis.

  5. Evolutionary conservation of a microbody targeting signal that targets proteins to peroxisomes, glyoxysomes, and glycosomes

    PubMed Central

    1991-01-01

    Peroxisomes, glyoxysomes, glycosomes, and hydrogenosomes have each been classified as microbodies, i.e., subcellular organelles with an electron-dense matrix that is bound by a single membrane. We investigated whether these organelles might share a common evolutionary origin by asking if targeting signals used for translocation of proteins into these microbodies are related. A peroxisomal targeting signal (PTS) consisting of the COOH-terminal tripeptide serine-lysine- leucine-COOH has been identified in a number of peroxisomal proteins (Gould, S.J., G.-A. Keller, N. Hosken, J. Wilkinson, and S. Subramani. 1989. J. Cell Biol. 108:1657-1664). Antibodies raised to a peptide ending in this sequence (SKL-COOH) recognize a number of peroxisomal proteins. Immunocryoelectron microscopy experiments using this anti-SKL antibody revealed the presence of proteins containing the PTS within glyoxysomes of cells from Pichia pastoris, germinating castor bean seeds, and Neurospora crassa, as well as within the glycosomes of Trypanosoma brucei. Western blot analysis of purified organelle fractions revealed the presence of many proteins containing this PTS in both glyoxysomes and glycosomes. These results indicate that at least one of the signals, and therefore the mechanism, for protein translocation into peroxisomes, glyoxysomes, and glycosomes has been conserved, lending support to a common evolutionary origin for these microbodies. Hydrogenosomes, the fourth type of microbody, did not contain proteins that cross-reacted with the anti-PTS antibody, suggesting that this organelle is unrelated to microbodies. PMID:1831458

  6. Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics

    PubMed Central

    del Val, Coral; White, Stephen H.

    2014-01-01

    We combined systematic bioinformatics analyses and molecular dynamics simulations to assess the conservation patterns of Ser and Thr motifs in membrane proteins, and the effect of such motifs on the structure and dynamics of α-helical transmembrane (TM) segments. We find that Ser/Thr motifs are often present in β-barrel TM proteins. At least one Ser/Thr motif is present in almost half of the sequences of α-helical proteins analyzed here. The extensive bioinformatics analyses and inspection of protein structures led to the identification of molecular transporters with noticeable numbers of Ser/Thr motifs within the TM region. Given the energetic penalty for burying multiple Ser/Thr groups in the membrane hydrophobic core, the observation of transporters with multiple membrane-embedded Ser/Thr is intriguing and raises the question of how the presence of multiple Ser/Thr affects protein local structure and dynamics. Molecular dynamics simulations of four different Ser-containing model TM peptides indicate that backbone hydrogen bonding of membrane-buried Ser/Thr hydroxyl groups can significantly change the local structure and dynamics of the helix. Ser groups located close to the membrane interface can hydrogen bond to solvent water instead of protein backbone, leading to an enhanced local solvation of the peptide. PMID:22836667

  7. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.

    PubMed

    Park, Yungki; Helms, Volkhard

    2006-09-01

    The transmembrane (TM) domains of most membrane proteins consist of helix bundles. The seemingly simple task of TM helix bundle assembly has turned out to be extremely difficult. This is true even for simple TM helix bundle proteins, i.e., those that have the simple form of compact TM helix bundles. Herein, we present a computational method that is capable of generating native-like structural models for simple TM helix bundle proteins having modest numbers of TM helices based on sequence conservation patterns. Thus, the only requirement for our method is the presence of more than 30 homologous sequences for an accurate extraction of sequence conservation patterns. The prediction method first computes a number of representative well-packed conformations for each pair of contacting TM helices, and then a library of tertiary folds is generated by overlaying overlapping TM helices of the representative conformations. This library is scored using sequence conservation patterns, and a subsequent clustering analysis yields five final models. Assuming that neighboring TM helices in the sequence contact each other (but not that TM helices A and G contact each other), the method produced structural models of Calpha atom root-mean-square deviation (CA RMSD) of 3-5 A from corresponding crystal structures for bacteriorhodopsin, halorhodopsin, sensory rhodopsin II, and rhodopsin. In blind predictions, this type of contact knowledge is not available. Mimicking this, predictions were made for the rotor of the V-type Na(+)-adenosine triphosphatase without such knowledge. The CA RMSD between the best model and its crystal structure is only 3.4 A, and its contact accuracy reaches 55%. Furthermore, the model correctly identifies the binding pocket for sodium ion. These results demonstrate that the method can be readily applied to ab initio structure prediction of simple TM helix bundle proteins having modest numbers of TM helices.

  8. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    PubMed Central

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  9. PCNA-binding proteins in the archaea: novel functionality beyond the conserved core.

    PubMed

    MacNeill, Stuart A

    2016-08-01

    Sliding clamps play an essential role in coordinating protein activity in DNA metabolism in all three domains of life. In eukaryotes and archaea, the sliding clamp is PCNA (proliferating cell nuclear antigen). Across the diversity of the archaea PCNA interacts with a highly conserved set of proteins with key roles in DNA replication and repair, including DNA polymerases B and D, replication factor C, the Fen1 nuclease and RNAseH2, but this core set of factors is likely to represent a fraction of the PCNA interactome only. Here, I review three recently characterised non-core archaeal PCNA-binding proteins NusS, NreA/NreB and TIP, highlighting what is known of their interactions with PCNA and their functions in vivo and in vitro. Gaining a detailed understanding of the non-core PCNA interactome will provide significant insights into key aspects of chromosome biology in divergent archaeal lineages.

  10. Structural and functional conservation of fungal MatA and human SRY sex-determining proteins.

    PubMed

    Czaja, Wioletta; Miller, Karen Y; Skinner, Michael K; Miller, Bruce L

    2014-11-17

    Sex determination in animals and fungi is regulated by specific sex-determining genes. The Aspergillus nidulans mating type gene matA and the human SRY (Sex-Determining Region Y) encode proteins containing a single HMG (high-mobility group) domain. Analysis of the amino-acid sequence of MatA and SRY transcription factors revealed significant structural similarity. The human SRY protein is able to functionally replace MatA and drives the sexual cycle in the fungus A. nidulans. Functional studies indicate that SRY drives early fruiting body development, and hybrid MatA protein carrying the SRY HMG box is fully capable of driving both early and late stages of sexual development, including gametogenesis. Our data suggest that SRY and MatA are both structurally and functionally related and conserved in regulating sexual processes. The fundamental mechanisms driving evolution of the genetic pathways underlying sex determination, sex chromosomes and sexual reproduction in eukaryotes appear similar.

  11. Expression of the highly conserved vaccinia virus E6 protein is required for virion morphogenesis

    SciTech Connect

    Resch, Wolfgang; Weisberg, Andrea S.; Moss, Bernard

    2009-04-10

    The vaccinia virus E6R gene (VACVWR062) is conserved in all members of the poxvirus family and encodes a protein associated with the mature virion. We confirmed this association and provided evidence for an internal location. An inducible mutant that conditionally expresses E6 was constructed. In the absence of inducer, plaque formation and virus production were severely inhibited in several cell lines, whereas some replication occurred in others. This difference could be due to variation in the stringency of repression, since we could not isolate a stable deletion mutant even in the more 'permissive' cells. Under non-permissive conditions, viral late proteins were synthesized but processing of core proteins was inefficient, indicative of an assembly block. Transmission electron microscopy of sections of cells infected with the mutant in the absence of inducer revealed morphogenetic defects with crescents and empty immature virions adjacent to dense inclusions of viroplasm. Mature virions were infrequent and cores appeared to have lucent centers.

  12. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges

    PubMed Central

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2014-01-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins. PMID:24213538

  13. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole

    PubMed Central

    Tsuchiya, Yuki; Yoshiba, Satoko; Gupta, Akshari; Watanabe, Koki; Kitagawa, Daiju

    2016-01-01

    Centrioles surrounded by pericentriolar material (PCM) serve as the core structure of the centrosome. A newly formed daughter centriole grows into a functional mother centriole. However, the underlying mechanisms remain poorly understood. Here we show that Cep295, an evolutionarily conserved protein, is required for generation of a bona fide mother centriole organizing a functional centrosome. We find that Cep295 is recruited to the proximal centriole wall in the early stages of procentriole assembly. Cep295 then acts as a scaffold for the proper assembly of the daughter centriole. We also find that Cep295 binds directly to and recruits Cep192 onto the daughter centriole wall, which presumably endows the function of the new mother centriole for PCM assembly, microtubule-organizing centre activity and the ability for centriole formation. These findings led us to propose that Cep295 acts upstream of the conserved pathway for centriole formation and promotes the daughter-to-mother centriole conversion. PMID:27562453

  14. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole.

    PubMed

    Tsuchiya, Yuki; Yoshiba, Satoko; Gupta, Akshari; Watanabe, Koki; Kitagawa, Daiju

    2016-08-26

    Centrioles surrounded by pericentriolar material (PCM) serve as the core structure of the centrosome. A newly formed daughter centriole grows into a functional mother centriole. However, the underlying mechanisms remain poorly understood. Here we show that Cep295, an evolutionarily conserved protein, is required for generation of a bona fide mother centriole organizing a functional centrosome. We find that Cep295 is recruited to the proximal centriole wall in the early stages of procentriole assembly. Cep295 then acts as a scaffold for the proper assembly of the daughter centriole. We also find that Cep295 binds directly to and recruits Cep192 onto the daughter centriole wall, which presumably endows the function of the new mother centriole for PCM assembly, microtubule-organizing centre activity and the ability for centriole formation. These findings led us to propose that Cep295 acts upstream of the conserved pathway for centriole formation and promotes the daughter-to-mother centriole conversion.

  15. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells

    PubMed Central

    Tichon, Ailone; Gil, Noa; Lubelsky, Yoav; Havkin Solomon, Tal; Lemze, Doron; Itzkovitz, Shalev; Stern-Ginossar, Noam; Ulitsky, Igor

    2016-01-01

    Thousands of long noncoding RNA (lncRNA) genes are encoded in the human genome, and hundreds of them are evolutionarily conserved, but their functions and modes of action remain largely obscure. Particularly enigmatic lncRNAs are those that are exported to the cytoplasm, including NORAD—an abundant and highly conserved cytoplasmic lncRNA. Here we show that most of the sequence of NORAD is comprised of repetitive units that together contain at least 17 functional binding sites for the two mammalian Pumilio homologues. Through binding to PUM1 and PUM2, NORAD modulates the mRNA levels of their targets, which are enriched for genes involved in chromosome segregation during cell division. Our results suggest that some cytoplasmic lncRNAs function by modulating the activities of RNA-binding proteins, an activity which positions them at key junctions of cellular signalling pathways. PMID:27406171

  16. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.

    PubMed

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2013-12-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins.

  17. A Conserved Streptococcal Membrane Protein, LsrS, Exhibits a Receptor-Like Function for Lantibiotics

    PubMed Central

    Biswas, Saswati

    2014-01-01

    Streptococcus mutans strain GS-5 produces a two-peptide lantibiotic, Smb, which displays inhibitory activity against a broad spectrum of bacteria, including other streptococci. For inhibition, lantibiotics must recognize specific receptor molecules present on the sensitive bacterial cells. However, so far no such receptor proteins have been identified for any lantibiotics. In this study, using a powerful transposon mutagenesis approach, we have identified in Streptococcus pyogenes a gene that exhibits a receptor-like function for Smb. The protein encoded by that gene, which we named LsrS, is a membrane protein belonging to the CAAX protease family. We also found that nisin, a monopeptide lantibiotic, requires LsrS for its optimum inhibitory activity. However, we found that LsrS is not required for inhibition by haloduracin and galolacticin, both of which are two-peptide lantibiotics closely related to Smb. LsrS appears to be a well-conserved protein that is present in many streptococci, including S. mutans. Inactivation of SMU.662, an LsrS homolog, in S. mutans strains UA159 and V403 rendered the cells refractory to Smb-mediated killing. Furthermore, overexpression of LsrS in S. mutans created cells more susceptible to Smb. Although LsrS and its homolog contain the CAAX protease domain, we demonstrate that inactivation of the putative active sites on the LsrS protein has no effect on its receptor-like function. This is the first report describing a highly conserved membrane protein that displays a receptor-like function for lantibiotics. PMID:24509319

  18. Protective activity of the CnaBE3 domain conserved among Staphylococcus aureus Sdr proteins.

    PubMed

    Becherelli, Marco; Prachi, Prachi; Viciani, Elisa; Biagini, Massimiliano; Fiaschi, Luigi; Chiarot, Emiliano; Nosari, Sarah; Brettoni, Cecilia; Marchi, Sara; Biancucci, Marco; Fontana, Maria Rita; Montagnani, Francesca; Bagnoli, Fabio; Barocchi, Michèle A; Manetti, Andrea G O

    2013-01-01

    Staphylococcus aureus is an opportunistic pathogen, commensal of the human skin and nares, but also responsible for invasive nosocomial as well as community acquired infections. Staphylococcus aureus adheres to the host tissues by means of surface adhesins, such as SdrC, SdrD, and SdrE proteins. The Sdr family of proteins together with a functional A domain, contain respectively two, three or five repeated sequences called B motifs which comprise the CnaB domains. SdrD and SdrE proteins were reported to be protective in animal models against invasive diseases or lethal challenge with human clinical S. aureus isolates. In this study we identified a 126 amino acid sequence containing a CnaB domain, conserved among the three Sdr proteins. The three fragments defined here as CnaBC2, D5 and E3 domains even though belonging to phylogenetically distinct strains, displayed high sequence similarity. Based on the sequence conservation data, we selected the CnaBE3 domain for further analysis and characterization. Polyclonal antibodies raised against the recombinant CnaBE3 domain recognized SdrE, SdrC and SdrD proteins of different S. aureus lineages. Moreover, we demonstrated that the CnaBE3 domain was expressed in vivo during S. aureus infections, and that immunization of this domain alone significantly reduces the bacterial load in mice challenged with S. aureus. Furthermore, we show that the reduction of bacteria by CnaBE3 vaccination is due to functional antibodies. Finally, we demonstrated that the region of the SdrE protein containing the CnaBE3 domain was resistant to trypsin digestion, a characteristic often associated with the presence of an isopeptide bond.

  19. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    PubMed

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  20. Analysis of and function predictions for previously conserved hypothetical or putative proteins in Blochmannia floridanus

    PubMed Central

    Gaudermann, Peter; Vogl, Ina; Zientz, Evelyn; Silva, Francisco J; Moya, Andres; Gross, Roy; Dandekar, Thomas

    2006-01-01

    Background There is an increasing interest to better understand endosymbiont capabilities in insects both from an ecological point of view and for pest control. Blochmannia floridanus provides important nutrients for its host, the ant Camponotus, while the bacterium in return is provided with a niche to proliferate. Blochmannia floridanus proteins and metabolites are difficult to study due to its endosymbiontic life style; however, its complete genome sequence became recently available. Results Improved sequence analysis algorithms, databanks and gene and pathway context methods allowed us to reveal new information on various enzyme and pathways from the Blochmannia floridanus genome sequence [EMBL-ID BX248583]. Furthermore, these predictions are supported and linked to experimental data for instance from structural genomics projects (e.g. Bfl341, Bfl 499) or available biochemical data on proteins from other species which we show here to be related. We were able to assign a confirmed or at least a putative molecular function for 21 from 27 previously conserved hypothetical proteins. For 48 proteins of 66 with a previous putative assignment the function was further clarified. Several of these proteins occur in many proteobacteria and are found to be conserved even in the compact genome of this endosymbiont. To extend and re-test predictions and links to experimentally verified protein functions, functional clusters and interactions were assembled. These included septum initiation and cell division (Bfl165, Bfl303, Bfl248 et al.); translation; transport; the ubiquinone (Bfl547 et al.), the inositol and nitrogen pathways. Conclusion Taken together, our data allow a better and more complete description of the pathway capabilities and life style of this typical endosymbiont. PMID:16401340

  1. Sequence-based prediction of DNA-binding residues in proteins with conservation and correlation information.

    PubMed

    Ma, Xin; Guo, Jing; Liu, Hong-De; Xie, Jian-Ming; Sun, Xiao

    2012-01-01

    The recognition of DNA-binding residues in proteins is critical to our understanding of the mechanisms of DNA-protein interactions, gene expression, and for guiding drug design. Therefore, a prediction method DNABR (DNA Binding Residues) is proposed for predicting DNA-binding residues in protein sequences using the random forest (RF) classifier with sequence-based features. Two types of novel sequence features are proposed in this study, which reflect the information about the conservation of physicochemical properties of the amino acids, and the correlation of amino acids between different sequence positions in terms of physicochemical properties. The first type of feature uses the evolutionary information combined with the conservation of physicochemical properties of the amino acids while the second reflects the dependency effect of amino acids with regards to polarity charge and hydrophobic properties in the protein sequences. Those two features and an orthogonal binary vector which reflect the characteristics of 20 types of amino acids are used to build the DNABR, a model to predict DNA-binding residues in proteins. The DNABR model achieves a value of 0.6586 for Matthew’s correlation coefficient (MCC) and 93.04 percent overall accuracy (ACC) with a68.47 percent sensitivity (SE) and 98.16 percent specificity (SP), respectively. The comparisons with each feature demonstrate that these two novel features contribute most to the improvement in predictive ability. Furthermore, performance comparisons with other approaches clearly show that DNABR has an excellent prediction performance for detecting binding residues in putative DNA-binding protein. The DNABR web-server system is freely available at http://www.cbi.seu.edu.cn/DNABR/.

  2. Identification and characterization of an Eimeria-conserved protein in Eimeria tenella.

    PubMed

    Dong, Hui; Wang, Yange; Han, Hongyu; Li, Ting; Zhao, Qiping; Zhu, Shunhai; Li, Liujia; Wu, Youling; Huang, Bing

    2014-02-01

    The precocious lines of Eimeria spp. have unique phenotypes. However, the genetic basis of the precocious phenotype is still poorly understood. The identification of Eimeria genes controlling the precocious phenotype is of immense importance in the fight against coccidiosis. In the present study, a novel gene of Eimeria maxima was cloned using rapid amplification of cDNA ends (RACE) based on the expressed sequence tag (EST). Homologous genes were also found in Eimeria tenella and Eimeria acervulina. Alignment of the amino acid sequences from E. tenella, E. maxima, and E. acervulina showed 80-86 % identity, demonstrating a conserved protein in different Eimeria spp. This gene, designated Eimeria-conserved protein (ECP), contained 235 amino acids with a predicted molecular mass of 25.4 kDa and had 100 % identity with one annotated protein from E. maxima (Emax_0517). Real-time PCR and Western blot analysis revealed that the expression of ECP at mRNA and protein level in E. tenella is developmentally regulated. Messenger RNA levels from the ECP gene were higher in sporozoites than in other developmental stages (unsporulated oocysts, sporulated oocysts, and second-generation merozoites). Expression of ECP protein was detected in unsporulated oocysts, increased in abundance in sporulated oocysts, and was most prominent in sporozoites. Thereafter, the level of the ECP protein decreased, and no ECP-specific protein was detected in second-generation merozoites. Immunostaining with anti-rECP indicated that ECP is highly concentrated in both refractile bodies (RB) of free sporozoites, but is located at the apical end of the sporozoites after invasion of DF-1 cells. The specific staining of the ECP protein becomes more intense in trophozoites and immature first-generation schizonts, but decreases in mature first-generation schizonts. Inhibition of the function of ECP using specific antibodies reduced the ability of E. tenella sporozoites to invade host cells. Compared with the

  3. Comparative genomic analysis of equilibrative nucleoside transporters suggests conserved protein structure despite limited sequence identity.

    PubMed

    Sankar, Narendra; Machado, Jerry; Abdulla, Parween; Hilliker, Arthur J; Coe, Imogen R

    2002-10-15

    Equilibrative nucleoside transporters (ENTs) are a recently characterized and poorly understood group of membrane proteins that are important in the uptake of endogenous nucleosides required for nucleic acid and nucleoside triphosphate synthesis. Despite their central importance in cellular metabolism and nucleoside analog chemotherapy, no human ENT gene has been described and nothing is known about gene structure and function. To gain insight into the ENT gene family, we used experimental and in silico comparative genomic approaches to identify ENT genes in three evolutionarily diverse organisms with completely (or almost completely) sequenced genomes, Homo sapiens, Caenorhabditis elegans and Drosophila melanogaster. We describe the chromosomal location, the predicted ENT gene structure and putative structural topologies of predicted ENT proteins derived from the open reading frames. Despite variations in genomic layout and limited ortholog protein sequence identity (< or =27.45%), predicted topologies of ENT proteins are strikingly similar, suggesting an evolutionary conservation of a prototypic structure. In addition, a similar distribution of protein domains on exons is apparent in all three taxa. These data demonstrate that comparative sequence analyses should be combined with other approaches (such as genomic and proteomic analyses) to fully understand structure, function and evolution of protein families.

  4. Mast, a conserved microtubule-associated protein required for bipolar mitotic spindle organization

    PubMed Central

    Lemos, Catarina L.; Sampaio, Paula; Maiato, Helder; Costa, Madalena; Omel’yanchuk, Leonid V.; Liberal, Vasco; Sunkel, Claudio E.

    2000-01-01

    Through mutational analysis in Drosophila, we have identified the gene multiple asters (mast), which encodes a new 165 kDa protein. mast mutant neuroblasts are highly polyploid and show severe mitotic abnormalities including the formation of mono- and multi-polar spindles organized by an irregular number of microtubule-organizing centres of abnormal size and shape. The mast gene product is evolutionarily conserved since homologues were identified from yeast to man, revealing a novel protein family. Antibodies against Mast and analysis of tissue culture cells expressing an enhanced green fluorescent protein–Mast fusion protein show that during mitosis, this protein localizes to centrosomes, the mitotic spindle, centromeres and spindle midzone. Microtubule-binding assays indicate that Mast is a microtubule-associated protein displaying strong affinity for polymerized microtubules. The defects observed in the mutant alleles and the intracellular localization of the protein suggest that Mast plays an essential role in centrosome separation and organization of the bipolar mitotic spindle. PMID:10899121

  5. Two Conserved Cysteine Residues Are Required for the Masculinizing Activity of the Silkworm Masc Protein.

    PubMed

    Katsuma, Susumu; Sugano, Yudai; Kiuchi, Takashi; Shimada, Toru

    2015-10-23

    We have recently discovered that the Masculinizer (Masc) gene encodes a CCCH tandem zinc finger protein, which controls both masculinization and dosage compensation in the silkworm Bombyx mori. In this study, we attempted to identify functional regions or residues that are required for the masculinizing activity of the Masc protein. We constructed a series of plasmids that expressed the Masc derivatives and transfected them into a B. mori ovary-derived cell line, BmN-4. To assess the masculinizing activity of the Masc derivatives, we investigated the splicing patterns of B. mori doublesex (Bmdsx) and the expression levels of B. mori IGF-II mRNA-binding protein, a splicing regulator of Bmdsx, in Masc cDNA-transfected BmN-4 cells. We found that two zinc finger domains are not required for the masculinizing activity. We also identified that the C-terminal 288 amino acid residues are sufficient for the masculinizing activity of the Masc protein. Further detailed analyses revealed that two cysteine residues, Cys-301 and Cys-304, in the highly conserved region among lepidopteran Masc proteins are essential for the masculinizing activity in BmN-4 cells. Finally, we showed that Masc is a nuclear protein, but its nuclear localization is not tightly associated with the masculinizing activity.

  6. Redox proteins in mammalian cell death: an evolutionarily conserved function in mitochondria and prokaryotes.

    PubMed

    Punj, Vasu; Chakrabarty, A M

    2003-04-01

    Mammalian cell mitochondria are believed to have prokaryotic ancestry. Mitochondria are not only the powerhouse of energy generation within the eukaryotic cell but they also play a major role in inducing apoptotic cell death through release of redox proteins such as cytochrome c and the apoptosis-inducing factor (AIF), a flavoprotein with NADH oxidase activity. Recent evidence indicates that some present day prokaryotes release redox proteins that induce apoptosis in mammalian cells through stabilization of the tumour suppressor protein p53. p53 interacts with mitochondria either directly or through activation of the genes for pro-apoptotic proteins such as Bax or NOXA or genes that encode redox enzymes responsible for the production of reactive oxygen species (ROS). The analogy between the ancient ancestors of present day bacteria, the mitochondria, and the present day bacteria with regard to their ability to release redox proteins for triggering mammalian cell death is an interesting example of functional conservation during the hundreds of millions of years of evolution. It is possible that the ancestors of the present day prokaryotes released redox proteins to kill the ancestors of the eukaryotes. During evolution of the mitochondria from prokaryotes as obligate endosymbionts, the mitochondria maintained the same functions to programme their own host cell death.

  7. The conserved AAA-ATPase Msp1 confers organelle specificity to tail-anchored proteins.

    PubMed

    Okreglak, Voytek; Walter, Peter

    2014-06-03

    The accuracy of tail-anchored (TA) protein targeting to the endoplasmic reticulum (ER) depends on the Guided Entry of Tail-Anchored (Get) protein targeting machinery. The fate of TA proteins that become inappropriately inserted into other organelles, such as mitochondria, is unknown. Here, we identify Msp1, a conserved, membrane-anchored AAA-ATPase (ATPase associated with a variety of cellular activities) that localizes to mitochondria and peroxisomes, as a critical factor in a quality control pathway that senses and degrades TA proteins mistargeted to the outer mitochondrial membrane (OMM). Pex15 is normally targeted by the Get pathway to the ER, from where it travels to peroxisomes. Loss of Msp1 or loss of the Get pathway results in the redistribution of Pex15 to mitochondria. Cells lacking both a functional Get pathway and Msp1 accumulate increased amounts of Pex15 on the OMM and display severely dysfunctional mitochondrial morphology. In addition, Msp1 binds and promotes the turnover of a Pex15 mutant that is misdirected to the OMM. Our data suggest that Msp1 functions in local organelle surveillance by extracting mistargeted proteins, ensuring the fidelity of organelle specific-localization of TA proteins.

  8. LBP/BPI proteins and their relatives: conservation over evolution and roles in mutualism.

    PubMed

    Krasity, Benjamin C; Troll, Joshua V; Weiss, Jerrold P; McFall-Ngai, Margaret J

    2011-08-01

    LBP [LPS (lipopolysaccharide)-binding protein] and BPI (bactericidal/permeability-increasing protein) are components of the immune system that have been principally studied in mammals for their involvement in defence against bacterial pathogens. These proteins share a basic architecture and residues involved in LPS binding. Putative orthologues, i.e. proteins encoded by similar genes that diverged from a common ancestor, have been found in a number of non-mammalian vertebrate species and several non-vertebrates. Similar to other aspects of immunity, such as the activity of Toll-like receptors and NOD (nucleotide-binding oligomerization domain) proteins, analysis of the conservation of LBPs and BPIs in the invertebrates promises to provide insight into features essential to the form and function of these molecules. This review considers state-of-the-art knowledge in the diversity of the LBP/BPI proteins across the eukaryotes and also considers their role in mutualistic symbioses. Recent studies of the LBPs and BPIs in an invertebrate model of beneficial associations, the Hawaiian bobtail squid Euprymna scolopes' alliance with the marine luminous bacterium Vibrio fischeri, are discussed as an example of the use of non-vertebrate models for the study of LBPs and BPIs.

  9. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    PubMed Central

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  10. Conservation and divergence of ADAM family proteins in the Xenopus genome

    PubMed Central

    2010-01-01

    Background Members of the disintegrin metalloproteinase (ADAM) family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST) databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species. There is a homologue of ADAM10 in Xenopus that is missing in most mammals. Furthermore, a single scaffold of X. tropicalis genome contains four genes encoding ADAM28 homologues, suggesting genome duplication in this region. Conclusions Our genome-wide analysis of ADAM genes in X. tropicalis revealed both conservation and evolutionary divergence of these genes in this amphibian species. On the one hand, all ADAMs implicated in normal development and health in other species are conserved in X. tropicalis. On the other hand, some ADAM genes and ADAM protease

  11. Conservation of steroidogenic acute regulatory (StAR) protein structure and expression in vertebrates.

    PubMed

    Bauer, M P; Bridgham, J T; Langenau, D M; Johnson, A L; Goetz, F W

    2000-10-25

    Complementary DNAs for the open reading frames of the chicken, Xenopus and zebrafish StAR homologs were cloned along with a partial cDNA of the zebrafish homolog to MLN64, a StAR-related protein. A comparison of the amino acid sequences of piscine, amphibian, avian and mammalian StARs, indicates strong conservation of the protein across divergent vertebrate groups. On Northern blots probed with species specific StAR cDNAs, expression of StAR transcripts was observed in the ovary and adrenal of chicken, and the ovary, testis, kidney and head of zebrafish. The expression of StAR mRNA in various compartments of the hen ovary was consistent with the results of past studies on steroidogenesis; expression was first observed in follicles selected into the preovulatory hierarchy and was greatest in the largest preovulatory follicle. The expression of StAR mRNA was also consistent with aromatase expression in zebrafish ovaries. The conserved deduced protein sequence and expression pattern of StAR transcripts in chicken and zebrafish tissues, strongly suggest that StAR is also involved in the regulation of steroidogenesis in nonmammalian vertebrates.

  12. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    PubMed Central

    Gendoo, Deena MA; El-Hefnawi, Mahmoud M; Werner, Mark; Siam, Rania

    2008-01-01

    Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites. PMID:18681973

  13. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins.

    PubMed

    Lee, Myon-Hee; Hook, Brad; Pan, Guangjin; Kershner, Aaron M; Merritt, Christopher; Seydoux, Geraldine; Thomson, James A; Wickens, Marvin; Kimble, Judith

    2007-12-28

    Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3' untranslated region (3' UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3'UTR elements in both Erk2 and p38alpha mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38alpha 3' UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression.

  14. Conservation of peptide structure of outer membrane protein-macromolecular complex from Neisseria gonorrhoeae.

    PubMed Central

    Hansen, M V; Wilde, C E

    1984-01-01

    The structural conservation of an outer membrane protein of Neisseria gonorrhoeae called OMP-MC (outer membrane protein-macromolecular complex) was investigated by determining the isoelectric point and amino-terminal amino acid sequence of the protein and by using high-performance liquid chromatography for comparative tryptic peptide mapping. The 76,000-dalton subunits generated by reduction and alkylation of the native 800,000-dalton complex from six test strains focused in ultrathin gels as bands of restricted heterogeneity at an approximate pI of 7.6. Dansyl chloride labeling indicated that all strains shared glycine as the amino-terminal amino acid. Sequence analysis of OMP-MC from two strains revealed no amino acid differences within the first 11 residues. Dual-label peptide maps revealed an extremely high degree of conservation of peptide structure. The results indicate that (i) OMP-MCs isolated from various strains of N. gonorrhoeae share structural homology and (ii) the 800,000-dalton complex is a homopolymer composed of 10 to 12 apparently identical 76,000-dalton subunits. Images PMID:6421738

  15. Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration*

    PubMed Central

    Carrara, Guia; Saraiva, Nuno; Parsons, Maddy; Byrne, Bernadette; Prole, David L.; Taylor, Colin W.; Smith, Geoffrey L.

    2015-01-01

    Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently. PMID:25713081

  16. A conserved acidic motif is crucial for enzymatic activity of protein O-mannosyltransferases.

    PubMed

    Lommel, Mark; Schott, Andrea; Jank, Thomas; Hofmann, Verena; Strahl, Sabine

    2011-11-18

    Protein O-mannosylation is an essential modification in fungi and mammals. It is initiated at the endoplasmic reticulum by a conserved family of dolichyl phosphate mannose-dependent protein O-mannosyltransferases (PMTs). PMTs are integral membrane proteins with two hydrophilic loops (loops 1 and 5) facing the endoplasmic reticulum lumen. Formation of dimeric PMT complexes is crucial for mannosyltransferase activity, but the direct cause is not known to date. In bakers' yeast, O-mannosylation is catalyzed largely by heterodimeric Pmt1p-Pmt2p and homodimeric Pmt4p complexes. To further characterize Pmt1p-Pmt2p complexes, we developed a photoaffinity probe based on the artificial mannosyl acceptor substrate Tyr-Ala-Thr-Ala-Val. The photoreactive probe was preferentially cross-linked to Pmt1p, and deletion of the loop 1 (but not loop 5) region abolished this interaction. Analysis of Pmt1p loop 1 mutants revealed that especially Glu-78 is crucial for binding of the photoreactive probe. Glu-78 belongs to an Asp-Glu motif that is highly conserved among PMTs. We further demonstrate that single amino acid substitutions in this motif completely abolish activity of Pmt4p complexes. In contrast, both acidic residues need to be exchanged to eliminate activity of Pmt1p-Pmt2p complexes. On the basis of our data, we propose that the loop 1 regions of dimeric complexes form part of the catalytic site.

  17. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization.

    PubMed

    Kotzsch, Alexander; Gröger, Philip; Pawolski, Damian; Bomans, Paul H H; Sommerdijk, Nico A J M; Schlierf, Michael; Kröger, Nils

    2017-07-24

    Biological mineral formation (biomineralization) proceeds in specialized compartments often bounded by a lipid bilayer membrane. Currently, the role of membranes in biomineralization is hardly understood. Investigating biomineralization of SiO2 (silica) in diatoms we identified Silicanin-1 (Sin1) as a conserved diatom membrane protein present in silica deposition vesicles (SDVs) of Thalassiosira pseudonana. Fluorescence microscopy of GFP-tagged Sin1 enabled, for the first time, to follow the intracellular locations of a biomineralization protein during silica biogenesis in vivo. The analysis revealed incorporation of the N-terminal domain of Sin1 into the biosilica via association with the organic matrix inside the SDVs. In vitro experiments showed that the recombinant N-terminal domain of Sin1 undergoes pH-triggered assembly into large clusters, and promotes silica formation by synergistic interaction with long-chain polyamines. Sin1 is the first identified SDV transmembrane protein, and is highly conserved throughout the diatom realm, which suggests a fundamental role in the biomineralization of diatom silica. Through interaction with long-chain polyamines, Sin1 could serve as a molecular link by which the SDV membrane exerts control on the assembly of biosilica-forming organic matrices in the SDV lumen.

  18. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family*

    PubMed Central

    Broussard, Tyler C.; Miller, Darcie J.; Jackson, Pamela; Nourse, Amanda; White, Stephen W.; Rock, Charles O.

    2016-01-01

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  19. Papillomavirus Assembly Requires Trimerization of the Major Capsid Protein by Disulfides between Two Highly Conserved Cysteines

    PubMed Central

    Sapp, Martin; Fligge, Claudia; Petzak, Ingrid; Harris, J. Robin; Streeck, Rolf E.

