Science.gov

Sample records for conserved cell cycle

  1. Identification of essential Alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems

    PubMed Central

    Curtis, Patrick D.; Brun, Yves V.

    2014-01-01

    Summary The cell cycle of Caulobacter crescentus is controlled by a complex signaling network that coordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism’s different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non-essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism’s essential gene pool is specific to that organism. PMID:24975755

  2. Poriferan survivin exhibits a conserved regulatory role in the interconnected pathways of cell cycle and apoptosis

    PubMed Central

    Luthringer, B; Isbert, S; Müller, W E G; Zilberberg, C; Thakur, N L; Wörheide, G; Stauber, R H; Kelve, M; Wiens, M

    2011-01-01

    Survivin orchestrates intracellular pathways during cell division and apoptosis. Its central function as mitotic regulator and inhibitor of cell death has major implications for tumor cell proliferation. Analyses in early-branching Metazoa so far propose an exclusive role of survivin as a chromosomal passenger protein, whereas only later during evolution a complementary antiapoptotic function might have arisen, concurrent with increased organismal complexity. To lift the veil on the ancestral function(s) of this key regulator, a survivin-like protein (SURVL) of one of the earliest-branching metazoan taxa was identified and functionally characterized. SURVL of the sponge Suberites domuncula shares considerable similarities with its metazoan homologs, ranging from conserved exon/intron structure to presence of protein-interaction domains. Whereas sponge tissue shows a low steady-state level, SURVL expression was significantly upregulated in rapidly proliferating primmorph cells. In addition, challenge of tissue and primmorphs with heavy metal or lipopeptide stimulated SURVL expression, concurrent with the expression of a newly discovered caspase. Complementary functional analyses in transfected HEK-293 cells revealed that heterologous expression of a SURVL–EFGP fusion not only promotes proliferation but also enhances resistance to cadmium-induced cell death. Taken together, these results suggest both a deep evolutionary conserved dual role of survivin and an equally conserved central position in the interconnected pathways of cell cycle and apoptosis. PMID:20651742

  3. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK

    PubMed Central

    Brown, Nicholas R.; Korolchuk, Svitlana; Martin, Mathew P.; Stanley, Will; Moukhametzianov, Rouslan; Noble, Martin E.M.; Endicott, Jane A.

    2015-01-01

    CDK1 is the only essential cell cycle CDK in human cells and is required for successful completion of M-phase. It is the founding member of the CDK family and is conserved across all eukaryotes. Here we report the crystal structures of complexes of CDK1–Cks1 and CDK1–cyclin B–Cks2. These structures confirm the conserved nature of the inactive monomeric CDK fold and its ability to be remodeled by cyclin binding. Relative to CDK2–cyclin A, CDK1–cyclin B is less thermally stable, has a smaller interfacial surface, is more susceptible to activation segment dephosphorylation, and shows differences in the substrate sequence features that determine activity. Both CDK1 and CDK2 are potential cancer targets for which selective compounds are required. We also describe the first structure of CDK1 bound to a potent ATP-competitive inhibitor and identify aspects of CDK1 structure and plasticity that might be exploited to develop CDK1-selective inhibitors. PMID:25864384

  4. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas R.; Korolchuk, Svitlana; Martin, Mathew P.; Stanley, Will A.; Moukhametzianov, Rouslan; Noble, Martin E. M.; Endicott, Jane A.

    2015-04-01

    CDK1 is the only essential cell cycle CDK in human cells and is required for successful completion of M-phase. It is the founding member of the CDK family and is conserved across all eukaryotes. Here we report the crystal structures of complexes of CDK1-Cks1 and CDK1-cyclin B-Cks2. These structures confirm the conserved nature of the inactive monomeric CDK fold and its ability to be remodelled by cyclin binding. Relative to CDK2-cyclin A, CDK1-cyclin B is less thermally stable, has a smaller interfacial surface, is more susceptible to activation segment dephosphorylation and shows differences in the substrate sequence features that determine activity. Both CDK1 and CDK2 are potential cancer targets for which selective compounds are required. We also describe the first structure of CDK1 bound to a potent ATP-competitive inhibitor and identify aspects of CDK1 structure and plasticity that might be exploited to develop CDK1-selective inhibitors.

  5. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages

    PubMed Central

    Jinadasa, Rasika N.; Bloom, Stephen E.; Weiss, Robert S.

    2011-01-01

    Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens. PMID:21565933

  6. Idas, a novel phylogenetically conserved geminin-related protein, binds to geminin and is required for cell cycle progression.

    PubMed

    Pefani, Dafni-Eleutheria; Dimaki, Maria; Spella, Magda; Karantzelis, Nickolas; Mitsiki, Eirini; Kyrousi, Christina; Symeonidou, Ioanna-Eleni; Perrakis, Anastassis; Taraviras, Stavros; Lygerou, Zoi

    2011-07-01

    Development and homeostasis of multicellular organisms relies on an intricate balance between cell proliferation and differentiation. Geminin regulates the cell cycle by directly binding and inhibiting the DNA replication licensing factor Cdt1. Geminin also interacts with transcriptional regulators of differentiation and chromatin remodelling factors, and its balanced interactions are implicated in proliferation-differentiation decisions during development. Here, we describe Idas (Idas being a cousin of the Gemini in Ancient Greek Mythology), a previously uncharacterised coiled-coil protein related to Geminin. We show that human Idas localizes to the nucleus, forms a complex with Geminin both in cells and in vitro through coiled-coil mediated interactions, and can change Geminin subcellular localization. Idas does not associate with Cdt1 and prevents Geminin from binding to Cdt1 in vitro. Idas depletion from cells affects cell cycle progression; cells accumulate in S phase and are unable to efficiently progress to mitosis. Idas protein levels decrease in anaphase, whereas its overexpression causes mitotic defects. During development, we show that Idas exhibits high level expression in the choroid plexus and the cortical hem of the mouse telencephalon. Our data highlight Idas as a novel Geminin binding partner, implicated in cell cycle progression, and a putative regulator of proliferation-differentiation decisions during development. PMID:21543332

  7. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology.

    PubMed

    Sartorel, Elodie; Pérez-Martín, José

    2012-10-01

    The morphogenesis-related NDR kinase (MOR) pathway regulates morphogenesis in fungi. In spite of the high conservation of its components, impairing their functions results in highly divergent cellular responses depending on the fungal species. The reasons for such differences are unclear. Here we propose that the species-specific connections between cell cycle regulation and the MOR pathway could be partly responsible for these divergences. We based our conclusion on the characterization of the MOR pathway in the fungus Ustilago maydis. Each gene that encodes proteins of this pathway in U. maydis was deleted. All mutants exhibited a constitutive hyperpolarized growth, contrasting with the loss of polarity observed in other fungi. Using a conditional allele of the central NDR kinase Ukc1, we found that impairing MOR function resulted in a prolonged G2 phase. This cell cycle delay appears to be the consequence of an increase in Cdk1 inhibitory phosphorylation. Strikingly, prevention of the inhibitory Cdk1 phosphorylation abolished the hyperpolarized growth associated with MOR pathway depletion. We found that the prolonged G2 phase resulted in higher levels of expression of crk1, a conserved kinase that promotes polar growth in U. maydis. Deletion of crk1 also abolished the dramatic activation of polar growth in cells lacking the MOR pathway. Taken together, our results suggest that Cdk1 inhibitory phosphorylation may act as an integrator of signaling cascades regulating fungal morphogenesis and that the distinct morphological response observed in U. maydis upon impairment of the MOR pathway could be due to a cell cycle deregulation.

  8. ECA39, a conserved gene regulated by c-Myc in mice, is involved in G1/S cell cycle regulation in yeast.

    PubMed Central

    Schuldiner, O; Eden, A; Ben-Yosef, T; Yanuka, O; Simchen, G; Benvenisty, N

    1996-01-01

    The c-myc oncogene has been shown to play a role in cell proliferation and apoptosis. The realization that myc oncogenes may control the level of expression of other genes has opened the field to search for genetic targets for Myc regulation. Recently, using a subtraction/coexpression strategy, a murine genetic target for Myc regulation, called EC439, was isolated. To further characterize the ECA39 gene, we set out to determine the evolutionary conservation of its regulatory and coding sequences. We describe the human, nematode, and budding yeast homologs of the mouse ECA39 gene. Identities between the mouse ECA39 protein and the human, nematode, or yeast proteins are 79%, 52%, and 49%, respectively. Interestingly, the recognition site for Myc binding, located 3' to the start site of transcription in the mouse gene, is also conserved in the human homolog. This regulatory element is missing in the ECA39 homologs from nematode or yeast, which also lack the regulator c-myc. To understand the function of ECA39, we deleted the gene from the yeast genome. Disruption of ECA39 which is a recessive mutation that leads to a marked alteration in the cell cycle. Mutant haploids and homozygous diploids have a faster growth rate than isogenic wild-type strains. Fluorescence-activated cell sorter analyses indicate that the mutation shortens the G1 stage in the cell cycle. Moreover, mutant strains show higher rates of UV-induced mutations. The results suggest that the product of ECA39 is involved in the regulation of G1 to S transition. Images Fig. 2 Fig. 3 Fig. 5 PMID:8692959

  9. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort

    PubMed Central

    Cuzick, J; Stone, S; Fisher, G; Yang, Z H; North, B V; Berney, D M; Beltran, L; Greenberg, D; Møller, H; Reid, J E; Gutin, A; Lanchbury, J S; Brawer, M; Scardino, P

    2015-01-01

    Background: The natural history of prostate cancer is highly variable and difficult to predict accurately. Better markers are needed to guide management and avoid unnecessary treatment. In this study, we validate the prognostic value of a cell cycle progression score (CCP score) independently and in a prespecified linear combination with standard clinical variables, that is, a clinical-cell-cycle-risk (CCR) score. Methods: Paraffin sections from 761 men with clinically localized prostate cancer diagnosed by needle biopsy and managed conservatively in the United Kingdom, mostly between 2000 and 2003. The primary end point was prostate cancer death. Clinical variables consisted of centrally reviewed Gleason score, baseline PSA level, age, clinical stage, and extent of disease; these were combined into a single predefined risk assessment (CAPRA) score. Full data were available for 585 men who formed a fully independent validation cohort. Results: In univariate analysis, the CCP score hazard ratio was 2.08 (95% CI (1.76, 2.46), P<10−13) for one unit change of the score. In multivariate analysis including CAPRA, the CCP score hazard ratio was 1.76 (95% CI (1.44, 2.14), P<10−6). The predefined CCR score was highly predictive, hazard ratio 2.17 (95% CI (1.83, 2.57), χ2=89.0, P<10−20) and captured virtually all available prognostic information. Conclusions: The CCP score provides significant pretreatment prognostic information that cannot be provided by clinical variables and is useful for determining which patients can be safely managed conservatively, avoiding radical treatment. PMID:26103570

  10. The Chlamydomonas cell cycle.

    PubMed

    Cross, Frederick R; Umen, James G

    2015-05-01

    The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.

  11. Cellular conservation of endangered midget buffalo (Lowland Anoa, Bubalus quarlesi) by establishment of primary cultured cell, and its immortalization with expression of cell cycle regulators.

    PubMed

    Fukuda, Tomokazu; Iino, Yuuka; Eitsuka, Takahiro; Onuma, Manabu; Katayama, Masafumi; Murata, Koichi; Inoue-Murayama, Miho; Hara, Kumiko; Isogai, Emiko; Kiyono, Tohru

    2016-10-01

    Lowland Anoa has become endangered due to hunting and human activity. Protection and breeding of endangered species in a controlled environment is the best way of conservation. However, it is not possible to adopt this approach for all endangered species because of the cost involved and the ever-increasing number of critically endangered species. In consideration of these limitations to the conventional conservation methods, we established a primary cell culture of endangered buffalo (Lowland Anoa, Bubalus quarlesi), for the preservation of this biological resource. In addition, we introduced human derived, mutant cyclin dependent kinase 4 (CDK4), Cyclin D, and telomerase reverse transcriptase (TERT) into the primary cells. The successful introduction of these three genes was confirmed by western blot with specific antibodies, and enzymatic activity. We also showed that the expression of mutant CDK4, Cyclin D, and TERT allows us to efficiently establish an immortalized cell line, with an intact chromosome pattern, from Lowland Anoa. To the best of our knowledge, this study is the first investigation that established an immortalized cell line of an endangered wild animal species.

  12. Cellular conservation of endangered midget buffalo (Lowland Anoa, Bubalus quarlesi) by establishment of primary cultured cell, and its immortalization with expression of cell cycle regulators.

    PubMed

    Fukuda, Tomokazu; Iino, Yuuka; Eitsuka, Takahiro; Onuma, Manabu; Katayama, Masafumi; Murata, Koichi; Inoue-Murayama, Miho; Hara, Kumiko; Isogai, Emiko; Kiyono, Tohru

    2016-10-01

    Lowland Anoa has become endangered due to hunting and human activity. Protection and breeding of endangered species in a controlled environment is the best way of conservation. However, it is not possible to adopt this approach for all endangered species because of the cost involved and the ever-increasing number of critically endangered species. In consideration of these limitations to the conventional conservation methods, we established a primary cell culture of endangered buffalo (Lowland Anoa, Bubalus quarlesi), for the preservation of this biological resource. In addition, we introduced human derived, mutant cyclin dependent kinase 4 (CDK4), Cyclin D, and telomerase reverse transcriptase (TERT) into the primary cells. The successful introduction of these three genes was confirmed by western blot with specific antibodies, and enzymatic activity. We also showed that the expression of mutant CDK4, Cyclin D, and TERT allows us to efficiently establish an immortalized cell line, with an intact chromosome pattern, from Lowland Anoa. To the best of our knowledge, this study is the first investigation that established an immortalized cell line of an endangered wild animal species. PMID:27449922

  13. Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms

    PubMed Central

    Causton, Helen C.; Feeney, Kevin A.; Ziegler, Christine A.; O’Neill, John S.

    2015-01-01

    Summary Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment [1, 2]. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms [1, 3, 4]. In contrast, contributions to circadian rhythmicity made by a handful of post-translational mechanisms, such as phosphorylation of clock proteins by casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3), appear conserved among phyla [3, 5]. These kinases have many other essential cellular functions and are better conserved in their contribution to timekeeping than any of the clock proteins they phosphorylate [6]. Rhythmic oscillations in cellular redox state are another universal feature of circadian timekeeping, e.g., over-oxidation cycles of abundant peroxiredoxin proteins [7–9]. Here, we use comparative chronobiology to distinguish fundamental clock mechanisms from species and/or tissue-specific adaptations and thereby identify features shared between circadian rhythms in mammalian cells and non-circadian temperature-compensated respiratory oscillations in budding yeast [10]. We find that both types of oscillations are coupled with the cell division cycle, exhibit period determination by CK1 and GSK3, and have peroxiredoxin over-oxidation cycles. We also explore how peroxiredoxins contribute to YROs. Our data point to common mechanisms underlying both YROs and circadian rhythms and suggest two interpretations: either certain biochemical systems are simply permissive for cellular oscillations (with frequencies from hours to days) or this commonality arose via divergence from an ancestral cellular clock. PMID:25866393

  14. Model Organisms for Studying the Cell Cycle.

    PubMed

    Tang, Zhaohua

    2016-01-01

    Regulation of the cell-division cycle is fundamental for the growth, development, and reproduction of all species of life. In the past several decades, a conserved theme of cell cycle regulation has emerged from research in diverse model organisms. A comparison of distinct features of several diverse model organisms commonly used in cell cycle studies highlights their suitability for various experimental approaches, and recaptures their contributions to our current understanding of the eukaryotic cell cycle. A historic perspective presents a recollection of the breakthrough upon unfolding the universal principles of cell cycle control by scientists working with diverse model organisms, thereby appreciating the discovery pathways in this field. A comprehensive understanding is necessary to address current challenging questions about cell cycle control. Advances in genomics, proteomics, quantitative methodologies, and approaches of systems biology are redefining the traditional concept of what constitutes a model organism and have established a new era for development of novel, and refinement of the established model organisms. Researchers working in the field are no longer separated by their favorite model organisms; they have become more integrated into a larger community for gaining greater insights into how a cell divides and cycles. The new technologies provide a broad evolutionary spectrum of the cell-division cycle and allow informative comparisons among different species at a level that has never been possible, exerting unimaginable impact on our comprehensive understanding of cell cycle regulation.

  15. Specific cell cycle synchronization with butyrate and cell cycle analysis.

    PubMed

    Li, Congjun

    2011-01-01

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in Madin Darby Bovine Kidney (MDBK) cells. We explore the possibility of using butyrate-blocked cells to obtain synchronized cells and we characterize the properties of butyrate-induced cell cycle arrest. The site of growth inhibition and cell cycle arrest was analyzed using 5-bromo-2'-deoxyuridine (BrdU) incorporation and flow cytometry analyses. Exposure of MDBK cells to 10 mM butyrate caused growth inhibition and cell cycle arrest in a reversible manner. Butyrate affected the cell cycle at a specific point both immediately after mitosis and at a very early stage of the G1 phase. After release from butyrate arrest, MDBK cells underwent synchronous cycles of DNA synthesis and transited through the S phase. It takes at least 8 h for butyrate-induced G1-synchronized cells to begin the progression into the S phase. One cycle of cell division for MDBK cells is about 20 h. By combining BrdU incorporation and DNA content analysis, not only can the overlapping of different cell populations be eliminated, but the frequency and nature of individual cells that have synthesized DNA can also be determined.

  16. Cell cycle effects of drugs

    SciTech Connect

    Dethlefsen, L.A.

    1986-01-01

    This book contains 11 chapters. Some of the chapter titles are: Cell Growth and Division Cycle; Cell Cycle Effects of Alkylating Agents; Biological Effects of Folic Acid Antagonists with Antineoplastic Activity; and Bleomycin-Mode of Action with Particular Reference to the Cell Cycle.

  17. Cell Cycle Regulation of DNA Replication

    PubMed Central

    Sclafani, R. A.; Holzen, T. M.

    2008-01-01

    Eukaryotic DNA replication is regulated to ensure all chromosomes replicate once and only once per cell cycle. Replication begins at many origins scattered along each chromosome. Except for budding yeast, origins are not defined DNA sequences and probably are inherited by epigenetic mechanisms. Initiation at origins occurs throughout the S phase according to a temporal program that is important in regulating gene expression during development. Most replication proteins are conserved in evolution in eukaryotes and archaea, but not in bacteria. However, the mechanism of initiation is conserved and consists of origin recognition, assembly of pre-replication (pre-RC) initiative complexes, helicase activation, and replisome loading. Cell cycle regulation by protein phosphorylation ensures that pre-RC assembly can only occur in G1 phase, whereas helicase activation and loading can only occur in S phase. Checkpoint regulation maintains high fidelity by stabilizing replication forks and preventing cell cycle progression during replication stress or damage. PMID:17630848

  18. How do prokaryotic cells cycle?

    PubMed

    Margolin, William; Bernander, Rolf

    2004-09-21

    This issue of Current Biology features five reviews covering various key aspects of the eukaryotic cell cycle. The topics include initiation of chromosome replication, assembly of the mitotic spindle, cytokinesis, the regulation of cell-cycle progression, and cell-cycle modeling, focusing mainly on budding yeast, fission yeast and animal cell model systems. The reviews underscore common themes as well as key differences in the way these processes are carried out and regulated among the different model organisms. Consequently, an important question is how cell-cycle mechanisms and controls have evolved, particularly in the broader perspective of the three domains of life.

  19. MadR1, a Mycobacterium tuberculosis cell cycle stress response protein that is a member of a widely conserved protein class of prokaryotic, eukaryotic and archeal origin.

    PubMed

    Crew, Rebecca; Ramirez, Melissa V; England, Kathleen; Slayden, Richard A

    2015-05-01

    Stress-induced molecular programs designed to stall division progression are nearly ubiquitous in bacteria, with one well-known example being the participation of the SulA septum inhibiting protein in the SOS DNA damage repair response. Mycobacteria similarly demonstrate stress-altered growth kinetics, however no such regulators have been found in these organisms. We therefore set out to identify SulA-like regulatory proteins in Mycobacterium tuberculosis. A bioinformatics modeling-based approach led to the identification of rv2216 as encoding for a protein with weak similarity to SulA, further analysis distinguished this protein as belonging to a group of uncharacterized growth promoting proteins. We have named the mycobacterial protein encoded by rv2216 morphology altering division regulator protein 1, MadR1. Overexpression of madR1 modulated cell length while maintaining growth kinetics similar to wild-type, and increased the proportion of bent or V-form cells in the population. The presence of MadR1-GFP at regions of cellular elongation (poles) and morphological differentiation (V-form) suggests MadR1 involvement in phenotypic heterogeneity and longitudinal cellular growth. Global transcriptional analysis indicated that MadR1 functionality is linked to lipid editing programs required for growth and persistence. This is the first report to differentiate the larger class of these conserved proteins from SulA proteins and characterizes MadR1 effects on the mycobacterial cell. PMID:25829286

  20. MadR1, a Mycobacterium tuberculosis cell cycle stress response protein that is a member of a widely conserved protein class of prokaryotic, eukaryotic and archaeal origin

    PubMed Central

    Crew, Rebecca; Ramirez, Melissa V.; England, Kathleen; Slayden, Richard A.

    2015-01-01

    SUMMARY Stress-induced molecular programs designed to stall division progression are nearly ubiquitous in bacteria, with one well-known example being the participation of the SulA septum inhibiting protein in the SOS DNA damage repair response. Mycobacteria similarly demonstrate stress-altered growth kinetics, however no such regulators have been found in these organisms. We therefore set out to identify SulA-like regulatory proteins in Mycobacterium tuberculosis. A bioinformatics modeling-based approach led to the identification of rv2216 as encoding for a protein with weak similarity to SulA, further analysis distinguished this protein as belonging to a group of previously uncharacterized growth promoting proteins. We have named the mycobacterial protein encoded by rv2216 morphology altering division regulator protein 1, MadR1. Overexpression of madR1 modulated cell length while maintaining growth kinetics similar to wild-type, and increased the proportion of bent or V-form cells in the population. The presence of MadR1-GFP at regions of cellular elongation (poles) and morphological differentiation (V-form) suggests MadR1 involvement in phenotypic herterogeneity and longitudinal cellular growth. Global transcriptional analysis indicated that MadR1 functionality is linked to lipid editing programs required for growth and persistence. This is the first report to differentiate the larger class of these conserved proteins from SulA proteins and characterizes MadR1 effects on the mycobacterial cell. PMID:25829286

  1. Cell cycle checkpoint regulators reach a zillion

    PubMed Central

    Yasutis, Kimberly M.; Kozminski, Keith G.

    2013-01-01

    Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered. PMID:23598718

  2. Cell proliferation and cell cycle control: a mini review.

    PubMed

    Golias, C H; Charalabopoulos, A; Charalabopoulos, K

    2004-12-01

    Tumourigenesis is the result of cell cycle disorganisation, leading to an uncontrolled cellular proliferation. Specific cellular processes-mechanisms that control cell cycle progression and checkpoint traversation through the intermitotic phases are deregulated. Normally, these events are highly conserved due to the existence of conservatory mechanisms and molecules such as cell cycle genes and their products: cyclins, cyclin dependent kinases (Cdks), Cdk inhibitors (CKI) and extra cellular factors (i.e. growth factors). Revolutionary techniques using laser cytometry and commercial software are available to quantify and evaluate cell cycle processes and cellular growth. S-phase fraction measurements, including ploidy values, using histograms and estimation of indices such as the mitotic index and tumour-doubling time indices, provide adequate information to the clinician to evaluate tumour aggressiveness, prognosis and the strategies for radiotherapy and chemotherapy in experimental researches.

  3. Autoradiography and the Cell Cycle.

    ERIC Educational Resources Information Center

    Jones, C. Weldon

    1992-01-01

    Outlines the stages of a cell biology "pulse-chase" experiment in which the students apply autoradiography techniques to learn about the concept of the cell cycle. Includes (1) seed germination and plant growth; (2) radioactive labeling and fixation of root tips; (3) feulgen staining of root tips; (4) preparation of autoradiograms; and (5)…

  4. Cell Cycle Regulation and Melanoma.

    PubMed

    Xu, Wen; McArthur, Grant

    2016-06-01

    Dysregulation of cell cycle control is a hallmark of melanomagenesis. Agents targeting the G1-S and G2-M checkpoints, as well as direct anti-mitotic agents, have all shown promising preclinical activity in melanoma. However, in vivo, standalone single agents targeting cell cycle regulation have only demonstrated modest efficacy in unselected patients. The advent of specific CDK 4/6 inhibitors targeting the G1-S transition, with an improved therapeutic index, is a significant step forward. Potential synergy exists with the combination of CDK4/6 inhibitors with existing therapies targeting the MAPK pathway, particularly in subsets of metastatic melanomas such as NRAS and BRAF mutants. This reviews summaries of the latest developments in both preclinical and clinical data with cell cycle-targeted therapies in melanoma. PMID:27106898

  5. Translational environmental biology: cell biology informing conservation.

    PubMed

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  6. Translational environmental biology: cell biology informing conservation.

    PubMed

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. PMID:24766840

  7. Analysis of the Schizosaccharomyces pombe Cell Cycle.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle.

  8. Conserved region 2 of adenovirus E1A has a function distinct from pRb binding required to prevent cell cycle arrest by p16INK4a or p27Kip1.

    PubMed

    Alevizopoulos, K; Sanchez, B; Amati, B

    2000-04-13

    Ectopic expression of the CDK inhibitors (CKIs) p16INK4a and p27Kip1 in Rat1 fibroblasts induces dephosphorylation and activation of Retinoblastoma-family proteins (pRb, p107 and p130), their association with E2F proteins, and cell cycle arrest in G1. The growth-inhibitory action of p16, in particular, is believed to be mediated essentially via pRb activation. The 12S E1A protein of human Adenovirus 5 associates with pRb-family proteins via residues in its Conserved Regions (CR) 1 and 2, in particular through the motif LXCXE in CR2. These interactions are required for E1A to prevent G1 arrest upon co-expression of CKIs. We show here that mutating either of two conserved motifs adjacent to LXCXE in CR2, GFP and SDDEDEE, also impairs the ability of E1A to overcome G1 arrest by p16 or p27. Strikingly, however, these mutations affect neither the association of E1A with pRb, p07 and p130, nor its ability to derepress E2F-1 transcriptional activity in transient transfection assays. One of the EIA mutants, however, is defective in derepressing several endogenous E2F target genes in the presence of p16 or p27. Thus, CR2 possesses an essential function besides pRb-binding. We speculate that this function might be required for the full derepression of E2F-regulated genes in their natural chromatin context. PMID:10803468

  9. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  10. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development.

    PubMed

    Palmer, N; Kaldis, P

    2016-01-01

    The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development. PMID:27475848

  11. Regulation of the Cell Division Cycle in Trypanosoma brucei

    PubMed Central

    2012-01-01

    The cell division cycle is tightly regulated by the activation and inactivation of a series of proteins that control the replication and segregation of organelles to the daughter cells. During the past decade, we have witnessed significant advances in our understanding of the cell cycle in Trypanosoma brucei and how the cycle is regulated by various regulatory proteins. However, many other regulators, especially those unique to trypanosomes, remain to be identified, and we are just beginning to delineate the signaling pathways that drive the transitions through different cell cycle stages, such as the G1/S transition, G2/M transition, and mitosis-cytokinesis transition. Trypanosomes appear to employ both evolutionarily conserved and trypanosome-specific molecules to regulate the various stages of its cell cycle, including DNA replication initiation, spindle assembly, chromosome segregation, and cytokinesis initiation and completion. Strikingly, trypanosomes lack some crucial regulators that are well conserved across evolution, such as Cdc6 and Cdt1, which are involved in DNA replication licensing, the spindle motor kinesin-5, which is required for spindle assembly, the central spindlin complex, which has been implicated in cytokinesis initiation, and the actomyosin contractile ring, which is located at the cleavage furrow. Conversely, trypanosomes possess certain regulators, such as cyclins, cyclin-dependent kinases, and mitotic centromere-associated kinesins, that are greatly expanded and likely play diverse cellular functions. Overall, trypanosomes apparently have integrated unique regulators into the evolutionarily conserved pathways to compensate for the absence of those conserved molecules and, additionally, have evolved certain cell cycle regulatory pathways that are either different from its human host or distinct between its own life cycle forms. PMID:22865501

  12. "Constructing" the Cell Cycle in 3D

    ERIC Educational Resources Information Center

    Koc, Isil; Turan, Merve

    2012-01-01

    The cycle of duplication and division, known as the "cell cycle," is the essential mechanism by which all living organisms reproduce. This activity allows students to develop an understanding of the main events that occur during the typical eukaryotic cell cycle mostly in the process of mitotic phase that divides the duplicated genetic material…

  13. Interplay between flagellation and cell cycle control in Caulobacter.

    PubMed

    Ardissone, Silvia; Viollier, Patrick H

    2015-12-01

    The assembly of the flagellum, a sophisticated nanomachine powering bacterial locomotion in liquids and across surfaces, is highly regulated. In the synchronizable α-Proteobacterium Caulobacter crescentus, the flagellum is built at a pre-selected cell pole and flagellar transcript abundance oscillates during the cell cycle. Conserved regulators not only dictate when the transcripts encoding flagellar structural proteins peak, but also those encoding polarization factors. Additionally, post-transcriptional cell cycle cues facilitate flagellar (dis-)assembly at the new cell pole. Because of this regulatory complexity and the power of bacterial genetics, motility is a suitable and simple proxy for dissecting how bacteria implement cell cycle progression and polarity, while also providing clues on how bacteria might decide when and where to display other surface structures. PMID:26476805

  14. Analysis of the Schizosaccharomyces pombe Cell Cycle.

    PubMed

    Hagan, Iain M; Grallert, Agnes; Simanis, Viesturs

    2016-01-01

    Schizosaccharomyces pombe cells are rod shaped, and they grow by tip elongation. Growth ceases during mitosis and cell division; therefore, the length of a septated cell is a direct measure of the timing of mitotic commitment, and the length of a wild-type cell is an indicator of its position in the cell cycle. A large number of documented stage-specific changes can be used as landmarks to characterize cell cycle progression under specific experimental conditions. Conditional mutations can permanently or transiently block the cell cycle at almost any stage. Large, synchronously dividing cell populations, essential for the biochemical analysis of cell cycle events, can be generated by induction synchrony (arrest-release of a cell cycle mutant) or selection synchrony (centrifugal elutriation or lactose-gradient centrifugation). Schizosaccharomyces pombe cell cycle studies routinely combine particular markers, mutants, and synchronization procedures to manipulate the cycle. We describe these techniques and list key landmarks in the fission yeast mitotic cell division cycle. PMID:27587785

  15. Global Conservation of Protein Status between Cell Lines and Xenografts.

    PubMed

    Biau, Julian; Chautard, Emmanuel; Court, Frank; Pereira, Bruno; Verrelle, Pierre; Devun, Flavien; De Koning, Leanne; Dutreix, Marie

    2016-08-01

    Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery. PMID:27567954

  16. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    PubMed Central

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  17. Gene copy number and cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Ghosh, Bhaswar; Bose, Indrani

    2006-03-01

    The cell cycle is an orderly sequence of events which ultimately lead to the division of a single cell into two daughter cells. In the case of DNA damage by radiation or chemicals, the damage checkpoints in the G1 and G2 phases of the cell cycle are activated. This results in an arrest of the cell cycle so that the DNA damage can be repaired. Once this is done, the cell continues with its usual cycle of activity. We study a mathematical model of the DNA damage checkpoint in the G2 phase which arrests the transition from the G2 to the M (mitotic) phase of the cell cycle. The tumor suppressor protein p53 plays a key role in activating the pathways leading to cell cycle arrest in mammalian systems. If the DNA damage is severe, the p53 proteins activate other pathways which bring about apoptosis, i.e., programmed cell death. Loss of the p53 gene results in the proliferation of cells containing damaged DNA, i.e., in the growth of tumors which may ultimately become cancerous. There is some recent experimental evidence which suggests that the mutation of a single copy of the p53 gene (in the normal cell each gene has two identical copies) is sufficient to trigger the formation of tumors. We study the effect of reducing the gene copy number of the p53 and two other genes on cell cycle arrest and obtain results consistent with experimental observations.

  18. NSA2, a novel nucleolus protein regulates cell proliferation and cell cycle

    SciTech Connect

    Zhang, Heyu; Ma, Xi; Shi, Taiping; Song, Quansheng; Zhao, Hongshan; Ma, Dalong

    2010-01-01

    NSA2 (Nop seven-associated 2) was previously identified in a high throughput screen of novel human genes associated with cell proliferation, and the NSA2 protein is evolutionarily conserved across different species. In this study, we revealed that NSA2 is broadly expressed in human tissues and cultured cell lines, and located in the nucleolus of the cell. Both of the putative nuclear localization signals (NLSs) of NSA2, also overlapped with nucleolar localization signals (NoLSs), are capable of directing nucleolar accumulation. Moreover, over-expression of the NSA2 protein promoted cell growth in different cell lines and regulated the G1/S transition in the cell cycle. SiRNA silencing of the NSA2 transcript attenuated the cell growth and dramatically blocked the cell cycle in G1/S transition. Our results demonstrated that NSA2 is a nucleolar protein involved in cell proliferation and cell cycle regulation.

  19. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  20. Stretched cell cycle model for proliferating lymphocytes

    PubMed Central

    Dowling, Mark R.; Kan, Andrey; Heinzel, Susanne; Zhou, Jie H. S.; Marchingo, Julia M.; Wellard, Cameron J.; Markham, John F.; Hodgkin, Philip D.

    2014-01-01

    Stochastic variation in cell cycle time is a consistent feature of otherwise similar cells within a growing population. Classic studies concluded that the bulk of the variation occurs in the G1 phase, and many mathematical models assume a constant time for traversing the S/G2/M phases. By direct observation of transgenic fluorescent fusion proteins that report the onset of S phase, we establish that dividing B and T lymphocytes spend a near-fixed proportion of total division time in S/G2/M phases, and this proportion is correlated between sibling cells. This result is inconsistent with models that assume independent times for consecutive phases. Instead, we propose a stretching model for dividing lymphocytes where all parts of the cell cycle are proportional to total division time. Data fitting based on a stretched cell cycle model can significantly improve estimates of cell cycle parameters drawn from DNA labeling data used to monitor immune cell dynamics. PMID:24733943

  1. Metabolic control of the cell cycle

    PubMed Central

    Kalucka, Joanna; Missiaen, Rindert; Georgiadou, Maria; Schoors, Sandra; Lange, Christian; De Bock, Katrien; Dewerchin, Mieke; Carmeliet, Peter

    2015-01-01

    Cell division is a metabolically demanding process, requiring the production of large amounts of energy and biomass. Not surprisingly therefore, a cell's decision to initiate division is co-determined by its metabolic status and the availability of nutrients. Emerging evidence reveals that metabolism is not only undergoing substantial changes during the cell cycle, but it is becoming equally clear that metabolism regulates cell cycle progression. Here, we overview the emerging role of those metabolic pathways that have been best characterized to change during or influence cell cycle progression. We then studied how Notch signaling, a key angiogenic pathway that inhibits endothelial cell (EC) proliferation, controls EC metabolism (glycolysis) during the cell cycle. PMID:26431254

  2. Random transitions and cell cycle control.

    PubMed

    Brooks, R F

    1981-01-01

    Differences between the cycle times of sister cells are exponentially distributed, which means that these differences can be explained entirely by the existence of a single critical step in the cell cycle which occurs at random. Cycle times as a whole are not exponentially distributed, indicating an additional source of variation in the cell cycle. It follows that this additional variation must affect sister cells identically; ie, sister cell cycle times are correlated. This correlation and the overall distribution of cycle times can be predicted quantitatively by a model that was developed initially in order to explain certain problematic features of the response of quiescent cells to mitogenic stimulation - in particular, the significance of the lag that almost invariably occurs between stimulation and the onset of DNA synthesis. This model proposes that each cell cycle depends not on one but two random transitions, one of which (at reasonably high growth rates) occurs in the mother cell, its effects being inherited equally by the two daughter cells. The fundamental timing element in the cell cycle is proposed to be a lengthy process, called L, which accounts for most of the lag on mitogenic stimulation and also for the minimum cycle time in growing cultures. One of the random transitions is concerned with the initiation of L, whereas the other becomes possible on completion of L. The latter transition has two consequences: the first is the initiation of a sequence of events which includes S, G2 and M; the second is the restoration of the state from which L may be initiated once more. As a result, L may begin (at random) at any stage of the conventional cycle, ie, S, G2, M, or G1. There are marked similarities between the hypothetical process L and the biogenesis of mitotic centres - the structures responsible for organising the spindle poles. PMID:7312875

  3. Analysis of simple sequence repeats in mammalian cell cycle genes.

    PubMed

    Trivedi, Seema; Wills, Christopher; Metzgar, David

    2014-01-01

    Simple sequence repeats (SSRs), or microsatellites are hyper-mutable and can lead to disorders. Here we explore SSR distribution in cell cycle-associated genes [grouped into: checkpoint; regulation; replication, repair, and recombination (RRR); and transition] in humans and orthologues of eight mammals. Among the gene groups studied, transition genes have the highest SSR density. Trinucleotide repeats are not abundant and introns have higher repeat density than exons. Many repeats in human genes are conserved; however, CG motifs are conserved only in regulation genes. SSR variability in cell cycle genes represents a genetic Achilles' heel, yet SSRs are common in all groups of genes. This tolerance many be due to i) positions in introns where they do not disrupt gene function, ii) essential roles in regulation, iii) specific value of adaptability, and/or iv) lack of negative selection pressure. Present study may be useful for further exploration of their medical relevance and potential functionality.

  4. Protein tyrosine nitration in the cell cycle

    SciTech Connect

    Jia, Min; Mateoiu, Claudia; Souchelnytskyi, Serhiy

    2011-09-23

    Highlights: {yields} Enrichment of 3-nitrotyrosine containing proteins from cells synchronized in different phases of the cell cycle. {yields} Identification of 76 tyrosine nitrated proteins that change expression during the cell cycle. {yields} Nineteen identified proteins were previously described as regulators of cell proliferation. -- Abstract: Nitration of tyrosine residues in proteins is associated with cell response to oxidative/nitrosative stress. Tyrosine nitration is relatively low abundant post-translational modification that may affect protein functions. Little is known about the extent of protein tyrosine nitration in cells during progression through the cell cycle. Here we report identification of proteins enriched for tyrosine nitration in cells synchronized in G0/G1, S or G2/M phases of the cell cycle. We identified 27 proteins in cells synchronized in G0/G1 phase, 37 proteins in S phase synchronized cells, and 12 proteins related to G2/M phase. Nineteen of the identified proteins were previously described as regulators of cell proliferation. Thus, our data indicate which tyrosine nitrated proteins may affect regulation of the cell cycle.

  5. High-Cycle-Life Lithium Cell

    NASA Technical Reports Server (NTRS)

    Yen, S. P. S.; Carter, B.; Shen, D.; Somoano, R.

    1985-01-01

    Lithium-anode electrochemical cell offers increased number of charge/ discharge cycles. Cell uses components selected for compatibility with electrolyte solvent: These materials are wettable and chemically stable. Low vapor pressure and high electrochemical stability of solvent improve cell packaging, handling, and safety. Cell operates at modest temperatures - less than 100 degrees C - and is well suited to automotive, communications, and other applications.

  6. Linking the Cell Cycle to Cell Fate Decisions.

    PubMed

    Dalton, Stephen

    2015-10-01

    Pluripotent stem cells (PSCs) retain the ability to differentiate into a wide range of cell types while undergoing self-renewal. They also exhibit an unusual mode of cell cycle regulation, reflected by a cell cycle structure where G1 and G2 phases are truncated. When individual PSCs are exposed to specification cues, they activate developmental programs and remodel the cell cycle so that the length of G1 and overall cell division times increase. The response of individual stem cells to pro-differentiation signals is strikingly heterogeneous, resulting in asynchronous differentiation. Recent evidence indicates that this phenomenon is due to cell cycle-dependent mechanisms that restrict the initial activation of developmental genes to the G1 phase. This suggests a broad biological mechanism where multipotent cells are 'primed' to initiate cell fate decisions during their transition through G1. Here, I discuss mechanisms underpinning the commitment towards the differentiated state and its relation to the cell cycle.

  7. Interplay between cell growth and cell cycle in plants.

    PubMed

    Sablowski, Robert; Carnier Dornelas, Marcelo

    2014-06-01

    The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

  8. Cell cycle control of DNA joint molecule resolution.

    PubMed

    Wild, Philipp; Matos, Joao

    2016-06-01

    The establishment of stable interactions between chromosomes underpins vital cellular processes such as recombinational DNA repair and bipolar chromosome segregation. On the other hand, timely disengagement of persistent connections is necessary to assure efficient partitioning of the replicated genome prior to cell division. Whereas great progress has been made in defining how cohesin-mediated chromosomal interactions are disengaged as cells prepare to undergo chromosome segregation, little is known about the metabolism of DNA joint molecules (JMs), generated during the repair of chromosomal lesions. Recent work on Mus81 and Yen1/GEN1, two conserved structure-selective endonucleases, revealed unforeseen links between JM-processing and cell cycle progression. Cell cycle kinases and phosphatases control Mus81 and Yen1/GEN1 to restrain deleterious JM-processing during S-phase, while safeguarding chromosome segregation during mitosis.

  9. Analysis of Cell Cycle Status of Murine Hematopoietic Stem Cells.

    PubMed

    Szade, Krzysztof; Bukowska-Strakova, Karolina; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Józef

    2016-01-01

    Hematopoietic stem cells (HSC) act as paradigmatic tissue-specific adult stem cells. While they are quiescent in steady-state conditions, they enter the cell cycle and proliferate in stress conditions and during tissue regeneration. Therefore, analysis of cell cycle status of HSC is crucial for understanding their biology. However, due to low number of HSC in tissue and need to use many surface markers for their identification, analysis of their cycle status is technically complicated. Here, we presented our simple strategy to analyze cell cycle of strictly defined LKS CD48(-)CD150(+)CD34(-) HSC, together with Ki67 and DAPI staining by flow cytometry.

  10. A festival of cell-cycle controls.

    PubMed

    Haase, S B; Clarke, D J

    2001-11-01

    The second biennial Salk Cell Cycle meeting convened on 22 June 2001 in San Diego, California. Organized by Tony Hunter and Susan Forsburg of the Salk Institute, the five-day conference was highlighted by enlightening science and plenty of San Diego sunshine. Presentations covered a broad range of contemporary cell-cycle topics, ranging from regulation of DNA replication and mitosis to DNA damage recognition and checkpoint control.

  11. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation.

  12. Fuel cell and advanced turbine power cycle

    SciTech Connect

    White, D.J.

    1995-10-19

    Solar Turbines, Incorporated (Solar) has a vested interest in the integration of gas turbines and high temperature fuel cells and in particular, solid oxide fuel cells (SOFCs). Solar has identified a parallel path approach to the technology developments needed for future products. The primary approach is to move away from the simple cycle industrial machines of the past and develop as a first step more efficient recuperated engines. This move was prompted by the recognition that the simple cycle machines were rapidly approaching their efficiency limits. Improving the efficiency of simple cycle machines is and will become increasingly more costly. Each efficiency increment will be progressively more costly than the previous step.

  13. Cell Cycle Synchronization in Xenopus Egg Extracts.

    PubMed

    Gillespie, Peter J; Neusiedler, Julia; Creavin, Kevin; Chadha, Gaganmeet Singh; Blow, J Julian

    2016-01-01

    Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.

  14. The cell cycle and acute kidney injury.

    PubMed

    Price, Peter M; Safirstein, Robert L; Megyesi, Judit

    2009-09-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury.

  15. The cell cycle DB: a systems biology approach to cell cycle analysis

    PubMed Central

    Alfieri, Roberta; Merelli, Ivan; Mosca, Ettore; Milanesi, Luciano

    2008-01-01

    The cell cycle database is a biological resource that collects the most relevant information related to genes and proteins involved in human and yeast cell cycle processes. The database, which is accessible at the web site http://www.itb.cnr.it/cellcycle, has been developed in a systems biology context, since it also stores the cell cycle mathematical models published in the recent years, with the possibility to simulate them directly. The aim of our resource is to give an exhaustive view of the cell cycle process starting from its building-blocks, genes and proteins, toward the pathway they create, represented by the models. PMID:18160409

  16. Cycle life test of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1980-01-01

    The results of the life cycling program on rechargeable calls are reported. Information on required data, the use of which the data will be put, application details, including orbital description, charge control methods, load rquirements, etc., are given. Cycle tests were performed on 660 sealed, nickel cadmium cells. The cells consisted of seven sample classifications ranging form 3.0 to 20 amp. hours. Nickel cadmium, silver cadmium, and silver zinc sealed cells, excluding synchronous orbit and accelerated test packs were added. The capacities of the nickel cadmium cells, the silver cadmium and the silver zinc cells differed in range of amp hrs. The cells were cylced under different load, charge control, and temperature conditions. All cell packs are recharged by use of a pack voltage limit. All charging is constant current until the voltage limit is reached.

  17. Helicobacter pylori inhibits gastric cell cycle progression.

    PubMed

    Ahmed, A; Smoot, D; Littleton, G; Tackey, R; Walters, C S; Kashanchi, F; Allen, C R; Ashktorab, H

    2000-08-01

    Helicobacter pylori infection of the gastric mucosa is associated with changes in gastric epithelial cell proliferation. In vitro studies have shown that exposure to H. pylori inhibits proliferation of gastric cells. This study sought to investigate the cell cycle progression of gastric epithelial cell lines in the presence and absence of H. pylori. Unsynchronized and synchronized gastric epithelial cell lines AGS and KatoIII were exposed to H. pylori over a 24-h period. Cell cycle progression was determined by flow cytometry using propidium iodide (PI), and by analysis of cyclin E, p21, and p53 protein expression using Western blots. In the absence of H. pylori 40, 45, and 15% of unsynchronized AGS cells were in G(0)-G(1), S, and G(2)-M phases, respectively, by flow cytometry analysis. When AGS cells were cultured in the presence of H. pylori, the S phase decreased 10% and the G(0)-G(1) phase increased 17% after 24 h compared with the controls. KatoIII cells, which have a deleted p53 gene, showed little or no response to H. pylori. When G1/S synchronized AGS cells were incubated with media containing H. pylori, the G(1) phase increased significantly (25%, P < 0.05) compared with controls after 24 h. In contrast, the control cells were able to pass through S phase. The inhibitory effects of H. pylori on the cell cycle of AGS cells were associated with a significant increase in p53 and p21 expression after 24 h. The expression of cyclin E was downregulated in AGS cells following exposure of AGS cells to H. pylori for 24 h. This study shows that H. pylori-induced growth inhibition in vitro is predominantly at the G(0)-G(1) checkpoint. Our results suggest that p53 may be important in H. pylori-induced cell cycle arrest. These results support a role for cyclin-dependent kinase inhibitors in the G(1) cell cycle arrest exerted by H. pylori and its involvement in changing the regulatory proteins, p53, p21, and cyclin E in the cell cycle. PMID:11008106

  18. Cell-cycle-specific initiation of replication.

    PubMed

    Nordström, K; Austin, S J

    1993-11-01

    The following characteristics are relevant when replication of chromosomes and plasmids is discussed in relation to the cell cycle: the timing or replication, the selection of molecules for replication, and the coordination of multiple initiation events within a single cell cycle. Several fundamentally different methods have been used to study these processes: Meselson-Stahl density-shift experiments, experiments with the so-called 'baby machine', sorting of cells according to size, and flow cytometry. The evidence for precise timing and co-ordination of chromosome replication in Escherichia coli is overwhelming. Similarly, the high-copy-number plasmid ColE1 and the low-copy-number plasmids R1/R100 without any doubt replicate randomly throughout the cell cycle. Data about the low-copy-number plasmids F and P1 are conflicting. This calls for new types of experiments and for a better understanding of how these plasmids control their replication and partitioning.

