Conservation and diversification of Msx protein in metazoan evolution.
Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun
2008-01-01
Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family proteins contributed to the diversification of animal body organization.
Two rapidly evolving genes contribute to male fitness in Drosophila
Reinhardt, Josephine A; Jones, Corbin D
2013-01-01
Purifying selection often results in conservation of gene sequence and function. The most functionally conserved genes are also thought to be among the most biologically essential. These observations have led to the use of sequence conservation as a proxy for functional conservation. Here we describe two genes that are exceptions to this pattern. We show that lack of sequence conservation among orthologs of CG15460 and CG15323 – herein named jean-baptiste (jb) and karr respectively – does not necessarily predict lack of functional conservation. These two Drosophila melanogaster genes are among the most rapidly evolving protein-coding genes in this species, being nearly as diverged from their D. yakuba orthologs as random sequences are. jb and karr are both expressed at an elevated level in larval males and adult testes, but they are not accessory gland proteins and their loss does not affect male fertility. Instead, knockdown of these genes in D. melanogaster via RNA interference caused male-biased viability defects. These viability effects occur prior to the third instar for jb and during late pupation for karr. We show that putative orthologs to jb and karr are also expressed strongly in the testes of other Drosophila species and have similar gene structure across species despite low levels of sequence conservation. While standard molecular evolution tests could not reject neutrality, other data hint at a role for natural selection. Together these data provide a clear case where a lack of sequence conservation does not imply a lack of conservation of expression or function. PMID:24221639
Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Simona; Boore, Jeffrey L.; Meyer, Axel
2003-12-31
Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less
USDA-ARS?s Scientific Manuscript database
Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...
Burgess, Diane; Freeling, Michael
2014-01-01
In vertebrates, conserved noncoding elements (CNEs) are functionally constrained sequences that can show striking conservation over >400 million years of evolutionary distance and frequently are located megabases away from target developmental genes. Conserved noncoding sequences (CNSs) in plants are much shorter, and it has been difficult to detect conservation among distantly related genomes. In this article, we show not only that CNS sequences can be detected throughout the eudicot clade of flowering plants, but also that a subset of 37 CNSs can be found in all flowering plants (diverging ∼170 million years ago). These CNSs are functionally similar to vertebrate CNEs, being highly associated with transcription factor and development genes and enriched in transcription factor binding sites. Some of the most highly conserved sequences occur in genes encoding RNA binding proteins, particularly the RNA splicing–associated SR genes. Differences in sequence conservation between plants and animals are likely to reflect differences in the biology of the organisms, with plants being much more able to tolerate genomic deletions and whole-genome duplication events due, in part, to their far greater fecundity compared with vertebrates. PMID:24681619
Targeting Conserved Genes in Penicillium Species.
Peterson, Stephen W
2017-01-01
Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of dideoxynucleotide-labeled fragments or NGS. The sequences are compared to a database of validated isolates. Identification of species indicates the potential of the fungus to make particular mycotoxins.
PUTATIVE GENE PROMOTER SEQUENCES IN THE CHLORELLA VIRUSES
Fitzgerald, Lisa A.; Boucher, Philip T.; Yanai-Balser, Giane; Suhre, Karsten; Graves, Michael V.; Van Etten, James L.
2008-01-01
Three short (7 to 9 nucleotides) highly conserved nucleotide sequences were identified in the putative promoter regions (150 bp upstream and 50 bp downstream of the ATG translation start site) of three members of the genus Chlorovirus, family Phycodnaviridae. Most of these sequences occurred in similar locations within the defined promoter regions. The sequence and location of the motifs were often conserved among homologous ORFs within the Chlorovirus family. One of these conserved sequences (AATGACA) is predominately associated with genes expressed early in virus replication. PMID:18768195
Fahlgren, Noah; Howell, Miya D.; Kasschau, Kristin D.; Chapman, Elisabeth J.; Sullivan, Christopher M.; Cumbie, Jason S.; Givan, Scott A.; Law, Theresa F.; Grant, Sarah R.; Dangl, Jeffery L.; Carrington, James C.
2007-01-01
In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks. PMID:17299599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Yemin; Rosen, Gail; Hershberg, Ruth
The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to separate between prokaryotes at finer taxonomic levels. In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that themore » percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally, we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are always those that are least conserved in their sequences within each lineage. In conclusion, our results show that by choosing markers that are less conserved in their sequences within a lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created (POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation within different prokaryotic lineages.« less
Lan, Yemin; Rosen, Gail; Hershberg, Ruth
2016-05-03
The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to separate between prokaryotes at finer taxonomic levels. In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that themore » percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally, we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are always those that are least conserved in their sequences within each lineage. In conclusion, our results show that by choosing markers that are less conserved in their sequences within a lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created (POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation within different prokaryotic lineages.« less
Conserved noncoding sequences (CNSs) in higher plants.
Freeling, Michael; Subramaniam, Shabarinath
2009-04-01
Plant conserved noncoding sequences (CNSs)--a specific category of phylogenetic footprint--have been shown experimentally to function. No plant CNS is conserved to the extent that ultraconserved noncoding sequences are conserved in vertebrates. Plant CNSs are enriched in known transcription factor or other cis-acting binding sites, and are usually clustered around genes. Genes that encode transcription factors and/or those that respond to stimuli are particularly CNS-rich. Only rarely could this function involve small RNA binding. Some transcribed CNSs encode short translation products as a form of negative control. Approximately 4% of Arabidopsis gene content is estimated to be both CNS-rich and occupies a relatively long stretch of chromosome: Bigfoot genes (long phylogenetic footprints). We discuss a 'DNA-templated protein assembly' idea that might help explain Bigfoot gene CNSs.
Asamizu, Erika; Nakamura, Yasukazu; Sato, Shusei; Tabata, Satoshi
2004-02-01
To perform a comprehensive analysis of genes expressed in a model legume, Lotus japonicus, a total of 74472 3'-end expressed sequence tags (EST) were generated from cDNA libraries produced from six different organs. Clustering of sequences was performed with an identity criterion of 95% for 50 bases, and a total of 20457 non-redundant sequences, 8503 contigs and 11954 singletons were generated. EST sequence coverage was analyzed by using the annotated L. japonicus genomic sequence and 1093 of the 1889 predicted protein-encoding genes (57.9%) were hit by the EST sequence(s). Gene content was compared to several plant species. Among the 8503 contigs, 471 were identified as sequences conserved only in leguminous species and these included several disease resistance-related genes. This suggested that in legumes, these genes may have evolved specifically to resist pathogen attack. The rate of gene sequence divergence was assessed by comparing similarity level and functional category based on the Gene Ontology (GO) annotation of Arabidopsis genes. This revealed that genes encoding ribosomal proteins, as well as those related to translation, photosynthesis, and cellular structure were more abundantly represented in the highly conserved class, and that genes encoding transcription factors and receptor protein kinases were abundantly represented in the less conserved class. To make the sequence information and the cDNA clones available to the research community, a Web database with useful services was created at http://www.kazusa.or.jp/en/plant/lotus/EST/.
Tsuchiya, Karen D.; Greally, John M.; Yi, Yajun; Noel, Kevin P.; Truong, Jean-Pierre; Disteche, Christine M.
2004-01-01
We have performed X-inactivation and sequence analyses on 350 kb of sequence from human Xp11.2, a region shown previously to contain a cluster of genes that escape X inactivation, and we compared this region with the region of conserved synteny in mouse. We identified several new transcripts from this region in human and in mouse, which defined the full extent of the domain escaping X inactivation in both species. In human, escape from X inactivation involves an uninterrupted 235-kb domain of multiple genes. Despite highly conserved gene content and order between the two species, Smcx is the only mouse gene from the conserved segment that escapes inactivation. As repetitive sequences are believed to facilitate spreading of X inactivation along the chromosome, we compared the repetitive sequence composition of this region between the two species. We found that long terminal repeats (LTRs) were decreased in the human domain of escape, but not in the majority of the conserved mouse region adjacent to Smcx in which genes were subject to X inactivation, suggesting that these repeats might be excluded from escape domains to prevent spreading of silencing. Our findings indicate that genomic context, as well as gene-specific regulatory elements, interact to determine expression of a gene from the inactive X-chromosome. PMID:15197169
Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K
2014-01-01
Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. Copyright © 2013 Elsevier Inc. All rights reserved.
Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.
Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M
2010-12-15
Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.
Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya
2015-01-01
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930
Genomic structure of the human D-site binding protein (DBP) gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutler, G.; Glassco, T.; Kang, Xiaolin
1996-06-15
The human gene for the D-Site Binding Protein (DBP) has been sequenced and characterized. This gene is a member of the b/ZIP family of transcription factors and is one of three genes forming the PAR sub-family. DBP has been implicated in the diurnal regulation of a variety of liver-specific genes. Examination of the genomic structure of DBP reveals that the gene is divided into four exons and is contained within a relatively compact region of approximately 6 kb. These exons appear to correspond to functional divisions the DBP protein. Exon 1 contains a long 5{prime} UTR, and conservation between themore » rat and the human genes of the presence of small open reading frames within this region suggests that is may play a role in translational control. Exon 2 contains a limited region of similarity to the other PAR domain genes, which may be part of a potential activation domain. Exon 3 contains the PAR domain and differs by only 1 of 71 amino acids between rat and human. Exon 4, containing both the basic and the leucine zipper domains, is likewise highly conserved. The overall degree of homology between the rat and the human cDNA sequences is 82% for the nucleic acid sequence and 92% for the protein sequence. comparison of the rat and human proximal promoters reveals extensive sequence conservation, with two previously characterized DNA binding sites being conserved at the functional and sequence levels. 31 refs., 4 figs.« less
Nomiyama, H; Kuhara, S; Kukita, T; Otsuka, T; Sakaki, Y
1981-01-01
The 26S ribosomal RNA gene of Physarum polycephalum is interrupted by two introns, and we have previously determined the sequence of one of them (intron 1) (Nomiyama et al. Proc.Natl.Acad.Sci.USA 78, 1376-1380, 1981). In this study we sequenced the second intron (intron 2) of about 0.5 kb length and its flanking regions, and found that one nucleotide at each junction is identical in intron 1 and intron 2, though the junction regions share no other sequence homology. Comparison of the flanking exon sequences to E. coli 23S rRNA sequences shows that conserved sequences are interspersed with tracts having little homology. In particular, the region encompassing the intron 2 interruption site is highly conserved. The E. coli ribosomal protein L1 binding region is also conserved. Images PMID:6171776
Sebestyén, Endre; Nagy, Tibor; Suhai, Sándor; Barta, Endre
2009-01-01
Background The comparative genomic analysis of a large number of orthologous promoter regions of the chordate and plant genes from the DoOP databases shows thousands of conserved motifs. Most of these motifs differ from any known transcription factor binding site (TFBS). To identify common conserved motifs, we need a specific tool to be able to search amongst them. Since conserved motifs from the DoOP databases are linked to genes, the result of such a search can give a list of genes that are potentially regulated by the same transcription factor(s). Results We have developed a new tool called DoOPSearch for the analysis of the conserved motifs in the promoter regions of chordate or plant genes. We used the orthologous promoters of the DoOP database to extract thousands of conserved motifs from different taxonomic groups. The advantage of this approach is that different sets of conserved motifs might be found depending on how broad the taxonomic coverage of the underlying orthologous promoter sequence collection is (consider e.g. primates vs. mammals or Brassicaceae vs. Viridiplantae). The DoOPSearch tool allows the users to search these motif collections or the promoter regions of DoOP with user supplied query sequences or any of the conserved motifs from the DoOP database. To find overrepresented gene ontologies, the gene lists obtained can be analysed further using a modified version of the GeneMerge program. Conclusion We present here a comparative genomics based promoter analysis tool. Our system is based on a unique collection of conserved promoter motifs characteristic of different taxonomic groups. We offer both a command line and a web-based tool for searching in these motif collections using user specified queries. These can be either short promoter sequences or consensus sequences of known transcription factor binding sites. The GeneMerge analysis of the search results allows the user to identify statistically overrepresented Gene Ontology terms that might provide a clue on the function of the motifs and genes. PMID:19534755
Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2007-01-01
We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.
2004-08-06
The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayedmore » embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less
The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.
Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.
Department of Medicine, Howard Hughes Medical Institute, Duke Univer...
Conserved noncoding sequences conserve biological networks and influence genome evolution.
Xie, Jianbo; Qian, Kecheng; Si, Jingna; Xiao, Liang; Ci, Dong; Zhang, Deqiang
2018-05-01
Comparative genomics approaches have identified numerous conserved cis-regulatory sequences near genes in plant genomes. Despite the identification of these conserved noncoding sequences (CNSs), our knowledge of their functional importance and selection remains limited. Here, we used a combination of DNA methylome analysis, microarray expression analyses, and functional annotation to study these sequences in the model tree Populus trichocarpa. Methylation in CG contexts and non-CG contexts was lower in CNSs, particularly CNSs in the 5'-upstream regions of genes, compared with other sites in the genome. We observed that CNSs are enriched in genes with transcription and binding functions, and this also associated with syntenic genes and those from whole-genome duplications, suggesting that cis-regulatory sequences play a key role in genome evolution. We detected a significant positive correlation between CNS number and protein interactions, suggesting that CNSs may have roles in the evolution and maintenance of biological networks. The divergence of CNSs indicates that duplication-degeneration-complementation drives the subfunctionalization of a proportion of duplicated genes from whole-genome duplication. Furthermore, population genomics confirmed that most CNSs are under strong purifying selection and only a small subset of CNSs shows evidence of adaptive evolution. These findings provide a foundation for future studies exploring these key genomic features in the maintenance of biological networks, local adaptation, and transcription.
Comparative genomic analysis of the false killer whale (Pseudorca crassidens) LMBR1 locus.
Kim, Dae-Won; Choi, Sang-Haeng; Kim, Ryong Nam; Kim, Sun-Hong; Paik, Sang-Gi; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Aeri; Kang, Aram; Park, Hong-Seog
2010-09-01
The sequencing and comparative genomic analysis of LMBR1 loci in mammals or other species, including human, would be very important in understanding evolutionary genetic changes underlying the evolution of limb development. In this regard, comparative genomic annotation of the false killer whale LMBR1 locus could shed new light on the evolution of limb development. We sequenced two false killer whale BAC clones, corresponding to 156 kb and 144 kb, respectively, harboring the tightly linked RNF32, LMBR1, and NOM1 genes. Our annotation of the false killer whale LMBR1 gene showed that it consists of 17 exons (1473 bp), in contrast to 18 exons (1596 bp) in human, and it displays 93.1% and 95.6% nucleotide and amino acid sequence similarity, respectively, compared with the human gene. In particular, we discovered that exon 10, deleted in the false killer whale LMBR1 gene, is present only in primates, and this fact strongly implies that exon 10 might be crucial in determining primate-specific limb development. ZRS and TFBS sequences have been well conserved across 11 species, suggesting that these regions could be involved in an important function of limb development and limb patterning. The neighboring gene RNF32 showed several lineage-conserved exons, such as exons 2 through 9 conserved in eutherian mammals, exons 3 through 9 conserved in mammals, and exons 5 through 9 conserved in vertebrates. The other neighboring gene, NOM1, had undergone a substitution (ATG→GTA) at the start codon, giving rise to a 36 bp shorter N-terminal sequence compared with the human sequence. Our comparative analysis of the false killer whale LMBR1 genomic locus provides important clues regarding the genetic regions that may play crucial roles in limb development and patterning.
Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637
Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.
Powell, Bradford C; Hutchison, Clyde A
2006-01-19
Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene prediction. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.
Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs
Powell, Bradford C; Hutchison, Clyde A
2006-01-01
Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes. PMID:16423288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.
2004-08-06
Background The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. Results We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene,more » and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Conclusions Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity.« less
Conservation of Transcription Start Sites within Genes across a Bacterial Genus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.
Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved.more » Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function.« less
Kirby, Ralph; Herron, Paul; Hoskisson, Paul
2011-02-01
Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.
Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O
2000-12-15
Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.
Bonen, Linda; Boer, Poppo H.; Gray, Michael W.
1984-01-01
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity. ImagesFig. 3.Fig. 4.Fig. 5. PMID:16453565
Samson, Marie-Laure
2008-01-01
Background The Drosophila gene embryonic lethal abnormal visual system (elav) is the prototype of a gene family present in all metazoans. Its members encode structurally conserved neuronal proteins with three RNA Recognition Motifs (RRM) but they paradoxically act at diverse levels of post-transcriptional regulation. In an attempt to understand the history of this family, we searched for orthologs in eleven completely sequenced genomes, including those of humans, D. melanogaster and C. elegans, for which cDNAs are available. Results We analyzed 23 orthologs/paralogs of elav, and found evidence of gain/loss of gene copy number. For one set of genes, including elav itself, the coding sequences are free of introns and their products most resemble ELAV. The remaining genes show remarkable conservation of their exon organization, and their products most resemble FNE and RBP9, proteins encoded by the two elav paralogs of Drosophila. Remarkably, three of the conserved exon junctions are both close to structural elements, involved respectively in protein-RNA interactions and in the regulation of sub-cellular localization, and in the vicinity of diverse sequence variations. Conclusion The data indicate that the essential elav gene of Drosophila is newly emerged, restricted to dipterans and of retrotransposed origin. We propose that the conserved exon junctions constitute potential sites for sequence/function modifications, and that RRM binding proteins, whose function relies upon plastic RNA-protein interactions, may have played an important role in brain evolution. PMID:18715504
Gerencsér, Ákos; Barta, Endre; Boa, Simon; Kastanis, Petros; Bösze, Zsuzsanna; Whitelaw, C Bruce A
2002-01-01
κ-casein plays an essential role in the formation, stabilisation and aggregation of milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. We determined the 5'-flanking sequences for the murine, rabbit and human κ-casein genes and compared them to the published ruminant sequences. The most conserved region was not the proximal promoter region but an approximately 400 bp long region centred 800 bp upstream of the TATA box. This region contained two highly conserved MGF/STAT5 sites with common spacing relative to each other. In this region, six conserved short stretches of similarity were also found which did not correspond to known transcription factor consensus sites. On the contrary to ruminant and human 5' regulatory sequences, the rabbit and murine 5'-flanking regions did not harbour any kind of repetitive elements. We generated a phylogenetic tree of the six species based on multiple alignment of the κ-casein sequences. This study identified conserved candidate transcriptional regulatory elements within the κ-casein gene promoter. PMID:11929628
Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping
2013-01-01
Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520
Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping
2013-01-01
Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.
Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S
1994-01-01
To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378
González, Carolina; Tabernero, David; Cortese, Maria Francesca; Gregori, Josep; Casillas, Rosario; Riveiro-Barciela, Mar; Godoy, Cristina; Sopena, Sara; Rando, Ariadna; Yll, Marçal; Lopez-Martinez, Rosa; Quer, Josep; Esteban, Rafael; Buti, Maria; Rodríguez-Frías, Francisco
2018-05-21
To detect hyper-conserved regions in the hepatitis B virus (HBV) X gene ( HBX ) 5' region that could be candidates for gene therapy. The study included 27 chronic hepatitis B treatment-naive patients in various clinical stages (from chronic infection to cirrhosis and hepatocellular carcinoma, both HBeAg-negative and HBeAg-positive), and infected with HBV genotypes A-F and H. In a serum sample from each patient with viremia > 3.5 log IU/mL, the HBX 5' end region [nucleotide (nt) 1255-1611] was PCR-amplified and submitted to next-generation sequencing (NGS). We assessed genotype variants by phylogenetic analysis, and evaluated conservation of this region by calculating the information content of each nucleotide position in a multiple alignment of all unique sequences (haplotypes) obtained by NGS. Conservation at the HBx protein amino acid (aa) level was also analyzed. NGS yielded 1333069 sequences from the 27 samples, with a median of 4578 sequences/sample (2487-9279, IQR 2817). In 14/27 patients (51.8%), phylogenetic analysis of viral nucleotide haplotypes showed a complex mixture of genotypic variants. Analysis of the information content in the haplotype multiple alignments detected 2 hyper-conserved nucleotide regions, one in the HBX upstream non-coding region (nt 1255-1286) and the other in the 5' end coding region (nt 1519-1603). This last region coded for a conserved amino acid region (aa 63-76) that partially overlaps a Kunitz-like domain. Two hyper-conserved regions detected in the HBX 5' end may be of value for targeted gene therapy, regardless of the patients' clinical stage or HBV genotype.
Carlson, M; Celenza, J L; Eng, F J
1985-01-01
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres. Images PMID:3018485
Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada
2015-01-01
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191
Chakravorty, S; Sarkar, S; Gachhui, R
2015-01-01
The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.
Bjorklund, H.V.; Higman, K.H.; Kurath, G.
1996-01-01
The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2–33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.
Bjorklund, H.V.; Higman, K.H.; Kurath, G.
1996-01-01
The nucleotide sequences of the glycoprotein genes and all of the internal gene junctions of the fish pathogenic rhabdoviruses spring viremia of carp virus (SVCV) and hirame rhabdovirus (HIRRV) have been determined from cDNA clones generated from viral genomic RNA. The SVCV glycoprotein gene sequence is 1588 nucleotides (nt) long and encodes a 509 amino acid (aa) protein. The HIRRV glycoprotein gene sequence comprises 1612 nt, coding for a 508 aa protein. In sequence comparisons of 15 rhabdovirus glycoproteins, the SVCV glycoprotein gene showed the highest amino acid sequence identity (31.2-33.2%) with vesicular stomatitis New Jersey virus (VSNJV), Chandipura virus (CHPV) and vesicular stomatitis Indiana virus (VSIV). The HIRRV glycoprotein gene showed a very high amino acid sequence identity (74.3%) with the glycoprotein gene of another fish pathogenic rhabdovirus, infectious hematopoietic necrosis virus (IHNV), but no significant similarity with glycoproteins of VSIV or rabies virus (RABV). In phylogenetic analyses SVCV was grouped consistently with VSIV, VSNJV and CHPV in the Vesiculovirus genus of Rhabdoviridae. The fish rhabdoviruses HIRRV, IHNV and viral hemorrhagic septicemia virus (VHSV) showed close relationships with each other, but only very distant relationships with mammalian rhabdoviruses. The gene junctions are highly conserved between SVCV and VSIV, well conserved between IHNV and HIRRV, but not conserved between HIRRV/IHNV and RABV. Based on the combined results we suggest that the fish lyssa-type rhabdoviruses HIRRV, IHNV and VHSV may be grouped in their own genus within the family Rhabdoviridae. Aquarhabdovirus has been proposed for the name of this new genus.
Negre, Bárbara; Casillas, Sònia; Suzanne, Magali; Sánchez-Herrero, Ernesto; Akam, Michael; Nefedov, Michael; Barbadilla, Antonio; de Jong, Pieter; Ruiz, Alfredo
2005-01-01
Homeotic (Hox) genes are usually clustered and arranged in the same order as they are expressed along the anteroposterior body axis of metazoans. The mechanistic explanation for this colinearity has been elusive, and it may well be that a single and universal cause does not exist. The Hox-gene complex (HOM-C) has been rearranged differently in several Drosophila species, producing a striking diversity of Hox gene organizations. We investigated the genomic and functional consequences of the two HOM-C splits present in Drosophila buzzatii. Firstly, we sequenced two regions of the D. buzzatii genome, one containing the genes labial and abdominal A, and another one including proboscipedia, and compared their organization with that of D. melanogaster and D. pseudoobscura in order to map precisely the two splits. Then, a plethora of conserved noncoding sequences, which are putative enhancers, were identified around the three Hox genes closer to the splits. The position and order of these enhancers are conserved, with minor exceptions, between the three Drosophila species. Finally, we analyzed the expression patterns of the same three genes in embryos and imaginal discs of four Drosophila species with different Hox-gene organizations. The results show that their expression patterns are conserved despite the HOM-C splits. We conclude that, in Drosophila, Hox-gene clustering is not an absolute requirement for proper function. Rather, the organization of Hox genes is modular, and their clustering seems the result of phylogenetic inertia more than functional necessity. PMID:15867430
Arabidopsis intragenomic conserved noncoding sequence
Thomas, Brian C.; Rapaka, Lakshmi; Lyons, Eric; Pedersen, Brent; Freeling, Michael
2007-01-01
After the most recent tetraploidy in the Arabidopsis lineage, most gene pairs lost one, but not both, of their duplicates. We manually inspected the 3,179 retained gene pairs and their surrounding gene space still present in the genome using a custom-made viewer application. The display of these pairs allowed us to define intragenic conserved noncoding sequences (CNSs), identify exon annotation errors, and discover potentially new genes. Using a strict algorithm to sort high-scoring pair sequences from the bl2seq data, we created a database of 14,944 intragenomic Arabidopsis CNSs. The mean CNS length is 31 bp, ranging from 15 to 285 bp. There are ≈1.7 CNSs associated with a typical gene, and Arabidopsis CNSs are found in all areas around exons, most frequently in the 5′ upstream region. Gene ontology classifications related to transcription, regulation, or “response to …” external or endogenous stimuli, especially hormones, tend to be significantly overrepresented among genes containing a large number of CNSs, whereas protein localization, transport, and metabolism are common among genes with no CNSs. There is a 1.5% overlap between these CNSs and the 218,982 putative RNAs in the Arabidopsis Small RNA Project database, allowing for two mismatches. These CNSs provide a unique set of noncoding sequences enriched for function. CNS function is implied by evolutionary conservation and independently supported because CNS-richness predicts regulatory gene ontology categories. PMID:17301222
Vouille, V; Amiche, M; Nicolas, P
1997-09-01
We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.
Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps
Smircich, Pablo; Duhagon, María Ana; Garat, Beatriz
2015-01-01
In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes. PMID:26718450
Conservation and divergence of ADAM family proteins in the Xenopus genome
2010-01-01
Background Members of the disintegrin metalloproteinase (ADAM) family play important roles in cellular and developmental processes through their functions as proteases and/or binding partners for other proteins. The amphibian Xenopus has long been used as a model for early vertebrate development, but genome-wide analyses for large gene families were not possible until the recent completion of the X. tropicalis genome sequence and the availability of large scale expression sequence tag (EST) databases. In this study we carried out a systematic analysis of the X. tropicalis genome and uncovered several interesting features of ADAM genes in this species. Results Based on the X. tropicalis genome sequence and EST databases, we identified Xenopus orthologues of mammalian ADAMs and obtained full-length cDNA clones for these genes. The deduced protein sequences, synteny and exon-intron boundaries are conserved between most human and X. tropicalis orthologues. The alternative splicing patterns of certain Xenopus ADAM genes, such as adams 22 and 28, are similar to those of their mammalian orthologues. However, we were unable to identify an orthologue for ADAM7 or 8. The Xenopus orthologue of ADAM15, an active metalloproteinase in mammals, does not contain the conserved zinc-binding motif and is hence considered proteolytically inactive. We also found evidence for gain of ADAM genes in Xenopus as compared to other species. There is a homologue of ADAM10 in Xenopus that is missing in most mammals. Furthermore, a single scaffold of X. tropicalis genome contains four genes encoding ADAM28 homologues, suggesting genome duplication in this region. Conclusions Our genome-wide analysis of ADAM genes in X. tropicalis revealed both conservation and evolutionary divergence of these genes in this amphibian species. On the one hand, all ADAMs implicated in normal development and health in other species are conserved in X. tropicalis. On the other hand, some ADAM genes and ADAM protease activities are absent, while other novel ADAM proteins in this species are predicted by this study. The conservation and unique divergence of ADAM genes in Xenopus probably reflect the particular selective pressures these amphibian species faced during evolution. PMID:20630080
Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai
2015-11-24
Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.
Proudhon, D; Wei, J; Briat, J; Theil, E C
1996-03-01
Ferritin, a protein widespread in nature, concentrates iron approximately 10(11)-10(12)-fold above the solubility within a spherical shell of 24 subunits; it derives in plants and animals from a common ancestor (based on sequence) but displays a cytoplasmic location in animals compared to the plastid in contemporary plants. Ferritin gene regulation in plants and animals is altered by development, hormones, and excess iron; iron signals target DNA in plants but mRNA in animals. Evolution has thus conserved the two end points of ferritin gene expression, the physiological signals and the protein structure, while allowing some divergence of the genetic mechanisms. Comparison of ferritin gene organization in plants and animals, made possible by the cloning of a dicot (soybean) ferritin gene presented here and the recent cloning of two monocot (maize) ferritin genes, shows evolutionary divergence in ferritin gene organization between plants and animals but conservation among plants or among animals; divergence in the genetic mechanism for iron regulation is reflected by the absence in all three plant genes of the IRE, a highly conserved, noncoding sequence in vertebrate animal ferritin mRNA. In plant ferritin genes, the number of introns (n = 7) is higher than in animals (n = 3). Second, no intron positions are conserved when ferritin genes of plants and animals are compared, although all ferritin gene introns are in the coding region; within kingdoms, the intron positions in ferritin genes are conserved. Finally, secondary protein structure has no apparent relationship to intron/exon boundaries in plant ferritin genes, whereas in animal ferritin genes the correspondence is high. The structural differences in introns/exons among phylogenetically related ferritin coding sequences and the high conservation of the gene structure within plant or animal kingdoms of the gene structure within plant or animal kingdoms suggest that kingdom-specific functional constraints may exist to maintain a particular intron/exon pattern within ferritin genes. In the case of plants, where ferritin gene intron placement is unrelated to triplet codons or protein structure, and where ferritin is targeted to the plastid, the selection pressure on gene organization may relate to RNA function and plastid/nuclear signaling.
Principles of regulatory information conservation between mouse and human.
Cheng, Yong; Ma, Zhihai; Kim, Bong-Hyun; Wu, Weisheng; Cayting, Philip; Boyle, Alan P; Sundaram, Vasavi; Xing, Xiaoyun; Dogan, Nergiz; Li, Jingjing; Euskirchen, Ghia; Lin, Shin; Lin, Yiing; Visel, Axel; Kawli, Trupti; Yang, Xinqiong; Patacsil, Dorrelyn; Keller, Cheryl A; Giardine, Belinda; Kundaje, Anshul; Wang, Ting; Pennacchio, Len A; Weng, Zhiping; Hardison, Ross C; Snyder, Michael P
2014-11-20
To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human-mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and with genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences.
Turco, Gina; Schnable, James C.; Pedersen, Brent; Freeling, Michael
2013-01-01
Conserved non-coding sequences (CNS) are islands of non-coding sequence that, like protein coding exons, show less divergence in sequence between related species than functionless DNA. Several CNSs have been demonstrated experimentally to function as cis-regulatory regions. However, the specific functions of most CNSs remain unknown. Previous searches for CNS in plants have either anchored on exons and only identified nearby sequences or required years of painstaking manual annotation. Here we present an open source tool that can accurately identify CNSs between any two related species with sequenced genomes, including both those immediately adjacent to exons and distal sequences separated by >12 kb of non-coding sequence. We have used this tool to characterize new motifs, associate CNSs with additional functions, and identify previously undetected genes encoding RNA and protein in the genomes of five grass species. We provide a list of 15,363 orthologous CNSs conserved across all grasses tested. We were also able to identify regulatory sequences present in the common ancestor of grasses that have been lost in one or more extant grass lineages. Lists of orthologous gene pairs and associated CNSs are provided for reference inbred lines of arabidopsis, Japonica rice, foxtail millet, sorghum, brachypodium, and maize. PMID:23874343
Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.
2005-01-01
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085
Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada
2015-07-20
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Blazier, J Chris; Ruhlman, Tracey A; Weng, Mao-Lun; Rehman, Sumaiyah K; Sabir, Jamal S M; Jansen, Robert K
2016-04-18
Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.
Martin, Natalia; Patel, Satyakam; Segre, Julia A.
2004-01-01
Mammalian epidermis provides a permeability barrier between an organism and its environment. Under homeostatic conditions, epidermal cells produce structural proteins, which are cross-linked in an orderly fashion to form a cornified envelope (CE). However, under genetic or environmental stress, specific genes are induced to rapidly build a temporary barrier. Small proline-rich (SPRR) proteins are the primary constituents of the CE. Under stress the entire family of 14 Sprr genes is upregulated. The Sprr genes are clustered within the larger epidermal differentiation complex on mouse chromosome 3, human chromosome 1q21. The clustering of the Sprr genes and their upregulation under stress suggest that these genes may be coordinately regulated. To identify enhancer elements that regulate this stress response activation of the Sprr locus, we utilized bioinformatic tools and classical biochemical dissection. Long-range comparative sequence analysis identified conserved noncoding sequences (CNSs). Clusters of epidermal-specific DNaseI-hypersensitive sites (HSs) mapped to specific CNSs. Increased prevalence of these HSs in barrier-deficient epidermis provides in vivo evidence of the regulation of the Sprr locus by these conserved sequences. Individual components of these HSs were cloned, and one was shown to have strong enhancer activity specific to conditions when the Sprr genes are coordinately upregulated. PMID:15574822
The most conserved genome segments for life detection on Earth and other planets.
Isenbarger, Thomas A; Carr, Christopher E; Johnson, Sarah Stewart; Finney, Michael; Church, George M; Gilbert, Walter; Zuber, Maria T; Ruvkun, Gary
2008-12-01
On Earth, very simple but powerful methods to detect and classify broad taxa of life by the polymerase chain reaction (PCR) are now standard practice. Using DNA primers corresponding to the 16S ribosomal RNA gene, one can survey a sample from any environment for its microbial inhabitants. Due to massive meteoritic exchange between Earth and Mars (as well as other planets), a reasonable case can be made for life on Mars or other planets to be related to life on Earth. In this case, the supremely sensitive technologies used to study life on Earth, including in extreme environments, can be applied to the search for life on other planets. Though the 16S gene has become the standard for life detection on Earth, no genome comparisons have established that the ribosomal genes are, in fact, the most conserved DNA segments across the kingdoms of life. We present here a computational comparison of full genomes from 13 diverse organisms from the Archaea, Bacteria, and Eucarya to identify genetic sequences conserved across the widest divisions of life. Our results identify the 16S and 23S ribosomal RNA genes as well as other universally conserved nucleotide sequences in genes encoding particular classes of transfer RNAs and within the nucleotide binding domains of ABC transporters as the most conserved DNA sequence segments across phylogeny. This set of sequences defines a core set of DNA regions that have changed the least over billions of years of evolution and provides a means to identify and classify divergent life, including ancestrally related life on other planets.
Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.
2015-01-01
This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030
DRS is far less divergent than streptococcal inhibitor of complement of group A streptococcus.
Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K; Menon, Thangam; Chakraborti, Anuradha
2007-04-01
When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences.