    1998-01-01

    We have used viruslike particles (VLPs) of human papillomaviruses to study the structure and assembly of the viral capsid. We demonstrate that mutation of either of two highly conserved cysteines of the major capsid protein L1 to serine completely prevents the assembly of VLPs but not of capsomers, whereas mutation of all other cysteines leaves VLP assembly unaffected. These two cysteines form intercapsomeric disulfides yielding an L1 trimer. Trimerization comprises about half of the L1 molecules in VLPs but all L1 molecules in complete virions. We suggest that trimerization of L1 is indispensable for the stabilization of intercapsomeric contacts in papillomavirus capsids. PMID:9621087

  20. An AUG codon conserved for protein function rather than translational initiation: the story of the protein sElk1.

    PubMed

    Legrand, Noemie; Araud, Tanguy; Conne, Beatrice; Kuijpers, Odin; Jaquier-Gubler, Pascale; Curran, Joseph

    2014-01-01

    Elk1 belongs to the ternary complex (TCF) subfamily of the ETS-domain transcription factors. Several studies have implicated an important function for Elk1 in the CNS including synaptic plasticity and cell differentiation. Whilst studying ELK1 gene expression in rat brain a 54 aa N-terminally truncated isoform lacking the DBD was observed on immunoblots. A similar protein was also detected in NGF differentiated PC12 cells. It was proposed that this protein, referred to as sElk1, arose due to a de-novo initiation event at the second AUG codon on the Elk1 ORF. Transient over-expression of sElk1 potentiated neurite growth in the PC12 model and induced differentiation in the absence of NGF, leading to the proposition that it may have a specific function in the CNS. Here we report on the translational expression from the mouse and rat transcript and compare it with our earlier published work on human. Results demonstrate that the previously observed sElk1 protein is a non-specific band arising from the antibody employed. The tight conservation of the internal AUG reported to drive sElk1 expression is in fact coupled to Elk1 protein function, a result consistent with the Elk1-SRE crystal structure. It is also supported by the observed conservation of this methionine in the DBD of all ETS transcription factors independent of the N- or C-terminal positioning of this domain. Reporter assays demonstrate that elements both within the 5'UTR and downstream of the AUGElk1 serve to limit 40S access to the AUGsElk1 codon.

  1. Circular proteins from Melicytus (Violaceae) refine the conserved protein and gene architecture of cyclotides.

    PubMed

    Trabi, Manuela; Mylne, Joshua S; Sando, Lillian; Craik, David J

    2009-06-07

    Cyclotides are cyclic disulfide rich mini-proteins found in various Rubiaceae (coffee family), Violaceae (violet family) and Cucurbitaceae (squash family) plant species. Within the Violaceae, cyclotides have been found in numerous species of the genus Viola as well as species from two other genera, namely Hybanthus and Leonia. This is the first in-depth report of cyclotides in the genus Melicytus (Violaceae). We present the chromatographic profiles of extracts of eight Melicytus species and one Melicytus hybrid that were found to contain these circular peptides. We isolated and characterised five novel cyclotides (mra1 to mra5) from the aerial parts of a common New Zealand tree, Melicytus ramiflorus. All five peptides show the characteristics of the bracelet subfamily of cyclotides. Furthermore, we isolated 17 non-redundant cDNA clones from the leaves of Melicytus ramiflorus encoding cyclotide prepropeptides. This detailed report on the presence of cyclotides in several species of the genus Melicytus further strengthens our hypothesis that cyclotides are ubiquitous in Violaceae family plants and provides additional insight into the biochemical processing mechanisms that produce the cyclic protein backbone of this unique family of ultra-stable plant proteins.

  2. Conservation and relative importance of residues across protein-protein interfaces.

    PubMed

    Guharoy, Mainak; Chakrabarti, Pinak

    2005-10-25

    A core region surrounded by a rim characterizes biological interfaces. We ascertain the importance of the core by showing the sequence entropies of the residues comprising the core to be smaller than those in the rim. Such a distinction is not seen in the 2-fold-related, nonphysiological interfaces formed in crystal lattices of monomeric proteins, thereby providing a procedure for characterizing the oligomeric state from crystal structures of protein molecules. This method is better than those that rely on the comparison of the sequence entropies in the interface and the rest of the protein surface, especially in cases where the surface harbors additional binding sites. To a good approximation there is a correlation between the accessible surface area lost because of complexation and DeltaDeltaG values obtained through alanine-scanning mutagenesis (26-38 cal per A(2) of the surface buried) for residues located in the core, a relationship that is not discernable for rim residues. If, however, a residue participates in hydrogen bonding across the interface, the extent of stabilization is 52 cal/mol per 1 A(2) of the nonpolar surface area buried by the residue. As opposed to an amino acid classification used earlier, an environment-based grouping of residues yields a better discrimination in the sequence entropy between the core and the rim.

  3. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    PubMed

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  4. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks.

    PubMed Central

    Tatusov, R L; Altschul, S F; Koonin, E V

    1994-01-01

    We describe an approach to analyzing protein sequence databases that, starting from a single uncharacterized sequence or group of related sequences, generates blocks of conserved segments. The procedure involves iterative database scans with an evolving position-dependent weight matrix constructed from a coevolving set of aligned conserved segments. For each iteration, the expected distribution of matrix scores under a random model is used to set a cutoff score for the inclusion of a segment in the next iteration. This cutoff may be calculated to allow the chance inclusion of either a fixed number or a fixed proportion of false positive segments. With sufficiently high cutoff scores, the procedure converged for all alignment blocks studied, with varying numbers of iterations required. Different methods for calculating weight matrices from alignment blocks were compared. The most effective of those tested was a logarithm-of-odds, Bayesian-based approach that used prior residue probabilities calculated from a mixture of Dirichlet distributions. The procedure described was used to detect novel conserved motifs of potential biological importance. Images PMID:7991589

  5. Conserved protein domains in a myosin heavy chain gene from Dictyostelium discoideum.

    PubMed Central

    Warrick, H M; De Lozanne, A; Leinwand, L A; Spudich, J A

    1986-01-01

    The 2116-amino acid myosin heavy chain sequence from Dictyostelium discoideum was determined from DNA sequence analysis of the cloned gene. The gene product can be divided into two distinct regions, a globular head region and a long alpha-helical, rod-like tail. In comparisons with nematode and mammalian muscle myosins, specific areas of the head region are highly conserved. These areas presumably reflect conserved functional and structural domains. Certain features that are present in the head region of nematode and mammalian muscle myosins, and that have been assumed to be important for myosin function, are missing in the Dictyostelium myosin sequence. The protein sequence of the Dictyostelium tail region is very poorly conserved with respect to the other myosins but displays the periodicities similar to those of muscle myosins. These periodicities are believed to play a role in filament formation. The 196-residue repeating unit that determines the 14.3-nm repeat seen in muscle thick filaments, the 28-residue charge repeating unit, and the 1,4 hydrophobic repeat previously described for the nematode myosin are all present in the Dictyostelium myosin rod sequence, suggesting that the filament structures of muscle and Dictyostelium myosins must be similar. PMID:3540939

  6. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

    PubMed

    Chauhan, Anoop Singh; Kumar, Manoj; Chaudhary, Surbhi; Patidar, Anil; Dhiman, Asmita; Sheokand, Navdeep; Malhotra, Himanshu; Raje, Chaaya Iyengar; Raje, Manoj

    2017-03-15

    Prokaryotic pathogens establish infection in mammals by capturing the proteolytic enzyme plasminogen (Plg) onto their surface to digest host extracellular matrix (ECM). One of the bacterial surface Plg receptors is the multifunctional glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In a defensive response, the host mounts an inflammatory response, which involves infiltration of leukocytes to sites of inflammation. This requires macrophage exit from the blood and migration across basement membranes, a phenomenon dependent on proteolytic remodeling of the ECM utilizing Plg. The ability of Plg to facilitate inflammatory cell recruitment critically depends on receptors on the surface of phagocyte cells. Utilizing a combination of biochemical, cellular, knockdown, and in vivo approaches, we demonstrated that upon inflammation, macrophages recruit GAPDH onto their surface to carry out the same task of capturing Plg to digest ECM to aid rapid phagocyte migration and combat the invading pathogens. We propose that GAPDH is an ancient, evolutionarily conserved receptor that plays a key role in the Plg-dependent regulation of macrophage recruitment in the inflammatory response to microbial aggression, thus pitting prokaryotic GAPDH against mammalian GAPDH, with both involved in a conserved role of Plg activation on the surface of their respective cells, to conflicting ends.-Chauhan, A. S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C. I., Raje, M. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells.

  7. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    SciTech Connect

    Guo, Jianjun; Jin, Zhaoqing; Yang, Xiaohan; Li, Jian-Feng; Chen, Jay

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  8. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein.

    PubMed

    Dempsey, L A; Li, M J; DePace, A; Bray-Ward, P; Maizels, N

    1998-05-01

    The hnRNP D protein interacts with nucleic acids both in vivo and in vitro. Like many other proteins that interact with RNA, it contains RBD (or "RRM") domains and arg-gly-gly (RGG) motifs. We have examined the organization and localization of the human and murine genes that encode the hnRNP D protein. Comparison of the predicted sequences of the hnRNP D proteins in human and mouse shows that they are 96.9% identical (98.9% similar). This very high level of conservation suggests a critical function for hnRNP D. Sequence analysis of the human HNRPD gene shows that the protein is encoded by eight exons and that two additional exons specify sequences in the 3' UTR. Use of two of the coding exons is determined by alternative splicing of the HNRPD mRNA. The human HNRPD gene maps to 4q21. The mouse Hnrpd gene maps to the F region of chromosome 3, which is syntenic with the human 4q21 region.

  9. A conserved KASH domain protein associates with telomeres, SUN1, and dynactin during mammalian meiosis

    PubMed Central

    Morimoto, Akihiro; Shibuya, Hiroki; Zhu, Xiaoqiang; Kim, Jihye; Ishiguro, Kei-ichiro; Han, Min

    2012-01-01

    In yeasts and worms, KASH (Klarsicht/ANC-1/Syne/homology) domain and SUN (Sad-1/UNC-84) domain nuclear envelope (NE) proteins play a crucial role in meiotic chromosome movement and homologue pairing. However, although the vertebrate SUN domain protein SUN1 is involved in these processes, its partner has remained identified. Based on subcellular localization screening in mouse spermatocytes, we identified a novel germ cell–specific protein, KASH5, that localized exclusively at telomeres from the leptotene to diplotene stages in both spermatocytes and oocytes. KASH5 possesses hitherto unknown KASH-related sequences that directly interacted with SUN1 and mediated telomere localization. Thus, KASH5 is a mammalian meiosis-specific KASH domain protein. We show that meiotic chromosome movement depended on microtubules and that KASH5 interacted with the microtubule-associated dynein–dynactin complex. These results suggest that KASH5 connects the telomere-associated SUN1 protein to the cytoplasmic force–generating mechanism involved in meiotic chromosome movement. Our study strongly suggests that the meiotic homologue-pairing mechanism mediated by the SUN–KASH NE bridge is highly conserved among eukaryotes. PMID:22826121

  10. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly

    PubMed Central

    Wrobel, Lidia; Sokol, Anna M.; Chojnacka, Magdalena; Chacinska, Agnieszka

    2016-01-01

    Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains. PMID:27265872

  11. Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae.

    PubMed

    Garipler, Görkem; Mutlu, Nebibe; Lack, Nathan A; Dunn, Cory D

    2014-01-28

    Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.

  12. Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity.

    PubMed

    Zhang, Bo; Yue, Lei; Zhou, Liguang; Qi, Lei; Li, Jie; Dong, Xiuzhu

    2017-01-01

    Cold shock proteins (Csps) enable organisms to acclimate to and survive in cold environments and the bacterial CspA family exerts the cold protection via its RNA chaperone activity. However, most Archaea do not contain orthologs to the bacterial csp. TRAM, a conserved domain among RNA modification proteins ubiquitously distributed in organisms, occurs as an individual protein in most archaeal phyla and has a structural similarity to Csp proteins, yet its biological functions remain unknown. Through physiological and biochemical studies on four TRAM proteins from a cold adaptive archaeon Methanolobus psychrophilus R15, this work demonstrated that TRAM is an archaeal Csp and exhibits RNA chaperone activity. Three TRAM encoding genes (Mpsy_0643, Mpsy_3043, and Mpsy_3066) exhibited remarkable cold-shock induced transcription and were preferentially translated at lower temperature (18°C), while the fourth (Mpsy_2002) was constitutively expressed. They were all able to complement the cspABGE mutant of Escherichia coli BX04 that does not grow in cold temperatures and showed transcriptional antitermination. TRAM3066 (gene product of Mpsy_3066) and TRAM2002 (gene product of Mpsy_2002) displayed sequence-non-specific RNA but not DNA binding activity, and TRAM3066 assisted RNases in degradation of structured RNA, thus validating the RNA chaperone activity of TRAMs. Given the chaperone activity, TRAM is predicted to function beyond a Csp.

  13. A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria

    PubMed Central

    Tavassoli, Shabnam; Wong, Andrew K. O.; Choudhary, Vineet; Young, Barry P.; Loewen, Christopher J. R.; Prinz, William A.

    2014-01-01

    Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER and mitochondria. We show that a strain missing multiple components of the conserved ER membrane protein complex (EMC) has decreased phosphatidylserine (PS) transfer from the ER to mitochondria. Mitochondria from this strain have significantly reduced levels of PS and its derivative phosphatidylethanolamine (PE). Cells lacking EMC proteins and the ER–mitochondria tethering complex called ERMES (the ER–mitochondria encounter structure) are inviable, suggesting that the EMC also functions as a tether. These defects are corrected by expression of an engineered ER–mitochondrial tethering protein that artificially tethers the ER to mitochondria. EMC mutants have a significant reduction in the amount of ER tethered to mitochondria even though ERMES remained intact in these mutants, suggesting that the EMC performs an additional tethering function to ERMES. We find that all Emc proteins interact with the mitochondrial translocase of the outer membrane (TOM) complex protein Tom5 and this interaction is important for PS transfer and cell growth, suggesting that the EMC forms a tether by associating with the TOM complex. Together, our findings support that the EMC tethers ER to mitochondria, which is required for phospholipid synthesis and cell growth. PMID:25313861

  14. Intramolecular disulfide bonds between conserved cysteines in wheat gliadins control their deposition into protein bodies.

    PubMed

    Shimoni, Y; Galili, G

    1996-08-02

    Following synthesis, wheat gliadin storage proteins are deposited into protein bodies inside the endomembrane system in a way that enables not only their efficient accumulation and dehydration during seed maturation, but also their rapid rehydration and degradation during germination. In the present report, we studied the mechanism of gliadin deposition and whether it was controlled by the conformation of these proteins. Although gliadins are generally known to be insoluble in aqueous solutions, sucrose gradient analysis showed that a considerable amount of these proteins appeared as relatively soluble monomers in developing grains. In vitro reduction of the intramolecular disulfide bonds that are present in natural monomeric gliadins caused their precipitation into insoluble aggregates. In addition, pulse-chase experiments in the absence or presence of reducing agents showed that formation of intramolecular disulfide bonds also played a major role in folding and deposition of the gliadins in vivo. Our results imply that following sequestration into the endoplasmic reticulum, the gliadins fold into relatively soluble monomers, which are incompetent for rapid aggregation and gradually assemble into protein bodies. This pattern of deposition apparently depends on the conformation of the gliadins, which is stabilized by intramolecular disulfide bonds formed between the conserved cysteines. The contribution of this study to the understanding of the evolution and function of gliadins is discussed.

  15. Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae

    PubMed Central

    Garipler, Görkem; Mutlu, Nebibe; Lack, Nathan A.; Dunn, Cory D.

    2014-01-01

    Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction. PMID:24474773

  16. Evolutionary Conservation and Diversification of Puf RNA Binding Proteins and Their mRNA Targets

    PubMed Central

    Hogan, Gregory J.; Brown, Patrick O.; Herschlag, Daniel

    2015-01-01

    Reprogramming of a gene’s expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100–500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport

  17. Conserved outer membrane protein of Neisseria meningitidis involved in capsule expression.

    PubMed Central

    Frosch, M; Müller, D; Bousset, K; Müller, A

    1992-01-01

    In Neisseria meningitidis, translocation of capsular polysaccharides to the cell surface is mediated by a transport system that fits the characteristics of ABC (ATP-binding cassette) transporters. One protein of this transport system, termed CtrA, is located in the outer membrane. By use of a CtrA-specific monoclonal antibody, we could demonstrate that CtrA occurs exclusively in N. meningitidis and not in other pathogenic or nonpathogenic Neisseria species. Nucleotide sequence comparison of the ctrA gene from different meningococcal serogroups indicated that CtrA is strongly conserved in all meningococcal serogroups, independent of the chemical composition of the capsular polysaccharide. Secondary structure analysis revealed that CtrA is anchored in the outer membrane by eight membrane-spanning amphipathic beta strands, a structure of proteins that function as porins. Images PMID:1371768

  18. A New DNA Binding Protein Highly Conserved in Diverse Crenarchaeal Viruses

    SciTech Connect

    Larson, E.T.; Eilers, B.J.; Reiter, D.; Ortmann, A.C.; Young, M.J.; Lawrence, C.M.; /Montana State U. /Tubingen U.

    2007-07-09

    Sulfolobus turreted icosahedral virus (STIV) infects Sulfolobus species found in the hot springs of Yellowstone National Park. Its 37 open reading frames (ORFs) generally lack sequence similarity to other genes. One exception, however, is ORF B116. While its function is unknown, orthologs are found in three additional crenarchaeal viral families. Due to the central importance of this protein family to crenarchaeal viruses, we have undertaken structural and biochemical studies of B116. The structure reveals a previously unobserved fold consisting of a five-stranded beta-sheet flanked on one side by three alpha helices. Two subunits come together to form a homodimer with a 10-stranded mixed beta-sheet, where the topology of the central strands resembles an unclosed beta-barrel. Highly conserved loops rise above the surface of the saddle-shaped protein and suggest an interaction with the major groove of DNA. The predicted B116-DNA interaction is confirmed by electrophoretic mobility shift assays.

  19. Nmf9 Encodes a Highly Conserved Protein Important to Neurological Function in Mice and Flies

    PubMed Central

    Zhang, Shuxiao; Ross, Kevin D.; Seidner, Glen A.; Gorman, Michael R.; Poon, Tiffany H.; Wang, Xiaobo; Keithley, Elizabeth M.; Lee, Patricia N.; Martindale, Mark Q.; Joiner, William J.; Hamilton, Bruce A.

    2015-01-01

    Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes. PMID:26131556

  20. Insights into Antiparallel Microtubule Crosslinking by PRC1, a Conserved Nonmotor Microtubule Binding Protein

    SciTech Connect

    Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.; Bick, Matthew J.; Campbell, Elizabeth A.; Darst, Seth A.; Milligan, Ronald A.; Kapoor, Tarun M.

    2010-09-03

    Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks are compliant and do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish crosslinks that selectively mark antiparallel overlap in dynamic cytoskeletal networks.

  1. Weak oligomerization of low-molecular-weight protein tyrosine phosphatase is conserved from mammals to bacteria.

    PubMed

    Blobel, Jascha; Bernadó, Pau; Xu, Huimin; Jin, Changwen; Pons, Miquel

    2009-08-01

    The well-characterized self-association of a mammalian low-molecular-weight protein tyrosine phosphatase (lmwPTP) produces inactive oligomers that are in equilibrium with active monomers. A role of the inactive oligomers as supramolecular proenzymes has been suggested. The oligomerization equilibrium of YwlE, a lmwPTP from Bacillus subtilis, was studied by NMR. Chemical shift data and NMR relaxation confirm that dimerization takes place through the enzyme's active site, and is fully equivalent to the dimerization previously characterized in a eukaryotic low-molecular-weight phosphatase, with similarly large dissociation constants. The similarity between the oligomerization of prokaryotic and eukaryotic phosphatases extends beyond the dimer and involves higher order oligomers detected by NMR relaxation analysis at high protein concentrations. The conservation across different kingdoms of life suggests a physiological role for lmwPTP oligomerization in spite of the weak association observed in vitro. Structural data suggest that substrate modulation of the oligomerization equilibrium could be a regulatory mechanism leading to the generation of signaling pulses. The presence of a phenylalanine residue in the dimerization site of YwlE, replacing a tyrosine residue conserved in all eukaryotic lmwPTPs, demonstrates that lmwPTP regulation by oligomerization can be independent from tyrosine phosphorylation.

  2. Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation.

    PubMed

    Gendre, Delphine; Oh, Jaesung; Boutté, Yohann; Best, Jacob G; Samuels, Lacey; Nilsson, Robert; Uemura, Tomohiro; Marchant, Alan; Bennett, Malcolm J; Grebe, Markus; Bhalerao, Rishikesh P

    2011-05-10

    Multiple steps of plant growth and development rely on rapid cell elongation during which secretory and endocytic trafficking via the trans-Golgi network (TGN) plays a central role. Here, we identify the ECHIDNA (ECH) protein from Arabidopsis thaliana as a TGN-localized component crucial for TGN function. ECH partially complements loss of budding yeast TVP23 function and a Populus ECH complements the Arabidopsis ech mutant, suggesting functional conservation of the genes. Compared with wild-type, the Arabidopsis ech mutant exhibits severely perturbed cell elongation as well as defects in TGN structure and function, manifested by the reduced association between Golgi bodies and TGN as well as mislocalization of several TGN-localized proteins including vacuolar H(+)-ATPase subunit a1 (VHA-a1). Strikingly, ech is defective in secretory trafficking, whereas endocytosis appears unaffected in the mutant. Some aspects of the ech mutant phenotype can be phenocopied by treatment with a specific inhibitor of vacuolar H(+)-ATPases, concanamycin A, indicating that mislocalization of VHA-a1 may account for part of the defects in ech. Hence, ECH is an evolutionarily conserved component of the TGN with a central role in TGN structure and function.

  3. Crystal structure of the Bacillus-conserved MazG protein, a nucleotide pyrophosphohydrolase.

    PubMed

    Kim, Meong Il; Hong, Minsun

    2016-03-25

    BA1544 from Bacillus anthracis was previously annotated as a transcription factor for the gene cluster ba1554 - ba1558, but has not been experimentally characterized. B. anthracis is an obligate pathogen causing fatal inhalational anthrax, and BA1544 is absolutely conserved in Bacillus species, including Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides, with 100% sequence identity. To address the function of BA1544, we performed structural and biochemical studies, which revealed that BA1544 is a MazG protein. Thus, herein, the protein is defined as Bacillus-conserved MazG (BcMazG). Like other MazG structures, BcMazG assembles into a tetrameric architecture. Each monomer adopts a four-α-helix bundle that accommodates a metal ion using four acidic residues, and presents one putative substrate-binding site. Enzymatic characterization demonstrated that BcMazG is a nucleoside triphosphate (NTP) pyrophosphohydrolase and prefers adenosine triphosphate as a substrate among canonical NTPs. Moreover, structural comparison of BcMazG with its homologues revealed a potential regulation mechanism whereby the enzymatic activity of BcMazG is regulated by its C-terminal region.

  4. Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing

    PubMed Central

    Davies, Bryan W.; Köhrer, Caroline; Jacob, Asha I.; Simmons, Lyle A.; Zhu, Jianyu; Aleman, Lourdes M.; RajBhandary, Uttam L.; Walker, Graham C.

    2010-01-01

    The UPF0054 protein family is highly conserved with homologs present in nearly every sequenced bacterium. In some bacteria, the respective gene is essential, while in others its loss results in a highly pleiotropic phenotype. Despite detailed structural studies, a cellular role for this protein family has remained unknown. We report here that deletion of the Escherichia coli homolog, YbeY, causes striking defects that affect ribosome activity, translational fidelity and ribosome assembly. Mapping of 16S, 23S and 5S rRNA termini reveals that YbeY influences the maturation of all three rRNAs, with a particularly strong effect on maturation at both the 5′- and 3′-ends of 16S rRNA as well as maturation of the 5′-termini of 23S and 5S rRNAs. Furthermore, we demonstrate strong genetic interactions between ybeY and rnc (encoding RNase III), ybeY and rnr (encoding RNase R), and ybeY and pnp (encoding PNPase), further suggesting a role for YbeY in rRNA maturation. Mutation of highly conserved amino acids in YbeY, allowed the identification of two residues (H114, R59) that were found to have a significant effect in vivo. We discuss the implications of these findings for rRNA maturation and ribosome assembly in bacteria. PMID:20807199

  5. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins.

    PubMed

    McLinton, Elisabeth C; Wagstaff, Kylie M; Lee, Alexander; Moseley, Gregory W; Marsh, Glenn A; Wang, Lin-Fa; Jans, David A; Lieu, Kim G; Netter, Hans J

    2017-04-01

    Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.

  6. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway

    PubMed Central

    Shi, Tujin; Niepel, Mario; McDermott, Jason E.; Gao, Yuqian; Nicora, Carrie D.; Chrisler, William B.; Markillie, Lye M.; Petyuk, Vladislav A.; Smith, Richard D.; Rodland, Karin D.; Sorger, Peter K.; Qian, Wei-Jun; Wiley, H. Steven

    2016-01-01

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components—16 core proteins and 10 feedback regulators—of the epidermal growth factor receptor (EGFR)–mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling. PMID:27405981

  7. Prediction of functional sites in proteins using conserved functional group analysis.

    PubMed

    Innis, C Axel; Anand, A Prem; Sowdhamini, R

    2004-04-02

    A detailed knowledge of a protein's functional site is an absolute prerequisite for understanding its mode of action at the molecular level. However, the rapid pace at which sequence and structural information is being accumulated for proteins greatly exceeds our ability to determine their biochemical roles experimentally. As a result, computational methods are required which allow for the efficient processing of the evolutionary information contained in this wealth of data, in particular that related to the nature and location of functionally important sites and residues. The method presented here, referred to as conserved functional group (CFG) analysis, relies on a simplified representation of the chemical groups found in amino acid side-chains to identify functional sites from a single protein structure and a number of its sequence homologues. We show that CFG analysis can fully or partially predict the location of functional sites in approximately 96% of the 470 cases tested and that, unlike other methods available, it is able to tolerate wide variations in sequence identity. In addition, we discuss its potential in a structural genomics context, where automation, scalability and efficiency are critical, and an increasing number of protein structures are determined with no prior knowledge of function. This is exemplified by our analysis of the hypothetical protein Ydde_Ecoli, whose structure was recently solved by members of the North East Structural Genomics consortium. Although the proposed active site for this protein needs to be validated experimentally, this example illustrates the scope of CFG analysis as a general tool for the identification of residues likely to play an important role in a protein's biochemical function. Thus, our method offers a convenient solution to rapidly and automatically process the vast amounts of data that are beginning to emerge from structural genomics projects.

  8. Conservation of protein abundance patterns reveals the regulatory architecture of the EGFR-MAPK pathway.

    PubMed

    Shi, Tujin; Niepel, Mario; McDermott, Jason E; Gao, Yuqian; Nicora, Carrie D; Chrisler, William B; Markillie, Lye M; Petyuk, Vladislav A; Smith, Richard D; Rodland, Karin D; Sorger, Peter K; Qian, Wei-Jun; Wiley, H Steven

    2016-07-12

    Various genetic mutations associated with cancer are known to alter cell signaling, but it is not clear whether they dysregulate signaling pathways by altering the abundance of pathway proteins. Using a combination of RNA sequencing and ultrasensitive targeted proteomics, we defined the primary components-16 core proteins and 10 feedback regulators-of the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway in normal human mammary epithelial cells and then quantified their absolute abundance across a panel of normal and breast cancer cell lines as well as fibroblasts. We found that core pathway proteins were present at very similar concentrations across all cell types, with a variance similar to that of proteins previously shown to display conserved abundances across species. In contrast, EGFR and transcriptionally controlled feedback regulators were present at highly variable concentrations. The absolute abundance of most core proteins was between 50,000 and 70,000 copies per cell, but the adaptors SOS1, SOS2, and GAB1 were found at far lower amounts (2000 to 5000 copies per cell). MAPK signaling showed saturation in all cells between 3000 and 10,000 occupied EGFRs, consistent with the idea that adaptors limit signaling. Our results suggest that the relative stoichiometry of core MAPK pathway proteins is very similar across different cell types, with cell-specific differences mostly restricted to variable amounts of feedback regulators and receptors. The low abundance of adaptors relative to EGFR could be responsible for previous observations that only a fraction of total cell surface EGFR is capable of rapid endocytosis, high-affinity binding, and mitogenic signaling.

  9. 3D model for Cancerous Inhibitor of Protein Phosphatase 2A armadillo domain unveils highly conserved protein-protein interaction characteristics.

    PubMed

    Dahlström, Käthe M; Salminen, Tiina A

    2015-12-07

    Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A) is a human oncoprotein, which exerts its cancer-promoting function through interaction with other proteins, for example Protein Phosphatase 2A (PP2A) and MYC. The lack of structural information for CIP2A significantly prevents the design of anti-cancer therapeutics targeting this protein. In an attempt to counteract this fact, we modeled the three-dimensional structure of the N-terminal domain (CIP2A-ArmRP), analyzed key areas and amino acids, and coupled the results to the existing literature. The model reliably shows a stable armadillo repeat fold with a positively charged groove. The fact that this conserved groove highly likely binds peptides is corroborated by the presence of a conserved polar ladder, which is essential for the proper peptide-binding mode of armadillo repeat proteins and, according to our results, several known CIP2A interaction partners appropriately possess an ArmRP-binding consensus motif. Moreover, we show that Arg229Gln, which has been linked to the development of cancer, causes a significant change in charge and surface properties of CIP2A-ArmRP. In conclusion, our results reveal that CIP2A-ArmRP shares the typical fold, protein-protein interaction site and interaction patterns with other natural armadillo proteins and that, presumably, several interaction partners bind into the central groove of the modeled CIP2A-ArmRP. By providing essential structural characteristics of CIP2A, the present study significantly increases our knowledge on how CIP2A interacts with other proteins in cancer progression and how to develop new therapeutics targeting CIP2A.

  10. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization

    PubMed Central

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120. PMID:26903973

  11. CyDiv, a Conserved and Novel Filamentous Cyanobacterial Cell Division Protein Involved in Septum Localization.

    PubMed

    Mandakovic, Dinka; Trigo, Carla; Andrade, Derly; Riquelme, Brenda; Gómez-Lillo, Gabriela; Soto-Liebe, Katia; Díez, Beatriz; Vásquez, Mónica

    2016-01-01

    Cell division in bacteria has been studied mostly in Escherichia coli and Bacillus subtilis, model organisms for Gram-negative and Gram-positive bacteria, respectively. However, cell division in filamentous cyanobacteria is poorly understood. Here, we identified a novel protein, named CyDiv (Cyanobacterial Division), encoded by the all2320 gene in Anabaena sp. PCC 7120. We show that CyDiv plays a key role during cell division. CyDiv has been previously described only as an exclusive and conserved hypothetical protein in filamentous cyanobacteria. Using polyclonal antibodies against CyDiv, we showed that it localizes at different positions depending on cell division timing: poles, septum, in both daughter cells, but also in only one of the daughter cells. The partial deletion of CyDiv gene generates partial defects in cell division, including severe membrane instability and anomalous septum localization during late division. The inability to complete knock out CyDiv strains suggests that it is an essential gene. In silico structural protein analyses and our experimental results suggest that CyDiv is an FtsB/DivIC-like protein, and could therefore, be part of an essential late divisome complex in Anabaena sp. PCC 7120.

  12. Mammalian ets-1 and ets-2 genes encode highly conserved proteins.

    PubMed Central

    Watson, D K; McWilliams, M J; Lapis, P; Lautenberger, J A; Schweinfest, C W; Papas, T S

    1988-01-01

    Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, we have sequenced human ets-1 cDNAs and ets-2 cDNA clones obtained from both human and mouse. The human ETS1 gene is capable of encoding a protein of 441 amino acids. This protein is greater than 95% identical to the chicken c-ets-1 gene product. Thus, the human ETS1 gene is homologous to the chicken c-ets-1 gene, the protooncogene that the E26 virus transduced. Human and mouse ets-2 cDNA clones are closely related and contain open reading frames capable of encoding proteins of 469 and 468 residues, respectively. Direct comparison of these data with previously published findings indicates that ets is a family of genes whose members share distinct domains. PMID:2847145

  13. Characterization of Conserved Region 2-Deficient Mutants of the Cytomegalovirus Egress Protein pM53

    PubMed Central

    Pogoda, Madlen; Bosse, Jens B.; Wagner, Felicia M.; Schauflinger, Martin; Walther, Paul; Koszinowski, Ulrich H.

    2012-01-01

    Dominant-negative (DN) mutants are powerful tools for studying essential protein-protein interactions. A systematic genetic screen of the essential murine cytomegalovirus (MCMV) protein pM53 identified the accumulation of inhibitory mutations within conserved region 2 (CR2) and CR4. The strong inhibitory potential of these CR4 mutants is characterized by a particular phenotype. The DN effect of the small insertion mutations in CR2 was too weak to analyze (M. Popa, Z. Ruzsics, M. Lötzerich, L. Dölken, C. Buser, P. Walther, and U. H. Koszinowski, J. Virol. 84:9035–9046, 2010); therefore, the present study describes the construction of M53 alleles lacking CR2 (either completely or partially) and subsequent examination of the DN effect on MCMV replication upon conditional expression. Overexpression of CR2-deficient pM53 inhibited virus production by about 10,000-fold. This was due to interference with capsid export from the nucleus and viral genome cleavage/packaging. In addition, the fate of the nuclear envelopment complex in the presence of DN pM53 overexpression was analyzed. The CR2 mutants were able to bind to pM50, albeit to a lesser extent than the wild-type protein, and relocalized the wild-type nuclear envelope complex in infected cells. Unlike the CR4 DN, the CR2 DN mutants did not affect the stability of pM50. PMID:22993161

  14. Tubulin Binding and Polymerization Promoting Properties of Tubulin Polymerization Promoting Proteins Are Evolutionarily Conserved.

    PubMed

    Oláh, Judit; Szénási, Tibor; Szabó, Adél; Kovács, Kinga; Lőw, Péter; Štifanić, Mauro; Orosz, Ferenc

    2017-02-21

    Tubulin polymerization promoting proteins (TPPPs) constitute a eukaryotic protein family. There are three TPPP paralogs in the human genome, denoted as TPPP1-TPPP3. TPPP1 and TPPP3 are intrinsically unstructured proteins (IUPs) that bind and polymerize tubulin and stabilize microtubules, but TPPP2 does not. Vertebrate TPPPs originated from the ancient invertebrate TPPP by two-round whole-genome duplication; thus, whether the tubulin/microtubule binding function of TPPP1 and TPPP3 is a newly acquired property or was present in the invertebrate orthologs (generally one TPPP per species) has been an open question. To answer this question, we investigated a TPPP from a simple and early branching animal, the sponge Suberites domuncula. Bioinformatics, biochemical, immunochemical, spectroscopic, and electron microscopic data showed that the properties of the sponge protein correspond to those of TPPP1; namely, it is an IUP that strongly binds tubulin and induces its polymerization, proving that these features of animal TPPPs have been evolutionarily conserved.