  19. Flavonoids: from cell cycle regulation to biotechnology.

    PubMed

    Woo, Ho-Hyung; Jeong, Byeong Ryong; Hawes, Martha C

    2005-03-01

    Flavonoids have been proposed to play diverse roles in plant growth and development, including defense, symbiosis, pollen development and male fertility, polar auxin transport, and protection against ultraviolet radiation. Recently, a new role in cell cycle regulation has emerged. Genetic alteration of glucuronide metabolism by altered expression of a Pisum sativum UDP-glucuronosyltransferase (PsUGT1) results in an altered cell cycle in pea, alfalfa, and Arabidopsis. In alfalfa, altered expression of PsUGT1 results in accumulation of a flavonoid-like compound that suppresses growth of cultured cells. The results are consistent with the hypothesis that PsUGT1 functions by controlling cellular levels of a factor controlling cell cycle (FCC). PMID:15834800

  20. Dynamics of conservative Bykov cycles: Tangencies, generalized Cocoon bifurcations and elliptic solutions

    NASA Astrophysics Data System (ADS)

    Bessa, Mário; Rodrigues, Alexandre A. P.

    2016-07-01

    This paper presents a mechanism for the coexistence of hyperbolic and non-hyperbolic dynamics arising in a neighbourhood of a conservative Bykov cycle where trajectories turn in opposite directions near the two saddle-foci. We show that within the class of divergence-free vector fields that preserve the cycle, tangencies of the invariant manifolds of two hyperbolic saddle-foci densely occur. The global dynamics is persistently dominated by heteroclinic tangencies and by the existence of infinitely many elliptic points coexisting with non-uniformly hyperbolic suspended horseshoes. A generalized version of the Cocoon bifurcations for conservative systems is obtained.

  1. Cell cycle-specific effects of lovastatin.

    PubMed Central

    Jakóbisiak, M; Bruno, S; Skierski, J S; Darzynkiewicz, Z

    1991-01-01

    Lovastatin (LOV), the drug recently introduced to treat hypercholesteremia, inhibits the synthesis of mevalonic acid. The effects of LOV on the cell cycle progression of the human bladder carcinoma T24 cell line expressing activated p21ras were investigated. At a concentration of 2-10 microM, LOV arrested cells in G1 and also prolonged--or arrested a minor fraction of cells in--the G2 phase of the cell cycle; at a concentration of 50 microM, LOV was cytotoxic. The cytostatic effects were reversed by addition of exogenous mevalonate. Cells arrested in the cycle by LOV were viable for up to 72 hr and did not show any changes in RNA or protein content or chromatin condensation, which would be typical of either unbalanced growth or deep quiescence. The expression of the proliferation-associated nuclear proteins Ki-67 and p105 in these cells was reduced by up to 72% and 74%, respectively, compared with exponentially growing control cells. After removal of LOV, the cells resumed progression through the cycle; they entered S phase asynchronously after a lag of approximately 6 hr. Because mevalonate is essential for the posttranslational modification (isoprenylation) of p21ras, which in turn allows this protein to become attached to the cell membrane, the data suggest that the LOV-induced G1 arrest may be a consequence of the loss of the signal transduction capacity of p21ras. Indeed, while exposure of cells to LOV had no effect on the cellular content of p21ras (detected immunocytochemically), it altered the intracellular location of this protein, causing its dissociation from the cell membrane and translocation toward the cytoplasm and nucleus. However, it is also possible that inhibition of isoprenylation of proteins other than p21ras (e.g., nuclear lamins) by LOV may be responsible for the observed suppression of growth of T24 cells. Images PMID:1673788

  2. Parvovirus infection-induced cell death and cell cycle arrest

    PubMed Central

    Chen, Aaron Yun; Qiu, Jianming

    2011-01-01

    The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest. PMID:21331319

  3. Modeling of Sonos Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.

  4. Natural flavonoids targeting deregulated cell cycle progression in cancer cells.

    PubMed

    Singh, Rana Pratap; Agarwal, Rajesh

    2006-03-01

    The prolonged duration requiring alteration of multi-genetic and epigenetic molecular events for cancer development provides a strong rationale for cancer prevention, which is developing as a potential strategy to arrest or reverse carcinogenic changes before the appearance of the malignant disease. Cell cycle progression is an important biological event having controlled regulation in normal cells, which almost universally becomes aberrant or deregulated in transformed and neoplastic cells. In this regard, targeting deregulated cell cycle progression and its modulation by various natural and synthetic agents are gaining widespread attention in recent years to control the unchecked growth and proliferation in cancer cells. In fact, a vast number of experimental studies convincingly show that many phytochemicals halt uncontrolled cell cycle progression in cancer cells. Among these phytochemicals, natural flavonoids have been identified as a one of the major classes of natural anticancer agents exerting antineoplastic activity via cell cycle arrest as a major mechanism in various types of cancer cells. This review is focused at the modulatory effects of natural flavonoids on cell cycle regulators including cyclin-dependent kinases and their inhibitors, cyclins, p53, retinoblastoma family of proteins, E2Fs, check-point kinases, ATM/ATR and survivin controlling G1/S and G2/M check-point transitions in cell cycle progression, and discusses how these molecular changes could contribute to the antineoplastic effects of natural flavonoids.

  5. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation

    PubMed Central

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G0–G1 phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27Kip1. Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  6. Synchronized Cell Cycle Arrest Promotes Osteoclast Differentiation.

    PubMed

    Kwon, Minsuk; Kim, Jin-Man; Lee, Kyunghee; Park, So-Young; Lim, Hyun-Sook; Kim, Taesoo; Jeong, Daewon

    2016-01-01

    Osteoclast progenitors undergo cell cycle arrest before differentiation into osteoclasts, induced by exposure to macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). The role of such cell cycle arrest in osteoclast differentiation has remained unclear, however. We here examined the effect of synchronized cell cycle arrest on osteoclast formation. Osteoclast progenitors deprived of M-CSF in culture adopted a uniform morphology and exhibited cell cycle arrest at the G₀-G₁ phase in association with both down-regulation of cyclins A and D1 as well as up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Such M-CSF deprivation also promoted the differentiation of osteoclast progenitors into multinucleated osteoclasts expressing high levels of osteoclast marker proteins such as NFATc1, c-Fos, Atp6v0d2, cathepsin K, and integrin β3 on subsequent exposure to M-CSF and RANKL. Our results suggest that synchronized arrest and reprogramming of osteoclast progenitors renders them poised to respond to inducers of osteoclast formation. Further characterization of such effects may facilitate induction of the differentiation of heterogeneous and multipotent cells into desired cell lineages. PMID:27517906

  7. SAFT nickel hydrogen cell cycling status

    NASA Technical Reports Server (NTRS)

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  8. Potassium channels in cell cycle and cell proliferation

    PubMed Central

    Urrego, Diana; Tomczak, Adam P.; Zahed, Farrah; Stühmer, Walter; Pardo, Luis A.

    2014-01-01

    Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression. PMID:24493742

  9. Cell cycle constraints on capsulation and bacteriophage susceptibility

    PubMed Central

    Ardissone, Silvia; Fumeaux, Coralie; Bergé, Matthieu; Beaussart, Audrey; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Dufrêne, Yves F; Viollier, Patrick H

    2014-01-01

    Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity. DOI: http://dx.doi.org/10.7554/eLife.03587.001 PMID:25421297

  10. Primary Cilia and the Cell Cycle

    PubMed Central

    Plotnikova, Olga V.; Pugacheva, Elena N.; Golemis, Erica A.

    2009-01-01

    Cilia are microtubule-based structures that protrude from the cell surface, and function as sensors for mechanical and chemical environmental cues that regulate cellular differentiation or division. In metazoans, ciliary signaling is important both during organismal development and in the homeostasis controls of adult tissues, with receptors for the Hedgehog, PDGF, Wnt, and other signaling cascades arrayed and active along the ciliary membrane. In normal cells, cilia are dynamically regulated during cell cycle progression: present in G0 and G1 cells, and usually in S/G2 cells, but almost invariably resorbed before mitotic entry, to re-appear post-cytokinesis. This periodic resorption and reassembly of cilia, specified by interaction with the intrinsic cell cycle machinery, influences the susceptibility of cells to the influence of extrinsic signals with cilia-associated receptors. Pathogenic conditions of mammals associated with loss of or defects in ciliary integrity include a number of developmental disorders, cystic syndromes in adults, and some cancers. With the continuing expansion of the list of human diseases associated with ciliary abnormalities, the identification of the cellular mechanisms regulating ciliary growth and disassembly has become a topic of intense research interest. Although these mechanisms are far from being understood, a number of recent studies have begun to identify key regulatory factors that may begin to offer insight into disease pathogenesis and treatment. In this chapter we will discuss the current state of knowledge regarding cell cycle control of ciliary dynamics, and provide general methods that can be applied to investigate cell cycle-dependent ciliary growth and disassembly. PMID:20362089

  11. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    NASA Astrophysics Data System (ADS)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  12. Control points within the cell cycle

    SciTech Connect

    Van't Hof, J.

    1984-01-01

    Evidence of the temporal order of chromosomal DNA replication argues favorably for the view that the cell cycle is controlled by genes acting in sequence whose time of expression is determined by mitosis and the amount of nuclear DNA (2C vs 4C) in the cell. Gl and G2 appear to be carbohydrate dependent in that cells starved of either carbohydrate of phosphate fail to make these transitions. Cells deprived of nitrate, however, fail only at Gl to S transition indicating that the controls that operate in G1 differ from those that operate in G2. 46 references, 5 figures.

  13. Cell Cycle Progression of Human Cells Cultured in Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2009-01-01

    Space flight has been shown to alter the astronauts immune systems. Because immune performance is complex and reflects the influence of multiple organ systems within the host, scientists sought to understand the potential impact of microgravity alone on the cellular mechanisms critical to immunity. Lymphocytes and their differentiated immature form, lymphoblasts, play an important and integral role in the body's defense system. T cells, one of the three major types of lymphocytes, play a central role in cell-mediated immunity. They can be distinguished from other lymphocyte types, such as B cells and natural killer cells by the presence of a special receptor on their cell surface called T cell receptors. Reported studies have shown that spaceflight can affect the expression of cell surface markers. Cell surface markers play an important role in the ability of cells to interact and to pass signals between different cells of the same phenotype and cells of different phenotypes. Recent evidence suggests that cell-cycle regulators are essential for T-cell function. To trigger an effective immune response, lymphocytes must proliferate. The objective of this project is to investigate the changes in growth of human cells cultured in rotating bioreactors and to measure the growth rate and the cell cycle distribution for different human cell types. Human lymphocytes and lymphoblasts will be cultured in a bioreactor to simulate aspects of microgravity. The bioreactor is a cylindrical culture vessel that incorporates the aspects of clinostatic rotation of a solid fluid body around a horizontal axis at a constant speed, and compensates gravity by rotation and places cells within the fluid body into a sustained free-fall. Cell cycle progression and cell proliferation of the lymphocytes will be measured for a number of days. In addition, RNA from the cells will be isolated for expression of genes related in cell cycle regulations.

  14. Life cycle assessment to evaluate the environmental impact of biochar implementation in conservation agriculture in Zambia.

    PubMed

    Sparrevik, Magnus; Field, John L; Martinsen, Vegard; Breedveld, Gijs D; Cornelissen, Gerard

    2013-02-01

    Biochar amendment to soil is a potential technology for carbon storage and climate change mitigation. It may, in addition, be a valuable soil fertility enhancer for agricultural purposes in sandy and/or weathered soils. A life cycle assessment including ecological, health and resource impacts has been conducted for field sites in Zambia to evaluate the overall impacts of biochar for agricultural use. The life cycle impacts from conservation farming using cultivation growth basins and precision fertilization with and without biochar addition were in the present study compared to conventional agricultural methods. Three different biochar production methods were evaluated: traditional earth-mound kilns, improved retort kilns, and micro top-lit updraft (TLUD) gasifier stoves. The results confirm that the use of biochar in conservation farming is beneficial for climate change mitigation purposes. However, when including health impacts from particle emissions originating from biochar production, conservation farming plus biochar from earth-mound kilns generally results in a larger negative effect over the whole life cycle than conservation farming without biochar addition. The use of cleaner technologies such as retort kilns or TLUDs can overcome this problem, mainly because fewer particles and less volatile organic compounds, methane and carbon monoxide are emitted. These results emphasize the need for a holistic view on biochar use in agricultural systems. Of special importance is the biochar production technique which has to be evaluated from both environmental/climate, health and social perspectives.

  15. Cell cycle nucleic acids, polypeptides and uses thereof

    DOEpatents

    Gordon-Kamm, William J.; Lowe, Keith S.; Larkins, Brian A.; Dilkes, Brian R.; Sun, Yuejin

    2007-08-14

    The invention provides isolated nucleic acids and their encoded proteins that are involved in cell cycle regulation. The invention further provides recombinant expression cassettes, host cells, transgenic plants, and antibody compositions. The present invention provides methods and compositions relating to altering cell cycle protein content, cell cycle progression, cell number and/or composition of plants.

  16. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  17. The Cell Cycle Ontology: an application ontology for the representation and integrated analysis of the cell cycle process

    PubMed Central

    Antezana, Erick; Egaña, Mikel; Blondé, Ward; Illarramendi, Aitzol; Bilbao, Iñaki; De Baets, Bernard; Stevens, Robert; Mironov, Vladimir; Kuiper, Martin

    2009-01-01

    The Cell Cycle Ontology ( is an application ontology that automatically captures and integrates detailed knowledge on the cell cycle process. Cell Cycle Ontology is enabled by semantic web technologies, and is accessible via the web for browsing, visualizing, advanced querying, and computational reasoning. Cell Cycle Ontology facilitates a detailed analysis of cell cycle-related molecular network components. Through querying and automated reasoning, it may provide new hypotheses to help steer a systems biology approach to biological network building. PMID:19480664

  18. Modeling of SONOS Memory Cell Erase Cycle

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  19. Solid oxide fuel cell combined cycles

    SciTech Connect

    Bevc, F.P.; Lundberg, W.L.; Bachovchin, D.M.

    1996-12-31

    The integration of the solid oxide fuel cell and combustion turbine technologies can result in combined-cycle power plants, fueled with natural gas, that have high efficiencies and clean gaseous emissions. Results of a study are presented in which conceptual designs were developed for 3 power plants based upon such an integration, and ranging in rating from 3 to 10 MW net ac. The plant cycles are described and characteristics of key components summarized. Also, plant design-point efficiency estimates are presented as well as values of other plant performance parameters.

  20. Cell shape dynamics during the staphylococcal cell cycle.

    PubMed

    Monteiro, João M; Fernandes, Pedro B; Vaz, Filipa; Pereira, Ana R; Tavares, Andreia C; Ferreira, Maria T; Pereira, Pedro M; Veiga, Helena; Kuru, Erkin; VanNieuwenhze, Michael S; Brun, Yves V; Filipe, Sérgio R; Pinho, Mariana G

    2015-08-17

    Staphylococcus aureus is an aggressive pathogen and a model organism to study cell division in sequential orthogonal planes in spherical bacteria. However, the small size of staphylococcal cells has impaired analysis of changes in morphology during the cell cycle. Here we use super-resolution microscopy and determine that S. aureus cells are not spherical throughout the cell cycle, but elongate during specific time windows, through peptidoglycan synthesis and remodelling. Both peptidoglycan hydrolysis and turgor pressure are required during division for reshaping the flat division septum into a curved surface. In this process, the septum generates less than one hemisphere of each daughter cell, a trait we show is common to other cocci. Therefore, cell surface scars of previous divisions do not divide the cells in quadrants, generating asymmetry in the daughter cells. Our results introduce a need to reassess the models for division plane selection in cocci.

  1. Cell cycle regulation of hematopoietic stem or progenitor cells.

    PubMed

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  2. The cell cycle as a brake for β-cell regeneration from embryonic stem cells.

    PubMed

    El-Badawy, Ahmed; El-Badri, Nagwa

    2016-01-13

    The generation of insulin-producing β cells from stem cells in vitro provides a promising source of cells for cell transplantation therapy in diabetes. However, insulin-producing cells generated from human stem cells show deficiency in many functional characteristics compared with pancreatic β cells. Recent reports have shown molecular ties between the cell cycle and the differentiation mechanism of embryonic stem (ES) cells, assuming that cell fate decisions are controlled by the cell cycle machinery. Both β cells and ES cells possess unique cell cycle machinery yet with significant contrasts. In this review, we compare the cell cycle control mechanisms in both ES cells and β cells, and highlight the fundamental differences between pluripotent cells of embryonic origin and differentiated β cells. Through critical analysis of the differences of the cell cycle between these two cell types, we propose that the cell cycle of ES cells may act as a brake for β-cell regeneration. Based on these differences, we discuss the potential of modulating the cell cycle of ES cells for the large-scale generation of functionally mature β cells in vitro. Further understanding of the factors that modulate the ES cell cycle will lead to new approaches to enhance the production of functional mature insulin-producing cells, and yield a reliable system to generate bona fide β cells in vitro.

  3. Westinghouse fuel cell combined cycle systems

    SciTech Connect

    Veyo, S.

    1996-12-31

    Efficiency (voltage) of the solid oxide fuel cell (SOFC) should increase with operating pressure, and a pressurized SOFC could function as the heat addition process in a Brayton cycle gas turbine (GT) engine. An overall cycle efficiency of 70% should be possible. In cogeneration, half of the waste heat from a PSOFC/GT should be able to be captured in process steam and hot water, leading to a fuel effectiveness of about 85%. In order to make the PSOFC/GT a commercial reality, satisfactory operation of the SOFC at elevated pressure must be verified, a pressurized SOFC generator module must be designed, built, and tested, and the combined cycle and parameters must be optimized. A prototype must also be demonstrated. This paper describes progress toward making the PSOFC/GT a reality.

  4. Discovery of a Splicing Regulator Required for Cell Cycle Progression

    SciTech Connect

    Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella; Ting, Li-Min; Conde de Felipe, Magnolia; Balu, Bharath; Markillie, Lye Meng; Weiss, Louis M.; Kim, Kami; White, Michael W.

    2013-02-01

    In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.

  5. Metabolism, cell growth and the bacterial cell cycle.

    PubMed

    Wang, Jue D; Levin, Petra A

    2009-11-01

    Adaptation to fluctuations in nutrient availability is a fact of life for single-celled organisms in the 'wild'. A decade ago our understanding of how bacteria adjust cell cycle parameters to accommodate changes in nutrient availability stemmed almost entirely from elegant physiological studies completed in the 1960s. In this Opinion article we summarize recent groundbreaking work in this area and discuss potential mechanisms by which nutrient availability and metabolic status are coordinated with cell growth, chromosome replication and cell division.

  6. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi.

    PubMed

    Medina, Edgar M; Turner, Jonathan J; Gordân, Raluca; Skotheim, Jan M; Buchler, Nicolas E

    2016-01-01

    Although cell cycle control is an ancient, conserved, and essential process, some core animal and fungal cell cycle regulators share no more sequence identity than non-homologous proteins. Here, we show that evolution along the fungal lineage was punctuated by the early acquisition and entrainment of the SBF transcription factor through horizontal gene transfer. Cell cycle evolution in the fungal ancestor then proceeded through a hybrid network containing both SBF and its ancestral animal counterpart E2F, which is still maintained in many basal fungi. We hypothesize that a virally-derived SBF may have initially hijacked cell cycle control by activating transcription via the cis-regulatory elements targeted by the ancestral cell cycle regulator E2F, much like extant viral oncogenes. Consistent with this hypothesis, we show that SBF can regulate promoters with E2F binding sites in budding yeast. PMID:27162172

  7. Feedback loops and reciprocal regulation: recurring motifs in the systems biology of the cell cycle

    PubMed Central

    Ferrell, James E.

    2013-01-01

    The study of eukaryotic cell cycle regulation over the last several decades has led to a remarkably detailed understanding of the complex regulatory system that drives this fundamental process. This allows us to now look for recurring motifs in the regulatory system. Among these are negative feedback loops, which underpin checkpoints and generate cell cycle oscillations; positive feedback loops, which promote oscillations and make cell cycle transitions switch-like and unidirectional; and reciprocal regulation, which can increase the control a key regulator exerts. These simple motifs are found at multiple points in the cell cycle (e.g., S-phase and M-phase control) and are conserved in diverse organisms. These findings argue for an underlying unity in the principles of cell cycle control. PMID:23927869

  8. Punctuated evolution and transitional hybrid network in an ancestral cell cycle of fungi

    PubMed Central

    Medina, Edgar M; Turner, Jonathan J; Gordân, Raluca; Skotheim, Jan M; Buchler, Nicolas E

    2016-01-01

    Although cell cycle control is an ancient, conserved, and essential process, some core animal and fungal cell cycle regulators share no more sequence identity than non-homologous proteins. Here, we show that evolution along the fungal lineage was punctuated by the early acquisition and entrainment of the SBF transcription factor through horizontal gene transfer. Cell cycle evolution in the fungal ancestor then proceeded through a hybrid network containing both SBF and its ancestral animal counterpart E2F, which is still maintained in many basal fungi. We hypothesize that a virally-derived SBF may have initially hijacked cell cycle control by activating transcription via the cis-regulatory elements targeted by the ancestral cell cycle regulator E2F, much like extant viral oncogenes. Consistent with this hypothesis, we show that SBF can regulate promoters with E2F binding sites in budding yeast. DOI: http://dx.doi.org/10.7554/eLife.09492.001 PMID:27162172

  9. Targeting cell cycle regulators in hematologic malignancies.

    PubMed

    Aleem, Eiman; Arceci, Robert J

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  10. Targeting cell cycle regulators in hematologic malignancies

    PubMed Central

    Aleem, Eiman; Arceci, Robert J.

    2015-01-01

    Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed. PMID:25914884

  11. Elutriation for Cell Cycle Synchronization in Fission Yeast.

    PubMed

    Kume, Kazunori

    2016-01-01

    Cell synchronization is a powerful technique for studying the eukaryotic cell cycle events precisely. The fission yeast is a rod-shaped cell whose growth is coordinated with the cell cycle. Monitoring the cellular growth of fission yeast is a relatively simple way to measure the cell cycle stage of a cell. Here, we describe a detailed method of unperturbed cell synchronization, named centrifugal elutriation, for fission yeast. PMID:26254921

  12. The Cell Cycle Ontology: an application ontology for the representation and integrated analysis of the cell cycle process.

    PubMed

    Antezana, Erick; Egaña, Mikel; Blondé, Ward; Illarramendi, Aitzol; Bilbao, Iñaki; De Baets, Bernard; Stevens, Robert; Mironov, Vladimir; Kuiper, Martin

    2009-01-01

    The Cell Cycle Ontology (http://www.CellCycleOntology.org) is an application ontology that automatically captures and integrates detailed knowledge on the cell cycle process. Cell Cycle Ontology is enabled by semantic web technologies, and is accessible via the web for browsing, visualizing, advanced querying, and computational reasoning. Cell Cycle Ontology facilitates a detailed analysis of cell cycle-related molecular network components. Through querying and automated reasoning, it may provide new hypotheses to help steer a systems biology approach to biological network building.

  13. Modeling cell-cycle synchronization during embryogenesis in Xenopus laevis

    NASA Astrophysics Data System (ADS)

    McIsaac, R. Scott; Huang, K. C.; Sengupta, Anirvan; Wingreen, Ned

    2010-03-01

    A widely conserved aspect of embryogenesis is the ability to synchronize nuclear divisions post-fertilization. How is synchronization achieved? Given a typical protein diffusion constant of 10 μm^2sec, and an embryo length of 1mm, it would take diffusion many hours to propagate a signal across the embryo. Therefore, synchrony cannot be attained by diffusion alone. We hypothesize that known autocatalytic reactions of cell-cycle components make the embryo an ``active medium'' in which waves propagate much faster than diffusion, enforcing synchrony. We report on robust spatial synchronization of components of the core cell cycle circuit based on a mathematical model previously determined by in vitro experiments. In vivo, synchronized divisions are preceded by a rapid calcium wave that sweeps across the embryo. Experimental evidence supports the hypothesis that increases in transient calcium levels lead to derepression of a negative feedback loop, allowing cell divisions to start. Preliminary results indicate a novel relationship between the speed of the initial calcium wave and the ability to achieve synchronous cell divisions.

  14. The cell cycle rallies the transcription cycle: Cdc28/Cdk1 is a cell cycle-regulated transcriptional CDK.

    PubMed

    Chymkowitch, Pierre; Enserink, Jorrit M

    2013-01-01

    In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery. Here, we discuss the biological significance of this finding and give our view of the kinase-dependent role of Cdc28 in regulation of RNA polymerase II.

  15. MAGNETIC FLUX CONSERVATION IN THE HELIOSHEATH INCLUDING SOLAR CYCLE VARIATIONS OF MAGNETIC FIELD INTENSITY

    SciTech Connect

    Michael, A. T.; Opher, M.; Provornikova, E.; Richardson, J. D.; Tóth, G. E-mail: mopher@bu.edu E-mail: jdr@space.mit.edu

    2015-04-10

    In the heliosheath (HS), Voyager 2 has observed a flow with constant radial velocity and magnetic flux conservation. Voyager 1, however, has observed a decrease in the flow’s radial velocity and an order of magnitude decrease in magnetic flux. We investigate the role of the 11 yr solar cycle variation of the magnetic field strength on the magnetic flux within the HS using a global 3D magnetohydrodynamic model of the heliosphere. We use time and latitude-dependent solar wind velocity and density inferred from Solar and Heliospheric Observatory/SWAN and interplanetary scintillations data and implemented solar cycle variations of the magnetic field derived from 27 day averages of the field magnitude average of the magnetic field at 1 AU from the OMNI database. With the inclusion of the solar cycle time-dependent magnetic field intensity, the model matches the observed intensity of the magnetic field in the HS along both Voyager 1 and 2. This is a significant improvement from the same model without magnetic field solar cycle variations, which was over a factor of two larger. The model accurately predicts the radial velocity observed by Voyager 2; however, the model predicts a flow speed ∼100 km s{sup −1} larger than that derived from LECP measurements at Voyager 1. In the model, magnetic flux is conserved along both Voyager trajectories, contrary to observations. This implies that the solar cycle variations in solar wind magnetic field observed at 1 AU does not cause the order of magnitude decrease in magnetic flux observed in the Voyager 1 data.

  16. Feedback and Modularity in Cell Cycle Control

    NASA Astrophysics Data System (ADS)

    Skotheim, Jan

    2009-03-01

    Underlying the wonderful diversity of natural forms is the ability of an organism to grow into its appropriate shape. Regulation ensures that cells grow, divide and differentiate so that the organism and its constitutive parts are properly proportioned and of suitable size. Although the size-control mechanism active in an individual cell is of fundamental importance to this process, it is difficult to isolate and study in complex multi-cellular systems and remains poorly understood. This motivates our use of the budding yeast model organism, whose Start checkpoint integrates multiple internal (e.g. cell size) and external signals into an irreversible decision to enter the cell cycle. We have endeavored to address the following two questions: What makes the Start transition irreversible? How does a cell compute its own size? I will report on the progress we have made. Our work is part of an emerging framework for understanding biological control circuits, which will allow us to discern the function of natural systems and aid us in engineering synthetic systems.

  17. Alteration of cell cycle progression by Sindbis virus infection

    SciTech Connect

    Yi, Ruirong; Saito, Kengo; Isegawa, Naohisa; Shirasawa, Hiroshi

    2015-07-10

    We examined the impact of Sindbis virus (SINV) infection on cell cycle progression in a cancer cell line, HeLa, and a non-cancerous cell line, Vero. Cell cycle analyses showed that SINV infection is able to alter the cell cycle progression in both HeLa and Vero cells, but differently, especially during the early stage of infection. SINV infection affected the expression of several cell cycle regulators (CDK4, CDK6, cyclin E, p21, cyclin A and cyclin B) in HeLa cells and caused HeLa cells to accumulate in S phase during the early stage of infection. Monitoring SINV replication in HeLa and Vero cells expressing cell cycle indicators revealed that SINV which infected HeLa cells during G{sub 1} phase preferred to proliferate during S/G{sub 2} phase, and the average time interval for viral replication was significantly shorter in both HeLa and Vero cells infected during G{sub 1} phase than in cells infected during S/G{sub 2} phase. - Highlights: • SINV infection was able to alter the cell cycle progression of infected cancer cells. • SINV infection can affect the expression of cell cycle regulators. • SINV infection exhibited a preference for the timing of viral replication among the cell cycle phases.

  18. PLK-1: Angel or devil for cell cycle progression.

    PubMed

    Kumar, Shiv; Sharma, Ashish Ranjan; Sharma, Garima; Chakraborty, Chiranjib; Kim, Jaebong

    2016-04-01

    PLK-1 is a key player in the eukaryotic cell cycle. Cell cycle progression is precisely controlled by cell cycle regulatory kinases. PLK-1 is a mitotic kinase that actively regulates the G2/M transition, mitosis, mitotic exit, and cytokinesis. During cell cycle progression, PLK-1 controls various events related to the cell cycle maturation, directly and/or indirectly. On the contrary, aberrant expression of PLK-1 is strongly associated with tumorigenesis and its poor prognosis. The misexpression of PLK-1 causes the abnormalities including aneuploidy, mitotic defects, leading to tumorigenesis through inhibiting the p53 and pRB genes. Therefore, we reviewed the role of PLK-1 in the cell cycle progression and in the tumorigenesis either as a cell cycle regulator or on an attractive anti-cancer drug target. PMID:26899266

  19. Control of sleep by a network of cell cycle genes.

    PubMed

    Afonso, Dinis J S; Machado, Daniel R; Koh, Kyunghee

    2015-01-01

    Sleep is essential for health and cognition, but the molecular and neural mechanisms of sleep regulation are not well understood. We recently reported the identification of TARANIS (TARA) as a sleep-promoting factor that acts in a previously unknown arousal center in Drosophila. tara mutants exhibit a dose-dependent reduction in sleep amount of up to ∼60%. TARA and its mammalian homologs, the Trip-Br (Transcriptional Regulators Interacting with PHD zinc fingers and/or Bromodomains) family of proteins, are primarily known as transcriptional coregulators involved in cell cycle progression, and contain a conserved Cyclin-A (CycA) binding homology domain. We found that tara and CycA synergistically promote sleep, and CycA levels are reduced in tara mutants. Additional data demonstrated that Cyclin-dependent kinase 1 (Cdk1) antagonizes tara and CycA to promote wakefulness. Moreover, we identified a subset of CycA expressing neurons in the pars lateralis, a brain region proposed to be analogous to the mammalian hypothalamus, as an arousal center. In this Extra View article, we report further characterization of tara mutants and provide an extended discussion of our findings and future directions within the framework of a working model, in which a network of cell cycle genes, tara, CycA, and Cdk1, interact in an arousal center to regulate sleep. PMID:26925838

  20. Cell cycle measurement of mouse hematopoietic stem/progenitor cells.

    PubMed

    Chitteti, Brahmananda Reddy; Srour, Edward F

    2014-01-01

    Lifelong production of blood cells is sustained by hematopoietic stem cells (HSC). HSC reside in a mitotically quiescent state within specialized areas of the bone marrow (BM) microenvironment known as the hematopoietic niche (HN). HSC enter into active phases of cell cycle in response to intrinsic and extrinsic biological cues thereby undergoing differentiation or self-renewal divisions. Quiescent and mitotically active HSC have different metabolic states and different functional abilities such as engraftment and BM repopulating potential following their transplantation into conditioned recipients. Recent studies reveal that various cancers also utilize the same mechanisms of quiescence as normal stem cells and preserve the root of malignancy thus contributing to relapse and metastasis. Therefore, exploring the stem cell behavior and function in conjunction with their cell cycle status has significant clinical implications in HSC transplantation and in treating cancers. In this chapter, we describe methodologies to isolate or analytically measure the frequencies of quiescent (G0) and active (G1, S, and G2-M) hematopoietic progenitor and stem cells among murine BM cells.

  1. Cell cycle timing regulation during asynchronous divisions of the early C. elegans embryo.

    PubMed

    Tavernier, N; Labbé, J C; Pintard, L

    2015-10-01

    A fundamental question in developmental biology is how different cell lineages acquire different cell cycle durations. With its highly stereotypical asymmetric and asynchronous cell divisions, the early Caenorhabditis elegans embryo provides an ideal system to study lineage-specific cell cycle timing regulation during development, with high spatio-temporal resolution. The first embryonic division is asymmetric and generates two blastomeres of different sizes (AB>P1) and developmental potentials that divide asynchronously, with the anterior somatic blastomere AB dividing reproducibly two minutes before the posterior germline blastomere P1. The evolutionarily conserved PAR proteins (abnormal embryonic PARtitioning of cytoplasm) regulate all of the asymmetries in the early embryo including cell cycle asynchrony between AB and P1 blastomeres. Here we discuss our current understanding and open questions on the mechanism by which the PAR proteins regulate asynchronous cell divisions in the early C. elegans embryo.

  2. Topological control of the Caulobacter cell cycle circuitry by a polarized single-domain PAS protein

    PubMed Central

    Sanselicio, Stefano; Bergé, Matthieu; Théraulaz, Laurence; Radhakrishnan, Sunish Kumar; Viollier, Patrick H.

    2015-01-01

    Despite the myriad of different sensory domains encoded in bacteria, only a few types are known to control the cell cycle. Here we use a forward genetic screen for Caulobacter crescentus motility mutants to identify a conserved single-domain PAS (Per-Arnt-Sim) protein (MopJ) with pleiotropic regulatory functions. MopJ promotes re-accumulation of the master cell cycle regulator CtrA after its proteolytic destruction is triggered by the DivJ kinase at the G1-S transition. MopJ and CtrA syntheses are coordinately induced in S-phase, followed by the sequestration of MopJ to cell poles in Caulobacter. Polarization requires Caulobacter DivJ and the PopZ polar organizer. MopJ interacts with DivJ and influences the localization and activity of downstream cell cycle effectors. Because MopJ abundance is upregulated in stationary phase and by the alarmone (p)ppGpp, conserved systemic signals acting on the cell cycle and growth phase control are genetically integrated through this conserved single PAS-domain protein. PMID:25952018

  3. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling.

    PubMed

    Plikus, Maksim V; Vollmers, Christopher; de la Cruz, Damon; Chaix, Amandine; Ramos, Raul; Panda, Satchidananda; Chuong, Cheng-Ming

    2013-06-01

    Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day-dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies.

  4. Local circadian clock gates cell cycle progression of transient amplifying cells during regenerative hair cycling

    PubMed Central

    Plikus, Maksim V.; Vollmers, Christopher; de la Cruz, Damon; Chaix, Amandine; Ramos, Raul; Panda, Satchidananda; Chuong, Cheng-Ming

    2013-01-01

    Regenerative cycling of hair follicles offers an unique opportunity to explore the role of circadian clock in physiological tissue regeneration. We focused on the role of circadian clock in actively proliferating transient amplifying cells, as opposed to quiescent stem cells. We identified two key sites of peripheral circadian clock activity specific to regenerating anagen hair follicles, namely epithelial matrix and mesenchymal dermal papilla. We showed that peripheral circadian clock in epithelial matrix cells generates prominent daily mitotic rhythm. As a consequence of this mitotic rhythmicity, hairs grow faster in the morning than in the evening. Because cells are the most susceptible to DNA damage during mitosis, this cycle leads to a remarkable time-of-day–dependent sensitivity of growing hair follicles to genotoxic stress. Same doses of γ-radiation caused dramatic hair loss in wild-type mice when administered in the morning, during mitotic peak, compared with the evening, when hair loss is minimal. This diurnal radioprotective effect becomes lost in circadian mutants, consistent with asynchronous mitoses in their hair follicles. Clock coordinates cell cycle progression with genotoxic stress responses by synchronizing Cdc2/Cyclin B-mediated G2/M checkpoint. Our results uncover diurnal mitotic gating as the essential protective mechanism in highly proliferative hair follicles and offer strategies for minimizing or maximizing cytotoxicity of radiation therapies. PMID:23690597

  5. The Cell Cycle Switch Computes Approximate Majority

    NASA Astrophysics Data System (ADS)

    Cardelli, Luca; Csikász-Nagy, Attila

    2012-09-01

    Both computational and biological systems have to make decisions about switching from one state to another. The `Approximate Majority' computational algorithm provides the asymptotically fastest way to reach a common decision by all members of a population between two possible outcomes, where the decision approximately matches the initial relative majority. The network that regulates the mitotic entry of the cell-cycle in eukaryotes also makes a decision before it induces early mitotic processes. Here we show that the switch from inactive to active forms of the mitosis promoting Cyclin Dependent Kinases is driven by a system that is related to both the structure and the dynamics of the Approximate Majority computation. We investigate the behavior of these two switches by deterministic, stochastic and probabilistic methods and show that the steady states and temporal dynamics of the two systems are similar and they are exchangeable as components of oscillatory networks.

  6. Modeling the fission yeast cell cycle: Quantized cycle times in wee1 cdc25 mutant cells

    NASA Astrophysics Data System (ADS)

    Sveiczer, Akos; Csikasz-Nagy, Attila; Gyorffy, Bela; Tyson, John J.; Novak, Bela

    2000-07-01

    A detailed mathematical model for the fission yeast mitotic cycle is developed based on positive and negative feedback loops by which Cdc13/Cdc2 kinase activates and inactivates itself. Positive feedbacks are created by Cdc13/Cdc2-dependent phosphorylation of specific substrates: inactivating its negative regulators (Rum1, Ste9 and Wee1/Mik1) and activating its positive regulator (Cdc25). A slow negative feedback loop is turned on during mitosis by activation of Slp1/anaphase-promoting complex (APC), which indirectly re-activates the negative regulators, leading to a drop in Cdc13/Cdc2 activity and exit from mitosis. The model explains how fission yeast cells can exit mitosis in the absence of Ste9 (Cdc13 degradation) and Rum1 (an inhibitor of Cdc13/Cdc2). We also show that, if the positive feedback loops accelerating the G2/M transition (through Wee1 and Cdc25) are weak, then cells can reset back to G2 from early stages of mitosis by premature activation of the negative feedback loop. This resetting can happen more than once, resulting in a quantized distribution of cycle times, as observed experimentally in wee1- cdc25Delta mutant cells. Our quantitative description of these quantized cycles demonstrates the utility of mathematical modeling, because these cycles cannot be understood by intuitive arguments alone.

  7. SUMOylation-mediated regulation of cell cycle progression and cancer

    PubMed Central

    Eifler, Karolin; Vertegaal, Alfred C.O.

    2016-01-01

    SUMOylation plays critical roles during cell cycle progression. Many important cell cycle regulators, including many oncogenes and tumor suppressors, are functionally regulated via SUMOylation. The dynamic SUMOylation pattern observed throughout the cell cycle is ensured via distinct spatial and temporal regulation of the SUMO machinery. Additionally, SUMOylation cooperates with other post-translational modifications to mediate cell cycle progression. Deregulation of these SUMOylation and deSUMOylation enzymes causes severe defects in cell proliferation and genome stability. Different types of cancers were recently shown to be dependent on a functioning SUMOylation system, a finding that could potentially be exploited in anti-cancer therapies. PMID:26601932

  8. Convergence of Alarmone and Cell Cycle Signaling from Trans-Encoded Sensory Domains

    PubMed Central

    Sanselicio, Stefano

    2015-01-01

    ABSTRACT Despite the myriad of different sensory domains encoded in bacterial genomes, only a few are known to control the cell cycle. Here, suppressor genetics was used to unveil the regulatory interplay between the PAS (Per-Arnt-Sim) domain protein MopJ and the uncharacterized GAF (cyclic GMP-phosphodiesterase–adenylyl cyclase–FhlA) domain protein PtsP, which resembles an alternative component of the phosphoenolpyruvate (PEP) transferase system. Both of these systems indirectly target the Caulobacter crescentus cell cycle master regulator CtrA, but in different ways. While MopJ acts on CtrA via the cell cycle kinases DivJ and DivL, which control the removal of CtrA at the G1-S transition, our data show that PtsP signals through the conserved alarmone (p)ppGpp, which prevents CtrA cycling under nutritional stress and in stationary phase. We found that PtsP interacts genetically and physically with the (p)ppGpp synthase/hydrolase SpoT and that it modulates several promoters that are directly activated by the cell cycle transcriptional regulator GcrA. Thus, parallel systems integrate nutritional and systemic signals within the cell cycle transcriptional network, converging on the essential alphaproteobacterial regulator CtrA while also affecting global cell cycle transcription in other ways. PMID:26489861

  9. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

    PubMed Central

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.

    2015-01-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  10. Indirect-fired gas turbine dual fuel cell power cycle

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  11. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans

    PubMed Central

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi

    2015-01-01

    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and <0.39 in radius, respectively). Thus, the power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures. PMID:25674063

  12. Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans.

    PubMed

    Arata, Yukinobu; Takagi, Hiroaki; Sako, Yasushi; Sawa, Hitoshi

    2014-01-01

    Cell size is a critical factor for cell cycle regulation. In Xenopus embryos after midblastula transition (MBT), the cell cycle duration elongates in a power law relationship with the cell radius squared. This correlation has been explained by the model that cell surface area is a candidate to determine cell cycle duration. However, it remains unknown whether this second power law is conserved in other animal embryos. Here, we found that the relationship between cell cycle duration and cell size in Caenorhabditis elegans embryos exhibited a power law distribution. Interestingly, the powers of the time-size relationship could be grouped into at least three classes: highly size-correlated, moderately size-correlated, and potentially a size-non-correlated class according to C. elegans founder cell lineages (1.2, 0.81, and <0.39 in radius, respectively). Thus, the power law relationship is conserved in Xenopus and C. elegans, while the absolute powers in C. elegans were different from that in Xenopus. Furthermore, we found that the volume ratio between the nucleus and cell exhibited a power law relationship in the size-correlated classes. The power of the volume relationship was closest to that of the time-size relationship in the highly size-correlated class. This correlation raised the possibility that the time-size relationship, at least in the highly size-correlated class, is explained by the volume ratio of nuclear size and cell size. Thus, our quantitative measurements shed a light on the possibility that early embryonic C. elegans cell cycle duration is coordinated with cell size as a result of geometric constraints between intracellular structures.

  13. A microbial avenue to cell cycle control in the plant superkingdom.

    PubMed

    Tulin, Frej; Cross, Frederick R

    2014-10-01

    Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.

  14. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  15. Cyclic AMP, a nonessential regulator of the cell cycle.

    PubMed Central

    Coffino, P; Gray, J W; Tomkins, G M

    1975-01-01

    Flow-microfluorimetric analysis has been carried out on populations of exponentially growing S49 mouse lymphoma cells treated with dibutyryl cyclic AMP. The drug produces a specific concentration-dependent block in the G-1 phase of the cell cycle while other phases of the cycle are not perceptibly altered. The cell cycle of a line of mutant cells lacking the cyclic AMP-dependent protein kinase is not affected by the drug. Since these mutant cells have been shown to maintain a normal cell cycle, even in the presence of high levels of cyclic AMP, periodic fluctuations in the levels of the cyclic nucleotide cannot be required for or determine progression through the cell cycle. PMID:165491

  16. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    PubMed

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction. PMID:25028009

  17. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    SciTech Connect

    Polettini, Matteo Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks “in a box”, whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s{sup Y} between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s{sup Y}. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  18. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-01

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = sY between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats sY. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  19. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.

    PubMed

    Polettini, Matteo; Esposito, Massimiliano

    2014-07-14

    In this paper and Paper II, we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated with nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a + b = s(Y) between the number of fundamental affinities a, that of broken conservation laws b and the number of chemostats s(Y). We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction, and of thermodynamic constraints for network reconstruction.

  20. Conservation.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  1. Highly conserved base A55 of 16S ribosomal RNA is important for the elongation cycle of protein synthesis.

    PubMed

    Sahu, Bhubanananda; Khade, Prashant K; Joseph, Simpson

    2013-09-24

    Accurate decoding of mRNA requires the precise interaction of protein factors and tRNAs with the ribosome. X-ray crystallography and cryo-electron microscopy have provided detailed structural information about the 70S ribosome with protein factors and tRNAs trapped during translation. Crystal structures showed that one of the universally conserved 16S rRNA bases, A55, in the shoulder domain of the 30S subunit interacts with elongation factors Tu and G (EF-Tu and EF-G, respectively). The exact functional role of A55 in protein synthesis is not clear. We changed A55 to U and analyzed the effect of the mutation on the elongation cycle of protein synthesis using functional assays. Expression of 16S rRNA with the A55U mutation in cells confers a dominant lethal phenotype. Additionally, ribosomes with the A55U mutation in 16S rRNA show substantially reduced in vitro protein synthesis activity. Equilibrium binding studies showed that the A55U mutation considerably inhibited the binding of the EF-Tu·GTP·tRNA ternary complex to the ribosome. Furthermore, the A55U mutation slightly inhibited the peptidyl transferase reaction, the binding of EF-G·GTP to the ribosome, and mRNA-tRNA translocation. These results indicate that A55 is important for fine-tuning the activity of the ribosome during the elongation cycle of protein synthesis.

  2. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  3. The CHR site: definition and genome-wide identification of a cell cycle transcriptional element

    PubMed Central

    Müller, Gerd A.; Wintsche, Axel; Stangner, Konstanze; Prohaska, Sonja J.; Stadler, Peter F.; Engeland, Kurt

    2014-01-01

    The cell cycle genes homology region (CHR) has been identified as a DNA element with an important role in transcriptional regulation of late cell cycle genes. It has been shown that such genes are controlled by DREAM, MMB and FOXM1-MuvB and that these protein complexes can contact DNA via CHR sites. However, it has not been elucidated which sequence variations of the canonical CHR are functional and how frequent CHR-based regulation is utilized in mammalian genomes. Here, we define the spectrum of functional CHR elements. As the basis for a computational meta-analysis, we identify new CHR sequences and compile phylogenetic motif conservation as well as genome-wide protein-DNA binding and gene expression data. We identify CHR elements in most late cell cycle genes binding DREAM, MMB, or FOXM1-MuvB. In contrast, Myb- and forkhead-binding sites are underrepresented in both early and late cell cycle genes. Our findings support a general mechanism: sequential binding of DREAM, MMB and FOXM1-MuvB complexes to late cell cycle genes requires CHR elements. Taken together, we define the group of CHR-regulated genes in mammalian genomes and provide evidence that the CHR is the central promoter element in transcriptional regulation of late cell cycle genes by DREAM, MMB and FOXM1-MuvB. PMID:25106871

  4. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.

    PubMed

    Holtzendorff, Julia; Reinhardt, Jens; Viollier, Patrick H

    2006-04-01

    Significant strides have been made in recent years towards understanding the molecular basis of cell cycle progression in the model bacterium Caulobacter crescentus. At the heart of cell cycle regulation is a multicomponent transcriptional feedback loop, governing the production of successive regulatory waves or pulses of at least three master regulatory proteins. These oscillating master regulators direct the execution of phase-specific events and, importantly, through intrinsic genetic switches not only determine the length of a given phase, but also provide the driving force that catapults the cell into the next stage of the cell cycle. The genetic switches act as fail safe mechanisms that prevent the cell cycle from relapsing and thus govern the ordered production and the periodicity of these regulatory waves. Here, we detail how the master regulators CtrA, GcrA and DnaA coordinate cell cycle progression and polar development in Caulobacter. PMID:16547950

  5. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus.

    PubMed

    Holtzendorff, Julia; Reinhardt, Jens; Viollier, Patrick H

    2006-04-01

    Significant strides have been made in recent years towards understanding the molecular basis of cell cycle progression in the model bacterium Caulobacter crescentus. At the heart of cell cycle regulation is a multicomponent transcriptional feedback loop, governing the production of successive regulatory waves or pulses of at least three master regulatory proteins. These oscillating master regulators direct the execution of phase-specific events and, importantly, through intrinsic genetic switches not only determine the length of a given phase, but also provide the driving force that catapults the cell into the next stage of the cell cycle. The genetic switches act as fail safe mechanisms that prevent the cell cycle from relapsing and thus govern the ordered production and the periodicity of these regulatory waves. Here, we detail how the master regulators CtrA, GcrA and DnaA coordinate cell cycle progression and polar development in Caulobacter.