DRS Is Far Less Divergent than Streptococcal Inhibitor of Complement of Group A Streptococcus▿
Sagar, Vivek; Kumar, Rajesh; Ganguly, Nirmal K.; Menon, Thangam; Chakraborti, Anuradha
2007-01-01
When 100 group A streptococcus isolates were screened, drs, a variant of sic, was identified in emm12 and emm55 isolates. Molecular characterization showed that the drs gene sequence is highly conserved, unlike the sic gene sequence. However, the variation in gene size observed was due to the presence of extra internal repeat sequences. PMID:17237170
Barta, Endre; Sebestyén, Endre; Pálfy, Tamás B.; Tóth, Gábor; Ortutay, Csaba P.; Patthy, László
2005-01-01
DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21 061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically. PMID:15608291
Barta, Endre; Sebestyén, Endre; Pálfy, Tamás B; Tóth, Gábor; Ortutay, Csaba P; Patthy, László
2005-01-01
DoOP (http://doop.abc.hu/) is a database of eukaryotic promoter sequences (upstream regions) aiming to facilitate the recognition of regulatory sites conserved between species. The annotated first exons of human and Arabidopsis thaliana genes were used as queries in BLAST searches to collect the most closely related orthologous first exon sequences from Chordata and Viridiplantae species. Up to 3000 bp DNA segments upstream from these first exons constitute the clusters in the chordate and plant sections of the Database of Orthologous Promoters. Release 1.0 of DoOP contains 21,061 chordate clusters from 284 different species and 7548 plant clusters from 269 different species. The database can be used to find and retrieve promoter sequences of a given gene from various species and it is also suitable to see the most trivial conserved sequence blocks in the orthologous upstream regions. Users can search DoOP with either sequence or text (annotation) to find promoter clusters of various genes. In addition to the sequence data, the positions of the conserved sequence blocks derived from multiple alignments, the positions of repetitive elements and the positions of transcription start sites known from the Eukaryotic Promoter Database (EPD) can be viewed graphically.
Busslinger, M; Portmann, R; Irminger, J C; Birnstiel, M L
1980-01-01
The DNA sequences of the entire structural H4, H3, H2A and H2B genes and of their 5' flanking regions have been determined in the histone DNA clone h19 of the sea urchin Psammechinus miliaris. In clone h19 the polarity of transcription and the relative arrangement of the histone genes is identical to that in clone h22 of the same species. The histone proteins encoded by h19 DNA differ in their primary structure from those encoded by clone h22 and have been compared to histone protein sequences of other sea urchin species as well as other eukaryotes. A comparative analysis of the 5' flanking DNA sequences of the structural histone genes in both clones revealed four ubiquitous sequence motifs; a pentameric element GATCC, followed at short distance by the Hogness box GTATAAATAG, a conserved sequence PyCATTCPu, in or near which the 5' ends of the mRNAs map in h22 DNA and lastly a sequence A, containing the initiation codon. These sequences are also found, sometimes in modified version, in front of other eukaryotic genes transcribed by polymerase II. When prelude sequences of isocoding histone genes in clone h19 and h22 are compared areas of homology are seen to extend beyond the ubiquitous sequence motifs towards the divergent AT-rich spacer and terminate between approximately 140 and 240 nucleotides away from the structural gene. These prelude regions contain quite large conservative sequence blocks which are specific for each type of histone genes. Images PMID:7443547
Hunt, C; Morimoto, R I
1985-01-01
We have determined the nucleotide sequence of the human hsp70 gene and 5' flanking region. The hsp70 gene is transcribed as an uninterrupted primary transcript of 2440 nucleotides composed of a 5' noncoding leader sequence of 212 nucleotides, a 3' noncoding region of 242 nucleotides, and a continuous open reading frame of 1986 nucleotides that encodes a protein with predicted molecular mass of 69,800 daltons. Upstream of the 5' terminus are the canonical TATAAA box, the sequence ATTGG that corresponds in the inverted orientation to the CCAAT motif, and the dyad sequence CTGGAAT/ATTCCCG that shares homology in 12 of 14 positions with the consensus transcription regulatory sequence common to Drosophila heat shock genes. Comparison of the predicted amino acid sequences of human hsp70 with the published sequences of Drosophila hsp70 and Escherichia coli dnaK reveals that human hsp70 is 73% identical to Drosophila hsp70 and 47% identical to E. coli dnaK. Surprisingly, the nucleotide sequences of the human and Drosophila genes are 72% identical and human and E. coli genes are 50% identical, which is more highly conserved than necessary given the degeneracy of the genetic code. The lack of accumulated silent nucleotide substitutions leads us to propose that there may be additional information in the nucleotide sequence of the hsp70 gene or the corresponding mRNA that precludes the maximum divergence allowed in the silent codon positions. PMID:3931075
Wang, Xin-Cun; Shao, Junjie; Liu, Chang
2016-07-01
We have determined the complete nucleotide sequence of the mitochondrial genome of the medicinal fungus Ganoderma applanatum (Pers.) Pat. using the next-generation sequencing technology. The circular molecule is 119,803 bp long with a GC content of 26.66%. Gene prediction revealed genes encoding 15 conserved proteins, 25 tRNAs, the large and small ribosomal RNAs, all genes are located on the same strand except trnW-CCA. Compared with previously sequenced genomes of G. lucidum, G. meredithiae and G. sinense, the order of the protein and rRNA genes is highly conserved; however, the types of tRNA genes are slightly different. The mitochondrial genome of G. applanatum will contribute to the understanding of the phylogeny and evolution of Ganoderma and Ganodermataceae, the group containing many species with high medicinal values.
Evolution of meiotic recombination genes in maize and teosinte.
Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P
2017-01-25
Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Biaoyang; Nasir, J.; Kalchman, M.A.
1995-02-10
We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less
Genomic Sequence around Butterfly Wing Development Genes: Annotation and Comparative Analysis
Conceição, Inês C.; Long, Anthony D.; Gruber, Jonathan D.; Beldade, Patrícia
2011-01-01
Background Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. Methodology/Principal Findings We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations) and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes). Conclusions The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1) the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2) the high conservation of non-coding sequence around the genes wingless and Ecdysone receptor, both involved in multiple developmental processes including wing pattern formation. PMID:21909358
Gene family size conservation is a good indicator of evolutionary rates.
Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen
2010-08-01
The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.
The complete mitochondrial genome of Lota lota (Gadiformes: Gadidae) from the Burqin River in China.
Lu, Zhichuang; Zhang, Nan; Song, Na; Gao, Tianxiang
2016-05-01
In this study, the complete mitochondrial genome (mitogenome) sequence of Lota lota has been determined by long polymerase chain reaction and primer walking methods. The mitogenome is a circular molecule of 16,519 bp in length and contains 37 mitochondrial genes including 13 protein-coding genes, 2 ribosomal RNA (rRNA), 22 transfer RNA (tRNA) and a control region as other bony fishes. Within the control region, we identified the termination-associated sequence domain (TAS), the central conserved sequence block domains (CSB-F and CSB-D), and the conserved sequence block domains (CSB-1, CSB-2 and CSB-3).
Xing, Wen-Rui; Hou, Bei-Wei; Guan, Jing-Jiao; Luo, Jing; Ding, Xiao-Yu
2013-04-01
The LEAFY (LFY) homologous gene of Dendrobium moniliforme (L.) Sw. was cloned by new primers which were designed based on the conservative region of known sequences of orchid LEAFY gene. Partial LFY homologous gene was cloned by common PCR, then we got the complete LFY homologous gene Den LFY by Tail-PCR. The complete sequence of DenLFY gene was 3 575 bp which contained three exons and two introns. Using BLAST method, comparison analysis among the exon of LFY homologous gene indicted that the DenLFY gene had high identity with orchids LFY homologous, including the related fragment of PhalLFY (84%) in Phalaenopsis hybrid cultivar, LFY homologous gene in Oncidium (90%) and in other orchid (over 80%). Using MP analysis, Dendrobium is found to be the sister to Oncidium and Phalaenopsis. Homologous analysis demonstrated that the C-terminal amino acids were highly conserved. When the exons and introns were separately considered, exons and the sequence of amino acid were good markers for the function research of DenLFY gene. The second intron can be used in authentication research of Dendrobium based on the length polymorphism between Dendrobium moniliforme and Dendrobium officinale.
Yedavalli, Venkat R. K.; Chappey, Colombe; Matala, Erik; Ahmad, Nafees
1998-01-01
The human immunodeficiency virus type 1 (HIV-1) vif gene is conserved among most lentiviruses, suggesting that vif is important for natural infection. To determine whether an intact vif gene is positively selected during mother-to-infant transmission, we analyzed vif sequences from five infected mother-infant pairs following perinatal transmission. The coding potential of the vif open reading frame directly derived from uncultured peripheral blood mononuclear cell DNA was maintained in most of the 78,912 bp sequenced. We found that 123 of the 137 clones analyzed showed an 89.8% frequency of intact vif open reading frames. There was a low degree of heterogeneity of vif genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vif sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Furthermore, the epidemiologically linked mother-infant pair vif sequences displayed similar patterns that were not seen in vif sequences from epidemiologically unlinked individuals. The functional domains, including the two cysteines at positions 114 and 133, a serine phosphorylation site at position 144, and the C-terminal basic amino acids essential for vif protein function, were highly conserved in most of the sequences. Phylogenetic analyses of 137 mother-infant pair vif sequences and 187 other available vif sequences from HIV-1 databases revealed distinct clusters for vif sequences from each mother-infant pair and for other vif sequences. Taken together, these findings suggest that vif plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants. PMID:9445004
DNA-DNA hybridization values and their relationship to whole-genome sequence similarities.
Goris, Johan; Konstantinidis, Konstantinos T; Klappenbach, Joel A; Coenye, Tom; Vandamme, Peter; Tiedje, James M
2007-01-01
DNA-DNA hybridization (DDH) values have been used by bacterial taxonomists since the 1960s to determine relatedness between strains and are still the most important criterion in the delineation of bacterial species. Since the extent of hybridization between a pair of strains is ultimately governed by their respective genomic sequences, we examined the quantitative relationship between DDH values and genome sequence-derived parameters, such as the average nucleotide identity (ANI) of common genes and the percentage of conserved DNA. A total of 124 DDH values were determined for 28 strains for which genome sequences were available. The strains belong to six important and diverse groups of bacteria for which the intra-group 16S rRNA gene sequence identity was greater than 94 %. The results revealed a close relationship between DDH values and ANI and between DNA-DNA hybridization and the percentage of conserved DNA for each pair of strains. The recommended cut-off point of 70 % DDH for species delineation corresponded to 95 % ANI and 69 % conserved DNA. When the analysis was restricted to the protein-coding portion of the genome, 70 % DDH corresponded to 85 % conserved genes for a pair of strains. These results reveal extensive gene diversity within the current concept of "species". Examination of reciprocal values indicated that the level of experimental error associated with the DDH method is too high to reveal the subtle differences in genome size among the strains sampled. It is concluded that ANI can accurately replace DDH values for strains for which genome sequences are available.
Georgi, Laura; Johnson-Cicalese, Jennifer; Honig, Josh; Das, Sushma Parankush; Rajah, Veeran D; Bhattacharya, Debashish; Bassil, Nahla; Rowland, Lisa J; Polashock, James; Vorsa, Nicholi
2013-03-01
The first genetic map of cranberry (Vaccinium macrocarpon) has been constructed, comprising 14 linkage groups totaling 879.9 cM with an estimated coverage of 82.2 %. This map, based on four mapping populations segregating for field fruit-rot resistance, contains 136 distinct loci. Mapped markers include blueberry-derived simple sequence repeat (SSR) and cranberry-derived sequence-characterized amplified region markers previously used for fingerprinting cranberry cultivars. In addition, SSR markers were developed near cranberry sequences resembling genes involved in flavonoid biosynthesis or defense against necrotrophic pathogens, or conserved orthologous set (COS) sequences. The cranberry SSRs were developed from next-generation cranberry genomic sequence assemblies; thus, the positions of these SSRs on the genomic map provide information about the genomic location of the sequence scaffold from which they were derived. The use of SSR markers near COS and other functional sequences, plus 33 SSR markers from blueberry, facilitates comparisons of this map with maps of other plant species. Regions of the cranberry map were identified that showed conservation of synteny with Vitis vinifera and Arabidopsis thaliana. Positioned on this map are quantitative trait loci (QTL) for field fruit-rot resistance (FFRR), fruit weight, titratable acidity, and sound fruit yield (SFY). The SFY QTL is adjacent to one of the fruit weight QTL and may reflect pleiotropy. Two of the FFRR QTL are in regions of conserved synteny with grape and span defense gene markers, and the third FFRR QTL spans a flavonoid biosynthetic gene.
Evolution of the vertebrate insulin receptor substrate (Irs) gene family.
Al-Salam, Ahmad; Irwin, David M
2017-06-23
Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.
2014-01-01
Background Deciphering of the information content of eukaryotic promoters has remained confined to universal landmarks and conserved sequence elements such as enhancers and transcription factor binding motifs, which are considered sufficient for gene activation and regulation. Gene-specific sequences, interspersed between the canonical transacting factor binding sites or adjoining them within a promoter, are generally taken to be devoid of any regulatory information and have therefore been largely ignored. An unanswered question therefore is, do gene-specific sequences within a eukaryotic promoter have a role in gene activation? Here, we present an exhaustive experimental analysis of a gene-specific sequence adjoining the heat shock element (HSE) in the proximal promoter of the small heat shock protein gene, αB-crystallin (cryab). These sequences are highly conserved between the rodents and the humans. Results Using human retinal pigment epithelial cells in culture as the host, we have identified a 10-bp gene-specific promoter sequence (GPS), which, unlike an enhancer, controls expression from the promoter of this gene, only when in appropriate position and orientation. Notably, the data suggests that GPS in comparison with the HSE works in a context-independent fashion. Additionally, when moved upstream, about a nucleosome length of DNA (−154 bp) from the transcription start site (TSS), the activity of the promoter is markedly inhibited, suggesting its involvement in local promoter access. Importantly, we demonstrate that deletion of the GPS results in complete loss of cryab promoter activity in transgenic mice. Conclusions These data suggest that gene-specific sequences such as the GPS, identified here, may have critical roles in regulating gene-specific activity from eukaryotic promoters. PMID:24589182
Gonzalez, S M; Ferland, L H; Robert, B; Abdelhay, E
1998-06-01
Vertebrate Msx genes are related to one of the most divergent homeobox genes of Drosophila, the muscle segment homeobox (msh) gene, and are expressed in a well-defined pattern at sites of tissue interactions. This pattern of expression is conserved in vertebrates as diverse as quail, zebrafish, and mouse in a range of sites including neural crest, appendages, and craniofacial structures. In the present work, we performed structural and functional analyses in order to identify potential cis-acting elements that may be regulating Msx1 gene expression. To this end, a 4.9-kb segment of the 5'-flanking region was sequenced and analyzed for transcription-factor binding sites. Four regions showing a high concentration of these sites were identified. Transfection assays with fragments of regulatory sequences driving the expression of the bacterial lacZ reporter gene showed that a region of 4 kb upstream of the transcription start site contains positive and negative elements responsible for controlling gene expression. Interestingly, a fragment of 130 bp seems to contain the minimal elements necessary for gene expression, as its removal completely abolishes gene expression in cultured cells. These results are reinforced by comparison of this region with the human Msx1 gene promoter, which shows extensive conservation, including many consensus binding sites, suggesting a regulatory role for them.
Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.
2016-01-01
Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667
Complete Genome Sequence and Comparative Analysis of the Fish Pathogen Lactococcus garvieae
Oshima, Kenshiro; Yoshizaki, Mariko; Kawanishi, Michiko; Nakaya, Kohei; Suzuki, Takehito; Miyauchi, Eiji; Ishii, Yasuo; Tanabe, Soichi; Murakami, Masaru; Hattori, Masahira
2011-01-01
Lactococcus garvieae causes fatal haemorrhagic septicaemia in fish such as yellowtail. The comparative analysis of genomes of a virulent strain Lg2 and a non-virulent strain ATCC 49156 of L. garvieae revealed that the two strains shared a high degree of sequence identity, but Lg2 had a 16.5-kb capsule gene cluster that is absent in ATCC 49156. The capsule gene cluster was composed of 15 genes, of which eight genes are highly conserved with those in exopolysaccharide biosynthesis gene cluster often found in Lactococcus lactis strains. Sequence analysis of the capsule gene cluster in the less virulent strain L. garvieae Lg2-S, Lg2-derived strain, showed that two conserved genes were disrupted by a single base pair deletion, respectively. These results strongly suggest that the capsule is crucial for virulence of Lg2. The capsule gene cluster of Lg2 may be a genomic island from several features such as the presence of insertion sequences flanked on both ends, different GC content from the chromosomal average, integration into the locus syntenic to other lactococcal genome sequences, and distribution in human gut microbiomes. The analysis also predicted other potential virulence factors such as haemolysin. The present study provides new insights into understanding of the virulence mechanisms of L. garvieae in fish. PMID:21829716
Principles of regulatory information conservation between mouse and human
Cheng, Yong; Ma, Zhihai; Kim, Bong-Hyun; ...
2014-11-19
To broaden our understanding of the evolution of gene regulation mechanisms, we generated occupancy profiles for 34 orthologous transcription factors (TFs) in human–mouse erythroid progenitor, lymphoblast and embryonic stem-cell lines. By combining the genome-wide transcription factor occupancy repertoires, associated epigenetic signals, and co-association patterns, here we deduce several evolutionary principles of gene regulatory features operating since the mouse and human lineages diverged. The genomic distribution profiles, primary binding motifs, chromatin states, and DNA methylation preferences are well conserved for TF-occupied sequences. However, the extent to which orthologous DNA segments are bound by orthologous TFs varies both among TFs and withmore » genomic location: binding at promoters is more highly conserved than binding at distal elements. Notably, occupancy-conserved TF-occupied sequences tend to be pleiotropic; they function in several tissues and also co-associate with many TFs. Lastly, single nucleotide variants at sites with potential regulatory functions are enriched in occupancy-conserved TF-occupied sequences.« less
Nguyen, Thong T; Suryamohan, Kushal; Kuriakose, Boney; Janakiraman, Vasantharajan; Reichelt, Mike; Chaudhuri, Subhra; Guillory, Joseph; Divakaran, Neethu; Rabins, P E; Goel, Ridhi; Deka, Bhabesh; Sarkar, Suman; Ekka, Preety; Tsai, Yu-Chih; Vargas, Derek; Santhosh, Sam; Mohan, Sangeetha; Chin, Chen-Shan; Korlach, Jonas; Thomas, George; Babu, Azariah; Seshagiri, Somasekar
2018-06-12
We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.