  15. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins.

    PubMed

    Zhang, Weiwei; Lu, Zhitang

    2015-04-01

    Currently, numerous taxonomic units above species level of the phylum Firmicutes are ambiguously placed in the phylogeny determined by 16S rRNA gene. Here, we evaluated the use of 16S rRNA gene compared with 81 conserved proteins (CPs) or 41 ribosomal proteins (RPs) as phylogenetic markers and applied this to the analysis of the phylum Firmicutes. Results show that the phylogenetic trees constructed are in good agreement with each other; however, the protein-based trees are able to resolve the relationships between several branches where so far only ambiguous classifications are possible. Thus, the phylogeny deduced based on concatenated proteins provides significant basis for re-classifying members in this phylum. It indicates that the genera Coprothermobacter and Thermodesulfobium represent two new phyla; the families Paenibacillaceae and Alicyclobacillaceae should be elevated to order level; and the families Bacillaceae and Thermodesulfobiaceae should be separated to 2 and 3 families respectively. We also suggest that four novel families should be proposed in the orders Clostridiales and Bacillales, and 11 genera should be moved to other existing families different from the current classification status. Moreover, notably, RPs are a well-suited subset of CPs that could be applied to Firmicutes phylogenetic analysis instead of the 16S rRNA gene.

  16. Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface.

    PubMed

    Siglioccolo, Alessandro; Paiardini, Alessandro; Piscitelli, Maria; Pascarella, Stefano

    2011-12-22

    Halophiles are extremophilic microorganisms growing optimally at high salt concentrations. There are two strategies used by halophiles to maintain proper osmotic pressure in their cytoplasm: accumulation of molar concentrations of potassium and chloride with extensive adaptation of the intracellular macromolecules ("salt-in" strategy) or biosynthesis and/or accumulation of organic osmotic solutes ("osmolyte" strategy). Our work was aimed at contributing to the understanding of the shared molecular mechanisms of protein haloadaptation through a detailed and systematic comparison of a sample of several three-dimensional structures of halophilic and non-halophilic proteins. Structural differences observed between the "salt-in" and the mesophilic homologous proteins were contrasted to those observed between the "osmolyte" and mesophilic pairs. The results suggest that haloadaptation strategy in the presence of molar salt concentration, but not of osmolytes, necessitates a weakening of the hydrophobic interactions, in particular at the level of conserved hydrophobic contacts. Weakening of these interactions counterbalances their strengthening by the presence of salts in solution and may help the structure preventing aggregation and/or loss of function in hypersaline environments. Considering the significant increase of biotechnology applications of halophiles, the understanding of halophilicity can provide the theoretical basis for the engineering of proteins of great interest because stable at concentrations of salts that cause the denaturation or aggregation of the majority of macromolecules.

  17. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling.

    PubMed

    Ariyoshi, Mariko; Schwabe, John W R

    2003-08-01

    Spen proteins regulate the expression of key transcriptional effectors in diverse signaling pathways. They are large proteins characterized by N-terminal RNA-binding motifs and a highly conserved C-terminal SPOC domain. The specific biological role of the SPOC domain (Spen paralog and ortholog C-terminal domain), and hence, the common function of Spen proteins, has been unclear to date. The Spen protein, SHARP (SMRT/HDAC1-associated repressor protein), was identified as a component of transcriptional repression complexes in both nuclear receptor and Notch/RBP-Jkappa signaling pathways. We have determined the 1.8 A crystal structure of the SPOC domain from SHARP. This structure shows that essentially all of the conserved surface residues map to a positively charged patch. Structure-based mutational analysis indicates that this conserved region is responsible for the interaction between SHARP and the universal transcriptional corepressor SMRT/NCoR (silencing mediator for retinoid and thyroid receptors/nuclear receptor corepressor. We demonstrate that this interaction involves a highly conserved acidic motif at the C terminus of SMRT/NCoR. These findings suggest that the conserved function of the SPOC domain is to mediate interaction with SMRT/NCoR corepressors, and that Spen proteins play an essential role in the repression complex.

  18. Automatic identification of highly conserved family regions and relationships in genome wide datasets including remote protein sequences.

    PubMed

    Doğan, Tunca; Karaçalı, Bilge

    2013-01-01

    Identifying shared sequence segments along amino acid sequences generally requires a collection of closely related proteins, most often curated manually from the sequence datasets to suit the purpose at hand. Currently developed statistical methods are strained, however, when the collection contains remote sequences with poor alignment to the rest, or sequences containing multiple domains. In this paper, we propose a completely unsupervised and automated method to identify the shared sequence segments observed in a diverse collection of protein sequences including those present in a smaller fraction of the sequences in the collection, using a combination of sequence alignment, residue conservation scoring and graph-theoretical approaches. Since shared sequence fragments often imply conserved functional or structural attributes, the method produces a table of associations between the sequences and the identified conserved regions that can reveal previously unknown protein families as well as new members to existing ones. We evaluated the biological relevance of the method by clustering the proteins in gold standard datasets and assessing the clustering performance in comparison with previous methods from the literature. We have then applied the proposed method to a genome wide dataset of 17793 human proteins and generated a global association map to each of the 4753 identified conserved regions. Investigations on the major conserved regions revealed that they corresponded strongly to annotated structural domains. This suggests that the method can be useful in predicting novel domains on protein sequences.

  19. Development of a protein-ligand-binding site prediction method based on interaction energy and sequence conservation.

    PubMed

    Tsujikawa, Hiroto; Sato, Kenta; Wei, Cao; Saad, Gul; Sumikoshi, Kazuya; Nakamura, Shugo; Terada, Tohru; Shimizu, Kentaro

    2016-09-01

    We present a new method for predicting protein-ligand-binding sites based on protein three-dimensional structure and amino acid conservation. This method involves calculation of the van der Waals interaction energy between a protein and many probes placed on the protein surface and subsequent clustering of the probes with low interaction energies to identify the most energetically favorable locus. In addition, it uses amino acid conservation among homologous proteins. Ligand-binding sites were predicted by combining the interaction energy and the amino acid conservation score. The performance of our prediction method was evaluated using a non-redundant dataset of 348 ligand-bound and ligand-unbound protein structure pairs, constructed by filtering entries in a ligand-binding site structure database, LigASite. Ligand-bound structure prediction (bound prediction) indicated that 74.0 % of predicted ligand-binding sites overlapped with real ligand-binding sites by over 25 % of their volume. Ligand-unbound structure prediction (unbound prediction) indicated that 73.9 % of predicted ligand-binding residues overlapped with real ligand-binding residues. The amino acid conservation score improved the average prediction accuracy by 17.0 and 17.6 points for the bound and unbound predictions, respectively. These results demonstrate the effectiveness of the combined use of the interaction energy and amino acid conservation in the ligand-binding site prediction.

  20. A highly conserved protein of unknown function is required by Sinorhizobium meliloti for symbiosis and environmental stress protection.

    PubMed

    Davies, Bryan W; Walker, Graham C

    2008-02-01

    We report here the first characterization of the Sinorhizobium meliloti open reading frame SMc01113. The SMc01113 protein is a member of a highly conserved protein family, universal among bacteria. We demonstrate that the SMc01113 gene is absolutely required for S. meliloti symbiosis with alfalfa and also for the protection of the bacterium from a wide range of environmental stresses.

  1. Total chemical synthesis of dengue 2 virus capsid protein via native chemical ligation: role of the conserved salt-bridge.

    PubMed

    Zhan, Changyou; Zhao, Le; Chen, Xishan; Lu, Wei-Yue; Lu, Wuyuan

    2013-06-15

    The dengue capsid protein C is a highly basic alpha-helical protein of ~100 amino acid residues that forms an emphipathic homodimer to encapsidate the viral genome and to interact with viral membranes. The solution structure of dengue 2 capsid protein C (DEN2C) has been determined by NMR spectroscopy, revealing a large dimer interface formed almost exclusively by hydrophobic residues. The only acidic residue (Glu87) conserved in the capsid proteins of all four serotypes of dengue virus forms a salt bridge with the side chains of Lys45 and Arg55'. To understand the structural and functional significance of this conserved salt bridge, we chemically synthesized an N-terminally truncated form of DEN2C ((WT)DEN2C) and its salt bridge-void analog (E87A)DEN2C using the native chemical ligation technique developed by Kent and colleagues. Comparative biochemical and biophysical studies of these two synthetic proteins using circular dichroism spectroscopy, fluorescence polarization, protein thermal denaturation, and proteolytic susceptibility assay demonstrated that the conserved salt bridge contributed to DEN2C dimerization and stability as well as its resistance to proteolytic degradation. Our work provided insight into the role of a fully conserved structural element of the dengue capsid protein C and paved the way for additional functional studies of this important viral protein. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    PubMed

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been

  3. Integrating Markov clustering and molecular phylogenetics to reconstruct the cyanobacterial species tree from conserved protein families.

    PubMed

    Swingley, Wesley D; Blankenship, Robert E; Raymond, Jason

    2008-04-01

    Attempts to classify living organisms by their physical characteristics are as old as biology itself. The advent of protein and DNA sequencing--most notably the use of 16S ribosomal RNA--defined a new level of classification that now forms our basic understanding of the history of life on earth. High-throughput sequencing currently provides DNA sequences at an unprecedented rate, not only providing a wealth of information but also posing considerable analytical challenges. Here we present comparative genomics-based methods useful for automating evolutionary analysis between any number of species. As a practical example, we applied our method to the well-studied cyanobacterial lineage. The 24 cyanobacterial genomes compared here occupy a wide variety of environmental niches and play major roles in global carbon and nitrogen cycles. By integrating phylogenetic data inferred for upward of 1,000 protein-coding genes common to all or most cyanobacteria, we have reconstructed an evolutionary history of the phylum, establishing a framework for resolving key issues regarding the evolution of their metabolic and phenotypic diversity. Greater resolution on individual branches can be attained by telescoping inward to the larger set of conserved proteins between fewer taxa. The construction of all individual protein phylogenies allows for quantitative tree scoring, providing insight into the evolutionary history of each protein family as well as probing the limits of phylogenetic resolution. The tools incorporated here are fast, computationally tractable, and easily extendable to other phyla and provide a scaleable framework for contrasting and integrating the information present in thousands of protein-coding genes within related genomes.

  4. Conservation of the E8 CDS of the E8^E2 protein among mammalian papillomaviruses.

    PubMed

    Puustusmaa, Mikk; Abroi, Aare

    2016-09-01

    Papillomaviridae are small dsDNA viruses with a limited coding capacity. To fulfill all of the functional requirements for propagation and spreading, papillomaviruses use double coding and alternative protein isoforms. E8 ^ E2 is an alternative E2 protein isoform that is generated by fusing the short E8 CDS that completely overlaps E1 to the 'hinge' and the DNA-binding region of the E2 protein via alternative transcription/splicing. The papillomaviruses in which E8 ^ E2 mRNA sequences have been described exhibit a sparse phylogenomic distribution. Thus, it is not clear whether E8 ^ E2 is an ancestral protein that has not been described for other papillomavirus types or whether it randomly appears because of the conservation of the E1 protein and occurs only coincidentally. We searched for potential E8 coding sequences in a non-redundant set of papillomaviruses and applied SynPlot2 and an in-house-developed algorithm (cRegions) to determine the most plausible of the above-mentioned scenarios. Beginning with nine experimentally described E8 ^ E2 mRNAs, we predicted the potential E8 CDSs for more than 300 mammalian papillomavirus genomes. According to our analysis, E8 ^ E2 is not a result of E1 coding and represents a protein in its own right, and it most likely has an ancestral origin that precedes the divergence of major mammalian papillomavirus genera.

  5. Conserved Regulation of MAP Kinase Expression by PUF RNA-Binding Proteins

    PubMed Central

    Lee, Myon-Hee; Hook, Brad; Pan, Guangjin; Kershner, Aaron M; Merritt, Christopher; Seydoux, Geraldine; Thomson, James A; Wickens, Marvin; Kimble, Judith

    2007-01-01

    Mitogen-activated protein kinase (MAPK) and PUF (for Pumilio and FBF [fem-3 binding factor]) RNA-binding proteins control many cellular processes critical for animal development and tissue homeostasis. In the present work, we report that PUF proteins act directly on MAPK/ERK-encoding mRNAs to downregulate their expression in both the Caenorhabditis elegans germline and human embryonic stem cells. In C. elegans, FBF/PUF binds regulatory elements in the mpk-1 3′ untranslated region (3′ UTR) and coprecipitates with mpk-1 mRNA; moreover, mpk-1 expression increases dramatically in FBF mutants. In human embryonic stem cells, PUM2/PUF binds 3′UTR elements in both Erk2 and p38α mRNAs, and PUM2 represses reporter constructs carrying either Erk2 or p38α 3′ UTRs. Therefore, the PUF control of MAPK expression is conserved. Its biological function was explored in nematodes, where FBF promotes the self-renewal of germline stem cells, and MPK-1 promotes oocyte maturation and germ cell apoptosis. We found that FBF acts redundantly with LIP-1, the C. elegans homolog of MAPK phosphatase (MKP), to restrict MAPK activity and prevent apoptosis. In mammals, activated MAPK can promote apoptosis of cancer cells and restrict stem cell self-renewal, and MKP is upregulated in cancer cells. We propose that the dual negative regulation of MAPK by both PUF repression and MKP inhibition may be a conserved mechanism that influences both stem cell maintenance and tumor progression. PMID:18166083

  6. RNA editing in bacteria recodes multiple proteins and regulates an evolutionarily conserved toxin-antitoxin system.

    PubMed

    Bar-Yaacov, Dan; Mordret, Ernest; Towers, Ruth; Biniashvili, Tammy; Soyris, Clara; Schwartz, Schraga; Dahan, Orna; Pilpel, Yitzhak

    2017-10-01

    Adenosine (A) to inosine (I) RNA editing is widespread in eukaryotes. In prokaryotes, however, A-to-I RNA editing was only reported to occur in tRNAs but not in protein-coding genes. By comparing DNA and RNA sequences of Escherichia coli, we show for the first time that A-to-I editing occurs also in prokaryotic mRNAs and has the potential to affect the translated proteins and cell physiology. We found 15 novel A-to-I editing events, of which 12 occurred within known protein-coding genes where they always recode a tyrosine (TAC) into a cysteine (TGC) codon. Furthermore, we identified the tRNA-specific adenosine deaminase (tadA) as the editing enzyme of all these editing sites, thus making it the first identified RNA editing enzyme that modifies both tRNAs and mRNAs. Interestingly, several of the editing targets are self-killing toxins that belong to evolutionarily conserved toxin-antitoxin pairs. We focused on hokB, a toxin that confers antibiotic tolerance by growth inhibition, as it demonstrated the highest level of such mRNA editing. We identified a correlated mutation pattern between the edited and a DNA hard-coded Cys residue positions in the toxin and demonstrated that RNA editing occurs in hokB in two additional bacterial species. Thus, not only the toxin is evolutionarily conserved but also the editing itself within the toxin is. Finally, we found that RNA editing in hokB increases as a function of cell density and enhances its toxicity. Our work thus demonstrates the occurrence, regulation, and functional consequences of RNA editing in bacteria. © 2017 Bar-Yaacov et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Molecular Characterization and Immune Protection of a New Conserved Hypothetical Protein of Eimeria tenella

    PubMed Central

    Zhai, Qi; Huang, Bing; Dong, Hui; Zhao, Qiping; Zhu, Shunhai; Liang, Siting; Li, Sha; Yang, Sihan; Han, Hongyu

    2016-01-01

    The genome sequences of Eimeria tenella have been sequenced, but >70% of these genes are currently categorized as having an unknown function or annotated as conserved hypothetical proteins, and few of them have been studied. In the present study, a conserved hypothetical protein gene of E. tenella, designated EtCHP559, was cloned using rapid amplification of cDNA 5'-ends (5'RACE) based on the expressed sequence tag (EST). The 1746-bp full-length cDNA of EtCHP559 contained a 1224-bp open reading frame (ORF) that encoded a 407-amino acid polypeptide with the predicted molecular weight of 46.04 kDa. Real-time quantitative PCR analysis revealed that EtCHP559 was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts and second generation merozoites). The ORF was inserted into pCold-TF to produce recombinant EtCHP559. Using western blotting, the recombinant protein was successfully recognized by rabbit serum against E. tenella sporozoites. Immunolocalization by using EtCHP559 antibody showed that EtCHP559 was mainly distributed on the parasite surface in free sporozoites and became concentrated in the anterior region after sporozoites were incubated in complete medium. The EtCHP559 became uniformly dispersed in immature and mature schizonts. Inhibition of EtCHP559 function using anti-rEtCHP559 polyclonal antibody reduced the ability of E. tenella sporozoites to invade host cells by >70%. Animal challenge experiments demonstrated that the recombinant EtCHP559 significantly increased the average body weight gain, reduced the oocyst outputs, alleviated cecal lesions of the infected chickens, and resulted in anticoccidial index >160 against E. tenella. These results suggest that EtCHP559 plays an important role in sporozoite invasion and could be an effective candidate for the development of a new vaccine against E. tenella. PMID:27309852

  8. A Highly Conserved Residue in HIV-1 Nef Alpha Helix 2 Modulates Protein Expression

    PubMed Central

    Johnson, Aaron L.; Dirk, Brennan S.; Coutu, Mathieu; Haeryfar, S. M. Mansour; Arts, Eric J.; Finzi, Andrés

    2016-01-01

    ABSTRACT Extensive genetic diversity is a defining characteristic of human immunodeficiency virus type 1 (HIV-1) and poses a significant barrier to the development of an effective vaccine. To better understand the impact of this genetic diversity on the HIV-1 pathogenic factor Nef, we compiled a panel of reference strains from the NIH Los Alamos HIV Database. Initial sequence analysis identified point mutations at Nef residues 13, 84, and 92 in subtype C reference strain C.BR92025 from Brazil. Functional analysis revealed impaired major histocompatibility complex class I and CD4 downregulation of strain C.BR92025 Nef, which corresponded to decreased protein expression. Metabolic labeling demonstrated that strain C.BR92025 Nef has a greater rate of protein turnover than subtype B reference strain B.JRFL that, on the basis of mutational analysis, is related to Nef residue A84. An alanine-to-valine substitution at position 84, located in alpha helix 2 of Nef, was sufficient to alter the rate of turnover of an otherwise highly expressed Nef protein. In conclusion, these findings highlight HIV-1 Nef residue A84 as a major determinant of protein expression that may offer an additional avenue to disrupt or mediate the effects of this key HIV-1 pathogenic factor. IMPORTANCE The HIV-1 Nef protein has been established as a key pathogenic determinant of HIV/AIDS, but there is little knowledge of how the extensive genetic diversity of HIV-1 affects Nef function. Upon compiling a set of subtype-specific reference strains, we identified a subtype C reference strain, C.BR92025, that contained natural polymorphisms at otherwise highly conserved residues 13, 84, and 92. Interestingly, strain C.BR92025 Nef displayed impaired Nef function and had decreased protein expression. We have demonstrated that strain C.BR92025 Nef has a higher rate of protein turnover than highly expressed Nef proteins and that this higher rate of protein turnover is due to an alanine-to-valine substitution

  9. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms.

    PubMed

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Nicora, Horacio D Lopez; Caetano-Anollés, Gustavo

    2011-11-08

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  10. Deorphanization and target validation of cross-tick species conserved novel Amblyomma americanum tick saliva protein

    PubMed Central

    Mulenga, Albert; Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini

    2013-01-01

    We previously identified a cross-tick species conserved tick feeding stimuli responsive Amblyomma americanum (Aam) AV422 gene. This study demonstrates that AamAV422 belongs to a novel group of arthropod proteins that is characterized by 14 cysteine amino acid residues: C23-X7/9-C33-X23/24-C58-C8-C67X7-X75-X23-C99-X15-C115-X10-C126X24/25/33-C150C151-X7-C159-X8-X168-X23/24-C192-X9/10-C202 predicted to form seven disulfide bonds. We show that AamAV422 protein is a ubiquitously expressed protein that is injected into the host within the first 24 h of the tick attaching onto the host as revealed by western blotting analyses of recombinant (r)AamAV422, tick saliva and dissected tick organ protein extracts using antibodies to 24 h and 48 h tick saliva proteins (TSPs). Native AamAV422 is apparently involved with mediating tick anti-hemostasis and anti-complement functions in that rAamAV422 delayed plasma clotting time in a dose responsive manner by up to ~160 s, prevented platelet aggregation by up to ~16% and caused ~24% reduction in production of terminal complement complexes. Target validation analysis revealed that rAamAV422 is a potential candidate for a cocktail or multivalent tick vaccine preparation in that RNA interference (RNAi)-mediated silencing of AamAV422 mRNA caused a statistically significant (~44%) reduction in tick engorgement weights, which is proxy for amounts of ingested blood. We speculate that AamAV422 is a potential target antigen for development of the highly desired universal tick vaccine in that consistent with high conservation among ticks, antibodies to 24 h Ixodes scapularis TSPs specifically bound rAamAV422. We discuss data in this study in the context of advancing the biology of tick feeding physiology and discovery of potential target antigens for tick vaccine development. PMID:23428900

  11. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  12. A conserved region in the prM protein is a critical determinant in the assembly of flavivirus particles.

    PubMed

    Yoshii, Kentaro; Igarashi, Manabu; Ichii, Osamu; Yokozawa, Kana; Ito, Kimihito; Kariwa, Hiroaki; Takashima, Ikuo

    2012-01-01

    Flaviviruses are assembled to bud into the lumen of the endoplasmic reticulum (ER) and are secreted through the vesicle transport pathway, but the details of the molecular mechanism of virion assembly remain largely unknown. In this study, a highly conserved region in the prM protein was identified among flaviviruses. In the subviral particle (SP) system of tick-borne encephalitis virus (TBEV) and Japanese encephalitis virus, secretion of SPs was impaired by a mutation in the conserved region in the prM protein. Viral proteins were sparse in the Golgi complex and accumulated in the ER. Ultrastructural analysis revealed that long filamentous structures, rather than spherical SPs, were observed in the lumen of the ER as a result of the mutation. The production of infectious virions derived from infectious cDNA of TBEV was also reduced by mutations in the conserved region. Molecular modelling analysis suggested that the conserved region is important for the association of prM-envelope protein heterodimers in the formation of a spike of immature virion. These results are the first demonstration that the conserved region in the prM protein is a molecular determinant for the flavivirus assembly process.

  13. Targeting of the human adrenoleukodystrophy protein to the peroxisomal membrane by an internal region containing a highly conserved motif.

    PubMed

    Landgraf, Pablo; Mayerhofer, Peter U; Polanetz, Roman; Roscher, Adelbert A; Holzinger, Andreas

    2003-08-01

    In this study we addressed the targeting requirements of peroxisomal ABC transporters, in particular the human adrenoleukodystrophy protein. This membrane protein is defective or missing in X-linked adrenoleukodystrophy, a neurodegenerative disorder predominantly presenting in childhood. Using adrenoleukodystrophy protein deletion constructs and green fluorescent protein fusion constructs we identified the amino acid regions 1-110 and 67-164 to be sufficient for peroxisomal targeting. However, the minimal region shared by these constructs (amino acids 67-110) is not sufficient for peroxisomal targeting by itself. Additionally, the NH2-terminal 66 amino acids enhance targeting efficiency. Green fluorescent protein-labeled fragments of human peroxisomal membrane protein 69 and Saccharomyces cerevisiae Pxa1 corresponding to the amino acid 67-164 adrenoleukodystrophy protein region were also directed to the mammalian peroxisome. The required region contains a 14-amino-acid motif (71-84) conserved between the adrenoleukodystrophy protein and human peroxisomal membrane protein 69 and yeast Pxa1. Omission or truncation of this motif in the adrenoleukodystrophy protein abolished peroxisomal targeting. The single amino acid substitution L78F resulted in a significant reduction of targeting efficiency. The in-frame deletion of three amino acids (del78-80LLR) within the proposed targeting motif in two patients suffering from X-linked adrenoleukodystrophy resulted in the mislocalization of a green fluorescent protein fusion protein to nucleus, cytosol and mitochondria. Our data define the targeting region of human adrenoleukodystrophy protein containing a highly conserved 14-amino-acid motif.

  14. Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns

    DOE PAGES

    Tian, Wenhong; Samatova, Nagiza F.

    2013-01-01

    A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach basedmore » on a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less

  15. Psidin, a conserved protein that regulates protrusion dynamics and cell migration

    PubMed Central

    Kim, Ji Hoon; Cho, Aeri; Yin, Hongyan; Schafer, Dorothy A.; Mouneimne, Ghassan; Simpson, Kaylene J.; Nguyen, Kim-Vy; Brugge, Joan S.; Montell, Denise J.

    2011-01-01

    Dynamic assembly and disassembly of actin filaments is a major driving force for cell movements. Border cells in the Drosophila ovary provide a simple and genetically tractable model to study the mechanisms regulating cell migration. To identify new genes that regulate cell movement in vivo, we screened lethal mutations on chromosome 3R for defects in border cell migration and identified two alleles of the gene psidin (psid). In vitro, purified Psid protein bound F-actin and inhibited the interaction of tropomyosin with F-actin. In vivo, psid mutations exhibited genetic interactions with the genes encoding tropomyosin and cofilin. Border cells overexpressing Psid together with GFP-actin exhibited altered protrusion/retraction dynamics. Psid knockdown in cultured S2 cells reduced, and Psid overexpression enhanced, lamellipodial dynamics. Knockdown of the human homolog of Psid reduced the speed and directionality of migration in wounded MCF10A breast epithelial monolayers, whereas overexpression of the protein increased migration speed and altered protrusion dynamics in EGF-stimulated cells. These results indicate that Psid is an actin regulatory protein that plays a conserved role in protrusion dynamics and cell migration. PMID:21406550

  16. The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA.

    PubMed

    Wittmann, Sina; Renner, Max; Watts, Beth R; Adams, Oliver; Huseyin, Miles; Baejen, Carlo; El Omari, Kamel; Kilchert, Cornelia; Heo, Dong-Hyuk; Kecman, Tea; Cramer, Patrick; Grimes, Jonathan M; Vasiljeva, Lidia

    2017-04-03

    Termination of RNA polymerase II (Pol II) transcription is an important step in the transcription cycle, which involves the dislodgement of polymerase from DNA, leading to release of a functional transcript. Recent studies have identified the key players required for this process and showed that a common feature of these proteins is a conserved domain that interacts with the phosphorylated C-terminus of Pol II (CTD-interacting domain, CID). However, the mechanism by which transcription termination is achieved is not understood. Using genome-wide methods, here we show that the fission yeast CID-protein Seb1 is essential for termination of protein-coding and non-coding genes through interaction with S2-phosphorylated Pol II and nascent RNA. Furthermore, we present the crystal structures of the Seb1 CTD- and RNA-binding modules. Unexpectedly, the latter reveals an intertwined two-domain arrangement of a canonical RRM and second domain. These results provide important insights into the mechanism underlying eukaryotic transcription termination.

  17. Identification of protein motifs using conserved amino acid properties and partitioning techniques

    SciTech Connect

    Wu, T.D.; Brutlag, D.L.

    1995-12-31

    Analyzing a set of protein sequences involves a fundamental relationship between the coherency of the set and the specificity of the motif that describes it. Motifs may be obscured by training sets that contain incoherent sequences, in part due to protein subclasses, contamination, or errors. We develop an algorithm for motif identification that systematically explores possible patterns of coherency within a set of protein sequences, Our algorithm constructs alternative partitions of the training set data, where one subset of each partition is presumed to contain coherent data and is used for forming a motif. The motif is represented by multiple overlapping amino acid groups based on evolutionary, biochemical, or physical properties. We demonstrate our method on a training set of reverse transcriptases that contains subclasses, sequence errors, misalignments, and contaminating sequences. Despite these complications, our program identifies a novel motif for the subclass of retroviral and retrovirus-related reverse transcriptases. This motif has a much higher specificity than previously reported motifs and suggests the importance of conserved hydrophilic and hydrophobic residues in the structure of reverse transcriptases.

  18. Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase

    PubMed Central

    Sohn, Young-Sik; Lee, Seong-Gyu; Lee, Kwang-Hoon; Ku, Bonsu; Shin, Ho-Chul; Cha, Sun-Shin; Kim, Yeon-Gil; Lee, Hyun Sook; Kang, Sung-Gyun; Oh, Byung-Ha

    2016-01-01

    A hypothetical protein TON_0340 of a Thermococcus species is a protein conserved in a variety of organisms including human. Herein, we present four different crystal structures of TON_0340, leading to the identification of an active-site cavity harboring a metal-binding site composed of six invariant aspartate and glutamate residues that coordinate one to three metal ions. Biochemical and mutational analyses involving many phosphorous compounds show that TON_0340 is a Mn2+-dependent phosphatase. Mg2+ binds to TON_0340 less tightly and activates the phosphatase activity less efficiently than Mn2+. Whereas Ca2+ and Zn2+ are able to bind to the protein, they are unable to activate its enzymatic activity. Since the active-site cavity is small and largely composed of nearly invariant stretches of 11 or 13 amino acids, the physiological substrates of TON_0340 and its homologues are likely to be a small and the same molecule. The Mn2+-bound TON_0340 structure provides a canonical model for the ubiquitously present TON_0340 homologues and lays a strong foundation for the elucidation of their substrate and biological function. PMID:27907125

  19. Identification of a Highly Conserved Hypothetical Protein TON_0340 as a Probable Manganese-Dependent Phosphatase.

    PubMed

    Sohn, Young-Sik; Lee, Seong-Gyu; Lee, Kwang-Hoon; Ku, Bonsu; Shin, Ho-Chul; Cha, Sun-Shin; Kim, Yeon-Gil; Lee, Hyun Sook; Kang, Sung-Gyun; Oh, Byung-Ha

    2016-01-01

    A hypothetical protein TON_0340 of a Thermococcus species is a protein conserved in a variety of organisms including human. Herein, we present four different crystal structures of TON_0340, leading to the identification of an active-site cavity harboring a metal-binding site composed of six invariant aspartate and glutamate residues that coordinate one to three metal ions. Biochemical and mutational analyses involving many phosphorous compounds show that TON_0340 is a Mn2+-dependent phosphatase. Mg2+ binds to TON_0340 less tightly and activates the phosphatase activity less efficiently than Mn2+. Whereas Ca2+ and Zn2+ are able to bind to the protein, they are unable to activate its enzymatic activity. Since the active-site cavity is small and largely composed of nearly invariant stretches of 11 or 13 amino acids, the physiological substrates of TON_0340 and its homologues are likely to be a small and the same molecule. The Mn2+-bound TON_0340 structure provides a canonical model for the ubiquitously present TON_0340 homologues and lays a strong foundation for the elucidation of their substrate and biological function.

  20. Regulation of mammalian Gli proteins by Costal 2 and PKA in Drosophila reveals Hedgehog pathway conservation.

    PubMed

    Marks, Steven A; Kalderon, Daniel

    2011-06-01

    Hedgehog (Hh) signaling activates full-length Ci/Gli family transcription factors and prevents Ci/Gli proteolytic processing to repressor forms. In the absence of Hh, Ci/Gli processing is initiated by direct Pka phosphorylation. Despite those fundamental similarities between Drosophila and mammalian Hh pathways, the differential reliance on cilia and some key signal transduction components had suggested a major divergence in the mechanisms that regulate Ci/Gli protein activities, including the role of the kinesin-family protein Costal 2 (Cos2), which directs Ci processing in Drosophila. Here, we show that Cos2 binds to three regions of Gli1, just as for Ci, and that Cos2 functions to silence mammalian Gli1 in Drosophila in a Hh-regulated manner. Cos2 and the mammalian kinesin Kif7 can also direct Gli3 and Ci processing in fly, underscoring a fundamental conserved role for Cos2 family proteins in Hh signaling. We also show that direct PKA phosphorylation regulates the activity, rather than the proteolysis of Gli in Drosophilia, and we provide evidence for an analogous action of PKA on Ci.

  1. Regulation of G-protein coupled receptor traffic by an evolutionary conserved hydrophobic signal

    PubMed Central

    Angelotti, Tim; Daunt, David; Shcherbakova, Olga G.; Kobilka, Brian; Hurt, Carl M.