  6. Cell cycle controls stress response and longevity in C. elegans

    PubMed Central

    Dottermusch, Matthias; Lakner, Theresa; Peyman, Tobias; Klein, Marinella; Walz, Gerd; Neumann-Haefelin, Elke

    2016-01-01

    Recent studies have revealed a variety of genes and mechanisms that influence the rate of aging progression. In this study, we identified cell cycle factors as potent regulators of health and longevity in C. elegans. Focusing on the cyclin-dependent kinase 2 (cdk-2) and cyclin E (cye-1), we show that inhibition of cell cycle genes leads to tolerance towards environmental stress and longevity. The reproductive system is known as a key regulator of longevity in C. elegans. We uncovered the gonad as the central organ mediating the effects of cell cycle inhibition on lifespan. In particular, the proliferating germ cells were essential for conferring longevity. Steroid hormone signaling and the FOXO transcription factor DAF-16 were required for longevity associated with cell cycle inhibition. Furthermore, we discovered that SKN-1 (ortholog of mammalian Nrf proteins) activates protective gene expression and induces longevity when cell cycle genes are inactivated. We conclude that both, germline absence and inhibition through impairment of cell cycle machinery results in longevity through similar pathways. In addition, our studies suggest further roles of cell cycle genes beyond cell cycle progression and support the recently described connection of SKN-1/Nrf to signals deriving from the germline. PMID:27668945

  7. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  8. Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication.

    PubMed

    Lori, C; Ozaki, S; Steiner, S; Böhm, R; Abel, S; Dubey, B N; Schirmer, T; Hiller, S; Jenal, U

    2015-07-01

    Fundamental to all living organisms is the capacity to coordinate cell division and cell differentiation to generate appropriate numbers of specialized cells. Whereas eukaryotes use cyclins and cyclin-dependent kinases to balance division with cell fate decisions, equivalent regulatory systems have not been described in bacteria. Moreover, the mechanisms used by bacteria to tune division in line with developmental programs are poorly understood. Here we show that Caulobacter crescentus, a bacterium with an asymmetric division cycle, uses oscillating levels of the second messenger cyclic diguanylate (c-di-GMP) to drive its cell cycle. We demonstrate that c-di-GMP directly binds to the essential cell cycle kinase CckA to inhibit kinase activity and stimulate phosphatase activity. An upshift of c-di-GMP during the G1-S transition switches CckA from the kinase to the phosphatase mode, thereby allowing replication initiation and cell cycle progression. Finally, we show that during division, c-di-GMP imposes spatial control on CckA to install the replication asymmetry of future daughter cells. These studies reveal c-di-GMP to be a cyclin-like molecule in bacteria that coordinates chromosome replication with cell morphogenesis in Caulobacter. The observation that c-di-GMP-mediated control is conserved in the plant pathogen Agrobacterium tumefaciens suggests a general mechanism through which this global regulator of bacterial virulence and persistence coordinates behaviour and cell proliferation.

  9. Capacity-cycle life behavior in secondary lithium cells

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Carter, B. J.; Shen, D.; Yen, S. P. S.

    1985-01-01

    The practical utilization of high energy density rechargeable lithium cells is dependent upon maintaining high capacity for the duration of the required cycle life. However, a critical, yet generic problem with room temperature lithium systems is that the capacity often declines considerably during the early stages of cycling. The results of our studies are reported on electrolyte degradation which is observed after cells have undergone 300 and 700 deep cycles with 3-methylsulfolane- and 2-methyltetrahydrofuran-LiAsF6 electrolytes, respectively.

  10. MYB3Rs, plant homologs of Myb oncoproteins, control cell cycle-regulated transcription and form DREAM-like complexes.

    PubMed

    Kobayashi, Kosuke; Suzuki, Toshiya; Iwata, Eriko; Magyar, Zoltán; Bögre, László; Ito, Masaki

    2015-01-01

    Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.

  11. Segmentation and classification of cell cycle phases in fluorescence imaging.

    PubMed

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  12. Do open-cycle hatcheries relying on tourism conserve sea turtles? Sri Lankan developments and economic-ecological considerations.

    PubMed

    Tisdell, Clem; Wilson, Clevo

    2005-04-01

    By combining economic analysis of markets with ecological parameters, this article considers the role that tourism-based sea turtle hatcheries (of an open-cycle type) can play in conserving populations of sea turtles. Background is provided on the nature and development of such hatcheries in Sri Lanka. The modeling facilitates the assessment of the impacts of turtle hatcheries on the conservation of sea turtles and enables the economic and ecological consequences of tourism, based on such hatcheries, to be better appreciated. The results demonstrate that sea turtle hatcheries serving tourists can make a positive contribution to sea turtle conservation, but that their conservation effectiveness depends on the way they are managed. Possible negative effects are also identified. Economic market models are combined with turtle population survival relationships to predict the conservation impact of turtle hatcheries and their consequence for the total economic value obtained from sea turtle populations.

  13. Connecting the nucleolus to the cell cycle and human disease.

    PubMed

    Tsai, Robert Y L; Pederson, Thoru

    2014-08-01

    Long known as the center of ribosome synthesis, the nucleolus is connected to cell cycle regulation in more subtle ways. One is a surveillance system that reacts promptly when rRNA synthesis or processing is impaired, halting cell cycle progression. Conversely, the nucleolus also acts as a first-responder to growth-related stress signals. Here we review emerging concepts on how these "infraribosomal" links between the nucleolus and cell cycle progression operate in both forward and reverse gears. We offer perspectives on how new cancer therapeutic designs that target this infraribosomal mode of cell growth control may shape future clinical progress.

  14. The Cell Cycle: An Activity Using Paper Plates to Represent Time Spent in Phases of the Cell Cycle

    ERIC Educational Resources Information Center

    Scherer, Yvette D.

    2014-01-01

    In this activity, students are given the opportunity to combine skills in math and geometry for a biology lesson in the cell cycle. Students utilize the data they collect and analyze from an online onion-root-tip activity to create a paper-plate time clock representing a 24-hour cell cycle. By dividing the paper plate into appropriate phases of…

  15. Different cell cycle modulation by celecoxib at different concentrations.

    PubMed

    Kim, Young-Mee; Pyo, Hongryull

    2013-03-01

    Abstract Different cyclooxygenase (COX)-2 inhibitors were known to cause different cell cycle changes. We investigated whether this different effect on cell cycle change was due to concentration-dependent effect. We investigated the effects of celecoxib, a COX-2 selective inhibitor, on cell cycle regulation in irradiated cancer cells that express high or low levels of COX-2. Four stably COX-2 knocked-down or overexpressed cell lines were treated with various concentrations of celecoxib with or without radiation. Celecoxib differentially modulated the cell cycle according to the concentrations applied. G1 arrest was induced at lower concentrations, whereas G2/M arrest was induced at higher concentrations in each cell line tested. Radiation-induced G2/M arrest was enhanced at lower concentrations but reduced at higher concentrations. The cutoff values to divide lower and higher concentrations were cell-type specific. Celecoxib treatment activated Cdc25C and inhibited p21 expression in both unirradiated and irradiated cells, regardless of COX-2 expression. Apoptosis was induced in irradiated cells 48 hours after treatment with celecoxib dependent of COX-2. These results imply that celecoxib deactivates the G2 checkpoint via both Cdc25C- and p21-dependent pathways in irradiated cells, which subsequently die by secondary apoptosis. Cell cycle modulating effects in irradiated cells resulting from treatment with celecoxib may have clinical importance with regard to the potential application of celecoxib in cancer patients undergoing radiotherapy. PMID:23268707

  16. Brucella abortus Cell Cycle and Infection Are Coordinated.

    PubMed

    De Bolle, Xavier; Crosson, Sean; Matroule, Jean-Yves; Letesson, Jean-Jacques

    2015-12-01

    Brucellae are facultative intracellular pathogens. The recent development of methods and genetically engineered strains allowed the description of cell-cycle progression of Brucella abortus, including unipolar growth and the ordered initiation of chromosomal replication. B. abortus cell-cycle progression is coordinated with intracellular trafficking in the endosomal compartments. Bacteria are first blocked at the G1 stage, growth and chromosome replication being resumed shortly before reaching the intracellular proliferation compartment. The control mechanisms of cell cycle are similar to those reported for the bacterium Caulobacter crescentus, and they are crucial for survival in the host cell. The development of single-cell analyses could also be applied to other bacterial pathogens to investigate their cell-cycle progression during infection.

  17. Cycle life test. [of secondary spacecraft cells

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1977-01-01

    Statistical information concerning cell performance characteristics and limitations of secondary spacecraft cells is presented. Weaknesses in cell design as well as battery weaknesses encountered in various satellite programs are reported. Emphasis is placed on improving the reliability of space batteries.

  18. Appressorium formation in the corn smut fungus Ustilago maydis requires a G2 cell cycle arrest.

    PubMed

    Castanheira, Sónia; Pérez-Martín, José

    2015-01-01

    Many of the most important plant diseases are caused by fungal pathogens that form specialized cell structures to breach the leaf surface as well as to proliferate inside the plant. To initiate pathogenic development, the fungus responds to a set of inductive cues. Some of them are of extracellular nature (environmental signals) while others respond to intracellular conditions (developmental signals). These signals have to be integrated into a single response that has as a major outcome changes in the morphogenesis of the fungus. The cell cycle regulation is pivotal during these cellular differentiations, and we hypothesized that cell cycle regulation would be likely to provide control points for infection development by fungal pathogens. Although efforts have been done in various fungal systems, there is still limited information available regarding the relationship of these processes with the induction of the virulence programs. Hence, the role of fungal cell cycle regulators -which are wide conserved elements- as true virulence factors, has yet to be defined. Here we discuss the recent finding that the formation of the appressorium, a structure required for plant penetration, in the corn smut fungus Ustilago maydis seems to be incompatible with an active cell cycle and, therefore genetic circuits evolved in this fungus to arrest the cell cycle during the growth of this fungus on plant surface, before the appressorium-mediated penetration into the plant tissue.

  19. DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression.

    PubMed

    Mohapatra, Saswat S; Fioravanti, Antonella; Biondi, Emanuele G

    2014-09-01

    In Caulobacter crescentus, methylation of DNA by CcrM plays an important part in the regulation of cell cycle progression. Thanks to this methyltransferase, the activity of which is cell cycle regulated, the chromosome transitions between a hemimethylated state in the S-phase to a fully methylated condition in the G1 and G2 phases. Any perturbation in CcrM expression, such as depletion or constitutive expression, causes severe developmental defects. Several studies suggest that the role of CcrM is conserved across the Alphaproteobacteria. In the past few years, the importance of methylation on the expression of cell cycle regulated genes has emerged, suggesting that CcrM-dependent methylation can direct the binding of transcription factors to specific methylated sequences and affect the expression of genes depending on the methylation state of their promoters. CcrM activity has recently been linked to GcrA, a cell cycle master regulator that controls the expression of several genes during S-phase. Here, we review recent findings that establish the global role of methylation in cell cycle progression, and also explore the significance of a CcrM-GcrA epigenetic module that has co-evolved in Alphaproteobacteria, including Caulobacter, in controlling several genes involved in cell division, polarity, and motility. PMID:24894626

  20. Cell Cycle Related Differentiation of Bone Marrow Cells into Lung Cells

    SciTech Connect

    Dooner, Mark; Aliotta, Jason M.; Pimental, Jeffrey; Dooner, Gerri J.; Abedi, Mehrdad; Colvin, Gerald; Liu, Qin; Weier, Heinz-Ulli; Dooner, Mark S.; Quesenberry, Peter J.

    2007-12-31

    Green-fluorescent protein (GFP) labeled marrow cells transplanted into lethally irradiated mice can be detected in the lungs of transplanted mice and have been shown to express lung specific proteins while lacking the expression of hematopoietic markers. We have studied marrow cells induced to transit cell cycle by exposure to IL-3, IL-6, IL-11 and steel factor at different times of culture corresponding to different phases of cell cycle. We have found that marrow cells at the G1/S interface have a 3-fold increase in cells which assume a lung phenotype and that this increase is no longer seen in late S/G2. These cells have been characterized as GFP{sup +} CD45{sup -} and GFP{sup +} cytokeratin{sup +}. Thus marrow cells with the capacity to convert into cells with a lung phenotype after transplantation show a reversible increase with cytokine induced cell cycle transit. Previous studies have shown the phenotype of bone marrow stem cells fluctuates reversibly as these cells traverse cell cycle, leading to a continuum model of stem cell regulation. The present studies indicate that marrow stem cell production of nonhematopoietic cells also fluctuates on a continuum.

  1. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle

  2. Landscape of Pin1 in the cell cycle

    PubMed Central

    Lin, Cheng-Han; Li, Hao-Yi; Lee, Yu-Cheng; Calkins, Marcus J; Lee, Kuen-Haur

    2015-01-01

    Pin1 is a peptidyl-prolyl isomerase which plays a critical role in many diseases including cancer and Alzheimer's disease. The essential role of Pin1 is to affect stability, localization or function of phosphoproteins by catalyzing structural changes. Among the collection of Pin1 substrates, many have been shown to be involved in regulating cell cycle progression. The cell cycle disorder caused by dysregulation of these substrates is believed to be a common phenomenon in cancer. A number of recent studies have revealed possible functions of several important Pin1-binding cell cycle regulators. Investigating the involvement of Pin1 in the cell cycle may assist in the development of future cancer therapeutics. In this review, we summarize current knowledge regarding the network of Pin1 substrates and Pin1 regulators in cell cycle progression. In G1/S progression, cyclin D1, RB, p53, p27, and cyclin E are all well-known cell cycle regulators that are modulated by Pin1. During G2/M transition, our lab has shown that Aurora A suppresses Pin1 activity through phosphorylation at Ser16 and cooperates with hBora to modulate G2/M transition. We conclude that Pin1 may be thought of as a molecular timer which modulates cell cycle progression networks. PMID:25662955

  3. Staphylococcal Enterotoxin O Exhibits Cell Cycle Modulating Activity

    PubMed Central

    Hodille, Elisabeth; Alekseeva, Ludmila; Berkova, Nadia; Serrier, Asma; Badiou, Cedric; Gilquin, Benoit; Brun, Virginie; Vandenesch, François; Terman, David S.; Lina, Gerard

    2016-01-01

    Maintenance of an intact epithelial barrier constitutes a pivotal defense mechanism against infections. Staphylococcus aureus is a versatile pathogen that produces multiple factors including exotoxins that promote tissue alterations. The aim of the present study is to investigate the cytopathic effect of staphylococcal exotoxins SEA, SEG, SEI, SElM, SElN and SElO on the cell cycle of various human cell lines. Among all tested exotoxins only SEIO inhibited the proliferation of a broad panel of human tumor cell lines in vitro. Evaluation of a LDH release and a DNA fragmentation of host cells exposed to SEIO revealed that the toxin does not induce necrosis or apoptosis. Analysis of the DNA content of tumor cells synchronized by serum starvation after exposure to SEIO showed G0/G1 cell cycle delay. The cell cycle modulating feature of SEIO was confirmed by the flow cytometry analysis of synchronized cells exposed to supernatants of isogenic S. aureus strains wherein only supernatant of the SElO producing strain induced G0/G1 phase delay. The results of yeast-two-hybrid analysis indicated that SEIO’s potential partner is cullin-3, involved in the transition from G1 to S phase. In conclusion, we provide evidence that SEIO inhibits cell proliferation without inducing cell death, by delaying host cell entry into the G0/G1 phase of the cell cycle. We speculate that this unique cell cycle modulating feature allows SEIO producing bacteria to gain advantage by arresting the cell cycle of target cells as part of a broader invasive strategy. PMID:27148168

  4. Tumor suppressor Lzap regulates cell cycle progression, doming and zebrafish epiboly

    PubMed Central

    Liu, Dan; Wang, Wen-Der; Melville, David B.; Cha, Yong I.; Yin, Zhirong; Issaeva, Natalia; Knapik, Ela W.; Yarbrough, Wendell G.

    2012-01-01

    Initial stages of embryonic development rely on rapid, synchronized cell divisions of the fertilized egg followed by a set of morphogenetic movements collectively called epiboly and gastrulation. Lzap is a putative tumor suppressor whose expression is lost in 30% of head and neck squamous cell carcinomas. Lzap activities include regulation of cell cycle progression and response to therapeutic agents. Here we explore developmental roles of the lzap gene during zebrafish morphogenesis. Lzap is highly conserved among vertebrates and is maternally deposited. Expression is initially ubiquitous during gastrulation, and later becomes more prominent in the pharyngeal arches, digestive tract and brain. Antisense morpholino-mediated depletion of Lzap resulted in delayed cell divisions and apoptosis during blastomere formation, resulting in fewer, larger cells. Cell cycle analysis suggested that Lzap loss in early embryonic cells resulted in a G2/M arrest. Furthermore, the Lzap-deficient embryos failed to initiate epiboly – the earliest morphogenetic movement in animal development – which has been shown to be dependent on cell adhesion and migration of epithelial sheets. Our results strongly implicate Lzap in regulation of cell cycle progression, adhesion and migratory activity of epithelial cell sheets during early development. These functions provide further insight into Lzap activity that may contribute not only to development, but also to tumor formation. PMID:21523853

  5. Impact of the cell division cycle on gene circuits

    NASA Astrophysics Data System (ADS)

    Bierbaum, Veronika; Klumpp, Stefan

    2015-12-01

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  6. Impact of the cell division cycle on gene circuits.

    PubMed

    Bierbaum, Veronika; Klumpp, Stefan

    2015-09-25

    In growing cells, protein synthesis and cell growth are typically not synchronous, and, thus, protein concentrations vary over the cell division cycle. We have developed a theoretical description of genetic regulatory systems in bacteria that explicitly considers the cell division cycle to investigate its impact on gene expression. We calculate the cell-to-cell variations arising from cells being at different stages in the division cycle for unregulated genes and for basic regulatory mechanisms. These variations contribute to the extrinsic noise observed in single-cell experiments, and are most significant for proteins with short lifetimes. Negative autoregulation buffers against variation of protein concentration over the division cycle, but the effect is found to be relatively weak. Stronger buffering is achieved by an increased protein lifetime. Positive autoregulation can strongly amplify such variation if the parameters are set to values that lead to resonance-like behaviour. For cooperative positive autoregulation, the concentration variation over the division cycle diminishes the parameter region of bistability and modulates the switching times between the two stable states. The same effects are seen for a two-gene mutual-repression toggle switch. By contrast, an oscillatory circuit, the repressilator, is only weakly affected by the division cycle.

  7. Poultry genetic resource conservation using primordial germ cells

    PubMed Central

    NAKAMURA, Yoshiaki

    2016-01-01

    The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs. PMID:27210834

  8. Cell-Cycle Inhibition by Helicobacter pylori L-Asparaginase

    PubMed Central

    Scotti, Claudia; Sommi, Patrizia; Pasquetto, Maria Valentina; Cappelletti, Donata; Stivala, Simona; Mignosi, Paola; Savio, Monica; Chiarelli, Laurent Roberto; Valentini, Giovanna; Bolanos-Garcia, Victor M.; Merrell, Douglas Scott; Franchini, Silvia; Verona, Maria Luisa; Bolis, Cristina; Solcia, Enrico; Manca, Rachele; Franciotta, Diego; Casasco, Andrea; Filipazzi, Paola; Zardini, Elisabetta; Vannini, Vanio

    2010-01-01

    Helicobacter pylori (H. pylori) is a major human pathogen causing chronic gastritis, peptic ulcer, gastric cancer, and mucosa-associated lymphoid tissue lymphoma. One of the mechanisms whereby it induces damage depends on its interference with proliferation of host tissues. We here describe the discovery of a novel bacterial factor able to inhibit the cell-cycle of exposed cells, both of gastric and non-gastric origin. An integrated approach was adopted to isolate and characterise the molecule from the bacterial culture filtrate produced in a protein-free medium: size-exclusion chromatography, non-reducing gel electrophoresis, mass spectrometry, mutant analysis, recombinant protein expression and enzymatic assays. L-asparaginase was identified as the factor responsible for cell-cycle inhibition of fibroblasts and gastric cell lines. Its effect on cell-cycle was confirmed by inhibitors, a knockout strain and the action of recombinant L-asparaginase on cell lines. Interference with cell-cycle in vitro depended on cell genotype and was related to the expression levels of the concurrent enzyme asparagine synthetase. Bacterial subcellular distribution of L-asparaginase was also analysed along with its immunogenicity. H. pylori L-asparaginase is a novel antigen that functions as a cell-cycle inhibitor of fibroblasts and gastric cell lines. We give evidence supporting a role in the pathogenesis of H. pylori-related diseases and discuss its potential diagnostic application. PMID:21085483

  9. Characterising cytotoxic agent action as a function of the cell cycle using Fourier transform infrared microspectroscopy.

    PubMed

    Jimenez-Hernandez, M; Brown, M D; Hughes, C; Clarke, N W; Gardner, P

    2015-07-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy measurements were acquired to study infrared signatures of chemotherapeutic response as a function of the cell cycle. Renal carcinoma Caki-2 cells were exposed to IC50 doses of 5-fluorouracil and Paclitaxel for a period of 24 hours. The inherent cell cycle infrared signatures from untreated and drug-treated cells were successfully retrieved by the construction of a robust SVM able to discriminate the cell cycle phases of this cell line with an average accuracy of 83.7%. The overriding infrared signature observed relates to an apoptotic biochemical response that does not appear to be correlated with the events affected by the drugs' mode of action or the cell cycle. Since apoptosis is a well conserved mechanism among living species, these results suggest that both the stages of proliferation as well as the absence/presence of apoptosis need to be taken into account in order to elucidate the fine biochemical details revealing the immediate cellular response to the drug in order to assign reliable spectral patterns of drug action. PMID:26030288

  10. Estrogen receptor alpha is cell cycle-regulated and regulates the cell cycle in a ligand-dependent fashion.

    PubMed

    JavanMoghadam, Sonia; Weihua, Zhang; Hunt, Kelly K; Keyomarsi, Khandan

    2016-06-17

    Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.

  11. Conserved Expression Signatures between Medaka and Human Pigment Cell Tumors

    PubMed Central

    Schartl, Manfred; Kneitz, Susanne; Wilde, Brigitta; Wagner, Toni; Henkel, Christiaan V.; Spaink, Herman P.; Meierjohann, Svenja

    2012-01-01

    Aberrations in gene expression are a hallmark of cancer cells. Differential tumor-specific transcript levels of single genes or whole sets of genes may be critical for the neoplastic phenotype and important for therapeutic considerations or useful as biomarkers. As an approach to filter out such relevant expression differences from the plethora of changes noted in global expression profiling studies, we searched for changes of gene expression levels that are conserved. Transcriptomes from massive parallel sequencing of different types of melanoma from medaka were generated and compared to microarray datasets from zebrafish and human melanoma. This revealed molecular conservation at various levels between fish models and human tumors providing a useful strategy for identifying expression signatures strongly associated with disease phenotypes and uncovering new melanoma molecules. PMID:22693581

  12. Identification of nicotinamide mononucleotide deamidase of the bacterial pyridine nucleotide cycle reveals a novel broadly conserved amidohydrolase family.

    PubMed

    Galeazzi, Luca; Bocci, Paola; Amici, Adolfo; Brunetti, Lucia; Ruggieri, Silverio; Romine, Margaret; Reed, Samantha; Osterman, Andrei L; Rodionov, Dmitry A; Sorci, Leonardo; Raffaelli, Nadia

    2011-11-18

    The pyridine nucleotide cycle is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial pyridine nucleotide cycle, was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds of bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in Escherichia coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three-dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and nonfunctional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in the bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.

  13. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A.

    2013-01-01

    Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  14. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  15. A Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression

    PubMed Central

    Robledo, Marta; Frage, Benjamin; Wright, Patrick R.; Becker, Anke

    2015-01-01

    Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. PMID:25923724

  16. Cell cycle regulation of RPA1 transcript levels in the trypanosomatid Crithidia fasciculata.

    PubMed Central

    Brown, L M; Ray, D S

    1997-01-01

    Transcripts of both mitochondrial and nuclear DNA replication genes accumulate periodically during the cell cycle in Crithidia fasciculata. An octameric consensus sequence with a conserved hexameric core was found previously to be required for cycling of the TOP2 transcript, encoding the mitochondrial DNA topoisomerase. We show here that the rate of synthesis of the p51 protein, the large subunit of nuclear replication protein-A encoded by the RPA1 gene, varies during the cell cycle in parallel with RPA1 mRNA level. Plasmids expressing a truncated form of RPA1 (Delta RPA1 ) were used to identify cis elements required for cycling of the Delta RPA1 transcript. Sequences within the RPA1 5'-untranslated region (UTR) were found to be necessary for cycling of the Delta RPA1 transcript. These sequences also function when transposed 3'of the Delta RPA1 coding sequence. A 121 bp fragment of this sequence can confer cycling on a heterologous transcript, but is inactivated when two consensus octamers within the sequence are mutated. Mutation of these two octamers in the full-length 5'-UTR ofDelta RPA1 is insufficient to abolish cycling of the mRNA unless three additional octamers having single base changes within the hexameric core are also mutated. Thus, common octameric sequence elements are involved in periodic accumulation of both the TOP2 and RPA1 transcripts. PMID:9241242

  17. Mathematical model of the cell division cycle of fission yeast

    NASA Astrophysics Data System (ADS)

    Novak, Bela; Pataki, Zsuzsa; Ciliberto, Andrea; Tyson, John J.

    2001-03-01

    Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1→S→G2→M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1- cdc25Δ, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled.

  18. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    SciTech Connect

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  19. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  20. Large scale spontaneous synchronization of cell cycles in amoebae

    NASA Astrophysics Data System (ADS)

    Segota, Igor; Boulet, Laurent; Franck, Carl

    2014-03-01

    Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.

  1. Molecular markers and cell cycle inhibitors show the importance of cell cycle progression in nematode-induced galls and syncytia.

    PubMed Central

    de Almeida Engler, J; De Vleesschauwer, V; Burssens, S; Celenza, J L; Inzé, D; Van Montagu, M; Engler, G; Gheysen, G

    1999-01-01

    Root knot and cyst nematodes induce large multinucleated cells, designated giant cells and syncytia, respectively, in plant roots. We have used molecular markers to study cell cycle progression in these specialized feeding cells. In situ hybridization with two cyclin-dependent kinases and two cyclins showed that these genes were induced very early in galls and syncytia and that the feeding cells progressed through the G2 phase. By using cell cycle blockers, DNA synthesis and progression through the G2 phase, or mitosis, were shown to be essential for gall and syncytium establishment. When mitosis was blocked, further gall development was arrested. This result demonstrates that cycles of endoreduplication or other methods of DNA amplification are insufficient to drive giant cell expansion. On the other hand, syncytium development was much less affected by a mitotic block; however, syncytium expansion was inhibited. PMID:10330466

  2. An ungrouped plant kinesin accumulates at the preprophase band in a cell cycle-dependent manner.

    PubMed

    Malcos, Jennelle L; Cyr, Richard J

    2011-04-01

    Past phylogenic studies have identified a plant-specific, ungrouped family of kinesins in which the motor domain does not group to one of the fourteen recognized families. Members of this family contain an N-terminal motor domain, a C-terminal armadillo repeat domain and a conserved destruction box (D-BOX) motif. This domain architecture is unique to plants and to a subset of protists. Further characterization of one representative member from Arabidopsis, Arabidopsis thaliana KINESIN ungrouped clade, gene A (AtKINUa), was completed to ascertain its functional role in plants. Fluorescence confocal microscopy revealed an accumulation of ATKINUA:GFP at the preprophase band (PPB) in a cell cycle-dependent manner in Arabidopsis epidermal cells and tobacco BY-2 cells. Fluorescence accumulation was highest during prophase and decreased after nuclear envelope breakdown. A conserved D-BOX motif was identified through alignment of AtKINU homologous sequences. Mutagenesis work with D-BOX revealed that conserved residues were necessary for the observed degradation pattern of ATKINUA:GFP, as well as the targeted accumulation at the PPB. Overall results suggest that AtKINUa is necessary for normal plant growth and/or development and is likely involved with PPB organization through microtubule association and specific cell cycle regulation. The D-BOX motif may function to bridge microtubule organization with changes that occur during progression through mitosis and may represent a novel regulatory motif in plant microtubule motor proteins.

  3. The modelling of a primitive ‘sustainable’ conservative cell

    PubMed Central

    Bassingthwaighte, James B.

    2011-01-01

    The simple sustainable or ‘eternal’ cell model, assuming preservation of all proteins, is designed as a building block, a primitive element upon which one can build more complete functional cell models of various types, representing various species. In the modelling we emphasize the electrophysiological aspects, in part because these are a well-developed component of cell models and because membrane potentials and their fluctuations have been generally omitted from metabolically oriented cell models in the past. Fluctuations in membrane potential deserve heightened consideration because probably all cells have negative intracellular potentials and most cells demonstrate electrical activity with vesicular extrusion, receptor occupancy, as well as with stimulated excitation resulting in regenerative depolarization. The emphasis is on the balances of mass, charge, and of chemical species while accounting for substrate uptake, metabolism and metabolite loss from the cell. By starting with a primitive representation we emphasize the conservation ideas. As more advanced models are generated they must adhere to the same basic principles as are required for the most primitive incomplete model. PMID:21938260

  4. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions

    PubMed Central

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  5. Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions.

    PubMed

    Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc

    2015-01-01

    Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and

  6. Variety in intracellular diffusion during the cell cycle

    NASA Astrophysics Data System (ADS)

    Selhuber-Unkel, Christine; Yde, Pernille; Berg-Sørensen, Kirstine; Oddershede, Lene B.

    2009-06-01

    During the cell cycle, the organization of the cytoskeletal network undergoes dramatic changes. In order to reveal possible changes of the viscoelastic properties in the intracellular space during the cell cycle we investigated the diffusion of endogenous lipid granules within the fission yeast Schizosaccharomyces Pombe using optical tweezers. The cell cycle was divided into interphase and mitotic cell division, and the mitotic cell division was further subdivided in its stages. During all stages of the cell cycle, the granules predominantly underwent subdiffusive motion, characterized by an exponent α that is also linked to the viscoelastic moduli of the cytoplasm. The exponent α was significantly smaller during interphase than during any stage of the mitotic cell division, signifying that the cytoplasm was more elastic during interphase than during division. We found no significant differences in the subdiffusive exponents from granules measured in different stages of cell division. Also, our results for the exponent displayed no significant dependence on the position of the granule within the cell. The observation that the cytoplasm is more elastic during interphase than during mitotic cell division is consistent with the fact that elastic cytoskeletal elements such as microtubules are less abundantly present during cell division than during interphase.

  7. Manganese Superoxide Dismutase Regulates a Redox Cycle Within the Cell Cycle

    PubMed Central

    Sarsour, Ehab H.; Kalen, Amanda L.

    2014-01-01

    Abstract Significance: Manganese superoxide dismutase (MnSOD) is a nuclear-encoded and mitochondria-matrix-localized oxidation-reduction (redox) enzyme that regulates cellular redox homeostasis. Cellular redox processes are known to regulate proliferative and quiescent growth states. Therefore, MnSOD and mitochondria-generated reactive oxygen species (ROS) are believed to be critical regulators of quiescent cells' entry into the cell cycle and exit from the proliferative cycle back to the quiescent state. Recent Advances/Critical Issues: Recent evidence suggests that the intracellular redox environment fluctuates during the cell cycle, shifting toward a more oxidized status during mitosis. MnSOD activity is higher in G0/G1 cells compared with S, G2 and M phases. After cell division, MnSOD activity increases in the G1 phase of the daughter generation. The periodic fluctuation in MnSOD activity during the cell cycle inversely correlates with cellular superoxide levels as well as glucose and oxygen consumption. Based on an inverse correlation between MnSOD activity and glucose consumption during the cell cycle, it is proposed that MnSOD is a central molecular player for the “Warburg effect.” Future Directions: In general, loss of MnSOD activity results in aberrant proliferation. A better understanding of the MnSOD and mitochondrial ROS-dependent cell cycle processes may lead to novel approaches to overcome aberrant proliferation. Since ROS have both deleterious (pathological) and beneficial (physiological) effects, it is proposed that “eustress” should be used when discussing ROS processes that regulate normal physiological functions, while “oxidative stress” should be used to discuss the deleterious effects of ROS. Antioxid. Redox Signal. 20, 1618–1627. PMID:23590434

  8. Keith's MAGIC: Cloning and the Cell Cycle.

    PubMed

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  9. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    PubMed

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis.

  10. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    NASA Technical Reports Server (NTRS)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  11. Modeling the cell division cycle: cdc2 and cyclin interactions.

    PubMed Central

    Tyson, J J

    1991-01-01

    The proteins cdc2 and cyclin form a heterodimer (maturation promoting factor) that controls the major events of the cell cycle. A mathematical model for the interactions of cdc2 and cyclin is constructed. Simulation and analysis of the model show that the control system can operate in three modes: as a steady state with high maturation promoting factor activity, as a spontaneous oscillator, or as an excitable switch. We associate the steady state with metaphase arrest in unfertilized eggs, the spontaneous oscillations with rapid division cycles in early embryos, and the excitable switch with growth-controlled division cycles typical of nonembryonic cells. PMID:1831270

  12. p53 and Cell Cycle Effects After DNA Damage

    PubMed Central

    Senturk, Emir; Manfredi, James J.

    2016-01-01

    Flow cytometry, a valuable technique that employs the principles of light scattering, light excitation, and emission of fluorochrome molecules, can be used to assess the cell cycle position of individual cells based on DNA content. After the permeabilization of cells, the DNA can be stained with a fluorescent dye. Cells which have a 2N amount of DNA can be distinguished from cells with a 4N amount of DNA, making flow cytometry a very useful tool for the analysis of cell cycle checkpoints following DNA damage. A critical feature of the cellular response to DNA damage is the ability to pause and repair the damage so that consequential mutations are not passed along to daughter generations of cells. If cells arrest prior to DNA replication, they will contain a 2N amount of DNA, whereas arrest after replication but before mitosis will result in a 4N amount of DNA. Using this technique, the role that p53 plays in cell cycle checkpoints following DNA damage can be evaluated based on changes in the profile of the G1, S, and G2/M phases of the cell cycle. PMID:23150436

  13. NUTRIENT REGULATION OF CELL CYCLE PROGRESSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cell replication is tightly controlled in normal tissues and aberrant during disease progression, such as in tumorigenesis. The replication of cells can be divided into four distinct phases: Gap 1 (G1), synthesis (S), gap 2 (G2), and mitosis (M). The progression from one phase to the next is intrica...

  14. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression.

    PubMed

    Xie, Xie; Dubrovsky, Edward B

    2015-12-01

    RNase Z(L) is a highly conserved tRNA 3'-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase Z(L) (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase Z(L) in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry.

  15. Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression

    PubMed Central

    Xie, Xie; Dubrovsky, Edward B.

    2015-01-01

    RNase ZL is a highly conserved tRNA 3′-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase ZL (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase ZL in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry. PMID:26553808

  16. Targeting the cancer cell cycle by cold atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Volotskova, O.; Hawley, T. S.; Stepp, M. A.; Keidar, M.

    2012-09-01

    Cold atmospheric plasma (CAP), a technology based on quasi-neutral ionized gas at low temperatures, is currently being evaluated as a new highly selective alternative addition to existing cancer therapies. Here, we present a first attempt to identify the mechanism of CAP action. CAP induced a robust ~2-fold G2/M increase in two different types of cancer cells with different degrees of tumorigenicity. We hypothesize that the increased sensitivity of cancer cells to CAP treatment is caused by differences in the distribution of cancer cells and normal cells within the cell cycle. The expression of γH2A.X (pSer139), an oxidative stress reporter indicating S-phase damage, is enhanced specifically within CAP treated cells in the S phase of the cell cycle. Together with a significant decrease in EdU-incorporation after CAP, these data suggest that tumorigenic cancer cells are more susceptible to CAP treatment.

  17. The Timing of T Cell Priming and Cycling.

    PubMed

    Obst, Reinhard

    2015-01-01

    The proliferation of specific lymphocytes is the central tenet of the clonal selection paradigm. Antigen recognition by T cells triggers a series of events that produces expanded clones of differentiated effector cells. TCR signaling events are detectable within seconds and minutes and are likely to continue for hours and days in vivo. Here, I review the work done on the importance of TCR signals in the later part of the expansion phase of the primary T cell response, primarily regarding the regulation of the cell cycle in CD4(+) and CD8(+) cells. The results suggest a degree of programing by early signals for effector differentiation, particularly in the CD8(+) T cell compartment, with optimal expansion supported by persistent antigen presentation later on. Differences to CD4(+) T cell expansion and new avenues toward a molecular understanding of cell cycle regulation in lymphocytes are discussed. PMID:26594213

  18. The Dynamical Mechanisms of the Cell Cycle Size Checkpoint

    NASA Astrophysics Data System (ADS)

    Feng, Shi-Fu; Yan, Jie; Liu, Zeng-Rong; Yang, Ling

    2012-10-01

    Cell division must be tightly coupled to cell growth in order to maintain cell size, whereas the mechanisms of how initialization of mitosis is regulated by cell size remain to be elucidated. We develop a mathematical model of the cell cycle, which incorporates cell growth to investigate the dynamical properties of the size checkpoint in embryos of Xenopus laevis. We show that the size checkpoint is naturally raised from a saddle-node bifurcation, and in a mutant case, the cell loses its size control ability due to the loss of this saddle-node point.

  19. NONO couples the circadian clock to the cell cycle

    PubMed Central

    Kowalska, Elzbieta; Ripperger, Juergen A.; Hoegger, Dominik C.; Bruegger, Pascal; Buch, Thorsten; Birchler, Thomas; Mueller, Anke; Albrecht, Urs; Contaldo, Claudio; Brown, Steven A.

    2013-01-01

    Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization. PMID:23267082

  20. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  1. Evidence of a conserved role for Chlamydia HtrA in the replication phase of the chlamydial developmental cycle.

    PubMed

    Patel, Pooja; De Boer, Leonore; Timms, Peter; Huston, Wilhelmina May

    2014-08-01

    Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle.

  2. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  3. Strategic Grassland Bird Conservation throughout the annual cycle: Linking policy alternatives, landowner decisions, and biological population outcomes

    USGS Publications Warehouse

    Drum, Ryan G.; Ribic, Christine; Koch, Katie; Lonsdorf, Eric V.; Grant, Edward C.; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, D.C.; Rideout, Catherine; Sample, David W.

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  4. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes

    PubMed Central

    Drum, Ryan G.; Ribic, Christine A.; Koch, Katie; Lonsdorf, Eric; Grant, Evan; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, David C.; Rideout, Catherine; Sample, David

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds. PMID:26569108

  5. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes.

    PubMed

    Drum, Ryan G; Ribic, Christine A; Koch, Katie; Lonsdorf, Eric; Grant, Evan; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, David C; Rideout, Catherine; Sample, David

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds. PMID:26569108

  6. Strategic Grassland Bird Conservation throughout the Annual Cycle: Linking Policy Alternatives, Landowner Decisions, and Biological Population Outcomes.

    PubMed

    Drum, Ryan G; Ribic, Christine A; Koch, Katie; Lonsdorf, Eric; Grant, Evan; Ahlering, Marissa; Barnhill, Laurel; Dailey, Thomas; Lor, Socheata; Mueller, Connie; Pavlacky, David C; Rideout, Catherine; Sample, David

    2015-01-01

    Grassland bird habitat has declined substantially in the United States. Remaining grasslands are increasingly fragmented, mostly privately owned, and vary greatly in terms of habitat quality and protection status. A coordinated strategic response for grassland bird conservation is difficult, largely due to the scope and complexity of the problem, further compounded by biological, sociological, and economic uncertainties. We describe the results from a collaborative Structured Decision Making (SDM) workshop focused on linking social and economic drivers of landscape change to grassland bird population outcomes. We identified and evaluated alternative strategies for grassland bird conservation using a series of rapid prototype models. We modeled change in grassland and agriculture cover in hypothetical landscapes resulting from different landowner decisions in response to alternative socio-economic conservation policy decisions. Resulting changes in land cover at all three stages of the annual cycle (breeding, wintering, and migration) were used to estimate changes in grassland bird populations. Our results suggest that successful grassland bird conservation may depend upon linkages with ecosystem services on working agricultural lands and grassland-based marketing campaigns to engage the public. With further development, spatial models that link landowner decisions with biological outcomes can be essential tools for making conservation policy decisions. A coordinated non-traditional partnership will likely be necessary to clearly understand and systematically respond to the many conservation challenges facing grassland birds.

  7. How the cell cycle impacts chromatin architecture and influences cell fate

    PubMed Central

    Ma, Yiqin; Kanakousaki, Kiriaki; Buttitta, Laura

    2015-01-01

    Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming. PMID:25691891

  8. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    PubMed Central

    Vitulo, Nicola; Vezzi, Alessandro; Galla, Giulio; Citterio, Sandra; Marino, Giada; Ruperti, Benedetto; Zermiani, Monica; Albertini, Emidio; Valle, Giorgio; Barcaccia, Gianni

    2007-01-01

    The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confirming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals five distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed. PMID:19468312

  9. Creatine kinase in cell cycle regulation and cancer.

    PubMed

    Yan, Yong-Bin

    2016-08-01

    The phosphocreatine-creatine kinase (CK) shuttle system is increasingly recognized as a fundamental mechanism for ATP homeostasis in both excitable and non-excitable cells. Many intracellular processes are ATP dependent. Cell division is a process requiring a rapid rate of energy turnover. Cell cycle regulation is also a key point to understanding the mechanisms underlying cancer progression. It has been known for about 40 years that aberrant CK levels are associated with various cancers and for over 30 years that CK is involved in mitosis regulation. However, the underlying molecular mechanisms have not been investigated sufficiently until recently. By maintaining ATP at sites of high-energy demand, CK can regulate cell cycle progression by affecting the intracellular energy status as well as by influencing signaling pathways that are essential to activate cell division and cytoskeleton reorganization. Aberrant CK levels may impair cell viability under normal or stressed conditions and induce cell death. The involvement of CK in cell cycle regulation and cellular energy metabolism makes it a potential diagnostic biomarker and therapeutic target in cancer. To understand the multiple physiological/pathological functions of CK, it is necessary to identify CK-binding partners and regulators including proteins, non-coding RNAs and participating endogenous small molecular weight chemical compounds. This review will focus on molecular mechanisms of CK in cell cycle regulation and cancer progression. It will also discuss the implications of recent mechanistic studies, the emerging problems and future challenges of the multifunctional enzyme CK. PMID:27020776

  10. RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice

    PubMed Central

    Ogawa, Daisuke; Abe, Kiyomi; Miyao, Akio; Kojima, Mikiko; Sakakibara, Hitoshi; Mizutani, Megumi; Morita, Haruka; Toda, Yosuke; Hobo, Tokunori; Sato, Yutaka; Hattori, Tsukaho; Hirochika, Hirohiko; Takeda, Shin

    2011-01-01

    Plant growth and development are sustained by continuous cell division in the meristems, which is perturbed by various environmental stresses. For the maintenance of meristematic functions, it is essential that cell division be coordinated with cell differentiation. However, it is unknown how the proliferative activities of the meristems and the coordination between cell division and differentiation are maintained under stressful conditions. Here we show that a rice protein, RSS1, whose stability is controlled by cell cycle phases, contributes to the vigour of meristematic cells and viability under salinity conditions. These effects of RSS1 are exerted by regulating the G1–S transition, possibly through an interaction of RSS1 with protein phosphatase 1, and are mediated by the phytohormone, cytokinin. RSS1 is conserved widely in plant lineages, except eudicots, suggesting that RSS1-dependent mechanisms might have been adopted in specific lineages during the evolutionary radiation of angiosperms. PMID:21505434

  11. Nanosecond pulsed electric fields and the cell cycle

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.

    Exposure to nanosecond pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. The phase of the cell cycle at the time of exposure is linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Additionally, nsPEFs are capable of activating cell cycle checkpoints, which could lead to apoptosis or slow population growth. NsPEFs are emerging as a method for treating tumors via apoptotic induction; therefore, investigating the relevance of nsPEFs and the cell cycle could translate into improved efficacy in tumor treatment. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate the role of cell cycle phase in survival of nsPEFs. CHO populations appeared similar to sham populations post-nsPEFs but exhibited arrest in the G1 phase at 6h after exposure. Jurkat cells exhibited increased cell death after nsPEFs compared to CHO cells but did not exhibit checkpoint arrest at any observed time point. The G1/S phase checkpoint is partially controlled by the action of p53; the lack of an active p53 response in Jurkat cells could contribute to their ability to pass this checkpoint and resist cell cycle arrest. Both cell lines exhibited increased sensitivity to nsPEFs in G2/M phase. Live imaging of CHO cells after nsPEF exposure supports the theory of G1/S phase arrest, as a reduced number of cells undergo mitosis within 24 h when

  12. Cell cycles and proliferation patterns in Haematococcus pluvialis

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Liu, Jianguo; Zhang, Litao

    2016-09-01

    Most studies on Haematococcus pluvialis have been focused on cell growth and astaxanthin accumulation; far less attention has been paid to cell cycles and proliferation patterns. The purpose of this study was to clarify cell cycles and proliferation patterns in H. pluvialis microscopically using a camera and video recorder system. The complicated life history of H. pluvialis can be divided into two stages: the motile stage and the non-motile stage. All the cells can be classified into forms as follows: motile cell, non-motile cell, zoospore and aplanospore. The main cell proliferation, both in the motile phase and non-motile phase in H. pluvialis, is by asexual reproduction. Under normal growth conditions, a motile cell usually produces two, sometimes four, and exceptionally eight zoospores. Under unfavorable conditions, the motile cell loses its flagella and transforms into a non-motile cell, and the non-motile cell usually produces 2, 4 or 8 aplanospores, and occasionally 20-32 aplanospores, which further develop into non-motile cells. Under suitable conditions, the non-motile cell is also able to release zoospores. The larger non-motile cells produce more than 16 zoospores, and the smaller ones produce 4 or 8 zoospores. Vegetative reproduction is by direct cell division in the motile phase and by occasional cell budding in the non-motile phase. There is, as yet, no convincing direct evidence for sexual reproduction.

  13. Regulation of DNA damage responses and cell cycle progression by hMOB2

    PubMed Central

    Gomez, Valenti; Gundogdu, Ramazan; Gomez, Marta; Hoa, Lily; Panchal, Neelam; O’Driscoll, Mark; Hergovich, Alexander

    2014-01-01

    Mps one binder proteins (MOBs) are conserved regulators of essential signalling pathways. Biochemically, human MOB2 (hMOB2) can inhibit NDR kinases by competing with hMOB1 for binding to NDRs. However, biological roles of hMOB2 have remained enigmatic. Here, we describe novel functions of hMOB2 in the DNA damage response (DDR) and cell cycle regulation. hMOB2 promotes DDR signalling, cell survival and cell cycle arrest after exogenously induced DNA damage. Under normal growth conditions in the absence of exogenously induced DNA damage hMOB2 plays a role in preventing the accumulation of endogenous DNA damage and a subsequent p53/p21-dependent G1/S cell cycle arrest. Unexpectedly, these molecular and cellular phenotypes are not observed upon NDR manipulations, indicating that hMOB2 performs these functions independent of NDR signalling. Thus, to gain mechanistic insight, we screened for novel binding partners of hMOB2, revealing that hMOB2 interacts with RAD50, facilitating the recruitment of the MRE11-RAD50-NBS1 (MRN) DNA damage sensor complex and activated ATM to DNA damaged chromatin. Taken together, we conclude that hMOB2 supports the DDR and cell cycle progression. PMID:25460043

  14. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging.