Lu, Hong; Patil, Prabhu; Van Sluys, Marie-Anne; White, Frank F; Ryan, Robert P; Dow, J Maxwell; Rabinowicz, Pablo; Salzberg, Steven L; Leach, Jan E; Sonti, Ramesh; Brendel, Volker; Bogdanove, Adam J
2008-01-01
Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors) cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major modifications or wholesale exchange of clusters, but subtle changes in a small number of genes or in non-coding sequences, and/or differences outside the clusters, potentially among regulatory targets or secretory substrates.
Bahramnejad, Bahman
2014-01-01
P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran. The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) genes was used to amplify and clone homologous sequences from P. atlantica subsp. Kurdica. A DNA fragment of the expected 500-bp size was amplified. The nucleotide sequence of this amplicon was obtained through sequencing and the predicted amino acid sequence compared to the amino acid sequences of known R-genes revealed significant sequence similarity. Alignment of the deduced amino acid sequence of P. atlantica subsp. Kurdica resistance gene analog (RGA) showed strong identity, ranging from 68% to 77%, to the non-toll interleukin receptor (non-TIR) R-gene subfamily from other plants. A P-loop motif (GMMGGEGKTT), a conserved and hydrophobic motif GLPLAL, a kinase-2a motif (LLVLDDV), when replaced by IAVFDDI in PAKRGA1 and a kinase-3a (FGPGSRIII) were presented in all RGA. A phylogenetic tree, based on the deduced amino-acid sequences of PAKRGA1 and RGAs from different species indicated that they were separated in two clusters, PAKRGA1 being on cluster II. The isolated NBS analogs can be eventually used as guidelines to isolate numerous R-genes in Pistachio. PMID:27843981
Remarkable sequence conservation of the last intron in the PKD1 gene.
Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P
2003-10-01
The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.
Harraghy, Niamh; Homerova, Dagmar; Herrmann, Mathias; Kormanec, Jan
2008-01-01
Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.
Evidence for a lineage of virulent bacteriophages that target Campylobacter.
Timms, Andrew R; Cambray-Young, Joanna; Scott, Andrew E; Petty, Nicola K; Connerton, Phillippa L; Clarke, Louise; Seeger, Kathy; Quail, Mike; Cummings, Nicola; Maskell, Duncan J; Thomson, Nicholas R; Connerton, Ian F
2010-03-30
Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (> or = 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other Campylobacter bacteriophages, forming a highly conserved lineage of bacteriophages that predate upon campylobacters and indicating that highly adapted bacteriophage genomes can be stable over prolonged periods of time.
P53 Gene Mutagenesis in Breast Cancer
2005-03-01
the wild type T peak. 12 Table 1. Sonic ntations dected by SINtA Individual Cell Sequence Amino Acid Species Conservation 3 ID’ ID Change2 Change... differences in the content of toxic substances in the diet (Biggs et al., 1993; Blaszyk et al., 1996). The development of this p53 mutation load...Changes in the P53 Gene in Single Cells Individual Sequence Amino acid Species conservation ’ ID’ Cell ID change’ change Monkey Mouse Rat Chicken
Williams, R R; Hassan-Walker, A F; Lavender, F L; Morgan, M; Faik, P; Ragoussis, J
2001-05-16
Minisatellites are tandemly repeated DNA sequences found throughout the genomes of all eukaryotes. They are regions often prone to instability and hence hypervariability; thus repeat unit sequence is generally not conserved beyond closely related species. We have studied the minisatellite located in intron 9 of the human glucose phosphate isomerase (GPI) gene (also known as neuroleukin, autocrine motility factor, maturation and differentiation factor) and have found, by Zoo blotting coupled with PCR amplification and DNA sequencing, that similar repeat units are present in seven other species of mammal. There is also evidence for the presence of the minisatellite in chicken. The repeat unit does not appear to be present at any other locus in these genomes. Minisatellite DNA has been reported to be involved in recombination activity, control of gene expression of nearby gene(s) (both transcriptional and translational), whilst others form protein coding regions. The high level of conservation exhibited by the GPI minisatellite, coupled with the unique location, strongly suggests a functional role. Our results from transient and stable transfections using luciferase reporter constructs have shown that the GPI minisatellite region can act to increase transcription from the SV40 promoter, CMV promoter and the human GPI promoter.
Nozaki, T; Arase, T; Shigeta, Y; Asai, T; Leustek, T; Takeuchi, T
1998-12-08
A gene encoding adenosine-5'-triphosphate sulfurylase (AS) was cloned from the enteric protozoan parasite Entamoeba histolytica by polymerase chain reaction using degenerate oligonucleotide primers corresponding to conserved regions of the protein from a variety of organisms. The deduced amino acid sequence of E. histolytica AS revealed a calculated molecular mass of 47925 Da and an unusual basic pI of 9.38. The amebic protein sequence showed 23-48% identities with AS from bacteria, yeasts, fungi, plants, and animals with the highest identities being to Synechocystis sp. and Bacillus subtilis (48 and 44%, respectively). Four conserved blocks including putative sulfate-binding and phosphate-binding regions were highly conserved in the E. histolytica AS. The upstream region of the AS gene contained three conserved elements reported for other E. histolytica genes. A recombinant E. histolytica AS revealed enzymatic activity, measured in both the forward and reverse directions. Expression of the E. histolytica AS complemented cysteine auxotrophy of the AS-deficient Escherichia coli strains. Genomic hybridization revealed that the AS gene exists as a single copy gene. In the literature, this is the first description of an AS gene in Protozoa.
Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K
2016-06-01
The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.
Feltus, F A; Singh, H P; Lohithaswa, H C; Schulze, S R; Silva, T D; Paterson, A H
2006-04-01
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species.
Feltus, F.A.; Singh, H.P.; Lohithaswa, H.C.; Schulze, S.R.; Silva, T.D.; Paterson, A.H.
2006-01-01
Completed genome sequences provide templates for the design of genome analysis tools in orphan species lacking sequence information. To demonstrate this principle, we designed 384 PCR primer pairs to conserved exonic regions flanking introns, using Sorghum/Pennisetum expressed sequence tag alignments to the Oryza genome. Conserved-intron scanning primers (CISPs) amplified single-copy loci at 37% to 80% success rates in taxa that sample much of the approximately 50-million years of Poaceae divergence. While the conserved nature of exons fostered cross-taxon amplification, the lesser evolutionary constraints on introns enhanced single-nucleotide polymorphism detection. For example, in eight rice (Oryza sativa) genotypes, polymorphism averaged 12.1 per kb in introns but only 3.6 per kb in exons. Curiously, among 124 CISPs evaluated across Oryza, Sorghum, Pennisetum, Cynodon, Eragrostis, Zea, Triticum, and Hordeum, 23 (18.5%) seemed to be subject to rigid intron size constraints that were independent of per-nucleotide DNA sequence variation. Furthermore, we identified 487 conserved-noncoding sequence motifs in 129 CISP loci. A large CISP set (6,062 primer pairs, amplifying introns from 1,676 genes) designed using an automated pipeline showed generally higher abundance in recombinogenic than in nonrecombinogenic regions of the rice genome, thus providing relatively even distribution along genetic maps. CISPs are an effective means to explore poorly characterized genomes for both DNA polymorphism and noncoding sequence conservation on a genome-wide or candidate gene basis, and also provide anchor points for comparative genomics across a diverse range of species. PMID:16607031
Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man
Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.
2000-01-01
The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409
Santos, Regie Lyn P.; El-Shanti, Hatem; Sikandar, Shaheen; Lee, Kwanghyuk; Bhatti, Attya; Yan, Kai; Chahrour, Maria H.; McArthur, Nathan; Pham, Thanh L.; Mahasneh, Amjad Abdullah; Ahmad, Wasim
2010-01-01
To date, 37 genes have been identified for nonsyndromic hearing impairment (NSHI). Identifying the functional sequence variants within these genes and knowing their population-specific frequencies is of public health value, in particular for genetic screening for NSHI. To determine putatively functional sequence variants in the transmembrane inner ear (TMIE) gene in Pakistani and Jordanian families with autosomal recessive (AR) NSHI, four Jordanian and 168 Pakistani families with ARNSHI that is not due to GJB2 (CX26) were submitted to a genome scan. Two-point and multipoint parametric linkage analyses were performed, and families with logarithmic odds (LOD) scores of 1.0 or greater within the TMIE region underwent further DNA sequencing. The evolutionary conservation and location in predicted protein domains of amino acid residues where sequence variants occurred were studied to elucidate the possible effects of these sequence variants on function. Of seven families that were screened for TMIE, putatively functional sequence variants were found to segregate with hearing impairment in four families but were not seen in not less than 110 ethnically matched control chromosomes. The previously reported c.241C>T (p.R81C) variant was observed in two Pakistani families. Two novel variants, c.92A>G (p.E31G) and the splice site mutation c.212–2A>C, were identified in one Pakistani and one Jordanian family, respectively. The c.92A>G (p.E31G) variant occurred at a residue that is conserved in the mouse and is predicted to be extracellular. Conservation and potential functionality of previously published mutations were also examined. The prevalence of functional TMIE variants in Pakistani families is 1.7% [95% confidence interval (CI) 0.3–4.8]. Further studies on the spectrum, prevalence rates, and functional effect of sequence variants in the TMIE gene in other populations should demonstrate the true importance of this gene as a cause of hearing impairment. PMID:16389551
Nucleotide and amino acid variations of tannase gene from different Aspergillus strains.
Borrego-Terrazas, J A; Lara-Victoriano, F; Flores-Gallegos, A C; Veana, F; Aguilar, C N; Rodríguez-Herrera, R
2014-08-01
Tannase is an enzyme that catalyses the hydrolysis of ester bonds present in tannins. Most of the scientific reports about this biocatalysis focus on aspects related to tannase production and its recovery; on the other hand, reports assessing the molecular aspects of the tannase gene or protein are scarce. In the present study, a tannase gene fragment from several Aspergillus strains isolated from the Mexican semidesert was sequenced and compared with tannase amino acid sequences reported in NCBI database using bioinformatics tools. The genetic relationship among the different tannase sequences was also determined. A conserved region of 7 amino acids was found with the conserved motif GXSXG common to esterases, in which the active-site serine residue is located. In addition, in Aspergillus niger strains GH1 and PSH, we found an extra codon in the tannase sequences encoding glycine. The tannase gene belonging to semidesert fungal strains followed a neutral evolution path with the formation of 10 haplotypes, of which A. niger GH1 and PSH haplotypes are the oldest.
Fauteux, François; Strömvik, Martina V
2009-01-01
Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs. The majority of discovered motifs match experimentally characterized cis-regulatory elements. These results provide a good starting point for further experimental analysis of plant seed-specific promoters and our methodology can be used to unravel more transcriptional regulatory mechanisms in plants and other eukaryotes. PMID:19843335
Westholm, Jakub O.; Miura, Pedro; Olson, Sara; Shenker, Sol; Joseph, Brian; Sanfilippo, Piero; Celniker, Susan E.; Graveley, Brenton R.; Lai, Eric C.
2014-01-01
Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues and cultured cells, to rigorously annotate >2500 fruitfly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1000 well-conserved canonical miRNA seed matches, especially within coding regions, and coding conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs, and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase dramatically relative to linear isoforms during CNS aging, and constitute a novel aging biomarker. PMID:25544350
The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons.
Braasch, Ingo; Gehrke, Andrew R; Smith, Jeramiah J; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M; Campbell, Michael S; Barrell, Daniel; Martin, Kyle J; Mulley, John F; Ravi, Vydianathan; Lee, Alison P; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E G; Sun, Yi; Hertel, Jana; Beam, Michael J; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H; Litman, Gary W; Litman, Ronda T; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F; Wang, Han; Taylor, John S; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M J; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T; Venkatesh, Byrappa; Holland, Peter W H; Guiguen, Yann; Bobe, Julien; Shubin, Neil H; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H
2016-04-01
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences.
Westholm, Jakub O.; Miura, Pedro; Olson, Sara; ...
2014-11-26
Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and codingmore » conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westholm, Jakub O.; Miura, Pedro; Olson, Sara
Circularization was recently recognized to broadly expand transcriptome complexity. Here, we exploit massive Drosophila total RNA-sequencing data, >5 billion paired-end reads from >100 libraries covering diverse developmental stages, tissues, and cultured cells, to rigorously annotate >2,500 fruit fly circular RNAs. These mostly derive from back-splicing of protein-coding genes and lack poly(A) tails, and the circularization of hundreds of genes is conserved across multiple Drosophila species. We elucidate structural and sequence properties of Drosophila circular RNAs, which exhibit commonalities and distinctions from mammalian circles. Notably, Drosophila circular RNAs harbor >1,000 well-conserved canonical miRNA seed matches, especially within coding regions, and codingmore » conserved miRNA sites reside preferentially within circularized exons. Finally, we analyze the developmental and tissue specificity of circular RNAs and note their preferred derivation from neural genes and enhanced accumulation in neural tissues. Interestingly, circular isoforms increase substantially relative to linear isoforms during CNS aging and constitute an aging biomarker.« less
İnce, İkbal Agah; Pijlman, Gorben P; Vlak, Just M; van Oers, Monique M
2017-11-01
Previously, we observed that the transcripts of Invertebrate iridescent virus 6 (IIV6) are not polyadenylated, in line with the absence of canonical poly(A) motifs (AATAAA) downstream of the open reading frames (ORFs) in the genome. Here, we determined the 3' ends of the transcripts of fifty-four IIV6 virion protein genes in infected Drosophila Schneider 2 (S2) cells. By using ligation-based amplification of cDNA ends (LACE) it was shown that the IIV6 mRNAs often ended with a CAUUA motif. In silico analysis showed that the 3'-untranslated regions of IIV6 genes have the ability to form hairpin structures (22-56 nt in length) and that for about half of all IIV6 genes these 3' sequences contained complementary TAATG and CATTA motifs. We also show that a hairpin in the 3' flanking region with conserved sequence motifs is a conserved feature in invertebrate-infecting iridoviruses (genus Iridovirus and Chloriridovirus). Copyright © 2017 Elsevier Inc. All rights reserved.
The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons
Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.
2016-01-01
To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095
Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A
2015-04-01
In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pettigrew, Christopher; Wayte, Nicola; Lovelock, Paul K; Tavtigian, Sean V; Chenevix-Trench, Georgia; Spurdle, Amanda B; Brown, Melissa A
2005-01-01
Introduction Aberrant pre-mRNA splicing can be more detrimental to the function of a gene than changes in the length or nature of the encoded amino acid sequence. Although predicting the effects of changes in consensus 5' and 3' splice sites near intron:exon boundaries is relatively straightforward, predicting the possible effects of changes in exonic splicing enhancers (ESEs) remains a challenge. Methods As an initial step toward determining which ESEs predicted by the web-based tool ESEfinder in the breast cancer susceptibility gene BRCA1 are likely to be functional, we have determined their evolutionary conservation and compared their location with known BRCA1 sequence variants. Results Using the default settings of ESEfinder, we initially detected 669 potential ESEs in the coding region of the BRCA1 gene. Increasing the threshold score reduced the total number to 464, while taking into consideration the proximity to splice donor and acceptor sites reduced the number to 211. Approximately 11% of these ESEs (23/211) either are identical at the nucleotide level in human, primates, mouse, cow, dog and opossum Brca1 (conserved) or are detectable by ESEfinder in the same position in the Brca1 sequence (shared). The frequency of conserved and shared predicted ESEs between human and mouse is higher in BRCA1 exons (2.8 per 100 nucleotides) than in introns (0.6 per 100 nucleotides). Of conserved or shared putative ESEs, 61% (14/23) were predicted to be affected by sequence variants reported in the Breast Cancer Information Core database. Applying the filters described above increased the colocalization of predicted ESEs with missense changes, in-frame deletions and unclassified variants predicted to be deleterious to protein function, whereas they decreased the colocalization with known polymorphisms or unclassified variants predicted to be neutral. Conclusion In this report we show that evolutionary conservation analysis may be used to improve the specificity of an ESE prediction tool. This is the first report on the prediction of the frequency and distribution of ESEs in the BRCA1 gene, and it is the first reported attempt to predict which ESEs are most likely to be functional and therefore which sequence variants in ESEs are most likely to be pathogenic. PMID:16280041
Mismer, D.; Rubin, G. M.