    2010-01-01

    Plasma membrane (PM) expression of G-protein coupled receptors (GPCRs) is required for activation by extracellular ligands; however mechanisms that regulate PM expression of GPCRs are poorly understood. For some GPCRs, such as alpha2c-adrenergic receptors (α2c-ARs), heterologous expression in non-native cells results in limited PM expression and extensive endoplasmic reticulum (ER) retention. Recently, ER export/retentions signals have been proposed to regulate cellular trafficking of several GPCRs. By utilizing a chimeric α2a/α2c-AR strategy, we identified an evolutionary conserved hydrophobic sequence (ALAAALAAAAA) in the extracellular amino terminal region that is responsible in part for α2c-AR subtype specific trafficking. To our knowledge, this is the first luminal ER retention signal reported for a GPCR. Removal or disruption of the ER retention signal dramatically increased PM expression and decreased ER retention. Conversely, transplantation of this hydrophobic sequence into α2a-ARs reduced their PM expression and increased ER retention. This evolutionary conserved hydrophobic trafficking signal within α2c-ARs serves as a regulator of GPCR trafficking. PMID:20059747

  2. Genetic interactions of conserved regions in the DEAD-box protein Prp28p.

    PubMed Central

    Chang, T H; Latus, L J; Liu, Z; Abbott, J M

    1997-01-01

    The yeast PRP28 g ene has been implicated in nuclear precursor messenger RNA (pre-mRNA) splicing, a two-step reaction involved in a multitude of RNA structural alterations. Prp28p, the gene product of PRP28 , is a member of the evolutionarily conserved DEAD-box proteins (DBPs). Members of DBPs are involved in a variety of RNA-related biochemical processes, presumably by their putative RNA helicase activities. Prp28p has been speculated to play a role in melting the duplex between U4 and U6 small nuclear RNAs (snRNAs), leading to the formation of an active spliceosome. To study the function of Prp28p and its interactions with other components of the splicing machinery, we have isolated and characterized a large number of prp28 conditional mutants. Strikingly, many of these prp28 mutations are localized in the highly conserved motifs found in all the DBPs. Intragenic reversion analysis suggests that regions of motifs II, III and V, as well as of motifs I and IV, in Prp28p are likely to be in close proximity to each other. Our results thus provide the first hint of the local structural arrangement for Prp28p, and perhaps for other DBPs as well. PMID:9396812

  3. Conserved and Divergent Roles of Bcr1 and CFEM Proteins in Candida parapsilosis and Candida albicans

    PubMed Central

    Maguire, Sarah L.; Guida, Alessandro; Synnott, John M.; Andes, David R.; Butler, Geraldine

    2011-01-01

    Candida parapsilosis is a pathogenic fungus that is major cause of hospital-acquired infection, predominantly due to growth as biofilms on indwelling medical devices. It is related to Candida albicans, which remains the most common cause of candidiasis disease in humans. The transcription factor Bcr1 is an important regulator of biofilm formation in vitro in both C. parapsilosis and C. albicans. We show here that C. parapsilosis Bcr1 is required for in vivo biofilm development in a rat catheter model, like C. albicans. By comparing the transcription profiles of a bcr1 deletion in both species we found that regulation of expression of the CFEM family is conserved. In C. albicans, three of the five CFEM cell wall proteins (Rbt5, Pga7 and Csa1) are associated with both biofilm formation and acquisition of iron from heme, which is an important virulence characteristic. In C. parapsilosis, the CFEM family has undergone an expansion to 7 members. Expression of three genes (CFEM2, CFEM3, and CFEM6) is dependent on Bcr1, and is induced in low iron conditions. All three are involved in the acquisition of iron from heme. However, deletion of the three CFEM genes has no effect on biofilm formation in C. parapsilosis. Our data suggest that the role of the CFEM family in iron acquisition is conserved between C. albicans and C. parapsilosis, but their role in biofilm formation is not. PMID:22145027

  4. Protein tyrosine kinase 7 has a conserved role in Wnt/β-catenin canonical signalling

    PubMed Central

    Puppo, Francesca; Thomé, Virginie; Lhoumeau, Anne-Catherine; Cibois, Marie; Gangar, Akanksha; Lembo, Frédérique; Belotti, Edwige; Marchetto, Sylvie; Lécine, Patrick; Prébet, Thomas; Sebbagh, Michael; Shin, Won-Sik; Lee, Seung-Taek; Kodjabachian, Laurent; Borg, Jean-Paul

    2011-01-01

    The receptor protein tyrosine kinase 7 (PTK7) was recently shown to participate in noncanonical Wnt/planar cell polarity signalling during mouse and frog embryonic development. In this study, we report that PTK7 interacts with β-catenin in a yeast two-hybrid assay and mammalian cells. PTK7-deficient cells exhibit weakened β-catenin/T-cell factor transcriptional activity on Wnt3a stimulation. Furthermore, Xenopus PTK7 is required for the formation of Spemann's organizer and for Siamois promoter activation, events that require β-catenin transcriptional activity. Using epistatic assays, we demonstrate that PTK7 functions upstream from glycogen synthase kinase 3. Taken together, our data reveal a new and conserved role for PTK7 in the Wnt canonical signalling pathway. PMID:21132015

  5. Regulatory conservation of protein coding and microRNA genes in vertebrates: lessons from the opossum genome.

    PubMed

    Mahony, Shaun; Corcoran, David L; Feingold, Eleanor; Benos, Panayiotis V

    2007-01-01

    Being the first noneutherian mammal sequenced, Monodelphis domestica (opossum) offers great potential for enhancing our understanding of the evolutionary processes that take place in mammals. This study focuses on the evolutionary relationships between conservation of noncoding sequences, cis-regulatory elements, and biologic functions of regulated genes in opossum and eight vertebrate species. Analysis of 145 intergenic microRNA and all protein coding genes revealed that the upstream sequences of the former are up to twice as conserved as the latter among mammals, except in the first 500 base pairs, where the conservation is similar. Comparison of promoter conservation in 513 protein coding genes and related transcription factor binding sites (TFBSs) showed that 41% of the known human TFBSs are located in the 6.7% of promoter regions that are conserved between human and opossum. Some core biologic processes exhibited significantly fewer conserved TFBSs in human-opossum comparisons, suggesting greater functional divergence. A new measure of efficiency in multigenome phylogenetic footprinting (base regulatory potential rate [BRPR]) shows that including human-opossum conservation increases specificity in finding human TFBSs. Opossum facilitates better estimation of promoter conservation and TFBS turnover among mammals. The fact that substantial TFBS numbers are located in a small proportion of the human-opossum conserved sequences emphasizes the importance of marsupial genomes for phylogenetic footprinting-based motif discovery strategies. The BRPR measure is expected to help select genome combinations for optimal performance of these algorithms. Finally, although the etiology of the microRNA upstream increased conservation remains unknown, it is expected to have strong implications for our understanding of regulation of their expression.

  6. LRRC50, a Conserved Ciliary Protein Implicated in Polycystic Kidney Disease

    PubMed Central

    van Rooijen, Ellen; Giles, Rachel H.; Voest, Emile E.; van Rooijen, Carina; Schulte-Merker, Stefan; van Eeden, Freek J.

    2008-01-01

    Cilia perform essential motile and sensory functions central to many developmental and physiological processes. Disruption of their structure or function can have profound phenotypic consequences, and has been linked to left-right patterning and polycystic kidney disease. In a forward genetic screen for mutations affecting ciliary motility, we isolated zebrafish mutant hu255H. The mutation was found to disrupt an ortholog of the uncharacterized highly conserved human SDS22-like leucine-rich repeat (LRR)-containing protein LRRC50 (16q24.1) and Chlamydomonas Oda7p. Zebrafish lrrc50 is specifically expressed in all ciliated tissues. lrrc50hu255H mutants develop pronephric cysts with an increased proliferative index, severely reduced brush border, and disorganized pronephric cilia manifesting impaired localized fluid flow consistent with ciliary dysfunction. Electron microscopy analysis revealed ultrastructural irregularities of the dynein arms and misalignments of the outer-doublet microtubules on the ciliary axonemes, suggesting instability of the ciliary architecture in lrrc50hu255H mutants. The SDS22-like leucine-rich repeats present in Lrrc50 are necessary for proper protein function, since injection of a deletion construct of the first LRR did not rescue the zebrafish mutant phenotype. Subcellular distribution of human LRRC50-EGFP in MDCK and HEK293T cells is diffusely cytoplasmic and concentrated at the mitotic spindle poles and cilium. LRRC50 RNAi knock-down in human proximal tubule HK-2 cells thoroughly recapitulated the zebrafish brush border and cilia phenotype, suggesting conservation of LRRC50 function between both species. In summary, we present the first genetic vertebrate model for lrrc50 function and propose LRRC50 to be a novel candidate gene for human cystic kidney disease, involved in regulation of microtubule-based cilia and actin-based brush border microvilli. PMID:18385425

  7. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    PubMed Central

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host. PMID:21444821

  8. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins.

    PubMed

    Paredez, Alexander R; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C; Wang, Chung-Ju Rachel; Cande, W Z

    2011-04-12

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host.

  9. Patterns of sequence conservation in the S-Layer proteins and related sequences in Clostridium difficile.

    PubMed

    Calabi, Emanuela; Fairweather, Neil

    2002-07-01

    Clostridium difficile is the etiological agent of antibiotic-associated diarrhea. Among the factors that may play a role in infection are S-layer proteins (SLPs). Previous work has shown these to consist mainly of two components, resulting from the cleavage of a precursor encoded by the slpA gene. The high-molecular-weight (MW) subunit is related both to amidases from B. subtilis and to at least another 28 gene products in C. difficile strain 630. To gain insight into the functions of the SLPs and related proteins, we have further investigated the pattern of variability both at the slpA locus and at six nearby paralogs. Sequencing of the slpA gene from an S-layer group II strain and a variant S-layer group strain confirms a high degree of divergence in the low-MW SLP, which may result from diversifying selection. A highly conserved motif, however, is found at the C terminus in all low-MW subunits and may be essential for SlpA precursor cleavage. In strain 167, a variant cleavage product is present, suggesting a secondary processing site. Southern blotting analysis shows slpA-like open reading frames (ORFs) 2 to 7 to be conserved in all nine strains tested, with one exception: ORF2, which encodes a 66-kDa polypeptide coextracted at low pH with the main SLPs in strain 630, may be partially deleted in strain 167. Polymorphism within the slpA-ORF7 cluster may be more pronounced in the region proximal to the slpA gene. Unexpectedly, a high-MW subunit probe cross hybridizes to sequences outside the slpA locus, which appear to vary in number in different strains.

  10. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins

    PubMed Central

    Jin, Lin; Ham, Jong Hyun; Hage, Rosemary; Zhao, Wanying; Soto-Hernández, Jaricelis; Lee, Sang Yeol; Paek, Seung-Mann; Kim, Min Gab; Boone, Charles; Coplin, David L.; Mackey, David

    2016-01-01

    Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B’ regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B’ subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B’ subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B’ subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B’ subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family. PMID:27191168

  11. Function of the conserved FHIPEP domain of the flagellar type III export apparatus, protein FlhA.

    PubMed

    Barker, Clive S; Inoue, Tomoharu; Meshcheryakova, Irina V; Kitanobo, Seiya; Samatey, Fadel A

    2016-04-01

    The Type III flagellar protein export apparatus of bacteria consists of five or six membrane proteins, notably FlhA, which controls the export of other proteins and is homologous to the large family of FHIPEP export proteins. FHIPEP proteins contain a highly-conserved cytoplasmic domain. We mutagenized the cloned Salmonella flhA gene for the 692 amino acid FlhA, changing a single, conserved amino acid in the 68-amino acid FHIPEP region. Fifty-two mutations at 30 positions mostly led to loss of motility and total disappearance of microscopically visible flagella, also Western blot protein/protein hybridization showed no detectable export of hook protein and flagellin. There were two exceptions: a D199A mutant strain, which produced short-stubby flagella; and a V151L mutant strain, which did not produce flagella and excreted mainly un-polymerized hook protein. The V151L mutant strain also exported a reduced amount of hook-cap protein FlgD, but when grown with exogenous FlgD it produced polyhooks and polyhook-filaments. A suppressor mutant in the cytoplasmic domain of the export apparatus membrane protein FlhB rescued export of hook-length control protein FliK and facilitated growth of full-length flagella. These results suggested that the FHIPEP region is part of the gate regulating substrate entry into the export apparatus pore.

  12. Comparative analysis of protein interaction networks reveals that conserved pathways are susceptible to HIV-1 interception.

    PubMed

    Qian, Xiaoning; Yoon, Byung-Jun

    2011-02-15

    Human immunodeficiency virus type one (HIV-1) is the major pathogen that causes the acquired immune deficiency syndrome (AIDS). With the availability of large-scale protein-protein interaction (PPI) measurements, comparative network analysis can provide a promising way to study the host-virus interactions and their functional significance in the pathogenesis of AIDS. Until now, there have been a large number of HIV studies based on various animal models. In this paper, we present a novel framework for studying the host-HIV interactions through comparative network analysis across different species. Based on the proposed framework, we test our hypothesis that HIV-1 attacks essential biological pathways that are conserved across species. We selected the Homo sapiens and Mus musculus PPI networks with the largest coverage among the PPI networks that are available from public databases. By using a local network alignment algorithm based on hidden Markov models (HMMs), we first identified the pathways that are conserved in both networks. Next, we analyzed the HIV-1 susceptibility of these pathways, in comparison with random pathways in the human PPI network. Our analysis shows that the conserved pathways have a significantly higher probability of being intercepted by HIV-1. Furthermore, Gene Ontology (GO) enrichment analysis shows that most of the enriched GO terms are related to signal transduction, which has been conjectured to be one of the major mechanisms targeted by HIV-1 for the takeover of the host cell. This proof-of-concept study clearly shows that the comparative analysis of PPI networks across different species can provide important insights into the host-HIV interactions and the detailed mechanisms of HIV-1. We expect that comparative multiple network analysis of various species that have different levels of susceptibility to similar lentiviruses may provide a very effective framework for generating novel, and experimentally verifiable hypotheses on the

  13. The Unique Morgue Ubiquitination Protein Is Conserved in a Diverse but Restricted Set of Invertebrates

    PubMed Central

    Zhou, Ying; Carpenter, Zachary W.; Brennan, Gregory

    2009-01-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways. PMID:19602541

  14. The unique Morgue ubiquitination protein is conserved in a diverse but restricted set of invertebrates.

    PubMed

    Zhou, Ying; Carpenter, Zachary W; Brennan, Gregory; Nambu, John R

    2009-10-01

    Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways.

  15. Structural insights into the interaction of the conserved mammalian proteins GAPR-1 and Beclin 1, a key autophagy protein.

    PubMed

    Li, Yue; Zhao, Yuting; Su, Minfei; Glover, Karen; Chakravarthy, Srinivas; Colbert, Christopher L; Levine, Beth; Sinha, Sangita C

    2017-09-01

    Mammalian Golgi-associated plant pathogenesis-related protein 1 (GAPR-1) is a negative autophagy regulator that binds Beclin 1, a key component of the autophagosome nucleation complex. Beclin 1 residues 267-284 are required for binding GAPR-1. Here, sequence analyses, structural modeling, mutagenesis combined with pull-down assays, X-ray crystal structure determination and small-angle X-ray scattering were used to investigate the Beclin 1-GAPR-1 interaction. Five conserved residues line an equatorial GAPR-1 surface groove that is large enough to bind a peptide. A model of a peptide comprising Beclin 1 residues 267-284 docked onto GAPR-1, built using the CABS-dock server, indicates that this peptide binds to this GAPR-1 groove. Mutation of the five conserved residues lining this groove, H54A/E86A/G102K/H103A/N138G, abrogates Beclin 1 binding. The 1.27 Å resolution X-ray crystal structure of this pentad mutant GAPR-1 was determined. Comparison with the wild-type (WT) GAPR-1 structure shows that the equatorial groove of the pentad mutant is shallower and more positively charged, and therefore may not efficiently bind Beclin 1 residues 267-284, which include many hydrophobic residues. Both WT and pentad mutant GAPR-1 crystallize as dimers, and in each case the equatorial groove of one subunit is partially occluded by the other subunit, indicating that dimeric GAPR-1 is unlikely to bind Beclin 1. SAXS analysis of WT and pentad mutant GAPR-1 indicates that in solution the WT forms monomers, while the pentad mutant is primarily dimeric. Thus, changes in the structure of the equatorial groove combined with the improved dimerization of pentad mutant GAPR-1 are likely to abrogate binding to Beclin 1.

  16. The Conserved Spore Coat Protein SpoVM Is Largely Dispensable in Clostridium difficile Spore Formation

    PubMed Central

    Ribis, John W.; Ravichandran, Priyanka; Putnam, Emily E.; Pishdadian, Keyan

    2017-01-01

    ABSTRACT The spore-forming bacterial pathogen Clostridium difficile is a leading cause of health care-associated infections in the United States. In order for this obligate anaerobe to transmit infection, it must form metabolically dormant spores prior to exiting the host. A key step during this process is the assembly of a protective, multilayered proteinaceous coat around the spore. Coat assembly depends on coat morphogenetic proteins recruiting distinct subsets of coat proteins to the developing spore. While 10 coat morphogenetic proteins have been identified in Bacillus subtilis, only two of these morphogenetic proteins have homologs in the Clostridia: SpoIVA and SpoVM. C. difficile SpoIVA is critical for proper coat assembly and functional spore formation, but the requirement for SpoVM during this process was unknown. Here, we show that SpoVM is largely dispensable for C. difficile spore formation, in contrast with B. subtilis. Loss of C. difficile SpoVM resulted in modest decreases (~3-fold) in heat- and chloroform-resistant spore formation, while morphological defects such as coat detachment from the forespore and abnormal cortex thickness were observed in ~30% of spoVM mutant cells. Biochemical analyses revealed that C. difficile SpoIVA and SpoVM directly interact, similarly to their B. subtilis counterparts. However, in contrast with B. subtilis, C. difficile SpoVM was not essential for SpoIVA to encase the forespore. Since C. difficile coat morphogenesis requires SpoIVA-interacting protein L (SipL), which is conserved exclusively in the Clostridia, but not the more broadly conserved SpoVM, our results reveal another key difference between C. difficile and B. subtilis spore assembly pathways. IMPORTANCE The spore-forming obligate anaerobe Clostridium difficile is the leading cause of antibiotic-associated diarrheal disease in the United States. When C. difficile spores are ingested by susceptible individuals, they germinate within the gut and

  17. Evolutionary and molecular analysis of Dof transcription factors identified a conserved motif for intercellular protein trafficking.

    PubMed

    Chen, Huan; Ahmad, Munawar; Rim, Yeonggil; Lucas, William J; Kim, Jae-Yean

    2013-06-01

    · Cell-to-cell trafficking of transcription factors (TFs) has been shown to play an important role in the regulation of plant developmental events, but the evolutionary relationship between cell-autonomous and noncell-autonomous (NCA) TFs remains elusive. · AtDof4.1, named INTERCELLULAR TRAFFICKING DOF 1 (ITD1), was chosen as a representative NCA member to explore this evolutionary relationship. Using domain structure-function analyses and swapping studies, we examined the cell-to-cell trafficking of plant-specific Dof TF family members across Arabidopsis and other species. · We identified a conserved intercellular trafficking motif (ITM) that is necessary and sufficient for selective cell-to-cell trafficking and can impart gain-of-function cell-to-cell movement capacity to an otherwise cell-autonomous TF. The functionality of related motifs from Dof members across the plant kingdom extended, surprisingly, to a unicellular alga that lacked plasmodesmata. By contrast, the algal homeodomain related to the NCA KNOX homeodomain was either inefficient or unable to impart such cell-to-cell movement function. · The Dof ITM appears to predate the evolution of selective plasmodesmal trafficking in the plant kingdom, which may well have acted as a molecular template for the evolution of Dof proteins as NCA TFs. However, the ability to efficiently traffic for KNOX homeodomain (HD) proteins may have been acquired during the evolution of early nonvascular plants.

  18. The conserved regulation of mitochondrial uncoupling proteins: From unicellular eukaryotes to mammals.

    PubMed

    Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa

    2017-01-01

    Uncoupling proteins (UCPs) belong to the mitochondrial anion carrier protein family and mediate regulated proton leak across the inner mitochondrial membrane. Free fatty acids, aldehydes such as hydroxynonenal, and retinoids activate UCPs. However, there are some controversies about the effective action of retinoids and aldehydes alone; thus, only free fatty acids are commonly accepted positive effectors of UCPs. Purine nucleotides such as GTP inhibit UCP-mediated mitochondrial proton leak. In turn, membranous coenzyme Q may play a role as a redox state-dependent metabolic sensor that modulates the complete activation/inhibition of UCPs. Such regulation has been observed for UCPs in microorganisms, plant and animal UCP1 homologues, and UCP1 in mammalian brown adipose tissue. The origin of UCPs is still under debate, but UCP homologues have been identified in all systematic groups of eukaryotes. Despite the differing levels of amino acid/DNA sequence similarities, functional studies in unicellular and multicellular organisms, from amoebae to mammals, suggest that the mechanistic regulation of UCP activity is evolutionarily well conserved. This review focuses on the regulatory feedback loops of UCPs involving free fatty acids, aldehydes, retinoids, purine nucleotides, and coenzyme Q (particularly its reduction level), which may derive from the early stages of evolution as UCP first emerged. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Site-Specific Amino Acid Preferences Are Mostly Conserved in Two Closely Related Protein Homologs

    PubMed Central

    Doud, Michael B.; Ashenberg, Orr; Bloom, Jesse D.

    2015-01-01

    Evolution drives changes in a protein’s sequence over time. The extent to which these changes in sequence lead to shifts in the underlying preference for each amino acid at each site is an important question with implications for comparative sequence-analysis methods, such as molecular phylogenetics. To quantify the extent that site-specific amino acid preferences shift during evolution, we performed deep mutational scanning on two homologs of human influenza nucleoprotein with 94% amino acid identity. We found that only a modest fraction of sites exhibited shifts in amino acid preferences that exceeded the noise in our experiments. Furthermore, even among sites that did exhibit detectable shifts, the magnitude tended to be small relative to differences between nonhomologous proteins. Given the limited change in amino acid preferences between these close homologs, we tested whether our measurements could inform site-specific substitution models that describe the evolution of nucleoproteins from more diverse influenza viruses. We found that site-specific evolutionary models informed by our experiments greatly outperformed nonsite-specific alternatives in fitting phylogenies of nucleoproteins from human, swine, equine, and avian influenza. Combining the experimental data from both homologs improved phylogenetic fit, partly because measurements in multiple genetic contexts better captured the evolutionary average of the amino acid preferences for sites with shifting preferences. Our results show that site-specific amino acid preferences are sufficiently conserved that measuring mutational effects in one protein provides information that can improve quantitative evolutionary modeling of nearby homologs. PMID:26226986

  20. Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst).

    PubMed

    Karlgren, Anna; Gyllenstrand, Niclas; Källman, Thomas; Lagercrantz, Ulf

    2013-01-01

    From studies of the circadian clock in the plant model species Arabidopsis (Arabidopsis thaliana), a number of important properties and components have emerged. These include the genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB EXPRESSION 1 (TOC1 also known as PSEUDO-RESPONSE REGULATOR 1 (PRR1)) that via gene expression feedback loops participate in the circadian clock. Here, we present results from ectopic expression of four Norway spruce (Picea abies) putative homologs (PaCCA1, PaGI, PaZTL and PaPRR1) in Arabidopsis, their flowering time, circadian period length, red light response phenotypes and their effect on endogenous clock genes were assessed. For PaCCA1-ox and PaZTL-ox the results were consistent with Arabidopsis lines overexpressing the corresponding Arabidopsis genes. For PaGI consistent results were obtained when expressed in the gi2 mutant, while PaGI and PaPRR1 expressed in wild type did not display the expected phenotypes. These results suggest that protein function of PaCCA1, PaGI and PaZTL are at least partly conserved compared to Arabidopsis homologs, however further studies are needed to reveal the protein function of PaPRR1. Our data suggest that components of the three-loop network typical of the circadian clock in angiosperms were present before the split of gymnosperms and angiosperms.

  1. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution.

    PubMed

    Otto, Edgar; Hoefele, Julia; Ruf, Rainer; Mueller, Adelheid M; Hiller, Karl S; Wolf, Matthias T F; Schuermann, Maria J; Becker, Achim; Birkenhäger, Ralf; Sudbrak, Ralf; Hennies, Hans C; Nürnberg, Peter; Hildebrandt, Friedhelm

    2002-11-01

    Nephronophthisis (NPHP) comprises a group of autosomal recessive cystic kidney diseases, which constitute the most frequent genetic cause for end-stage renal failure in children and young adults. The most prominent histologic feature of NPHP consists of development of renal fibrosis, which, in chronic renal failure of any origin, represents the pathogenic event correlated most strongly to loss of renal function. Four gene loci for NPHP have been mapped to chromosomes 2q13 (NPHP1), 9q22 (NPHP2), 3q22 (NPHP3), and 1p36 (NPHP4). At all four loci, linkage has also been demonstrated in families with the association of NPHP and retinitis pigmentosa, known as "Senior-Løken syndrome" (SLS). Identification of the gene for NPHP type 1 had revealed nephrocystin as a novel docking protein, providing new insights into mechanisms of cell-cell and cell-matrix signaling. We here report identification of the gene (NPHP4) causing NPHP type 4, by use of high-resolution haplotype analysis and by demonstration of nine likely loss-of-function mutations in six affected families. NPHP4 encodes a novel protein, nephroretinin, that is conserved in evolution--for example, in the nematode Caenorhabditis elegans. In addition, we demonstrate two loss-of-function mutations of NPHP4 in patients from two families with SLS. Thus, we have identified a novel gene with critical roles in renal tissue architecture and ophthalmic function.

  2. Exploring the Conserved Role of MANF in the Unfolded Protein Response in Drosophila melanogaster

    PubMed Central

    Lindström, Riitta; Lindholm, Päivi; Kallijärvi, Jukka; Palgi, Mari; Saarma, Mart; Heino, Tapio I.

    2016-01-01

    Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR. PMID:26975047

  3. Comparative biology of the pentraxin protein family: evolutionarily conserved component of innate immune system.

    PubMed

    Armstrong, Peter B

    2015-01-01

    The immune system is based on the actions of the collection of specialized immune defense cells and their secreted proteins and peptides that defend the host against infection by parasites. Parasites are organisms that live part or all of their lives in close physical association with the host and extract nutrients from the host and, by releasing toxins and virulence factors, cause disease with the potential for injury and premature death of that host. Parasites of the metazoa can be viruses, eubacteria, fungi, protozoans, and other metazoans. The immune system operates to kill or eliminate parasites and eliminate or detoxify their toxins and virulence factors. Although some of the elements of immune systems are specific to a particular phylum of metazoans, others show extensive evolutionary conservation, being present in several or all major phyla of the metazoa. The pentraxins display this latter character in their roles in immune defense. Pentraxins have been documented in vertebrates, nonvertebrate chordates, arthropods, and mollusks and may be present in other taxa of metazoans. Presumably the pentraxins appeared early in the evolution of metazoa, prior to their evolutionary divergence in the Precambrian epoch into many phyla present today, and have been preserved for the 542 million years since that explosive evolutionary radiation. The fidelity with which these phyla have preserved the pentraxins suggests that the functions of these proteins are important for survival of the members of these diverse taxa of animals.

  4. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.

    PubMed

    Tai, Li-Jung; McFall, Sally M; Huang, Kai; Demeler, Borries; Fox, Sue G; Brubaker, Kurt; Radhakrishnan, Ishwar; Morimoto, Richard I

    2002-01-04

    Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.

  5. The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function.

    PubMed

    Smith, K P; Voogt, R D; Ruiz, T; Mintz, K P

    2016-02-01

    Morphogenesis protein C (MorC) of Aggregatibacter actinomycetemcomitans is important for maintaining the membrane morphology and integrity of the cell envelope of this oral pathogen. The MorC sequence and operon organization were found to be conserved in Gammaproteobacteria, based on a bioinformatic analysis of 435 sequences from representative organisms. Functional conservation of MorC was investigated using an A. actinomycetemcomitans morC mutant as a model system to express MorC homologs from four phylogenetically diverse representatives of the Gammaproteobacteria: Haemophilus influenzae, Escherichia coli, Pseudomonas aeruginosa, and Moraxella catarrhalis. The A. actinomycetemcomitans strains expressing the homologous proteins were assessed for sensitivity to bile salts, leukotoxin secretion, autoaggregation and membrane morphology. MorC from the most closely related organism (H. influenzae) was functionally identical to MorC from A. actinomycetemcomitans. However, the genes from more distantly related organisms restored some but not all A. actinomycetemcomitans mutant phenotypes. In addition, deletion mutagenesis indicated that the most conserved portion of the protein, the C-terminus DUF490 domain, was necessary to maintain the integrity of the membrane. Deletion of the last 10 amino acids of this domain of the A. actinomycetemcomitans MorC protein was sufficient to disrupt membrane stability and leukotoxin secretion. The data suggest that the MorC sequence is functionally conserved across Gammaproteobacteria and the C-terminus of the protein is essential for maintaining membrane physiology.

  6. Conservation of major surface protein 1 genes of Anaplasma marginale during cyclic transmission between ticks and cattle.

    PubMed

    Bowie, Michael V; de la Fuente, Jose; Kocan, Katherine M; Blouin, Edmour F; Barbet, Anthony F

    2002-01-09

    Bovine anaplasmosis is a rickettsial disease of world-wide economic importance caused by Anaplasma marginale. Several major surface proteins with conserved gene sequences have been examined as potential candidates for vaccines and/or diagnostic assays. Major surface protein 1 (MSP1) is composed of polypeptides MSP1a and MSP1b. MSP1a is expressed from the single copy gene msp1 alpha and MSP1b is expressed by members of the msp1 beta multigene family. In order to determine if the msp1 genes are conserved, primers specific for msp1 alpha, msp1 beta(1), and msp1 beta(2) genes were synthesized and used to amplify msp1 sequences of A. marginale from tick cell cultures, from cattle during acute and chronic infections and from salivary glands of Dermacentor variabilis. Protein sequences of MSP1a, MSP1b(1) and MSP1b(2) were conserved during the life cycle of the parasite. No amino acid changes were observed in MSP1a. However, small variations were observed in the MSP1b(1) and MSP1b(2) protein sequences, which could be attributed to recombination, selection for sub-populations of A. marginale in the vertebrate host and/or PCR errors. Several isolate-specific sequences were also observed. Based on the information obtained in this study, the MSP1 protein appears to be fairly well conserved and a potential vaccine candidate.

  7. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.

    PubMed

    Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy

    2016-01-01

    Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species.

  8. Isolation and characterization of a conserved porin protein from Helicobacter pylori.

    PubMed Central

    Doig, P; Exner, M M; Hancock, R E; Trust, T J

    1995-01-01

    Helicobacter pylori is a causative agent of gastritis in humans and is correlated with gastric ulcer formation. Infections with this bacterium have proven difficult to treat with antimicrobial agents. To better understand how this bacterium transports compounds such as antimicrobial agents across its outer membrane, identification of porin proteins is important. We have recently identified a family of H. pylori porins (HopA to HopD) (M. M. Exner, P. Doig, T. J. Trust, and R. E. W. Hancock, Infect. Immun. 63:1567-1572, 1995). Here, we report on an unrelated porin species (HopE) from this bacterium. This protein had a apparent molecular mass of 31 kDa and was seen to form 50- and 90-kDa aggregates that were designated putative dimeric and trimeric forms, respectively. The protein was purified to homogeneity and, with a model planar lipid membrane system, was shown to act as a nonselective pore with a single channel conductance in 1.0 M KCl of 1.5 nS, similarly to other bacterial nonspecific porins. An internal peptide sequence of HopE shared homology with the P2 porin of Haemophilus influenzae. HopE was also shown to be antigenic in vivo as assessed by sera taken from H. pylori-infected individuals and was immunologically conserved with both patient sera and specific monoclonal antibodies. From these data, it appears that HopE is a major nonselective porin of H. pylori. The implications of these findings are discussed. PMID:7559328

  9. Small ruminant lentiviral Vif proteins commonly utilize cyclophilin A, an evolutionarily and structurally conserved protein, to degrade ovine and caprine APOBEC3 proteins.

    PubMed

    Yoshikawa, Rokusuke; Izumi, Taisuke; Nakano, Yusuke; Yamada, Eri; Moriwaki, Miyu; Misawa, Naoko; Ren, Fengrong; Kobayashi, Tomoko; Koyanagi, Yoshio; Sato, Kei

    2016-06-01

    Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  10. Multi-Signal Sedimentation Velocity Analysis with Mass Conservation for Determining the Stoichiometry of Protein Complexes

    PubMed Central

    Brautigam, Chad A.; Padrick, Shae B.; Schuck, Peter

    2013-01-01

    Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes. PMID:23696787

  11. Multi-signal sedimentation velocity analysis with mass conservation for determining the stoichiometry of protein complexes.

    PubMed

    Brautigam, Chad A; Padrick, Shae B; Schuck, Peter

    2013-01-01

    Multi-signal sedimentation velocity analytical ultracentrifugation (MSSV) is a powerful tool for the determination of the number, stoichiometry, and hydrodynamic shape of reversible protein complexes in two- and three-component systems. In this method, the evolution of sedimentation profiles of macromolecular mixtures is recorded simultaneously using multiple absorbance and refractive index signals and globally transformed into both spectrally and diffusion-deconvoluted component sedimentation coefficient distributions. For reactions with complex lifetimes comparable to the time-scale of sedimentation, MSSV reveals the number and stoichiometry of co-existing complexes. For systems with short complex lifetimes, MSSV reveals the composition of the reaction boundary of the coupled reaction/migration process, which we show here may be used to directly determine an association constant. A prerequisite for MSSV is that the interacting components are spectrally distinguishable, which may be a result, for example, of extrinsic chromophores or of different abundances of aromatic amino acids contributing to the UV absorbance. For interacting components that are spectrally poorly resolved, here we introduce a method for additional regularization of the spectral deconvolution by exploiting approximate knowledge of the total loading concentrations. While this novel mass conservation principle does not discriminate contributions to different species, it can be effectively combined with constraints in the sedimentation coefficient range of uncomplexed species. We show in theory, computer simulations, and experiment, how mass conservation MSSV as implemented in SEDPHAT can enhance or even substitute for the spectral discrimination of components. This should broaden the applicability of MSSV to the analysis of the composition of reversible macromolecular complexes.

  12. Protein subcellular localization prediction based on compartment-specific features and structure conservation

    PubMed Central

    Su, Emily Chia-Yu; Chiu, Hua-Sheng; Lo, Allan; Hwang, Jenn-Kang; Sung, Ting-Yi; Hsu, Wen-Lian

    2007-01-01

    Background Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. Results We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM) model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. Conclusion Our results demonstrate that biological features derived from Gram-negative bacteria translocation pathways yield a significant

  13. Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins.

    PubMed Central

    Cygler, M.; Schrag, J. D.; Sussman, J. L.; Harel, M.; Silman, I.; Gentry, M. K.; Doctor, B. P.

    1993-01-01

    Based on the recently determined X-ray structures of Torpedo californica acetylcholinesterase and Geotrichum candidum lipase and on their three-dimensional superposition, an improved alignment of a collection of 32 related amino acid sequences of other esterases, lipases, and related proteins was obtained. On the basis of this alignment, 24 residues are found to be invariant in 29 sequences of hydrolytic enzymes, and an additional 49 are well conserved. The conservation in the three remaining sequences is somewhat lower. The conserved residues include the active site, disulfide bridges, salt bridges, and residues in the core of the proteins. Most invariant residues are located at the edges of secondary structural elements. A clear structural basis for the preservation of many of these residues can be determined from comparison of the two X-ray structures. PMID:8453375

  14. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  15. Localization of an evolutionarily conserved protein proton pyrophosphatase in evolutionarily distant plants oryza sativa and physcomitrella patens

    USDA-ARS?s Scientific Manuscript database

    Proton Pyrophosphatase (H+-PPase) is a highly evolutionarily conserved protein that is prevalent in the plant kingdom. One of the salient features of H+-PPase expression pattern, at least in vascular plants like Arabidopsis, is its conspicuous localization in both actively dividing cells and the phl...

  16. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  17. Conservation of inner nuclear membrane targeting sequences in mammalian Pom121 and yeast Heh2 membrane proteins

    PubMed Central

    Kralt, Annemarie; Jagalur, Noorjahan B.; van den Boom, Vincent; Lokareddy, Ravi K.; Steen, Anton; Cingolani, Gino; Fornerod, Maarten; Veenhoff, Liesbeth M.