    PubMed

    Blagosklonny, Mikhail V

    2012-03-01

    Cell cycle arrest is not yet senescence. When the cell cycle is arrested, an inappropriate growth-promotion converts an arrest into senescence (geroconversion). By inhibiting the growth-promoting mTOR pathway, rapamycin decelerates geroconversion of the arrested cells. And as a striking example, while causing arrest, p53 may decelerate or suppress geroconversion (in some conditions). Here I discuss the meaning of geroconversion and also the terms gerogenes, gerossuppressors, gerosuppressants, gerogenic pathways, gero-promoters, hyperfunction and feedback resistance, regenerative potential, hypertrophy and secondary atrophy, pro-gerogenic and gerogenic cells. PMID:22394614

  15. Digital Holographic Microscopy for Non-Invasive Monitoring of Cell Cycle Arrest in L929 Cells

    PubMed Central

    Falck Miniotis, Maria; Mukwaya, Anthonny; Gjörloff Wingren, Anette

    2014-01-01

    Digital holographic microscopy (DHM) has emerged as a powerful non-invasive tool for cell analysis. It has the capacity to analyse multiple parameters simultaneously, such as cell- number, confluence and phase volume. This is done while cells are still adhered and growing in their culture flask. The aim of this study was to investigate whether DHM was able to monitor drug-induced cell cycle arrest in cultured cells and thus provide a non-disruptive alternative to flow cytometry. DHM parameters from G1 and G2/M cell cycle arrested L929 mouse fibroblast cells were collected. Cell cycle arrest was verified with flow cytometry. This study shows that DHM is able to monitor phase volume changes corresponding to either a G1 or G2/M cell cycle arrest. G1-phase arrest with staurosporine correlated with a decrease in the average cell phase volume and G2/M-phase arrest with colcemid and etoposide correlated with an increase in the average cell phase volume. Importantly, DHM analysis of average cell phase volume was of comparable accuracy to flow cytometric measurement of cell cycle phase distribution as recorded following dose-dependent treatment with etoposide. Average cell phase volume changes in response to treatment with cell cycle arresting compounds could therefore be used as a DHM marker for monitoring cell cycle arrest in cultured mammalian cells. PMID:25208094

  16. The architectural organization of human stem cell cycle regulatory machinery.

    PubMed

    Stein, Gary S; Stein, Janet L; van J Wijnen, Andre; Lian, Jane B; Montecino, Martin; Medina, Ricardo; Kapinas, Kristie; Ghule, Prachi; Grandy, Rodrigo; Zaidi, Sayyed K; Becker, Klaus A

    2012-01-01

    Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular and architectural commitment steps that license human embryonic stem cells to initiate histone gene expression is providing understanding of the principal regulatory mechanisms that control the G1/S phase transition in primitive pluripotent cells. From both fundamental regulatory and clinical perspectives, further understanding of the pluripotent cell cycle in relation to compartmentalization of regulatory machinery in nuclear microenvironments is relevant to applications of stem cells for regenerative medicine and new dimensions to therapy where traditional drug discovery strategies have been minimally effective.

  17. Metformin inhibits cell cycle progression of B-cell chronic lymphocytic leukemia cells.

    PubMed

    Bruno, Silvia; Ledda, Bernardetta; Tenca, Claudya; Ravera, Silvia; Orengo, Anna Maria; Mazzarello, Andrea Nicola; Pesenti, Elisa; Casciaro, Salvatore; Racchi, Omar; Ghiotto, Fabio; Marini, Cecilia; Sambuceti, Gianmario; DeCensi, Andrea; Fais, Franco

    2015-09-01

    B-cell chronic lymphocytic leukemia (CLL) was believed to result from clonal accumulation of resting apoptosis-resistant malignant B lymphocytes. However, it became increasingly clear that CLL cells undergo, during their life, iterative cycles of re-activation and subsequent clonal expansion. Drugs interfering with CLL cell cycle entry would be greatly beneficial in the treatment of this disease. 1, 1-Dimethylbiguanide hydrochloride (metformin), the most widely prescribed oral hypoglycemic agent, inexpensive and well tolerated, has recently received increased attention for its potential antitumor activity. We wondered whether metformin has apoptotic and anti-proliferative activity on leukemic cells derived from CLL patients. Metformin was administered in vitro either to quiescent cells or during CLL cell activation stimuli, provided by classical co-culturing with CD40L-expressing fibroblasts. At doses that were totally ineffective on normal lymphocytes, metformin induced apoptosis of quiescent CLL cells and inhibition of cell cycle entry when CLL were stimulated by CD40-CD40L ligation. This cytostatic effect was accompanied by decreased expression of survival- and proliferation-associated proteins, inhibition of signaling pathways involved in CLL disease progression and decreased intracellular glucose available for glycolysis. In drug combination experiments, metformin lowered the apoptotic threshold and potentiated the cytotoxic effects of classical and novel antitumor molecules. Our results indicate that, while CLL cells after stimulation are in the process of building their full survival and cycling armamentarium, the presence of metformin affects this process.

  18. Molecular mechanisms creating bistable switches at cell cycle transitions

    PubMed Central

    Verdugo, Anael; Vinod, P. K.; Tyson, John J.; Novak, Bela

    2013-01-01

    Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i−1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i−1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts. PMID:23486222

  19. Cycle life characteristics of Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Deligiannis, Frank; Shen, D.; Huang, C. K.; Surampudi, S.

    1991-01-01

    The development of lithium ambient temperature rechargeable cells is discussed. During the development process, we hope to gain a greater understanding of the materials and the properties of the Li-TiS2 cell and its components. The design will meet the requirements of 100 Wh/Kg and 1000 cycles, at 50 percent depth-of-discharge, by 1995.

  20. Downregulation of cell cycle-related proteins in ovarian cancer line and cell cycle arrest induced by microRNA

    PubMed Central

    Yuan, Jian-Mei; Shi, Xue-Jun; Sun, Ping; Liu, Jun-Xia; Wang, Wei; Li, Ming; Ling, Feng-Yu

    2015-01-01

    Objective: The effect of miR-449 and miR-34 on the growth, cell cycle and target gene expressions of ovarian cancer cell line SKOV3 and SKOV3-ipl was discussed. Method: Real-time quantitative reverse transcription PCR was employed to detect the expressions of miR-449a/b and miR-34b, c in SKOV3 and SKOV3-ipl cells. The two miRNAs were successfully expressed in SKOV3-ipl cells by transfection. The variations in cell growth rate and cell cycle were determined by MTS assay and flow cytometry, respectively. The expressions of cell cycle-related proteins were detected by Western Blot. Results: miR-449b and miR-34c induced the decline of the adhesiveness of SKOV3-ipl cells by 20%-30%. The number of cells arrested in G1-phase increased and the number of cells arrested in S-phase decreased significantly. The cell cycle-related proteins CDK6 and CDC254 were downregulated. miR-449b caused the expression of CDK6 and CDC25A to decrease. After the co-transfection with miR-449b and miR-34c, the relevant proteins were downregulated more significantly. The expressions of CDK6, CDC25A and cyclin A were decreased significantly. Conclusion: miR-449b and miR-34c can induce cell cycle arrest in SKOV3-ipl cells and the downregulation of CDK6, CDC25A and cyclin A. PMID:26770455

  1. Redox Control of the Cell Cycle in Health and Disease

    PubMed Central

    Sarsour, Ehab H.; Kumar, Maneesh G.; Chaudhuri, Leena; Kalen, Amanda L.

    2009-01-01

    Abstract The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as “second messengers” regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G0) to proliferation (G1, S, G2, and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders. Antioxid. Redox Signal. 11, 2985–3011. PMID:19505186

  2. Cell cycling with the SEB: a personal view.

    PubMed

    Bryant, John

    2014-06-01

    This review, written from a personal perspective, traces firstly the development of plant cell cycle research from the 1970s onwards, with some focus on the work of the author and of Dr Dennis Francis. Secondly there is a discussion of the support for and discussion of plant cell cycle research in the SEB, especially through the activities of the Cell Cycle Group within the Society's Cell Biology Section. In the main part of the review, selected aspects of DNA replication that have of been of special interest to the author are discussed. These are DNA polymerases and associated proteins, pre-replication events, regulation of enzymes and other proteins, nature and activation of DNA replication origins, and DNA endoreduplication. For all these topics, there is mention of the author's own work, followed by a brief synthesis of current understanding and a look to possible future developments.

  3. Cell cycle regulation of human WEE1.

    PubMed Central

    McGowan, C H; Russell, P

    1995-01-01

    WEE1 kinase negatively regulates entry into mitosis by catalyzing the inhibitory tyrosine phosphorylation of CDC2/cyclin B kinase. We report here an investigation of human WEE1. Endogenous WEE1 migrates as an approximately 94 kDa protein in SDS-PAGE, substantially larger than the 49 kDa protein encoded by the original human WEE1 cDNA clone that was truncated at the 5'-end. Antibody depletion experiments demonstrate that WEE1 accounts for most of the activity that phosphorylates CDC2 on Tyr15 in an in vitro assay of HeLa cell lysates, hence it is likely to have an important role in the mitotic control of human cells. WEE1 activity was not found to be elevated in HeLa cells arrested in S phase, suggesting that unreplicated DNA does not delay M phase by hyperactivating WEE1. WEE1 activity is strongly suppressed during M phase, suggesting that negative regulation of WEE1 could be part of the mechanism by which activation of CDC2/cyclin B kinase is promoted during the G2/M transition. M phase WEE1 is re-activated in samples prepared in the absence of protein phosphatase inhibitors, demonstrating that WEE1 is inhibited by a mechanism that requires protein phosphorylation. Images PMID:7774574

  4. Cell cycle restriction is more important than apoptosis induction for RASSF1A protein tumor suppression.

    PubMed

    Donninger, Howard; Clark, Jennifer A; Monaghan, Megan K; Schmidt, M Lee; Vos, Michele; Clark, Geoffrey J

    2014-11-01

    The Ras association domain family protein 1A (RASSF1A) is arguably one of the most frequently inactivated tumor suppressors in human cancer. RASSF1A modulates apoptosis via the Hippo and Bax pathways but also modulates the cell cycle. In part, cell cycle regulation appears to be dependent upon the ability of RASSF1A to complex with microtubules and regulate their dynamics. Which property of RASSF1A, apoptosis induction or microtubule regulation, is responsible for its tumor suppressor function is not known. We have identified a short conserved motif that is essential for the binding of RASSF family proteins with microtubule-associated proteins. By making a single point mutation in the motif, we were able to generate a RASSF1A variant that retains wild-type apoptotic properties but completely loses the ability to bind microtubule-associated proteins and complex with microtubules. Comparison of this mutant to wild-type RASSF1A showed that, despite retaining its proapoptotic properties, the mutant was completely unable to induce cell cycle arrest or suppress the tumorigenic phenotype. Therefore, it appears that the cell cycle/microtubule effects of RASSF1A are key to its tumor suppressor function rather than its apoptotic effects.

  5. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs

    PubMed Central

    Kim, Alison M.; Bernhardt, Miranda L.; Kong, Betty Y.; Ahn, Richard W.; Vogt, Stefan; Woodruff, Teresa K.; O’Halloran, Thomas V.

    2011-01-01

    In last few hours of maturation, the mouse oocyte takes up over twenty billion zinc atoms and arrests after the first meiotic division, until fertilization or pharmacological intervention stimulates cell cycle progression towards a new embryo. Using chemical and physical probes, we show that fertilization of the mature, zinc-enriched egg triggers the ejection of zinc into the extracellular milieu in a series of coordinated events termed zinc sparks. These events immediately follow the well-established series of calcium oscillations within the activated egg and are evolutionarily conserved in several mammalian species, including rodents and non-human primates. Functionally, the zinc sparks mediate a decrease in intracellular zinc content that is necessary for continued cell cycle progression, as increasing zinc levels within the activated egg results in the reestablishment of cell cycle arrest at metaphase. The mammalian egg thus uses a zinc-dependent switch mechanism to toggle between metaphase arrest and resumption of the meiotic cell cycle at the initiation of embryonic development. PMID:21526836

  6. Life-cycle costs of high-performance cells

    NASA Technical Reports Server (NTRS)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  7. Ionizing radiation and cell cycle progression in ataxia telangiectasia

    SciTech Connect

    Beamish, H.; Khanna, K.K.; Lavin, M.F.

    1994-04-01

    Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompanied by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.

  8. Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms?

    PubMed Central

    Noatynska, Anna; Tavernier, Nicolas; Gotta, Monica; Pintard, Lionel

    2013-01-01

    Spatio-temporal coordination of events during cell division is crucial for animal development. In recent years, emerging data have strengthened the notion that tight coupling of cell cycle progression and cell polarity in dividing cells is crucial for asymmetric cell division and ultimately for metazoan development. Although it is acknowledged that such coupling exists, the molecular mechanisms linking the cell cycle and cell polarity machineries are still under investigation. Key cell cycle regulators control cell polarity, and thus influence cell fate determination and/or differentiation, whereas some factors involved in cell polarity regulate cell cycle timing and proliferation potential. The scope of this review is to discuss the data linking cell polarity and cell cycle progression, and the importance of such coupling for asymmetric cell division. Because studies in model organisms such as Caenorhabditis elegans and Drosophila melanogaster have started to reveal the molecular mechanisms of this coordination, we will concentrate on these two systems. We review examples of molecular mechanisms suggesting a coupling between cell polarity and cell cycle progression. PMID:23926048

  9. A role for homologous recombination proteins in cell cycle regulation

    PubMed Central

    Kostyrko, Kaja; Bosshard, Sandra; Urban, Zuzanna; Mermod, Nicolas

    2015-01-01

    Eukaryotic cells respond to DNA breaks, especially double-stranded breaks (DSBs), by activating the DNA damage response (DDR), which encompasses DNA repair and cell cycle checkpoint signaling. The DNA damage signal is transmitted to the checkpoint machinery by a network of specialized DNA damage-recognizing and signal-transducing molecules. However, recent evidence suggests that DNA repair proteins themselves may also directly contribute to the checkpoint control. Here, we investigated the role of homologous recombination (HR) proteins in normal cell cycle regulation in the absence of exogenous DNA damage. For this purpose, we used Chinese Hamster Ovary (CHO) cells expressing the Fluorescent ubiquitination-based cell cycle indicators (Fucci). Systematic siRNA-mediated knockdown of HR genes in these cells demonstrated that the lack of several of these factors alters cell cycle distribution, albeit differentially. The knock-down of MDC1, Rad51 and Brca1 caused the cells to arrest in the G2 phase, suggesting that they may be required for the G2/M transition. In contrast, inhibition of the other HR factors, including several Rad51 paralogs and Rad50, led to the arrest in the G1/G0 phase. Moreover, reduced expression of Rad51B, Rad51C, CtIP and Rad50 induced entry into a quiescent G0-like phase. In conclusion, the lack of many HR factors may lead to cell cycle checkpoint activation, even in the absence of exogenous DNA damage, indicating that these proteins may play an essential role both in DNA repair and checkpoint signaling. PMID:26125600

  10. IDENTIFICATION OF NICOTINAMIDE MONONUCLEOTIDE DEAMIDASE OF THE BACTERIAL PYRIDINE NUCLEOTIDE CYCLE REVEALS A NOVEL BROADLY CONSERVED AMIDOHYDROLASE FAMILY

    SciTech Connect

    Galeazzi, Luca; Bocci, Paolo; Amici, Adolfo; Brunetti, Lucia; Ruggieri, Silverio; Romine, Margaret F.; Reed, Samantha B.; Osterman, Andrei; Rodionov, Dmitry A.; Sorci, Leonardo; Raffaelli, Nadia

    2011-09-27

    The pyridine nucleotide cycle (PNC) is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial PNC was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in E. coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and non functional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.

  11. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  12. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  13. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  14. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  15. Identification of a novel EGF-sensitive cell cycle checkpoint

    SciTech Connect

    Walker, Francesca . E-mail: francesca.walker@ludwig.edu.au; Zhang Huihua; Burgess, Antony W.

    2007-02-01

    The site of action of growth factors on mammalian cell cycle has been assigned to the boundary between the G1 and S phases. We show here that Epidermal Growth Factor (EGF) is also required for mitosis. BaF/3 cells expressing the EGFR (BaF/wtEGFR) synthesize DNA in response to EGF, but arrest in S-phase. We have generated a cell line (BaF/ERX) with defective downregulation of the EGFR and sustained activation of EGFR signalling pathways: these cells undergo mitosis in an EGF-dependent manner. The transit of BaF/ERX cells through G2/M strictly requires activation of EGFR and is abolished by AG1478. This phenotype is mimicked by co-expression of ErbB2 in BaF/wtEGFR cells, and abolished by inhibition of the EGFR kinase, suggesting that sustained signalling of the EGFR, through impaired downregulation of the EGFR or heterodimerization, is required for completion of the cycle. We have confirmed the role of EGFR signalling in the G2/M phase of the cell cycle using a human tumor cell line which overexpresses the EGFR and is dependent on EGFR signalling for growth. These findings unmask an EGF-sensitive checkpoint, helping to understand the link between sustained EGFR signalling, proliferation and the acquisition of a radioresistant phenotype in cancer cells.

  16. Modelling cell cycle synchronisation in networks of coupled radial glial cells.

    PubMed

    Barrack, Duncan S; Thul, Rüdiger; Owen, Markus R

    2015-07-21

    Radial glial cells play a crucial role in the embryonic mammalian brain. Their proliferation is thought to be controlled, in part, by ATP mediated calcium signals. It has been hypothesised that these signals act to locally synchronise cell cycles, so that clusters of cells proliferate together, shedding daughter cells in uniform sheets. In this paper we investigate this cell cycle synchronisation by taking an ordinary differential equation model that couples the dynamics of intracellular calcium and the cell cycle and extend it to populations of cells coupled via extracellular ATP signals. Through bifurcation analysis we show that although ATP mediated calcium release can lead to cell cycle synchronisation, a number of other asynchronous oscillatory solutions including torus solutions dominate the parameter space and cell cycle synchronisation is far from guaranteed. Despite this, numerical results indicate that the transient and not the asymptotic behaviour of the system is important in accounting for cell cycle synchronisation. In particular, quiescent cells can be entrained on to the cell cycle via ATP mediated calcium signals initiated by a driving cell and crucially will cycle in near synchrony with the driving cell for the duration of neurogenesis. This behaviour is highly sensitive to the timing of ATP release, with release at the G1/S phase transition of the cell cycle far more likely to lead to near synchrony than release during mid G1 phase. This result, which suggests that ATP release timing is critical to radial glia cell cycle synchronisation, may help us to understand normal and pathological brain development.

  17. A combined gas cooled nuclear reactor and fuel cell cycle

    NASA Astrophysics Data System (ADS)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  18. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle.

    PubMed

    Blackiston, Douglas J; McLaughlin, Kelly A; Levin, Michael

    2009-11-01

    All cells possess long-term, steady-state voltage gradients across the plasma membrane. These transmembrane potentials arise from the combined activity of numerous ion channels, pumps and gap junction complexes. Increasing data from molecular physiology now reveal that the role of changes in membrane voltage controls, and is in turn controlled by, progression through the cell cycle. We review recent functional data on the regulation of mitosis by bioelectric signals, and the function of membrane voltage and specific potassium, sodium and chloride ion channels in the proliferation of embryonic, somatic and neoplastic cells. Its unique properties place this powerful, well-conserved, but still poorly-understood signaling system at the center of the coordinated cellular interactions required for complex pattern formation. Moreover, disregulation of ion channel expression and function is increasingly observed to be not only a useful marker but likely a functional element in oncogenesis. New advances in genomics and the development of in vivo biophysical techniques suggest exciting opportunities for molecular medicine, bioengineering and regenerative approaches to human health. PMID:19823012

  19. High efficiency fuel cell/advanced turbine power cycles

    SciTech Connect

    Morehead, H.

    1995-10-19

    An outline of the Westinghouse high-efficiency fuel cell/advanced turbine power cycle is presented. The following topics are discussed: The Westinghouse SOFC pilot manufacturing facility, cell scale-up plan, pressure effects on SOFC power and efficiency, sureCell versus conventional gas turbine plants, sureCell product line for distributed power applications, 20 MW pressurized-SOFC/gas turbine power plant, 10 MW SOFC/CT power plant, sureCell plant concept design requirements, and Westinghouse SOFC market entry.

  20. Vertebrate Cell Cycle Modulates Infection by Protozoan Parasites

    NASA Astrophysics Data System (ADS)

    Dvorak, James A.; Crane, Mark St. J.

    1981-11-01

    Synchronized HeLa cell populations were exposed to Trypanosoma cruzi or Toxoplasma gondii, obligate intracellular protozoan parasites that cause Chagas' disease and toxoplasmosis, respectively, in humans. The ability of the two parasites to infect HeLa cells increased as the HeLa cells proceeded from the G1 phase to the S phase of their growth cycle and decreased as the cells entered G2-M. Characterization of the S-phase cell surface components responsible for this phenomenon could be beneficial in the development of vaccines against these parasitic diseases.

  1. WWP2 is required for normal cell cycle progression.

    PubMed

    Choi, Byeong Hyeok; Che, Xun; Chen, Changyan; Lu, Luo; Dai, Wei

    2015-09-01

    WWP2 is a ubiquitin E3 ligase belonging to the Nedd4-like family. Given that WWP2 target proteins including PTEN that are crucial for regulating cell proliferation or suppressing tumorigenesis, we have asked whether WWP2 plays a role in controlling cell cycle progression. Here we report that WWP2 is necessary for normal cell cycle progression as its silencing significantly reduces the cell proliferation rate. We have identified that an isoform of WWP2 (WWP2-V4) is highly expressed in the M phase of the cell cycle. Silencing of WWP2 accelerates the turnover of cyclin E, which is accompanied by increased levels of phospho-histone H3 (p-H3) and cyclin B. Moreover, silencing of WWP2 results in compromised phosphorylation of Akt(S473), a residue whose phosphorylation is tightly associated with the activation of the kinase. Combined, these results strongly suggest that WWP2 is an important component in regulating the Akt signaling cascade, as well as cell cycle progression. PMID:26622940

  2. WWP2 is required for normal cell cycle progression

    PubMed Central

    Choi, Byeong Hyeok; Che, Xun; Chen, Changyan; Lu, Luo; Dai, Wei

    2015-01-01

    WWP2 is a ubiquitin E3 ligase belonging to the Nedd4-like family. Given that WWP2 target proteins including PTEN that are crucial for regulating cell proliferation or suppressing tumorigenesis, we have asked whether WWP2 plays a role in controlling cell cycle progression. Here we report that WWP2 is necessary for normal cell cycle progression as its silencing significantly reduces the cell proliferation rate. We have identified that an isoform of WWP2 (WWP2-V4) is highly expressed in the M phase of the cell cycle. Silencing of WWP2 accelerates the turnover of cyclin E, which is accompanied by increased levels of phospho-histone H3 (p-H3) and cyclin B. Moreover, silencing of WWP2 results in compromised phosphorylation of AktS473, a residue whose phosphorylation is tightly associated with the activation of the kinase. Combined, these results strongly suggest that WWP2 is an important component in regulating the Akt signaling cascade, as well as cell cycle progression. PMID:26622940

  3. Human Fucci Pancreatic Beta Cell Lines: New Tools to Study Beta Cell Cycle and Terminal Differentiation

    PubMed Central

    Carlier, Géraldine; Maugein, Alicia; Cordier, Corinne; Pechberty, Séverine; Garfa-Traoré, Meriem; Martin, Patrick; Scharfmann, Raphaël; Albagli, Olivier

    2014-01-01

    Regulation of cell cycle in beta cells is poorly understood, especially in humans. We exploited here the recently described human pancreatic beta cell line EndoC-βH2 to set up experimental systems for cell cycle studies. We derived 2 populations from EndoC-βH2 cells that stably harbor the 2 genes encoding the Fucci fluorescent indicators of cell cycle, either from two vectors, or from a unique bicistronic vector. In proliferating non-synchronized cells, the 2 Fucci indicators revealed cells in the expected phases of cell cycle, with orange and green cells being in G1 and S/G2/M cells, respectively, and allowed the sorting of cells in different substeps of G1. The Fucci indicators also faithfully red out alterations in human beta cell proliferative activity since a mitogen-rich medium decreased the proportion of orange cells and inflated the green population, while reciprocal changes were observed when cells were induced to cease proliferation and increased expression of some beta cell genes. In the last situation, acquisition of a more differentiated beta cell phenotype correlates with an increased intensity in orange fluorescence. Hence Fucci beta cell lines provide new tools to address important questions regarding human beta cell cycle and differentiation. PMID:25259951

  4. Emerging roles of E2Fs in cancer: an exit from cell cycle control

    PubMed Central

    Chen, Hui-Zi; Tsai, Shih-Yin; Leone, Gustavo

    2012-01-01

    Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation. PMID:19851314

  5. The reproductive-cell cycle theory of aging: an update.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2011-01-01

    The Reproductive-Cell Cycle Theory posits that the hormones that regulate reproduction act in an antagonistic pleiotrophic manner to control aging via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence. Since reproduction is the most important function of an organism from the perspective of the survival of the species, if reproductive-cell cycle signaling factors determine the rate of growth, determine the rate of development, determine the rate of reproduction, and determine the rate of senescence, then by definition they determine the rate of aging and thus lifespan. The theory is able to explain: 1) the simultaneous regulation of the rate of aging and reproduction as evidenced by the fact that environmental conditions and experimental interventions known to extend longevity are associated with decreased reproductive-cell cycle signaling factors, thereby slowing aging and preserving fertility in a hostile reproductive environment; 2) two phenomena that are closely related to species lifespan-the rate of growth and development and the ultimate size of the animal; 3). the apparent paradox that size is directly proportional to lifespan and inversely proportional to fertility between species but vice versa within a species; 4). how differing rates of reproduction between species is associated with differences in their lifespan; 5). why we develop aging-related diseases; and 6). an evolutionarily credible reason for why and how aging occurs-these hormones act in an antagonistic pleiotrophic manner via cell cycle signaling; promoting growth and development early in life in order to achieve reproduction, but later in life, in a futile attempt to maintain reproduction, become dysregulated and drive senescence (dyosis). In essence, the Reproductive-Cell Cycle Theory can explain aging in all sexually reproductive life

  6. Does prolonged cycling of moderate intensity affect immune cell function?

    PubMed Central

    Scharhag, J; Meyer, T; Gabriel, H; Schlick, B; Faude, O; Kindermann, W; Shephard, R

    2005-01-01

    Background: Prolonged exercise may induce temporary immunosuppression with a presumed increased susceptibility for infection. However, there are only few data on immune cell function after prolonged cycling at moderate intensities typical for road cycling training sessions. Methods: The present study examined the influence on immune cell function of 4 h of cycling at a constant intensity of 70% of the individual anaerobic threshold. Interleukin-6 (IL-6) and C-reactive protein (CRP), leukocyte and lymphocyte populations, activities of natural killer (NK), neutrophils, and monocytes were examined before and after exercise, and also on a control day without exercise. Results: Cycling for 4 h induced a moderate acute phase response with increases in IL-6 from 1.0 (SD 0.5) before to 9.6 (5.6) pg/ml 1 h after exercise and CRP from 0.5 (SD 0.4) before to 1.8 (1.3) mg/l 1 day after exercise. Although absolute numbers of circulating NK cells, monocytes, and neutrophils increased during exercise, on a per cell basis NK cell activity, neutrophil and monocyte phagocytosis, and monocyte oxidative burst did not significantly change after exercise. However, a minor effect over time for neutrophil oxidative burst was noted, tending to decrease after exercise. Conclusions: Prolonged cycling at moderate intensities does not seem to seriously alter the function of cells of the first line of defence. Therefore, the influence of a single typical road cycling training session on the immune system is only moderate and appears to be safe from an immunological point of view. PMID:15728699

  7. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    SciTech Connect

    Sidjanin, D.; Grdina, D.; Woloschak, G.E.

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  8. Multistage carcinogenesis modeling including cell cycle and DNA damage states

    NASA Astrophysics Data System (ADS)

    Hazelton, W.; Moolgavkar, S.

    The multistage clonal expansion model of carcinogenesis is generalized to include cell cycle states and corresponding DNA damage states with imperfect repair for normal and initiated stem cells. Initiated cells may undergo transformation to a malignant state, eventually leading to cancer incidence or death. The model allows oxidative or radiation induced DNA damage, checkpoint delay, DNA repair, apoptosis, and transformation rates to depend on the cell cycle state or DNA damage state of normal and initiated cells. A probability generating function approach is used to represent the time dependent probability distribution for cells in all states. The continuous time coupled Markov system representing this joint distribution satisfies a partial differential equation (pde). Time dependent survival and hazard functions are found through numerical solution of the characteristic equations for the pde. Although the hazard and survival can be calculated numerically, number and size distributions of pre-malignant lesions from models that are developed will be approximated through simulation. We use the model to explore predictions for hazard and survival as parameters representing cell cycle regulation and arrest are modified. Modification of these parameters may influence rates for cell division, apoptosis and malignant transformation that are important in carcinogenesis. We also explore enhanced repair that may be important for low-dose hypersensitivity and adaptive response, and degradation of repair processes or loss of checkpoint control that may drive genetic instability.

  9. Visualisation of cell cycle modifications by X-ray irradiation of single HeLa cells using fluorescent ubiquitination-based cell cycle indicators.

    PubMed

    Kaminaga, K; Noguchi, M; Narita, A; Sakamoto, Y; Kanari, Y; Yokoya, A

    2015-09-01

    To explore the effects of X-ray irradiation on mammalian cell cycle dynamics, single cells using the fluorescent ubiquitination-based cell cycle indicator (Fucci) technique were tracked. HeLa cells expressing Fucci were used to visualise cell cycle modifications induced by irradiation. After cultured HeLa-Fucci cells were exposed to 5 Gy X-rays, fluorescent cell images were captured every 20 min for 48 h using a fluorescent microscope. Time dependence of the fluorescence intensity of S/G2 cells was analysed to examine the cell cycle dynamics of irradiated and non-irradiated control cells. The results showed that irradiated cells could be divided into two populations: one with similar cell cycle dynamics to that of non-irradiated cells, and another displaying a prolonged G2 phase. Based on these findings, it is proposed in this article that an underlying switch mechanism is involved in cell cycle regulation and the G2/M checkpoint of HeLa cells.

  10. Regulated protein kinases and phosphatases in cell cycle decisions

    PubMed Central

    Novak, Bela; Kapuy, Orsolya; Domingo-Sananes, Maria Rosa; Tyson, John J

    2013-01-01

    Many aspects of cell physiology are controlled by protein kinases and phosphatases, which together determine the phosphorylation state of targeted substrates. Some of these target proteins are themselves kinases or phosphatases or other components of a regulatory network characterized by feedback and feed-forward loops. In this review we describe some common regulatory motifs involving kinases, phosphatases, and their substrates, focusing particularly on bistable switches involved in cellular decision processes. These general principles are applied to cell cycle transitions, with special emphasis on the roles of regulated phosphatases in orchestrating progression from one phase to the next of the DNA replication-division cycle. PMID:20678910

  11. α-Mangostin Induces Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma Cell

    PubMed Central

    Kwak, Hyun-Ho; Park, Bong-Soo

    2016-01-01

    Mangosteen has long been used as a traditional medicine and is known to have antibacterial, antioxidant, and anticancer effects. Although the effects of α-mangostin, a natural compound extracted from the pericarp of mangosteen, have been investigated in many studies, there is limited data on the effects of the compound in human oral squamous cell carcinoma (OSCC). In this study, α-mangostin was assessed as a potential anticancer agent against human OSCC cells. α-Mangostin inhibited cell proliferation and induced cell death in OSCC cells in a dose- and time-dependent manner with little to no effect on normal human PDLF cells. α-Mangostin treatment clearly showed apoptotic evidences such as nuclear fragmentation and accumulation of annexin V and PI-positive cells on OSCC cells. α-Mangostin treatment also caused the collapse of mitochondrial membrane potential and the translocation of cytochrome c from the mitochondria into the cytosol. The expressions of the mitochondria-related proteins were activated by α-mangostin. Treatment with α-mangostin also induced G1 phase arrest and downregulated cell cycle-related proteins (CDK/cyclin). Hence, α-mangostin specifically induces cell death and inhibits proliferation in OSCC cells via the intrinsic apoptosis pathway and cell cycle arrest at the G1 phase, suggesting that α-mangostin may be an effective agent for the treatment of OSCC. PMID:27478478

  12. Protection of renal cells from cisplatin toxicity by cell cycle inhibitors.

    PubMed

    Price, Peter M; Safirstein, Robert L; Megyesi, Judit

    2004-02-01

    The optimal use of cisplatin as a chemotherapeutic drug has been limited by its nephrotoxicity. Murine models have been used to study cisplatin-induced acute renal failure. After cisplatin administration, cells of the S3 segment in the renal proximal tubule are especially sensitive and undergo extensive necrosis in vivo. Similarly, cultured proximal tubule cells undergo apoptosis in vitro after cisplatin exposure. We have shown in vivo that kidney cells enter the cell cycle after cisplatin administration but that cell cycle-inhibitory proteins p21 and 14-3-3sigma are also upregulated. These proteins coordinate the cell cycle, and deletion of either of the genes resulted in increased nephrotoxicity in vivo or increased cell death in vitro after exposure to cisplatin. However, it was not known whether cell cycle inhibition before acute renal failure could protect from cisplatin-induced cell death, especially in cells with functional p21 and 14-3-3sigma genes. Using several cell cycle inhibitors, including a p21 adenovirus, and the drugs roscovitine and olomoucine, we have been able to completely protect a mouse kidney proximal tubule cell culture from cisplatin-induced apoptosis. The protection by p21 was independent of an effect on the cell cycle and was likely caused by selective inhibition of caspase-dependent and -independent cell death pathways in the cells.

  13. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    PubMed

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  14. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest

    PubMed Central

    Granier, Celine J.; Wang, Wei; Tsang, Tiffany; Steward, Ruth; Sabaawy, Hatem E.; Bhaumik, Mantu; Rabson, Arnold B.

    2014-01-01

    ABSTRACT PDCD2 (programmed cell death domain 2) is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs). We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse. PMID:25150276

  15. Lithium/disulfide cells capable of long cycle life

    SciTech Connect

    Kaun, T.D.; Holifield, T.F.; DeLuca, W.H.

    1988-01-01

    The lithium-alloy/disulfide cell has undergone improvements to provide a very stable, high performance upper-plateau (UP) FeS/sub 2/ electrode. Prismatic UP FeS/sub 2/ cell tests (12--24 Ah capacity) with a LiCl-LiBr-KBr eutectic electrolyte have demonstrated 1000 deep discharge cycles at 400/degree/C with less than a 20% drop in capacity and without reduced power capability. Previous lithium-alloy/disulfide cells, which were based on a two voltage-plateau FeS/sub 2/ electrode and LiCl-KCl eutectic electrolyte had a life expectancy of only 100 cycles. Both time- and cycle-related capacity loss mechanisms have been eliminated with the improved cell design. In addition, new cell design features of overcharge tolerance and overdischarge safeguarding enhance battery durability. The performance prospects of a Li-alloy/UP FeS/sub 2/ battery for an IDSEP van application are discussed. A specific energy of 150 Wh/kg for this battery after 1000 cycles of operation is projected. 8 refs., 5 figs., 1 tab.

  16. Lithium/disulfide cells capable of long cycle life

    NASA Astrophysics Data System (ADS)

    Kaun, T. D.; Holifield, T. F.; Deluca, W. H.

    The lithium-alloy/disulfide cell has undergone improvements to provide a very stable, high performance Upper-Plateau (UP) FeS2 electrode. Prismatic UP FeS2 cell tests (12 to 24 Ah capacity) with a LiCl-LiBr-KBr eutectic electrolyte have demonstrated 1000 deep discharge cycles at 400 C with less than a 20 percent drop in capacity and without reduced power capability. Previous lithium-alloy/disulfide cells, which were based on a two voltage-plateau FeS2 electrode and LiCl-KCl eutectic electrolyte had a life expectancy of only 100 cycles. Both time- and cycle-related capacity loss mechanisms have been eliminated with the improved cell design. In addition, new cell design features of overcharge tolerance and overdischarge safeguarding enhance battery durability. The performance prospects of a Li-alloy/UP FeS2 battery for an IDSEP van application are discussed. A specific energy of 150 Wh/kg for this battery after 1000 cycles of operation is projected.

  17. Geometric conservation laws for cells or vesicles with membrane nanotubes or singular points.

    PubMed

    Yin, Yajun; Yin, Jie

    2006-07-12

    On the basis of the integral theorems about the mean curvature and Gauss curvature, geometric conservation laws for cells or vesicles are proved. These conservation laws may depict various special bionano structures discovered in experiments, such as the membrane nanotubes and singular points grown from the surfaces of cells or vesicles. Potential applications of the conservation laws to lipid nanotube junctions that interconnect cells or vesicles are discussed.

  18. Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks.

    PubMed

    Boward, Ben; Wu, Tianming; Dalton, Stephen

    2016-06-01

    Pluripotent stem cells (PSCs) proliferate rapidly with a characteristic cell cycle structure consisting of short G1- and G2-gap phases. This applies broadly to PSCs of peri-implantation stage embryos, cultures of embryonic stem cells, induced pluripotent stem cells, and embryonal carcinoma cells. During the early stages of PSC differentiation however, cell division times increase as a consequence of cell cycle remodeling. Most notably, this is indicated by elongation of the G1-phase. Observations linking changes in the cell cycle with exit from pluripotency have raised questions about the role of cell cycle control in maintenance of the pluripotent state. Until recently however, this has been a difficult question to address because of limitations associated with experimental tools. Recent studies now show that pluripotency and cell cycle regulatory networks are intertwined and that cell cycle control mechanisms are an integral, mechanistic part of the PSC state. Studies in embryonal carcinoma, some 30 years ago, first suggested that pluripotent cells initiate differentiation when in the G1-phase. More recently, a molecular "priming" mechanism has been proposed to explain these observations in human embryonic stem cells. Complexity in this area has been increased by the realization that pluripotent cells exist in multiple developmental states and that in addition to each having their own characteristic gene expression and epigenetic signatures, they potentially have alternate modes of cell cycle regulation. This review will summarize current knowledge in these areas and will highlight important aspects of interconnections between the cell cycle, self-renewal, pluripotency, and cell fate decisions. Stem Cells 2016;34:1427-1436.

  19. [Dynamics of the cell cycle in human endothelial cell culture infected with influenza virus].

    PubMed

    Prochukhanova, A R; Lyublinskaya, O G; Azarenok, A A; Nazarova, A V; Zenin, V V; Zhilinskaya, I N

    2015-01-01

    Cell cycle in a culture of endothelial cells EAhy 926 infected with influenza virus was investigated. Cytometric analysis of culture, synchronized using contact inhibition, has shown that the exposure to the influenza virus in cells EAhy 926 lengthened S-phase of the cell cycle. This result has been tested and proven on culture EAhy 926 treated with nocodazole. Compared with lung carcinoma cells A549, in which influenza virus provokes the arrest of G0/G1 phase of the cycle, elongation of S-phase of cycle at a similar infection of endothelial culture EAhy 926 indicates that the influenza virus differently affects the dynamics of the cell cycle according to the origin of the infected culture.

  20. Visualizing cell-cycle kinetics after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci).

    PubMed

    Goto, Tatsuaki; Kaida, Atsushi; Miura, Masahiko

    2015-12-10

    Hypoxia induces G1 arrest in many cancer cell types. Tumor cells are often exposed to hypoxia/reoxygenation, especially under acute hypoxic conditions in vivo. In this study, we investigated cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation in HeLa cells expressing fluorescent ubiquitination-based cell cycle indicator (Fucci). Hypoxic treatment halted cell-cycle progression during mid-S to G2 phase, as determined by the cell cycle-regulated E3 ligase activities of SCF(Skp2) and APC/C(Cdh1), which are regulators of the Fucci probes; however, the DNA content of the arrested cells was equivalent to that in G1 phase. After reoxygenation, time-lapse imaging and DNA content analysis revealed that all cells reached G2 phase, and that Fucci fluorescence was distinctly separated into two fractions 24h after reoxygenation: red cells that released from G2 arrest after repairing DNA double-strand breaks (DSBs) exhibited higher clonogenic survival, whereas most cells that stayed green contained many DSBs and exhibited lower survival. We conclude that hypoxia disrupts coordination of DNA synthesis and E3 ligase activities associated with cell-cycle progression, and that DSB repair could greatly influence cell-cycle kinetics and clonogenic survival after hypoxia/reoxygenation.

  1. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch.

    PubMed

    Seidel, Hannah S; Kimble, Judith

    2015-11-09

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells--including germline stem cells--become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions--GLP-1/Notch signaling--becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance.

  2. A Coarse Estimation of Cell Size Region from a Mesoscopic Stochastic Cell Cycle Model

    NASA Astrophysics Data System (ADS)

    Yi, Ming; Jia, Ya; Liu, Quan; Zhu, Chun-Lian; Yang, Li-Jian

    2007-07-01

    Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25Δ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.

  3. Thrombospondin-1 signaling through CD47 inhibits cell cycle progression and induces senescence in endothelial cells

    PubMed Central

    Gao, Qi; Chen, Kexin; Gao, Lu; Zheng, Yang; Yang, Yong-Guang

    2016-01-01

    CD47 signaling in endothelial cells has been shown to suppress angiogenesis, but little is known about the link between CD47 and endothelial senescence. Herein, we demonstrate that the thrombospondin-1 (TSP1)-CD47 signaling pathway is a major mechanism for driving endothelial cell senescence. CD47 deficiency in endothelial cells significantly improved their angiogenic function and attenuated their replicative senescence. Lack of CD47 also suppresses activation of cell cycle inhibitors and upregulates the expression of cell cycle promoters, leading to increased cell cycle progression. Furthermore, TSP1 significantly accelerates replicative senescence and associated cell cycle arrest in a CD47-dependent manner. These findings demonstrate that TSP1-CD47 signaling is an important mechanism driving endothelial cell senescence. Thus, TSP1 and CD47 provide attractive molecular targets for treatment of aging-associated cardiovascular dysfunction and diseases involving endothelial dysregulation. PMID:27607583

  4. Cell Cycle Control by a Minimal Cdk Network

    PubMed Central

    Gérard, Claude; Tyson, John J.; Coudreuse, Damien; Novák, Béla

    2015-01-01

    In present-day eukaryotes, the cell division cycle is controlled by a complex network of interacting proteins, including members of the cyclin and cyclin-dependent protein kinase (Cdk) families, and the Anaphase Promoting Complex (APC). Successful progression through the cell cycle depends on precise, temporally ordered regulation of the functions of these proteins. In light of this complexity, it is surprising that in fission yeast, a minimal Cdk network consisting of a single cyclin-Cdk fusion protein can control DNA synthesis and mitosis in a manner that is indistinguishable from wild type. To improve our understanding of the cell cycle regulatory network, we built and analysed a mathematical model of the molecular interactions controlling the G1/S and G2/M transitions in these minimal cells. The model accounts for all observed properties of yeast strains operating with the fusion protein. Importantly, coupling the model’s predictions with experimental analysis of alternative minimal cells, we uncover an explanation for the unexpected fact that elimination of inhibitory phosphorylation of Cdk is benign in these strains while it strongly affects normal cells. Furthermore, in the strain without inhibitory phosphorylation of the fusion protein, the distribution of cell size at division is unusually broad, an observation that is accounted for by stochastic simulations of the model. Our approach provides novel insights into the organization and quantitative regulation of wild type cell cycle progression. In particular, it leads us to propose a new mechanistic model for the phenomenon of mitotic catastrophe, relying on a combination of unregulated, multi-cyclin-dependent Cdk activities. PMID:25658582

  5. Evaluation program for secondary spacecraft cells: Cycle life test

    NASA Technical Reports Server (NTRS)

    Harkness, J. D.

    1979-01-01

    The service life and storage stability for several storage batteries were determined. The batteries included silver-zinc batteries, nickel-cadmium batteries, and silver-cadmium batteries. The cell performance characteristics and limitations are to be used by spacecraft power systems planners and designers. A statistical analysis of the life cycle prediction and cause of failure versus test conditions is presented.

  6. Cycle life status of SAFT VOS nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Goualard, Jacques

    1993-01-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  7. Hydrogenosome behavior during the cell cycle in Tritrichomonas foetus.

    PubMed

    Benchimol, Marlene; Engelke, Flávio

    2003-07-01

    The hydrogenosome is an unusual organelle found in several trichomonad species and other protists living in oxygen poor or anoxic environments. The hydrogenosome behavior in the protist Tritrichomonas foetus, parasite of the urogenital tract of cattle, is reported here. The hydrogenosomes were followed by light and transmission electron microscopy during the whole cell cycle. Videomicroscopy, immunofluorescence microscopy, and immunocytochemistry were also used. It is shown that the hydrogenosomes divide at any phase of the cell cycle and that the organellar division is not synchronized. During the interphase the hydrogenosomes are distributed mainly along the axostyle and costa, and at the beginning of mitosis migrate to around the nucleus. Three forms of hydrogenosome division were seen: (1). segmentation, where elongated hydrogenosomes are further separated by external membranous profiles; (2). partition, where rounded hydrogenosomes, in a bulky form, are further separated by a membranous internal septum and, (3). a new dividing form: heart-shaped hydrogenosomes, which gradually present a membrane invagination leading to the organelle division. The hydrogenosomes divide at any phase of the cell cycle. A necklace of intramembranous particles delimiting the outer hydrogenosomal membrane in the region of organelle division was observed by freeze-etching. Similarities between hydrogenosomes and mitochondria behavior during the cell cycle are discussed.

  8. Cell Cycle Regulatory Functions of the KSHV Oncoprotein LANA

    PubMed Central

    Wei, Fang; Gan, Jin; Wang, Chong; Zhu, Caixia; Cai, Qiliang

    2016-01-01

    Manipulation of cell cycle is a commonly employed strategy of viruses for achieving a favorable cellular environment during infection. Kaposi’s sarcoma-associated herpesvirus (KSHV), the primary etiological agent of several human malignancies including Kaposi’s sarcoma, and primary effusion lymphoma, encodes several oncoproteins that deregulate normal physiology of cell cycle machinery to persist with endothelial cells and B cells and subsequently establish a latent infection. During latency, only a small subset of viral proteins is expressed. Latency-associated nuclear antigen (LANA) is one of the latent antigens shown to be essential for transformation of endothelial cells in vitro. It has been well demonstrated that LANA is critical for the maintenance of latency, episome DNA replication, segregation and gene transcription. In this review, we summarize recent studies and address how LANA functions as an oncoprotein to steer host cell cycle-related events including proliferation and apoptosis by interacting with various cellular and viral factors, and highlight the potential therapeutic strategy of disrupting LANA-dependent signaling as targets in KSHV-associated cancers. PMID:27065950

  9. Cell cycle arrest and activation of development in marine invertebrate deuterostomes.

    PubMed

    Costache, Vlad; McDougall, Alex; Dumollard, Rémi

    2014-08-01

    Like most metazoans, eggs of echinoderms and tunicates (marine deuterostomes, there is no data for the cephalochordates) arrest awaiting fertilization due to the activity of the Mos/MEK/MAPK cascade and are released from this cell cycle arrest by sperm-triggered Ca2+ signals. Invertebrate deuterostome eggs display mainly three distinct types of cell cycle arrest before fertilization mediated by potentially different cytostatic factors (CSF): one CSF causes arrest during meiotic metaphase I (MI-CSF in tunicates and some starfishes), another CSF likely causes arrest during meiotic metaphase II (amphioxus), and yet another form of CSF causes arrest to occur after meiotic exit during G1 of the first mitotic cycle (G1-CSF). In tunicates and echinoderms these different CSF activities have been shown to rely on the Mos//MAPK pathway for establishment and on Ca2+ signals for their inactivation. Despite these molecular similarities, release of MI-CSF arrest is caused by APC/C activation (to destroy cyclin B) whereas release from G1-CSF is caused by stimulating S phase and the synthesis of cyclins. Further research is needed to understand how both the Mos//MAPK cascade and Ca2+ achieve these tasks in different marine invertebrate deuterostomes. Another conserved feature of eggs is that protein synthesis of specific mRNAs is necessary to proceed through oocyte maturation and to maintain CSF-induced cell cycle arrest. Then activation of development at fertilization is accompanied by an increase in the rate of protein synthesis but the mechanisms involved are still largely unknown in most of the marine deuterostomes. How the sperm-triggered Ca2+ signals cause an increase in protein synthesis has been studied mainly in sea urchin eggs. Here we review these conserved features of eggs (arrest, activation and protein synthesis) focusing on the non-vertebrate deuterostomes. PMID:24721426

  10. Cell cycle arrest and activation of development in marine invertebrate deuterostomes.

    PubMed

    Costache, Vlad; McDougall, Alex; Dumollard, Rémi

    2014-08-01

    Like most metazoans, eggs of echinoderms and tunicates (marine deuterostomes, there is no data for the cephalochordates) arrest awaiting fertilization due to the activity of the Mos/MEK/MAPK cascade and are released from this cell cycle arrest by sperm-triggered Ca2+ signals. Invertebrate deuterostome eggs display mainly three distinct types of cell cycle arrest before fertilization mediated by potentially different cytostatic factors (CSF): one CSF causes arrest during meiotic metaphase I (MI-CSF in tunicates and some starfishes), another CSF likely causes arrest during meiotic metaphase II (amphioxus), and yet another form of CSF causes arrest to occur after meiotic exit during G1 of the first mitotic cycle (G1-CSF). In tunicates and echinoderms these different CSF activities have been shown to rely on the Mos//MAPK pathway for establishment and on Ca2+ signals for their inactivation. Despite these molecular similarities, release of MI-CSF arrest is caused by APC/C activation (to destroy cyclin B) whereas release from G1-CSF is caused by stimulating S phase and the synthesis of cyclins. Further research is needed to understand how both the Mos//MAPK cascade and Ca2+ achieve these tasks in different marine invertebrate deuterostomes. Another conserved feature of eggs is that protein synthesis of specific mRNAs is necessary to proceed through oocyte maturation and to maintain CSF-induced cell cycle arrest. Then activation of development at fertilization is accompanied by an increase in the rate of protein synthesis but the mechanisms involved are still largely unknown in most of the marine deuterostomes. How the sperm-triggered Ca2+ signals cause an increase in protein synthesis has been studied mainly in sea urchin eggs. Here we review these conserved features of eggs (arrest, activation and protein synthesis) focusing on the non-vertebrate deuterostomes.