1989-01-01
We have analyzed the cis-acting regulatory sequences of the Rh1 (ninaE) gene in Drosophila melanogaster by P-element-mediated germline transformation of indicator genes transcribed from mutant ninaE promoter sequences. We have previously shown that a 200-bp region extending from -120 to +67 relative to the transcription start site is sufficient to obtain eye-specific expression from the ninaE promoter. In the present study, 22 different 4-13-bp sequences in the -120/+67 promoter region were altered by oligonucleotide-directed mutagenesis. Several of these sequences were found to be required for proper promoter function; two of these are conserved in the promoter of the homologous gene isolated from the related species Drosophila virilis. Alteration of a conserved 9-bp sequence results in aberrant, low level expression in the body. Alteration of a separate 11-bp sequence, found in the promoter regions of several photoreceptor-specific genes of Drosophila, results in an approximately 15-fold reduction in promoter efficiency but without apparent alteration of tissue-specificity. A protein factor capable of interacting with this 11-bp sequence has been detected by DNaseI footprinting in embryonic nuclear extracts. Finally, we have further characterized two separable enhancer sequences previously shown to be required for normal levels of expression from this promoter. PMID:2521839
Castrignanò, Tiziana; Canali, Alessandro; Grillo, Giorgio; Liuni, Sabino; Mignone, Flavio; Pesole, Graziano
2004-01-01
The identification and characterization of genome tracts that are highly conserved across species during evolution may contribute significantly to the functional annotation of whole-genome sequences. Indeed, such sequences are likely to correspond to known or unknown coding exons or regulatory motifs. Here, we present a web server implementing a previously developed algorithm that, by comparing user-submitted genome sequences, is able to identify statistically significant conserved blocks and assess their coding or noncoding nature through the measure of a coding potential score. The web tool, available at http://www.caspur.it/CSTminer/, is dynamically interconnected with the Ensembl genome resources and produces a graphical output showing a map of detected conserved sequences and annotated gene features. PMID:15215464
Costa, Maria Eduarda S M; Oliveira, Claudio Bruno S; Andrade, Joelma Maria de A; Medeiros, Thatiany A; Neto, Valter F Andrade; Lanza, Daniel C F
2016-07-01
Toxoplasma gondii is a widespread parasite able to infect virtually any nucleated cells of warm-blooded hosts. In some cases, T. gondii detection using already developed PCR primers can be inefficient in routine laboratory tests, especially to detect atypical strains. Here we report a new nested-PCR protocol able to detect virtually all T. gondii isolates. Analyzing 685 sequences available in GenBank, we determine that GRA7 is one of the most conserved genes of T. gondii genome. Based on an alignment of 85 GRA7 sequences new primer sets that anneal in the highly conserved regions of this gene were designed. The new GRA7 nested-PCR assay providing sensitivity and specificity equal to or greater than the gold standard PCR assays for T. gondii detection, that amplify the B1 sequence or the repetitive 529bp element. Copyright © 2016 Elsevier B.V. All rights reserved.
Sequence conservation on the Y chromosome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, L.H.; Yang-Feng, L.; Lau, C.
The Y chromosome is present in all mammals and is considered to be essential to sex determination. Despite intense genomic research, only a few genes have been identified and mapped to this chromosome in humans. Several of them, such as SRY and ZFY, have been demonstrated to be conserved and Y-located in other mammals. In order to address the issue of sequence conservation on the Y chromosome, we performed fluorescence in situ hybridization (FISH) with DNA from a human Y cosmid library as a probe to study the Y chromosomes from other mammalian species. Total DNA from 3,000-4,500 cosmid poolsmore » were labeled with biotinylated-dUTP and hybridized to metaphase chromosomes. For human and primate preparations, human cot1 DNA was included in the hybridization mixture to suppress the hybridization from repeat sequences. FISH signals were detected on the Y chromosomes of human, gorilla, orangutan and baboon (Old World monkey) and were absent on those of squirrel monkey (New World monkey), Indian munjac, wood lemming, Chinese hamster, rat and mouse. Since sequence analysis suggested that specific genes, e.g. SRY and ZFY, are conserved between these two groups, the lack of detectable hybridization in the latter group implies either that conservation of the human Y sequences is limited to the Y chromosomes of the great apes and Old World monkeys, or that the size of the syntenic segment is too small to be detected under the resolution of FISH, or that homologeous sequences have undergone considerable divergence. Further studies with reduced hybridization stringency are currently being conducted. Our results provide some clues as to Y-sequence conservation across species and demonstrate the limitations of FISH across species with total DNA sequences from a particular chromosome.« less
Comparative Analysis of Vertebrate Dystrophin Loci Indicate Intron Gigantism as a Common Feature
Pozzoli, Uberto; Elgar, Greg; Cagliani, Rachele; Riva, Laura; Comi, Giacomo P.; Bresolin, Nereo; Bardoni, Alessandra; Sironi, Manuela
2003-01-01
The human DMD gene is the largest known to date, spanning > 2000 kb on the X chromosome. The gene size is mainly accounted for by huge intronic regions. We sequenced 190 kb of Fugu rubripes (pufferfish) genomic DNA corresponding to the complete dystrophin gene (FrDMD) and provide the first report of gene structure and sequence comparison among dystrophin genomic sequences from different vertebrate organisms. Almost all intron positions and phases are conserved between FrDMD and its mammalian counterparts, and the predicted protein product of the Fugu gene displays 55% identity and 71% similarity to human dystrophin. In analogy to the human gene, FrDMD presents several-fold longer than average intronic regions. Analysis of intron sequences of the human and murine genes revealed that they are extremely conserved in size and that a similar fraction of total intron length is represented by repetitive elements; moreover, our data indicate that intron expansion through repeat accumulation in the two orthologs is the result of independent insertional events. The hypothesis that intron length might be functionally relevant to the DMD gene regulation is proposed and substantiated by the finding that dystrophin intron gigantism is common to the three vertebrate genes. [Supplemental material is available online at www.genome.org.] PMID:12727896
Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong
2008-08-01
In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.
Extensive concerted evolution of rice paralogs and the road to regaining independence.
Wang, Xiyin; Tang, Haibao; Bowers, John E; Feltus, Frank A; Paterson, Andrew H
2007-11-01
Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the approximately 0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, approximately 8% of japonica paralogs produced 5-7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while approximately 70-MY-old "paleologs" resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice-sorghum divergence approximately 41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity--that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5-7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization.
A Partial Least Squares Based Procedure for Upstream Sequence Classification in Prokaryotes.
Mehmood, Tahir; Bohlin, Jon; Snipen, Lars
2015-01-01
The upstream region of coding genes is important for several reasons, for instance locating transcription factor, binding sites, and start site initiation in genomic DNA. Motivated by a recently conducted study, where multivariate approach was successfully applied to coding sequence modeling, we have introduced a partial least squares (PLS) based procedure for the classification of true upstream prokaryotic sequence from background upstream sequence. The upstream sequences of conserved coding genes over genomes were considered in analysis, where conserved coding genes were found by using pan-genomics concept for each considered prokaryotic species. PLS uses position specific scoring matrix (PSSM) to study the characteristics of upstream region. Results obtained by PLS based method were compared with Gini importance of random forest (RF) and support vector machine (SVM), which is much used method for sequence classification. The upstream sequence classification performance was evaluated by using cross validation, and suggested approach identifies prokaryotic upstream region significantly better to RF (p-value < 0.01) and SVM (p-value < 0.01). Further, the proposed method also produced results that concurred with known biological characteristics of the upstream region.
Regions of extreme synonymous codon selection in mammalian genes
Schattner, Peter; Diekhans, Mark
2006-01-01
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for such motifs by searching for extended regions of extreme codon conservation between homologous genes of related species. Here we present the results of applying this approach to five mammalian species (human, chimpanzee, mouse, rat and dog). Even with very conservative selection criteria, we find over 200 regions of extreme codon conservation, ranging in length from 60 to 178 codons. The regions are often found within genes involved in DNA-binding, RNA-binding or zinc-ion-binding. They are highly depleted for synonymous single nucleotide polymorphisms (SNPs) but not for non-synonymous SNPs, further indicating that the observed codon conservation is being driven by negative selection. Forty-three percent of the regions overlap conserved alternative transcript isoforms and are enriched for known ESEs. Other regions are enriched for TpA dinucleotides and may contain conserved motifs/structures relating to mRNA stability and/or degradation. We anticipate that this tool will be useful for detecting regions enriched in other classes of coding-sequence motifs and structures as well. PMID:16556911
Evolutionarily conserved ELOVL4 gene expression in the vertebrate retina.
Lagali, Pamela S; Liu, Jiafan; Ambasudhan, Rajesh; Kakuk, Laura E; Bernstein, Steven L; Seigel, Gail M; Wong, Paul W; Ayyagari, Radha
2003-07-01
The gene elongation of very long chain fatty acids-4 (ELOVL4) has been shown to underlie phenotypically heterogeneous forms of autosomal dominant macular degeneration. In this study, the extent of evolutionary conservation and the existence and localization of retinal expression of this gene was investigated across a wide variety of species. Southern blot analysis of genomic DNA and bioinformatic analysis using the human ELOVL4 cDNA and protein sequences, respectively, were performed to identify species in which ELOVL4 orthologues and/or homologues are present. Retinal RNA and protein extracts derived from different species were assessed by Northern hybridization and immunoblot techniques to assess evolutionary conservation of gene expression. Immunohistochemical analysis of tissue sections prepared from various mammalian retinas was performed to determine the distribution of ELOVL4 and homologous proteins within specific retinal cell layers. The existence of ELOVL4 sequence orthologues and homologues was confirmed by both Southern blot analysis and in silico searches of protein sequence databases. Phylogenetic analysis places ELOVL4 among a large family of known and putative fatty acid elongase proteins. Northern blot analysis revealed the presence of multiple transcripts corresponding to ELOVL4 homologues expressed in the retina of several different mammalian species. Conserved proteins were also detected among retinal extracts of different mammals and were found to localize predominantly to the photoreceptor cell layer within retinal tissue preparations. The ELOVL4 gene is highly conserved throughout evolution and is expressed in the photoreceptor cells of the retina in a variety of different species, which suggests that it plays a critical role in retinal cell biology.
Conservation of the structure and organization of lupin mitochondrial nad3 and rps12 genes.
Rurek, M; Oczkowski, M; Augustyniak, H
1998-01-01
A high level of the nucleotide sequence conservation of mitochondrial nad3 and rps12 genes was found in four lupin species. The only differences concern three nucleotides in the Lupinus albus rps12 gene and three nucleotides insertion in the L. mutabilis spacer. Northern blot analysis as well as RT-PCR confirmed cotranscription of the L. luteus genes because the transcripts detected were long enough.
Dollet, M; Sturm, N R; Sánchez-Moreno, M; Campbell, D A
2000-01-01
Trypanosomatids isolated from plants have been assigned typically into the genus Phytomonas. Such designations do not reflect the biology of the diverse isolates; confusion may arise due to the transient presence in plants of monogenetic (insect) trypanosomatids deposited by phytophagous bugs. To develop further molecular markers for the plant kinetoplastids, we have obtained the DNA sequence of the 5S ribosomal RNA gene from 24 isolates harvested from phloem, latex, and fruit. Small, distinct sequence differences were found at the 3'-ends of the transcribed regions; substantial sequence and size differences were found in the non-transcribed regions. Alignment of the gene sequences from all the isolates suggested the presence of eight groupings. While six groups contained isolates from single plant tissues, groups C and A contained isolates from both fruit and latex. The DNA sequences of the 10 phloem-restricted pathogenic isolates from South America and the Carribean were highly conserved and thus comprised a single group (H). The conserved nature of the 5S ribosomal RNA genes in these plant pathogens supports the proposal that they be considered as a distinct section, the phloemicola.
Louis, Ed
2011-01-01
In the early days of the yeast genome sequencing project, gene annotation was in its infancy and suffered the problem of many false positive annotations as well as missed genes. The lack of other sequences for comparison also prevented the annotation of conserved, functional sequences that were not coding. We are now in an era of comparative genomics where many closely related as well as more distantly related genomes are available for direct sequence and synteny comparisons allowing for more probable predictions of genes and other functional sequences due to conservation. We also have a plethora of functional genomics data which helps inform gene annotation for previously uncharacterised open reading frames (ORFs)/genes. For Saccharomyces cerevisiae this has resulted in a continuous updating of the gene and functional sequence annotations in the reference genome helping it retain its position as the best characterized eukaryotic organism's genome. A single reference genome for a species does not accurately describe the species and this is quite clear in the case of S. cerevisiae where the reference strain is not ideal for brewing or baking due to missing genes. Recent surveys of numerous isolates, from a variety of sources, using a variety of technologies have revealed a great deal of variation amongst isolates with genome sequence surveys providing information on novel genes, undetectable by other means. We now have a better understanding of the extant variation in S. cerevisiae as a species as well as some idea of how much we are missing from this understanding. As with gene annotation, comparative genomics enhances the discovery and description of genome variation and is providing us with the tools for understanding genome evolution, adaptation and selection, and underlying genetics of complex traits.
Gubser, Caroline; Smith, Geoffrey L
2002-04-01
Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.
Beta-globin locus activation regions: conservation of organization, structure, and function.
Li, Q L; Zhou, B; Powers, P; Enver, T; Stamatoyannopoulos, G
1990-01-01
The human beta-globin locus activation region (LAR) comprises four erythroid-specific DNase I hypersensitive sites (I-IV) thought to be largely responsible for activating the beta-globin domain and facilitating high-level erythroid-specific globin gene expression. We identified the goat beta-globin LAR, determined 10.2 kilobases of its sequence, and demonstrated its function in transgenic mice. The human and goat LARs share 6.5 kilobases of homologous sequences that are as highly conserved as the epsilon-globin gene promoters. Furthermore, the overall spatial organization of the two LARs has been conserved. These results suggest that the functionally relevant regions of the LAR are large and that in addition to their primary structure, the spatial relationship of the conserved elements is important for LAR function. Images PMID:2236034
The Metarhizium anisopliae trp1 gene: cloning and regulatory analysis.
Staats, Charley Christian; Silva, Marcia Suzana Nunes; Pinto, Paulo Marcos; Vainstein, Marilene Henning; Schrank, Augusto
2004-07-01
The trp1 gene from the entomopathogenic fungus Metarhizium anisopliae, cloned by heterologous hybridization with the plasmid carrying the trpC gene from Aspergillus nidulans, was sequence characterized. The predicted translation product has the conserved catalytic domains of glutamine amidotransferase (G domain), indoleglycerolphosphate synthase (C domain), and phosphoribosyl anthranilate isomerase (F domain) organized as NH2-G-C-F-COOH. The ORF is interrupted by a single intron of 60 nt that is position conserved in relation to trp genes from Ascomycetes and length conserved in relation to Basidiomycetes species. RT-PCR analysis suggests constitutive expression of trp1 gene in M. anisopliae.
Bergman, C M; Kreitman, M
2001-08-01
Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.
Comparative transgenic analysis of enhancers from the human SHOX and mouse Shox2 genomic regions.
Rosin, Jessica M; Abassah-Oppong, Samuel; Cobb, John
2013-08-01
Disruption of presumptive enhancers downstream of the human SHOX gene (hSHOX) is a frequent cause of the zeugopodal limb defects characteristic of Léri-Weill dyschondrosteosis (LWD). The closely related mouse Shox2 gene (mShox2) is also required for limb development, but in the more proximal stylopodium. In this study, we used transgenic mice in a comparative approach to characterize enhancer sequences in the hSHOX and mShox2 genomic regions. Among conserved noncoding elements (CNEs) that function as enhancers in vertebrate genomes, those that are maintained near paralogous genes are of particular interest given their ancient origins. Therefore, we first analyzed the regulatory potential of a genomic region containing one such duplicated CNE (dCNE) downstream of mShox2 and hSHOX. We identified a strong limb enhancer directly adjacent to the mShox2 dCNE that recapitulates the expression pattern of the endogenous gene. Interestingly, this enhancer requires sequences only conserved in the mammalian lineage in order to drive strong limb expression, whereas the more deeply conserved sequences of the dCNE function as a neural enhancer. Similarly, we found that a conserved element downstream of hSHOX (CNE9) also functions as a neural enhancer in transgenic mice. However, when the CNE9 transgenic construct was enlarged to include adjacent, non-conserved sequences frequently deleted in LWD patients, the transgene drove expression in the zeugopodium of the limbs. Therefore, both hSHOX and mShox2 limb enhancers are coupled to distinct neural enhancers. This is the first report demonstrating the activity of cis-regulatory elements from the hSHOX and mShox2 genomic regions in mammalian embryos.
Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang
2014-01-01
PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682
Formighieri, Eduardo F; Tiburcio, Ricardo A; Armas, Eduardo D; Medrano, Francisco J; Shimo, Hugo; Carels, Nicolas; Góes-Neto, Aristóteles; Cotomacci, Carolina; Carazzolle, Marcelo F; Sardinha-Pinto, Naiara; Thomazella, Daniela P T; Rincones, Johana; Digiampietri, Luciano; Carraro, Dirce M; Azeredo-Espin, Ana M; Reis, Sérgio F; Deckmann, Ana C; Gramacho, Karina; Gonçalves, Marilda S; Moura Neto, José P; Barbosa, Luciana V; Meinhardt, Lyndel W; Cascardo, Júlio C M; Pereira, Gonçalo A G
2008-10-01
We present here the sequence of the mitochondrial genome of the basidiomycete phytopathogenic hemibiotrophic fungus Moniliophthora perniciosa, causal agent of the Witches' Broom Disease in Theobroma cacao. The DNA is a circular molecule of 109,103 base pairs, with 31.9% GC, and is the largest sequenced so far. This size is due essentially to the presence of numerous non-conserved hypothetical ORFs. It contains the 14 genes coding for proteins involved in the oxidative phosphorylation, the two rRNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 26 tRNA genes that recognize codons for all amino acids. Seven homing endonucleases are located inside introns. Except atp8, all conserved known genes are in the same orientation. Phylogenetic analysis based on the cox genes agrees with the commonly accepted fungal taxonomy. An uncommon feature of this mitochondrial genome is the presence of a region that contains a set of four, relatively small, nested, inverted repeats enclosing two genes coding for polymerases with an invertron-type structure and three conserved hypothetical genes interpreted as the stable integration of a mitochondrial linear plasmid. The integration of this plasmid seems to be a recent evolutionary event that could have implications in fungal biology. This sequence is available under GenBank accession number AY376688.