    2015-01-01

    Endoplasmic reticulum–synthesized membrane proteins traffic through the nuclear pore complex (NPC) en route to the inner nuclear membrane (INM). Although many membrane proteins pass the NPC by simple diffusion, two yeast proteins, ScSrc1/ScHeh1 and ScHeh2, are actively imported. In these proteins, a nuclear localization signal (NLS) and an intrinsically disordered linker encode the sorting signal for recruiting the transport factors for FG-Nup and RanGTP-dependent transport through the NPC. Here we address whether a similar import mechanism applies in metazoans. We show that the (putative) NLSs of metazoan HsSun2, MmLem2, HsLBR, and HsLap2β are not sufficient to drive nuclear accumulation of a membrane protein in yeast, but the NLS from RnPom121 is. This NLS of Pom121 adapts a similar fold as the NLS of Heh2 when transport factor bound and rescues the subcellular localization and synthetic sickness of Heh2ΔNLS mutants. Consistent with the conservation of these NLSs, the NLS and linker of Heh2 support INM localization in HEK293T cells. The conserved features of the NLSs of ScHeh1, ScHeh2, and RnPom121 and the effective sorting of Heh2-derived reporters in human cells suggest that active import is conserved but confined to a small subset of INM proteins. PMID:26179916

  18. Regulated expression of nuclear protein(s) in myogenic cells that binds to a conserved 3' untranslated region in pro alpha 1 (I) collagen cDNA.

    PubMed Central

    Herget, T; Burba, M; Schmoll, M; Zimmermann, K; Starzinski-Powitz, A

    1989-01-01

    We describe the identification and DNA-binding properties of nuclear proteins from rat L6 myoblasts which recognize an interspecies conserved 3' untranslated segment of pro alpha 1 (I) collagen cDNA. Levels of the two pro alpha 1 (I) collagen RNAs, present in L6 myoblasts, decreased drastically between 54 and 75 h after induction of myotube formation in serum-free medium. Both mRNAs contained a conserved sequence segment of 135 nucleotides (termed tame sequence) in the 3' untranslated region that had 96% homology to the human and murine pro alpha 1 (I) collagen genes. The cDNA of this tame sequence was specifically recognized by nuclear protein(s) from L6 myoblasts, as judged by gel retardation assays and DNase I footprints. The tame-binding protein(s) was able to recognize its target sequence on double-stranded DNA but bound also to the appropriate single-stranded oligonucleotide. Protein that bound to the tame sequence was undetectable in nuclear extracts of L6 myotubes that did not accumulate the two collagen mRNAs. Therefore, the activity of this nuclear protein seems to be linked to accumulation of the sequences that it recognizes in vitro. The collagen RNAs and the nuclear tame-binding proteins reappeared after a change of medium, which further suggests that the RNAs and the protein(s) are coordinately regulated. Images PMID:2779548

  19. Members of the zinc finger protein gene family sharing a conserved N-terminal module.

    PubMed Central

    Rosati, M; Marino, M; Franzè, A; Tramontano, A; Grimaldi, G

    1991-01-01

    We report the isolation of human members of a sub-family of structurally related finger protein genes. These potentially encode polypeptides containing finger motifs of the Krüppel type at the C-terminus, and a conserved amino acid module at the N-terminus; because of its invariant location the latter is referred to as finger preceding box (FPB). The FPB, detected also in previously described finger proteins from human, mouse and Xenopus, extends over approximately 65 amino acids and appears to be composed of two contiguous modules: FPB-A (residues 1-42) and FPB-B (residues 43-65). The latter is absent in some of the members analyzed. Elements A and B and the zinc finger domain are encoded by separate exons in the ZNF2 gene, a human member of this sub-family. The positioning of introns within this gene is remarkable. One intron flanks and a second interrupts the first codon of the FPB-A and FPB-B modules, respectively. A third intron occurs a few nucleotides downstream of FPB-B marking its separation from the remainder of the coding sequences. This organization, together with the absence of FPB-B in some cDNAs, supports the hypothesis that mRNAs encoding polypeptides that include one, both or none of the FPB-A and FPB-B modules may be assembled through alternative splicing pathways. Northern analyses showed that members of this sub-family are expressed as multiple transcripts in several cell lines. The sequences of distinct cDNAs homologous to the ZNF2 gene indicate that alternative splicing events adjoin either coding or non coding exons to the FPB sequences. Images PMID:1945843

  20. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion.

    PubMed

    Solis, Gonzalo P; Radon, Yvonne; Sempou, Emily; Jechow, Katharina; Stuermer, Claudia A O; Málaga-Trillo, Edward

    2013-01-01

    Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.

  1. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    SciTech Connect

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  2. Conserved intermolecular salt bridge required for activation of protein kinases PKR, GCN2, and PERK.

    PubMed

    Dey, Madhusudan; Cao, Chune; Sicheri, Frank; Dever, Thomas E

    2007-03-02

    The protein kinases PKR, GCN2, and PERK phosphorylate translation initiation factor eIF2alpha to regulate general and genespecific protein synthesis under various cellular stress conditions. Recent x-ray crystallographic structures of PKR and GCN2 revealed distinct dimeric configurations of the kinase domains. Whereas PKR kinase domains dimerized in a back-to-back and parallel orientation, the GCN2 kinase domains displayed an antiparallel orientation. The dimerization interfaces on PKR and GCN2 were localized to overlapping surfaces on the N-terminal lobes of the kinase domains but utilized different intermolecular contacts. A key feature of the PKR dimerization interface is a salt bridge interaction between Arg(262) from one protomer and Asp(266) from the second protomer. Interestingly, these two residues are conserved in all eIF2alpha kinases, although in the GCN2 structure, the two residues are too remote to interact. To test the importance of this potential salt bridge interaction in PKR, GCN2, and PERK, the residues constituting the salt bridge were mutated either independently or together to residues with the opposite charge. Single mutations of the Asp (or Glu) and Arg residues blocked kinase function both in yeast cells and in vitro. However, for all three kinases, the double mutation designed to restore the salt bridge interaction with opposite polarity resulted in a functional kinase. Thus, the salt bridge interaction and dimer interface observed in the PKR structure is critical for the activity of all three eIF2alpha kinases. These results are consistent with the notion that the PKR structure represents the active state of the eIF2alpha kinase domain, whereas the GCN2 structure may represent an inactive state of the kinase.

  3. Hearing in Drosophila Requires TilB, a Conserved Protein Associated With Ciliary Motility

    PubMed Central

    Kavlie, Ryan G.; Kernan, Maurice J.; Eberl, Daniel F.

    2010-01-01

    Cilia were present in the earliest eukaryotic ancestor and underlie many biological processes ranging from cell motility and propulsion of extracellular fluids to sensory physiology. We investigated the contribution of the touch insensitive larva B (tilB) gene to cilia function in Drosophila melanogaster. Mutants of tilB exhibit dysfunction in sperm flagella and ciliated dendrites of chordotonal organs that mediate hearing and larval touch sensitivity. Mutant sperm axonemes as well as sensory neuron dendrites of Johnston's organ, the fly's auditory organ, lack dynein arms. Through deficiency mapping and sequencing candidate genes, we identified tilB mutations in the annotated gene CG14620. A genomic CG14620 transgene rescued deafness and male sterility of tilB mutants. TilB is a 395-amino-acid protein with a conserved N-terminal leucine-rich repeat region at residues 16–164 and a coiled-coil domain at residues 171–191. A tilB-Gal4 transgene driving fluorescently tagged TilB proteins elicits cytoplasmic expression in embryonic chordotonal organs, in Johnston's organ, and in sperm flagella. TilB does not appear to affect tubulin polyglutamylation or polyglycylation. The phenotypes and expression of tilB indicate function in cilia construction or maintenance, but not in intraflagellar transport. This is also consistent with phylogenetic association of tilB homologs with presence of genes encoding axonemal dynein arm components. Further elucidation of tilB functional mechanisms will provide greater understanding of cilia function and will facilitate understanding ciliary diseases. PMID:20215474

  4. A Conserved Helical Capping Hydrogen Bond in PAS Domains Controls Signaling Kinetics in the Superfamily Prototype Photoactive Yellow Protein

    PubMed Central

    Kumauchi, Masato; Kaledhonkar, Sandip; Philip, Andrew F.; Wycoff, James; Hara, Miwa; Li, Yunxing; Xie, Aihua; Hoff, Wouter D.

    2010-01-01

    PAS domains form a divergent protein superfamily with more than 20,000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only 9 residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these 9 conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pKa. Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3,400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high resolution structures of PAS domains reveals that the side chain hydrogen bonding of residue 43 but not residue identity is highly conserved, and suggests that its helical cap affects signaling kinetics in other PAS domains. PMID:20954744

  5. A conserved motif flags Acyl Carrier Proteins for β-branching in polyketide synthesis

    PubMed Central

    Song, Zhongshu; Farmer, Rohit; Williams, Christopher; Hothersall, Joanne; Płoskoń, Eliza; Wattana-amorn, Pakorn; Stephens, Elton R.; Yamada, Erika; Gurney, Rachel; Takebayashi, Yuiko; Masschelein, Joleen; Cox, Russell J.; Lavigne, Rob; Willis, Christine L.; Simpson, Thomas J.; Crosby, John; Winn, Peter J.; Thomas, Christopher M.; Crump, Matthew P.

    2015-01-01

    Type I PKSs often utilise programmed β-branching, via enzymes of an “HMG-CoA synthase (HCS) cassette”, to incorporate various side chains at the second carbon from the terminal carboxylic acid of growing polyketide backbones. We identified a strong sequence motif in Acyl Carrier Proteins (ACPs) where β-branching is known. Substituting ACPs confirmed a correlation of ACP type with β-branching specificity. While these ACPs often occur in tandem, NMR analysis of tandem β-branching ACPs indicated no ACP-ACP synergistic effects and revealed that the conserved sequence motif forms an internal core rather than an exposed patch. Modelling and mutagenesis identified ACP Helix III as a probable anchor point of the ACP-HCS complex whose position is determined by the core. Mutating the core affects ACP functionality while ACP-HCS interface substitutions modulate system specificity. Our method for predicting β-carbon branching expands the potential for engineering novel polyketides and lays a basis for determining specificity rules. PMID:24056399

  6. midlife crisis encodes a conserved zinc-finger protein required to maintain neuronal differentiation in Drosophila

    PubMed Central

    Carney, Travis D.; Struck, Adam J.; Doe, Chris Q.

    2013-01-01

    Stem cells generate progeny that undergo terminal differentiation. The initiation and maintenance of the differentiated status is crucial for tissue development, function and homeostasis. Drosophila neural stem cells (neuroblasts) are a model for stem cell self-renewal and differentiation; they divide asymmetrically to self-renew and generate the neurons and glia of the CNS. Here we report the identification of midlife crisis (mdlc; CG4973) as a gene required for the maintenance of neuronal differentiation and for neuroblast proliferation in Drosophila. mdlc encodes a ubiquitously expressed zinc-finger-containing protein with conserved orthologs from yeast to humans that are reported to have a role in RNA splicing. Using clonal analysis, we demonstrate that mdlc mutant neurons initiate but fail to complete differentiation, as judged by the loss of the pro-differentiation transcription factor Prospero, followed by derepression of the neuroblast factors Deadpan, Asense and Cyclin E. RNA-seq shows that loss of Mdlc decreases pros transcript levels and results in aberrant pros splicing. Importantly, misexpression of the full-length human ortholog, RNF113A, completely rescues all CNS defects in mdlc mutants. We conclude that Mdlc plays an essential role in maintaining neuronal differentiation, raising the possibility that RNF113A regulates neuronal differentiation in the human CNS. PMID:24026126

  7. midlife crisis encodes a conserved zinc-finger protein required to maintain neuronal differentiation in Drosophila.

    PubMed

    Carney, Travis D; Struck, Adam J; Doe, Chris Q

    2013-10-01

    Stem cells generate progeny that undergo terminal differentiation. The initiation and maintenance of the differentiated status is crucial for tissue development, function and homeostasis. Drosophila neural stem cells (neuroblasts) are a model for stem cell self-renewal and differentiation; they divide asymmetrically to self-renew and generate the neurons and glia of the CNS. Here we report the identification of midlife crisis (mdlc; CG4973) as a gene required for the maintenance of neuronal differentiation and for neuroblast proliferation in Drosophila. mdlc encodes a ubiquitously expressed zinc-finger-containing protein with conserved orthologs from yeast to humans that are reported to have a role in RNA splicing. Using clonal analysis, we demonstrate that mdlc mutant neurons initiate but fail to complete differentiation, as judged by the loss of the pro-differentiation transcription factor Prospero, followed by derepression of the neuroblast factors Deadpan, Asense and Cyclin E. RNA-seq shows that loss of Mdlc decreases pros transcript levels and results in aberrant pros splicing. Importantly, misexpression of the full-length human ortholog, RNF113A, completely rescues all CNS defects in mdlc mutants. We conclude that Mdlc plays an essential role in maintaining neuronal differentiation, raising the possibility that RNF113A regulates neuronal differentiation in the human CNS.

  8. Morbillivirus infection in pilot whales: strict protein requirement drives genetic conservation.

    PubMed

    Banyard, Ashley C; Tiwari, Ashok; Barrett, Thomas

    2011-10-01

    Morbillivirus infection of marine mammals has been documented across all of the world's oceans. Whilst infection is generally demonstrated using a variety of histopathological and serological techniques, where possible, the use of molecular techniques is being used to enable accurate genetic typing of virus strains through sequence analysis. Here, we present genetic data from dolphins and pilot whales affected by morbillivirus infection in the recent outbreak in the Mediterranean Sea during a six-month period from the end of October 2006 to April 2007. To date, very few studies have looked at characterizing outbreaks of morbillivirus infections in whale species at the molecular level. Here, we provide a full sequence for the haemagglutinin (H) gene from material derived from both a dolphin and a pilot whale from the 2007 outbreak in the Mediterranean Sea and show this virus to be 100% identical across the region analysed. Furthermore, we compare partial sequence data from the nucleocapsid (N) gene of the pilot whale material with previously published data and show evidence for strong protein conservation between these different isolates. Finally, we discuss the current classification of cetacean morbilliviruses as a single species.

  9. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development

    PubMed Central

    Hill, Jennifer Hampton; Franzosa, Eric A; Huttenhower, Curtis; Guillemin, Karen

    2016-01-01

    Resident microbes play important roles in the development of the gastrointestinal tract, but their influence on other digestive organs is less well explored. Using the gnotobiotic zebrafish, we discovered that the normal expansion of the pancreatic β cell population during early larval development requires the intestinal microbiota and that specific bacterial members can restore normal β cell numbers. These bacteria share a gene that encodes a previously undescribed protein, named herein BefA (β Cell Expansion Factor A), which is sufficient to induce β cell proliferation in developing zebrafish larvae. Homologs of BefA are present in several human-associated bacterial species, and we show that they have conserved capacity to stimulate β cell proliferation in larval zebrafish. Our findings highlight a role for the microbiota in early pancreatic β cell development and suggest a possible basis for the association between low diversity childhood fecal microbiota and increased diabetes risk. DOI: http://dx.doi.org/10.7554/eLife.20145.001 PMID:27960075

  10. Multiple cellular proteins interact with LEDGF/p75 through a conserved unstructured consensus motif.

    PubMed

    Tesina, Petr; Čermáková, Kateřina; Hořejší, Magdalena; Procházková, Kateřina; Fábry, Milan; Sharma, Subhalakshmi; Christ, Frauke; Demeulemeester, Jonas; Debyser, Zeger; De Rijck, Jan; Veverka, Václav; Řezáčová, Pavlína

    2015-08-06

    Lens epithelium-derived growth factor (LEDGF/p75) is an epigenetic reader and attractive therapeutic target involved in HIV integration and the development of mixed lineage leukaemia (MLL1) fusion-driven leukaemia. Besides HIV integrase and the MLL1-menin complex, LEDGF/p75 interacts with various cellular proteins via its integrase binding domain (IBD). Here we present structural characterization of IBD interactions with transcriptional repressor JPO2 and domesticated transposase PogZ, and show that the PogZ interaction is nearly identical to the interaction of LEDGF/p75 with MLL1. The interaction with the IBD is maintained by an intrinsically disordered IBD-binding motif (IBM) common to all known cellular partners of LEDGF/p75. In addition, based on IBM conservation, we identify and validate IWS1 as a novel LEDGF/p75 interaction partner. Our results also reveal how HIV integrase efficiently displaces cellular binding partners from LEDGF/p75. Finally, the similar binding modes of LEDGF/p75 interaction partners represent a new challenge for the development of selective interaction inhibitors.

  11. The evolutionarily conserved RNA binding protein SMOOTH is essential for maintaining normal muscle function.

    PubMed

    Draper, Isabelle; Tabaka, Meg E; Jackson, F Rob; Salomon, Robert N; Kopin, Alan S

    2009-01-01

    The Drosophila smooth gene encodes an RNA binding protein that has been well conserved through evolution. To investigate the pleiotropic functions mediated by the smooth gene, we have selected and characterized two sm mutants, which are viable as adults yet display robust phenotypes (including a significant decrease in lifespan). Utilizing these mutants, we have made the novel observation that disruption of the smooth/CG9218 locus leads to age-dependent muscle degeneration, and motor dysfunction. Histological characterization of adult sm mutants revealed marked abnormalities in the major thoracic tubular muscle: the tergal depressor of the trochanter (TDT). Corresponding defects include extensive loss/disruption of striations and nuclei. These pathological changes are recapitulated in flies that express a smooth RNA interference construct (sm RNAi) in the mesoderm. In contrast, targeting sm RNAi constructs to motor neurons does not alter muscle morphology. In addition to examining the TDT phenotype, we explored whether other muscular abnormalities were evident. Utilizing physiological assays developed in the laboratory, we have found that the thoracic muscle defect is preceded by dysmotility of the gastrointestinal tract. SMOOTH thus joins a growing list of hnRNPs that have previously been linked to muscle physiology/pathophysiology. Our findings in Drosophila set the stage for investigating the role of the corresponding mammalian homolog, hnRNP L, in muscle function.

  12. A conserved PHD finger protein and endogenous RNAi modulate insulin signaling in Caenorhabditis elegans.

    PubMed

    Mansisidor, Andres R; Cecere, Germano; Hoersch, Sebastian; Jensen, Morten B; Kawli, Trupti; Kennedy, Lisa M; Chavez, Violeta; Tan, Man-Wah; Lieb, Jason D; Grishok, Alla

    2011-09-01

    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16-dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.

  13. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli

    PubMed Central

    Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo

    2015-01-01

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115

  14. Conserved S-Layer-Associated Proteins Revealed by Exoproteomic Survey of S-Layer-Forming Lactobacilli.

    PubMed

    Johnson, Brant R; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo; Barrangou, Rodolphe; Klaenhammer, Todd R

    2015-10-16

    The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. Copyright © 2015 Johnson et al.

  15. Trichohyalin-like proteins have evolutionarily conserved roles in the morphogenesis of skin appendages.

    PubMed

    Mlitz, Veronika; Strasser, Bettina; Jaeger, Karin; Hermann, Marcela; Ghannadan, Minoo; Buchberger, Maria; Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold

    2014-11-01

    S100 fused-type proteins (SFTPs) such as filaggrin, trichohyalin, and cornulin are differentially expressed in cornifying keratinocytes of the epidermis and various skin appendages. To determine evolutionarily conserved, and thus presumably important, features of SFTPs, we characterized nonmammalian SFTPs and compared their amino acid sequences and expression patterns with those of mammalian SFTPs. We identified an ortholog of cornulin and a previously unknown SFTP, termed scaffoldin, in reptiles and birds, whereas filaggrin was confined to mammals. In contrast to mammalian SFTPs, both cornulin and scaffoldin of the chicken are expressed in the embryonic periderm. However, scaffoldin resembles mammalian trichohyalin with regard to its expression in the filiform papillae of the tongue and in the epithelium underneath the forming tips of the claws. Furthermore, scaffoldin is expressed in the epithelial sheath around growing feathers, reminiscent of trichohyalin expression in the inner root sheath of hair. The results of this study show that SFTP-positive epithelia function as scaffolds for the growth of diverse skin appendages such as claws, nails, hair, and feathers, indicating a common evolutionary origin.

  16. Sumoylation Influences DNA Break Repair Partly by Increasing the Solubility of a Conserved End Resection Protein

    PubMed Central

    Sarangi, Prabha; Steinacher, Roland; Altmannova, Veronika; Fu, Qiong; Paull, Tanya T.; Krejci, Lumir; Whitby, Matthew C.; Zhao, Xiaolan

    2015-01-01

    Protein modifications regulate both DNA repair levels and pathway choice. How each modification achieves regulatory effects and how different modifications collaborate with each other are important questions to be answered. Here, we show that sumoylation regulates double-strand break repair partly by modifying the end resection factor Sae2. This modification is conserved from yeast to humans, and is induced by DNA damage. We mapped the sumoylation site of Sae2 to a single lysine in its self-association domain. Abolishing Sae2 sumoylation by mutating this lysine to arginine impaired Sae2 function in the processing and repair of multiple types of DNA breaks. We found that Sae2 sumoylation occurs independently of its phosphorylation, and the two modifications act in synergy to increase soluble forms of Sae2. We also provide evidence that sumoylation of the Sae2-binding nuclease, the Mre11-Rad50-Xrs2 complex, further increases end resection. These findings reveal a novel role for sumoylation in DNA repair by regulating the solubility of an end resection factor. They also show that collaboration between different modifications and among multiple substrates leads to a stronger biological effect. PMID:25569253

  17. A conserved CCCH-type zinc finger protein regulates mRNA nuclear adenylation and export.

    PubMed

    Hurt, Jessica A; Obar, Robert A; Zhai, Bo; Farny, Natalie G; Gygi, Steven P; Silver, Pamela A

    2009-04-20

    Coupling of messenger RNA (mRNA) nuclear export with prior processing steps aids in the fidelity and efficiency of mRNA transport to the cytoplasm. In this study, we show that the processes of export and polyadenylation are coupled via the Drosophila melanogaster CCCH-type zinc finger protein CG6694/dZC3H3 through both physical and functional interactions. We show that depletion of dZC3H3 from S2R+ cells results in transcript hyperadenylation. Using targeted coimmunoprecipitation and liquid chromatography mass spectrometry (MS)/MS techniques, we characterize interactions of known components of the mRNA nuclear export and polyadenylation machineries with dZC3H3. Furthermore, we demonstrate the functional conservation of this factor, as depletion of its human homologue ZC3H3 by small interfering RNA results in an mRNA export defect in human cells as well. Nuclear polyadenylated (poly(A)) RNA in ZC3H3-depleted cells is sequestered in foci removed from SC35-containing speckles, indicating a shift from the normal subnuclear distribution of poly(A) RNA. Our data suggest a model wherein ZC3H3 interfaces between the polyadenylation machinery, newly poly(A) mRNAs, and factors for transcript export.

  18. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    PubMed Central

    Ghaskadbi, Saroj

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla. PMID:24083246

  19. Structural and sequence similarities of hydra xeroderma pigmentosum A protein to human homolog suggest early evolution and conservation.

    PubMed

    Barve, Apurva; Ghaskadbi, Saroj; Ghaskadbi, Surendra

    2013-01-01

    Xeroderma pigmentosum group A (XPA) is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER) pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1) and replication protein A 70 kDa subunit (RPA70) proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  20. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.

    PubMed

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.

  1. Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins.

    PubMed Central

    Gregory, S L; Kortschak, R D; Kalionis, B; Saint, R

    1996-01-01

    We reported the identification of a new family of DNA-binding proteins from our characterization of the dead ringer (dri) gene of Drosophila melanogaster. We show that dri encodes a nuclear protein that contains a sequence-specific DNA-binding domain that bears no similarity to known DNA-binding domains. A number of proteins were found to contain sequences homologous to this domain. Other proteins containing the conserved motif include yeast SWI1, two human retinoblastoma binding proteins, and other mammalian regulatory proteins. A mouse B-cell-specific regulator exhibits 75% identity with DRI over the 137-amino-acid DNA-binding domains of these proteins, indicating a high degree of conservation of this domain. Gel retardation and optimal binding site screens revealed that the in vitro sequence specificity of DRI is strikingly similar to that of many homeodomain proteins, although the sequence and predicted secondary structure do not resemble a homeodomain. The early general expression of dri and the similarity of DRI and homeodomain in vitro DNA-binding specificity compound the problem of understanding the in vivo specificity of action of these proteins. Maternally derived dri product is found throughout the embryo until germ band extension, when dri is expressed in a developmentally regulated set of tissues, including salivary gland ducts, parts of the gut, and a subset of neural cells. The discovery of this new, conserved DNA-binding domain offers an explanation for the regulatory activity of several important members of this class and predicts significant regulatory roles for the others. PMID:8622680

  2. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion.

    PubMed

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.

  3. Identification of a Conserved Non-Protein-Coding Genomic Element that Plays an Essential Role in Alphabaculovirus Pathogenesis

    PubMed Central

    Kikhno, Irina

    2014-01-01

    Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153

  4. The role of a conserved tyrosine residue in high-potential iron sulfur proteins.

    PubMed Central

    Iwagami, S. G.; Creagh, A. L.; Haynes, C. A.; Borsari, M.; Felli, I. C.; Piccioli, M.; Eltis, L. D.

    1995-01-01

    Conserved tyrosine-12 of Ectothiorhodospira halophila high-potential iron sulphur protein (HiPIP) iso-I was substituted with phenylalanine (Y12F), histidine (Y12H), tryptophan (Y12W), isoleucine (Y12I), and alanine (Y12A). Variants Y12A and Y12I were expressed to reasonable levels in cells grown at lower temperatures, but decomposed during purification. Variants Y12F, Y12H, and Y12W were substantially destabilized with respect to the recombinant wild-type HiPIP (rcWT) as determined by differential scanning calorimetry over a pH range of 7.0-11.0. Characterization of the Y12F variant by NMR indicates that the principal structural differences between this variant and the rcWT HiPIP result from the loss of the two hydrogen bonds of the Tyr-12 hydroxyl group with Asn-14 O delta 1 and Lys-59 NH, respectively. The effect of the loss of the latter interaction is propagated through the Lys-59/Val-58 peptide bond, thereby perturbing Gly-46. The delta delta GDapp of Y12F of 2.3 kcal/mol with respect to rcWT HiPIP (25 degrees C, pH 7.0) is entirely consistent with the contribution of these two hydrogen bonds to the stability of the latter. CD measurements show that Tyr-12 influences several electronic transitions within the cluster. The midpoint reduction potentials of variants Y12F, Y12H, and Y12W were 17, 19, and 22 mV (20 mM MOPS, 0.2 M sodium chloride, pH 6.98, 25 degrees C), respectively, higher than that of rcWT HiPIP. The current results indicate that, although conserved Tyr-12 modulates the properties of the cluster, its principle function is to stabilize the HiPIP through hydrogen bonds involving its hydroxyl group and electrostatic interactions involving its aromatic ring. PMID:8580847

  5. Biochemical characterization of the Caenorhabditis elegans FBF.CPB-1 translational regulation complex identifies conserved protein interaction hotspots.

    PubMed

    Menichelli, Elena; Wu, Joann; Campbell, Zachary T; Wickens, Marvin; Williamson, James R

    2013-02-22

    Caenorhabditis elegans CPB-1 (cytoplasmic polyadenylation element binding protein homolog-1) and FBF (fem-3 mRNA binding factor) are evolutionary conserved regulators of mRNA translation that belong to the CPEB (cytoplasmic polyadenylation element binding) and PUF (Pumilio and FBF) protein families, respectively. In hermaphrodite worms, CPB-1 and FBF control key steps during germline development, including stem cell maintenance and sex determination. While CPB-1 and FBF are known to interact, the molecular basis and function of the CPB-1⋅FBF complex are not known. The surface of CPB-1 that interacts with FBF was localized using in vivo and in vitro methods to a 10-residue region at the N-terminus of the protein and these residues are present in the FBF-binding protein GLD-3 (germline development defective-3). PUF proteins are characterized by the presence of eight α-helical repeats (PUF repeats) arranged side by side in an elongated structure. Critical residues for CPB-1 binding are found in the extended loop that connects PUF repeats 7 and 8. The same FBF residues also mediate binding to GLD-3, indicating a conserved binding mode between different protein partners. CPB-1 binding was competitive with GLD-3, suggestive of mutual exclusivity in vivo. RNA binding measurements demonstrated that CPB-1 alters the affinity of FBF for specific RNA sequences, implying a functional model where the coregulatory protein CPB-1 modulates FBF target selection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Sequence, structure and function relationships in flaviviruses as assessed by evolutive aspects of its conserved non-structural protein domains.

    PubMed

    da Fonseca, Néli José; Lima Afonso, Marcelo Querino; Pedersolli, Natan Gonçalves; de Oliveira, Lucas Carrijo; Andrade, Dhiego Souto; Bleicher, Lucas

    2017-01-11

    Flaviviruses are responsible for serious diseases such as dengue, yellow fever, and zika fever. Their genomes encode a polyprotein which, after cleavage, results in three structural and seven non-structural proteins. Homologous proteins can be studied by conservation and coevolution analysis as detected in multiple sequence alignments, usually reporting positions which are strictly necessary for the structure and/or function of all members in a protein family or which are involved in a specific sub-class feature requiring the coevolution of residue sets. This study provides a complete conservation and coevolution analysis on all flaviviruses non-structural proteins, with results mapped on all well-annotated available sequences. A literature review on the residues found in the analysis enabled us to compile available information on their roles and distribution among different flaviviruses. Also, we provide the mapping of conserved and coevolved residues for all sequences currently in SwissProt as a supplementary material, so that particularities in different viruses can be easily analyzed. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inter-phylum structural conservation of the magnetosome-associated TPR-containing protein, MamA.

    PubMed

    Zeytuni, Natalie; Baran, Dror; Davidov, Geula; Zarivach, Raz

    2012-12-01

    Magnetotactic bacteria enclose the magnetosome, a unique prokaryotic sub-cellular organelle that allows the biomineralization of magnetic nano-crystals. Membrane-coated magnetosomes are arranged into a linear chain that permits magnetotactic bacteria to navigate geomagnetic fields. Magnetosome assembly and biomineralization are controlled by conserved magnetosome-associated proteins, including MamA, a tetra-trico-peptide repeat (TPR)-containing protein that was shown to coat the magnetosome membrane. In this study, two MamA structures from Candidatus Magnetobacterium bavaricum (Mbav) were determined via X-ray crystallography. These structures confirm that Mbav MamA folds as a sequential TPR protein and shares a high degree of structural similarity with homologous MamA proteins from Magnetospirillum species. Furthermore, the two TPR-containing domains of MamA are separated by an interphylum-conserved region containing a flexible hinge that is involved in ligand binding and recognition. Finally, substantial differences were found in the local stabilization of the MamA N-terminal domain as a result of the loss of an evolutionary conserved salt bridge. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. RNA-binding proteins in eye development and disease: implication of conserved RNA granule components.

    PubMed

    Dash, Soma; Siddam, Archana D; Barnum, Carrie E; Janga, Sarath Chandra; Lachke, Salil A

    2016-07-01

    The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1, and Bmp4 are commonly required for their development. In contrast, our understanding of posttranscriptional regulation in eye development and disease, particularly regarding the function of RNA-binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila as well as several vertebrate models such as fish, frog, chicken, and mouse. Interestingly, of the 42 RBPs that have been investigated for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as processing bodies, stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate posttranscriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2, and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly, and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving posttranscriptional regulatory networks in eye development and disease. WIREs RNA 2016, 7:527-557. doi: 10.1002/wrna.1355 For further resources related to this article, please visit the WIREs website.

  9. Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains

    PubMed Central

    Torruella, Guifré; Derelle, Romain; Paps, Jordi; Lang, B. Franz; Roger, Andrew J.; Shalchian-Tabrizi, Kamran; Ruiz-Trillo, Iñaki

    2012-01-01

    Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and incorrect orthology assignments are always appropriately taken into account. In this paper, we present an innovative strategy for overcoming orthology assignment problems. Rather than identifying and eliminating genes with paralogy problems, we have constructed a data set comprised exclusively of conserved single-copy protein domains that, unlike most of the commonly used phylogenomic data sets, should be less confounded by orthology miss-assignments. To evaluate the power of this approach, we performed maximum likelihood and Bayesian analyses to infer the evolutionary relationships within the opisthokonts (which includes Metazoa, Fungi, and related unicellular lineages). We used this approach to test 1) whether Filasterea and Ichthyosporea form a clade, 2) the interrelationships of early-branching metazoans, and 3) the relationships among early-branching fungi. We also assessed the impact of some methods that are known to minimize systematic error, including reducing the distance between the outgroup and ingroup taxa or using the CAT evolutionary model. Overall, our analyses support the Filozoa hypothesis in which Ichthyosporea are the first holozoan lineage to emerge followed by Filasterea, Choanoflagellata, and Metazoa. Blastocladiomycota appears as a lineage separate from Chytridiomycota, although this result is not strongly supported. These results represent independent tests of previous phylogenetic hypotheses, highlighting the importance of sophisticated approaches for orthology assignment in phylogenomic analyses. PMID:21771718

  10. The Highly Conserved MraZ Protein Is a Transcriptional Regulator in Escherichia coli

    PubMed Central

    Eraso, Jesus M.; Markillie, Lye M.; Mitchell, Hugh D.; Taylor, Ronald C.; Orr, Galya

    2014-01-01

    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq. PMID:24659771

  11. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans.

    PubMed

    Lažetić, Vladimir; Fay, David S

    2017-01-01

    Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.

  12. A conserved region in the EBL proteins is implicated in microneme targeting of the malaria parasite Plasmodium falciparum.

    PubMed

    Treeck, Moritz; Struck, Nicole S; Haase, Silvia; Langer, Christine; Herrmann, Susann; Healer, Julie; Cowman, Alan F; Gilberger, Tim W

    2006-10-20

    The proliferation of the malaria parasite Plasmodium falciparum within the human host is dependent upon invasion of erythrocytes. This process is accomplished by the merozoite, a highly specialized form of the parasite. Secretory organelles including micronemes and rhoptries play a pivotal role in the invasion process by storing and releasing parasite proteins. The mechanism of protein sorting to these compartments is unclear. Using a transgenic approach we show that trafficking of the most abundant micronemal proteins (members of the EBL-family: EBA-175, EBA-140/BAEBL, and EBA-181/JSEBL) is independent of their cytoplasmic and transmembrane domains, respectively. To identify the minimal sequence requirements for microneme trafficking, we generated parasites expressing EBA-GFP chimeric proteins and analyzed their distribution within the infected erythrocyte. This revealed that: (i) a conserved cysteine-rich region in the ectodomain is necessary for protein trafficking to the micronemes and (ii) correct sorting is dependent on accurate timing of expression.

  13. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    PubMed

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  14. Poorly conserved ORFs in the genome of the archaea Halobacterium sp. NRC-1 correspond to expressed proteins.