  11. Pseudolaric Acid B Induced Cell Cycle Arrest, Autophagy and Senescence in Murine Fibrosarcoma L929 Cell

    PubMed Central

    hua Yu, Jing; yu Liu, Chun; bin Zheng, Gui; Zhang, Li Ying; hui Yan, Ming; yan Zhang, Wen; ying Meng, Xian; fang Yu, Xiao

    2013-01-01

    Objective: PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. Methods: Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. Results: PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. Conclusion: PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC. PMID:23630435

  12. Characterization of high-power lithium-ion cells during constant current cycling. Part I. Cycle performance and electrochemical diagnostics

    SciTech Connect

    Shim, Joongpyo; Striebel, Kathryn A.

    2003-01-24

    Twelve-cm{sup 2} pouch type lithium-ion cells were assembled with graphite anodes, LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes and 1M LiPF{sub 6}/EC/DEC electrolyte. These pouch cells were cycled at different depths of discharge (100 percent and 70 percent DOD) at room temperature to investigate cycle performance and pulse power capability. The capacity loss and power fade of the cells cycled over 100 percent DOD was significantly faster than the cell cycled over 70 percent DOD. The overall cell impedance increased with cycling, although the ohmic resistance from the electrolyte was almost constant. From electrochemical analysis of each electrode after cycling, structural and/or impedance changes in the cathode are responsible for most of the capacity and power fade, not the consumption of cycleable Li from side-reactions.

  13. Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba.

    PubMed

    Polit, Justyna Teresa; Kaźmierczak, Andrzej; Walczak-Drzewiecka, Aurelia

    2012-01-01

    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition.

  14. Periodic synthesis of phospholipids during the Caulobacter crescentus cell cycle.

    PubMed Central

    O'Neill, E A; Bender, R A

    1987-01-01

    Net phospholipid synthesis is discontinuous during the Caulobacter crescentus cell cycle with synthesis restricted to two discrete periods. The first period of net phospholipid synthesis begins in the swarmer cell shortly after cell division and ends at about the time when DNA replication initiates. The second period of phospholipid synthesis begins at a time when DNA replication is about two-thirds complete and ends at about the same time that DNA replication terminates. Thus, considerable DNA replication, growth, and differentiation (stalk growth) occur in the absence of net phospholipid synthesis. In fact, when net phospholipid synthesis was inhibited by the antibiotic cerulenin through the entire cell cycle, both the initiation and the elongation phases of DNA synthesis occurred normally. An analysis of the kinetics of incorporation of radioactive phosphate into macromolecules showed that the periodicity of phospholipid synthesis could not have been detected by pulse-labeling techniques, and only an analysis of cells prelabeled to equilibrium allowed detection of the periodicity. Equilibrium-labeled cells also allowed determination of the absolute amount of phosphorus-containing macromolecules in newborn swarmer cells. These cells contain about as much DNA as one Escherichia coli chromosome and about four times as much RNA as DNA. The amount of phosphorus in phospholipids is about one-seventh of that in DNA, or about 3% of the total macromolecular phosphorus. PMID:3584065

  15. Effects of c-myc expression on cell cycle progression.

    PubMed Central

    Hanson, K D; Shichiri, M; Follansbee, M R; Sedivy, J M

    1994-01-01

    We used targeted homologous recombination to disrupt one c-myc gene copy in a diploid fibroblast cell line and found that a twofold reduction in Myc expression resulted in lower exponential growth rates and a lengthening of the G0-to-S-phase transition (M. Shichiri, K. D. Hanson and J. M. Sedivy, Cell Growth Differ. 4:93-104, 1993). Myc is a transcription factor, and the number of target genes whose regulation could result in differential growth rates may be very large. We have approached this problem by examining effects of reduced c-myc expression in three broad areas: (i) secretion of growth factors, (ii) expression of growth factor receptors, and (iii) intracellular signal transduction between Myc and components of the intrinsic cell cycle clock. We have found no evidence that differential medium conditioning can account for the growth phenotypes. Likewise, the expression of receptors for platelet-derived growth factor, epidermal growth factor, basic fibroblast growth factor, and insulin-like growth factor I was the same in diploid and heterozygous cells (platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, and insulin-like growth factor are the sole growth factors required by these cells for growth in serum-free medium). In contrast, expression of cyclin E, cyclin A, and Rb phosphorylation were delayed when quiescent c-myc heterozygous cells were stimulated to enter the cell cycle. Expression of cyclin D1, cyclin D3, and Cdk2 was not affected. The timing of cyclin E induction was the earliest observable effect of reduced Myc expression. Our data indicate that Myc contributes to regulation of proliferation by a cell-autonomous mechanism that involves the modulation of cyclin E expression and, consequently, progression through the restriction point of the cell cycle. Images PMID:8065309

  16. Flow cytometric cell cycle analysis of somatic cells primary cultures established for bovine cloning.

    PubMed

    Katska, L; Bochenek, M; Kania, G; Ryñska, B; Smorag, Z

    2002-12-01

    An important factor governing developmental rates of somatic cloned embryos is the phase of the cell cycle of donor nuclei. The aim of this experiment was to investigate the distribution of cell cycle phases in bovine cumulus and fibroblast cells cultured using routine treatment, and under cell cycle-arresting treatments. The highest percentages of cumulus cells in the G0 + G1 stage were observed in uncultured, frozen/thawed cells originating from immature oocytes (79.8 +/- 2.2%), fresh and frozen/thawed cells from in vitro matured oocytes (84.1 +/- 6.2 and 77.8 +/- 5.7%, respectively), and in cycling cells (72.7 +/- 16.3 and 78.4 +/- 11.2%, respectively for cumulus cells from immature and in vitro matured oocytes). Serum starvation of cumulus cultures markedly decreased percentages of cells in G0 + G1, and prolonged starvation significantly increased (P < 0.05) percentages of cells in G2 + M phase. Culture of cumulus cells to confluency did not increase percentages of cells in G0 + G1. Contrary to findings in cumulus cells, significantly higher percentages of cells in G0 + G1 were apparent when fibroblast cells were cultured to confluency or serum starved, and significantly increased (P < 0.01) as the starvation period was prolonged. It is concluded that for particular cell types specific strategies should be used to attain improvements in the efficiency of cloning procedures.

  17. The role of multifunctional M1 metallopeptidases in cell cycle progression

    PubMed Central

    Peer, Wendy Ann

    2011-01-01

    Background Metallopeptidases of the M1 family are found in all phyla (except viruses) and are important in the cell cycle and normal growth and development. M1s often have spatiotemporal expression patterns which allow for strict regulation of activity. Mutations in the genes encoding M1s result in disease and are often lethal. This family of zinc metallopeptidases all share the catalytic region containing a signature amino acid exopeptidase (GXMXN) and a zinc binding (HEXXH[18X]E) motif. In addition, M1 aminopeptidases often also contain additional membrane association and/or protein interaction motifs. These protein interaction domains may function independently of M1 enzymatic activity and can contribute to multifunctionality of the proteins. Scope A brief review of M1 metalloproteases in plants and animals and their roles in the cell cycle is presented. In animals, human puromycin-sensitive aminopeptidase (PSA) acts during mitosis and perhaps meiosis, while the insect homologue puromycin-sensitive aminopeptidase (PAM-1) is required for meiotic and mitotic exit; the remaining human M1 family members appear to play a direct or indirect role in mitosis/cell proliferation. In plants, meiotic prophase aminopeptidase 1 (MPA1) is essential for the first steps in meiosis, and aminopeptidase M1 (APM1) appears to be important in mitosis and cell division. Conclusions M1 metalloprotease activity in the cell cycle is conserved across phyla. The activities of the multifunctional M1s, processing small peptides and peptide hormones and contributing to protein trafficking and signal transduction processes, either directly or indirectly impact on the cell cycle. Identification of peptide substrates and interacting protein partners is required to understand M1 function in fertility and normal growth and development in plants. PMID:21258033

  18. Host Cell Poly(ADP-Ribose) Glycohydrolase Is Crucial for Trypanosoma cruzi Infection Cycle

    PubMed Central

    Vilchez Larrea, Salomé C.; Schlesinger, Mariana; Kevorkian, María L.; Flawiá, Mirtha M.; Alonso, Guillermo D.; Fernández Villamil, Silvia H.

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas’ disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas’ disease. PMID:23776710

  19. Host cell poly(ADP-ribose) glycohydrolase is crucial for Trypanosoma cruzi infection cycle.

    PubMed

    Vilchez Larrea, Salomé C; Schlesinger, Mariana; Kevorkian, María L; Flawiá, Mirtha M; Alonso, Guillermo D; Fernández Villamil, Silvia H

    2013-01-01

    Trypanosoma cruzi, etiological agent of Chagas' disease, has a complex life cycle which involves the invasion of mammalian host cells, differentiation and intracellular replication. Here we report the first insights into the biological role of a poly(ADP-ribose) glycohydrolase in a trypanosomatid (TcPARG). In silico analysis of the TcPARG gene pointed out the conservation of key residues involved in the catalytic process and, by Western blot, we demonstrated that it is expressed in a life stage-dependant manner. Indirect immunofluorescence assays and electron microscopy using an anti-TcPARG antibody showed that this enzyme is localized in the nucleus independently of the presence of DNA damage or cell cycle stage. The addition of poly(ADP-ribose) glycohydrolase inhibitors ADP-HPD (adenosine diphosphate (hydroxymethyl) pyrrolidinediol) or DEA (6,9-diamino-2-ethoxyacridine lactate monohydrate) to the culture media, both at a 1 µM concentration, reduced in vitro epimastigote growth by 35% and 37% respectively, when compared to control cultures. We also showed that ADP-HPD 1 µM can lead to an alteration in the progression of the cell cycle in hydroxyurea synchronized cultures of T. cruzi epimastigotes. Outstandingly, here we demonstrate that the lack of poly(ADP-ribose) glycohydrolase activity in Vero and A549 host cells, achieved by chemical inhibition or iRNA, produces the reduction of the percentage of infected cells as well as the number of amastigotes per cell and trypomastigotes released, leading to a nearly complete abrogation of the infection process. We conclude that both, T. cruzi and the host, poly(ADP-ribose) glycohydrolase activities are important players in the life cycle of Trypanosoma cruzi, emerging as a promising therapeutic target for the treatment of Chagas' disease. PMID:23776710

  20. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    PubMed

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  1. Cell-Cycle Analyses Using Thymidine Analogues in Fission Yeast

    PubMed Central

    Anda, Silje; Boye, Erik; Grallert, Beata

    2014-01-01

    Thymidine analogues are powerful tools when studying DNA synthesis including DNA replication, repair and recombination. However, these analogues have been reported to have severe effects on cell-cycle progression and growth, the very processes being investigated in most of these studies. Here, we have analyzed the effects of 5-ethynyl-2′-deoxyuridine (EdU) and 5-Chloro-2′-deoxyuridine (CldU) using fission yeast cells and optimized the labelling procedure. We find that both analogues affect the cell cycle, but that the effects can be mitigated by using the appropriate analogue, short pulses of labelling and low concentrations. In addition, we report sequential labelling of two consecutive S phases using EdU and 5-bromo-2′-deoxyuridine (BrdU). Furthermore, we show that detection of replicative DNA synthesis is much more sensitive than DNA-measurements by flow cytometry. PMID:24551125

  2. Short-Stalked Prosthecomicrobium hirschii Cells Have a Caulobacter-Like Cell Cycle

    PubMed Central

    Williams, Michelle; Hoffman, Michelle D.; Daniel, Jeremy J.; Madren, Seth M.; Dhroso, Andi; Korkin, Dmitry; Givan, Scott A.; Jacobson, Stephen C.

    2016-01-01

    ABSTRACT The dimorphic alphaproteobacterium Prosthecomicrobium hirschii has both short-stalked and long-stalked morphotypes. Notably, these morphologies do not arise from transitions in a cell cycle. Instead, the maternal cell morphology is typically reproduced in daughter cells, which results in microcolonies of a single cell type. In this work, we further characterized the short-stalked cells and found that these cells have a Caulobacter-like life cycle in which cell division leads to the generation of two morphologically distinct daughter cells. Using a microfluidic device and total internal reflection fluorescence (TIRF) microscopy, we observed that motile short-stalked cells attach to a surface by means of a polar adhesin. Cells attached at their poles elongate and ultimately release motile daughter cells. Robust biofilm growth occurs in the microfluidic device, enabling the collection of synchronous motile cells and downstream analysis of cell growth and attachment. Analysis of a draft P. hirschii genome sequence indicates the presence of CtrA-dependent cell cycle regulation. This characterization of P. hirschii will enable future studies on the mechanisms underlying complex morphologies and polymorphic cell cycles. IMPORTANCE Bacterial cell shape plays a critical role in regulating important behaviors, such as attachment to surfaces, motility, predation, and cellular differentiation; however, most studies on these behaviors focus on bacteria with relatively simple morphologies, such as rods and spheres. Notably, complex morphologies abound throughout the bacteria, with striking examples, such as P. hirschii, found within the stalked Alphaproteobacteria. P. hirschii is an outstanding candidate for studies of complex morphology generation and polymorphic cell cycles. Here, the cell cycle and genome of P. hirschii are characterized. This work sets the stage for future studies of the impact of complex cell shapes on bacterial behaviors. PMID:26833409

  3. High efficiency carbonate fuel cell/turbine hybrid power cycles

    SciTech Connect

    Steinfeld, G.

    1995-10-19

    Carbonate fuel cells developed by Energy Research Corporation, in commercial 2.85 MW size, have an efficiency of 57.9 percent. Studies of higher efficiency hybrid power cycles were conducted in cooperation with METC to identify an economically competitive system with an efficiency in excess of 65 percent. A hybrid power cycle was identified that includes a direct carbonate fuel cell, a gas turbine and a steam cycle, which generates power at a LHV efficiency in excess of 70 percent. This new system is called a Tandem Technology Cycle (TTC). In a TTC operating on natural gas fuel, 95 percent of the fuel is mixed with recycled fuel cell anode exhaust, providing water for the reforming of the fuel, and flows to a direct carbonate fuel cell system which generates 72 percent of the power. The portion of the fuel cell anode exhaust which is not recycled, is burned and heat is transferred to the compressed air from a gas turbine, raising its temperature to 1800{degrees}F. The stream is then heated to 2000{degrees}F in the gas turbine burner and expands through the turbine generating 13 percent of the power. Half the exhaust from the gas turbine flows to the anode exhaust burner, and the remainder flows to the fuel cell cathodes providing the O{sub 2} and CO{sub 2} needed in the electrochemical reaction. Exhaust from the fuel cells flows to a steam system which includes a heat recovery steam generator and stages steam turbine which generates 15 percent of the TTC system power. Studies of the TTC for 200-MW and 20-MW size plants quantified performance, emissions and cost-of-electricity, and compared the characteristics of the TTC to gas turbine combined cycles. A 200-MW TTC plant has an efficiency of 72.6 percent, and is relatively insensitive to ambient temperature, but requires a heat exchanger capable of 2000{degrees}F. The estimated cost of electricity is 45.8 mills/kWhr which is not competitive with a combined cycle in installations where fuel cost is under $5.8/MMBtu.

  4. Astaxanthin Inhibits Proliferation and Induces Apoptosis and Cell Cycle Arrest of Mice H22 Hepatoma Cells

    PubMed Central

    Shao, Yiye; Ni, Yanbo; Yang, Jing; Lin, Xutao; Li, Jun; Zhang, Lixia

    2016-01-01

    Background It is widely recognized that astaxanthin (ASX), a member of the carotenoid family, has strong biological activities including antioxidant, anti-inflammation, and immune-modulation activities. Previous studies have confirmed that ASX can effectively inhibit hepatoma cells in vitro. Material/Methods MTT was used to assay proliferation of mice H22 cells, and flow cytometry was used to determine apoptosis and cell cycle arrest of H22 cells in vitro and in vivo. Moreover, anti-tumor activity of ASX was observed in mice. Results ASX inhibited the proliferation of H22 cells, promoted cell necrosis, and induced cell cycle arrest in G2 phase in vitro and in vivo. Conclusions This study indicated that ASX can inhibit proliferation and induce apoptosis and cell cycle arrest in mice H22 hepatoma cells in vitro and in vivo. PMID:27333866

  5. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    PubMed

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-01-01

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  6. SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells.

    PubMed

    Bonifati, Serena; Daly, Michele B; St Gelais, Corine; Kim, Sun Hee; Hollenbaugh, Joseph A; Shepard, Caitlin; Kennedy, Edward M; Kim, Dong-Hyun; Schinazi, Raymond F; Kim, Baek; Wu, Li

    2016-08-01

    SAMHD1 limits HIV-1 infection in non-dividing myeloid cells by decreasing intracellular dNTP pools. HIV-1 restriction by SAMHD1 in these cells likely prevents activation of antiviral immune responses and modulates viral pathogenesis, thus highlighting a critical role of SAMHD1 in HIV-1 physiopathology. Here, we explored the function of SAMHD1 in regulating cell proliferation, cell cycle progression and apoptosis in monocytic THP-1 cells. Using the CRISPR/Cas9 technology, we generated THP-1 cells with stable SAMHD1 knockout. We found that silencing of SAMHD1 in cycling cells stimulates cell proliferation, redistributes cell cycle population in the G1/G0 phase and reduces apoptosis. These alterations correlated with increased dNTP levels and more efficient HIV-1 infection in dividing SAMHD1 knockout cells relative to control. Our results suggest that SAMHD1, through its dNTPase activity, affects cell proliferation, cell cycle distribution and apoptosis, and emphasize a key role of SAMHD1 in the interplay between cell cycle regulation and HIV-1 infection. PMID:27183329

  7. A lack of commitment for over 500 million years: conserved animal stem cell pluripotency.

    PubMed

    Aboobaker, A Aziz; Kao, Damian

    2012-06-13

    Stem cells, both adult and germline, are the key cells underpinning animal evolution. Yet, surprisingly little is known about the evolution of their shared key feature: pluripotency. Now using genome-wide expression profiling of pluripotent planarian adult stem cells (pASCs), Önal et al (2012) present evidence for deep molecular conservation of pluripotency. They characterise the expression profile of pASCs and identify conserved expression profiles and functions for genes required for mammalian pluripotency. Their analyses suggest that molecular pluripotency mechanisms may be conserved, and tantalisingly that pluripotency in germ stem cells (GSCs) and somatic stem cells (SSCs) may have had shared common evolutionary origins.

  8. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    PubMed Central

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  9. Characterization of Fuel Cell Vehicle Duty Cycle Elements

    SciTech Connect

    MAISH, ALEXANDER B.; NILAN, ERIC J.; BACA, PAUL M.

    2002-12-01

    This report covers research done as part of US Department of Energy contract DE-PS26-99FT14299 with the Fuel Cell Propulsion Institute on the fuel cell RATLER{trademark} vehicle, Lurch, as well as work done on the fuel cells designed for the vehicle. All work contained within this report was conducted at the Robotic Vehicle Range at Sandia National Laboratories in Albuquerque New Mexico. The research conducted includes characterization of the duty cycle of the robotic vehicle. This covers characterization of its various abilities such as hill climbing and descending, spin-turns, and driving on level ground. This was accomplished with the use of current sensors placed in the vehicle in conjunction with a Data Acquisition System (DAS), which was also created at Sandia Labs. Characterization of the two fuel cells was accomplished using various measuring instruments and techniques that will be discussed later in the report. A Statement of Work for this effort is included in Appendix A. This effort was able to complete characterization of vehicle duty cycle elements using battery power, but problems with the fuel cell control systems prevented completion of the characterization of the fuel cell operation on the benchtop and in the vehicle. Some data was obtained characterizing the fuel cell current-voltage performance and thermal rise rate by bypassing elements of the control system.

  10. Polydatin inhibits growth of lung cancer cells by inducing apoptosis and causing cell cycle arrest.

    PubMed

    Zhang, Yusong; Zhuang, Zhixiang; Meng, Qinghui; Jiao, Yang; Xu, Jiaying; Fan, Saijun

    2014-01-01

    Polydatin (PD), a small natural compound from Polygonum cuspidatum, has a number of biological functions. However, the anticancer activity of PD has been poorly investigated. In the present study, thiazolyl blue tetrazolium bromide assay was used to evaluate the inhibitory effect of PD on cell growth. Cell cycle distribution and apoptosis were investigated by flow cytometry. In addition, the expression of several proteins associated with apoptosis and cell cycle were analyzed by western blot analysis. The results demonstrated that PD significantly inhibits the proliferation of A549 and NCI-H1975 lung cancer cell lines and causes dose-dependent apoptosis. Cell cycle analysis revealed that PD induces S phase cell cycle arrest. Western blot analysis showed that the expression of Bcl-2 decreased as that of Bax increased, and the expression of cyclin D1 was also suppressed. The results suggest that PD has potential therapeutic applications in the treatment of lung cancer. PMID:24348867

  11. Size sensors in bacteria, cell cycle control, and size control

    PubMed Central

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation. PMID:26074903

  12. Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast

    PubMed Central

    Davidich, Maria I.; Bornholdt, Stefan

    2008-01-01

    A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network, with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited system with external damping. PMID:18301750

  13. Size sensors in bacteria, cell cycle control, and size control.

    PubMed

    Robert, Lydia

    2015-01-01

    Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.

  14. Bioelectrical Regulation of Cell Cycle and the Planarian Model System

    PubMed Central

    Barghouth, Paul G.; Thiruvalluvan, Manish; Oviedo, Néstor J.

    2015-01-01

    Cell cycle regulation through the manipulation of endogenous membrane potentials offers tremendous opportunities to control cellular processes during tissue repair and cancer formation. However, the molecular mechanisms by which biophysical signals modulate the cell cycle remain underappreciated and poorly understood. Cells in complex organisms generate and maintain a constant voltage gradient across the plasma membrane known as the transmembrane potential. This potential, generated through the combined efforts of various ion transporters, pumps and channels, is known to drive a wide range of cellular processes such as cellular proliferation, migration and tissue regeneration while its deregulation can lead to tumorigenesis. These cellular regulatory events, coordinated by ionic flow, correspond to a new and exciting field termed molecular bioelectricity. We aim to present a brief discussion on the biophysical machinery involving membrane potential and the mechanisms mediating cell cycle progression and cancer transformation. Furthermore, we present the planarian Schmidtea mediterranea as a tractable model system for understanding principles behind molecular bioelectricity at both the cellular and organismal level. PMID:25749155

  15. ADOLESCENT BINGE ALCOHOL EXPOSURE ALTERS HIPPOCAMPAL PROGENITOR CELL PROLIFERATION IN RATS: EFFECTS ON CELL CYCLE KINETICS

    PubMed Central

    McClain, Justin A.; Hayes, Dayna M.; Morris, Stephanie A.; Nixon, Kimberly

    2012-01-01

    Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromo-deoxy-uridine incorporation, and phospho-histone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromo-deoxy-uridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis but also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure. PMID:21484803

  16. AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana

    PubMed Central

    Xu, Peipei; Chen, Haiying; Ying, Lu; Cai, Weiming

    2016-01-01

    In contrast to animals, plant development involves continuous organ formation, which requires strict regulation of cell proliferation. The core cell cycle machinery is conserved across plants and animals, but plants have developed new mechanisms that precisely regulate cell proliferation in response to internal and external stimuli. Here, we report that the DOF transcription factor OBP4 negatively regulates cell proliferation and expansion. OBP4 is a nuclear protein. Constitutive and inducible overexpression of OBP4 reduced the cell size and number, resulting in dwarf plants. Inducible overexpression of OBP4 in Arabidopsis also promoted early endocycle onset and inhibited cell expansion, while inducible overexpression of OBP4 fused to the VP16 activation domain in Arabidopsis delayed endocycle onset and promoted plant growth. Furthermore, gene expression analysis showed that cell cycle regulators and cell wall expansion factors were largely down-regulated in the OBP4 overexpression lines. Short-term inducible analysis coupled with in vivo ChIP assays indicated that OBP4 targets the CyclinB1;1, CDKB1;1 and XTH genes. These results strongly suggest that OBP4 is a negative regulator of cell cycle progression and cell growth. These findings increase our understanding of the transcriptional regulation of the cell cycle in plants. PMID:27297966

  17. Cell cycle-dependent regulation of pyrimidine biosynthesis.

    PubMed

    Sigoillot, Frederic D; Berkowski, J Andrew; Sigoillot, Severine M; Kotsis, Damian H; Guy, Hedeel I

    2003-01-31

    De novo pyrimidine biosynthesis is activated in proliferating cells in response to an increased demand for nucleotides needed for DNA synthesis. The pyrimidine biosynthetic pathway in baby hamster kidney cells, synchronized by serum deprivation, was found to be up-regulated 1.9-fold during S phase and subsequently down-regulated as the cells progressed through the cycle. The nucleotide pools were depleted by serum starvation and were not replenished during the first round of cell division, suggesting that the rate of utilization of the newly synthesized nucleotides closely matched their rate of formation. The activation and subsequent down-regulation of the pathway can be attributed to altered allosteric regulation of the carbamoyl-phosphate synthetase activity of CAD (carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase), a multifunctional protein that initiates mammalian pyrimidine biosynthesis. As the culture approached S-phase there was an increased sensitivity to the allosteric activator, 5-phosphoribosyl-1-pyrophosphate, and a loss of UTP inhibition, changes that were reversed when cells emerged from S phase. The allosteric regulation of CAD is known to be modulated by MAP kinase (MAPK) and protein kinase A (PKA)-mediated phosphorylations as well as by autophosphorylation. CAD was found to be fully autophosphorylated in the synchronized cells, but the level remained invariant throughout the cycle. Although the MAPK activity increased early in G(1), the phosphorylation of the CAD MAPK site was delayed until just before the onset of S phase, probably due to antagonistic phosphorylation by PKA that persisted until late G(1). Once activated, pyrimidine biosynthesis remained elevated until rephosphorylation of CAD by PKA and dephosphorylation of the CAD MAPK site late in S phase. Thus, the cell cycle-dependent regulation of pyrimidine biosynthesis results from the sequential phosphorylation and dephosphorylation of CAD under the control of

  18. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness

    PubMed Central

    Henry, Clémence; Bledsoe, Samuel W.; Siekman, Allison; Kollman, Alec; Waters, Brian M.; Feil, Regina; Stitt, Mark; Lagrimini, L. Mark

    2014-01-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. PMID:25271261

  19. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player

    PubMed Central

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  20. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    PubMed

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-04-21

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.

  1. Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.

    PubMed

    Mognol, G P; Carneiro, F R G; Robbs, B K; Faget, D V; Viola, J P B

    2016-01-01

    The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis. PMID:27100893

  2. Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression

    PubMed Central

    Lee, Yoonjin; Dominy, John E.; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I.; Puigserver, Pere

    2014-01-01

    Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycemia. In diabetic models, cyclin D1-CDK4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division. PMID:24870244

  3. Evidence for an interplay between cell cycle progression and the initiation of differentiation between life cycle forms of African trypanosomes

    PubMed Central

    1994-01-01

    Successful transmission of the African trypanosome between the mammalian host blood-stream and the tsetse fly vector involves dramatic alterations in the parasite's morphology and biochemistry. This differentiation through to the tsetse midgut procyclic form is accompanied by re-entry into a proliferative cell cycle. Using a synchronous differentiation model and a variety of markers diagnostic for progress through both differentiation and the cell cycle, we have investigated the interplay between these two processes. Our results implicate a relationship between the trypanosome cell cycle position and the perception of the differentiation signal and demonstrate that irreversible commitment to the differentiation occurs rapidly after induction. Furthermore, we show that re-entry into the cell cycle in the differentiating population is synchronous, and that once initiated, progress through the differentiation pathway can be uncoupled from progress through the cell cycle. PMID:8195296

  4. Local homogeneity of cell cycle length in developing mouse cortex

    NASA Technical Reports Server (NTRS)

    Cai, L.; Hayes, N. L.; Nowakowski, R. S.

    1997-01-01

    We have measured the amount of variation in the length of the cell cycle for cells in the pseudostratified ventricular epithelium (PVE) of the developing cortex of mice on embryonic day 14. Our measurements were made in three cortical regions (i.e., the neocortex, archicortex, and periarchicortex) using three different methods: the cumulative labeling method (CLM), the percent labeled mitoses (PLM) method, and a comparison of the time needed for the PLM to ascend from 0 to 100% with the time needed for the PLM to descend from 100 to 0%. These 3 different techniques provide different perspectives on the cytokinetic parameters. Theoretically, CLM gives an estimate for a maximum value of the total length of the cell cycle (TC), whereas PLM gives an estimate of a minimum value of TC. The difference between these two estimates indicates that the range for TC is +/-1% of the mean TC for periarchicortex, +/-7% for neocortex, and +/-8% for archicortex. This was confirmed by a lengthening of the PLM descent time in comparison with its ascent time. The sharpness of the transitions and the flatness of the plateau of the PLM curves indicate that 99% of the proliferating cells are within this narrow estimated range for TC; hence, only approximately 1% deviate outside of a relatively restricted range from the average TC of the population. In the context of the possible existence within the cortical PVE of two populations with markedly dissimilar cell cycle kinetics from the mean, one such population must comprise approximately 99% of the total population, and the other, if it exists, is only approximately 1% of the total. This seems to be true for all three cortical regions. The narrow range of TC indicates a homogeneity in the cell cycle length for proliferating cells in three different cortical regions, despite the fact that progenitor cells of different lineages may be present. It further predicts the existence of almost synchronous interkinetic nuclear movements of the

  5. Mitochondria. Cell cycle-dependent regulation of mitochondrial preprotein translocase.

    PubMed

    Harbauer, Angelika B; Opalińska, Magdalena; Gerbeth, Carolin; Herman, Josip S; Rao, Sanjana; Schönfisch, Birgit; Guiard, Bernard; Schmidt, Oliver; Pfanner, Nikolaus; Meisinger, Chris

    2014-11-28

    Mitochondria play central roles in cellular energy conversion, metabolism, and apoptosis. Mitochondria import more than 1000 different proteins from the cytosol. It is unknown if the mitochondrial protein import machinery is connected to the cell division cycle. We found that the cyclin-dependent kinase Cdk1 stimulated assembly of the main mitochondrial entry gate, the translocase of the outer membrane (TOM), in mitosis. The molecular mechanism involved phosphorylation of the cytosolic precursor of Tom6 by cyclin Clb3-activated Cdk1, leading to enhanced import of Tom6 into mitochondria. Tom6 phosphorylation promoted assembly of the protein import channel Tom40 and import of fusion proteins, thus stimulating the respiratory activity of mitochondria in mitosis. Tom6 phosphorylation provides a direct means for regulating mitochondrial biogenesis and activity in a cell cycle-specific manner.

  6. Cell cycle regulation: repair and regeneration in acute renal failure.

    PubMed

    Price, Peter M; Megyesi, Judit; Safirstein, Robert L

    2003-09-01

    Research into mechanisms of acute renal failure has begun to reveal molecular targets for possible therapeutic intervention. Much useful knowledge into the causes and prevention of this syndrome has been gained by the study of animal models. Most recently, investigation of the effects on acute renal failure of selected gene knock-outs in mice has contributed to our recognition of many previously unappreciated molecular pathways. Particularly, experiments have revealed the protective nature of 2 highly induced genes whose functions are to inhibit and control the cell cycle after acute renal failure. By use of these models we have started to understand the role of increased cell cycle activity after renal stress and the role of proteins induced by these stresses that limit this proliferation.

  7. Cell cycle regulation: repair and regeneration in acute renal failure.

    PubMed

    Price, Peter M; Megyesi, Judit; Saf Irstein, Robert L

    2004-08-01

    Research into mechanisms of acute renal failure has begun to reveal molecular targets for possible therapeutic intervention. Much useful knowledge into the causes and prevention of this syndrome has been gained by the study of animal models. Most recently, investigation of the effects on acute renal failure of selected gene knock-outs in mice has contributed to our recognition of many previously unappreciated molecular pathways. Particularly, experiments have revealed the protective nature of two highly induced genes whose functions are to inhibit and control the cell cycle after acute renal failure. By use of these models we have started to understand the role of increased cell cycle activity after renal stress, and the role of proteins induced by these stresses that limit this proliferation.

  8. Cell cycle arrest induced by MPPa-PDT in MDA-MB-231 cells

    NASA Astrophysics Data System (ADS)

    Liang, Liming; Bi, Wenxiang; Tian, Yuanyuan

    2016-05-01

    Photodynamic therapy (PDT) is a medical treatment using a photosensitizing agent and light source to treat cancers. Pyropheophorbidea methyl ester (MPPa), a derivative of chlorophyll, is a novel potent photosensitizer. To learn more about this photosensitizer, we examined the cell cycle arrest in MDA-MB-231. Cell cycle and apoptosis were measured by flow cytometer. Checkpoints of the cell cycle were measured by western blot. In this study, we found that the expression of Cyclin D1 was obviously decreased, while the expression of Chk2 and P21 was increased after PDT treatment. This study showed that MPPa-PDT affected the checkpoints of the cell cycle and led the cells to apoptosis.

  9. Synchronization of Green Algae by Light and Dark Regimes for Cell Cycle and Cell Division Studies.

    PubMed

    Hlavová, Monika; Vítová, Milada; Bišová, Kateřina

    2016-01-01

    A synchronous population of cells is one of the prerequisites for studying cell cycle processes such as DNA replication, nuclear and cellular division. Green algae dividing by multiple fission represent a unique single cell system enabling the preparation of highly synchronous cultures by application of a light-dark regime similar to what they experience in nature. This chapter provides detailed protocols for synchronization of different algal species by alternating light-dark cycles; all critical points are discussed extensively. Moreover, detailed information on basic analysis of cell cycle progression in such cultures is presented, including analyses of nuclear, cellular, and chloroplast divisions. Modifications of basic protocols that enable changes in cell cycle progression are also suggested so that nuclear or chloroplast divisions can be followed separately.

  10. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    PubMed Central

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity. PMID:26703569

  11. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    PubMed

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-01-01

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  12. Cell cycle and centromere FISH studies in premature centromere division

    PubMed Central

    Corona-Rivera, Alfredo; Salamanca-Gomez, Fabio; Bobadilla-Morales, Lucina; Corona-Rivera, Jorge R; Palomino-Cueva, Cesar; Garcia-Cobian, Teresa A; Corona-Rivera, Enrique

    2005-01-01

    Background Mitotic configurations consistent in split centromeres and splayed chromatids in all or most of the chromosomes or premature centromere division (PCD) have been described in three categories. (1) Low frequency of PCD observed in colchicines-treated lymphocyte cultures from normal individuals. (2) High frequency of PCD with mosaic variegated aneuploidy. (3) High frequency of PCD as a sole chromosome abnormality observed in individuals with no recognizable clinical pattern. We report four members of a family with the third category of PCD. Methods Cell cycle duration assessed by average generation time using differential sister chromatid stain analysis and FISH studies of DNA centromere sequences in PCD individuals, are included and compared with previously reported PCD individuals from 9 families. Results We observed PCD in colchicine-treated cultures from the propositus, his father, and two paternal aunts but not in his mother and four other paternal and maternal family members, as well as in untreated cultures from the propositus and his father. We observed cytological evidence of active centromeres by Cd stain. Significative cell cycle time reduction in anaphases of PCD individuals (average generation time of 21.8 h;SD 0.4) with respect to individuals without PCD (average generation time of 31.8 h;SD 3.9) was observed (P < 0.005, Student t-test for independent samples). Increased cell proliferation kinetics was observed in anaphasic cells of individuals with PCD, by differential sister chromatid stain analysis. FISH studies revealed the presence of alpha satellite DNA from chromosomes 1, 13, 21/18, X, all centromeres, and CENP-B box sequences in metaphasic and anaphasic cells from PCD individuals. Conclusion This report examines evidences of a functional relationship between PCD and cell cycle impairment. It seems that essential centromere integrity is present in these cases. PMID:16174301

  13. The Cell Cycle Timing of Human Papillomavirus DNA Replication

    PubMed Central

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  14. Tracking of Normal and Malignant Progenitor Cell Cycle Transit in a Defined Niche

    PubMed Central

    Pineda, Gabriel; Lennon, Kathleen M.; Delos Santos, Nathaniel P.; Lambert-Fliszar, Florence; Riso, Gennarina L.; Lazzari, Elisa; Marra, Marco A.; Morris, Sheldon; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Jamieson, Catriona H. M.

    2016-01-01

    While implicated in therapeutic resistance, malignant progenitor cell cycle kinetics have been difficult to quantify in real-time. We developed an efficient lentiviral bicistronic fluorescent, ubiquitination-based cell cycle indicator reporter (Fucci2BL) to image live single progenitors on a defined niche coupled with cell cycle gene expression analysis. We have identified key differences in cell cycle regulatory gene expression and transit times between normal and chronic myeloid leukemia progenitors that may inform cancer stem cell eradication strategies. PMID:27041210

  15. Cycle reset in a melanoma cell line caused by cooling.

    PubMed

    Dewey, D L

    1987-11-01

    When cells in culture are released from G0 into cycle by diluting into fresh medium there is a delay of many hours before they re-enter the cycle and start DNA synthesis. A mouse melanoma cell line designated HP2 has been used to investigate the effects of non-standard temperatures between the time of plating and DNA synthesis. When the cells were incubated in a 5% CO2 box at 8 degrees C for periods during the G0-G1 transition there was an extra delay before the start of S, approximately equal to the time that the cells were held at 8 degrees C and independent of the time when the cold pulse was administered. When the cells were cooled to 25 degrees C the delay was longer than the time for which the cells had been kept at 25 degrees C, and this extra delay was also dependent on the point in G0-G1 when the cells were cooled, as though the cells could be reset to an earlier time by this treatment. It is suggested that a labile substance required for progression is destroyed faster than it is made at 25 degrees C but at 8 degrees C the rate of destruction is very low. Another phenomenon noted during these cooling experiments was that the peak height of the S phase profile, as measured by frequent pulse-thymidine incorporation experiments, was substantially higher for cells which had been cooled at a later stage in the G0-G1 transition, even though the overall times at 37 degrees C and at the colder temperature were identical. By varying the temperature of the cold pulse it was possible to separate the change in the peak height and the delay as separate entities. PMID:3502929

  16. Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks.

    PubMed

    Rieswijk, Linda; Lizarraga, Daneida; Brauers, Karen J J; Kleinjans, Jos C S; van Delft, Joost H M

    2014-01-01

    The toxic mechanisms of cisplatin have been frequently studied in many species and in vitro cell models. The Netherlands Toxicogenomics Centre focuses on developing in vitro alternatives using genomics technologies for animal-based assays on, e.g. genotoxic hazards. Models such as human hepatocellular carcinoma cell line (HepG2) cells, mouse primary hepatocytes (PMH) and mouse embryonic stem cells (mESC) are used. Our aim was to identify possibly robust conserved mechanisms between these models using cisplatin as model genotoxic agent. Transcriptomic data newly generated from HepG2 cells and PMH exposed to 7 µM cisplatin for 12, 24 and 48h and 24 and 48h, respectively, were compared with published data from mESC exposed to 5 µM cisplatin for 2-24h. Due to differences in response time between models and marginal changes after shorter exposure periods, we focused on 24 and 48h. At gene level, 44 conserved differentially expressed genes (DEG), involved in processes such as apoptosis, cell cycle, DNA damage response and DNA repair, were found. Functional analysis shows that limited numbers of pathways are conserved. Transcription factor (TF) network analysis indicates 12 common TF networks responding among all models and time points. Four TF, HNF4-α, SP1, c-MYC and p53, capable of regulating ±50% of all DEG, seem of equal importance in all models and exposure periods. Here we showed that transcriptomic responses across several in vitro cell models following exposure to cisplatin are mainly determined by a conserved complex network of 4 TFs. These conserved responses are hypothesised to provide most relevant information for human toxicity prediction and may form the basis for new in vitro alternatives of risk assessment.

  17. A Novel Interaction of Ecdysoneless (ECD) Protein with R2TP Complex Component RUVBL1 Is Required for the Functional Role of ECD in Cell Cycle Progression

    PubMed Central

    Mir, Riyaz A.; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A.; Ammons, Shalis A.; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B.; Qiu, Fang; Band, Hamid

    2015-01-01

    Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. PMID:26711270

  18. A Complex Regulatory Network Coordinating Cell Cycles During C. elegans Development Is Revealed by a Genome-Wide RNAi Screen

    PubMed Central

    Roy, Sarah H.; Tobin, David V.; Memar, Nadin; Beltz, Eleanor; Holmen, Jenna; Clayton, Joseph E.; Chiu, Daniel J.; Young, Laura D.; Green, Travis H.; Lubin, Isabella; Liu, Yuying; Conradt, Barbara; Saito, R. Mako

    2014-01-01

    The development and homeostasis of multicellular animals requires precise coordination of cell division and differentiation. We performed a genome-wide RNA interference screen in Caenorhabditis elegans to reveal the components of a regulatory network that promotes developmentally programmed cell-cycle quiescence. The 107 identified genes are predicted to constitute regulatory networks that are conserved among higher animals because almost half of the genes are represented by clear human orthologs. Using a series of mutant backgrounds to assess their genetic activities, the RNA interference clones displaying similar properties were clustered to establish potential regulatory relationships within the network. This approach uncovered four distinct genetic pathways controlling cell-cycle entry during intestinal organogenesis. The enhanced phenotypes observed for animals carrying compound mutations attest to the collaboration between distinct mechanisms to ensure strict developmental regulation of cell cycles. Moreover, we characterized ubc-25, a gene encoding an E2 ubiquitin-conjugating enzyme whose human ortholog, UBE2Q2, is deregulated in several cancers. Our genetic analyses suggested that ubc-25 acts in a linear pathway with cul-1/Cul1, in parallel to pathways employing cki-1/p27 and lin-35/pRb to promote cell-cycle quiescence. Further investigation of the potential regulatory mechanism demonstrated that ubc-25 activity negatively regulates CYE-1/cyclin E protein abundance in vivo. Together, our results show that the ubc-25-mediated pathway acts within a complex network that integrates the actions of multiple molecular mechanisms to control cell cycles during development. PMID:24584095

  19. Genome-wide annotation, expression profiling, and protein interaction studies of the core cell-cycle genes in Phalaenopsis aphrodite.

    PubMed

    Lin, Hsiang-Yin; Chen, Jhun-Chen; Wei, Miao-Ju; Lien, Yi-Chen; Li, Huang-Hsien; Ko, Swee-Suak; Liu, Zin-Huang; Fang, Su-Chiung

    2014-01-01

    Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.

  20. The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes

    PubMed Central

    Müller, Gerd A.; Quaas, Marianne; Schümann, Michael; Krause, Eberhard; Padi, Megha; Fischer, Martin; Litovchick, Larisa; DeCaprio, James A.; Engeland, Kurt

    2012-01-01

    Cell cycle-dependent gene expression is often controlled on the transcriptional level. Genes like cyclin B, CDC2 and CDC25C are regulated by cell cycle-dependent element (CDE) and cell cycle genes homology region (CHR) promoter elements mainly through repression in G0/G1. It had been suggested that E2F4 binding to CDE sites is central to transcriptional regulation. However, some promoters are only controlled by a CHR. We identify the DREAM complex binding to the CHR of mouse and human cyclin B2 promoters in G0. Association of DREAM and cell cycle-dependent regulation is abrogated when the CHR is mutated. Although E2f4 is part of the complex, a CDE is not essential but can enhance binding of DREAM. We show that the CHR element is not only necessary for repression of gene transcription in G0/G1, but also for activation in S, G2 and M phases. In proliferating cells, the B-myb-containing MMB complex binds the CHR of both promoters independently of the CDE. Bioinformatic analyses identify many genes which contain conserved CHR elements in promoters binding the DREAM complex. With Ube2c as an example from that screen, we show that inverse CHR sites are functional promoter elements that can bind DREAM and MMB. Our findings indicate that the CHR is central to DREAM/MMB-dependent transcriptional control during the cell cycle. PMID:22064854

  1. A DNA-damage-induced cell cycle checkpoint in Arabidopsis.

    PubMed Central

    Preuss, S B; Britt, A B

    2003-01-01

    Although it is well established that plant seeds treated with high doses of gamma radiation arrest development as seedlings, the cause of this arrest is unknown. The uvh1 mutant of Arabidopsis is defective in a homolog of the human repair endonuclease XPF, and uvh1 mutants are sensitive to both the toxic effects of UV and the cytostatic effects of gamma radiation. Here we find that gamma irradiation of uvh1 plants specifically triggers a G(2)-phase cell cycle arrest. Mutants, termed suppressor of gamma (sog), that suppress this radiation-induced arrest and proceed through the cell cycle unimpeded were recovered in the uvh1 background; the resulting irradiated plants are genetically unstable. The sog mutations fall into two complementation groups. They are second-site suppressors of the uvh1 mutant's sensitivity to gamma radiation but do not affect the susceptibility of the plant to UV radiation. In addition to rendering the plants resistant to the growth inhibitory effects of gamma radiation, the sog1 mutation affects the proper development of the pollen tetrad, suggesting that SOG1 might also play a role in the regulation of cell cycle progression during meiosis. PMID:12750343

  2. Development of cell-cycle checkpoint therapy for solid tumors.

    PubMed

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. PMID:26486823

  3. Chloroquine enhances the chemotherapeutic activity of 5-fluorouracil in a colon cancer cell line via cell cycle alteration.

    PubMed

    Choi, Jung-Hye; Yoon, Jin Sun; Won, Young-Woong; Park, Byeong-Bae; Lee, Young Yiul

    2012-07-01

    Autophagy is a conserved catabolic process that degrades cytoplasmic proteins and organelles for recycling. The role of autophagy in tumorigenesis is controversial because autophagy can be either protective or damaging to tumor cells, and its effects may change during tumor progression. A number of cancer cell lines have been exposed to chloroquine, an anti-malarial drug, with the aim of inhibiting cell growth and inducing cell death. In addition, chloroquine inhibits a late phase of autophagy. This study was conducted to investigate the anti-cancer effect of autophagy inhibition, using chloroquine together with 5-fluorouracil (5-FU) in a colon cancer cell line. Human colon cancer DLD-1 cells were treated with 5-FU (10 μΜ) or chloroquine (100 μΜ), or a combination of both. Autophagy was evaluated by western blot analysis of microtubule-associated protein light chain3 (LC3). Proliferative activity, alterations of the cell cycle, and apoptosis were measured by MTT assays, flow cytometry, and western blotting. LC3-II protein increased after treatment with 5-FU, and chloroquine potentiated the cytotoxicity of 5-FU. MTT assays showed that 5-FU inhibited proliferation of the DLD-1 cells and that chloroquine enhanced this inhibitory effect of 5-FU. The combination of 5-FU and chloroquine induced G1 arrest, up-regulation of p27 and p53, and down-regulation of CDK2 and cyclin D1. These results suggest that chloroquine may potentiate the anti-cancer effect of 5-FU via cell cycle inhibition. Chloroquine potentiates the anti-cancer effect of 5-FU in colon cancer cells. Supplementation of conventional chemotherapy with chloroquine may provide a new cancer therapy modality. PMID:22716215

  4. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance

    PubMed Central

    Fallon, Ann M.