Reinprecht, Yarmilla; Yadegari, Zeinab; Perry, Gregory E.; Siddiqua, Mahbuba; Wright, Lori C.; McClean, Phillip E.; Pauls, K. Peter
2013-01-01
Legumes contain a variety of phytochemicals derived from the phenylpropanoid pathway that have important effects on human health as well as seed coat color, plant disease resistance and nodulation. However, the information about the genes involved in this important pathway is fragmentary in common bean (Phaseolus vulgaris L.). The objectives of this research were to isolate genes that function in and control the phenylpropanoid pathway in common bean, determine their genomic locations in silico in common bean and soybean, and analyze sequences of the 4CL gene family in two common bean genotypes. Sequences of phenylpropanoid pathway genes available for common bean or other plant species were aligned, and the conserved regions were used to design sequence-specific primers. The PCR products were cloned and sequenced and the gene sequences along with common bean gene-based (g) markers were BLASTed against the Glycine max v.1.0 genome and the P. vulgaris v.1.0 (Andean) early release genome. In addition, gene sequences were BLASTed against the OAC Rex (Mesoamerican) genome sequence assembly. In total, fragments of 46 structural and regulatory phenylpropanoid pathway genes were characterized in this way and placed in silico on common bean and soybean sequence maps. The maps contain over 250 common bean g and SSR (simple sequence repeat) markers and identify the positions of more than 60 additional phenylpropanoid pathway gene sequences, plus the putative locations of seed coat color genes. The majority of cloned phenylpropanoid pathway gene sequences were mapped to one location in the common bean genome but had two positions in soybean. The comparison of the genomic maps confirmed previous studies, which show that common bean and soybean share genomic regions, including those containing phenylpropanoid pathway gene sequences, with conserved synteny. Indels identified in the comparison of Andean and Mesoamerican common bean 4CL gene sequences might be used to develop inter-pool phenylpropanoid pathway gene-based markers. We anticipate that the information obtained by this study will simplify and accelerate selections of common bean with specific phenylpropanoid pathway alleles to increase the contents of beneficial phenylpropanoids in common bean and other legumes. PMID:24046770
Genomic analysis of expressed sequence tags in American black bear Ursus americanus
2010-01-01
Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065
Genomic analysis of expressed sequence tags in American black bear Ursus americanus.
Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun
2010-03-26
Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.
Lee, I-M; Bottner-Parker, K D; Zhao, Y; Bertaccini, A; Davis, R E
2012-09-01
The pigeon pea witches'-broom phytoplasma group (16SrIX) comprises diverse strains that cause numerous diseases in leguminous trees and herbaceous crops, vegetables, a fruit, a nut tree and a forest tree. At least 14 strains have been reported worldwide. Comparative phylogenetic analyses of the highly conserved 16S rRNA gene and the moderately conserved rplV (rpl22)-rpsC (rps3) and secY genes indicated that the 16SrIX group consists of at least six distinct genetic lineages. Some of these lineages cannot be readily differentiated based on analysis of 16S rRNA gene sequences alone. The relative genetic distances among these closely related lineages were better assessed by including more variable genes [e.g. ribosomal protein (rp) and secY genes]. The present study demonstrated that virtual RFLP analyses using rp and secY gene sequences allowed unambiguous identification of such lineages. A coding system is proposed to designate each distinct rp and secY subgroup in the 16SrIX group.
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved
Long, Hannah K.; King, Hamish W.; Patient, Roger K.; Odom, Duncan T.; Klose, Robert J.
2016-01-01
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945
Yang, Lei; Naylor, Gavin J P
2016-01-01
We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.
Disruption of long-distance highly conserved noncoding elements in neurocristopathies.
Amiel, Jeanne; Benko, Sabina; Gordon, Christopher T; Lyonnet, Stanislas
2010-12-01
One of the key discoveries of vertebrate genome sequencing projects has been the identification of highly conserved noncoding elements (CNEs). Some characteristics of CNEs include their high frequency in mammalian genomes, their potential regulatory role in gene expression, and their enrichment in gene deserts nearby master developmental genes. The abnormal development of neural crest cells (NCCs) leads to a broad spectrum of congenital malformation(s), termed neurocristopathies, and/or tumor predisposition. Here we review recent findings that disruptions of CNEs, within or at long distance from the coding sequences of key genes involved in NCC development, result in neurocristopathies via the alteration of tissue- or stage-specific long-distance regulation of gene expression. While most studies on human genetic disorders have focused on protein-coding sequences, these examples suggest that investigation of genomic alterations of CNEs will provide a broader understanding of the molecular etiology of both rare and common human congenital malformations. © 2010 New York Academy of Sciences.
The sequence, structure and evolutionary features of HOTAIR in mammals
2011-01-01
Background An increasing number of long noncoding RNAs (lncRNAs) have been identified recently. Different from all the others that function in cis to regulate local gene expression, the newly identified HOTAIR is located between HoxC11 and HoxC12 in the human genome and regulates HoxD expression in multiple tissues. Like the well-characterised lncRNA Xist, HOTAIR binds to polycomb proteins to methylate histones at multiple HoxD loci, but unlike Xist, many details of its structure and function, as well as the trans regulation, remain unclear. Moreover, HOTAIR is involved in the aberrant regulation of gene expression in cancer. Results To identify conserved domains in HOTAIR and study the phylogenetic distribution of this lncRNA, we searched the genomes of 10 mammalian and 3 non-mammalian vertebrates for matches to its 6 exons and the two conserved domains within the 1800 bp exon6 using Infernal. There was just one high-scoring hit for each mammal, but many low-scoring hits were found in both mammals and non-mammalian vertebrates. These hits and their flanking genes in four placental mammals and platypus were examined to determine whether HOTAIR contained elements shared by other lncRNAs. Several of the hits were within unknown transcripts or ncRNAs, many were within introns of, or antisense to, protein-coding genes, and conservation of the flanking genes was observed only between human and chimpanzee. Phylogenetic analysis revealed discrete evolutionary dynamics for orthologous sequences of HOTAIR exons. Exon1 at the 5' end and a domain in exon6 near the 3' end, which contain domains that bind to multiple proteins, have evolved faster in primates than in other mammals. Structures were predicted for exon1, two domains of exon6 and the full HOTAIR sequence. The sequence and structure of two fragments, in exon1 and the domain B of exon6 respectively, were identified to robustly occur in predicted structures of exon1, domain B of exon6 and the full HOTAIR in mammals. Conclusions HOTAIR exists in mammals, has poorly conserved sequences and considerably conserved structures, and has evolved faster than nearby HoxC genes. Exons of HOTAIR show distinct evolutionary features, and a 239 bp domain in the 1804 bp exon6 is especially conserved. These features, together with the absence of some exons and sequences in mouse, rat and kangaroo, suggest ab initio generation of HOTAIR in marsupials. Structure prediction identifies two fragments in the 5' end exon1 and the 3' end domain B of exon6, with sequence and structure invariably occurring in various predicted structures of exon1, the domain B of exon6 and the full HOTAIR. PMID:21496275
Jeyaraj, Anburaj; Zhang, Xiao; Hou, Yan; Shangguan, Mingzhu; Gajjeraman, Prabu; Li, Yeyun; Wei, Chaoling
2017-11-21
MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.
NASA Astrophysics Data System (ADS)
Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.
1983-03-01
A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.
Tetteh, Kevin K. A.; Loukas, Alex; Tripp, Cindy; Maizels, Rick M.
1999-01-01
Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3′ and 5′ ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3′ untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis. PMID:10456930
Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates
McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg
2009-01-01
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110
Strickland, Michelle; Tudorica, Victor; Řezáč, Milan; Thomas, Neil R; Goodacre, Sara L
2018-06-01
Spiders produce multiple silks with different physical properties that allow them to occupy a diverse range of ecological niches, including the underwater environment. Despite this functional diversity, past molecular analyses show a high degree of amino acid sequence similarity between C-terminal regions of silk genes that appear to be independent of the physical properties of the resulting silks; instead, this domain is crucial to the formation of silk fibers. Here, we present an analysis of the C-terminal domain of all known types of spider silk and include silk sequences from the spider Argyroneta aquatica, which spins the majority of its silk underwater. Our work indicates that spiders have retained a highly conserved mechanism of silk assembly, despite the extraordinary diversification of species, silk types and applications of silk over 350 million years. Sequence analysis of the silk C-terminal domain across the entire gene family shows the conservation of two uncommon amino acids that are implicated in the formation of a salt bridge, a functional bond essential to protein assembly. This conservation extends to the novel sequences isolated from A. aquatica. This finding is relevant to research regarding the artificial synthesis of spider silk, suggesting that synthesis of all silk types will be possible using a single process.
Xu, Yuantao; Wu, Guizhi; Hao, Baohai; Chen, Lingling; Deng, Xiuxin; Xu, Qiang
2015-11-23
With the availability of rapidly increasing number of genome and transcriptome sequences, lineage-specific genes (LSGs) can be identified and characterized. Like other conserved functional genes, LSGs play important roles in biological evolution and functions. Two set of citrus LSGs, 296 citrus-specific genes (CSGs) and 1039 orphan genes specific to sweet orange, were identified by comparative analysis between the sweet orange genome sequences and 41 genomes and 273 transcriptomes. With the two sets of genes, gene structure and gene expression pattern were investigated. On average, both the CSGs and orphan genes have fewer exons, shorter gene length and higher GC content when compared with those evolutionarily conserved genes (ECs). Expression profiling indicated that most of the LSGs expressed in various tissues of sweet orange and some of them exhibited distinct temporal and spatial expression patterns. Particularly, the orphan genes were preferentially expressed in callus, which is an important pluripotent tissue of citrus. Besides, part of the CSGs and orphan genes expressed responsive to abiotic stress, indicating their potential functions during interaction with environment. This study identified and characterized two sets of LSGs in citrus, dissected their sequence features and expression patterns, and provided valuable clues for future functional analysis of the LSGs in sweet orange.
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan
2013-04-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.
Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu
2013-01-01
A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species. PMID:23710087
CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design
Rose, Timothy M.; Henikoff, Jorja G.; Henikoff, Steven
2003-01-01
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3–4 highly conserved amino acids within a 3′ degenerate core. A longer 5′ non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org). PMID:12824413
Fuentes-Pananá, Ezequiel M.; Swaminathan, Sankar; Ling, Paul D.
1999-01-01
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (−1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates. PMID:9847397
Fuentes-Pananá, E M; Swaminathan, S; Ling, P D
1999-01-01
The Epstein-Barr virus (EBV) EBNA2 protein is a transcriptional activator that controls viral latent gene expression and is essential for EBV-driven B-cell immortalization. EBNA2 is expressed from the viral C promoter (Cp) and regulates its own expression by activating Cp through interaction with the cellular DNA binding protein CBF1. Through regulation of Cp and EBNA2 expression, EBV controls the pattern of latent protein expression and the type of latency established. To gain further insight into the important regulatory elements that modulate Cp usage, we isolated and sequenced the Cp regions corresponding to nucleotides 10251 to 11479 of the EBV genome (-1079 to +144 relative to the transcription initiation site) from the EBV-like lymphocryptoviruses found in baboons (herpesvirus papio; HVP) and Rhesus macaques (RhEBV). Sequence comparison of the approximately 1,230-bp Cp regions from these primate viruses revealed that EBV and HVP Cp sequences are 64% conserved, EBV and RhEBV Cp sequences are 66% conserved, and HVP and RhEBV Cp sequences are 65% conserved relative to each other. Approximately 50% of the residues are conserved among all three sequences, yet all three viruses have retained response elements for glucocorticoids, two positionally conserved CCAAT boxes, and positionally conserved TATA boxes. The putative EBNA2 100-bp enhancers within these promoters contain 54 conserved residues, and the binding sites for CBF1 and CBF2 are well conserved. Cp usage in the HVP- and RhEBV-transformed cell lines was detected by S1 nuclease protection analysis. Transient-transfection analysis showed that promoters of both HVP and RhEBV are responsive to EBNA2 and that they bind CBF1 and CBF2 in gel mobility shift assays. These results suggest that similar mechanisms for regulation of latent gene expression are conserved among the EBV-related lymphocryptoviruses found in nonhuman primates.
Liu, Chen; Shen, He Ding; Zhou, Na
2016-01-01
The complete mitochondrial genome sequence of Platevindex sp. is firstly described in the article. The mitogenome (13,908 bp) contains 22 tRNA genes, 2 ribosomal RNA genes and 13 protein-coding genes, and 1 putative control region (CR). CR is not well characterized due to lack of discrete conserved sequence blocks. This characteristic is similar with CRs of other invertebrate mitochondrial genomes. The characteristic is the typical bivalvia mitochondrial gene composition.
Ren, Xuefeng; Graham, Jessica C; Jing, Lichen; Mikheev, Andrei M; Gao, Yuan; Lew, Jenny Pan; Xie, Hong; Kim, Andrea S; Shang, Xiuling; Friedman, Cynthia; Vail, Graham; Fang, Ming Zhu; Bromberg, Yana; Zarbl, Helmut
2013-01-01
Rat strains differ dramatically in their susceptibility to mammary carcinogenesis. On the assumption that susceptibility genes are conserved across mammalian species and hence inform human carcinogenesis, numerous investigators have used genetic linkage studies in rats to identify genes responsible for differential susceptibility to carcinogenesis. Using a genetic backcross between the resistant Copenhagen (Cop) and susceptible Fischer 344 (F344) strains, we mapped a novel mammary carcinoma susceptibility (Mcs30) locus to the centromeric region on chromosome 12 (LOD score of ∼8.6 at the D12Rat59 marker). The Mcs30 locus comprises approximately 12 Mbp on the long arm of rat RNO12 whose synteny is conserved on human chromosome 13q12 to 13q13. After analyzing numerous genes comprising this locus, we identified Fry, the rat ortholog of the furry gene of Drosophila melanogaster, as a candidate Mcs gene. We cloned and determined the complete nucleotide sequence of the 13 kbp Fry mRNA. Sequence analysis indicated that the Fry gene was highly conserved across evolution, with 90% similarity of the predicted amino acid sequence among eutherian mammals. Comparison of the Fry sequence in the Cop and F344 strains identified two non-synonymous single nucleotide polymorphisms (SNPs), one of which creates a putative, de novo phosphorylation site. Further analysis showed that the expression of the Fry gene is reduced in a majority of rat mammary tumors. Our results also suggested that FRY activity was reduced in human breast carcinoma cell lines as a result of reduced levels or mutation. This study is the first to identify the Fry gene as a candidate Mcs gene. Our data suggest that the SNPs within the Fry gene contribute to the genetic susceptibility of the F344 rat strain to mammary carcinogenesis. These results provide the foundation for analyzing the role of the human FRY gene in cancer susceptibility and progression.
Favre, Patrick; Bapaume, Laure; Bossolini, Eligio; Delorenzi, Mauro; Falquet, Laurent; Reinhardt, Didier
2014-12-03
Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.
The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle
Nelson, William C.; Stegen, James C.
2015-01-01
Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesis of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum. PMID:26257709
The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle
Nelson, William C.; Stegen, James C.
2015-07-21
Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesismore » of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.« less
The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, William C.; Stegen, James C.
2015-07-21
Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. ‘Housekeeping’ genes and genes for biosynthesis ofmore » peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.« less
Quéméneur, Marianne; Heinrich-Salmeron, Audrey; Muller, Daniel; Lièvremont, Didier; Jauzein, Michel; Bertin, Philippe N; Garrido, Francis; Joulian, Catherine
2008-07-01
A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well-discriminated taxonomic groups and was similar to 16S rRNA phylogeny. Alphaproteobacteria-, Betaproteobacteria-, and Gammaproteobacteria-related sequences were retrieved from environmental surveys, demonstrating their prevalence in mesophilic As-contaminated soils. Our study underlines the usefulness of the aoxB gene as a functional marker of aerobic As(III) oxidizers.
Molecular evolution of the HoxA cluster in the three major gnathostome lineages
Chiu, Chi-hua; Amemiya, Chris; Dewar, Ken; Kim, Chang-Bae; Ruddle, Frank H.; Wagner, Günter P.
2002-01-01
The duplication of Hox clusters and their maintenance in a lineage has a prominent but little understood role in chordate evolution. Here we examined how Hox cluster duplication may influence changes in cluster architecture and patterns of noncoding sequence evolution. We sequenced the entire duplicated HoxAa and HoxAb clusters of zebrafish (Danio rerio) and extended the 5′ (posterior) part of the HoxM (HoxA-like) cluster of horn shark (Heterodontus francisci) containing the hoxa11 and hoxa13 orthologs as well as intergenic and flanking noncoding sequences. The duplicated HoxA clusters in zebrafish each house considerably fewer genes and are dramatically shorter than the single HoxA clusters of human and horn shark. We compared the intergenic sequences of the HoxA clusters of human, horn shark, zebrafish (Aa, Ab), and striped bass and found extensive conservation of noncoding sequence motifs, i.e., phylogenetic footprints, between the human and horn shark, representing two of the three gnathostome lineages. These are putative cis-regulatory elements that may play a role in the regulation of the ancestral HoxA cluster. In contrast, homologous regions of the duplicated HoxAa and HoxAb clusters of zebrafish and the HoxA cluster of striped bass revealed a striking loss of conservation of these putative cis-regulatory sequences in the 3′ (anterior) segment of the cluster, where zebrafish only retains single representatives of group 1, 3, 4, and 5 (HoxAa) and group 2 (HoxAb) genes and in the 5′ part of the clusters, where zebrafish retains two copies of the group 13, 11, and 9 genes, i.e., AbdB-like genes. In analyzing patterns of cis-sequence evolution in the 5′ part of the clusters, we explicitly looked for evidence of complementary loss of conserved noncoding sequences, as predicted by the duplication-degeneration-complementation model in which genetic redundancy after gene duplication is resolved because of the fixation of complementary degenerative mutations. Our data did not yield evidence supporting this prediction. We conclude that changes in the pattern of cis-sequence conservation after Hox cluster duplication are more consistent with being the outcome of adaptive modification rather than passive mechanisms that erode redundancy created by the duplication event. These results support the view that genome duplications may provide a mechanism whereby master control genes undergo radical modifications conducive to major alterations in body plan. Such genomic revolutions may contribute significantly to the evolutionary process. PMID:11943847
Extensive Concerted Evolution of Rice Paralogs and the Road to Regaining Independence
Wang, Xiyin; Tang, Haibao; Bowers, John E.; Feltus, Frank A.; Paterson, Andrew H.