    PubMed

    Shmuely, H; Dinitz, E; Dahan, I; Eichler, J; Fischer, D; Shaanan, B

    2004-05-22

    A large fraction of open reading frames (ORFs) identified as 'hypothetical' proteins correspond to either 'conserved hypothetical' proteins, representing sequences homologous to ORFs of unknown function from other organisms, or to hypothetical proteins lacking any significant sequence similarity to other ORFs in the databases. Elucidating the functions and three-dimensional structures of such orphan ORFs, termed ORFans or poorly conserved ORFs (PCOs), is essential for understanding biodiversity. However, it has been claimed that many ORFans may not encode for expressed proteins. A genome-wide experimental study of 'paralogous PCOs' in the halophilic archaea Halobacterium sp. NRC-1 was conducted. Paralogous PCOs are ORFs with at least one homolog in the same organism, but with no clear homologs in other organisms. The results reveal that mRNA is synthesized for a majority of the Halobacterium sp. NRC-1 paralogous PCO families, including those comprising relatively short proteins, strongly suggesting that these Halobacterium sp. NRC-1 paralogous PCOs correspond to true, expressed proteins. Hence, further computational and experimental studies aimed at characterizing PCOs in this and other organisms are merited. Such efforts could shed light on PCOs' functions and origins, thereby serving to elucidate the vast diversity observed in the genetic material.

  15. Conserved leucine residue in the head region of morbillivirus fusion protein regulates the large conformational change during fusion activity.

    PubMed

    Plattet, Philippe; Langedijk, Johannes P M; Zipperle, Ljerka; Vandevelde, Marc; Orvell, Claes; Zurbriggen, Andreas

    2009-09-29

    Paramyxovirus cell entry is controlled by the concerted action of two viral envelope glycoproteins, the fusion (F) and the receptor-binding (H) proteins, which together with a cell surface receptor mediate plasma membrane fusion activity. The paramyxovirus F protein belongs to class I viral fusion proteins which typically contain two heptad repeat regions (HR). Particular to paramyxovirus F proteins is a long intervening sequence (IS) located between both HR domains. To investigate the role of the IS domain in regulating fusogenicity, we mutated in the canine distemper virus (CDV) F protein IS domain a highly conserved leucine residue (L372) previously reported to cause a hyperfusogenic phenotype. Beside one F mutant, which elicited significant defects in processing, transport competence, and fusogenicity, all remaining mutants were characterized by enhanced fusion activity despite normal or slightly impaired processing and cell surface targeting. Using anti-CDV-F monoclonal antibodies, modified conformational F states were detected in F mutants compared to the parental protein. Despite these structural differences, coimmunoprecipitation assays did not reveal any drastic modulation in F/H avidity of interaction. However, we found that F mutants had significantly enhanced fusogenicity at low temperature only, suggesting that they folded into conformations requiring less energy to activate fusion. Together, these data provide strong biochemical and functional evidence that the conserved leucine 372 at the base of the HRA coiled-coil of F(wt) controls the stabilization of the prefusogenic state, restraining the conformational switch and thereby preventing extensive cell-cell fusion activity.

  16. The involvement of FANCM, FANCI, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans.

    PubMed

    Lee, Kyong Yun; Chung, Kee Yang; Koo, Hyeon-Sook

    2010-04-04

    Fanconi anemia (FA) patients are specifically defective in the repair of interstrand DNA crosslinks (ICLs), a complex process involving at least 13 FA proteins and other repair/checkpoint proteins. Of the 13 FA proteins, FANCD1/BRCA2, FANCD2, and FANCJ were previously found to be functionally conserved in C. elegans. We have also identified C. elegans homologs of FANCM and FANCI, and determined their epistatic relationships with homologs of FANCD2, checkpoint proteins, and RAD51 upon DNA crosslinking. The counterparts of FANCM, FANCI, and three checkpoint proteins (RPA, ATR and CHK1) are required for focus formation and ubiquitination associated with FANCD2 in C. elegans. However, C. elegans FANCM affects neither RPA focus formation nor CHK1 phosphorylation induced by ICLs, unlike the reported role of human FANCM, which influences ATR-CHK1 signaling at stalled replication forks. Although focus formation by both FANCD2 and RAD51 requires ATR-CHK1 signaling, FANCD2 and RAD51 acted independently in the formation of their respective foci. Thus, the FANCD2 activation pathway involving FANCM, FANCI, and the checkpoint proteins is conserved in C. elegans but with distinct differences.

  17. Nucleotide sequence of the capsid protein gene of two serotypes of San Miguel sea lion virus: identification of conserved and non-conserved amino acid sequences among calicivirus capsid proteins.

    PubMed

    Neill, J D

    1992-07-01

    The San Miguel sea lion viruses, members of the calicivirus family, are closely related to the vesicular disease of swine viruses which can cause severe disease in swine. In order to begin the molecular characterization of these viruses, the nucleotide sequence of the capsid protein gene of two San Miguel sea lion viruses (SMSV), serotypes 1 and 4, was determined. The coding sequences for the capsid precursor protein were located within the 3' terminal 2620 bases of the genomic RNAs of both viruses. The encoded capsid precursor proteins were 79,500 and 77,634 Da for SMSV 1 and SMSV 4, respectively. The SMSV 1 protein was 47.7% and SMSV 4 was 48.6% homologous to the feline calicivirus (FCV) capsid precursor protein while the two SMSV capsid precursors were 73% homologous to each other. Six distinct regions within the capsid precursors (denoted as regions A-F) were identified based on amino acid sequence alignment analysis of the two SMSV serotypes with FCV and the rabbit hemorrhagic disease virus (RHDV) capsid protein. Three regions showed similarity among all four viruses (regions B, D and F) and one region showed a very high degree of homology between the SMSV serotypes but only limited similarity with FCV (region A). RHDV contained only a truncated region A. A fifth region, consisting of approximately 100 residues, was not conserved among any of the viruses (region E) and, in SMSV, may contain the serotype-specific determinants. Another small region (region C) contained between 15 and 27 amino acids and showed little sequence conservation. Region B showed the highest degree of conservation among the four viruses and contained the residues which had homology to the picornavirus VP3 structural protein. An open reading frame, found in the 3' terminal 514 bases of the SMSV genomes, encoded small proteins (12,575 and 12,522 Da, respectively for SMSV 1 and SMSV 4) of which 32% of the conserved amino acids were basic residues, implying a possible nucleic acid

  18. Definition of family of coronin-related proteins conserved between humans and mice: close genetic linkage between coronin-2 and CD45-associated protein.

    PubMed

    Okumura, M; Kung, C; Wong, S; Rodgers, M; Thomas, M L

    1998-09-01

    Cell adhesion and signal transduction are coordinated processes that may be linked through regulatory elements such as actin-binding proteins. One such protein that may fulfill this role is coronin. In Dictyostelium discoideum, coronin is involved in cellular processes such as mitosis, cell motility, and phagocytosis. In addition, a human coronin, p57, has been described which interacts with the p47 component of phox proteins and may be involved in the formation of phagocytic vacuoles. Here, we describe a family of four mouse proteins which share 38% identity with Dictyostelium coronin and thus are designated coronin-1, -2, -3, and -4. The gene for coronin-2 is localized to mouse chromosome 19, 5' of the gene for CD45-associated protein. All the coronin proteins contain five highly conserved WD domains. However, their carboxyl regions are quite distinct. Three of the four proteins are ubiquitously expressed, whereas coronin-1, the mouse ortholog of p57, demonstrates expression restricted to hematopoietic cells. Comparison of expressed sequence tag cDNAs indicates that coronin-1, -2, -3, and -4 are highly conserved between mice and humans.

  19. Crystal Structure of VC0702 at 2.0 angstrom: A Conserved Hypothetical Protein from Vibrio Cholerae

    SciTech Connect

    Ni, Shuisong; Forouhar, Farhad; Bussiere, Dirksen E.; Robinson, Howard; Kennedy, Michael A.

    2006-06-01

    VC0702, a conserved hypothetical protein of unknown function from Vibrio cholerae, resides in a putative three-gene operon containing the MbaA gene, which is involved in regulating formation of the extracellular matrix of biofilms in Vibrio cholerae. The VC0702 crystal structure has been determined at 2.0? and refined to Rwork=22.8% and Rfree=26.3%. VC0702 crystallized in an orthorhombic crystal lattice in the C2221 space group with dimensions of a=66.61 ?, b=88.118 ?, and c=118.35 ? with a homodimer in the asymmetric unit. VC0702 belongs to the Pfam DUF84 and COG1986 family of proteins. Sequence conservation within the DUF84 and COG1986 families was used to identify a conserved patch of surface residues that define a cleft and potential substrate-binding site in VC0702. The three-dimensional structure of VC0702 is similar to that of Mj0226 from Methanococcus janeshii, which has been identified as a novel NTPase. The NTP-binding site in Mj0226 is similarly located in comparison to the conserved patch of surface residues in VC0702. Furthermore, the NTP binds to MJ0226 in a cleft and deep cavity, features that are present in the VC0702 structure as well, suggesting that VC0702 may have a biochemical function involving NTP binding that is associated with a cellular function of regulating biofilm formation in Vibrio cholerae.

  20. A novel and conserved protein AHO-3 is required for thermotactic plasticity associated with feeding states in Caenorhabditis elegans

    PubMed Central

    Nishio, Nana; Mohri-Shiomi, Akiko; Nishida, Yukuo; Hiramatsu, Naoya; Kodama-Namba, Eiji; Kimura, Kotaro D; Kuhara, Atsushi; Mori, Ikue

    2012-01-01

    Although a large proportion of molecules expressed in the nervous system are conserved from invertebrate to vertebrate, functional properties of such molecules are less characterized. Here, we show that highly conserved hydrolase AHO-3 acts as a novel regulator of starvation-induced thermotactic plasticity in Caenorhabditis elegans. As wild-type animals, aho-3 mutants migrated to the cultivation temperature on a linear thermal gradient after cultivation at a particular temperature with food. Whereas wild-type animals cultivated under food-deprived condition showed dispersed distribution on the gradient, aho-3 mutants exhibited tendency to migrate toward higher temperature. Such an abnormal behavior was completely rescued by the expression of human homologue of AHO-3, indicating that the molecular function of AHO-3 is highly conserved between nematode and human. The behavioral regulation by AHO-3 requires the N-terminal cysteine cluster, which ensures the proper subcellular localization of AHO-3 to sensory endings. Double-mutant analysis suggested that AHO-3 acts in the same pathway with ODR-3, a heterotrimeric G protein alpha subunit. Our results unveiled a novel neural protein in C. elegans, confirming its conserved role in behavioral regulation. PMID:22512337

  1. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 regulates xylem development and growth by a conserved mechanism that modulates hormone signaling.

    PubMed

    Grienenberger, Etienne; Douglas, Carl J

    2014-04-01

    Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways.

  2. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    PubMed Central

    Englbrecht, Claudia C; Schoof, Heiko; Böhm, Siegfried

    2004-01-01

    Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81%) are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1) that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members) comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members), earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or suggested to be

  3. Protein fractions in forage legumes containing protein-binding polyphenols: Freeze-drying vs. conservation as hay or silage.

    USDA-ARS?s Scientific Manuscript database

    We compared protein fractions in freeze-dried herbage to hay or silage of forage legumes containing about 200 g/kg of crude protein. Protein was partitioned with buffer and detergents into rapidly (A and B1), moderately (B2), and slowly (B3) degraded and undegradable acid-detergent insoluble protein...

  4. Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa.

    PubMed

    Marie, Benjamin; Arivalagan, Jaison; Mathéron, Lucrèce; Bolbach, Gérard; Berland, Sophie; Marie, Arul; Marin, Frédéric

    2017-01-01

    The formation of the molluscan shell nacre is regulated to a large extent by a matrix of extracellular macromolecules that are secreted by the shell-forming tissue, the mantle. This so-called 'calcifying matrix' is a complex mixture of proteins, glycoproteins and polysaccharides that is assembled and occluded within the mineral phase during the calcification process. Better molecular-level characterization of the substances that regulate nacre formation is still required. Notable advances in expressed tag sequencing of freshwater mussels, such as Elliptio complanata and Villosa lienosa, provide a pre-requisite to further characterize bivalve nacre proteins by a proteomic approach. In this study, we have identified a total of 48 different proteins from the insoluble matrices of the nacre, 31 of which are common to both E. complanata and V. lienosa A few of these proteins, such as PIF, MSI60, CA, shematrin-like, Kunitz-like, LamG, chitin-binding-containing proteins, together with A-, D-, G-, M- and Q-rich proteins, appear to be analogues, if not true homologues, of proteins previously described from the pearl oyster or the edible mussel nacre matrices, thus forming a remarkable list of deeply conserved nacre proteins. This work constitutes a comprehensive nacre proteomic study of non-pteriomorphid bivalves that has enabled us to describe the molecular basis of a deeply conserved biomineralization toolkit among nacreous shell-bearing bivalves, with regard to proteins associated with other shell microstructures, with those of other mollusc classes (gastropods, cephalopods) and, finally, with other lophotrochozoans (brachiopods).

  5. Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus

    PubMed Central

    Nomura, Naoko; Honda, Takayoshi; Baba, Kentaro; Naganuma, Takao; Tanzawa, Takehito; Arisaka, Fumio; Noda, Masanori; Uchiyama, Susumu; Tanaka, Isao; Yao, Min; Uchiumi, Toshio

    2012-01-01

    Protein synthesis on the ribosome requires translational GTPase factors to bind to the ribosome in the GTP-bound form, take individual actions that are coupled with GTP hydrolysis, and dissociate, usually in the GDP-bound form. The multiple copies of the flexible ribosomal stalk protein play an important role in these processes. Using biochemical approaches and the stalk protein from a hyperthermophilic archaeon, Pyrococcus horikoshii, we here provide evidence that the conserved C terminus of the stalk protein aP1 binds directly to domain I of the elongation factor aEF-2, irrespective of whether aEF-2 is bound to GTP or GDP. Site-directed mutagenesis revealed that four hydrophobic amino acids at the C terminus of aP1, Leu-100, 103, 106, and Phe-107, are crucial for the direct binding. P1 was also found to bind to the initiation factor aIF5B, as well as aEF-1α, but not aIF2γ, via its C terminus. Moreover, analytical ultracentrifugation and gel mobility shift analyses showed that a heptameric complex of aP1 and aP0, aP0(aP1)2(aP1)2(aP1)2, can bind multiple aEF-2 molecules simultaneously, which suggests that individual copies of the stalk protein are accessible to the factor. The functional significance of the C terminus of the stalk protein was also shown using the eukaryotic proteins P1/P2 and P0. It is likely that the conserved C terminus of the stalk proteins of archaea and eukaryotes can bind to translation factors both before and after GTP hydrolysis. This consistent binding ability of the stalk protein may contribute to maintaining high concentrations of translation factors around the ribosome, thus promoting translational efficiency. PMID:22355137

  6. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments.

    PubMed

    Mouillon, Jean-Marie; Gustafsson, Petter; Harryson, Pia

    2006-06-01

    Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na(2)SO(4). Taken together, these observations indicate that the dehydrins are not in equilibrium with high-energy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows

  7. Structural Investigation of Disordered Stress Proteins. Comparison of Full-Length Dehydrins with Isolated Peptides of Their Conserved Segments1

    PubMed Central

    Mouillon, Jean-Marie; Gustafsson, Petter; Harryson, Pia

    2006-01-01

    Dehydrins constitute a class of intrinsically disordered proteins that are expressed under conditions of water-related stress. Characteristic of the dehydrins are some highly conserved stretches of seven to 17 residues that are repetitively scattered in their sequences, the K-, S-, Y-, and Lys-rich segments. In this study, we investigate the putative role of these segments in promoting structure. The analysis is based on comparative analysis of four full-length dehydrins from Arabidopsis (Arabidopsis thaliana; Cor47, Lti29, Lti30, and Rab18) and isolated peptide mimics of the K-, Y-, and Lys-rich segments. In physiological buffer, the circular dichroism spectra of the full-length dehydrins reveal overall disordered structures with a variable content of poly-Pro helices, a type of elongated secondary structure relying on bridging water molecules. Similar disordered structures are observed for the isolated peptides of the conserved segments. Interestingly, neither the full-length dehydrins nor their conserved segments are able to adopt specific structure in response to altered temperature, one of the factors that regulate their expression in vivo. There is also no structural response to the addition of metal ions, increased protein concentration, or the protein-stabilizing salt Na2SO4. Taken together, these observations indicate that the dehydrins are not in equilibrium with high-energy folded structures. The result suggests that the dehydrins are highly evolved proteins, selected to maintain high configurational flexibility and to resist unspecific collapse and aggregation. The role of the conserved segments is thus not to promote tertiary structure, but to exert their biological function more locally upon interaction with specific biological targets, for example, by acting as beads on a string for specific recognition, interaction with membranes, or intermolecular scaffolding. In this perspective, it is notable that the Lys-rich segment in Cor47 and Lti29 shows

  8. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations.

    PubMed

    Ayub, Gohar; Waheed, Yasir

    2016-06-01

    The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.

  9. Conserved patterns hidden within group A Streptococcus M protein hypervariability are responsible for recognition of human C4b-binding protein

    PubMed Central

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.; Biswas, Tapan; Amaro, Rommie E.; Nizet, Victor; Ghosh, Partho

    2016-01-01

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through structure determination of four sequence-diverse M proteins in complex with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies targeting the M-C4BP interaction, and also inform a path towards vaccine design. PMID:27595425

  10. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

    PubMed Central

    Chaudhari, Rajan; Heim, Andrew J.

    2017-01-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of “modeling first, refinement next”. In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of “refined restraints first, modeling next”, provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins. PMID:25503850

  11. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions

    NASA Astrophysics Data System (ADS)

    Chaudhari, Rajan; Heim, Andrew J.; Li, Zhijun

    2015-05-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

  12. Improving homology modeling of G-protein coupled receptors through multiple-template derived conserved inter-residue interactions.

    PubMed

    Chaudhari, Rajan; Heim, Andrew J; Li, Zhijun

    2015-05-01

    Evidenced by the three-rounds of G-protein coupled receptors (GPCR) Dock competitions, improving homology modeling methods of helical transmembrane proteins including the GPCRs, based on templates of low sequence identity, remains an eminent challenge. Current approaches addressing this challenge adopt the philosophy of "modeling first, refinement next". In the present work, we developed an alternative modeling approach through the novel application of available multiple templates. First, conserved inter-residue interactions are derived from each additional template through conservation analysis of each template-target pairwise alignment. Then, these interactions are converted into distance restraints and incorporated in the homology modeling process. This approach was applied to modeling of the human β2 adrenergic receptor using the bovin rhodopsin and the human protease-activated receptor 1 as templates and improved model quality was demonstrated compared to the homology model generated by standard single-template and multiple-template methods. This method of "refined restraints first, modeling next", provides a fast and complementary way to the current modeling approaches. It allows rational identification and implementation of additional conserved distance restraints extracted from multiple templates and/or experimental data, and has the potential to be applicable to modeling of all helical transmembrane proteins.

  13. Conservation of spin polarization during triplet-triplet energy transfer in reconstituted peridinin-chlorophyll-protein complexes.

    PubMed

    Di Valentin, Marilena; Tait, Claudia; Salvadori, Enrico; Ceola, Stefano; Scheer, Hugo; Hiller, Roger G; Carbonera, Donatella

    2011-11-17

    Peridinin-chlorophyll-protein (PCP) complexes, where the N-terminal domain of native PCP from Amphidinium carterae has been reconstituted with different chlorophyll (Chl) species, have been investigated by time-resolved EPR in order to elucidate the details of the triplet-triplet energy transfer (TTET) mechanism. This spectroscopic approach exploits the concept of spin conservation during TTET, which leads to recognizable spin-polarization effects in the observed time-resolved EPR spectra. The spin polarization produced at the acceptor site (peridinin) depends on the initial polarization of the donor (chlorophyll) and on the relative geometric arrangement of the donor-acceptor spin axes. A variation of the donor triplet state properties in terms of population probabilities or triplet spin axis directions, as produced by replacement of chlorophyll a (Chl a) with non-native chlorophyll species (ZnChl a and BacterioChl a) in the reconstituted complexes, is unambiguously reflected in the polarization pattern of the carotenoid triplet state. For the first time, in the present investigation spin-polarization conservation has been shown to occur among natural cofactors in protein complexes during the TTET process. Proving the validity of the assumption of spin conservation adopted in the EPR spectral analysis, the results reinforce the hypothesis that in PCP proteins peridinin 614, according to X-ray nomenclature (Hofmann, E.; et al. Science 1996, 272, 1788-1791), is the carotenoid of election in the photoprotection mechanism based on TTET.

  14. Cloning, purification crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC6422 from Xanthomonas campestris

    SciTech Connect

    Yang, Chao-Yu; Chin, Ko-Hsin; Chou, Chia-Cheng; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A conserved hypothetical protein XC6422 from X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. Crystals obtained from the purified recombinant protein showed a variety of forms that diffracted to at least 1.6 Å resolution. Xanthomonas campestris pv. campestris is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, roughly one third of which have no known structure and/or function. However, some genes of unknown function are highly conserved among several different bacterial genuses. XC6422 is one such conserved hypothetical protein and has been overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. Crystals grew to approximately 2 × 1.5 × 0.4 mm in size after one week and diffracted to at least 1.6 Å resolution. They belong to the monoclinic space group C2, with one molecule per asymmetric unit and unit-cell parameters a = 75.8, b = 79.3, c = 38.2 Å, β = 109.4°. Determination of this structure may provide insights into the protein’s function.

  15. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny

    PubMed Central

    Zhang, Bo; Zheng, Jincheng; Peng, Yu; Liu, Xiaoxia; Hoffmann, Ary A.; Ma, Chun-Sen

    2015-01-01

    The small heat shock protein (sHsp) family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3) was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera. PMID:26196395

  16. Identification of a 14-3-3 protein from Lentinus edodes that interacts with CAP (adenylyl cyclase-associated protein), and conservation of this interaction in fission yeast.

    PubMed

    Zhou, G L; Yamamoto, T; Ozoe, F; Yano, D; Tanaka, K; Matsuda, H; Kawamukai, M

    2000-01-01

    We previously identified a gene encoding a CAP (adenylyl cyclase-associated protein) homologue from the edible Basidiomycete Lentinus edodes. To further discover the cellular functions of the CAP protein, we searched for CAP-interacting proteins using a yeast two-hybrid system. Among the candidates thus obtained, many clones encoded the C-terminal half of an L. edodes 14-3-3 homologue (designated cip3). Southern blot analysis indicated that L. edodes contains only one 14-3-3 gene. Overexpression of the L. edodes 14-3-3 protein in the fission yeast Schizosaccharomyces pombe rad24 null cells complemented the loss of endogenous 14-3-3 protein functions in cell morphology and UV sensitivity, suggesting functional conservation of 14-3-3 proteins between L. edodes and S. pombe. The interaction between L. edodes CAP and 14-3-3 protein was restricted to the N-terminal domain of CAP and was confirmed by in vitro co-precipitation. Results from both the two-hybrid system and in vivo co-precipitation experiments showed the conservation of this interaction in S. pombe. The observation that a 14-3-3 protein interacts with the N-terminal portion of CAP but not with full-length CAP in L. edodes and S. pombe suggests that the C-terminal region of CAP may have a negative effect on the interaction between CAP and 14-3-3 proteins, and 14-3-3 proteins may play a role in regulation of CAP function.

  17. Novel conserved group A streptococcal proteins identified by the antigenome technology as vaccine candidates for a non-M protein-based vaccine.

    PubMed

    Fritzer, Andrea; Senn, Beatrice M; Minh, Duc Bui; Hanner, Markus; Gelbmann, Dieter; Noiges, Birgit; Henics, Tamás; Schulze, Kai; Guzman, Carlos A; Goodacre, John; von Gabain, Alexander; Nagy, Eszter; Meinke, Andreas L

    2010-09-01

    Group A streptococci (GAS) can cause a wide variety of human infections ranging from asymptomatic colonization to life-threatening invasive diseases. Although antibiotic treatment is very effective, when left untreated, Streptococcus pyogenes infections can lead to poststreptococcal sequelae and severe disease causing significant morbidity and mortality worldwide. To aid the development of a non-M protein-based prophylactic vaccine for the prevention of group A streptococcal infections, we identified novel immunogenic proteins using genomic surface display libraries and human serum antibodies from donors exposed to or infected by S. pyogenes. Vaccine candidate antigens were further selected based on animal protection in murine lethal-sepsis models with intranasal or intravenous challenge with two different M serotype strains. The nine protective antigens identified are highly conserved; eight of them show more than 97% sequence identity in 13 published genomes as well as in approximately 50 clinical isolates tested. Since the functions of the selected vaccine candidates are largely unknown, we generated deletion mutants for three of the protective antigens and observed that deletion of the gene encoding Spy1536 drastically reduced binding of GAS cells to host extracellular matrix proteins, due to reduced surface expression of GAS proteins such as Spy0269 and M protein. The protective, highly conserved antigens identified in this study are promising candidates for the development of an M-type-independent, protein-based vaccine to prevent infection by S. pyogenes.

  18. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation

    PubMed Central

    Feng, Dandan; Li, Qi; Yu, Hong; Kong, Lingfeng; Du, Shaojun

    2017-01-01

    The calcifying shell is an excellent model for studying biomineralization and evolution. However, the molecular mechanisms of shell formation are only beginning to be elucidated in Mollusca. It is known that shell matrix proteins (SMPs) play important roles in shell formation. With increasing data of shell matrix proteomes from various species, we carried out a BLASTp bioinformatics analysis using the shell matrix proteome from Crassostrea gigas against 443 SMPs from nine other species. The highly conserved tyrosinase and chitin related proteins were identified in bivalve. In addition, the relatively conserved proteins containing domains of carbonic anhydrase, Sushi, Von Willebrand factor type A, and chitin binding, were identified from all the ten species. Moreover, 25 genes encoding SMPs were annotated and characterized that are involved in CaCO3 crystallization and represent chitin related or ECM related proteins. Together, data from these analyses provide new knowledge underlying the molecular mechanism of shell formation in C.gigas, supporting a refined shell formation model including chitin and ECM-related proteins. PMID:28374770

  19. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level.

    PubMed

    Pal, Lipika R; Guda, Chittibabu

    2006-11-07

    The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study. This study reports a unique approach for understanding the evolution of human proteome by tracing the origin of its constituting domains hierarchically, along the Homo sapiens lineage. The uniqueness of this method lies in subtractive searching of functional and conserved domains in the human proteome resulting in higher efficiency of detecting their origins. From these analyses the nature of protein evolution and trends in domain evolution can be observed in the context of the entire human proteome data. The method adopted here also helps delineate the degree of divergence of functional families occurred during the course of evolution. This approach to trace the evolutionary origin of functional domains in the human proteome facilitates better understanding of their functional versatility as well as provides insights into the functionality of hypothetical proteins present in the human proteome. This work elucidates the origin of functional and conserved domains in human proteins, their distribution along the Homo sapiens lineage, occurrence frequency of different domain combinations and proteome-wide patterns of their distribution, providing insights into the evolutionary solution to the increased complexity of the human proteome.

  20. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation.

    PubMed

    Feng, Dandan; Li, Qi; Yu, Hong; Kong, Lingfeng; Du, Shaojun

    2017-04-04

    The calcifying shell is an excellent model for studying biomineralization and evolution. However, the molecular mechanisms of shell formation are only beginning to be elucidated in Mollusca. It is known that shell matrix proteins (SMPs) play important roles in shell formation. With increasing data of shell matrix proteomes from various species, we carried out a BLASTp bioinformatics analysis using the shell matrix proteome from Crassostrea gigas against 443 SMPs from nine other species. The highly conserved tyrosinase and chitin related proteins were identified in bivalve. In addition, the relatively conserved proteins containing domains of carbonic anhydrase, Sushi, Von Willebrand factor type A, and chitin binding, were identified from all the ten species. Moreover, 25 genes encoding SMPs were annotated and characterized that are involved in CaCO3 crystallization and represent chitin related or ECM related proteins. Together, data from these analyses provide new knowledge underlying the molecular mechanism of shell formation in C.gigas, supporting a refined shell formation model including chitin and ECM-related proteins.

  1. Conserved protein YecM from Escherichia coli shows structural homology to metal-binding isomerases and oxygenases.

    SciTech Connect

    Zhang, R.; Duke, N.; Laskowski, R.; Evdokimova, E.; Skarina, T.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Univ. of Toronto; Univ. Health Network; Birbeck Coll.

    2003-01-01

    The crystal structure of protein YecM{sup 1} has been determined at 1.6 {angstrom} resolution as a part of the ongoing structural genomics initiative (http://www.mcsg.anl.gov). The YecM is a conserved, hypothetical Escherichia coli protein with sequence homologs found exclusively in bacteria, including Salmonella typhimunium, Yersinia pestis, Vibrio cholerae, Haemophilus influenza, and Pasteurella multocida. YecM (188 residues) shows also sequence similarity to proteins in COG database (http://www.ncbi.nlm.nih.gov/cgi-bin/COG/palox-?COG3102). YecM (Pfam-B domain 24546) was selected as a structural genomics target it shows no sequence similarity with proteins of known three-dimensional structure and therefore, may contain a previously unobserved field.

  2. Confirmation of the expression of a large set of conserved hypothetical proteins in Shewanella oneidensis MR-1.

    PubMed

    Elias, Dwayne A; Monroe, Matthew E; Smith, Richard D; Fredrickson, James K; Lipton, Mary S

    2006-08-01

    High-throughput "omic" technologies have allowed for a relatively rapid, yet comprehensive analysis of the global expression patterns within an organism in response to perturbations. In the current study, 9503 different tryptic peptides were identified with high confidence from capillary liquid chromatography-mass spectrometry analysis of 26 chemostat cultures of Shewanella oneidensis MR-1 under various conditions. Using at least one distinctive and a total of two total peptide identifications per protein, we detected the expression of 758 conserved hypothetical proteins. This included 359 such proteins previously described [Kolker, E., Picone, A.F., Galperin, M.Y., Romine, M.F., Higdon, R., Makarova, K.S., Kolker, N., Anderson, G.A., Qiu, X., Auberry, K.J., Babnigg, G., Beliaev, A.S., Edlefsen, P., Elias, D.A., Gorby, Y.A., Holzman, T., Klappenbach, J.A., Konstantinidis, K.T., Land, M.L., Lipton, M.S., McCue, L.A., Monroe, M., Pasa-Tolic, L., Pinchuk, G., Purvine, S., Serres, M.H., Tsapin, S., Zakrajsek, B.A., Zhu, W., Zhou, J., Larimer, F.W., Lawrence, C.E., Riley, M., Collart, F.R., Yates, J.R., III, Smith, R.D., Giometti, C.S., Nealson, K.H., Fredrickson, J.K., Tiedje, J.M., 2005. Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A 102, 2099-2104] with an additional 399 reported herein for the first time. The latter 399 proteins ranged from 5.3 to 208.3 kDa, with 44 being of 100 amino acid residues or less. Using a combination of information including peptide detection in cells grown under specific culture conditions and predictive algorithms such as PSORT and PSORT-B, possible/plausible functions are proposed for some conserved hypothetical proteins. Such proteins were found not only to be expressed, but 19 were only expressed under certain culturing conditions, thereby providing insight into potential functions. These findings also impact the genomic annotation for S

  3. 16 Pollen Allergens Differ From Nonallergenic Pollen Proteins by Their Lower Extent of Evolutionary Conservation

    PubMed Central

    Radauer, Christian; Guhslc, Eva; Bublin, Merima; Breiteneder, Heimo

    2012-01-01

    Background Pollen contains hundreds of different proteins. However, only a small fraction of them have been identified to be allergenic. We aimed to test the hypothesis that most pollen proteins are non-allergenic due to their high extent of sequence conservation among non-related species. Methods Data on the composition of pollen proteomes of birch (Betula pendula), pellitory (Parientaria judaica) and timothy grass (Phleum pratense) were obtained from the literature. Sequences were downloaded from UniProt and manually classified into allergens and non-allergens. Complete proteome sequences of 3 dicotyledonous species (Arabidopsis thaliana, Populus trichocarpa and Vitis vinifera), 2 monocotyledons (Oryza sativa subsp. japonica and Zea mays) and one moss (Physcomitrella patents) were downloaded from ENSEMBL Plants. Sequences of pollen proteins were compared to these proteomes by using BLAST and the hits yielding the highest sequence identity recorded taking into account only sequence alignments at least 40 residues in length. The distributions of maximum sequence identities of allergens and non-allergens from each species were compared using the Mann-Whitney test. Results Allergens from birch and pellitory pollen were significantly (P < 0.001) less similar to proteins from monocots than non-allergenic pollen proteins. Median sequence identities to the nearest rice and maize homologues were 49 and 52% for birch allergens, 86 and 85% for birch non-allergens, 37 and 37% for pellitory allergens, and 87 and 89% for pellitory non-allergens. Similarly, timothy grass pollen allergens were significantly (P < 0.0001) less similar to dicot proteins than non-allergenic pollen proteins. Median sequence identities to the nearest homologues were 43 to 44% for allergens and 81 to 83% for non-allergens. A comparison of all 3 pollen proteomes to sequences from the moss P. patens yielded similarly significant differences. Conclusions Pollen allergens belong to evolutionary less

  4. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism

    PubMed Central

    2012-01-01

    Background Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. Methods In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. Results We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. Conclusions Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation. PMID:23079056

  5. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments

    PubMed Central

    Karunadharma, Pabalu P.; Basisty, Nathan; Chiao, Ying Ann; Dai, Dao-Fu; Drake, Rachel; Levy, Nick; Koh, William J.; Emond, Mary J.; Kruse, Shane; Marcinek, David; Maccoss, Michael J.; Rabinovitch, Peter S.

    2015-01-01

    The mitochondrial respiratory chain (RC) produces most of the cellular ATP and requires strict quality-control mechanisms. To examine RC subunit proteostasis in vivo, we measured RC protein half-lives (HLs) in mice by liquid chromatography-tandem mass spectrometry with metabolic [2H3]-leucine heavy isotope labeling under divergent conditions. We studied 7 tissues/fractions of young and old mice on control diet or one of 2 diet regimens (caloric restriction or rapamycin) that altered protein turnover (42 conditions in total). We observed a 6.5-fold difference in mean HL across tissues and an 11.5-fold difference across all conditions. Normalization to the mean HL of each condition showed that relative HLs were conserved across conditions (Spearman’s ρ = 0.57; P < 10–4), but were highly heterogeneous between subunits, with a 7.3-fold mean range overall, and a 2.2- to 4.6-fold range within each complex. To identify factors regulating this conserved distribution, we performed statistical analyses to study the correlation of HLs to the properties of the subunits. HLs significantly correlated with localization within the mitochondria, evolutionary origin, location of protein-encoding, and ubiquitination levels. These findings challenge the notion that all subunits in a complex turnover at comparable rates and suggest that there are common rules governing the differential proteolysis of RC protein subunits under divergent cellular conditions.—Karunadharma, P. P., Basisty, N., Chiao, Y. A., Dai, D.-F., Drake, R., Levy, N., Koh, W. J., Emond, M. J., Kruse, S., Marcinek, D., Maccoss, M. J., Rabinovitch, P. S. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments. PMID:25977255

  6. Highly conserved residues in the helical domain of dengue virus type 1 precursor membrane protein are involved in assembly, precursor membrane (prM) protein cleavage, and entry.