    2016-01-01

    The plant allelochemical l-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6–7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30–35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels. PMID:26019119

  5. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells

    PubMed Central

    Singh, Amar M.; Chappell, James; Trost, Robert; Lin, Li; Wang, Tao; Tang, Jie; Wu, Hao; Zhao, Shaying; Jin, Peng; Dalton, Stephen

    2013-01-01

    Summary Heterogeneity within pluripotent stem cell (PSC) populations is indicative of dynamic changes that occur when cells drift between different states. Although the role of metastability in PSCs is unclear, it appears to reflect heterogeneity in cell signaling. Using the Fucci cell-cycle indicator system, we show that elevated expression of developmental regulators in G1 is a major determinant of heterogeneity in human embryonic stem cells. Although signaling pathways remain active throughout the cell cycle, their contribution to heterogeneous gene expression is restricted to G1. Surprisingly, we identify dramatic changes in the levels of global 5-hydroxymethylcytosine, an unanticipated source of epigenetic heterogeneity that is tightly linked to cell-cycle progression and the expression of developmental regulators. When we evaluated gene expression in differentiating cells, we found that cell-cycle regulation of developmental regulators was maintained during lineage specification. Cell-cycle regulation of developmentally regulated transcription factors is therefore an inherent feature of the mechanisms underpinning differentiation. PMID:24371808

  6. Cell-cycle research with synchronous cultures: an evaluation

    NASA Technical Reports Server (NTRS)

    Helmstetter, C. E.; Thornton, M.; Grover, N. B.

    2001-01-01

    The baby-machine system, which produces new-born Escherichia coli cells from cultures immobilized on a membrane, was developed many years ago in an attempt to attain optimal synchrony with minimal disturbance of steady-state growth. In the present article, we put forward a model to describe the behaviour of cells produced by this method, and provide quantitative evaluation of the parameters involved, at each of four different growth rates. Considering the high level of selection achievable with this technique and the natural dispersion in interdivision times, we believe that the output of the baby machine is probably close to optimal in terms of both quality and persistence of synchrony. We show that considerable information on events in the cell cycle can be obtained from populations with age distributions very much broader than those achieved with the baby machine and differing only modestly from steady state. The data presented here, together with the long and fruitful history of findings employing the baby-machine technique, suggest that minimisation of stress on cells is the single most important factor for successful cell-cycle analysis.

  7. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  8. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    PubMed Central

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572

  9. Cell cycle switch to endocycle: the nucleolus lends a hand.

    PubMed

    Martindill, David M J; Riley, Paul R

    2008-01-01

    The bHLH transcription factor Hand1 is essential for placentation and cardiac morphogenesis but how its developmental activity is regulated is largely unknown. We recently showed that Hand1 is sequestered in the nucleoli of rodent trophoblast stem (TS) cells by the I-mfa domain-containing protein HICp40 and that this is associated with their proliferation and continuing self-renewal. However when these cells commit to differentiate into trophoblast giant (TG) cells, Hand1 is phosphorylated by the polo-like kinase Plk4 (Sak) and released into the nucleus to activate downstream target genes. This event underlies the release of Hand1 from the nucleolus and represents the 'molecular switch' that promotes mitotic cell cycle exit and the onset of endoreduplication. In this brief discussion we examine the wider implications of these findings and address some of the unanswered questions that remain.

  10. Preparative electrophoresis of cultured human cells: Effect of cell cycle phase

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Todd, P. W.; Goolsby, C. L.; Walker, J. T.

    1985-01-01

    Human epithelioid T-1E cells were cultured in suspension and subjected to density gradient electrophoresis upward in a vertical column. It is indicated that the most rapidly migrating cells were at the beginning of the cell cycle and the most slowly migrating cells were at the end of the cell cycle. The fastest migrating cells divided 24 hr later than the slowest migrating cells. Colonies developing from slowly migrating cells had twice as many cells during exponential growth as did the most rapidly migrating cells, and the numbers of cells per colony at any time was inversely related to the electrophoretic migration rate. The DNA measurements by fluorescence flow cytometry indicates that the slowest migrating cell populations are enriched in cells that have twice as much DNA as the fastest migrating cells. It is concluded that electrophoretic mobility of these cultured human cells declines steadily through the cell cycle and that the mobility is lowest at the end of G sub 2 phase and highest at the beginning of G sub 1 phase.

  11. Sodium butyrate regulates androgen receptor expression and cell cycle arrest in human prostate cancer cells.

    PubMed

    Kim, Jeonga; Park, Hyeyoung; Im, Ji Young; Choi, Wahn Soo; Kim, Hyung Sik

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have been shown to modify the expression of a variety of genes related to cell cycle regulation and apoptosis in several cancer cells. However, the precise mode of action of HDAC inhibitors in prostate cancer cells is not completely understood. This study examined whether an HDAC inhibitor affects cell death in human prostate cancer cells through the epigenetic regulation of androgen receptor (AR) expression. The molecular mechanism of the HDAC inhibitor, sodium butyrate, on the epigenetic alterations of cell cycle regulators was evaluated in androgen-dependent human prostate cancer LNCaP cells. The expression levels of acetylated histone H3 and H4 increased significantly after 48 h treatment with sodium butyrate. Sodium butyrate induced the expression of AR after 48 h treatment. In addition, immunofluorescence assay revealed the nuclear localization of the AR after sodium butyrate treatment. Sodium butyrate also significantly decreased the expression of the cell cycle regulatory proteins (cyclin D1/cyclin dependent kinase (CDK)4, CDK6, and cyclin E/CDK2) in the LNCaP cells after 48 h treatment. Furthermore, p21Waf1/Cip1 and p27Kip1 were upregulated as a result of the sodium butyrate treatment. These results suggest that sodium butyrate effectively inhibited cell proliferation and induced apoptosis of human prostate cancer cells by altering the expression of cell cycle regulators and AR. This study indicated that sodium butyrate may be a potential agent in prostate cancer treatment.

  12. Regulation of Sp1 by cell cycle related proteins

    PubMed Central

    Tapias, Alicia; Ciudad, Carlos J.; Roninson, Igor B.; Noé, Véronique

    2009-01-01

    Sp1 transcription factor regulates the expression of multiple genes, including the Sp1 gene itself. We analyzed the ability of different cell cycle regulatory proteins to interact with Sp1 and to affect Sp1 promoter activity. Using an antibody array, we observed that CDK4, SKP2, Rad51, BRCA2 and p21 could interact with Sp1 and we confirmed these interactions by co-immunoprecipitation. CDK4, SKP2, Rad51, BRCA2 and p21 also activated the Sp1 promoter. Among the known Sp1-interacting proteins, E2F-DP1, Cyclin D1, Stat3 and Rb activated the Sp1 promoter, whereas p53 and NFκB inhibited it. The proteins that regulated Sp1 gene expression were shown by positive chromatin immunoprecipitation to be bound to the Sp1 promoter. Moreover, SKP2, BRCA2, p21, E2F-DP1, Stat3, Rb, p53 and NFκB had similar effects on an artificial promoter containing only Sp1 binding sites. Transient transfections of CDK4, Rad51, E2F-DP1, p21 and Stat3 increased mRNA expression from the endogenous Sp1 gene in HeLa cells whereas overexpression of NFκB, and p53 decreased Sp1 mRNA levels. p21 expression from a stably integrated inducible promoter in HT1080 cells activated Sp1 expression at the promoter and mRNA levels, but at the same time it decreased Sp1 protein levels due to the activation of Sp1 degradation. The observed multiple effects of cell cycle regulators on Sp1 suggest that Sp1 may be a key mediator of cell cycle associated changes in gene expression. PMID:18769160

  13. Pitx2 expression promotes p21 expression and cell cycle exit in neural stem cells.

    PubMed

    Heldring, Nina; Joseph, Bertrand; Hermanson, Ola; Kioussi, Chrissa

    2012-11-01

    Cortical development is a complex process that involves many events including proliferation, cell cycle exit and differentiation that need to be appropriately synchronized. Neural stem cells (NSCs) isolated from embryonic cortex are characterized by their ability of self-renewal under continued maintenance of multipotency. Cell cycle progression and arrest during development is regulated by numerous factors, including cyclins, cyclin dependent kinases and their inhibitors. In this study, we exogenously expressed the homeodomain transcription factor Pitx2, usually expressed in postmitotic progenitors and neurons of the embryonic cortex, in NSCs with low expression of endogenous Pitx2. We found that Pitx2 expression induced a rapid decrease in proliferation associated with an accumulation of NSCs in G1 phase. A search for potential cell cycle inhibitors responsible for such cell cycle exit of NSCs revealed that Pitx2 expression caused a rapid and dramatic (≉20-fold) increase in expression of the cell cycle inhibitor p21 (WAF1/Cip1). In addition, Pitx2 bound directly to the p21 promoter as assessed by chromatin immunoprecipitation (ChIP) in NSCs. Surprisingly, Pitx2 expression was not associated with an increase in differentiation markers, but instead the expression of nestin, associated with undifferentiated NSCs, was maintained. Our results suggest that Pitx2 promotes p21 expression and induces cell cycle exit in neural progenitors.

  14. Major weapon system environmental life-cycle cost estimating for Conservation, Cleanup, Compliance and Pollution Prevention (C3P2)

    NASA Technical Reports Server (NTRS)

    Hammond, Wesley; Thurston, Marland; Hood, Christopher

    1995-01-01

    The Titan 4 Space Launch Vehicle Program is one of many major weapon system programs that have modified acquisition plans and operational procedures to meet new, stringent environmental rules and regulations. The Environmental Protection Agency (EPA) and the Department of Defense (DOD) mandate to reduce the use of ozone depleting chemicals (ODC's) is just one of the regulatory changes that has affected the program. In the last few years, public environmental awareness, coupled with stricter environmental regulations, has created the need for DOD to produce environmental life-cycle cost estimates (ELCCE) for every major weapon system acquisition program. The environmental impact of the weapon system must be assessed and budgeted, considering all costs, from cradle to grave. The Office of the Secretary of Defense (OSD) has proposed that organizations consider Conservation, Cleanup, Compliance and Pollution Prevention (C(sup 3)P(sup 2)) issues associated with each acquisition program to assess life-cycle impacts and costs. The Air Force selected the Titan 4 system as the pilot program for estimating life-cycle environmental costs. The estimating task required participants to develop an ELCCE methodology, collect data to test the methodology and produce a credible cost estimate within the DOD C(sup 3)P(sup 2) definition. The estimating methodology included using the Program Office weapon system description and work breakdown structure together with operational site and manufacturing plant visits to identify environmental cost drivers. The results of the Titan IV ELCCE process are discussed and expanded to demonstrate how they can be applied to satisfy any life-cycle environmental cost estimating requirement.

  15. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry

    PubMed Central

    Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441

  16. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry.

    PubMed

    Renz, Christian; Oeljeklaus, Silke; Grinhagens, Sören; Warscheid, Bettina; Johnsson, Nils; Gronemeyer, Thomas

    2016-01-01

    The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen. PMID:26871441

  17. Basal body structure and cell cycle-dependent biogenesis in Trypanosoma brucei.

    PubMed

    Vaughan, Sue; Gull, Keith

    2015-01-01

    Basal bodies are microtubule-based organelles that assemble cilia and flagella, which are critical for motility and sensory functions in all major eukaryotic lineages. The core structure of the basal body is highly conserved, but there is variability in biogenesis and additional functions that are organism and cell type specific. Work carried out in the protozoan parasite Trypanosoma brucei has arguably produced one of the most detailed dissections of basal body structure and biogenesis within the context of the flagellar pocket and associated organelles. In this review, we provide a detailed overview of the basic basal body structure in T. brucei along with the accessory structures and show how basal body movements during the basal body duplication cycle orchestrate cell and organelle morphogenesis. With this in-depth three-dimensional knowledge, identification of many basal body genes coupled with excellent genetic tools makes it an attractive model organism to study basal body biogenesis and maintenance. PMID:26862392

  18. Cell cycle reentry from the late S phase: implications from stem cell formation in the moss Physcomitrella patens.

    PubMed

    Ishikawa, Masaki; Hasebe, Mitsuyasu

    2015-05-01

    Differentiated cells are in a non-dividing, quiescent state, but some differentiated cells can reenter the cell cycle in response to appropriate stimuli. Quiescent cells are generally arrested at the G0/G1 phase, reenter the cell cycle, and progress to the S phase to replicate their genomic DNA. On the other hand, some types of cells are arrested at the different phase and reenter the cell cycle from there. In the moss Physcomitrella patens, the differentiated leaf cells of gametophores formed in the haploid generation contain approximately 2C DNA content, and DNA synthesis is necessary for reentry into the cell cycle, which is suggested to be arrested at late S phase. Here we review various cell-division reactivation processes in which cells reenter the cell cycle from the late S phase, and discuss possible mechanisms of such unusual cell cycle reentries with special emphasis on Physcomitrella.

  19. Cell cycle-dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis.

    PubMed

    Lepore, Dante; Spassibojko, Olya; Pinto, Gabrielle; Collins, Ruth N

    2016-09-12

    Intracellular trafficking is an essential and conserved eukaryotic process. Rab GTPases are a family of proteins that regulate and provide specificity for discrete membrane trafficking steps by harnessing a nucleotide-bound cycle. Global proteomic screens have revealed many Rab GTPases as phosphoproteins, but the effects of this modification are not well understood. Using the Saccharomyces cerevisiae Rab GTPase Sec4p as a model, we have found that phosphorylation negatively regulates Sec4p function by disrupting the interaction with the exocyst complex via Sec15p. We demonstrate that phosphorylation of Sec4p is a cell cycle-dependent process associated with cytokinesis. Through a genomic kinase screen, we have also identified the polo-like kinase Cdc5p as a positive regulator of Sec4p phosphorylation. Sec4p spatially and temporally localizes with Cdc5p exclusively when Sec4p phosphorylation levels peak during the cell cycle, indicating Sec4p is a direct Cdc5p substrate. Our data suggest the physiological relevance of Sec4p phosphorylation is to facilitate the coordination of membrane-trafficking events during cytokinesis. PMID:27621363

  20. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest

    PubMed Central

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P.; Chow, Vincent T.K.

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  1. (p)ppGpp and the bacterial cell cycle.

    PubMed

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation.

  2. Pneumococcal Pneumolysin Induces DNA Damage and Cell Cycle Arrest.

    PubMed

    Rai, Prashant; He, Fang; Kwang, Jimmy; Engelward, Bevin P; Chow, Vincent T K

    2016-01-01

    Streptococcus pneumoniae produces pneumolysin toxin as a key virulence factor against host cells. Pneumolysin is a cholesterol-dependent cytolysin (CDC) toxin that forms lytic pores in host membranes and mediates pneumococcal disease pathogenesis by modulating inflammatory responses. Here, we show that pneumolysin, which is released during bacterial lysis, induces DNA double strand breaks (DSBs), as indicated by ataxia telangiectasia mutated (ATM)-mediated H2AX phosphorylation (γH2AX). Pneumolysin-induced γH2AX foci recruit mediator of DNA damage checkpoint 1 (MDC1) and p53 binding protein 1 (53BP1), to sites of DSBs. Importantly, results show that toxin-induced DNA damage precedes cell cycle arrest and causes apoptosis when DNA-dependent protein kinase (DNA-PK)-mediated non-homologous end joining is inhibited. Further, we observe that cells that were undergoing DNA replication harbored DSBs in greater frequency during pneumolysin treatment. This observation raises the possibility that DSBs might be arising as a result of replication fork breakdown. Additionally, neutralizing the oligomerization domain of pneumolysin with monoclonal antibody suppresses DNA damage and also cell cycle arrest, indicating that pneumolysin oligomerization is important for causing DNA damage. Taken together, this study reveals a previously unidentified ability of pneumolysin to induce cytotoxicity via DNA damage, with implications in the pathophysiology of S. pneumoniae infection. PMID:27026501

  3. (p)ppGpp and the bacterial cell cycle.

    PubMed

    Nazir, Aanisa; Harinarayanan, Rajendran

    2016-06-01

    Genes of the Rel/Spo homolog (RSH) superfamily synthesize and/or hydrolyse the modified nucleotides pppGpp/ ppGpp (collectively referred to as (p)ppGpp) and are prevalent across diverse bacteria and in plant chloroplasts. Bacteria accumulate (p)ppGpp in response to nutrient deprivation (generically called the stringent response) and elicit appropriate adaptive responses mainly through the regulation of transcription. Although at different concentrations (p)ppGpp affect the expression of distinct set of genes, the two well-characterized responses are reduction in expression of the protein synthesis machinery and increase in the expression of genes coding for amino acid biosynthesis. In Escherichia coli, the cellular (p)ppGpp level inversely correlates with the growth rate and increasing its concentration decreases the steady state growth rate in a defined growth medium. Since change in growth rate must be accompanied by changes in cell cycle parameters set through the activities of the DNA replication and cell division apparatus, (p)ppGpp could coordinate protein synthesis (cell mass increase) with these processes. Here we review the role of (p)ppGpp in bacterial cell cycle regulation. PMID:27240988

  4. Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines.

    PubMed

    Haddad, A Q; Venkateswaran, V; Viswanathan, L; Teahan, S J; Fleshner, N E; Klotz, L H

    2006-01-01

    Epidemiologic studies have demonstrated an inverse association between flavonoid intake and prostate cancer (PCa) risk. The East Asian diet is very high in flavonoids and, correspondingly, men in China and Japan have the lowest incidence of PCa worldwide. There are thousands of different naturally occurring and synthetic flavonoids. However, only a few have been studied in PCa. Our aim was to identify novel flavonoids with antiproliferative effect in PCa cell lines, as well as determine their effects on cell cycle. We have screened a representative subgroup of 26 flavonoids for antiproliferative effect on the human PCa (LNCaP and PC3), breast cancer (MCF-7), and normal prostate stromal cell lines (PrSC). Using a fluorescence-based cell proliferation assay (Cyquant), we have identified five flavonoids, including the novel compounds 2,2'-dihydroxychalcone and fisetin, with antiproliferative and cell cycle arresting properties in human PCa in vitro. Most of the flavonoids tested exerted antiproliferative effect at lower doses in the PCa cell lines compared to the non-PCa cells. Flow cytometry was used as a means to determine the effects on cell cycle. PC3 cells were arrested in G2/M phase by flavonoids. LNCaP cells demonstrated different cell cycle profiles. Further studies are warranted to determine the molecular mechanism of action of 2,2'-DHC and fisetin in PCa, and to establish their effectiveness in vivo.

  5. Effects of simulated microgravity on cell cycle in human endothelial cells

    NASA Astrophysics Data System (ADS)

    Sokolovskaya, Alisa A.; Ignashkova, Tatiana I.; Bochenkova, Anna V.; Moskovtsev, Aleksey A.; Baranov, Victor M.; Kubatiev, Aslan A.

    2014-06-01

    The aim of the current study is to investigate effects of simulated microgravity on the cell cycle of endothelial cells. We analyze changes in the cell cycle after exposure of endothelial-like EA.hy 926 cells to simulated microgravity using a Desktop random positioning machine (RPM). Cell cycle profiles determined by flow cytometry show, that the percentage of the cells in the G0/G1 phase after 24 and 96 h of RPM-simulated microgravity is significantly increased as compared to the control group. However, no significant difference is observed after 120 h of RPM-simulated microgravity. In regard to S phase, the percentage of cells is significantly decreased after 24 and 96 h of RPM, respectively; whereas 120 h later, the number of S-phase cells is comparable to the control group. Thus, we show that simulated microgravity inhibits cell cycle progression of human EA.hy 926 cells from the G0/G1 phase to the S phase. We observe an effect of a hibernation-like state, when the growth of the cells in the RPM group slows down, but does not stop. Our results further show that simulated microgravity can affect adhesion of endothelial cells, and alpha-tubulin expression, as most cells begin to detach from the surface of OptiCell unit after 24 h, form aggregates after 48 h, and exhibit accumulation of alpha-tubulin around the nucleus after 48 h of exposure to simulated microgravity conditions. Our results demonstrate a chance in the cell cycle in a low gravitational field.

  6. Leveraging Carbon Cycling in Coastal Wetlands for Habitat Conservation: Blue Carbon Policy Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Sutton-Grier, A.

    2013-12-01

    Recent scientific studies suggest that the carbon sequestered and stored in coastal wetlands (specifically mangroves, salt marshes, and seagrass meadows) is an important, previously not well-recognized service provided by these ecosystems. Coastal wetlands have unique characteristics that make them incredibly efficient, natural carbon sinks with most carbon stored belowground in soils. Based on this new scientific evidence, there is growing interest in leveraging the carbon services of these habitats (termed 'blue carbon') to develop new policy opportunities to protect and restore coastal wetlands around the globe. The overall goal is to take full advantage of the carbon services of these habitats in order to ensure and maintain the many benefits provided to society by these habitats - including natural climate, food security, and storm protection benefits - and to enhance the resiliency of coastal communities and economies around the world. This presentation will give an update on some of the policy opportunities including: (1) examining how the implementation of U.S. federal policies can be expanded to include carbon services of ecosystems in order to improve management and decision making; (2) developing an international blue carbon community of science and practice to provide best practice guidance for protection and restoration of blue carbon habitats; and (3) developing innovative financing mechanisms for coastal conservation including carbon market credits for wetlands. Finally, the presentation will conclude by highlighting some of the most pressing blue carbon scientific gaps that need to be filled in order to support these developing policies.

  7. Critical Role for Mouse Hus1 in an S-Phase DNA Damage Cell Cycle Checkpoint

    PubMed Central

    Weiss, Robert S.; Leder, Philip; Vaziri, Cyrus

    2003-01-01

    Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1− fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G2/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase. PMID:12529385

  8. Duplication of the Yeast Spindle Pole Body Once per Cell Cycle.

    PubMed

    Rüthnick, Diana; Schiebel, Elmar

    2016-05-01

    The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. Centrosomes and SPBs duplicate exactly once per cell cycle by mechanisms that use the mother structure as a platform for the assembly of the daughter. The conserved Sfi1 and centrin proteins are essential components of the SPB duplication process. Sfi1 is an elongated molecule that has, in its center, 20 to 23 binding sites for the Ca(2+)-binding protein centrin. In the yeastSaccharomyces cerevisiae, all Sfi1 N termini are in contact with the mother SPB whereas the free C termini are distal to it. During S phase and early mitosis, cyclin-dependent kinase 1 (Cdk1) phosphorylation of mainly serine residues in the Sfi1 C termini blocks the initiation of SPB duplication ("off" state). Upon anaphase onset, the phosphatase Cdc14 dephosphorylates Sfi1 ("on" state) to promote antiparallel and shifted incorporation of cytoplasmic Sfi1 molecules into the half-bridge layer, which thereby elongates into the bridge. The Sfi1 C termini of the two Sfi1 layers localize in the bridge center, whereas the N termini of the newly assembled Sfi1 molecules are distal to the mother SPB. These free Sfi1 N termini then assemble the new SPB in G1phase. Recruitment of Sfi1 molecules into the anaphase SPB and bridge formation were also observed inSchizosaccharomyces pombe, suggesting that the Sfi1 bridge cycle is conserved between the two organisms. Thus, restricting SPB duplication to one event per cell cycle requires only an oscillation between Cdk1 kinase and Cdc14 phosphatase activities. This clockwork regulates the "on"/"off" state of the Sfi1-centrin receiver. PMID:26951196

  9. Selection of mammalian cells based on their cell-cycle phase using dielectrophoresis

    PubMed Central

    Kim, Unyoung; Shu, Chih-Wen; Dane, Karen Y.; Daugherty, Patrick S.; Wang, Jean Y. J.; Soh, H. T.

    2007-01-01

    An effective, noninvasive means of selecting cells based on their phase within the cell cycle is an important capability for biological research. Current methods of producing synchronous cell populations, however, tend to disrupt the natural physiology of the cell or suffer from low synchronization yields. In this work, we report a microfluidic device that utilizes the dielectrophoresis phenomenon to synchronize cells by exploiting the relationship between the cell's volume and its phase in the cell cycle. The dielectrophoresis activated cell synchronizer (DACSync) device accepts an asynchronous mixture of cells at the inlet, fractionates the cell populations according to the cell-cycle phase (G1/S and G2/M), and elutes them through different outlets. The device is gentle and efficient; it utilizes electric fields that are 1–2 orders of magnitude below those used in electroporation and enriches asynchronous tumor cells in the G1 phase to 96% in one round of sorting, in a continuous flow manner at a throughput of 2 × 105 cells per hour per microchannel. This work illustrates the feasibility of using laminar flow and electrokinetic forces for the efficient, noninvasive separation of living cells. PMID:18093921

  10. Effects of cell cycle on the uptake of water soluble quantum dots by cells

    NASA Astrophysics Data System (ADS)

    Zheng, Shen; Chen, Ji-Yao; Wang, Jun-Yong; Zhou, Lu-Wei; Peng, Qian

    2011-12-01

    Quantum dots (QDs) with excellent optical properties have become powerful candidates for cell imaging. Although numerous reports have studied the uptake of QDs by cells, little information exists on the effects of cell cycle on the cellular QD uptake. In this report, the effects of cell cycle on the uptake of water soluble thiol-capped CdTe QDs by the human cervical carcinoma Hela cell line, human hepatocellular carcinoma QGY7701 cell line, and human embryonic kidney 293T cell line were studied by means of laser scanning confocal microscopy and flow cytometry. All three cell lines show to take up CdTe QDs via endocytosis. After arresting cells at specific phases with pharmacological agents, the cells in G2/M phase take up the most CdTe QDs, probably due to an increased membrane expansion during mitosis; whereas the cells in G1 phase do the least. A mathematical physics model was built to calculate the relative uptake rates of CdTe QDs by cells in different phases of the cell cycle, with the result as the uptake rate in G2/M phase is 2-4 times higher than that in G1 phase for these three cell lines. The results obtained from this study may provide the information useful for intracellular delivery of QDs.

  11. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    PubMed Central

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  12. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth.

    PubMed

    Feillet, Celine; van der Horst, Gijsbertus T J; Levi, Francis; Rand, David A; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  13. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  14. Analysis of Factors Controlling Cell Cycle that Can Be Synchronized Nondestructively During Root Cap Development

    SciTech Connect

    Martha Hawes

    2011-02-04

    Publications and presentations during the final funding period, including progress in defining the substrate specificity, the primary goal of the project, are listed below. Both short-term and long-term responses mediated by PsUGT1 have been characterized in transgenic or mutant pea, alfalfa, and Arabidopsis with altered expression of PsUGT1. Additional progress includes evaluation of the relationship between control of the cell cycle by PsUGT1 and other glycosyltransferase and glycosidase enzymes that are co-regulated in the legume root cap during the onset of mitosis and differentiation. Transcriptional profiling and multidimensional protein identification technology ('MudPIT') have been used to establish the broader molecular context for the mechanism by which PsUGT1 controls cell cycle in response to environmental signals. A collaborative study with the Norwegian Forest Research Institute (who provided $10,000.00 in supplies and travel funds for collaborator Dr. Toril Eldhuset to travel to Arizona and Dr. H. H. Woo to travel to Norway) made it possible to establish that the inducible root cap system for studying carbohydrate synthesis and solubilization is expressed in gymnosperm as well as angiosperm species. This discovery provides an important tool to amplify the potential applications of the research in defining conserved cell cycle machinery across a very broad range of plant species and habitats. The final work, published during 2009, revealed an additional surprising parallel with mammalian immune responses: The cells whose production is controlled by PsUGT1 appear to function in a manner which is analogous to that of white blood cells, by trapping and killing in an extracellular manner. This may explain why mutation within the coding region of PsUGT1 and its homolog in humans (UGT1) is lethal to plants and animals. The work has been the subject of invited reviews. A postdoctoral fellow, eight undergraduate students, four M.S. students and three Ph

  15. Impairment of cell cycle progression by aflatoxin B1 in human cell lines.

    PubMed

    Ricordy, R; Gensabella, G; Cacci, E; Augusti-Tocco, G

    2002-05-01

    Aflatoxin B1 is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticum, which may be present as a food contaminant. It is known to cause acute toxic effects and act as a carcinogenic agent. The carcinogenic action has been related to its ability to form unstable adducts with DNA, which represent possible mutagenic sites. On the other hand, the primary cellular target responsible for its toxic action has not yet been clearly identified. Previous data suggested a possible correlation between cell proliferation and responsiveness to aflatoxin toxicity. These observations led us to investigate the effect of the toxin on cell cycle progression of three human cell lines (HepG2, SK-N-MC and SK-N-SH derived from liver and nervous tissue tumours); they were shown to display different responses to toxin exposure and have different growth kinetics. We performed analysis of the cell cycle, DNA synthesis and expression of p21 and p53 in the presence and absence of the toxin in all cell lines exposed. The results of cell cycle cytofluorometric analysis show significant alterations of cell cycle progression as a result of toxin treatment. In all cell lines exposure to a 24 h toxin treatment causes a dose-dependent accumulation in S phase, however, the ability to recover from impairment to traverse S phase varies in the cell lines under study. SK-N-MC cells appear more prone to resume DNA synthesis when the toxin is removed, while the other two cell lines maintain a significant inhibition of DNA synthesis, as indicated by cytofluorimetry and [(3)H]dTR incorporation. The level of p53 and p21 expression in the three cell lines was examined by western blot analysis and significant differences were detected. The ready resumption of DNA synthesis displayed by SK-N-MC cells could possibly be related to the absence of p53 control of cell cycle progression.

  16. The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle.

    PubMed Central

    Johnston, L H; Eberly, S L; Chapman, J W; Araki, H; Sugino, A

    1990-01-01

    Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division. Images PMID:2181271

  17. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    SciTech Connect

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  18. Procollagen mRNA metabolism during the fibroblast cell cycle and its synthesis in transformed cells.

    PubMed

    Parker, I; Fitschen, W

    1980-06-25

    Procollagen mRNA was isolated from mouse embryos and used for the synthesis of a highly labelled cDNA probe complementary to collagen mRNA. This probe was used for the investigation of procollagen mRNA metabolism during the cell cycle of 3T6 mouse embryo fibroblasts in culture. Titration hybridization experiments revealed that procollagen mRNA was present throughout the cell cycle following stumulation of confluent monolayers. Procollagen mRNA levels of sparse cultures appeared similar to those of unstimulated monolayers. The fluctuating levels of collagen synthesis during the cell cycle can be ascribed to changes in the amount of collagen mRNA present. In mouse sarcoma virus transformed 3T3 cells only 20--30% of the amount of procollagen mRNA in 3T3 cells is present indicating that the decline in collagen synthesis is due to mRNA availability.

  19. MYC-repressed long noncoding RNAs antagonize MYC-induced cell proliferation and cell cycle progression

    PubMed Central

    Jeon, Young-Jun; Fadda, Paolo; Alder, Hansjuerg; Croce, Carlo M.

    2015-01-01

    The transcription factor MYC is a proto-oncogene regulating cell proliferation, cell cycle, apoptosis and metabolism. The recent identification of MYC-regulated long noncoding RNAs (lncRNAs) expands our knowledge of the role of lncRNAs in MYC functions. Here, we identify MYC-repressed lncRNAs named MYCLo-4, -5 and -6 by comparing 3 categories of lncRNAs (downregulated in highly MYC-expressing colorectal cancer, up-regulated by MYC knockdown in HCT116, upregulated by MYC knockdown in RKO). The MYC-repressed MYCLos are implicated in MYC-modulated cell proliferation through cell cycle regulation. By screening cell cycle-related genes regulated by MYC and the MYC-repressed MYCLos, we identified the MYC-repressed gene GADD45A as a target gene of the MYC-repressed MYCLos such as MYCLo-4 and MYCLo-6. PMID:26003165

  20. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    PubMed

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  1. Effects of heavy ions on cycling stem cells

    NASA Astrophysics Data System (ADS)

    Hagan, Michael P.; Holahan, E. Vincent; Ainsworth, E. John

    Murine marrow stem cells assayed with the spleen colony assay have been shown to be largely in a noncycling state, Go. In the unirradiated animal where these spleen-colony forming units (CFUs) transit normally between a non-proliferative state and active proliferation, exposure to a sufficient dose of ionizing radiation increases the frequency (probability) of this transition. For low-LET irradiation, marrow stem cells are not induced into cycle until a threshold dose is achieved. This dose appears to be in the range 50 to 100 cGy, inducing proliferation in an all-or-nothing manner. For irradiation with heavy charged-particles, however, the threshold dose is dependent on mass and energy. Irradiation with particles of sufficient mass and energy stimulates active proliferation even at the smallest doses tested, 5 cGy. Further, this response does not appear to result from an all-or-nothing effect. Rather, individual animals with intermediate levels of stem cell cycling have been observed. These data support the notion that locally controlled hemopoiesis can be affected by local deposition of radiation damage.

  2. Cell-cycle regulation of formin-mediated actin cable assembly.

    PubMed

    Miao, Yansong; Wong, Catherine C L; Mennella, Vito; Michelot, Alphée; Agard, David A; Holt, Liam J; Yates, John R; Drubin, David G

    2013-11-19

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

  3. Fission yeast with DNA polymerase delta temperature-sensitive alleles exhibits cell division cycle phenotype.

    PubMed Central

    Francesconi, S; Park, H; Wang, T S

    1993-01-01

    DNA polymerases alpha and delta are essential enzymes believed to play critical roles in initiation and replication of chromosome DNA. In this study, we show that the genes for Schizosaccharomyces pombe (S.pombe) DNA polymerase alpha and delta (pol alpha+ and pol delta+) are essential for cell viability. Disruption of either the pol alpha+ or pol delta+ gene results in distinct terminal phenotypes. The S.pombe pol delta+ gene is able to complement the thermosensitive cdc2-2 allele of Saccharomyces cerevisiae (S.cerevisiae) at the restrictive temperature. By random mutagenesis in vitro, we generated three pol delta conditional lethal alleles. We replaced the wild type chromosomal copy of pol delta+ gene with the mutagenized sequence and characterized the thermosensitive alleles in vivo. All three thermosensitive mutants exhibit a typical cell division cycle (cdc) terminal phenotype similar to that of the disrupted pol delta+ gene. Flow cytometric analysis showed that at the nonpermissive temperature all three mutants were arrested in S phase of the cell cycle. The three S.pombe conditional pol delta alleles were recovered and sequenced. The mutations causing the thermosensitive phenotype are missense mutations. The altered amino acid residues are uniquely conserved among the known polymerase delta sequences. Images PMID:8367300

  4. American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators.

    PubMed

    Déziel, Bob; MacPhee, James; Patel, Kunal; Catalli, Adriana; Kulka, Marianna; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert

    2012-05-01

    Prostate cancer is one of the most common cancers in the world, and its prevalence is expected to increase appreciably in the coming decades. As such, more research is necessary to understand the etiology, progression and possible preventative measures to delay or to stop the development of this disease. Recently, there has been interest in examining the effects of whole extracts from commonly harvested crops on the behaviour and progression of cancer. Here, we describe the effects of whole cranberry extract (WCE) on the behaviour of DU145 human prostate cancer cells in vitro. Following treatment of DU145 human prostate cancer cells with 10, 25 and 50 μg ml⁻¹ of WCE, respectively for 6 h, WCE significantly decreased the cellular viability of DU145 cells. WCE also decreased the proportion of cells in the G2-M phase of the cell cycle and increased the proportion of cells in the G1 phase of the cell cycle following treatment of cells with 25 and 50 μg ml⁻¹ treatment of WCE for 6 h. These alterations in cell cycle were associated with changes in cell cycle regulatory proteins and other cell cycle associated proteins. WCE decreased the expression of CDK4, cyclin A, cyclin B1, cyclin D1 and cyclin E, and increased the expression of p27. Changes in p16(INK4a) and pRBp107 protein expression levels also were evident, however, the changes noted in p16(INK4a) and pRBp107 protein expression levels were not statistically significant. These findings demonstrate that phytochemical extracts from the American cranberry (Vaccinium macrocarpon) can affect the behaviour of human prostate cancer cells in vitro and further support the potential health benefits associated with cranberries.

  5. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis

    PubMed Central

    2014-01-01

    Background Effective therapies for early endometrial cancer usually involve surgical excision and consequent infertility Therefore, new treatment approaches that preserve fertility should be developed. Metformin, a well-tolerated anti-diabetic drug, can inhibit cancer cell growth. However, the mechanism of metformin action is not well understood. Here we investigate the roles of autophagy and apoptosis in the anti-cancer effects of metformin on endometrial cancer cells. Methods Ishikawa endometrial cancer cells were treated with metformin. WST-8 assays, colony formation assays, flow cytometry, caspase luminescence measurement, immunofluorescence, and western blots were used to assess the effects of metformin on cell viability, proliferation, cell cycle progression, apoptosis, and autophagy. Results Metformin-treated cells exhibited significantly lower viability and proliferation and significantly more cell cycle arrest in G1 and G2/M than control cells. These cells also exhibited significantly more apoptosis via both intrinsic and extrinsic pathways. In addition, metformin treatment induced autophagy. Inhibition of autophagy, either by Beclin1 knockdown or by 3-methyladenine-mediated inhibition of caspase-3/7, suppressed the anti-proliferative effects of metformin on endometrial cancer cells. These findings indicate that the anti-proliferative effects and apoptosis caused by metformin are partially or completely dependent on autophagy. Conclusions We showed that metformin suppresses endometrial cancer cell growth via cell cycle arrest and concomitant autophagy and apoptosis. PMID:24966801

  6. TOUSLED Kinase Activity Oscillates during the Cell Cycle and Interacts with Chromatin Regulators1

    PubMed Central

    Ehsan, Hashimul; Reichheld, Jean-Philippe; Durfee, Tim; Roe, Judith L.

    2004-01-01

    The TOUSLED (TSL)-like nuclear protein kinase family is highly conserved in plants and animals. tsl loss of function mutations cause pleiotropic defects in both leaf and flower development, and growth and initiation of floral organ primordia is abnormal, suggesting that basic cellular processes are affected. TSL is more highly expressed in exponentially growing Arabidopsis culture cells than in stationary, nondividing cells. While its expression remains constant throughout the cell cycle in dividing cells, TSL kinase activity is higher in enriched late G2/M-phase and G1-phase populations of Arabidopsis suspension culture cells compared to those in S-phase. tsl mutants also display an aberrant pattern and increased expression levels of the mitotic cyclin gene CycB1;1, suggesting that TSL represses CycB1;1 expression at certain times during development or that cells are delayed in mitosis. TSL interacts with and phosphorylates one of two Arabidopsis homologs of the nucleosome assembly/silencing protein Asf1 and histone H3, as in humans, and a novel plant SANT/myb-domain protein, TKI1, suggesting that TSL plays a role in chromatin metabolism. PMID:15047893

  7. Forty-five years of cell-cycle genetics

    PubMed Central

    Reid, Brian J.; Culotti, Joseph G.; Nash, Robert S.; Pringle, John R.

    2015-01-01

    In the early 1970s, studies in Leland Hartwell’s laboratory at the University of Washington launched the genetic analysis of the eukaryotic cell cycle and set the path that has led to our modern understanding of this centrally important process. This 45th-anniversary Retrospective reviews the steps by which the project took shape, the atmosphere in which this happened, and the possible morals for modern times. It also provides an up-to-date look at the 35 original CDC genes and their human homologues. PMID:26628751

  8. Hsp90 phosphorylation, Wee1 and the cell cycle.

    PubMed

    Mollapour, Mehdi; Tsutsumi, Shinji; Neckers, Len

    2010-06-15

    Heat Shock Protein 90 (Hsp90) is an essential molecular chaperone in eukaryotic cells, and it maintains the functional conformation of a subset of proteins that are typically key components of multiple regulatory and signaling networks mediating cancer cell proliferation, survival, and metastasis. It is possible to selectively inhibit Hsp90 using natural products such as geldanamycin (GA) or radicicol (RD), which have served as prototypes for development of synthetic Hsp90 inhibitors. These compounds bind within the ADP/ATP-binding site of the Hsp90 N-terminal domain to inhibit its ATPase activity. As numerous N-terminal domain inhibitors are currently undergoing extensive clinical evaluation, it is important to understand the factors that may modulate in vivo susceptibility to these drugs. We recently reported that Wee1Swe1-mediated, cell cycle-dependent, tyrosine phosphorylation of Hsp90 affects GA binding and impacts cancer cell sensitivity to Hsp90 inhibition. This phosphorylation also affects Hsp90 ATPase activity and its ability to chaperone a selected group of clients, comprised primarily of protein kinases. Wee1 regulates the G2/M transition. Here we present additional data demonstrating that tyrosine phosphorylation of Hsp90 by Wee1Swe1 is important for Wee1Swe1 association with Hsp90 and for Wee1Swe1 stability. Yeast expressing non-phosphorylatable yHsp90-Y24F, like swe1∆ yeast, undergo premature nuclear division that is insensitive to G2/M checkpoint arrest. These findings demonstrate the importance of Hsp90 phosphorylation for proper cell cycle regulation. PMID:20519952

  9. Ethanol Metabolism Activates Cell Cycle Checkpoint Kinase, Chk2

    PubMed Central

    Clemens, Dahn L.; Mahan Schneider, Katrina J.; Nuss, Robert F.

    2011-01-01

    Chronic ethanol abuse results in hepatocyte injury and impairs hepatocyte replication. We have previously shown that ethanol metabolism results in cell cycle arrest at the G2/M transition, which is partially mediated by inhibitory phosphorylation of the cyclin-dependent kinase, Cdc2. To further delineate the mechanisms by which ethanol metabolism mediates this G2/M arrest, we investigated the involvement of upstream regulators of Cdc2 activity. Cdc2 is activated by the phosphatase Cdc25C. The activity of Cdc25C can, in turn, be regulated by the checkpoint kinase, Chk2, which is regulated by the kinase ataxia telangiectasia mutated (ATM). To investigate the involvement of these regulators of Cdc2 activity, VA-13 cells, which are Hep G2 cells modified to efficiently express alcohol dehydrogenase, were cultured in the presence or absence of 25 mM ethanol. Immunoblots were performed to determine the effects of ethanol metabolism on the activation of Cdc25C, Chk2, and ATM. Ethanol metabolism increased the active forms of ATM, and Chk2, as well as the phosphorylated form of Cdc25C. Additionally, inhibition of ATM resulted in approximately 50% of the cells being rescued from the G2/M cell cycle arrest, and ameliorated the inhibitory phosphorylation of Cdc2. Our findings demonstrate that ethanol metabolism activates ATM. ATM can activate the checkpoint kinase Chk2, resulting in phosphorylation of Cdc25C, and ultimately in the accumulation of inactive Cdc2. This may, in part, explain the ethanol metabolism-mediated impairment in hepatocyte replication, which may be important in the initiation and progression of alcoholic liver injury. PMID:21924579

  10. Preserving and Using Germplasm and Dissociated Embryonic Cells for Conserving Caribbean and Pacific Coral

    PubMed Central

    Hagedorn, Mary; Carter, Virginia; Martorana, Kelly; Paresa, Malia K.; Acker, Jason; Baums, Iliana B.; Borneman, Eric; Brittsan, Michael; Byers, Michael; Henley, Michael; Laterveer, Michael; Leong, Jo-Ann; McCarthy, Megan; Meyers, Stuart; Nelson, Brian D.; Petersen, Dirk; Tiersch, Terrence; Uribe, Rafael Cuevas; Woods, Erik; Wildt, David

    2012-01-01

    Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (−196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems. PMID:22413020

  11. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral.

    PubMed

    Hagedorn, Mary; Carter, Virginia; Martorana, Kelly; Paresa, Malia K; Acker, Jason; Baums, Iliana B; Borneman, Eric; Brittsan, Michael; Byers, Michael; Henley, Michael; Laterveer, Michael; Leong, Jo-Ann; McCarthy, Megan; Meyers, Stuart; Nelson, Brian D; Petersen, Dirk; Tiersch, Terrence; Uribe, Rafael Cuevas; Woods, Erik; Wildt, David

    2012-01-01

    Coral reefs are experiencing unprecedented degradation due to human activities, and protecting specific reef habitats may not stop this decline, because the most serious threats are global (i.e., climate change), not local. However, ex situ preservation practices can provide safeguards for coral reef conservation. Specifically, modern advances in cryobiology and genome banking could secure existing species and genetic diversity until genotypes can be introduced into rehabilitated habitats. We assessed the feasibility of recovering viable sperm and embryonic cells post-thaw from two coral species, Acropora palmata and Fungia scutaria that have diffferent evolutionary histories, ecological niches and reproductive strategies. In vitro fertilization (IVF) of conspecific eggs using fresh (control) spermatozoa revealed high levels of fertilization (>90% in A. palmata; >84% in F. scutaria; P>0.05) that were unaffected by tested sperm concentrations. A solution of 10% dimethyl sulfoxide (DMSO) at cooling rates of 20 to 30°C/min most successfully cryopreserved both A. palmata and F. scutaria spermatozoa and allowed producing developing larvae in vitro. IVF success under these conditions was 65% in A. palmata and 53% in F. scutaria on particular nights; however, on subsequent nights, the same process resulted in little or no IVF success. Thus, the window for optimal freezing of high quality spermatozoa was short (∼5 h for one night each spawning cycle). Additionally, cryopreserved F. scutaria embryonic cells had∼50% post-thaw viability as measured by intact membranes. Thus, despite some differences between species, coral spermatozoa and embryonic cells are viable after low temperature (-196°C) storage, preservation and thawing. Based on these results, we have begun systematically banking coral spermatozoa and embryonic cells on a large-scale as a support approach for preserving existing bio- and genetic diversity found in reef systems. PMID:22413020

  12. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  13. Microarray Analysis of Cell Cycle Gene Expression in Adult Human Corneal Endothelial Cells

    PubMed Central

    Ha Thi, Binh Minh; Campolmi, Nelly; He, Zhiguo; Pipparelli, Aurélien; Manissolle, Chloé; Thuret, Jean-Yves; Piselli, Simone; Forest, Fabien; Peoc'h, Michel; Garraud, Olivier; Gain, Philippe; Thuret, Gilles

    2014-01-01

    Corneal endothelial cells (ECs) form a monolayer that controls the hydration of the cornea and thus its transparency. Their almost nil proliferative status in humans is responsible, in several frequent diseases, for cell pool attrition that leads to irreversible corneal clouding. To screen for candidate genes involved in cell cycle arrest, we studied human ECs subjected to various environments thought to induce different proliferative profiles compared to ECs in vivo. Donor corneas (a few hours after death), organ-cultured (OC) corneas, in vitro confluent and non-confluent primary cultures, and an immortalized EC line were compared to healthy ECs retrieved in the first minutes of corneal grafts. Transcriptional profiles were compared using a cDNA array of 112 key genes of the cell cycle and analysed using Gene Ontology classification; cluster analysis and gene map presentation of the cell cycle regulation pathway were performed by GenMAPP. Results were validated using qRT-PCR on 11 selected genes. We found several transcripts of proteins implicated in cell cycle arrest and not previously reported in human ECs. Early G1-phase arrest effectors and multiple DNA damage-induced cell cycle arrest-associated transcripts were found in vivo and over-represented in OC and in vitro ECs. Though highly proliferative, immortalized ECs also exhibited overexpression of transcripts implicated in cell cycle arrest. These new effectors likely explain the stress-induced premature senescence that characterizes human adult ECs. They are potential targets for triggering and controlling EC proliferation with a view to increasing the cell pool of stored corneas or facilitating mass EC culture for bioengineered endothelial grafts. PMID:24747418

  14. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells.