    PubMed

    Hsieh, Szu-Chia; Wu, Yi-Chieh; Zou, Gang; Nerurkar, Vivek R; Shi, Pei-Yong; Wang, Wei-Kung

    2014-11-28

    The envelope and precursor membrane (prM) proteins of dengue virus (DENV) are present on the surface of immature virions. During maturation, prM protein is cleaved by furin protease into pr peptide and membrane (M) protein. Although previous studies mainly focusing on the pr region have identified several residues important for DENV replication, the functional role of M protein, particularly the α-helical domain (MH), which is predicted to undergo a large conformational change during maturation, remains largely unknown. In this study, we investigated the role of nine highly conserved MH domain residues in the replication cycle of DENV by site-directed mutagenesis in a DENV1 prME expression construct and found that alanine substitutions introduced to four highly conserved residues at the C terminus and one at the N terminus of the MH domain greatly affect the production of both virus-like particles and replicon particles. Eight of the nine alanine mutants affected the entry of replicon particles, which correlated with the impairment in prM cleavage. Moreover, seven mutants were found to have reduced prM-E interaction at low pH, which may inhibit the formation of smooth immature particles and exposure of prM cleavage site during maturation, thus contributing to inefficient prM cleavage. Taken together, these results are the first report showing that highly conserved MH domain residues, located at 20-38 amino acids downstream from the prM cleavage site, can modulate the prM cleavage, maturation of particles, and virus entry. The highly conserved nature of these residues suggests potential targets of antiviral strategy.

  7. Conservation and Variability of Synaptonemal Complex Proteins in Phylogenesis of Eukaryotes

    PubMed Central

    Grishaeva, Tatiana M.; Bogdanov, Yuri F.

    2014-01-01

    The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants. PMID:25147749

  8. Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes.

    PubMed

    Grishaeva, Tatiana M; Bogdanov, Yuri F

    2014-01-01

    The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.

  9. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation

    SciTech Connect

    Ambrose, R.L.; Mackenzie, J.M.

    2015-07-15

    The West Nile virus strain Kunjin virus (WNV{sub KUN}) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNV{sub KUN} replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNV{sub KUN} replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. - Highlights: • Mutation of Proline13 of the WNV NS4A protein is lethal to replication. • 1st TMB helix of NS4A contributes to protein stability and membrane remodelling. • Unstable mutants of NS4A can be rescued with a proteasome inhibitor. • This study (and of others) contributes to a functional mapping of the NS4A protein.

  10. The Conserved Foot Domain of RNA Pol II Associates with Proteins Involved in Transcriptional Initiation and/or Early Elongation

    PubMed Central

    García-López, M. Carmen; Pelechano, Vicent; Mirón-García, M. Carmen; Garrido-Godino, Ana I.; García, Alicia; Calvo, Olga; Werner, Michel; Pérez-Ortín, José E.; Navarro, Francisco

    2011-01-01

    RNA polymerase (pol) II establishes many protein–protein interactions with transcriptional regulators to coordinate different steps of transcription. Although some of these interactions have been well described, little is known about the existence of RNA pol II regions involved in contact with transcriptional regulators. We hypothesize that conserved regions on the surface of RNA pol II contact transcriptional regulators. We identified such an RNA pol II conserved region that includes the majority of the “foot” domain and identified interactions of this region with Mvp1, a protein required for sorting proteins to the vacuole, and Spo14, a phospholipase D. Deletion of MVP1 and SPO14 affects the transcription of their target genes and increases phosphorylation of Ser5 in the carboxy-terminal domain (CTD). Genetic, phenotypic, and functional analyses point to a role for these proteins in transcriptional initiation and/or early elongation, consistent with their genetic interactions with CEG1, a guanylyltransferase subunit of the Saccharomyces cerevisiae capping enzyme. PMID:21954159

  11. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission

    PubMed Central

    Ukken, Fiona P.; Bruckner, Joseph J.; Weir, Kurt L.; Hope, Sarah J.; Sison, Samantha L.; Birschbach, Ryan M.; Hicks, Lawrence; Taylor, Kendra L.; Dent, Erik W.; Gonsalvez, Graydon B.; O'Connor-Giles, Kate M.

    2016-01-01

    ABSTRACT Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function. PMID:26567222

  12. Respiratory chain protein turnover rates in mice are highly heterogeneous but strikingly conserved across tissues, ages, and treatments.

    PubMed

    Karunadharma, Pabalu P; Basisty, Nathan; Chiao, Ying Ann; Dai, Dao-Fu; Drake, Rachel; Levy, Nick; Koh, William J; Emond, Mary J; Kruse, Shane; Marcinek, David; Maccoss, Michael J; Rabinovitch, Peter S

    2015-08-01

    The mitochondrial respiratory chain (RC) produces most of the cellular ATP and requires strict quality-control mechanisms. To examine RC subunit proteostasis in vivo, we measured RC protein half-lives (HLs) in mice by liquid chromatography-tandem mass spectrometry with metabolic [(2)H3]-leucine heavy isotope labeling under divergent conditions. We studied 7 tissues/fractions of young and old mice on control diet or one of 2 diet regimens (caloric restriction or rapamycin) that altered protein turnover (42 conditions in total). We observed a 6.5-fold difference in mean HL across tissues and an 11.5-fold difference across all conditions. Normalization to the mean HL of each condition showed that relative HLs were conserved across conditions (Spearman's ρ = 0.57; P < 10(-4)), but were highly heterogeneous between subunits, with a 7.3-fold mean range overall, and a 2.2- to 4.6-fold range within each complex. To identify factors regulating this conserved distribution, we performed statistical analyses to study the correlation of HLs to the properties of the subunits. HLs significantly correlated with localization within the mitochondria, evolutionary origin, location of protein-encoding, and ubiquitination levels. These findings challenge the notion that all subunits in a complex turnover at comparable rates and suggest that there are common rules governing the differential proteolysis of RC protein subunits under divergent cellular conditions.

  13. BAR-SH3 sorting nexins are conserved interacting proteins of Nervous wreck that organize synapses and promote neurotransmission.

    PubMed

    Ukken, Fiona P; Bruckner, Joseph J; Weir, Kurt L; Hope, Sarah J; Sison, Samantha L; Birschbach, Ryan M; Hicks, Lawrence; Taylor, Kendra L; Dent, Erik W; Gonsalvez, Graydon B; O'Connor-Giles, Kate M

    2016-01-01

    Nervous wreck (Nwk) is a conserved F-BAR protein that attenuates synaptic growth and promotes synaptic function in Drosophila. In an effort to understand how Nwk carries out its dual roles, we isolated interacting proteins using mass spectrometry. We report a conserved interaction between Nwk proteins and BAR-SH3 sorting nexins, a family of membrane-binding proteins implicated in diverse intracellular trafficking processes. In mammalian cells, BAR-SH3 sorting nexins induce plasma membrane tubules that localize NWK2, consistent with a possible functional interaction during the early stages of endocytic trafficking. To study the role of BAR-SH3 sorting nexins in vivo, we took advantage of the lack of genetic redundancy in Drosophila and employed CRISPR-based genome engineering to generate null and endogenously tagged alleles of SH3PX1. SH3PX1 localizes to neuromuscular junctions where it regulates synaptic ultrastructure, but not synapse number. Consistently, neurotransmitter release was significantly diminished in SH3PX1 mutants. Double-mutant and tissue-specific-rescue experiments indicate that SH3PX1 promotes neurotransmitter release presynaptically, at least in part through functional interactions with Nwk, and might act to distinguish the roles of Nwk in regulating synaptic growth and function. © 2016. Published by The Company of Biologists Ltd.

  14. Comparative genomics of the Hlx homeobox gene and protein: conservation of structure and expression from fish to mammals.

    PubMed

    Bates, Michael D; Wells, James M; Venkatesh, Byrappa

    2005-06-06

    Hlx is a homeobox transcription factor gene that is expressed in intestinal and hepatic mesenchyme of the developing mouse embryo and is essential for normal intestinal and hepatic development. Because of the morphological and molecular similarities in the development of the digestive system across species, we hypothesized that the Hlx gene and protein sequences and expression patterns would be conserved among vertebrates. Comparison of the Hlx gene orthologues of human, chimpanzee, mouse, rat, pufferfish (Fugu) and zebrafish demonstrates that these six genes share an identical organization with four exons and three introns. Comparison of the inferred Hlx protein sequences from these and three additional species (chick, Spanish ribbed newt and rainbow trout) reveals significant sequence identity, with identical homeodomains. The expression of Hlx in the mesenchyme of developing chick embryos is highly similar to that of mouse. Fugu Hlx is expressed in a tissue-specific manner that is similar though not identical to that of mouse, suggesting a conservation of Hlx function between mammals and birds. The mammalian and fish Hlx genes share a putative 5' upstream enhancer as well as an inverted repeat containing CCAAT boxes on opposite strands that we have previously shown to be important for mouse Hlx gene expression. These results suggest that the function of Hlx and the mechanisms regulating its expression are highly conserved in mammals, birds, amphibians and fish.

  15. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    PubMed Central

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  16. Rapid Degradation of Auxin/Indoleacetic Acid Proteins Requires Conserved Amino Acids of Domain II and Is Proteasome Dependent

    PubMed Central

    Ramos, Jason A.; Zenser, Nathan; Leyser, Ottoline; Callis, Judy

    2001-01-01

    Auxin rapidly induces auxin/indoleacetic acid (Aux/IAA) transcription. The proteins encoded are short-lived nucleus-localized transcriptional regulators that share four conserved domains. In a transient assay measuring protein accumulation, an Aux/IAA 13–amino acid domain II consensus sequence was sufficient to target firefly luciferase (LUC) for low protein accumulation equivalent to that observed previously for full-length PSIAA6. Single amino acid substitutions in these 13 amino acids, corresponding to known auxin response mutants, resulted in a sixfold to 20-fold increase in protein accumulation. Naturally occurring variant amino acids had no effect. Residues identified as essential by single alanine substitutions were not sufficient when all flanking amino acids were alanine, indicating the importance of flanking regions. Using direct protein degradation measurements in transgenic Arabidopsis seedlings, full-length IAA1, PSIAA6, and the N-terminal 73 PSIAA6 amino acids targeted LUC for rapid degradation with 8-min half-lives. The C-terminal 109 amino acids did not affect LUC half-life. Smaller regions containing domain II also targeted LUC for rapid degradation, but the rates were not equivalent to those of the full-length protein. A single domain II substitution in the context of full-length PSIAA6 increased half-life 30-fold. Proteasome inhibitors affected Aux/IAA::LUC fusion protein accumulation, demonstrating the involvement of the proteasome. PMID:11595806

  17. Comparative Genome Sequence Analysis Reveals the Extent of Diversity and Conservation for Glycan-Associated Proteins in Burkholderia spp.

    PubMed Central

    Ong, Hui San; Mohamed, Rahmah; Firdaus-Raih, Mohd

    2012-01-01

    Members of the Burkholderia family occupy diverse ecological niches. In pathogenic family members, glycan-associated proteins are often linked to functions that include virulence, protein conformation maintenance, surface recognition, cell adhesion, and immune system evasion. Comparative analysis of available Burkholderia genomes has revealed a core set of 178 glycan-associated proteins shared by all Burkholderia of which 68 are homologous to known essential genes. The genome sequence comparisons revealed insights into species-specific gene acquisitions through gene transfers, identified an S-layer protein, and proposed that significantly reactive surface proteins are associated to sugar moieties as a potential means to circumvent host defense mechanisms. The comparative analysis using a curated database of search queries enabled us to gain insights into the extent of conservation and diversity, as well as the possible virulence-associated roles of glycan-associated proteins in members of the Burkholderia spp. The curated list of glycan-associated proteins used can also be directed to screen other genomes for glycan-associated homologs. PMID:22991502

  18. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach

    PubMed Central

    Wang, Zhiheng; Yang, Qianqian; Li, Tonghua; Cong, Peisheng

    2015-01-01

    The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS) obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database. Availability The DisoMCS is available at http://cal.tongji.edu.cn/disorder/. PMID:26090958

  19. A Conserved Region in the F2 Subunit of Paramyxovirus Fusion Proteins Is Involved In Fusion Regulation▿

    PubMed Central

    Gardner, Amanda E.; Dutch, Rebecca E.

    2007-01-01

    Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F1 and F2. Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F1 (CBF1) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F2 subunit (CBF2). To analyze the functions of CBF2, alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF2 mutations resulted in folding and expression defects. However, the CBF2 mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF2 Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF2 I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF2 in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion. PMID:17507474

  20. Detecting Remote Sequence Homology in Disordered Proteins: Discovery of Conserved Motifs in the N-Termini of Mononegavirales phosphoproteins

    PubMed Central

    Karlin, David; Belshaw, Robert

    2012-01-01

    Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11–16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins. PMID:22403617

  1. Functional Annotation of Conserved Hypothetical Proteins from Haemophilus influenzae Rd KW20

    PubMed Central

    Shahbaaz, Mohd; Md. ImtaiyazHassan; Ahmad, Faizan

    2013-01-01

    Haemophilus influenzae is a Gram negative bacterium that belongs to the family Pasteurellaceae, causes bacteremia, pneumonia and acute bacterial meningitis in infants. The emergence of multi-drug resistance H. influenzae strain in clinical isolates demands the development of better/new drugs against this pathogen. Our study combines a number of bioinformatics tools for function predictions of previously not assigned proteins in the genome of H. influenzae. This genome was extensively analyzed and found 1,657 functional proteins in which function of 429 proteins are unknown, termed as hypothetical proteins (HPs). Amino acid sequences of all 429 HPs were extensively annotated and we successfully assigned the function to 296 HPs with high confidence. We also characterized the function of 124 HPs precisely, but with less confidence. We believed that sequence of a protein can be used as a framework to explain known functional properties. Here we have combined the latest versions of protein family databases, protein motifs, intrinsic features from the amino acid sequence, pathway and genome context methods to assign a precise function to hypothetical proteins for which no experimental information is available. We found these HPs belong to various classes of proteins such as enzymes, transporters, carriers, receptors, signal transducers, binding proteins, virulence and other proteins. The outcome of this work will be helpful for a better understanding of the mechanism of pathogenesis and in finding novel therapeutic targets for H. influenzae. PMID:24391926

  2. Conservation of Shannon's redundancy for proteins. [information theory applied to amino acid sequences

    NASA Technical Reports Server (NTRS)

    Gatlin, L. L.

    1974-01-01

    Concepts of information theory are applied to examine various proteins in terms of their redundancy in natural originators such as animals and plants. The Monte Carlo method is used to derive information parameters for random protein sequences. Real protein sequence parameters are compared with the standard parameters of protein sequences having a specific length. The tendency of a chain to contain some amino acids more frequently than others and the tendency of a chain to contain certain amino acid pairs more frequently than other pairs are used as randomness measures of individual protein sequences. Non-periodic proteins are generally found to have random Shannon redundancies except in cases of constraints due to short chain length and genetic codes. Redundant characteristics of highly periodic proteins are discussed. A degree of periodicity parameter is derived.

  3. Gla-rich protein (GRP), a new vitamin K-dependent protein identified from sturgeon cartilage and highly conserved in vertebrates.

    PubMed

    Viegas, Carla S B; Simes, Dina C; Laizé, Vincent; Williamson, Matthew K; Price, Paul A; Cancela, M Leonor

    2008-12-26

    We report the isolation of a novel vitamin K-dependent protein from the calcified cartilage of Adriatic sturgeon (Acipenser nacarii). This 10.2-kDa secreted protein contains 16 gamma-carboxyglutamic acid (Gla) residues in its 74-residue sequence, the highest Gla percent of any known protein, and we have therefore termed it Gla-rich protein (GRP). GRP has a high charge density (36 negative+16 positive=20 net negative) yet is insoluble at neutral pH. GRP has orthologs in all taxonomic groups of vertebrates, and a paralog (GRP2) in bony fish; no GRP homolog was found in invertebrates. There is no significant sequence homology between GRP and the Gla-containing region of any presently known vitamin K-dependent protein. Forty-seven GRP sequences were obtained by a combination of cDNA cloning and comparative genomics: all 47 have a propeptide that contains a gamma-carboxylase recognition site and a mature protein with 14 highly conserved Glu residues, each of them being gamma-carboxylated in sturgeon. The protein sequence of GRP is also highly conserved, with 78% identity between sturgeon and human GRP. Analysis of the corresponding gene structures suggests a highly constrained organization, particularly for exon 4, which encodes the core Gla domain. GRP mRNA is found in virtually all rat and sturgeon tissues examined, with the highest expression in cartilage. Cells expressing GRP include chondrocytes, chondroblasts, osteoblasts, and osteocytes. Because of its potential to bind calcium through Gla residues, we suggest that GRP may regulate calcium in the extracellular environment.

  4. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals.

    PubMed

    Bellaoui, M; Pidkowich, M S; Samach, A; Kushalappa, K; Kohalmi, S E; Modrusan, Z; Crosby, W L; Haughn, G W

    2001-11-01

    Interactions between TALE (three-amino acid loop extension) homeodomain proteins play important roles in the development of both fungi and animals. Although in plants, two different subclasses of TALE proteins include important developmental regulators, the existence of interactions between plant TALE proteins has remained unexplored. We have used the yeast two-hybrid system to demonstrate that the Arabidopsis BELL1 (BEL1) homeodomain protein can selectively heterodimerize with specific KNAT homeodomain proteins. Interaction is mediated by BEL1 sequences N terminal to the homeodomain and KNAT sequences including the MEINOX domain. These findings validate the hypothesis that the MEINOX domain has been conserved between plants and animals as an interaction domain for developmental regulators. In yeast, BEL1 and KNAT proteins can activate transcription only as a heterodimeric complex, suggesting a role for such complexes in planta. Finally, overlapping patterns of BEL1 and SHOOT MERISTEMLESS (STM) expression within the inflorescence meristem suggest a role for the BEL1-STM complex in maintaining the indeterminacy of the inflorescence meristem.

  5. Sequence variation and structural conservation allows development of novel function and immune evasion in parasite surface protein families.

    PubMed

    Higgins, Matthew K; Carrington, Mark

    2014-04-01

    Trypanosoma and Plasmodium species are unicellular, eukaryotic pathogens that have evolved the capacity to survive and proliferate within a human host, causing sleeping sickness and malaria, respectively. They have very different survival strategies. African trypanosomes divide in blood and extracellular spaces, whereas Plasmodium species invade and proliferate within host cells. Interaction with host macromolecules is central to establishment and maintenance of an infection by both parasites. Proteins that mediate these interactions are under selection pressure to bind host ligands without compromising immune avoidance strategies. In both parasites, the expansion of genes encoding a small number of protein folds has established large protein families. This has permitted both diversification to form novel ligand binding sites and variation in sequence that contributes to avoidance of immune recognition. In this review we consider two such parasite surface protein families, one from each species. In each case, known structures demonstrate how extensive sequence variation around a conserved molecular architecture provides an adaptable protein scaffold that the parasites can mobilise to mediate interactions with their hosts. © 2014 The Protein Society.

  6. Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans

    SciTech Connect

    Ji Qiongmei; Huang, C.-H. . E-mail: chuang@nybloodcenter.org; Peng Jianbin; Hashmi, Sarwar; Ye Tianzhang; Chen Ying

    2007-04-15

    We report here the identification and characterization of STIP, a multi-domain nuclear protein that contains a G-patch, a coiled-coil, and several short tryptophan-tryptophan repeats highly conserved in metazoan species. To analyze their functional role in vivo, we cloned nematode stip-1 genes and determined the spatiotemporal pattern of Caenorhabditis elegans STIP-1 protein. RNA analyses and Western blots revealed that stip-1 mRNA was produced via trans-splicing and translated as a 95-kDa protein. Using reporter constructs, we found STIP-1 to be expressed at all developmental stages and in many tissue/cell types including worm oocyte nuclei. We found that STIP-1 is targeted to the nucleus and forms large polymers with a rod-like shape when expressed in mammalian cells. Using deletion mutants, we mapped the regions of STIP-1 involved in nuclear import and polymer assembly. We further showed that knockdown of C. elegans stip-1 by RNA interference arrested development and resulted in morphologic abnormalities around the 16-cell stage followed by 100% lethality, suggesting its essential role in worm embryogenesis. Importantly, the embryonic lethal phenotype could be faithfully rescued with Drosophila and human genes via transgenic expression. Our data provide the first direct evidence that STIP have a conserved essential nuclear function across metazoans from worms to humans.

  7. A Novel and Conserved Plasmodium Sporozoite Membrane Protein SPELD is Required for Maturation of Exo-erythrocytic Forms

    PubMed Central

    Al-Nihmi, Faisal Mohammed Abdul; Kolli, Surendra Kumar; Reddy, Segireddy Rameswara; Mastan, Babu S.; Togiri, Jyothi; Maruthi, Mulaka; Gupta, Roshni; Sijwali, Puran Singh; Mishra, Satish; Kumar, Kota Arun

    2017-01-01

    Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during maturation in mosquito salivary glands. We report here the role of a novel and conserved Plasmodium berghei protein encoded by PBANKA_091090 in maturation of Exo-erythrocytic Forms (EEFs) and designate it as Sporozoite surface Protein Essential for Liver stage Development (PbSPELD). PBANKA_091090 was previously annotated as PB402615.00.0 and its transcript was recovered at maximal frequency in the Serial Analysis of the Gene Expression (SAGE) of Plasmodium berghei salivary gland sporozoites. An orthologue of this transcript was independently identified in Plasmodium vivax sporozoite microarrays and was designated as Sporozoite Conserved Orthologous Transcript-2 (scot-2). Functional characterization through reverse genetics revealed that PbSPELD is essential for Plasmodium liver stage maturation. mCherry transgenic of PbSPELD localized the protein to plasma membrane of sporozoites and early EEFs. Global microarray analysis of pbspeld ko revealed EEF attenuation being associated with down regulation of genes central to general transcription, cell cycle, proteosome and cadherin signaling. pbspeld mutant EEFs induced pre-erythrocytic immunity with 50% protective efficacy. Our studies have implications for attenuating the human Plasmodium liver stages by targeting SPELD locus. PMID:28067322

  8. Cloning, purification, crystallization and preliminary X-ray analysis of XC229, a conserved hypothetical protein from Xanthomonas campestris

    SciTech Connect

    Chin, Ko-Hsin; Kuo, Wei-Tien; Chou, Chia-Cheng; Shr, Hui-Lin; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A conserved hypothetical protein XC229 from X. campestris pv. campestris has been overexpressed in E. coli, purified and crystallized. A crystal of the purified recombinant protein diffracted to a resolution of 1.80 Å. Xanthomonas campestris pv. campestris is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, roughly one third of which have no known structure and/or function. However, some of these unknown genes are highly conserved among several different bacterial genuses. XC229 is one such protein containing 134 amino acids. It was overexpressed in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystal diffracted to a resolution of at least 1.80 Å. It is cubic and belongs to space group I2{sub x}3, with unit-cell parameters a = b = c = 106.8 Å. It contains one or two molecules per asymmetric unit.

  9. Preparation, crystallization and preliminary X-ray characterization of a conserved hypothetical protein XC1692 from Xanthomonas campestris

    SciTech Connect

    Chin, Ko-Hsin; Huang, Zhao-Wei; Wei, Kun-Chou; Chou, Chia-Cheng; Lee, Cheng-Chung; Shr, Hui-Lin; Gao, Fei Philip; Lyu, Ping-Chiang; Wang, Andrew H.-J.; Chou, Shan-Ho

    2005-07-01

    A conserved hypothetical protein XC1692 from X. campestris pv. campestris has been overexpressed in E. coli. The purified recombinant protein crystallized in a variety of forms and diffracted to a resolution of at least 1.45 Å. Xanthomonas campestris pv. campestris strain 17 is a Gram-negative yellow-pigmented pathogenic bacterium that causes black rot, one of the major worldwide diseases of cruciferous crops. Its genome contains approximately 4500 genes, one third of which have no known structure and/or function yet are highly conserved among several different bacterial genuses. One of these gene products is XC1692 protein, containing 141 amino acids. It was overexpressed in Escherichia coli, purified and crystallized in a variety of forms using the hanging-drop vapour-diffusion method. The crystals diffract to at least 1.45 Å resolution. They are hexagonal and belong to space group P6{sub 3}, with unit-cell parameters a = b = 56.9, c = 71.0 Å. They contain one molecule per asymmetric unit.

  10. Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers[W

    PubMed Central

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Duplessis, Sébastien; Ellis, Brian E.

    2012-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved proteins that function as key signal transduction components in fungi, plants, and mammals. During interaction between phytopathogenic fungi and plants, fungal MAPKs help to promote mechanical and/or enzymatic penetration of host tissues, while plant MAPKs are required for activation of plant immunity. However, new insights suggest that MAPK cascades in both organisms do not operate independently but that they mutually contribute to a highly interconnected molecular dialogue between the plant and the fungus. As a result, some pathogenesis-related processes controlled by fungal MAPKs lead to the activation of plant signaling, including the recruitment of plant MAPK cascades. Conversely, plant MAPKs promote defense mechanisms that threaten the survival of fungal cells, leading to a stress response mediated in part by fungal MAPK cascades. In this review, we make use of the genomic data available following completion of whole-genome sequencing projects to analyze the structure of MAPK protein families in 24 fungal taxa, including both plant pathogens and mycorrhizal symbionts. Based on conserved patterns of sequence diversification, we also propose the adoption of a unified fungal MAPK nomenclature derived from that established for the model species Saccharomyces cerevisiae. Finally, we summarize current knowledge of the functions of MAPK cascades in phytopathogenic fungi and highlight the central role played by MAPK signaling during the molecular dialogue between plants and invading fungal pathogens. PMID:22517321

  11. Small GTP-binding proteins of the ras family: a conserved functional mechanism?

    PubMed

    Chardin, P

    1991-04-01

    Mutated ras genes can acquire a transforming potential and are frequently detected in human tumors. The mammalian ras gene family includes at least 35 distinct members that can be divided into three main groups on the basis of their sequence similarity to ras, rho, or rab genes. All these genes encode small GTP-binding proteins. Rho proteins are implicated in actin organization and control of cell shape, probably by interacting with the cytoskeleton and intracellular membranes. Rab proteins are involved in vesicular traffic, and appear to control the translocation of vesicles from donor to acceptor membranes. The precise function of ras proteins is unknown, although the prevailing view is that they act as transducers of mitogenic signals. We propose that ras proteins, by analogy with rho and rab, are involved in the lateral segregation of multi-protein complexes at the plasma membrane, and we suggest how this process may be important for mitogenic signal transduction.

  12. A conserved Glu-Arg salt bridge connects co-evolved motifs that define the eukaryote protein kinase fold

    PubMed Central

    Yang, Jie; Wu, Jian; Steichen, Jon M.; Kornev, Alexandr P.; Deal, Michael S.; Li, Sheng; Sankaran, Banumathi; Woods, Virgil L.; Taylor, Susan S.

    2012-01-01

    Eukaryotic protein kinases (EPK)feature two co-evolved structural segments, the Activation segment which starts with the Asp-Phe-Gly (DFG) and ends with the Ala-Pro-Glu (APE) motifs, and the helical GHI-subdomain that comprises αG-αH-αI helices. Eukaryotic-like kinases have a much shorter Activation segment and lack the GHI-subdomain. They thus lack the conserved salt bridge interaction between the APE Glu and an Arg from the GHI-subdomain, a hallmark signature of EPKs. Although the conservation of this salt bridge in EPKs is well known and its implication in diseases has been illustrated by polymorphism analysis, its function has not been carefully studied. In this work, we use murine cAMP dependent protein kinase (PKA) as the model enzyme (Glu208 and Arg280) to examine the role of these two residues. We showed that Ala replacement of either residue caused a 40–120 fold decrease in catalytic efficiency of the enzyme due to an increase in Km(ATP) and a decrease in kcat. Crystal structures, as well as solution studies, also demonstratethat this ion pair contributes to the hydrophobic network and stability of the enzyme. We show that mutation of either Glu or Arg to Ala renders bothmutant proteins less effective substrates for upstream kinase phosphoinositide dependent kinase 1. We propose that the Glu208-Arg280 pair serves as a center hub of connectivity between these two structurally conserved elements in EPKs. Mutations of either residue disrupt communication not only between the two segments but also within the rest of the molecule leading to altered catalytic activity and enzyme regulation. PMID:22138346

  13. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis.

    PubMed Central

    Ito, K; Ebihara, K; Uno, M; Nakamura, Y

    1996-01-01

    Translation termination requires two codon-specific polypeptide release factors in prokaryotes and one omnipotent factor in eukaryotes. Sequences of 17 different polypeptide release factors from prokaryotes and eukaryotes were compared. The prokaryotic release factors share residues split into seven motifs. Conservation of many discrete, perhaps critical, amino acids is observed in eukaryotic release factors, as well as in the C-terminal portion of elongation factor (EF) G. Given that the C-terminal domains of EF-G interacts with ribosomes by mimicry of a tRNA structure, the pattern of conservation of residues in release factors may reflect requirements for a tRNA-mimicry for binding to the A site of the ribosome. This mimicry would explain why release factors recognize stop codons and suggests that all prokaryotic and eukaryotic release factors evolved from the progenitor of EF-G. Images Fig. 2 Fig. 3 PMID:8643594

  14. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level

    PubMed Central

    Pal, Lipika R; Guda, Chittibabu

    2006-01-01

    Background The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study. Results This study reports a unique approach for understanding the evolution of human proteome by tracing the origin of its constituting domains hierarchically, along the Homo sapiens lineage. The uniqueness of this method lies in subtractive searching of functional and conserved domains in the human proteome resulting in higher efficiency of detecting their origins. From these analyses the nature of protein evolution and trends in domain evolution can be observed in the context of the entire human proteome data. The method adopted here also helps delineate the degree of divergence of functional families occurred during the course of evolution. Conclusion This approach to trace the evolutionary origin of functional domains in the human proteome facilitates better understanding of their functional versatility as well as provides insights into the functionality of hypothetical proteins present in the human proteome. This work elucidates the origin of functional and conserved domains in human proteins, their distribution along the Homo sapiens lineage, occurrence frequency of different domain combinations and proteome-wide patterns of their distribution, providing insights into the evolutionary solution to the increased complexity of the human proteome. PMID:17090320

  15. DNA secondary structure formation by DNA shuffling of the conserved domains of the Cry protein of Bacillus thuringiensis.

    PubMed

    Pinzon, Efrain H; Sierra, Daniel A; Suarez, Miguel O; Orduz, Sergio; Florez, Alvaro M

    2017-01-01

    The Cry toxins, or δ-endotoxins, are a diverse group of proteins produced by Bacillus thuringiensis. While DNA secondary structures are biologically relevant, it is unknown if such structures are formed in regions encoding conserved domains of Cry toxins under shuffling conditions. We analyzed 5 holotypes that encode Cry toxins and that grouped into 4 clusters according to their phylogenetic closeness. The mean number of DNA secondary structures that formed and the mean Gibbs free energy [Formula: see text] were determined by an in silico analysis using different experimental DNA shuffling scenarios. In terms of spontaneity, shuffling efficiency was directly proportional to the formation of secondary structures but inversely proportional to ∆G. The results showed a shared thermodynamic pattern for each cluster and relationships among sequences that are phylogenetically close at the protein level. The regions of the cry11Aa, Ba and Bb genes that encode domain I showed more spontaneity and thus a greater tendency to form secondary structures (<∆G). In the region of domain III; this tendency was lower (>∆G) in the cry11Ba and Bb genes. Proteins that are phylogenetically closer to Cry11Ba and Cry11Bb, such as Cry2Aa and Cry18Aa, maintained the same thermodynamic pattern. More distant proteins, such as Cry1Aa, Cry1Ab, Cry30Aa and Cry30Ca, featured different thermodynamic patterns in their DNA. These results suggest the presence of thermodynamic variations associated to the formation of secondary structures and an evolutionary relationship with regions that encode highly conserved domains in Cry proteins. The findings of this study may have a role in the in silico design of cry gene assembly by DNA shuffling techniques.

  16. Evolutionary Conservation and Expression of Human RNA-Binding Proteins and Their Role in Human Genetic Disease

    PubMed Central

    Gerstberger, Stefanie; Hafner, Markus; Ascano, Manuel

    2014-01-01

    RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes. PMID:25201102

  17. NovelFam3000 – Uncharacterized human protein domains conserved across model organisms

    PubMed Central

    Kemmer, Danielle; Podowski, Raf M; Arenillas, David; Lim, Jonathan; Hodges, Emily; Roth, Peggy; Sonnhammer, Erik LL; Höög, Christer; Wasserman, Wyeth W

    2006-01-01

    Background Despite significant efforts from the research community, an extensive portion of the proteins encoded by human genes lack an assigned cellular function. Most metazoan proteins are composed of structural and/or functional domains, of which many appear in multiple proteins. Once a domain is characterized in one protein, the presence of a similar sequence in an uncharacterized protein serves as a basis for inference of function. Thus knowledge of a domain's function, or the protein within which it arises, can facilitate the analysis of an entire set of proteins. Description From the Pfam domain database, we extracted uncharacterized protein domains represented in proteins from humans, worms, and flies. A data centre was created to facilitate the analysis of the uncharacterized domain-containing proteins. The centre both provides researchers with links to dispersed internet resources containing gene-specific experimental data and enables them to post relevant experimental results or comments. For each human gene in the system, a characterization score is posted, allowing users to track the progress of characterization over time or to identify for study uncharacterized domains in well-characterized genes. As a test of the system, a subset of 39 domains was selected for analysis and the experimental results posted to the NovelFam3000 system. For 25 human protein members of these 39 domain families, detailed sub-cellular localizations were determined. Specific observations are presented based on the analysis of the integrated information provided through the online NovelFam3000 system. Conclusion Consistent experimental results between multiple members of a domain family allow for inferences of the domain's functional role. We unite bioinformatics resources and experimental data in order to accelerate the functional characterization of scarcely annotated domain families. PMID:16533400

  18. Subdominant outer membrane antigens in anaplasma marginale: conservation, antigenicity, and protective capacity using recombinant protein

    USDA-ARS?s Scientific Manuscript database

    Anaplasma marginale is a tick-borne rickettsial pathogen of cattle with a worldwide distribution. Currently a safe and efficacious vaccine is unavailable. Outer membrane protein (OMP) extracts or a well- defined surface protein complex reproducibly induce protective immunity. However, there are seve...