    PubMed

    Bieler, Jonathan; Cannavo, Rosamaria; Gustafson, Kyle; Gobet, Cedric; Gatfield, David; Naef, Felix

    2014-07-15

    Circadian cycles and cell cycles are two fundamental periodic processes with a period in the range of 1 day. Consequently, coupling between such cycles can lead to synchronization. Here, we estimated the mutual interactions between the two oscillators by time-lapse imaging of single mammalian NIH3T3 fibroblasts during several days. The analysis of thousands of circadian cycles in dividing cells clearly indicated that both oscillators tick in a 1:1 mode-locked state, with cell divisions occurring tightly 5 h before the peak in circadian Rev-Erbα-YFP reporter expression. In principle, such synchrony may be caused by either unidirectional or bidirectional coupling. While gating of cell division by the circadian cycle has been most studied, our data combined with stochastic modeling unambiguously show that the reverse coupling is predominant in NIH3T3 cells. Moreover, temperature, genetic, and pharmacological perturbations showed that the two interacting cellular oscillators adopt a synchronized state that is highly robust over a wide range of parameters. These findings have implications for circadian function in proliferative tissues, including epidermis, immune cells, and cancer.

  15. Evaluation of effect of triterpenes and limonoids on cell growth, cell cycle and apoptosis in human tumor cell line.

    PubMed

    Cazal, Cristiane M; Choosang, Kantima; Severino, Vanessa Gisele P; Soares, Marcio S; Sarria, Andre Lucio F; Fernandes, Joao B; Silva, Maria Fatima G F; Vieira, Paulo Cezar; Pakkong, Pannee; Almeida, Gabriela M; Vasconcelos, M Helena; Nascimento, Maria S J; Pinto, Madalena M M

    2010-12-01

    Six triterpenes and eight limonoids were evaluated for their capacity to inhibit the growth of three human tumour cell lines, breast adenocarcinoma (MCF-7), non-small cell lung cancer (NCI-H460) and melanoma (A375-C5). The mechanisms involved in the observed cell growth arrest of the four most potent compounds were carried out by studying their effect in cell cycle profile and programmed cell death. The results showed that one triterpene (odoratol) and two limonoids (gedunin and cedrelone) caused cell cycle arrest while only the limonoids gedunin and cedrelone were found to be very potent inducers of apoptosis. PMID:21269253

  16. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin.

    PubMed

    Lee, Yeo Myeong; Lim, Do Young; Choi, Hyun Ju; Jung, Jae In; Chung, Won-Yoon; Park, Jung Han Yoon

    2009-02-01

    Isoliquiritigenin (ISL), a flavonoid chalcone that is present in licorice, shallot, and bean sprouts, is known to have antitumorigenic activities. The present study examined whether ISL alters prostate cancer cell cycle progression. DU145 human and MatLyLu (MLL) rat prostate cancer cells were cultured with various concentrations of ISL. In both DU145 and MLL cells treated with ISL, the percentage of cells in the G1 phase increased, and the incorporation of [(3)H]thymidine decreased. ISL decreased the protein levels of cyclin D1, cyclin E, and cyclin-dependent kinase (CDK) 4, whereas cyclin A and CDK2 expressions were unaltered in cells treated with ISL. The expression of the CDK inhibitor p27(KIP1) was increased in cells treated with 20 micromol/L ISL. In addition, treatment of cells with 20 micromol/L ISL for 24 hours led to G2/M cell cycle arrest. Cell division control (CDC) 2 protein levels remained unchanged. The protein levels of phospho-CDC2 (Tyr15) and cyclin B1 were increased, and the CDC25C level was decreased by ISL dose-dependently. We demonstrate that ISL promotes cell cycle arrest in DU145 and MLL cells, thereby providing insights into the mechanisms underlying its antitumorigenic activities.

  17. Induction of cell cycle arrest in prostate cancer cells by the dietary compound isoliquiritigenin.

    PubMed

    Lee, Yeo Myeong; Lim, Do Young; Choi, Hyun Ju; Jung, Jae In; Chung, Won-Yoon; Park, Jung Han Yoon

    2009-02-01

    Isoliquiritigenin (ISL), a flavonoid chalcone that is present in licorice, shallot, and bean sprouts, is known to have antitumorigenic activities. The present study examined whether ISL alters prostate cancer cell cycle progression. DU145 human and MatLyLu (MLL) rat prostate cancer cells were cultured with various concentrations of ISL. In both DU145 and MLL cells treated with ISL, the percentage of cells in the G1 phase increased, and the incorporation of [(3)H]thymidine decreased. ISL decreased the protein levels of cyclin D1, cyclin E, and cyclin-dependent kinase (CDK) 4, whereas cyclin A and CDK2 expressions were unaltered in cells treated with ISL. The expression of the CDK inhibitor p27(KIP1) was increased in cells treated with 20 micromol/L ISL. In addition, treatment of cells with 20 micromol/L ISL for 24 hours led to G2/M cell cycle arrest. Cell division control (CDC) 2 protein levels remained unchanged. The protein levels of phospho-CDC2 (Tyr15) and cyclin B1 were increased, and the CDC25C level was decreased by ISL dose-dependently. We demonstrate that ISL promotes cell cycle arrest in DU145 and MLL cells, thereby providing insights into the mechanisms underlying its antitumorigenic activities. PMID:19298190

  18. Platinum-zoledronate complex blocks gastric cancer cell proliferation by inducing cell cycle arrest and apoptosis.

    PubMed

    Yang, Hui; Qiu, Ling; Zhang, Li; Lv, Gaochao; Li, Ke; Yu, Huixin; Xie, Minhao; Lin, Jianguo

    2016-08-01

    A series of novel dinuclear platinum complexes based on the bisphosphonate ligands have been synthesized and characterized in our recent study. For the purpose of discovering the pharmacology and action mechanisms of this kind of compounds, the most potent compound [Pt(en)]2ZL was selected for systematic investigation. In the present study, the inhibition effect on the human gastric cancer cell lines SGC7901 and action mechanism of [Pt(en)]2ZL were investigated. The traditional 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay and colony formation assay were carried out to study the effect of [Pt(en)]2ZL on the cell viability and proliferation capacity, respectively. The senescence-associated β-galactosidase staining and immunofluorescence staining were also performed to assess the cell senescence and microtubule polymerization. Fluorescence staining and flow cytometry (FCM) were used to monitor the cell cycle distribution and apoptosis, and Western blot analysis was applied to examine the expression of several apoptosis-related proteins. The results demonstrated that [Pt(en)]2ZL exhibited remarkable cytotoxicity and anti-proliferative effects on the SGC7901 cells in a dose- and time-dependent manner, and it also induced cell senescence and abnormal microtubule assembly. The cell apoptosis and cell cycle arrest induced by [Pt(en)]2ZL were also observed with the fluorescence staining and FCM. The expressions of cell cycle regulators (p53, p21, cyclin D1, cyclin E, and cyclin-dependent kinase (CDK)2) and apoptosis-related proteins (Bcl-2, Bax, caspase-3, poly ADP ribose polymerase (PARP), and survivin) were regulated by the treatment of [Pt(en)]2ZL, resulting in the cell cycle arrest and apoptosis. Therefore, [Pt(en)]2ZL exerted anti-tumor effect on the gastric cancer via inducing cell cycle arrest at G1/S phase and apoptosis. PMID:26891667

  19. Ghrelin regulates cell cycle-related gene expression in cultured hippocampal neural stem cells.

    PubMed

    Chung, Hyunju; Park, Seungjoon

    2016-08-01

    We have previously demonstrated that ghrelin stimulates the cellular proliferation of cultured adult rat hippocampal neural stem cells (NSCs). However, little is known about the molecular mechanisms by which ghrelin regulates cell cycle progression. The purpose of this study was to investigate the potential effects of ghrelin on cell cycle regulatory molecules in cultured hippocampal NSCs. Ghrelin treatment increased proliferation assessed by CCK-8 proliferation assay. The expression levels of proliferating cell nuclear antigen and cell division control 2, well-known cell-proliferating markers, were also increased by ghrelin. Fluorescence-activated cell sorting analysis revealed that ghrelin promoted progression of cell cycle from G0/G1 to S phase, whereas this progression was attenuated by the pretreatment with specific inhibitors of MEK/extracellular signal-regulated kinase 1/2, phosphoinositide 3-kinase/Akt, mammalian target of rapamycin, and janus kinase 2/signal transducer and activator of transcription 3. Ghrelin-induced proliferative effect was associated with increased expression of E2F1 transcription factor in the nucleus, as determined by Western blotting and immunofluorescence. We also found that ghrelin caused an increase in protein levels of positive regulators of cell cycle, such as cyclin A and cyclin-dependent kinase (CDK) 2. Moreover, p27(KIP1) and p57(KIP2) protein levels were reduced when cell were exposed to ghrelin, suggesting downregulation of CDK inhibitors may contribute to proliferative effect of ghrelin. Our data suggest that ghrelin targets both cell cycle positive and negative regulators to stimulate proliferation of cultured hippocampal NSCs. PMID:27325242

  20. A genetic interaction map of cell cycle regulators

    PubMed Central

    Billmann, Maximilian; Horn, Thomas; Fischer, Bernd; Sandmann, Thomas; Huber, Wolfgang; Boutros, Michael

    2016-01-01

    Cell-based RNA interference (RNAi) is a powerful approach to screen for modulators of many cellular processes. However, resulting candidate gene lists from cell-based assays comprise diverse effectors, both direct and indirect, and further dissecting their functions can be challenging. Here we screened a genome-wide RNAi library for modulators of mitosis and cytokinesis in Drosophila S2 cells. The screen identified many previously known genes as well as modulators that have previously not been connected to cell cycle control. We then characterized ∼300 candidate modifiers further by genetic interaction analysis using double RNAi and a multiparametric, imaging-based assay. We found that analyzing cell cycle–relevant phenotypes increased the sensitivity for associating novel gene function. Genetic interaction maps based on mitotic index and nuclear size grouped candidates into known regulatory complexes of mitosis or cytokinesis, respectively, and predicted previously uncharacterized components of known processes. For example, we confirmed a role for the Drosophila CCR4 mRNA processing complex component l(2)NC136 during the mitotic exit. Our results show that the combination of genome-scale RNAi screening and genetic interaction analysis using process-directed phenotypes provides a powerful two-step approach to assigning components to specific pathways and complexes. PMID:26912791

  1. EDD induces cell cycle arrest by increasing p53 levels.

    PubMed

    Smits, Veronique A J

    2012-02-15

    Tight regulation of p53 is essential for its central role in maintaining genome stability and tumor prevention. Here, EDD/ UBR5/hHyd, hereafter called EDD, is identified as a novel regulator of p53. Downregulation of EDD results in elevated p53 protein levels both in transformed and untransformed cells. Concomitant with a rise in p53, the levels of p21, a critical p53 target, are also elevated in these conditions. Surprisingly, EDD knockdown does not affect p53 protein stability, and p53 mRNA levels do not increase significantly upon EDD depletion. Consistent with the function of p53, EDD downregulation triggers a senescent phenotype in fibroblasts at later time points. In addition, the increased p53 levels upon EDD depletion cause a G(1) arrest, as co-depletion of EDD and p53 completely rescues this effect on cell cycle progression. PMID:22374670

  2. Alterations in cell cycle regulation in mouse skin tumors.

    PubMed

    Balasubramanian, S; Ahmad, N; Jeedigunta, S; Mukhtar, H

    1998-02-24

    The connection between cell cycle and cancer has become obvious in as much as it is considered that dysregulated cellular proliferation is a hallmark of cancer. In many studies, the dysregulation of the cyclin-cdk-cki network has been reported in experimental animal and human tumors, but to our knowledge a complete profile of alterations in regulatory molecules in any tumor model system is lacking. In this study, we assessed the expression of various cyclins, cyclin dependent kinases, and cyclin kinase inhibitors in chemically induced squamous papillomas in SENCAR mouse skin. Western blot analysis data showed a significant upregulation of cyclins (31, 6, 19, and 12 folds elevation for cyclin-D1, D2, E, and A, respectively) in tumors compared to the normal skin. The protein expression of the cdk (1, 2, and 4) was also found to be elevated in tumors compared to normal skin (33 fold for cdk1, 14 fold for cdk2, and 9 fold for cdk4). In tumors, compared to the normal skin, a significant increase in the level of protein expression of p27 and p57 (4 and 3 fold, respectively) was evident. In normal skin, p16 and p21 were not detectable but significant expression of these proteins was detected in tumors. Taken together, these data provide evidence that cell cycle deregulation in G1-phase is a critical event during the course of two stage skin carcinogenesis. This may have relevance to epithelial cancers in general.

  3. Expression of Cell Cycle–Related Genes With Cytokine-Induced Cell Cycle Progression of Primitive Hematopoietic Stem Cells

    PubMed Central

    Dooner, Gerri J.; Del Tatto, Michael; Colvin, Gerald A.; Johnson, Kevin; Dooner, Mark S.

    2010-01-01

    Primitive marrow lineage-negative rhodamine low and Hoechst low (LRH) stem cells isolated on the basis of quiescence respond to the cytokines thrombopoietin, FLT3L, and steel factor by synchronously progressing through cell cycle. We have now profiled the mRNA expression, as determined by real-time RT-PCR, of 47 hematopoietic or cell cycle-related genes, focusing on the variations in the cell cycle regulators with cycle transit. LRH stem cells, at isolation, showed expression of all interrogated genes, but at relatively low levels. In our studies, there was a good deal of consistency with regard to cell cycle regulatory genes involved in the G1/S progression point of LRH murine stem cells. The observed pattern of expression of cyclin A2 is consistent with actions at these phases of cell cycle. Minimal elevations were seen at 16 h with higher elevations at 24, 32, 40, and 48 h times encompassing S, G2, and M phases. CDK2 expression pattern was also consistent with a role in G1/S transition with a modest elevation at 24 h and more substantial elevation at 32 h. The observed pattern of expression of cyclin F mRNA with marked elevations at 16–40 h was also consistent with actions in S and G2 phases. Cyclin D1 expression pattern was less consistent with its known role in G1 progression. The alterations in multiple other cell cycle regulators were consistent with previous information obtained in other cell systems. The cycle regulatory mechanics appears to be preserved across broad ranges of cell types. PMID:19788373

  4. The Analysis of Cell Cycle, Proliferation, and Asymmetric Cell Division by Imaging Flow Cytometry.

    PubMed

    Filby, Andrew; Day, William; Purewal, Sukhveer; Martinez-Martin, Nuria

    2016-01-01

    Measuring cellular DNA content by conventional flow cytometry (CFC) and fluorescent DNA-binding dyes is a highly robust method for analysing cell cycle distributions within heterogeneous populations. However, any conclusions drawn from single-parameter DNA analysis alone can often be confounded by the asynchronous nature of cell proliferation. We have shown that by combining fluorescent DNA stains with proliferation tracking dyes and antigenic staining for mitotic cells one can elucidate the division history and cell cycle position of any cell within an asynchronously dividing population. Furthermore if one applies this panel to an imaging flow cytometry (IFC) system then the spatial information allows resolution of the four main mitotic phases and the ability to study molecular distributions within these populations. We have employed such an approach to study the prevalence of asymmetric cell division (ACD) within activated immune cells by measuring the distribution of key fate determining molecules across the plane of cytokinesis in a high-throughput, objective, and internally controlled manner. Moreover the ability to perform high-resolution, temporal dissection of the cell division process lends itself perfectly to investigating the influence chemotherapeutic agents exert on the proliferative capacity of transformed cell lines. Here we describe the method in detail and its application to both ACD and general cell cycle analysis. PMID:27460238

  5. Human TRIB2 Oscillates during the Cell Cycle and Promotes Ubiquitination and Degradation of CDC25C

    PubMed Central

    Liang, Kai Ling; Paredes, Roberto; Carmody, Ruaidhri; Eyers, Patrick A.; Meyer, Stefan; McCarthy, Tommie V.; Keeshan, Karen

    2016-01-01

    Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells. PMID:27563873

  6. Human TRIB2 Oscillates during the Cell Cycle and Promotes Ubiquitination and Degradation of CDC25C.

    PubMed

    Liang, Kai Ling; Paredes, Roberto; Carmody, Ruaidhri; Eyers, Patrick A; Meyer, Stefan; McCarthy, Tommie V; Keeshan, Karen

    2016-01-01

    Tribbles homolog 2 (TRIB2) is a member of the mammalian Tribbles family of serine/threonine pseudokinases (TRIB1-3). Studies of TRIB2 indicate that many of the molecular interactions between the single Drosophila Tribbles (Trbl) protein and interacting partners are evolutionary conserved. In this study, we examined the relationship between TRIB2 and cell division cycle 25 (CDC25) family of dual-specificity protein phosphatases (mammalian homologues of Drosophila String), which are key physiological cell cycle regulators. Using co-immunoprecipitation we demonstrate that TRIB2 interacts with CDC25B and CDC25C selectively. Forced overexpression of TRIB2 caused a marked decrease in total CDC25C protein levels. Following inhibition of the proteasome, CDC25C was stabilized in the nuclear compartment. This implicates TRIB2 as a regulator of nuclear CDC25C turnover. In complementary ubiquitination assays, we show that TRIB2-mediated degradation of CDC25C is associated with lysine-48-linked CDC25C polyubiquitination driven by the TRIB2 kinase-like domain. A cell cycle associated role for TRIB2 is further supported by the cell cycle regulated expression of TRIB2 protein levels. Our findings reveal mitotic CDC25C as a new target of TRIB2 that is degraded via the ubiquitin proteasome system. Inappropriate CDC25C regulation could mechanistically underlie TRIB2 mediated regulation of cellular proliferation in neoplastic cells. PMID:27563873

  7. Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle.

    PubMed

    Wells, D N; Laible, G; Tucker, F C; Miller, A L; Oliver, J E; Xiang, T; Forsyth, J T; Berg, M C; Cockrem, K; L'Huillier, P J; Tervit, H R; Oback, B

    2003-01-01

    Several studies have shown that both quiescent and proliferating somatic donor cells can be fully reprogrammed after nuclear transfer (NT) and result in viable offspring. So far, however, no comparative study has conclusively demonstrated the relative importance of donor cell cycle stage on nuclear cloning efficiency. Here, we compare two different types of bovine fetal fibroblasts (BFFs) that were synchronized in G(0), G(1), and different phases within G(1). We show that for non-transgenic (non-TG) fibroblasts, serum starvation into G(0) results in a significantly higher percentage of viable calves at term than synchronization in early G(1) or late G(1). For transgenic fibroblasts, however, cells selected in G(1) show significantly higher development to calves at term and higher post-natal survival to weaning than cells in G(0). This suggests that it may be necessary to coordinate donor cell type and cell cycle stage to maximize overall cloning efficiency.

  8. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells.

    PubMed

    Re, Angela; Workman, Christopher T; Waldron, Levi; Quattrone, Alessandro; Brunak, Søren

    2014-09-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs. PMID:25173649

  9. Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Zhang, Xiaojing; Guo, Linghong; Shaw, Andrew; Hu, Xiuying; Xiong, Yeping; Gulavita, Sunil; Patel, Samir; Sun, Xuejun; Chen, Jie; Moore, Ronald; Xing, James Z.

    2009-09-01

    Glucose-capped gold nanoparticles (Glu-GNPs) have been used to improve cellular targeting and radio-sensitization. In this study, we explored the mechanism of Glu-GNP enhanced radiation sensitivity in radiation-resistant human prostate cancer cells. Cell survival and proliferation were measured using MTT and clonogenic assay. Flow cytometry with staining by propidium iodide (PI) was performed to study the cell cycle changes induced by Glu-GNPs, and western blotting was used to determine the expression of p53 and cyclin proteins that correlated to cell cycle regulation. With 2 Gy of ortho-voltage irradiation, Glu-GNP showed a 1.5-2.0 fold enhancement in growth inhibition when compared to x-rays alone. Comparing the cell cycle change, Glu-GNPs induced acceleration in the G0/G1 phase and accumulation of cells in the G2/M phase at 29.8% versus 18.4% for controls at 24 h. G2/M arrest was accompanied by decreased expression of p53 and cyclin A, and increased expression of cyclin B1 and cyclin E. In conclusion, Glu-GNPs trigger activation of the CDK kinases leading to cell cycle acceleration in the G0/G1 phase and accumulation in the G2/M phase. This activation is accompanied by a striking sensitization to ionizing radiation, which may have clinical implications.

  10. [Variability of the duration of the cell cycle in pig embryo kidney cells in monolayer culture and correlation of the cycle duration in sister cells].

    PubMed

    Blokhin, A V; Voronkova, L N; Sakharov, V N

    1985-07-01

    The distribution of generation time of sister cells for the exponentially proliferating monolayer SPEV culture was obtained with time lapse cinemicrographic technique. The distribution is characterized by the average generation time equal to 24.3 hour, with the variation coefficient, asymmetry coefficient and correlation coefficient for sister pair cell being, respectively, 17%, 0.2 and 0.78. The results obtained are compared with the prediction of "a random transition" in the cell cycle. PMID:3901449

  11. Transgenerational cell fate profiling: a method for the graphical presentation of complex cell cycle alterations.

    PubMed

    Jemaà, Mohamed; Galluzzi, Lorenzo; Kepp, Oliver; Castedo, Maria; Rello-Varona, Santiago; Vitale, Ilio; Kroemer, Guido

    2013-01-01

    The illicit generation of tetraploid cells constitutes a prominent driver of oncogenesis, as it often precedes the development of aneuploidy and genomic instability. In addition, tetraploid (pre-)malignant cells display an elevated resistance against radio- and chemotherapy. Here, we report a strategy to preferentially kill tetraploid tumor cells based on the broad-spectrum kinase inhibitor SP600125. Live videomicroscopy revealed that SP600125 affects the execution of mitosis, impedes proper cell division and/or activates apoptosis in near-to-tetraploid, though less so in parental, cancer cells. We propose a novel graphical model to quantify the differential response of diploid and tetraploid cells to mitotic perturbators, including SP600125, which we baptized "transgenerational cell fate profiling." We speculate that this representation constitutes a valid alternative to classical "single-cell fate" and "genealogical" profiling and, hence, may facilitate the analysis of cell fate within a heterogeneous population as well as the visual examination of cell cycle alterations.

  12. Sparstolonin B Inhibits Pro-Angiogenic Functions and Blocks Cell Cycle Progression in Endothelial Cells

    PubMed Central

    Bateman, Henry R.; Liang, Qiaoli; Fan, Daping; Rodriguez, Vanessa; Lessner, Susan M.

    2013-01-01

    Sparstolonin B (SsnB) is a novel bioactive compound isolated from Sparganium stoloniferum, an herb historically used in Traditional Chinese Medicine as an anti-tumor agent. Angiogenesis, the process of new capillary formation from existing blood vessels, is dysregulated in many pathological disorders, including diabetic retinopathy, tumor growth, and atherosclerosis. In functional assays, SsnB inhibited endothelial cell tube formation (Matrigel method) and cell migration (Transwell method) in a dose-dependent manner. Microarray experiments with human umbilical vein endothelial cells (HUVECs) and human coronary artery endothelial cells (HCAECs) demonstrated differential expression of several hundred genes in response to SsnB exposure (916 and 356 genes, respectively, with fold change ≥2, p<0.05, unpaired t-test). Microarray data from both cell types showed significant overlap, including genes associated with cell proliferation and cell cycle. Flow cytometric cell cycle analysis of HUVECs treated with SsnB showed an increase of cells in the G1 phase and a decrease of cells in the S phase. Cyclin E2 (CCNE2) and Cell division cycle 6 (CDC6) are regulatory proteins that control cell cycle progression through the G1/S checkpoint. Both CCNE2 and CDC6 were downregulated in the microarray data. Real Time quantitative PCR confirmed that gene expression of CCNE2 and CDC6 in HUVECs was downregulated after SsnB exposure, to 64% and 35% of controls, respectively. The data suggest that SsnB may exert its anti-angiogenic properties in part by downregulating CCNE2 and CDC6, halting progression through the G1/S checkpoint. In the chick chorioallantoic membrane (CAM) assay, SsnB caused significant reduction in capillary length and branching number relative to the vehicle control group. Overall, SsnB caused a significant reduction in angiogenesis (ANOVA, p<0.05), demonstrating its ex vivo efficacy. PMID:23940584

  13. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression

    PubMed Central

    2011-01-01

    Background MicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest. Results Using a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma. Conclusions These data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections. PMID:22027184

  14. Cycle life test and failure model of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1983-01-01

    Six ampere hour individual pressure vessel nickel hydrogen cells were charge/discharge cycled to failure. Failure as used here is defined to occur when the end of discharge voltage degraded to 0.9 volts. They were cycled under a low earth orbit cycle regime to a deep depth of discharge (80 percent of rated ampere hour capacity). Both cell designs were fabricated by the same manufacturer and represent current state of the art. A failure model was advanced which suggests both cell designs have inadequate volume tolerance characteristics. The limited existing data base at a deep depth of discharge (DOD) was expanded. Two cells of each design were cycled. One COMSAT cell failed at cycle 1712 and the other failed at cycle 1875. For the Air Force/Hughes cells, one cell failed at cycle 2250 and the other failed at cycle 2638. All cells, of both designs, failed due to low end of discharge voltage (0.9 volts). No cell failed due to electrical shorts. After cell failure, three different reconditioning tests (deep discharge, physical reorientation, and open circuit voltage stand) were conducted on all cells of each design. A fourth reconditioning test (electrolyte addition) was conducted on one cell of each design. In addition post cycle cell teardown and failure analysis were performed on the one cell of each design which did not have electrolyte added after failure.

  15. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells

    SciTech Connect

    Chiaro, Christopher; Lazarova, Darina L.; Bordonaro, Michael

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer We investigate mechanisms responsible for butyrate resistance in colon cancer cells. Black-Right-Pointing-Pointer Tcf3 modulates butyrate's effects on Wnt activity and cell growth in resistant cells. Black-Right-Pointing-Pointer Tcf3 modulation of butyrate's effects differ by cell context. Black-Right-Pointing-Pointer Cell cycle factors are overexpressed in the resistant cells. Black-Right-Pointing-Pointer Reversal of altered gene expression can enhance the anti-cancer effects of butyrate. -- Abstract: Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G{sub 1} to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or

  16. The cell-cycle dependence of the spectra of proliferating normal and neoplastic single cells using confocal resonance Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Boydston-White, Susie; Liu, Cheng-Hui; Alfano, Robert R.

    2013-03-01

    Confocal resonance Raman (RR) spectra were collected from single proliferating cells and analyzed to detect spectral patterns that are cell-cycle dependent, as a consequence of cellular proliferation — normal or abnormal. The cells' biochemical age at each time point was confirmed by immunohistochemical staining to identify the presence or absence of cellular components that appear and/or disappear as the cells proceed through the cell-cycle. The RR spectra were collected and compared for each time point as the cells proceeded through the cell cycle to determine what spectral vibrational patterns are cell-cycle dependent. In this study, the question is whether the cell-cycle dependent RR spectral patterns of the vibrational modes observed in proliferating normal and neoplastic single cells are due to a state of cancer or are simply the consequences of the cells' changing internal biochemistry due to the process of cellular proliferation --- normal or abnormal.

  17. SPARC expression induces cell cycle arrest via STAT3 signaling pathway in medulloblastoma cells

    SciTech Connect

    Chetty, Chandramu; Dontula, Ranadheer; Gujrati, Meena; Lakka, Sajani S.

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Ectopic expression of SPARC impaired cell proliferation in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression induces STAT3 mediated cell cycle arrest in medulloblastoma cells. Black-Right-Pointing-Pointer SPARC expression significantly inhibited pre-established tumor growth in nude-mice. -- Abstract: Dynamic cell interaction with ECM components has profound influence in cancer progression. SPARC is a component of the ECM, impairs the proliferation of different cell types and modulates tumor cell aggressive features. We previously reported that SPARC expression significantly impairs medulloblastoma tumor growth in vivo. In this study, we demonstrate that expression of SPARC inhibits medulloblastoma cell proliferation. MTT assay indicated a dose-dependent reduction in tumor cell proliferation in adenoviral mediated expression of SPARC full length cDNA (Ad-DsRed-SP) in D425 and UW228 cells. Flow cytometric analysis showed that Ad-DsRed-SP-infected cells accumulate in the G2/M phase of cell cycle. Further, immunoblot and immunoprecipitation analyses revealed that SPARC induced G2/M cell cycle arrest was mediated through inhibition of the Cyclin-B-regulated signaling pathway involving p21 and Cdc2 expression. Additionally, expression of SPARC decreased STAT3 phosphorylation at Tyr-705; constitutively active STAT3 expression reversed SPARC induced G2/M arrest. Ad-DsRed-SP significantly inhibited the pre-established orthotopic tumor growth and tumor volume in nude-mice. Immunohistochemical analysis of tumor sections from mice treated with Ad-DsRed-SP showed decreased immunoreactivity for pSTAT3 and increased immunoreactivity for p21 compared to tumor section from mice treated with mock and Ad-DsRed. Taken together our studies further reveal that STAT3 plays a key role in SPARC induced G2/M arrest in medulloblastoma cells. These new findings provide a molecular basis for the mechanistic understanding of the

  18. Anti-hepatoma cells function of luteolin through inducing apoptosis and cell cycle arrest.

    PubMed

    Ding, Shixiong; Hu, Airong; Hu, Yaoren; Ma, Jianbo; Weng, Pengjian; Dai, Jinhua

    2014-04-01

    The aim of this study is to explore the apoptotic induction and cell cycle arrest function of luteolin on the liver cancer cells and the related mechanism. The liver cancer cell line SMMC-7721, BEL-7402, and normal liver cells HL-7702 were treated with different concentrations of luteolin. Cell proliferation ability was tested. Morphological changes of the apoptotic cells were observed under inverted fluorescence microscope after Hoechst33342 staining. We investigated the effect of luteolin on cell cycling and apoptosis with flow cytometry. The mitochondrial membrane potential changes were analyzed after JC-1 staining. Caspases-3 and Bcl-2 family proteins expression were analyzed by real-time PCR. Cell proliferation of SMMC-7721 and BEL-7402 were inhibited by luteolin, and the inhibition was dose-time-dependent. Luteolin could arrest the cells at G1/S stage, reduce mitochondrial membrane potential, and induce higher apoptosis rate and the typical apoptotic morphological changes of the liver carcinoma cells. Q-RT-PCR results also showed that luteolin increased Bax and caspase-3 expression significantly and upregulated Bcl-2 expression in a dose-dependent manner in liver carcinoma cells. However, the normal liver cells HL-7702 was almost not affected by luteolin treatment. Luteolin can inhibit SMMC-7721 and BEL-7402 cell proliferation in a time- and dose-dependent manner. And the mechanism maybe through arresting cell cycle at phase G1/S, enhancing Bax level, reducing anti-apoptotic protein Bcl-2 level, resulting in activating caspase-3 enzyme and decrease of mitochondrial membrane potential, and finally leading to cell apoptosis.

  19. Cell cycle progression in glioblastoma cells is unaffected by pathophysiological levels of hypoxia

    PubMed Central

    Richards, Rosalie; Jenkinson, Michael D.; Haylock, Brian J.

    2016-01-01

    Hypoxia is associated with the increased malignancy of a broad range of solid tumours. While very severe hypoxia has been widely shown to induce cell cycle arrest, the impact of pathophysiological hypoxia on tumour cell proliferation is poorly understood. The aim of this study was to investigate the effect of different oxygen levels on glioblastoma (GBM) cell proliferation and survival. GBM is an extremely aggressive brain tumour with a heterogeneous oxygenation pattern. The effects of a range of oxygen tensions on GBM cell lines and primary cells were assessed using flow cytometry. Results indicate that cell cycle distribution and viability are unaffected by long term exposure (24–96 h) to pathophysiological levels of oxygen (1–8% O2). Both transient cell cycle arrest and small amounts of cell death could only be detected when cells were exposed to severe hypoxia (0.1% O2). No significant changes in p21 protein expression levels were detected. These findings reinforce the importance of using physiologically relevant oxygen tensions when investigating tumour hypoxia, and help to explain how solid tumours can be both hypoxic and highly proliferative, as is the case with GBM. PMID:26966676

  20. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  1. Conserved Eukaryotic Fusogens can Fuse Viral Envelopes to Cells

    PubMed Central

    Avinoam, Ori; Fridman, Karen; Valansi, Clari; Abutbul, Inbal; Zeev-Ben-Mordehai, Tzviya; Maurer, Ulrike E.; Sapir, Amir; Danino, Dganit; Grünewald, Kay; White, Judith M.; Podbilewicz, Benjamin

    2011-01-01

    Caenorhabditis elegans AFF-1 and EFF-1 (CeFFs) proteins are essential for developmental cell-to-cell fusion and can merge insect cells. To study the structure and function of AFF-1, we constructed Vesicular Stomatitis Virus (VSV) displaying AFF-1 on the viral envelope, substituting the native fusogen VSVG. Electron microscopy and tomography revealed that AFF-1 formed distinct supercomplexes resembling pentameric and hexameric flowers on pseudoviruses. Viruses carrying AFF-1 infected mammalian cells only when CeFFs were on the target cell surface. Furthermore, we identified Fusion Family proteins (FFs) within and beyond nematodes and divergent members from the human parasitic nematode Trichinella spiralis and the chordate Branchiostoma floridae could also fuse mammalian cells. Thus FFs comprise an ancient family of cellular fusogens that can promote fusion when expressed on a viral particle. PMID:21436398

  2. GNL3L Is a Nucleo-Cytoplasmic Shuttling Protein: Role in Cell Cycle Regulation.

    PubMed

    Thoompumkal, Indu Jose; Subba Rao, Malireddi Rama Krishna; Kumaraswamy, Anbarasu; Krishnan, Rehna; Mahalingam, Sundarasamy

    2015-01-01

    GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501-582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the 'G2/M' phase of cell cycle whereas depletion of endogenous GNL3L results in 'G2/M' arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster 'S' phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote 'S' phase progression during cell proliferation.

  3. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus.

    PubMed

    Quiñones-Valles, César; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2014-01-01

    The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.

  4. Dynamical Modeling of the Cell Cycle and Cell Fate Emergence in Caulobacter crescentus

    PubMed Central

    Quiñones-Valles, César; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2014-01-01

    The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes. PMID:25369202

  5. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression.

    PubMed

    Saitou, Takashi; Imamura, Takeshi

    2016-01-01

    Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation.

  6. Cell Cycle Arrest by a Natural Product via G2/M Checkpoint

    PubMed Central

    2005-01-01

    CKBM is a natural product that exhibits a novel anti-tumor activity through the induction of cell cycle arrest and apoptosis. We have investigated its effects on cell cycle regulation using a gastric cancer cell line, AGS. The effects of CKBM on cell proliferation, cell cycle regulation and apoptosis were analyzed using BrdU (5-bromo-2'-deoxyuridine) cell proliferation assay and flow cytometric analysis, respectively. Specific cellular protein expressions were measured using Western blot analysis. Flow cytometric analysis indicated that CKBM induced G2/M cell cycle arrest and apoptosis, whereas differential protein expressions of p21, p53 and 14-3-3σ (stratifin) using Western blot analysis were enhanced. The differential expressions of p21, p53 and 14-3-3σ in AGS cancer cells after CKBM treatment may play critical roles in the G2/M cell cycle arrest that blocks cell proliferation and induces apoptosis. PMID:15968342

  7. Imaging Nuclear Morphology and Organization in Cleared Plant Tissues Treated with Cell Cycle Inhibitors.

    PubMed

    de Souza Junior, José Dijair Antonino; de Sa, Maria Fatima Grossi; Engler, Gilbert; Engler, Janice de Almeida

    2016-01-01

    Synchronization of root cells through chemical treatment can generate a large number of cells blocked in specific cell cycle phases. In plants, this approach can be employed for cell suspension cultures and plant seedlings. To identify plant cells in the course of the cell cycle, especially during mitosis in meristematic tissues, chemical inhibitors can be used to block cell cycle progression. Herein, we present a simplified and easy-to-apply protocol to visualize mitotic figures, nuclei morphology, and organization in whole Arabidopsis root apexes. The procedure is based on tissue clearing, and fluorescent staining of nuclear DNA with DAPI. The protocol allows carrying out bulk analysis of nuclei and cell cycle phases in root cells and will be valuable to investigate mutants like overexpressing lines of genes disturbing the plant cell cycle.

  8. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells.

    PubMed

    Lin, Renyu; Zhang, Ziheng; Chen, Lingfeng; Zhou, Yunfang; Zou, Peng; Feng, Chen; Wang, Li; Liang, Guang

    2016-10-10

    Head and neck cancer is the sixth most common cancer worldwide. Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, exhibits a wide range of biological roles including a highly efficient and specific anti-tumor activity. Here, we aimed to examine the effect of DHA on head and neck carcinoma cells and elucidate the potential mechanisms. We used five head and neck carcinoma cell lines and two non-tumorigenic normal epithelial cell lines to achieve our goals. Cells were exposed to DHA and subjected to cellular activity assays including viability, cell cycle analysis, cell death, and angiogenic phenotype. Our results show that DHA causes cell cycle arrest which is mediated through Forkhead box protein M1 (FOXM1). We also demonstrate that DHA induces ferroptosis and apoptosis in head and neck carcinoma cells. Lastly, our results show that DHA alters the angiogenic phenotype of cancer cells by reducing the expression of angiogenic factors and the ability of cancer cells to support endothelial cell tubule formation. Our study suggests that DHA specifically causes head and neck cancer cell death through contribution from both ferroptosis and apoptosis. DHA may represent an effective strategy in head and neck cancer treatment.

  9. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    PubMed

    Fleisig, Helen; Wong, Judy

    2012-01-01

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key

  10. Differences in CART expression and cell cycle behavior discriminate sympathetic neuroblast from chromaffin cell lineages in mouse sympathoadrenal cells.

    PubMed

    Chan, Wing Hei; Gonsalvez, David G; Young, Heather M; Southard-Smith, E Michelle; Cane, Kylie N; Anderson, Colin R

    2016-02-01

    Adrenal medullary chromaffin cells and peripheral sympathetic neurons originate from a common sympathoadrenal (SA) progenitor cell. The timing and phenotypic changes that mark this lineage diversification are not fully understood. The present study investigated the expression patterns of phenotypic markers, and cell cycle dynamics, in the adrenal medulla and the neighboring suprarenal ganglion of embryonic mice. The noradrenergic marker, tyrosine hydroxylase (TH), was detected in both presumptive adrenal medulla and sympathetic ganglion cells, but with significantly stronger immunostaining in the former. There was intense cocaine and amphetamine-regulated transcript (CART) peptide immunostaining in most neuroblasts, whereas very few adrenal chromaffin cells showed detectable CART immunostaining. This phenotypic segregation appeared as early as E12.5, before anatomical segregation of the two cell types. Cell cycle dynamics were also examined. Initially, 88% of Sox10 positive (+) neural crest progenitors were proliferating at E10.5. Many SA progenitor cells withdrew from the cell cycle at E11.5 as they started to express TH. Whereas 70% of neuroblasts (TH+/CART+ cells) were back in the cell cycle at E12.5, only around 20% of chromaffin (CART negative) cells were in the cell cycle at E12.5 and subsequent days. Thus, chromaffin cell and neuroblast lineages showed differences in proliferative behavior from their earliest appearance. We conclude that the intensity of TH immunostaining and the expression of CART permit early discrimination of chromaffin cells and sympathetic neuroblasts, and that developing chromaffin cells exhibit significantly lower proliferative activity relative to sympathetic neuroblasts.

  11. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro

    PubMed Central

    2013-01-01

    Background Glioma stem cells in the quiescent state are resistant to clinical radiation therapy. An almost inevitable glioma recurrence is due to the persistence of these cells. The high linear energy transfer associated with boron neutron capture therapy (BNCT) could kill quiescent and proliferative cells. Methods The present study aimed to evaluate the effects of BNCT on glioma stem/progenitor cells in vitro. The damage induced by BNCT was assessed using cell cycle progression, apoptotic cell ratio and apoptosis-associated proteins expression. Results The surviving fraction and cell viability of glioma stem/progenitor cells were decreased compared with differentiated glioma cells using the same boronophenylalanine pretreatment and the same dose of neutron flux. BNCT induced cell cycle arrest in the G2/M phase and cell apoptosis via the mitochondrial pathway, with changes in the expression of associated proteins. Conclusions Glioma stem/progenitor cells, which are resistant to current clinical radiotherapy, could be effectively killed by BNCT in vitro via cell cycle arrest and apoptosis using a prolonged neutron irradiation, although radiosensitivity of glioma stem/progenitor cells was decreased compared with differentiated glioma cells when using the same dose of thermal neutron exposure and boronophenylalanine pretreatment. Thus, BNCT could offer an appreciable therapeutic advantage to prevent tumor recurrence, and may become a promising treatment in recurrent glioma. PMID:23915425

  12. Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data

    PubMed Central

    Barron, Martin; Li, Jun

    2016-01-01

    Single-cell RNA-Sequencing (scRNA-Seq) is a revolutionary technique for discovering and describing cell types in heterogeneous tissues, yet its measurement of expression often suffers from large systematic bias. A major source of this bias is the cell cycle, which introduces large within-cell-type heterogeneity that can obscure the differences in expression between cell types. The current method for removing the cell-cycle effect is unable to effectively identify this effect and has a high risk of removing other biological components of interest, compromising downstream analysis. We present ccRemover, a new method that reliably identifies the cell-cycle effect and removes it. ccRemover preserves other biological signals of interest in the data and thus can serve as an important pre-processing step for many scRNA-Seq data analyses. The effectiveness of ccRemover is demonstrated using simulation data and three real scRNA-Seq datasets, where it boosts the performance of existing clustering algorithms in distinguishing between cell types. PMID:27670849

  13. Single-cell analysis of transcription kinetics across the cell cycle

    PubMed Central

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. DOI: http://dx.doi.org/10.7554/eLife.12175.001 PMID:26824388

  14. Single-cell analysis of transcription kinetics across the cell cycle.

    PubMed

    Skinner, Samuel O; Xu, Heng; Nagarkar-Jaiswal, Sonal; Freire, Pablo R; Zwaka, Thomas P; Golding, Ido

    2016-01-01

    Transcription is a highly stochastic process. To infer transcription kinetics for a gene-of-interest, researchers commonly compare the distribution of mRNA copy-number to the prediction of a theoretical model. However, the reliability of this procedure is limited because the measured mRNA numbers represent integration over the mRNA lifetime, contribution from multiple gene copies, and mixing of cells from different cell-cycle phases. We address these limitations by simultaneously quantifying nascent and mature mRNA in individual cells, and incorporating cell-cycle effects in the analysis of mRNA statistics. We demonstrate our approach on Oct4 and Nanog in mouse embryonic stem cells. Both genes follow similar two-state kinetics. However, Nanog exhibits slower ON/OFF switching, resulting in increased cell-to-cell variability in mRNA levels. Early in the cell cycle, the two copies of each gene exhibit independent activity. After gene replication, the probability of each gene copy to be active diminishes, resulting in dosage compensation. PMID:26824388

  15. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    PubMed Central

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  16. Mast cells as modulators of hair follicle cycling.

    PubMed

    Maurer, M; Paus, R; Czarnetzki, B M

    1995-08-01

    While the central role of mast cells (MC) in allergy and inflammation is well-appreciated, much less is known about their physiological functions. The impressive battery of potent growth modulatory MC products, and increasing evidence of MC involvement in hyperproliferative and fibrotic disorders suggest that tissue remodelling may be one of those, namely in the skin. Here, we delineate why this may best be studied by analysing the potential role of MC in hair growth regulation. On the background of numerous, yet widely under-appreciated hints from the older literature, we summarize and discuss our recent observations from the C57BL/6 mouse model for hair research which support the concept that MC are functionally important modulators of hair follicle cycling, specifically during anagen development. This invites to exploit the murine hair cycle as a model for dissecting the physiological growth modulatory functions of MC and encourages the exploration of MC-targeting pharmaceutical strategies for the treatment of hair growth disorders.

  17. Origin of bistability underlying mammalian cell cycle entry.

    PubMed

    Yao, Guang; Tan, Cheemeng; West, Mike; Nevins, Joseph R; You, Lingchong

    2011-04-26

    Precise control of cell proliferation is fundamental to tissue homeostasis and differentiation. Mammalian cells commit to proliferation at the restriction point (R-point). It has long been recognized that the R-point is tightly regulated by the Rb-E2F signaling pathway. Our recent work has further demonstrated that this regulation is mediated by a bistable switch mechanism. Nevertheless, the essential regulatory features in the Rb-E2F pathway that create this switching property have not been defined. Here we analyzed a library of gene circuits comprising all possible link combinations in a simplified Rb-E2F network. We identified a minimal circuit that is able to generate robust, resettable bistability. This minimal circuit contains a feed-forward loop coupled with a mutual-inhibition feedback loop, which forms an AND-gate control of the E2F activation. Underscoring its importance, experimental disruption of this circuit abolishes maintenance of the activated E2F state, supporting its importance for the bistability of the Rb-E2F system. Our findings suggested basic design principles for the robust control of the bistable cell cycle entry at the R-point. PMID:21525871

  18. Origin of bistability underlying mammalian cell cycle entry

    PubMed Central

    Yao, Guang; Tan, Cheemeng; West, Mike; Nevins, Joseph R; You, Lingchong

    2011-01-01

    Precise control of cell proliferation is fundamental to tissue homeostasis and differentiation. Mammalian cells commit to proliferation at the restriction point (R-point). It has long been recognized that the R-point is tightly regulated by the Rb–E2F signaling pathway. Our recent work has further demonstrated that this regulation is mediated by a bistable switch mechanism. Nevertheless, the essential regulatory features in the Rb–E2F pathway that create this switching property have not been defined. Here we analyzed a library of gene circuits comprising all possible link combinations in a simplified Rb–E2F network. We identified a minimal circuit that is able to generate robust, resettable bistability. This minimal circuit contains a feed-forward loop coupled with a mutual-inhibition feedback loop, which forms an AND-gate control of the E2F activation. Underscoring its importance, experimental disruption of this circuit abolishes maintenance of the activated E2F state, supporting its importance for the bistability of the Rb–E2F system. Our findings suggested basic design principles for the robust control of the bistable cell cycle entry at the R-point. PMID:21525871

  19. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes.

    PubMed

    Fischer, Martin; Quaas, Marianne; Steiner, Lydia; Engeland, Kurt

    2016-01-01

    The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used. Here, we identify genes regulated by p53 through this pathway in a genome-wide computational approach. The bioinformatic analysis is based on genome-wide DREAM complex binding data, p53-depedent mRNA expression data and a genome-wide definition of phylogenetically conserved CHR promoter elements. We find 210 target genes that are expected to be regulated by the p53-p21-DREAM-CDE/CHR pathway. The target gene list was verified by detailed analysis of p53-dependent repression of the cell cycle genes B-MYB (MYBL2), BUB1, CCNA2, CCNB1, CHEK2, MELK, POLD1, RAD18 and RAD54L. Most of the 210 target genes are essential regulators of G2 phase and mitosis. Thus, downregulation of these genes through the p53-p21-DREAM-CDE/CHR pathway appears to be a principal mechanism for G2/M cell cycle arrest by p53.

  20. The p53-p21-DREAM-CDE/CHR pathway regulates G2/M cell cycle genes

    PubMed Central

    Fischer, Martin; Quaas, Marianne; Steiner, Lydia; Engeland, Kurt

    2016-01-01

    The tumor suppressor p53 functions predominantly as a transcription factor by activating and downregulating gene expression, leading to cell cycle arrest or apoptosis. p53 was shown to indirectly repress transcription of the CCNB2, KIF23 and PLK4 cell cycle genes through the recently discovered p53-p21-DREAM-CDE/CHR pathway. However, it remained unclear whether this pathway is commonly used. Here, we identify genes regulated by p53 through this pathway in a genome-wide computational approach. The bioinformatic analysis is based on genome-wide DREAM complex binding data, p53-depedent mRNA expression data and a genome-wide definition of phylogenetically conserved CHR promoter elements. We find 210 target genes that are expected to be regulated by the p53-p21-DREAM-CDE/CHR pathway. The target gene list was verified by detailed analysis of p53-dependent repression of the cell cycle genes B-MYB (MYBL2), BUB1, CCNA2, CCNB1, CHEK2, MELK, POLD1, RAD18 and RAD54L. Most of the 210 target genes are essential regulators of G2 phase and mitosis. Thus, downregulation of these genes through the p53-p21-DREAM-CDE/CHR pathway appears to be a principal mechanism for G2/M cell cycle arrest by p53. PMID:26384566

  1. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation.

    PubMed

    Schmidt, Anja; Schmid, Marc W; Klostermeier, Ulrich C; Qi, Weihong; Guthörl, Daniela; Sailer, Christian; Waller, Manuel; Rosenstiel, Philip; Grossniklaus, Ueli

    2014-07-01

    Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction.

  2. Apomictic and Sexual Germline Development Differ with Respect to Cell Cycle, Transcriptional, Hormonal and Epigenetic Regulation

    PubMed Central

    Schmidt, Anja; Schmid, Marc W.; Klostermeier, Ulrich C.; Qi, Weihong; Guthörl, Daniela; Sailer, Christian; Waller, Manuel; Rosenstiel, Philip; Grossniklaus, Ueli

    2014-01-01

    Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction. PMID:25010342

  3. Apomictic and sexual germline development differ with respect to cell cycle, transcriptional, hormonal and epigenetic regulation.

    PubMed

    Schmidt, Anja; Schmid, Marc W; Klostermeier, Ulrich C; Qi, Weihong; Guthörl, Daniela; Sailer, Christian; Waller, Manuel; Rosenstiel, Philip; Grossniklaus, Ueli

    2014-07-01

    Seeds of flowering plants can be formed sexually or asexually through apomixis. Apomixis occurs in about 400 species and is of great interest for agriculture as it produces clonal offspring. It differs from sexual reproduction in three major aspects: (1) While the sexual megaspore mother cell (MMC) undergoes meiosis, the apomictic initial cell (AIC) omits or aborts meiosis (apomeiosis); (2) the unreduced egg cell of apomicts forms an embryo without fertilization (parthenogenesis); and (3) the formation of functional endosperm requires specific developmental adaptations. Currently, our knowledge about the gene regulatory programs underlying apomixis is scarce. We used the apomict Boechera gunnisoniana, a close relative of Arabidopsis thaliana, to investigate the transcriptional basis underlying apomeiosis and parthenogenesis. Here, we present the first comprehensive reference transcriptome for reproductive development in an apomict. To compare sexual and apomictic development at the cellular level, we used laser-assisted microdissection combined with microarray and RNA-Seq analyses. Conservation of enriched gene ontologies between the AIC and the MMC likely reflects functions of importance to germline initiation, illustrating the close developmental relationship of sexuality and apomixis. However, several regulatory pathways differ between sexual and apomictic germlines, including cell cycle control, hormonal pathways, epigenetic and transcriptional regulation. Enrichment of specific signal transduction pathways are a feature of the apomictic germline, as is spermidine metabolism, which is associated with somatic embryogenesis in various plants. Our study provides a comprehensive reference dataset for apomictic development and yields important new insights into the transcriptional basis underlying apomixis in relation to sexual reproduction. PMID:25010342

  4. Fanconi anemia and the cell cycle: new perspectives on aneuploidy

    PubMed Central

    2014-01-01

    Fanconi anemia (FA) is a complex heterogenic disorder of genomic instability, bone marrow failure, cancer predisposition, and congenital malformations. The FA signaling network orchestrates the DNA damage recognition and repair in interphase as well as proper execution of mitosis. Loss of FA signaling causes chromosome instability by weakening the spindle assembly checkpoint, disrupting centrosome maintenance, disturbing resolution of ultrafine anaphase bridges, and dysregulating cytokinesis. Thus, the FA genes function as guardians of genome stability throughout the cell cycle. This review discusses recent advances in diagnosis and clinical management of Fanconi anemia and presents the new insights into the origins of genomic instability in FA. These new discoveries may facilitate the development of rational therapeutic strategies for FA and for FA-deficient malignancies in the general population. PMID:24765528

  5. Cell cycle kinetics in pterygium at three latitudes.

    PubMed

    Karukonda, S R; Thompson, H W; Beuerman, R W; Lam, D S; Wilson, R; Chew, S J; Steinemann, T L

    1995-04-01

    The cell cycle kinetics of 93 specimens of pterygial tissue, as well as 19 specimens of normal conjunctiva, from patients at three sites representing three different latitudes (Singapore, 1 degree; Hong Kong, 22 degrees; and Little Rock, Arkansas, 34 degrees) were evaluated by flow cytometry. The results showed no difference in cellular proliferation patterns between pterygial and conjunctival tissue at any of the sites, suggesting that pterygium is not a disorder of excess cellular proliferation. Transmission electron microscopy showed extracellular matrix to be a prominent component of pterygium. Cellular proliferation patterns of primary and recurrent pterygium were not significantly different from each other. Factors associated with increased incidence of pterygium included male sex, outdoor occupation, and advanced age.

  6. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression

    PubMed Central

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-01-01

    Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770

  7. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  8. Cell Cycle-Dependent Mechanisms Underlie Vincristine-Induced Death of Primary Acute Lymphoblastic Leukemia Cells.

    PubMed

    Kothari, Anisha; Hittelman, Walter N; Chambers, Timothy C

    2016-06-15

    Microtubule-targeting agents (MTA), such as the taxanes and vinca alkaloids, are used to treat a variety of cancers due to their ability to perturb microtubule dynamics. In cell culture, MTAs exert their anticancer effects primarily by causing mitotic arrest and cell death. However, accumulating indirect evidence suggests that MTAs may exert their cytotoxicity in human tumors by interfering with interphase microtubules. In this study, we sought to develop and characterize an experimental system in which to test the hypothesis that MTAs induce cell death during interphase. Primary adult acute lymphoblastic leukemia (ALL) cells treated with vincristine only weakly exhibited colocalization between mitotic and apoptotic markers and major characteristics of mitotic death, such as an increase in cells with 4N DNA content before the appearance of cells with <2N DNA content, suggesting a mixed response. Therefore, we separated ALL cells into distinct phases of the cell cycle by centrifugal elutriation, labeled cells with 5-ethynyl-2'-deoxyuridine (EdU), and then treated each population with vincristine. Cells isolated during G1 underwent cell death without evidence of EdU uptake, indicating that the cytotoxic effects of vincristine took place during G1 Conversely, cells isolated during S or G2-M phases underwent death following mitotic arrest. Thus, vincristine induces distinct death programs in primary ALL cells depending on cell-cycle phase, and cells in G1 are particularly susceptible to perturbation of interphase microtubules. Primary ALL cells may therefore provide a powerful model system in which to study the multimodal mechanisms underlying MTA-induced cell death. Cancer Res; 76(12); 3553-61. ©2016 AACR. PMID:27197148

  9. Cell Cycle-Dependent Mechanisms Underlie Vincristine-Induced Death of Primary Acute Lymphoblastic Leukemia Cells.

    PubMed

    Kothari, Anisha; Hittelman, Walter N; Chambers, Timothy C

    2016-06-15

    Microtubule-targeting agents (MTA), such as the taxanes and vinca alkaloids, are used to treat a variety of cancers due to their ability to perturb microtubule dynamics. In cell culture, MTAs exert their anticancer effects primarily by causing mitotic arrest and cell death. However, accumulating indirect evidence suggests that MTAs may exert their cytotoxicity in human tumors by interfering with interphase microtubules. In this study, we sought to develop and characterize an experimental system in which to test the hypothesis that MTAs induce cell death during interphase. Primary adult acute lymphoblastic leukemia (ALL) cells treated with vincristine only weakly exhibited colocalization between mitotic and apoptotic markers and major characteristics of mitotic death, such as an increase in cells with 4N DNA content before the appearance of cells with <2N DNA content, suggesting a mixed response. Therefore, we separated ALL cells into distinct phases of the cell cycle by centrifugal elutriation, labeled cells with 5-ethynyl-2'-deoxyuridine (EdU), and then treated each population with vincristine. Cells isolated during G1 underwent cell death without evidence of EdU uptake, indicating that the cytotoxic effects of vincristine took place during G1 Conversely, cells isolated during S or G2-M phases underwent death following mitotic arrest. Thus, vincristine induces distinct death programs in primary ALL cells depending on cell-cycle phase, and cells in G1 are particularly susceptible to perturbation of interphase microtubules. Primary ALL cells may therefore provide a powerful model system in which to study the multimodal mechanisms underlying MTA-induced cell death. Cancer Res; 76(12); 3553-61. ©2016 AACR.

  10. Life cycle assessment of fuel cell vehicles: Dealing with uncertainties

    NASA Astrophysics Data System (ADS)

    Contadini, Jose Fernando

    Life cycle assessment (LCA), or "well to wheels" in transportation terms, involves some subjectivity and uncertainty, especially with new technologies and future scenarios. To analyze lifecycle impacts of future fuel cell vehicles and fuels, I developed the Fuel Upstream Energy and Emission Model (FUEEM). The FUEEM project pioneered two specific new ways to incorporate and propagate uncertainty within an LCA analysis. First, the model uses probabilistic curves generated by experts as inputs and then employs Monte Carlo simulation techniques to propagate these uncertainties throughout the full chain of fuel production and use. Second, the FUEEM process explicitly involves the interested parties in the entire analysis process, not only in the critical final review phase. To demonstrate the FUEEM process, an analysis has been made for the use of three different fuel cell vehicle technologies (direct hydrogen, indirect methanol, and indirect hydrocarbon) in 2010 within the South Coast Air Basin (SCAB) of California (Los Angeles). The analysis covered topics such as the requirement of non-renewable energy sources, emissions of CO2 and other greenhouse gases, and emissions of several criteria pollutants generated within SCAB and within other regions. The results obtained from this example show that the hydrogen option has the potential to have the most efficient energy life cycle for the SCAB, followed by the methanol and finally by the Fisher-Tropsch naphtha option. A similar pattern is observed for the greenhouse gas emissions. The results showing criteria pollutants emitted within SCAB highlight the importance of having a flexible model that is responsive to local considerations. This dissertation demonstrates that explicit recognition and quantitative analysis of the inherent uncertainty in the LCA process generates richer information, explains many of the discrepancies between results of previous studies, and enhances the robustness and credibility of LCA analyses.

  11. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  12. SILAC proteomics of planarians identifies Ncoa5 as a conserved component of pluripotent stem cells.

    PubMed

    Böser, Alexander; Drexler, Hannes C A; Reuter, Hanna; Schmitz, Henning; Wu, Guangming; Schöler, Hans R; Gentile, Luca; Bartscherer, Kerstin

    2013-11-27

    Planarian regeneration depends on the presence of pluripotent stem cells in the adult. We developed an in vivo stable isotope labeling by amino acids in cell culture (SILAC) protocol in planarians to identify proteins that are enriched in planarian stem cells. Through a comparison of SILAC proteomes of normal and stem cell-depleted planarians and of a stem cell-enriched population of sorted cells, we identified hundreds of stem cell proteins. One of these is an ortholog of nuclear receptor coactivator-5 (Ncoa5/CIA), which is known to regulate estrogen-receptor-mediated transcription in human cells. We show that Ncoa5 is essential for the maintenance of the pluripotent stem cell population in planarians and that a putative mouse ortholog is expressed in pluripotent cells of the embryo. Our study thus identifies a conserved component of pluripotent stem cells, demonstrating that planarians, in particular, when combined with in vivo SILAC, are a powerful model in stem cell research.

  13. Cell Cycle Arrest and Cell Survival Induce Reverse Trends of Cardiolipin Remodeling

    PubMed Central

    Chao, Yu-Jen; Chang, Wan-Hsin; Ting, Hsiu-Chi; Chao, Wei-Ting; Hsu, Yuan-Hao Howard

    2014-01-01

    Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression. PMID:25422939

  14. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit

    PubMed Central

    Hufnagel, Robert B.; Riesenberg, Amy N.; Quinn, Malgorzata; Brzezinski, Joseph A.; Glaser, Tom; Brown, Nadean L.

    2013-01-01

    Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7Ascl1KI/+ and Atoh7Ascl1KI/Ascl1KI embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs. PMID:23481413

  15. On energy and momentum conservation in particle-in-cell plasma simulation

    NASA Astrophysics Data System (ADS)

    Brackbill, J. U.

    2016-07-01

    Particle-in-cell (PIC) plasma simulations are a productive and valued tool for the study of nonlinear plasma phenomena, yet there are basic questions about the simulation methods themselves that remain unanswered. Here we study energy and momentum conservation by PIC. We employ both analysis and simulations of one-dimensional, electrostatic plasmas to understand why PIC simulations are either energy or momentum conserving but not both, what role a numerical stability plays in non-conservation, and how errors in conservation scale with the numerical parameters. Conserving both momentum and energy make it possible to model problems such as Jeans'-type equilibria. Avoiding numerical instability is useful, but so is being able to identify when its effect on the results may be important. Designing simulations to achieve the best possible accuracy with the least expenditure of effort requires results on the scaling of error with the numerical parameters. Our results identify the central role of Gauss' law in conservation of both momentum and energy, and the significant differences in numerical stability and error scaling between energy-conserving and momentum-conserving simulations.

  16. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation.

    PubMed Central

    Ridley, A J; Paterson, H F; Noble, M; Land, H

    1988-01-01

    The cellular responses to ras and nuclear oncogenes were investigated in purified populations of rat Schwann cells. v-Ha-ras and SV40 large T cooperate to transform Schwann cells, inducing growth in soft agar and allowing proliferation in the absence of added mitogens. Expression of large T alone reduces their growth factor requirements but is insufficient to induce full transformation. In contrast, expression of v-Ha-ras leads to proliferation arrest in Schwann cells expressing a temperature-sensitive mutant of large T at the restrictive temperature. Cells arrest in either the G1 or G2/M phases of the cell cycle, and can re-enter cell division at the permissive temperature even after prolonged periods at the restrictive conditions. Oncogenic ras proteins also inhibit DNA synthesis when microinjected into Schwann cells. Adenovirus E1a and c-myc oncogenes behave similarly to SV40 large T. They cooperate with Ha-ras oncogenes to transform Schwann cells, and prevent ras-induced growth arrest. Thus nuclear oncogenes fundamentally alter the response of Schwann cells to a ras oncogene from cell cycle arrest to transformation. Images PMID:3049071

  17. Induction of apoptosis and cell-cycle arrest in human colon cancer cells by meclizine.

    PubMed

    Lin, Jiunn-Chang; Ho, Yuan-Soon; Lee, Jie-Jen; Liu, Chien-Liang; Yang, Tsen-Long; Wu, Chih-Hsiung

    2007-06-01

    Meclizine (MEC), a histamine H1 antagonist, is used for the treatment of motion sickness and vertigo. In this study, we demonstrate that MEC dose-dependently induced apoptosis in human colon cancer cell lines (COLO 205 and HT 29 cells). Results of a DNA ladder assay revealed that DNA ladders appeared with MEC treatment in COLO 205 cells at dosage of >50 microM. In addition, the total cell number decreased dose-dependently after treatment with MEC in COLO 205 and HT 29 cells. Using flow cytometry, the percentage of COLO 205 cells arrested at G0/G1 phase increased dose-dependently. Analysis of changes in cell-cycle arrest-associated proteins with Western blotting showed that p53 and p21 were upregulated after treatment with MEC. The kinase activities of cyclin-dependent kinase 2 (CDK2) and CDK4 were suppressed in MEC-treated cells. As for apoptosis, MEC may induce upregulation of p53 and downregulation of Bcl-2, thus causing the release of cytochrome C from mitochondria and the translocation of apoptosis-inducing factor (AIF) to the nucleus. This resulted in the activation of caspase 3, 8, and 9. Our results provide the molecular basis of MEC-induced apoptosis and cell-cycle arrest in human colon cancer cells. PMID:17222494

  18. In vivo and Ex vivo MR Imaging of Slowly Cycling Melanoma Cells

    PubMed Central

    Magnitsky, S.; Roesch, A.; Herlyn, M.; Glickson, J.D.

    2011-01-01

    Slowly cycling cells are believed to play a critical role in tumor progression and metastatic dissemination. The goal of this study was to develop a method for in vivo detection of slowly cycling cells. To distinguish these cells from more rapidly proliferating cells that constitute the vast majority of cells in tumors, we utilized the well-known effect of label dilution due to division of cells with normal cycle and retention of contrast agent in slowly dividing cells. To detect slowly cycling cells melanoma cells were labeled with iron oxide particles. After labeling, we observed dilution of contrast agent in parallel with cell proliferation in the vast majority of normally cycling cells. A small and distinct sub-population of iron-retaining cells was detected by flow cytometry after 20 days of in vitro proliferation. These iron-retaining cells exhibited high expression of a biological marker of slowly cycling cells, JARID1B. After implantation of labeled cells as xenografts into immunocompromised mice, iron-retaining cells were detected in vivo and ex vivo by MRI that was confirmed by Prussian Blue staining. MR imaging detects not only iron retaining melanoma cells but also iron positive macrophages. Proposed method opens up opportunities to image subpopulation of melanoma cells, which is critical for continuous tumor growth. PMID:21523820

  19. The Schaechter-Bentzon-Maaløe experiment and the analysis of cell cycle events in eukaryotic cells.

    PubMed

    Cooper, Stephen

    2002-04-01

    The Schaechter-Bentzon-Maaløe (SBM) experiment, performed more than 40 years ago, provides an important lesson for the analysis of the eukaryotic cell cycle. Before this experiment, temperature shifts had been used to synchronize bacteria and determine the pattern of DNA synthesis during the bacterial division cycle. These experiments indicated that DNA replication occurred during a fraction of the division cycle with gaps before and after DNA synthesis, a pattern similar to the eukaryotic division cycle. The SBM experiment studied DNA replication during the division cycle by labeling an unperturbed culture with a short pulse of tritiated thymidine. All cells were found to be labeled, indicating that unperturbed cells synthesize DNA throughout the division cycle. Thus, the SBM experiment was a control experiment demonstrating that artifacts can be introduced by synchronization methods. The idea of an control experiment under unperturbed conditions is proposed for the analysis of data on cell-cycle-specific gene expression in yeast and mammalian cells.

  20. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation.

    PubMed

    Lin, Tien-Chen; Neuner, Annett; Schlosser, Yvonne T; Scharf, Annette N D; Weber, Lisa; Schiebel, Elmar

    2014-01-01

    Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains.DOI: http://dx.doi.org/10.7554/eLife.02208.001. PMID:24842996

  1. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    PubMed

    Garg, Sriram G; Martin, William F

    2016-01-01

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  2. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    PubMed

    Garg, Sriram G; Martin, William F

    2016-07-02

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  3. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    PubMed Central

    Lee, Kuo-Chang; Webb, Rick I; Fuerst, John A

    2009-01-01

    Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as well as DNA confirmed the

  4. Methamphetamine is not Toxic but Disrupts the Cell Cycle of Blood-Brain Barrier Endothelial Cells.

    PubMed

    Fisher, D; Gamieldien, K; Mafunda, P S

    2015-07-01

    The cytotoxic effects of methamphetamine (MA) are well established to be caused via induced oxidative stress which in turn compromises the core function of the blood-brain barrier (BBB) by reducing its ability to regulate the homeostatic environment of the brain. While most studies were conducted over a period of 24-48 h, this study investigated the mechanisms by which chronic exposure of MA adversely affect the endothelial cells of BBB over an extended period of 96 h. MA induced significant depression of cell numbers at 96 h. This result was supported by flow cytometric data on the cell cycle which showed that brain endothelial cells (bEnd5) at 96 h were significantly suppressed in the S-phase of the cell cycle. In contrast, at 24-72 h control cell numbers for G1, S and G2-M phases were similar to MA-exposed cells. MA (0-1,000 µM) did not, however, statistically affect the viability and cytotoxicity of the bEnd5 cells, and the profile of ATP production and DNA synthesis (BrdU) across 96 h did not provide a rationale for the suppression of cell division. Our study reports for the first time that chronic exposure to MA results in long-term disruption of the cell cycle phases which eventuates in the attenuation of brain capillary endothelial cell growth after 96 h, compounding and contributing to the already well-known adverse short-term permeability effects of MA exposure on the BBB.

  5. Cell cycle regulation and apoptotic cell death in experimental colon carcinogenesis: intervening with cyclooxygenase-2 inhibitors.

    PubMed

    Saini, Manpreet Kaur; Sanyal, Sankar Nath

    2015-01-01

    Relative imbalance in the pathways regulating cell cycle, cell proliferation, or cell death marks a prerequisite for neoplasm. C-phycocyanin, a biliprotein from Spirulina platensis and a selective COX-2 inhibitor along with piroxicam, a traditional nonsteroidal antiinflammatory drug was used to investigate the role of cell cycle regulatory proteins and proinflammatory transcription factor NFκB in 1,2-dimethylhydrazine dihydrochloride (DMH)-induced rat colon carcinogenesis. Cell cycle regulators [cyclin D1, cyclin E, cyclin dependent kinase 2 (CDK2), CDK4, and p53], NFκB (p65) pathway, and proliferating cell nuclear antigen (PCNA) were evaluated by gene and protein expression, whereas apoptosis was studied by terminal deoxynucleotidyl transferase dUTP nick end labeling and apoptotic bleb assay. Molecular docking of ligand protein interaction was done to validate the in vivo results. Cyclin D1, cyclin E, CDK2, and CDK4 were overexpressed in DMH, whereas piroxicam and c-phycocyanin promoted the cell cycle arrest by downregulating them. Both drugs mediated apoptosis through p53 activation. Piroxicam and c-phycocyanin also stimulated antiproliferation by restraining PCNA expression and reduced cell survival via inhibiting NFκB (p65) pathway. Molecular docking revealed that phycocyanobilin (a chromophore of c-phycocyanin) interact with DNA binding site of NFκB. Inhibition of cyclin/CDK complex by piroxicam and c-phycocyanin affects the expression of p53 in colon cancer followed by downregulation of NFκB and PCNA levels, thus substantiating the antineoplastic role of these agents. PMID:25825916

  6. Dynamics of the cell-cycle network under genome-rewiring perturbations.

    PubMed

    Katzir, Yair; Elhanati, Yuval; Averbukh, Inna; Braun, Erez

    2013-12-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein-DNA and protein-protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited 'resources' and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes, without a

  7. Dynamics of the cell-cycle network under genome-rewiring perturbations

    NASA Astrophysics Data System (ADS)

    Katzir, Yair; Elhanati, Yuval; Averbukh, Inna; Braun, Erez

    2013-12-01

    The cell-cycle progression is regulated by a specific network enabling its ordered dynamics. Recent experiments supported by computational models have shown that a core of genes ensures this robust cycle dynamics. However, much less is known about the direct interaction of the cell-cycle regulators with genes outside of the cell-cycle network, in particular those of the metabolic system. Following our recent experimental work, we present here a model focusing on the dynamics of the cell-cycle core network under rewiring perturbations. Rewiring is achieved by placing an essential metabolic gene exclusively under the regulation of a cell-cycle's promoter, forcing the cell-cycle network to function under a multitasking challenging condition; operating in parallel the cell-cycle progression and a metabolic essential gene. Our model relies on simple rate equations that capture the dynamics of the relevant protein-DNA and protein-protein interactions, while making a clear distinction between these two different types of processes. In particular, we treat the cell-cycle transcription factors as limited ‘resources’ and focus on the redistribution of resources in the network during its dynamics. This elucidates the sensitivity of its various nodes to rewiring interactions. The basic model produces the correct cycle dynamics for a wide range of parameters. The simplicity of the model enables us to study the interface between the cell-cycle regulation and other cellular processes. Rewiring a promoter of the network to regulate a foreign gene, forces a multitasking regulatory load. The higher the load on the promoter, the longer is the cell-cycle period. Moreover, in agreement with our experimental results, the model shows that different nodes of the network exhibit variable susceptibilities to the rewiring perturbations. Our model suggests that the topology of the cell-cycle core network ensures its plasticity and flexible interface with other cellular processes, without

  8. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health

  9. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2016-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  10. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb

  11. A primer for studying cell cycle dynamics of the human hair follicle.

    PubMed

    Purba, Talveen S; Brunken, Lars; Hawkshaw, Nathan J; Peake, Michael; Hardman, Jonathan; Paus, Ralf

    2016-09-01

    The cell cycle is of major importance to human hair follicle (HF) biology. Not only is continuously active cell cycling required to facilitate healthy hair growth in anagen VI HFs, but perturbations in the cell cycle are likely to be of significance in HF pathology (i.e. in scarring, non-scarring, chemotherapy-induced and androgenic alopecias). However, cell cycle dynamics of the human hair follicle (HF) are poorly understood in contrast to what is known in mouse. The current Methods Review aims at helping to close this gap by presenting a primer that introduces immunohistological/immunofluorescent techniques to study the cell cycle in the human HF. Moreover, this primer encourages the exploitation of the human HF as a powerful and clinically relevant tool to investigate mammalian cell cycle biology in situ. To achieve this, we describe methods to study markers of general 'proliferation' (nuclei count, Ki-67 expression), apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labelling, cleaved caspase 3), mitosis (phospho-histone H3, 'pS780'), DNA synthesis (5-ethynyl-2'-deoxyuridine) and cell cycle regulation (cyclins) in the human HF. In addition, we provide specific examples of dual immunolabelling for instructive cell cycle analyses and for investigating the cell cycle behaviour of specific HF keratinocyte subpopulations, such as keratin 15+ stem/progenitor cells.

  12. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  13. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    PubMed

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent.

  14. Mps1 is SUMO-modified during the cell cycle.

    PubMed

    Restuccia, Agnese; Yang, Feikun; Chen, Changyan; Lu, Lou; Dai, Wei

    2016-01-19

    Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis. PMID:26675261

  15. Mps1 is SUMO-modified during the cell cycle

    PubMed Central

    Chen, Changyan; Lu, Lou; Dai, Wei

    2016-01-01

    Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis. PMID:26675261

  16. Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells

    PubMed Central

    Okamoto, Mayumi; Miyata, Takaki; Konno, Daijiro; Ueda, Hiroki R.; Kasukawa, Takeya; Hashimoto, Mitsuhiro; Matsuzaki, Fumio; Kawaguchi, Ayano

    2016-01-01

    During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode. PMID:27094546

  17. Tcf3 and cell cycle factors contribute to butyrate resistance in colorectal cancer cells.

    PubMed

    Chiaro, Christopher; Lazarova, Darina L; Bordonaro, Michael

    2012-11-01

    Butyrate, a fermentation product of dietary fiber, inhibits clonal growth in colorectal cancer (CRC) cells dependent upon the fold induction of Wnt activity. We have developed a CRC cell line (HCT-R) that, unlike its parental cell line, HCT-116, does not respond to butyrate exposure with hyperactivation of Wnt signaling and suppressed clonal growth. PCR array analyses revealed Wnt pathway-related genes, the expression of which differs between butyrate-sensitive HCT-116 CRC cells and their butyrate-resistant HCT-R cell counterparts. We identified overexpression of Tcf3 as being partially responsible for the butyrate-resistant phenotype, as this DNA-binding protein suppresses the hyperinduction of Wnt activity by butyrate. Consequently, Tcf3 knockdown in HCT-R cells restores their sensitivity to the effects of butyrate on Wnt activity and clonal cell growth. Interestingly, the effects of overexpressed Tcf3 differ between HCT-116 and HCT-R cells; thus, in HCT-116 cells Tcf3 suppresses proliferation without rendering the cells resistant to butyrate. In HCT-R cells, however, the overexpression of Tcf3 inhibits Wnt activity, and the cells are still able to proliferate due to the higher expression levels of cell cycle factors, particularly those driving the G(1) to S transition. Knowledge of the molecular mechanisms determining the variable sensitivity of CRC cells to butyrate may assist in developing approaches that prevent or reverse butyrate resistance.

  18. Chinese medicinal herb, Acanthopanax gracilistylus, extract induces cell cycle arrest of human tumor cells in vitro.

    PubMed

    Shan, B E; Zeki, K; Sugiura, T; Yoshida, Y; Yamashita, U

    2000-04-01

    We investigated the effect of a Chinese medicinal herb, Acanthopanax gracilistylus (AG), extract (E) on the growth of human tumor cell lines in vitro. AGE markedly inhibited the proliferation of several tumor cell lines such as MT-2, Raji, HL-60, TMK-1 and HSC-2. The activity was associated with a protein of 60 kDa, which was purified by gel-filtration chromatography. Cell viability analyses indicated that the treatment with AGE inhibits cell proliferation, but does not induce cell death. The mechanism of AGE-induced inhibition of tumor cell growth involves arrest of the cell cycle at the G(0) / G(1) stage without a direct cytotoxic effect. The cell cycle arrest induced by AGE was accompanied by a decrease of phosphorylated retinoblastoma (Rb) protein. Furthermore, cyclin-dependent kinases 2 and 4 (Cdk2 and Cdk4), which are involved in the phosphorylation of Rb, were also decreased. These results suggest that AGE inhibits tumor cell growth by affecting phosphorylated Rb proteins and Cdks. PMID:10804285

  19. Diosgenin induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma cells.

    PubMed

    Li, Yongjian; Wang, Xiaorong; Cheng, Silu; Du, Juan; Deng, Zhengting; Zhang, Yani; Liu, Qun; Gao, Jingdong; Cheng, Binbin; Ling, Changquan

    2015-02-01

    Diosgenin is a major compound of Dioscoreaceae plants such as yam, which is used as a drug in Traditional Chinese Medicine, and a common vegetable worldwide. The anticancer effect of diosgenin has been reported in various tumor cells, including leukemia, gastric, colorectal, and breast cancer. However, the activity of diosgenin on hepatocellular carcinoma (HCC) and the underlying mechanism have not been completely investigated. Therefore, we investigated the efficacy and associated mechanisms of diosgenin in HCC cells. Flow cytometric analysis was performed to determine the presence of cell cycle arrest and apopotic cells. Diosgenin significantly inhibited the growth of Bel-7402, SMMC-7721 and HepG2 HCC cells in a concentration-dependent manner. Diosgenin treatment for 24 h induced G2/M cell cycle arrest and apoptosis of hepatoma cells. Diosgenin inhibited Akt phosphorylation and upregulated p21 and p27 expression, but did not alter the expression of p53, suggesting diosgenin-induced upregulation of p21 and p57 is p53-independent in HCC cells. Diosgenin induced HCC cell apoptosis by activating caspase cascades -3, -8 and -9. However, diosgenin did not affect Bcl-2 and Bax levels. In conclusion, results of the present study suggest that diosgenin may be an active anti-HCC agent obtained from natural plants and provide new insights in understanding the mechanisms of diosgenin. PMID:25434486

  20. Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids.

    PubMed

    Mo, H; Elson, C E

    1999-04-01

    Diverse classes of phytochemicals initiate biological responses that effectively lower cancer risk. One class of phytochemicals, broadly defined as pure and mixed isoprenoids, encompasses an estimated 22,000 individual components. A representative mixed isoprenoid, gamma-tocotrienol, suppresses the growth of murine B16(F10) melanoma cells, and with greater potency, the growth of human breast adenocarcinoma (MCF-7) and human leukemic (HL-60) cells. beta-Ionone, a pure isoprenoid, suppresses the growth of B16 cells and with greater potency, the growth of MCF-7, HL-60 and human colon adenocarcinoma (Caco-2) cells. Results obtained with diverse cell lines differing in ras and p53 status showed that the isoprenoid-mediated suppression of growth is independent of mutated ras and p53 functions. beta-Ionone suppressed the growth of human colon fibroblasts (CCD-18Co) but only when present at three-fold the concentration required to suppress the growth of Caco-2 cells. The isoprenoids initiated apoptosis and, concomitantly arrested cells in the G1 phase of the cell cycle. Both suppress 3-hydroxy-3-methylglutaryl CoA reductase activity. beta-Ionone and lovastatin interfered with the posttranslational processing of lamin B, an activity essential to assembly of daughter nuclei. This interference, we postulate, renders neosynthesized DNA available to the endonuclease activities leading to apoptotic cell death. Lovastatin-imposed mevalonate starvation suppressed the glycosylation and translocation of growth factor receptors to the cell surface. As a consequence, cells were arrested in the G1 phase of the cell cycle. This rationale may apply to the isoprenoid-mediated G1-phase arrest of tumor cells. The additive and potentially synergistic actions of these isoprenoids in the suppression of tumor cell proliferation and initiation of apoptosis coupled with the mass action of the diverse isoprenoid constituents of plant products may explain, in part, the impact of fruit, vegetable

  1. Coevolution and Life Cycle Specialization of Plant Cell Wall Degrading Enzymes in a Hemibiotrophic Pathogen

    PubMed Central

    Brunner, Patrick C.; Torriani, Stefano F.F.; Croll, Daniel; Stukenbrock, Eva H.; McDonald, Bruce A.

    2013-01-01

    Zymoseptoria tritici is an important fungal pathogen on wheat that originated in the Fertile Crescent. Its closely related sister species Z. pseudotritici and Z. ardabiliae infect wild grasses in the same region. This recently emerged host–pathogen system provides a rare opportunity to investigate the evolutionary processes shaping the genome of an emerging pathogen. Here, we investigate genetic signatures in plant cell wall degrading enzymes (PCWDEs) that are likely affected by or driving coevolution in plant-pathogen systems. We hypothesize four main evolutionary scenarios and combine comparative genomics, transcriptomics, and selection analyses to assign the majority of PCWDEs in Z. tritici to one of these scenarios. We found widespread differential transcription among different members of the same gene family, challenging the idea of functional redundancy and suggesting instead that specialized enzymatic activity occurs during different stages of the pathogen life cycle. We also find that natural selection has significantly affected at least 19 of the 48 identified PCWDEs. The majority of genes showed signatures of purifying selection, typical for the scenario of conserved substrate optimization. However, six genes showed diversifying selection that could be attributed to either host adaptation or host evasion. This study provides a powerful framework to better understand the roles played by different members of multigene families and to determine which genes are the most appropriate targets for wet laboratory experimentation, for example, to elucidate enzymatic function during relevant phases of a pathogen’s life cycle. PMID:23515261

  2. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    PubMed Central

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized. PMID:26999188

  3. Immune activation promotes evolutionary conservation of T-cell epitopes in HIV-1.

    PubMed

    Sanjuán, Rafael; Nebot, Miguel R; Peris, Joan B; Alcamí, José

    2013-01-01

    The immune system should constitute a strong selective pressure promoting viral genetic diversity and evolution. However, HIV shows lower sequence variability at T-cell epitopes than elsewhere in the genome, in contrast with other human RNA viruses. Here, we propose that epitope conservation is a consequence of the particular interactions established between HIV and the immune system. On one hand, epitope recognition triggers an anti-HIV response mediated by cytotoxic T-lymphocytes (CTLs), but on the other hand, activation of CD4(+) helper T lymphocytes (TH cells) promotes HIV replication. Mathematical modeling of these opposite selective forces revealed that selection at the intrapatient level can promote either T-cell epitope conservation or escape. We predict greater conservation for epitopes contributing significantly to total immune activation levels (immunodominance), and when TH cell infection is concomitant to epitope recognition (trans-infection). We suggest that HIV-driven immune activation in the lymph nodes during the chronic stage of the disease may offer a favorable scenario for epitope conservation. Our results also support the view that some pathogens draw benefits from the immune response and suggest that vaccination strategies based on conserved TH epitopes may be counterproductive.

  4. Circadian clock regulation of the cell cycle in the zebrafish intestine.

    PubMed

    Peyric, Elodie; Moore, Helen A; Whitmore, David

    2013-01-01

    The circadian clock controls cell proliferation in a number of healthy tissues where cell renewal and regeneration are critical for normal physiological function. The intestine is an organ that typically undergoes regular cycles of cell division, differentiation and apoptosis as part of its role in digestion and nutrient absorption. The aim of this study was to explore circadian clock regulation of cell proliferation and cell cycle gene expression in the zebrafish intestine. Here we show that the zebrafish gut contains a directly light-entrainable circadian pacemaker, which regulates the daily timing of mitosis. Furthermore, this intestinal clock controls the expression of key cell cycle regulators, such as cdc2, wee1, p21, PCNA and cdk2, but only weakly influences cyclin B1, cyclin B2 and cyclin E1 expression. Interestingly, food deprivation has little impact on circadian clock function in the gut, but dramatically reduces cell proliferation, as well as cell cycle gene expression in this tissue. Timed feeding under constant dark conditions is able to drive rhythmic expression not only of circadian clock genes, but also of several cell cycle genes, suggesting that food can entrain the clock, as well as the cell cycle in the intestine. Rather surprisingly, we found that timed feeding is critical for high amplitude rhythms in cell cycle gene expression, even when zebrafish are maintained on a light-dark cycle. Together these results suggest that the intestinal clock integrates multiple rhythmic cues, including light and food, to function optimally.

  5. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner.

    PubMed

    Zhang, Jian; Wei, Wei; Jin, Hui-Cheng; Ying, Rong-Chao; Zhu, A-Kao; Zhang, Fang-Jie

    2015-01-01

    Programmed cell death 2 (PDCD2) is a highly conserved nuclear protein, and aberrant PDCD2 expression alters cell apoptosis. The present study aimed to investigate PDCD2 expression in gastric cancer. Tissue specimens from 34 gastric cancer patients were collected for analysis of PDCD2 expression using immunohistochemistry, western blotting and qRT-PCR. Gastric cancer cell lines (a p53-mutated MKN28 line and a wild-type p53 MKN45 line) were used to assess the effects of PDCD2 overexpression. p53-/- nude mice were used to investigate the effect of PDCD2 on ultraviolet B (UVB)-induced skin carcinogenesis. The data showed that PDCD2 expression was reduced in gastric cancer tissue specimens, and loss of PDCD2 expression was associated with the poor survival of patients. PDCD2 expression induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis. The antitumor effects of PDCD2 expression were dependent on p53 expression in gastric cancer cells. Moreover, PDCD2 expression inhibited activity of the ATM/Chk1/2/p53 signaling pathway. In addition, PDCD2 expression suppressed UVB-induced skin carcinogenesis in p53+/+ nude mice, but not in p53-/- mice. The data from the present study demonstrated that loss of PDCD2 expression could contribute to gastric cancer development and progression and that PDCD2-induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis are p53-dependent. PMID:25334010

  6. Programmed cell cycle arrest is required for infection of corn plants by the fungus Ustilago maydis.

    PubMed

    Castanheira, Sónia; Mielnichuk, Natalia; Pérez-Martín, José

    2014-12-01

    Ustilago maydis is a plant pathogen that requires a specific structure called infective filament to penetrate the plant tissue. Although able to grow, this filament is cell cycle arrested on the plant surface. This cell cycle arrest is released once the filament penetrates the plant tissue. The reasons and mechanisms for this cell cycle arrest are unknown. Here, we have tried to address these questions. We reached three conclusions from our studies. First, the observed cell cycle arrest is the result of the cooperation of at least two distinct mechanisms: one involving the activation of the DNA damage response (DDR) cascade; and the other relying on the transcriptional downregulation of Hsl1, a kinase that modulates the G2/M transition. Second, a sustained cell cycle arrest during the infective filament step is necessary for the virulence in U. maydis, as a strain unable to arrest the cell cycle was severely impaired in its ability to infect corn plants. Third, production of the appressorium, a structure required for plant penetration, is incompatible with an active cell cycle. The inability to infect plants by strains defective in cell cycle arrest seems to be caused by their failure to induce the appressorium formation process. In summary, our findings uncover genetic circuits to arrest the cell cycle during the growth of this fungus on the plant surface, thus allowing the penetration into plant tissue.

  7. Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle.

    PubMed

    Schrader, Jared M; Shapiro, Lucy

    2015-04-08

    The cell cycle is important for growth, genome replication, and development in all cells. In bacteria, studies of the cell cycle have focused largely on unsynchronized cells making it difficult to order the temporal events required for cell cycle progression, genome replication, and division. Caulobacter crescentus provides an excellent model system for the bacterial cell cycle whereby cells can be rapidly synchronized in a G0 state by density centrifugation. Cell cycle synchronization experiments have been used to establish the molecular events governing chromosome replication and segregation, to map a genetic regulatory network controlling cell cycle progression, and to identify the establishment of polar signaling complexes required for asymmetric cell division. Here we provide a detailed protocol for the rapid synchronization of Caulobacter NA1000 cells. Synchronization can be performed in a large-scale format for gene expression profiling and western blot assays, as well as a small-scale format for microscopy or FACS assays. The rapid synchronizability and high cell yields of Caulobacter make this organism a powerful model system for studies of the bacterial cell cycle.

  8. Visualizing spatiotemporal dynamics of multicellular cell-cycle progressions with fucci technology.

    PubMed

    Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2014-05-01

    The visualization of cell-cycle behavior of individual cells within complex tissues presents an irresistible challenge to biologists studying multicellular structures. However, the transition from G1 to S in the cell cycle is difficult to monitor despite the fact that the process involves the critical decision to initiate a new round of DNA replication. Here, we use ubiquitination oscillators that control cell-cycle transitions to develop genetically encoded fluorescent probes for cell-cycle progression. Fucci (fluorescent ubiquitination-based cell-cycle indicator) probes exploit the regulation of cell-cycle-dependent ubiquitination to effectively label individual nuclei in G1 phase red, and those in S/G2/M phases green. Cultured cells and transgenic mice constitutively expressing the probes have been generated, such that every cell nucleus shows either red or green fluorescence. This protocol details two experiments that use biological samples expressing Fucci probes. One experiment involves time-lapse imaging of cells stably expressing a Fucci derivative (Fucci2), which allows for the exploration of the spatiotemporal patterns of cell-cycle dynamics during structural and behavioral changes of cultured cells. The other experiment involves large-field, high-resolution imaging of fixed sections of Fucci transgenic mouse embryos, which provides maps that illustrate cell proliferation versus differentiation in various developing organs.

  9. Physiology of Saccharomyces cerevisiae during cell cycle oscillations.

    PubMed

    Duboc, P; Marison, I; von Stockar, U

    1996-10-18

    Synchronized populations of Saccharomyces cerevisiae CBS 426 are characterized by autonomous oscillations of process variables. CO2 evolution rate, O2 uptake rate and heat production rate varied by a factor of 2 for a continuous culture grown at a dilution rate of 0.10 h-1. Elemental analysis showed that the carbon mass fraction of biomass did not change. Since the reactor is not at steady state, the elemental and energy balances were calculated on cumulated quantities, i.e. the integral of the reaction rates. It was possible to show that carbon, degree of reduction and energy balances matched. Application of simple mass balance principles for non-steady state systems indicated that oscillations were basically characterized by changes in biomass production rate. In addition, the amount of intermediates, e.g. ethanol or acetate, produced or consumed was negligible. Growth rate was low during the S-phase (0.075 h-1) and high during the G2, M and G1 phases (0.125 h-1) for a constant dilution rate of 0.10 h-1. However, nitrogen, ash, sulfur and potassium content showed systematic increases during the S-phase (bud initiation). Cell component analyses showed that changes in cellular fractions during oscillations (storage carbohydrate content decreased during the S-phase) were due to changes in production rates, particularly for protein and carbohydrates. Nevertheless, using the data evaluation techniques for dynamic systems presented here, it was shown that storage carbohydrates are not consumed during the S-phase. Only the synthesis rate of the different cell components changed depending on position in cell cycle. The growth process may be divided into two phenomena: the formation of new cells during mitosis with a low yield, and size increase of new born cells with high yield. Both kinetic and stoichiometric coefficients varied with the position in the oscillation: the results showed that biomass structure changed and that specific growth rate, as well as biomass yield

  10. The marine-derived fungal metabolite, terrein, inhibits cell proliferation and induces cell cycle arrest in human ovarian cancer cells.

    PubMed

    Chen, Yi-Fei; Wang, Shu-Ying; Shen, Hong; Yao, Xiao-Fen; Zhang, Feng-Li; Lai, Dongmei

    2014-12-01

    The difficulties faced in the effective treatment of ovarian cancer are multifactorial, but are mainly associated with relapse and drug resistance. Cancer stem-like cells have been reported to be an important contributor to these hindering factors. In this study, we aimed to investigate the anticancer activities of a bioactive fungal metabolite, namely terrein, against the human epithelial ovarian cancer cell line, SKOV3, primary human ovarian cancer cells and ovarian cancer stem-like cells. Terrein was separated and purified from the fermentation metabolites of the marine sponge-derived fungus, Aspergillus terreus strain PF26. Its anticancer activities against ovarian cancer cells were investigated by cell proliferation assay, cell migration assay, cell apoptosis and cell cycle assays. The ovarian cancer stem-like cells were enriched and cultured in a serum-free in vitro suspension system. Terrein inhibited the proliferation of the ovarian cancer cells by inducing G2/M phase cell cycle arrest. The underlying mechanisms involved the suppression of the expression of LIN28, an important marker gene of stemness in ovarian cancer stem cells. Of note, our study also demonstrated the ability of terrein to inhibit the proliferation of ovarian cancer stem-like cells, in which the expression of LIN28 was also downregulated. Our findings reveal that terrein (produced by fermention) may prove to be a promising drug candidate for the treatment of ovarian cancer by inhibiting the proliferation of cancer stem-like cells.

  11. Cancer cell(s) cycle sequencing reveals universal mechanisms of apoptosis.

    PubMed

    Marretta, R M Ardito; Ales, F

    2010-12-01

    In this paper, cell cycle in higher eukaryotes and their molecular networks signals both in G1/S and G2/M transitions are replicated in silico. Biochemical kinetics, converted into a set of differential equations, and system control theory are employed to design multi-nested digital layers to simulate protein-to-protein activation and inhibition for cell cycle dynamics in the presence of damaged genomes. Sequencing and controlling the digital process of four micro-scale species networks (p53/Mdm2/DNA damage, p21mRNA/cyclin-CDK complex, CDK/CDC25/weel/SKP2/APC/CKI and apoptosis target genes system) not only allows the comprehension of the mechanisms of these molecule interactions but paves the way for unraveling the participants and their by-products, until now quite unclear, which have the task of carrying out (or not) cell death. Whatever the running simulations (e.g., different species signals, mutant cells and different DNA damage levels), the results of the proposed cell digital multi-layers give reason to believe in the existence of a universal apoptotic mechanism. As a consequence, we identified and selected cell check points, sizers, timers and specific target genes dynamic both for influencing mitotic process and avoiding cancer proliferation as much as for leading the cancer cell(s) to collapse into a steady stable apoptosis phase. PMID:21141676

  12. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    NASA Astrophysics Data System (ADS)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  13. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription

    PubMed Central

    Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt

    2016-01-01

    Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731

  14. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle

    PubMed Central

    2012-01-01

    The retinoblastoma (RB) family of proteins are found in organisms as distantly related as humans, plants, and insects. These proteins play a key role in regulating advancement of the cell division cycle from the G1 to S-phases. This is achieved through negative regulation of two important positive regulators of cell cycle entry, E2F transcription factors and cyclin dependent kinases. In growth arrested cells transcriptional activity by E2Fs is repressed by RB proteins. Stimulation of cell cycle entry by growth factor signaling leads to activation of cyclin dependent kinases. They in turn phosphorylate and inactivate the RB family proteins, leading to E2F activation and additional cyclin dependent kinase activity. This propels the cell cycle irreversibly forward leading to DNA synthesis. This review will focus on the basic biochemistry and cell biology governing the regulation and activity of mammalian RB family proteins in cell cycle control. PMID:22417103

  15. Transcriptomic profiling of human embryonic stem cells upon cell cycle manipulation during pluripotent state dissolution.

    PubMed

    Gonzales, Kevin Andrew Uy; Liang, Hongqing

    2015-12-01

    While distinct cell cycle structures have been known to correlate with pluripotent or differentiated cell states [1], there is no evidence on how the cell cycle machinery directly contributes to human embryonic stem cell (hESC) pluripotency. We established a determinant role of cell cycle machineries on the pluripotent state by demonstrating that the specific perturbation of the S and G2 phases can prevent pluripotent state dissolution (PSD) [2]. Active mechanisms in these phases, such as the DNA damage checkpoint and Cyclin B1, promote the pluripotent state [2]. To understand the mechanisms behind the effect on PSD by these pathways in hESCs, we performed comprehensive gene expression analysis by time-course microarray experiments. From these datasets, we observed expression changes in genes involved in the TGFβ signaling pathway, which has a well-established role in hESC maintenance [3], [4], [5]. The microarray data have been deposited in NCBI's Gene Expression Omnibus (GEO) and can be accessed through GEO Series accession numbers GSE62062 and GSE63215.

  16. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  17. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    SciTech Connect

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki . E-mail: mikeda.emb@tmd.ac.jp

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  18. Ef