  19. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize

    USDA-ARS?s Scientific Manuscript database

    An interactome is the genome-wide roadmap of protein-protein interactions that occur within an organism. Interactomes for humans, the fruit fly, and now plants such as Arabidopsis thaliana and Oryza sativa have been generated using high throughput experimental methods. It is possible to use these ...

  20. Solution Structure of the Conserved Hypothetical Protein Rv2302 from Mycobacterium tuberculosis.

    SciTech Connect

    Buchko, Garry W.; Kim, Chang Y.; Terwilliger, Thomas C.; Kennedy, Michael A.

    2006-08-01

    The hypothetical Mycobacterium tuberculosis protein RV2302 (80 residues, MW = 8.6 kDa) has been characterized using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. Size exclusion chromatography and NMR spectroscopy suggest that RV2302 is as a monomer is solution. Circular dichroism spectroscopy indicates the protein is structured in solution, but, irreversible unfolds upon heating with an inflection point of {approx}48 C. Using NMR based methods we determined the solution structure of RV2302. The protein contains a five strand, anti-parallel b-sheet core with one C-terminal a-helix (A65-A75) nestled against its side. Dali searches using the structure closest to the average structure did not identify any high similarities to any other known protein structure. Consequently, the structure of Rv2302 may potentially represent a novel protein fold.

  1. Transcription, translation, and immunolocalization of ODVP-6E/ODV-E56 and p74 proteins: two highly conserved ODV-associated envelope proteins of Choristoneura fumiferana Granulovirus.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Giannopoulos, Paresa N; Guertin, Claude

    2005-01-31

    Choristoneura fumiferana granulovirus (ChfuGV) infection results two types of enveloped virions: Occlusion-derived virus (ODV) and budded virus (BV). Structural proteins ODVP-6E/ODV-E56 and p74 are two major conserved ODV-associated proteins that may be involved in the initiation of viral infection cycle in susceptible host insect larvae. This study presents the characterization of ChfuGV odvp-6e/odv-e56 and p74 transcription and translation as well as immunolocalization of these proteins in the occluded ChfuGV virion. Our results revealed that the transcription of odvp-6e/odv-e56 and p74 genes, both, start at 24 hours post infection (h p.i.). Using monospecific polyclonal antibodies made against ODVP-6E/ODV-E56 and p74 we demonstrated that these proteins are both expressed late in infection (24 h p.i.). Immunogold labeling using antisera against ODVP-6E/ODV-E56 and p74 proteins demonstrated that ODVP-6E/ODV-E56 and p74 proteins are both associated with the ODV envelop of ChfuGV.

  2. A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex

    SciTech Connect

    Dalton, Kevin M.; Crosson, Sean

    2010-05-06

    Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 {angstrom} resolution. This TA system forms an {alpha}{sub 2}{beta}{sub 2} heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and binding groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.

  3. Functional Role of Histidine in the Conserved His-x-Asp Motif in the Catalytic Core of Protein Kinases.

    PubMed

    Zhang, Lun; Wang, Jian-Chuan; Hou, Li; Cao, Peng-Rong; Wu, Li; Zhang, Qian-Sen; Yang, Huai-Yu; Zang, Yi; Ding, Jian-Ping; Li, Jia

    2015-05-11

    The His-x-Asp (HxD) motif is one of the most conserved structural components of the catalytic core of protein kinases; however, the functional role of the conserved histidine is unclear. Here we report that replacement of the HxD-histidine with Arginine or Phenylalanine in Aurora A abolishes both the catalytic activity and auto-phosphorylation, whereas the Histidine-to-tyrosine impairs the catalytic activity without affecting its auto-phosphorylation. Comparisons of the crystal structures of wild-type (WT) and mutant Aurora A demonstrate that the impairment of the kinase activity is accounted for by (1) disruption of the regulatory spine in the His-to-Arg mutant, and (2) change in the geometry of backbones of the Asp-Phe-Gly (DFG) motif and the DFG-1 residue in the His-to-Tyr mutant. In addition, bioinformatics analyses show that the HxD-histidine is a mutational hotspot in tumor tissues. Moreover, the H174R mutation of the HxD-histidine, in the tumor suppressor LKB1 abrogates the inhibition of anchorage-independent growth of A549 cells by WT LKB1. Based on these data, we propose that the HxD-histidine is involved in a conserved inflexible organization of the catalytic core that is required for the kinase activity. Mutation of the HxD-histidine may also be involved in the pathogenesis of some diseases including cancer.

  4. The conserved baculovirus protein p33 (Ac92) is a flavin adenine dinucleotide-linked sulfhydryl oxidase

    SciTech Connect

    Long, C.M.; Rohrmann, G.F.; Merrill, G.F.

    2009-06-05

    Open reading frame 92 of the Autographa californica baculovirus (Ac92) is one of about 30 core genes present in all sequenced baculovirus genomes. Computer analyses predicted that the Ac92 encoded protein (called p33) and several of its baculovirus orthologs were related to a family of flavin adenine dinucleotide (FAD)-linked sulfhydryl oxidases. Alignment of these proteins indicated that, although they were highly diverse, a number of amino acids in common with the Erv1p/Alrp family of sulfhydryl oxidases are present. Some of these conserved amino acids are predicted to stack against the isoalloxazine and adenine components of FAD, whereas others are involved in electron transfer. To investigate this relationship, Ac92 was expressed in bacteria as a His-tagged fusion protein, purified, and characterized both spectrophotometrically and for its enzymatic activity. The purified protein was found to have the color (yellow) and absorption spectrum consistent with it being a FAD-containing protein. Furthermore, it was demonstrated to have sulfhydryl oxidase activity using dithiothreitol and thioredoxin as substrates.

  5. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import.

    PubMed Central

    Weis, K; Ryder, U; Lamond, A I

    1996-01-01

    Nuclear proteins are targeted through the nuclear pore complex (NPC) in an energy-dependent reaction. The import reaction is mediated by nuclear localization sequences (NLS) in the substrate which are recognized by heterodimeric cytoplasmic receptors. hSRP1 alpha is an NLS-binding subunit of the human NLS receptor complex and is complexed in vivo with a second subunit of 97 kDa (p97). We show here that a short amino-terminal domain in hSRP1 alpha is necessary and sufficient for its interaction with p97. This domain is conserved in other SRP1-like proteins and its fusion to a cytoplasmic reporter protein is sufficient to promote complete nuclear import, circumventing the usual requirement for an NLS receptor interaction. The same amino-terminal domain inhibits import of NLS-containing proteins when added to an in vitro nuclear transport assay. While full-length hSRP alpha is able to leave the nucleus, the amino-terminal domain alone is not sufficient to promote exit. We conclude that hSRP1 alpha functions as an adaptor to tether NLS-containing substrates to the protein import machinery. Images PMID:8617227

  6. Classification and Functional Analyses of Putative Conserved Proteins from Chlamydophila pneumoniae CWL029.

    PubMed

    Khan, Shama; Shahbaaz, Mohd; Bisetty, Krishna; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-03-01

    Chlamydophila pneumoniae, a Gram-negative bacterium belongs to the family Chlamydiaceae, is known to cause community-acquired pneumonia and bronchitis. There is a need for genomic analyses of C. pneumoniae as its chronic infections result in reactive airway disease, lung cancer and asthma. Recent advancement in the sequencing techniques led to the generation of large genomic data. In order to utilize these data, sequence-based function predictions were used for annotating the uncharacterized genes. The genome of C. pneumoniae encodes 1052 proteins, which include a group of 366 functionally uncharacterized proteins, known as "hypothetical proteins" (HPs). Functions of these HPs were predicted by utilizing an integrated approach that combines varieties of bioinformatics tools. The functions of 142 proteins were successfully predicted and categorized into different classes of enzymes, transport proteins, binding proteins and virulence factors. Among these functionally annotated HPs, we were able to identify 12 virulent HPs. Furthermore, the HP with the highest virulence score was subjected to molecular dynamics (MD) simulations to better understand their dynamical behavior in explicit water conditions. These analyses could be utilized for an in-depth understanding of virulence mechanism. The functional knowledge of these proteins could be useful in drug design and discovery process of infections caused by C. pneumoniae.

  7. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins.

    PubMed Central

    Catron, K M; Iler, N; Abate, C

    1993-01-01

    Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes. Images PMID:8096059

  8. NOA36/ZNF330 is a conserved cystein-rich protein with proapoptotic activity in human cells.

    PubMed

    de Melo, Ivan S; Iglesias, Concepción; Benítez-Rondán, Alicia; Medina, Francisco; Martínez-Barberá, Juan Pedro; Bolívar, Jorge

    2009-12-01

    Translocations of regulator proteins from or to the mitochondria are key events in apoptosis regulation. NOA36/ZNF330 is a highly evolutionary conserved protein with a characteristic cystein-rich domain. In this work we address its mitochondrial localization and we demonstrate that a blockage of endogenous NOA36/ZNF330 expression by small-interfering RNA (siRNA) reduced apoptotic response to etoposide (ETO), camptothecin (CPT) and staurosporine (STS) but not to CH11 anti-Fas antibody or tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa cells. In contrast, when ectopically expressed in the cytoplasm, NOA36/ZNF330 induces apoptotic cell death. We also found that the domain responsible for this proapoptotic activity is located its cystein-rich region. We propose that NOA36/ZNF330 is translocated from the mitochondria to the cytoplasm when apoptosis is induced and that it contributes to cytochrome c release.

  9. INSIGHTS INTO ANTI-PARALLEL MICROTUBULE CROSSLINKING BY PRC1, A CONSERVED NON-MOTOR MICROTUBULE BINDING PROTEIN

    PubMed Central

    Subramanian, Radhika; Wilson-Kubalek, Elizabeth M.; Arthur, Christopher P.; Bick, Matthew J.; Campbell, Elizabeth A.; Darst, Seth A.; Milligan, Ronald A.; Kapoor, Tarun M.

    2010-01-01

    SUMMARY Formation of microtubule architectures, required for cell shape maintenance in yeast, directional cell expansion in plants and cytokinesis in eukaryotes, depends on antiparallel microtubule crosslinking by the conserved MAP65 protein family. Here, we combine structural and single molecule fluorescence methods to examine how PRC1, the human MAP65, crosslinks antiparallel microtubules. We find that PRC1's microtubule binding is mediated by a structured domain with a spectrin-fold and an unstructured Lys/Arg-rich domain. These two domains, at each end of a homodimer, are connected by a linkage that is flexible on single microtubules, but forms well-defined crossbridges between antiparallel filaments. Further, we show that PRC1 crosslinks do not substantially resist filament sliding by motor proteins in vitro. Together, our data show how MAP65s, by combining structural flexibility and rigidity, tune microtubule associations to establish compliant crosslinks that selectively `mark' antiparallel overlap in dynamic cytoskeletal networks. PMID:20691902

  10. Cloning and mapping of a human gene (TBX2) sharing a highly conserved protein motif with a Drosophila omb gene

    SciTech Connect

    Campbell, C.; Goodrich, K.; Casey, G.; Beatty, B.

    1995-07-20

    We have identified and cloned a human gene (TBX2) that exhibits strong sequence homology within a putative DNA binding domain to the drosophila optomotor-blind (omb) gene and lesser homology to the DNA binding domain of the murine brachyury or T gene. Unlike omb, which is expressed in neural tissue, or T, which is not expressed in adult animals, TBX2 is expressed primarily in adult in kidney, lung, and placenta as multiple transcripts of between {approximately} 2 and 4 kb. At least part of this transcript heterogenity appears to be due to alternative polyadenylation. This is the first reported human member of a new family of highly evolutionarily conserved DNA binding proteins, the Tbx or T-box proteins. The human gene has been mapped by somatic cell hybrid mapping and chromosomal in situ hybridization to chromosome 17q23, a region frequently altered in ovarian carcinomas. 19 refs., 6 figs.

  11. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants.

    PubMed

    Jaspers, Pinja; Overmyer, Kirk; Wrzaczek, Michael; Vainonen, Julia P; Blomster, Tiina; Salojärvi, Jarkko; Reddy, Ramesha A; Kangasjärvi, Jaakko

    2010-03-12

    The SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.

  12. The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants

    PubMed Central

    2010-01-01

    Background The SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. Results SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. Conclusions The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation. PMID:20226034

  13. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins)

    PubMed Central

    Tumlirsch, Tony

    2017-01-01

    ABSTRACT On the basis of bioinformatic evidence, we suspected that proteins with a CYTH (CyaB thiamine triphosphatase) domain and/or a CHAD (conserved histidine α-helical domain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins (phosphate), analogous to phasins and oleosins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively. IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular

  14. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins).

    PubMed

    Tumlirsch, Tony; Jendrossek, Dieter

    2017-04-01

    On the basis of bioinformatic evidence, we suspected that proteins with a CYTH (CyaB thiamine triphosphatase) domain and/or a CHAD (conserved histidine α-helical domain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins (phosphate), analogous to phasins and oleosins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively.IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular compounds on

  15. Potential Conservation of Circadian Clock Proteins in the phylum Nematoda as Revealed by Bioinformatic Searches

    PubMed Central

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system. PMID:25396739

  16. Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches.

    PubMed

    Romanowski, Andrés; Garavaglia, Matías Javier; Goya, María Eugenia; Ghiringhelli, Pablo Daniel; Golombek, Diego Andrés

    2014-01-01

    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.

  17. Evolutionary conservation of meiotic DSB proteins: more than just Spo11.

    PubMed

    Cole, Francesca; Keeney, Scott; Jasin, Maria

    2010-06-15

    Meiotic recombination is initiated by programmed DNA double-strand breaks (DSBs) generated by the Spo11 protein. In budding yeast, five other meiotic-specific proteins are also required for DSB formation, but, with rare exception, orthologs had not been identified in other species. In this issue of Genes & Development, Kumar and colleagues (pp. 1266-1280) used a phylogenomic approach to identify two of these proteins across multiple clades, and confirmed that one of these, MEI4, is a functional ortholog in mouse.

  18. The protein subunit of telomerase displays patterns of dynamic evolution and conservation across different metazoan taxa.

    PubMed

    Lai, Alvina G; Pouchkina-Stantcheva, Natalia; Di Donfrancesco, Alessia; Kildisiute, Gerda; Sahu, Sounak; Aboobaker, A Aziz

    2017-04-26

    Most animals employ telomerase, which consists of a catalytic subunit known as the telomerase reverse transcriptase (TERT) and an RNA template, to maintain telomere ends. Given the importance of TERT and telomere biology in core metazoan life history traits, like ageing and the control of somatic cell proliferation, we hypothesised that TERT would have patterns of sequence and regulatory evolution reflecting the diverse life histories across the Animal Kingdom. We performed a complete investigation of the evolutionary history of TERT across animals. We show that although TERT is almost ubiquitous across Metazoa, it has undergone substantial sequence evolution within canonical motifs. Beyond the known canonical motifs, we also identify and compare regions that are highly variable between lineages, but show conservation within phyla. Recent data have highlighted the importance of alternative splice forms of TERT in non-canonical functions and although animals may share some conserved introns, we find that the selection of exons for alternative splicing appears to be highly variable, and regulation by alternative splicing appears to be a very dynamic feature of TERT evolution. We show that even within a closely related group of triclad flatworms, where alternative splicing of TERT was previously correlated with reproductive strategy, we observe highly diverse splicing patterns. Our work establishes that the evolutionary history and structural evolution of TERT involves previously unappreciated levels of change and the emergence of lineage specific motifs. The sequence conservation we describe within phyla suggests that these new motifs likely serve essential biological functions of TERT, which along with changes in splicing, underpin diverse functions of TERT important for animal life histories.

  19. Essential role of conserved DUF177A protein in plastid 23S rRNA accumulation and plant embryogenesis

    PubMed Central

    Yang, Jiani; Suzuki, Masaharu; McCarty, Donald R.

    2016-01-01

    DUF177 proteins are nearly universally conserved in bacteria and plants except the Chlorophyceae algae. Thus far, duf177 mutants in bacteria have not established a function. In contrast, duf177a mutants have embryo lethal phenotypes in maize and Arabidopsis. In maize inbred W22, duf177a mutant embryos arrest at an early transition stage, whereas the block is suppressed in the B73 inbred background, conditioning an albino seedling phenotype. Background-dependent embryo lethal phenotypes are characteristic of maize plastid gene expression mutants. Consistent with the plastid gene expression hypothesis, quantitative real-time PCR revealed a significant reduction of 23S rRNA in an Escherichia coli duf177 knockout. Plastid 23S rRNA contents of duf177a mutant tissues were also markedly reduced compared with the wild-type, whereas plastid 16S, 5S, and 4.5S rRNA contents were less affected, indicating that DUF177 is specifically required for accumulation of prokaryote-type 23S rRNA. An AtDUF177A–green fluorescent protein (GFP) transgene controlled by the native AtDUF177A promoter fully complemented the Arabidopsis atduf177a mutant. Transient expression of AtDUF177A–GFP in Nicotiana benthamiana leaves showed that the protein was localized in chloroplasts. The essential role of DUF177A in chloroplast–ribosome formation is reminiscent of IOJAP, another highly conserved ribosome-associated protein, suggesting that key mechanisms controlling ribosome formation in plastids evolved from non-essential pathways for regulation of the prokaryotic ribosome. PMID:27574185

  20. Conservation and innovation in Tetrahymena membrane traffic: proteins, lipids, and compartments.

    PubMed

    Nusblat, Alejandro D; Bright, Lydia J; Turkewitz, Aaron P

    2012-01-01

    The past decade has seen a significant expansion in our understanding of membrane traffic in Tetrahymena thermophila, facilitated by the development of new experimental tools and by the availability of the macronuclear genome sequence. Here we review studies on multiple pathways of uptake and secretion, as well as work on metabolism of membrane lipids. We discuss evidence for conservation versus innovation in the mechanisms used in ciliates compared with those in other eukaryotic lineages, and raise the possibility that existing gene expression databases can be exploited to analyze specific pathways of membrane traffic in these cells.

  1. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    SciTech Connect

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-08-06

    Research highlights: {yields} LRPPRC orthologs are restricted to metazoans. {yields} LRPPRC is imported to the mitochondrial matrix. {yields} No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  2. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    SciTech Connect

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting in a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.

  3. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    DOE PAGES

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting inmore » a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.« less

  4. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation.

    PubMed

    Kondo, Hidemasa; Hanada, Yuichi; Sugimoto, Hiroshi; Hoshino, Tamotsu; Garnham, Christopher P; Davies, Peter L; Tsuda, Sakae

    2012-06-12

    Antifreeze proteins (AFPs) are found in organisms ranging from fish to bacteria, where they serve different functions to facilitate survival of their host. AFPs that protect freeze-intolerant fish and insects from internal ice growth bind to ice using a regular array of well-conserved residues/motifs. Less is known about the role of AFPs in freeze-tolerant species, which might be to beneficially alter the structure of ice in or around the host. Here we report the 0.95-Å high-resolution crystal structure of a 223-residue secreted AFP from the snow mold fungus Typhula ishikariensis. Its main structural element is an irregular β-helix with six loops of 18 or more residues that lies alongside an α-helix. β-Helices have independently evolved as AFPs on several occasions and seem ideally structured to bind to several planes of ice, including the basal plane. A novelty of the β-helical fold is the nonsequential arrangement of loops that places the N- and C termini inside the solenoid of β-helical coils. The ice-binding site (IBS), which could not be predicted from sequence or structure, was located by site-directed mutagenesis to the flattest surface of the protein. It is remarkable for its lack of regularity and its poor conservation in homologs from psychrophilic diatoms and bacteria and other fungi.

  5. Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation

    PubMed Central

    Kondo, Hidemasa; Hanada, Yuichi; Sugimoto, Hiroshi; Hoshino, Tamotsu; Garnham, Christopher P.; Davies, Peter L.; Tsuda, Sakae

    2012-01-01

    Antifreeze proteins (AFPs) are found in organisms ranging from fish to bacteria, where they serve different functions to facilitate survival of their host. AFPs that protect freeze-intolerant fish and insects from internal ice growth bind to ice using a regular array of well-conserved residues/motifs. Less is known about the role of AFPs in freeze-tolerant species, which might be to beneficially alter the structure of ice in or around the host. Here we report the 0.95-Å high-resolution crystal structure of a 223-residue secreted AFP from the snow mold fungus Typhula ishikariensis. Its main structural element is an irregular β-helix with six loops of 18 or more residues that lies alongside an α-helix. β-Helices have independently evolved as AFPs on several occasions and seem ideally structured to bind to several planes of ice, including the basal plane. A novelty of the β-helical fold is the nonsequential arrangement of loops that places the N- and C termini inside the solenoid of β-helical coils. The ice-binding site (IBS), which could not be predicted from sequence or structure, was located by site-directed mutagenesis to the flattest surface of the protein. It is remarkable for its lack of regularity and its poor conservation in homologs from psychrophilic diatoms and bacteria and other fungi. PMID:22645341

  6. Conserved residues in Lassa fever virus Z protein modulate viral infectivity at the level of the ribonucleoprotein.

    PubMed

    Capul, Althea A; de la Torre, Juan Carlos; Buchmeier, Michael J

    2011-04-01

    Arenaviruses are negative-strand RNA viruses that cause human diseases such as lymphocytic choriomeningitis, Bolivian hemorrhagic fever, and Lassa hemorrhagic fever. No licensed vaccines exist, and current treatment is limited to ribavirin. The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a model for dissecting virus-host interactions in persistent and acute disease. The RING finger protein Z has been identified as the driving force of arenaviral budding and acts as the viral matrix protein. While residues in Z required for viral budding have been described, residues that govern the Z matrix function(s) have yet to be fully elucidated. Because this matrix function is integral to viral assembly, we reasoned that this would be reflected in sequence conservation. Using sequence alignment, we identified several conserved residues in Z outside the RING and late domains. Nine residues were each mutated to alanine in Lassa fever virus Z. All of the mutations affected the expression of an LCMV minigenome and the infectivity of virus-like particles, but to greatly varying degrees. Interestingly, no mutations appeared to affect Z-mediated budding or association with viral GP. Our findings provide direct experimental evidence supporting a role for Z in the modulation of the activity of the viral ribonucleoprotein (RNP) complex and its packaging into mature infectious viral particles.

  7. The Conserved VPS-50 Protein Functions in Dense-Core Vesicle Maturation and Acidification and Controls Animal Behavior.

    PubMed

    Paquin, Nicolas; Murata, Yasunobu; Froehlich, Allan; Omura, Daniel T; Ailion, Michael; Pender, Corinne L; Constantine-Paton, Martha; Horvitz, H Robert

    2016-04-04

    The modification of behavior in response to experience is crucial for animals to adapt to environmental changes. Although factors such as neuropeptides and hormones are known to function in the switch between alternative behavioral states, the mechanisms by which these factors transduce, store, retrieve, and integrate environmental signals to regulate behavior are poorly understood. The rate of locomotion of the nematode Caenorhabditis elegans depends on both current and past food availability. Specifically, C. elegans slows its locomotion when it encounters food, and animals in a food-deprived state slow even more than animals in a well-fed state. The slowing responses of well-fed and food-deprived animals in the presence of food represent distinct behavioral states, as they are controlled by different sets of genes, neurotransmitters, and neurons. Here we describe an evolutionarily conserved C. elegans protein, VPS-50, that is required for animals to assume the well-fed behavioral state. Both VPS-50 and its murine homolog mVPS50 are expressed in neurons, are associated with synaptic and dense-core vesicles, and control vesicle acidification and hence synaptic function, likely through regulation of the assembly of the V-ATPase complex. We propose that dense-core vesicle acidification controlled by the evolutionarily conserved protein VPS-50/mVPS50 affects behavioral state by modulating neuropeptide levels and presynaptic neuronal function in both C. elegans and mammals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Conserved epitopes on HIV-1, FIV and SIV p24 proteins are recognized by HIV-1 infected subjects.

    PubMed

    Roff, Shannon R; Sanou, Missa P; Rathore, Mobeen H; Levy, Jay A; Yamamoto, Janet K

    2015-01-01

    Cross-reactive peptides on HIV-1 and FIV p24 protein sequences were studied using peripheral blood mononuclear cells (PBMC) from untreated HIV-1-infected long-term survivors (LTS; >10 y of infection without antiretroviral therapy, ART), short-term HIV-1 infected subjects not on ART, and ART-treated HIV-1 infected subjects. IFNγ-ELISpot and CFSE-proliferation analyses were performed with PBMC using overlapping HIV-1 and FIV p24 peptides. Over half of the HIV-1 infected subjects tested (22/31 or 71%) responded to one or more FIV p24 peptide pools by either IFNγ or T-cell proliferation analysis. PBMC and T cells from infected subjects in all 3 HIV(+) groups predominantly recognized one FIV p24 peptide pool (Fp14) by IFNγ production and one additional FIV p24 peptide pool (Fp9) by T-cell proliferation analysis. Furthermore, evaluation of overlapping SIV p24 peptide sequences identified conserved epitope(s) on the Fp14/Hp15-counterpart of SIV, Sp14, but none on Fp9-counterpart of SIV, Sp9. The responses to these FIV peptide pools were highly reproducible and persisted throughout 2-4 y of monitoring. Intracellular staining analysis for cytotoxins and phenotyping for CD107a determined that peptide epitopes from Fp9 and Fp14 pools induced cytotoxic T lymphocyte-associated molecules including perforin, granzyme B, granzyme A, and/or expression of CD107a. Selected FIV and corresponding SIV epitopes recognized by HIV-1 infected patients indicate that these protein sequences are evolutionarily conserved on both SIV and HIV-1 (e.g., Hp15:Fp14:Sp14). These studies demonstrate that comparative immunogenicity analysis of HIV-1, FIV, and SIV can identify evolutionarily-conserved T cell-associated lentiviral epitopes, which could be used as a vaccine for prophylaxis or immunotherapy.

  9. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus.

    PubMed Central

    Olabarría, G; Carrascosa, J L; de Pedro, M A; Berenguer, J

    1996-01-01

    There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer. PMID:8759836

  10. Synthetic peptides from conserved regions of the Plasmodium falciparum early transcribed membrane and ring exported proteins bind specifically to red blood cell proteins.

    PubMed

    Garcia, Jeison; Curtidor, Hernando; Obando-Martinez, Ana Z; Vizcaíno, Carolina; Pinto, Martha; Martinez, Nora L; Patarroyo, Manuel A; Patarroyo, Manuel E

    2009-11-16

    Severe malaria pathology is directly associated with cytoadherence of infected red blood cells (iRBCs) to healthy RBCs and/or endothelial cells occurring during the intraerythrocytic development of Plasmodium falciparum. We synthesized, as 20-mer long peptides, the members of the ring exported (REX) protein family encoded in chromosome 9, as well as the early transcribed membrane proteins (E-TRAMP) 10.2 and 4, to identify specific RBC binding regions in these proteins. Twelve binding peptides were identified (designated as HABPs): three were identified in REX1, two in REX2, one in REX3, two in REX4 and four in E-TRAMP 10.2. The majority of these HABPs was conserved among different P. falciparum strains, according to sequence analysis. No HABPs were found in E-TRAMP 4. Bindings of HABPs were saturable and sensitive to the enzymatic treatment of RBCs and HABPs had different structural features, according to circular dichroism studies. Our results suggest that the REX and E-TRAMP families participate in relevant interactions with RBC membrane proteins, which highlight these proteins as potential targets for the development of fully effective immunoprophylactic methods.

  11. Differential conservation of transcriptional domains of mammalian Prophet of Pit-1 proteins revealed by structural studies of the bovine gene and comparative functional analysis of the protein.

    PubMed

    Showalter, Aaron D; Smith, Timothy P L; Bennett, Gary L; Sloop, Kyle W; Whitsett, Julie A; Rhodes, Simon J

    2002-05-29

    The Prophet of Pit-1 (PROP1) gene encodes a paired class homeodomain transcription factor that is exclusively expressed in the developing mammalian pituitary gland. PROP1 function is essential for anterior pituitary organogenesis, and heritable mutations in the gene are associated with combined pituitary hormone deficiency in human patients and animals. By cloning the bovine PROP1 gene and by comparative analysis, we demonstrate that the homeodomains and carboxyl termini of mammalian PROP1 proteins are highly conserved while the amino termini are diverged. Whereas the carboxyl termini of the human and bovine PROP1 proteins contain potent transcriptional activation domains, the amino termini and homeodomains have repressive activities. The bovine PROP1 gene has four exons and three introns and maps to a region of chromosome seven carrying a quantitative trait locus affecting ovulation rate. Two alleles of the bovine gene were found that encode distinct protein products with different DNA binding and transcriptional activities. These experiments demonstrate that mammalian PROP1 genes encode proteins with complex regulatory capacities and that modest changes in protein sequence can significantly alter the activity of this pituitary developmental transcription factor.

  12. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

    PubMed Central

    Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  13. Conservation of PEX19-Binding Motifs Required for Protein Targeting to Mammalian Peroxisomal and Trypanosome Glycosomal Membranes▿ †

    PubMed Central

    Saveria, Tracy; Halbach, André; Erdmann, Ralf; Volkmer-Engert, Rudolf; Landgraf, Christiane; Rottensteiner, Hanspeter; Parsons, Marilyn

    2007-01-01

    Glycosomes are divergent peroxisomes found in trypanosomatid protozoa, including those that cause severe human diseases throughout much of the world. While peroxisomes are dispensable for both yeast (Saccharomyces cerevisiae and others) and mammalian cells in vitro, glycosomes are essential for trypanosomes and hence are viewed as a potential drug target. The import of proteins into the matrix of peroxisomes utilizes multiple peroxisomal membrane proteins which require the peroxin PEX19 for insertion into the peroxisomal membrane. In this report, we show that the specificity of peroxisomal membrane protein binding for Trypanosoma brucei PEX19 is very similar to those previously identified for human and yeast PEX19. Our studies show that trafficking is conserved across these distant phyla and that both a PEX19 binding site and a transmembrane domain are required for the insertion of two test proteins into the glycosomal membrane. However, in contrast to T. brucei PEX10 and PEX12, T. brucei PEX14 does not traffic to human peroxisomes, indicating that it is not recognized by the human PEX14 import mechanism. PMID:17586720

  14. Identification of a gag protein epitope conserved among all four groups of primate immunodeficiency viruses by using monoclonal antibodies.

    PubMed

    Otteken, A; Nick, S; Bergter, W; Voss, G; Faisst, A C; Stahl-Hennig, C; Hunsmann, G

    1992-10-01

    Five monoclonal antibodies (MAbs) were raised against the gag proteins of simian immunodeficiency virus (SIV) from African green monkey (SIVagmTYO-7). Two MAbs reacted with the matrix protein p17 and the other three with the core protein p24. Studies on the cross-reactivity of the MAbs revealed that the anti-p24 MAbs detected an epitope shared by the viruses belonging to the human immunodeficiency virus type 2 (HIV-2)/SIVmac group and SIVagmTYO-7 and SIVagmTYO-5. The anti-p17 MAbs recognized an epitope present on all these viruses and on SIVagmTYO-1, HIV-1 and SIVmnd. This finding demonstrates for the first time that the matrix protein, p17 or p18, respectively, of all nine HIV and SIV isolates tested in this study expresses at least one conserved immunogenic epitope recognized serologically. By using synthetic peptides, this epitope was identified at the N terminus of p17. Furthermore, this epitope was analysed by multiple sequence alignments of the peptide with homologous sequences of HIV and SIV p17.

  15. Direct examination of the relevance for folding, binding and electron transfer of a conserved protein folding intermediate.

    PubMed

    Lamazares, Emilio; Vega, Sonia; Ferreira, Patricia; Medina, Milagros; Galano-Frutos, Juan J; Martínez-Júlvez, Marta; Velázquez-Campoy, Adrián; Sancho, Javier

    2017-07-26

    Near the minimum free energy basin of proteins where the native ensemble resides, partly unfolded conformations of slightly higher energy can be significantly populated under native conditions. It has been speculated that they play roles in molecular recognition and catalysis, but they might represent contemporary features of the evolutionary process without functional relevance. Obtaining conclusive evidence on these alternatives is difficult because it requires comparing the performance of a given protein when populating and when not populating one such intermediate, in otherwise identical conditions. Wild type apoflavodoxin populates under native conditions a partly unfolded conformation (10% of molecules) whose unstructured region includes the binding sites for the FMN cofactor and for redox partner proteins. We recently engineered a thermostable variant where the intermediate is no longer detectable. Using the wild type and variant, we assess the relevance of the intermediate comparing folding kinetics, cofactor binding kinetics, cofactor affinity, X-ray structure, intrinsic dynamics, redox potential of the apoflavodoxin-cofactor complex (Fld), its affinity for partner protein FNR, and electron transfer rate within the Fld/FNR physiological complex. Our data strongly suggest the intermediate state, conserved in long-chain apoflavodoxins, is not required for the correct assembly of flavodoxin nor does it contribute to shape its electron transfer properties. This analysis can be applied to evaluate other native basin intermediates.

  16. The conserved lymphokine element-0 in the IL5 promoter binds to a high mobility group-1 protein.

    PubMed

    Marrugo, J; Marsh, D G; Ghosh, B

    1996-10-01

    The conserved lymphokine elements-0 (CLE0) in the IL5 promoter is essential for the expression of IL-5. Here, we report the cloning and expression of a cDNA encoding a novel CLE0-binding protein, CLEBP-1 from a mouse Th2 clone, D10.G4.1. Interestingly, it was found that the CLEBP1 cDNA sequence was almost identical to the sequences of known high mobility group-1 (HMG1) cDNAs. When expressed as a recombinant fusion protein in Escherichia coli, CLEBP-1 was shown to bind to the IL5-CLE0 element in electrophoretic mobility-shift assays (EMSA) and southwestern blot analysis. The CLEBP-1 fusion protein cross-reacts with and-HMG-1/2 in Western blot analysis. It also binds to the CLE0 elements of IL4, GMCSF and GCSF genes. CLEBP-1 and closely related HMG-1 and HMG-2 proteins may play key roles in facilitating the expression of the lymphokine genes that contain CLE0 elements.

  17. The Anaplasma marginale msp5 gene encodes a 19-kilodalton protein conserved in all recognized Anaplasma species.

    PubMed Central

    Visser, E S; McGuire, T C; Palmer, G H; Davis, W C; Shkap, V; Pipano, E; Knowles, D P

    1992-01-01

    Immunization with Anaplasma marginale outer membranes induced immunity against clinical disease which correlated with antibody titer to outer membrane proteins, including a 19-kDa protein (N. Tebele, T. C. McGuire, and G. H. Palmer, Infect. Immun. 59:3199-3204, 1991). This 19-kDa protein, designated major surface protein 5 (MSP-5), was encoded by a single-copy 633-bp gene. The molecular mass of MSP-5, defined in immunoblots by binding to monoclonal antibody ANAF16C1, was conserved among all recognized s