2007-01-01
Many genes duplicated by whole-genome duplications (WGDs) are more similar to one another than expected. We investigated whether concerted evolution through conversion and crossing over, well-known to affect tandem gene clusters, also affects dispersed paralogs. Genome sequences for two Oryza subspecies reveal appreciable gene conversion in the ∼0.4 MY since their divergence, with a gradual progression toward independent evolution of older paralogs. Since divergence from subspecies indica, ∼8% of japonica paralogs produced 5–7 MYA on chromosomes 11 and 12 have been affected by gene conversion and several reciprocal exchanges of chromosomal segments, while ∼70-MY-old “paleologs” resulting from a genome duplication (GD) show much less conversion. Sequence similarity analysis in proximal gene clusters also suggests more conversion between younger paralogs. About 8% of paleologs may have been converted since rice–sorghum divergence ∼41 MYA. Domain-encoding sequences are more frequently converted than nondomain sequences, suggesting a sort of circularity—that sequences conserved by selection may be further conserved by relatively frequent conversion. The higher level of concerted evolution in the 5–7 MY-old segmental duplication may reflect the behavior of many genomes within the first few million years after duplication or polyploidization. PMID:18039882
Akkuratov, Evgeny E; Walters, Lorraine; Saha-Mandal, Arnab; Khandekar, Sushant; Crawford, Erin; Zirbel, Craig L; Leisner, Scott; Prakash, Ashwin; Fedorova, Larisa; Fedorov, Alexei
2014-09-10
Orthologous introns have identical positions relative to the coding sequence in orthologous genes of different species. By analyzing the complete genomes of five plants we generated a database of 40,512 orthologous intron groups of dicotyledonous plants, 28,519 orthologous intron groups of angiosperms, and 15,726 of land plants (moss and angiosperms). Multiple sequence alignments of each orthologous intron group were obtained using the Mafft algorithm. The number of conserved regions in plant introns appeared to be hundreds of times fewer than that in mammals or vertebrates. Approximately three quarters of conserved intronic regions among angiosperms and dicots, in particular, correspond to alternatively-spliced exonic sequences. We registered only a handful of conserved intronic ncRNAs of flowering plants. However, the most evolutionarily conserved intronic region, which is ubiquitous for all plants examined in this study, including moss, possessed multiple structural features of tRNAs, which caused us to classify it as a putative tRNA-like ncRNA. Intronic sequences encoding tRNA-like structures are not unique to plants. Bioinformatics examination of the presence of tRNA inside introns revealed an unusually long-term association of four glycine tRNAs inside the Vac14 gene of fish, amniotes, and mammals. Copyright © 2014 Elsevier B.V. All rights reserved.
Bruce, A. Gregory; Ryan, Jonathan T.; Thomas, Mathew J.; Peng, Xinxia; Grundhoff, Adam; Tsai, Che-Chung
2013-01-01
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans. PMID:24109218
Apple miRNAs and tasiRNAs with novel regulatory networks
2012-01-01
Background MicroRNAs (miRNAs) and their regulatory functions have been extensively characterized in model species but whether apple has evolved similar or unique regulatory features remains unknown. Results We performed deep small RNA-seq and identified 23 conserved, 10 less-conserved and 42 apple-specific miRNAs or families with distinct expression patterns. The identified miRNAs target 118 genes representing a wide range of enzymatic and regulatory activities. Apple also conserves two TAS gene families with similar but unique trans-acting small interfering RNA (tasiRNA) biogenesis profiles and target specificities. Importantly, we found that miR159, miR828 and miR858 can collectively target up to 81 MYB genes potentially involved in diverse aspects of plant growth and development. These miRNA target sites are differentially conserved among MYBs, which is largely influenced by the location and conservation of the encoded amino acid residues in MYB factors. Finally, we found that 10 of the 19 miR828-targeted MYBs undergo small interfering RNA (siRNA) biogenesis at the 3' cleaved, highly divergent transcript regions, generating over 100 sequence-distinct siRNAs that potentially target over 70 diverse genes as confirmed by degradome analysis. Conclusions Our work identified and characterized apple miRNAs, their expression patterns, targets and regulatory functions. We also discovered that three miRNAs and the ensuing siRNAs exploit both conserved and divergent sequence features of MYB genes to initiate distinct regulatory networks targeting a multitude of genes inside and outside the MYB family. PMID:22704043
Bedon, Frank; Grima-Pettenati, Jacqueline; Mackay, John
2007-01-01
Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences), and loblolly pine, Pinus taeda L. (five sequences). Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco. PMID:17397551
Ancient genomic architecture for mammalian olfactory receptor clusters
Aloni, Ronny; Olender, Tsviya; Lancet, Doron
2006-01-01
Background Mammalian olfactory receptor (OR) genes reside in numerous genomic clusters of up to several dozen genes. Whole-genome sequence alignment nets of five mammals allow their comprehensive comparison, aimed at reconstructing the ancestral olfactory subgenome. Results We developed a new and general tool for genome-wide definition of genomic gene clusters conserved in multiple species. Syntenic orthologs, defined as gene pairs showing conservation of both genomic location and coding sequence, were subjected to a graph theory algorithm for discovering CLICs (clusters in conservation). When applied to ORs in five mammals, including the marsupial opossum, more than 90% of the OR genes were found within a framework of 48 multi-species CLICs, invoking a general conservation of gene order and composition. A detailed analysis of individual CLICs revealed multiple differences among species, interpretable through species-specific genomic rearrangements and reflecting complex mammalian evolutionary dynamics. One significant instance involves CLIC #1, which lacks a human member, implying the human-specific deletion of an OR cluster, whose mouse counterpart has been tentatively associated with isovaleric acid odorant detection. Conclusion The identified multi-species CLICs demonstrate that most of the mammalian OR clusters have a common ancestry, preceding the split between marsupials and placental mammals. However, only two of these CLICs were capable of incorporating chicken OR genes, parsimoniously implying that all other CLICs emerged subsequent to the avian-mammalian divergence. PMID:17010214
Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen
2014-11-01
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.
Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen
2014-01-01
Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history. PMID:25423365
Takaesu, Azusa; Watanabe, Kiyotaka; Takai, Shinji; Sasaki, Yukako; Orino, Koichi
2008-01-01
Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit). Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR) fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas). The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98) ; L: 98–100%). The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed. PMID:18954429
Hao, Weilong; Palmer, Jeffrey D
2009-09-29
The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.
Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT
Cheung, Tom Hiu; Kwan, Yin Lam; Hamady, Micah; Liu, Xuedong
2006-01-01
Deciphering gene regulatory networks requires the systematic identification of functional cis-acting regulatory elements. We present a suite of web-based bioinformatics tools, called GeneACT , that can rapidly detect evolutionarily conserved transcription factor binding sites or microRNA target sites that are either unique or over-represented in differentially expressed genes from DNA microarray data. GeneACT provides graphic visualization and extraction of common regulatory sequence elements in the promoters and 3'-untranslated regions that are conserved across multiple mammalian species. PMID:17064417
Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Cliften, Paul; Sudarsanam, Priya; Desikan, Ashwin; Fulton, Lucinda; Fulton, Bob; Majors, John; Waterston, Robert; Cohen, Barak A; Johnston, Mark
2003-07-04
The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.
[Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].
Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A
2017-01-01
In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.
Lou, Yonggen; Cheng, Jia'an; Zhang, Hengmu; Xu, Jian-Hong
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level and are thought to play critical roles in many metabolic activities in eukaryotes. The small brown planthopper (Laodephax striatellus Fallén), one of the most destructive agricultural pests, causes great damage to crops including rice, wheat, and maize. However, information about the genome of L. striatellus is limited. In this study, a small RNA library was constructed from a mixed L. striatellus population and sequenced by Solexa sequencing technology. A total of 501 mature miRNAs were identified, including 227 conserved and 274 novel miRNAs belonging to 125 and 250 families, respectively. Sixty-nine conserved miRNAs that are included in 38 families are predicted to have an RNA secondary structure typically found in miRNAs. Many miRNAs were validated by stem-loop RT-PCR. Comparison with the miRNAs in 84 animal species from miRBase showed that the conserved miRNA families we identified are highly conserved in the Arthropoda phylum. Furthermore, miRanda predicted 2701 target genes for 378 miRNAs, which could be categorized into 52 functional groups annotated by gene ontology. The function of miRNA target genes was found to be very similar between conserved and novel miRNAs. This study of miRNAs in L. striatellus will provide new information and enhance the understanding of the role of miRNAs in the regulation of L. striatellus metabolism and development. PMID:25057821
Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.
Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J
2016-08-19
DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Characterization of microRNAs Expressed during Secondary Wall Biosynthesis in Acacia mangium
Ong, Seong Siang; Wickneswari, Ratnam
2012-01-01
MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants. PMID:23251324
Dinan, Adam M; Atkins, John F; Firth, Andrew E
2017-10-16
Programmed ribosomal frameshifting (PRF) is a gene expression mechanism which enables the translation of two N-terminally coincident, C-terminally distinct protein products from a single mRNA. Many viruses utilize PRF to control or regulate gene expression, but very few phylogenetically conserved examples are known in vertebrate genes. Additional sex combs-like (ASXL) genes 1 and 2 encode important epigenetic and transcriptional regulatory proteins that control the expression of homeotic genes during key developmental stages. Here we describe an ~150-codon overlapping ORF (termed TF) in ASXL1 and ASXL2 that, with few exceptions, is conserved throughout vertebrates. Conservation of the TF ORF, strong suppression of synonymous site variation in the overlap region, and the completely conserved presence of an EH[N/S]Y motif (a known binding site for Host Cell Factor-1, HCF-1, an epigenetic regulatory factor), all indicate that TF is a protein-coding sequence. A highly conserved UCC_UUU_CGU sequence (identical to the known site of +1 ribosomal frameshifting for influenza virus PA-X expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL1. Similarly, a highly conserved RG_GUC_UCU sequence (identical to a known site of -2 ribosomal frameshifting for arterivirus nsp2TF expression) occurs at the 5' end of the region of enhanced synonymous site conservation in ASXL2. Due to a lack of appropriate splice forms, or initiation sites, the most plausible mechanism for translation of the ASXL1 and 2 TF regions is ribosomal frameshifting, resulting in a transframe fusion of the N-terminal half of ASXL1 or 2 to the TF product, termed ASXL-TF. Truncation or frameshift mutants of ASXL are linked to myeloid malignancies and genetic diseases, such as Bohring-Opitz syndrome, likely at least in part as a result of gain-of-function or dominant-negative effects. Our hypothesis now indicates that these disease-associated mutant forms represent overexpressed defective versions of ASXL-TF. This article was reviewed by Laurence Hurst and Eugene Koonin.
Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.
Holmes, Roger S
2015-06-05
Vertebrate ALDH1A-like genes encode cytosolic enzymes capable of metabolizing all-trans-retinaldehyde to retinoic acid which is a molecular 'signal' guiding vertebrate development and adipogenesis. Bioinformatic analyses of vertebrate and invertebrate genomes were undertaken using known ALDH1A1, ALDH1A2 and ALDH1A3 amino acid sequences. Comparative analyses of the corresponding human genes provided evidence for distinct modes of gene regulation and expression with putative transcription factor binding sites (TFBS), CpG islands and micro-RNA binding sites identified for the human genes. ALDH1A-like sequences were identified for all mammalian, bird, lizard and frog genomes examined, whereas fish genomes displayed a more restricted distribution pattern for ALDH1A1 and ALDH1A3 genes. The ALDH1A1 gene was absent in many bony fish genomes examined, with the ALDH1A3 gene also absent in the medaka and tilapia genomes. Multiple ALDH1A1-like genes were identified in mouse, rat and marsupial genomes. Vertebrate ALDH1A1, ALDH1A2 and ALDH1A3 subunit sequences were highly conserved throughout vertebrate evolution. Comparative amino acid substitution rates showed that mammalian ALDH1A2 sequences were more highly conserved than for the ALDH1A1 and ALDH1A3 sequences. Phylogenetic studies supported an hypothesis for ALDH1A2 as a likely primordial gene originating in invertebrate genomes and undergoing sequential gene duplication to generate two additional genes, ALDH1A1 and ALDH1A3, in most vertebrate genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A conserved post-transcriptional BMP2 switch in lung cells.
Jiang, Shan; Fritz, David T; Rogers, Melissa B
2010-05-15
An ultra-conserved sequence in the bone morphogenetic protein 2 (BMP2) 3' untranslated region (UTR) markedly represses BMP2 expression in non-transformed lung cells. In contrast, the ultra-conserved sequence stimulates BMP2 expression in transformed lung cells. The ultra-conserved sequence functions as a post-transcriptional cis-regulatory switch. A common single-nucleotide polymorphism (SNP, rs15705, +A1123C), which has been shown to influence human morphology, disrupts a conserved element within the ultra-conserved sequence and altered reporter gene activity in non-transformed lung cells. This polymorphism changed the affinity of the BMP2 RNA for several proteins including nucleolin, which has an increased affinity for the C allele. Elevated BMP2 synthesis is associated with increased malignancy in mouse models of lung cancer and poor lung cancer patient prognosis. Understanding the cis- and trans-regulatory factors that control BMP2 synthesis is relevant to the initiation or progression of pathologies associated with abnormal BMP2 levels. (c) 2010 Wiley-Liss, Inc.
Freeling, Michael; Rapaka, Lakshmi; Lyons, Eric; Pedersen, Brent; Thomas, Brian C.
2007-01-01
A tetraploidy left Arabidopsis thaliana with 6358 pairs of homoeologs that, when aligned, generated 14,944 intragenomic conserved noncoding sequences (CNSs). Our previous work assembled these phylogenetic footprints into a database. We show that known transcription factor (TF) binding motifs, including the G-box, are overrepresented in these CNSs. A total of 254 genes spanning long lengths of CNS-rich chromosomes (Bigfoot) dominate this database. Therefore, we made subdatabases: one containing Bigfoot genes and the other containing genes with three to five CNSs (Smallfoot). Bigfoot genes are generally TFs that respond to signals, with their modal CNS positioned 3.1 kb 5′ from the ATG. Smallfoot genes encode components of signal transduction machinery, the cytoskeleton, or involve transcription. We queried each subdatabase with each possible 7-nucleotide sequence. Among hundreds of hits, most were purified from CNSs, and almost all of those significantly enriched in CNSs had no experimental history. The 7-mers in CNSs are not 5′- to 3′-oriented in Bigfoot genes but are often oriented in Smallfoot genes. CNSs with one G-box tend to have two G-boxes. CNSs were shared with the homoeolog only and with no other gene, suggesting that binding site turnover impedes detection. Bigfoot genes may function in adaptation to environmental change. PMID:17496117
Freeling, Michael; Rapaka, Lakshmi; Lyons, Eric; Pedersen, Brent; Thomas, Brian C
2007-05-01
A tetraploidy left Arabidopsis thaliana with 6358 pairs of homoeologs that, when aligned, generated 14,944 intragenomic conserved noncoding sequences (CNSs). Our previous work assembled these phylogenetic footprints into a database. We show that known transcription factor (TF) binding motifs, including the G-box, are overrepresented in these CNSs. A total of 254 genes spanning long lengths of CNS-rich chromosomes (Bigfoot) dominate this database. Therefore, we made subdatabases: one containing Bigfoot genes and the other containing genes with three to five CNSs (Smallfoot). Bigfoot genes are generally TFs that respond to signals, with their modal CNS positioned 3.1 kb 5' from the ATG. Smallfoot genes encode components of signal transduction machinery, the cytoskeleton, or involve transcription. We queried each subdatabase with each possible 7-nucleotide sequence. Among hundreds of hits, most were purified from CNSs, and almost all of those significantly enriched in CNSs had no experimental history. The 7-mers in CNSs are not 5'- to 3'-oriented in Bigfoot genes but are often oriented in Smallfoot genes. CNSs with one G-box tend to have two G-boxes. CNSs were shared with the homoeolog only and with no other gene, suggesting that binding site turnover impedes detection. Bigfoot genes may function in adaptation to environmental change.
Transcription Factor Map Alignment of Promoter Regions
Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic
2006-01-01
We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547
Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf
2002-01-01
We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842
2012-01-01
Background MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing. Results We sequenced small RNAs from five types of tissue: seedlings, roots, petioles, leaves, and flowers. By analyzing 2.75 million unique reads that mapped to the B. rapa genome, we identified 216 novel and 196 conserved miRNAs that were predicted to target approximately 20% of the genome’s protein coding genes. Quantitative analysis of miRNAs from the five types of tissue revealed that novel miRNAs were expressed in diverse tissues but their expression levels were lower than those of the conserved miRNAs. Comparative analysis of the miRNAs between the B. rapa and Arabidopsis thaliana genomes demonstrated that redundant copies of conserved miRNAs in the B. rapa genome may have been deleted after whole genome triplication. Novel miRNA members seemed to have spontaneously arisen from the B. rapa and A. thaliana genomes, suggesting the species-specific expansion of miRNAs. We have made this data publicly available in a miRNA database of B. rapa called BraMRs. The database allows the user to retrieve miRNA sequences, their expression profiles, and a description of their target genes from the five tissue types investigated here. Conclusions This is the first report to identify novel miRNAs from Brassica crops using genome-wide high throughput techniques. The combination of computational methods and small RNA deep sequencing provides robust predictions of miRNAs in the genome. The finding of numerous novel miRNAs, many with few target genes and low expression levels, suggests the rapid evolution of miRNA genes. The development of a miRNA database, BraMRs, enables us to integrate miRNA identification, target prediction, and functional annotation of target genes. BraMRs will represent a valuable public resource with which to study the epigenetic control of B. rapa and other closely related Brassica species. The database is available at the following link: http://bramrs.rna.kr [1]. PMID:23163954
Pomerantz, Aaron F; Hoy, Marjorie A; Kawahara, Akito Y
2015-01-01
Little is known about the process of sex determination at the molecular level in species belonging to the subclass Acari, a taxon of arachnids that contains mites and ticks. The recent sequencing of the transcriptome and genome of the western orchard predatory mite Metaseiulus occidentalis allows investigation of molecular mechanisms underlying the biological processes of sex determination in this predator of phytophagous pest mites. We identified four doublesex-and-mab-3-related transcription factor (dmrt) genes, one transformer-2 gene, one intersex gene, and two fruitless-like genes in M. occidentalis. Phylogenetic analyses were conducted to infer the molecular relationships to sequences from species of arthropods, including insects, crustaceans, acarines, and a centipede, using available genomic data. Comparative analyses revealed high sequence identity within functional domains and confirmed that the architecture for certain sex-determination genes is conserved in arthropods. This study provides a framework for identifying potential target genes that could be implicated in the process of sex determination in M. occidentalis and provides insight into the conservation and change of the molecular components of sex determination in arthropods.
Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.
Schuster, W; Unseld, M; Wissinger, B; Brennicke, A
1990-01-01
The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162
A Gibbs sampler for motif detection in phylogenetically close sequences
NASA Astrophysics Data System (ADS)
Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric
2004-03-01
Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.
Yamamoto, O; Takakusa, N; Mishima, Y; Kominami, R; Muramatsu, M
1984-01-01
Sequences required for a faithful and efficient transcription of a cloned mouse ribosomal RNA gene (rDNA) are determined by testing a series of deletion mutants in an in vitro transcription system utilizing two kinds of mouse cellular extract. Deletion of sequences upstream of -40 or downstream of +52 causes only slight reduction in promoter activity as compared with the "wild-type" template. For upstream deletion mutants, the removal of a sequence between -40 and -35 causes a significant decrease in the capacity to direct efficient initiation. This decrease becomes more pronounced when the deletion reaches -32 and the sequence A-T-C-T-T-T, conserved among mouse, rat, and human rDNAs, is lost. Residual template activity is further reduced as more upstream sequence is deleted and finally becomes undetectable when the deletion is extended from -22 down to -17, corresponding to the loss of the conserved sequence T-A-T-T-G. As for downstream deletion mutants, the removal of the sequence downstream of +23 causes some (and further deletions up to +11 cause a more) serious decrease in template activity in vitro. These deletions involve other conserved sequences downstream of the transcription start site. However, the removal of the original transcription start site does not abolish the transcription initiation completely, provided that the whole upstream sequence is intact. Images PMID:6320178
El-Mogharbel, Nisrine; Wakefield, Matthew; Deakin, Janine E; Tsend-Ayush, Enkhjargal; Grützner, Frank; Alsop, Amber; Ezaz, Tariq; Marshall Graves, Jennifer A
2007-01-01
We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.
Zurawski, Gerard; Bohnert, Hans J.; Whitfeld, Paul R.; Bottomley, Warwick
1982-01-01
The gene for the so-called Mr 32,000 rapidly labeled photosystem II thylakoid membrane protein (here designated psbA) of spinach (Spinacia oleracea) chloroplasts is located on the chloroplast DNA in the large single-copy region immediately adjacent to one of the inverted repeat sequences. In this paper we show that the size of the mRNA for this protein is ≈ 1.25 kilobases and that the direction of transcription is towards the inverted repeat unit. The nucleotide sequence of the gene and its flanking regions is presented. The only large open reading frame in the sequence codes for a protein of Mr 38,950. The nucleotide sequence of psbA from Nicotiana debneyi also has been determined, and comparison of the sequences from the two species shows them to be highly conserved (>95% homology) throughout the entire reading frame. Conservation of the amino acid sequence is absolute, there being no changes in a total of 353 residues. This leads us to conclude that the primary translation product of psbA must be a protein of Mr 38,950. The protein is characterized by the complete absence of lysine residues and is relatively rich in hydrophobic amino acids, which tend to be clustered. Transcription of spinach psbA starts about 86 base pairs before the first ATG codon. Immediately upstream from this point there is a sequence typical of that found in E. coli promoters. An almost identical sequence occurs in the equivalent region of N. debneyi DNA. Images PMID:16593262
Cavalcante, Manoella Gemaque; Bastos, Carlos Eduardo Matos Carvalho; Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; Vicari, Marcelo Ricardo; Noronha, Renata Coelho Rodrigues
2018-01-01
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26–68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26–28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae. PMID:29813087
Cavalcante, Manoella Gemaque; Bastos, Carlos Eduardo Matos Carvalho; Nagamachi, Cleusa Yoshiko; Pieczarka, Julio Cesar; Vicari, Marcelo Ricardo; Noronha, Renata Coelho Rodrigues
2018-01-01
Cytogenetic studies show that there is great karyotypic diversity in order Testudines (2n = 26-68), and that this may be mainly attributed to the presence/absence of microchromosomes. Members of the Podocnemididae family have the smallest diploid numbers of this order (2n = 26-28), which may be a derived condition of the group. Diverse studies suggest that repetitive-DNA-rich sites generally act as hotspots for double-strand breaks and chromosomal reorganization. In this context, we used fluorescent in situ hybridization (FISH) to map telomeric sequences (TTAGGG)n, 45S rDNA, and the genes encoding histones H1 and H3 in two species of genus Podocnemis. We also observed conservation of the 45S rDNA and H1 histone sequences (probable case of conserved synteny), but multiple conserved and non-conserved clusters of H3 genes, which colocalized with the interstitial telomeric sequences in the Podocnemis genome. Our results suggest that fusions have occurred between macro and microchromosomes or between microchromosomes, leading to the observed reduction in diploid number in the family Podocnemididae.
Li, Li; Brunk, Brian P.; Kissinger, Jessica C.; Pape, Deana; Tang, Keliang; Cole, Robert H.; Martin, John; Wylie, Todd; Dante, Mike; Fogarty, Steven J.; Howe, Daniel K.; Liberator, Paul; Diaz, Carmen; Anderson, Jennifer; White, Michael; Jerome, Maria E.; Johnson, Emily A.; Radke, Jay A.; Stoeckert, Christian J.; Waterston, Robert H.; Clifton, Sandra W.; Roos, David S.; Sibley, L. David
2003-01-01
Large-scale EST sequencing projects for several important parasites within the phylum Apicomplexa were undertaken for the purpose of gene discovery. Included were several parasites of medical importance (Plasmodium falciparum, Toxoplasma gondii) and others of veterinary importance (Eimeria tenella, Sarcocystis neurona, and Neospora caninum). A total of 55,192 ESTs, deposited into dbEST/GenBank, were included in the analyses. The resulting sequences have been clustered into nonredundant gene assemblies and deposited into a relational database that supports a variety of sequence and text searches. This database has been used to compare the gene assemblies using BLAST similarity comparisons to the public protein databases to identify putative genes. Of these new entries, ∼15%–20% represent putative homologs with a conservative cutoff of p < 10−9, thus identifying many conserved genes that are likely to share common functions with other well-studied organisms. Gene assemblies were also used to identify strain polymorphisms, examine stage-specific expression, and identify gene families. An interesting class of genes that are confined to members of this phylum and not shared by plants, animals, or fungi, was identified. These genes likely mediate the novel biological features of members of the Apicomplexa and hence offer great potential for biological investigation and as possible therapeutic targets. [The sequence data from this study have been submitted to dbEST division of GenBank under accession nos.: Toxoplasma gondii: –, –, –, –, – , –, –, –, –. Plasmodium falciparum: –, –, –, –. Sarcocystis neurona: , , , , , , , , , , , , , –, –, –, –, –. Eimeria tenella: –, –, –, –, –, –, –, –, – , –, –, –, –, –, –, –, –, –, –, –. Neospora caninum: –, –, , – , –, –.] PMID:12618375
Provencher, Cathy; LaPointe, Gisèle; Sirois, Stéphane; Van Calsteren, Marie-Rose; Roy, Denis
2003-01-01
A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3′ degenerate core based on four highly conserved amino acids and a longer 5′ consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS−) and EPS-producing (EPS+) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS+ bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS+ strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes. PMID:12788729
Drancourt, Michel; Roux, Véronique; Fournier, Pierre-Edouard; Raoult, Didier
2004-01-01
We developed a new molecular tool based on rpoB gene (encoding the beta subunit of RNA polymerase) sequencing to identify streptococci. We first sequenced the complete rpoB gene for Streptococcus anginosus, S. equinus, and Abiotrophia defectiva. Sequences were aligned with these of S. pyogenes, S. agalactiae, and S. pneumoniae available in GenBank. Using an in-house analysis program (SVARAP), we identified a 740-bp variable region surrounded by conserved, 20-bp zones and, by using these conserved zones as PCR primer targets, we amplified and sequenced this variable region in an additional 30 Streptococcus, Enterococcus, Gemella, Granulicatella, and Abiotrophia species. This region exhibited 71.2 to 99.3% interspecies homology. We therefore applied our identification system by PCR amplification and sequencing to a collection of 102 streptococci and 60 bacterial isolates belonging to other genera. Amplicons were obtained in streptococci and Bacillus cereus, and sequencing allowed us to make a correct identification of streptococci. Molecular signatures were determined for the discrimination of closely related species within the S. pneumoniae-S. oralis-S. mitis group and the S. agalactiae-S. difficile group. These signatures allowed us to design a S. pneumoniae-specific PCR and sequencing primer pair. PMID:14766807
Antisense Transcription Is Pervasive but Rarely Conserved in Enteric Bacteria
Raghavan, Rahul; Sloan, Daniel B.; Ochman, Howard
2012-01-01
ABSTRACT Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell’s transcription machinery. PMID:22872780
Hall, L; Laird, J E; Craig, R K
1984-01-01
Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375
Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M
1982-01-01
The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460
Gruel, Jérémy; LeBorgne, Michel; LeMeur, Nolwenn; Théret, Nathalie
2011-09-12
Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.
2011-01-01
Background Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Results Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Conclusions Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks. PMID:21910886
Bricheux, G; Brugerolle, G
1997-08-01
The parasitic protozoan Trichomonas vaginalis is known to contain the ubiquitous and highly conserved protein actin. A genomic library and a cDNA library have been screened to identify and clone the actin gene(s) of T. vaginalis. The nucleotide sequence of one gene and its flanking regions have been determined. The open reading frame encodes a protein of 376 amino acids. The sequence is not interrupted by any introns and the promoter could be represented by a 10 bp motif close to a consensus motif also found upstream of most sequenced T. vaginalis genes. The five different clones isolated from the cDNA library have similar sequences and encode three actin proteins differing only by one or two amino acids. A phylogenetic analysis of 31 actin sequences by distance matrix and parsimony methods, using centractin as outgroup, gives congruent trees with Parabasala branching above Diplomonadida.
Quéméneur, Marianne; Heinrich-Salmeron, Audrey; Muller, Daniel; Lièvremont, Didier; Jauzein, Michel; Bertin, Philippe N.; Garrido, Francis; Joulian, Catherine
2008-01-01
A new primer set was designed to specifically amplify ca. 1,100 bp of aoxB genes encoding the As(III) oxidase catalytic subunit from taxonomically diverse aerobic As(III)-oxidizing bacteria. Comparative analysis of AoxB protein sequences showed variable conservation levels and highlighted the conservation of essential amino acids and structural motifs. AoxB phylogeny of pure strains showed well-discriminated taxonomic groups and was similar to 16S rRNA phylogeny. Alphaproteobacteria-, Betaproteobacteria-, and Gammaproteobacteria-related sequences were retrieved from environmental surveys, demonstrating their prevalence in mesophilic As-contaminated soils. Our study underlines the usefulness of the aoxB gene as a functional marker of aerobic As(III) oxidizers. PMID:18502920
Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.
2012-01-01
Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921
2004-12-09
We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
Gene Polymorphism Studies in a Teaching Laboratory
NASA Astrophysics Data System (ADS)
Shultz, Jeffry
2009-02-01
I present a laboratory procedure for illustrating transcription, post-transcriptional modification, gene conservation, and comparative genetics for use in undergraduate biology education. Students are individually assigned genes in a targeted biochemical pathway, for which they design and test polymerase chain reaction (PCR) primers. In this example, students used genes annotated for the steroid biosynthesis pathway in soybean. The authoritative Kyoto encyclopedia of genes and genomes (KEGG) interactive database and other online resources were used to design primers based first on soybean expressed sequence tags (ESTs), then on ESTs from an alternate organism if soybean sequence was unavailable. Students designed a total of 50 gene-based primer pairs (37 soybean, 13 alternative) and tested these for polymorphism state and similarity between two soybean and two pea lines. Student assessment was based on acquisition of laboratory skills and successful project completion. This simple procedure illustrates conservation of genes and is not limited to soybean or pea. Cost per student estimates are included, along with a detailed protocol and flow diagram of the procedure.
Jung, Sook; Main, Dorrie; Staton, Margaret; Cho, Ilhyung; Zhebentyayeva, Tatyana; Arús, Pere; Abbott, Albert
2006-01-01
Background Due to the lack of availability of large genomic sequences for peach or other Prunus species, the degree of synteny conservation between the Prunus species and Arabidopsis has not been systematically assessed. Using the recently available peach EST sequences that are anchored to Prunus genetic maps and to peach physical map, we analyzed the extent of conserved synteny between the Prunus and the Arabidopsis genomes. The reconstructed pseudo-ancestral Arabidopsis genome, existed prior to the proposed recent polyploidy event, was also utilized in our analysis to further elucidate the evolutionary relationship. Results We analyzed the synteny conservation between the Prunus and the Arabidopsis genomes by comparing 475 peach ESTs that are anchored to Prunus genetic maps and their Arabidopsis homologs detected by sequence similarity. Microsyntenic regions were detected between all five Arabidopsis chromosomes and seven of the eight linkage groups of the Prunus reference map. An additional 1097 peach ESTs that are anchored to 431 BAC contigs of the peach physical map and their Arabidopsis homologs were also analyzed. Microsyntenic regions were detected in 77 BAC contigs. The syntenic regions from both data sets were short and contained only a couple of conserved gene pairs. The synteny between peach and Arabidopsis was fragmentary; all the Prunus linkage groups containing syntenic regions matched to more than two different Arabidopsis chromosomes, and most BAC contigs with multiple conserved syntenic regions corresponded to multiple Arabidopsis chromosomes. Using the same peach EST datasets and their Arabidopsis homologs, we also detected conserved syntenic regions in the pseudo-ancestral Arabidopsis genome. In many cases, the gene order and content of peach regions was more conserved in the ancestral genome than in the present Arabidopsis region. Statistical significance of each syntenic group was calculated using simulated Arabidopsis genome. Conclusion We report here the result of the first extensive analysis of the conserved microsynteny using DNA sequences across the Prunus genome and their Arabidopsis homologs. Our study also illustrates that both the ancestral and present Arabidopsis genomes can provide a useful resource for marker saturation and candidate gene search, as well as elucidating evolutionary relationships between species. PMID:16615871
Genetic and evolutionary characterization of RABVs from China using the phosphoprotein gene.
Wang, Lihua; Wu, Hui; Tao, Xiaoyan; Li, Hao; Rayner, Simon; Liang, Guodong; Tang, Qing
2013-01-07
While the function of the phosphoprotein (P) gene of the rabies virus (RABV) has been well studied in laboratory adapted RABVs, the genetic diversity and evolution characteristics of the P gene of street RABVs remain unclear. The objective of the present study was to investigate the mutation and evolution of P genes in Chinese street RABVs. The P gene of 77 RABVs from brain samples of dogs and wild animals collected in eight Chinese provinces through 2003 to 2008 were sequenced. The open reading frame (ORF) of the P genes was 894 nucleotides (nt) in length, with 85-99% (80-89%) amino acid (nucleotide) identity compared with the laboratory RABVs and vaccine strains. Phylogenetic analysis based on the P gene revealed that Chinese RABVs strains could be divided into two distinct clades, and several RABV variants were found to co circulating in the same province. Two conserved (CD1, 2) and two variable (VD1, 2) domains were identified by comparing the deduced primary sequences of the encoded P proteins. Two sequence motifs, one believed to confer binding to the cytoplasmic dynein light chain LC8 and a lysine-rich sequence were conserved throughout the Chinese RABVs. In contrast, the isolates exhibited lower conservation of one phosphate acceptor and one internal translation initiation site identified in the P protein of the rabies challenge virus standard (CVS) strain. Bayesian coalescent analysis showed that the P gene in Chinese RABVs have a substitution rate (3.305x10(-4) substitutions per site per year) and evolution history (592 years ago) similar to values for the glycoprotein (G) and nucleoprotein (N) reported previously. Several substitutions were found in the P gene of Chinese RABVs strains compared to the laboratory adapted and vaccine strains, whether these variations could affect the biological characteristics of Chinese RABVs need to be further investigated. The substitution rate and evolution history of P gene is similar to G and N gene, combine the topology of phylogenetic tree based on the P gene is similar to the G and N gene trees, indicate that the P, G and N genes are equally valid for examining the phylogenetics of RABVs.
Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa
2008-01-01
Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845
Adaptive evolution of newly emerged micro-RNA genes in Drosophila.
Lu, Jian; Fu, Yonggui; Kumar, Supriya; Shen, Yang; Zeng, Kai; Xu, Anlong; Carthew, Richard; Wu, Chung-I
2008-05-01
How often micro-RNA (miRNA) genes emerged and how fast they evolved soon after their emergence are some of the central questions in the evolution of miRNAs. Because most known miRNA genes are ancient and highly conserved, these questions can be best answered by identifying newly emerged miRNA genes. Among the 78 miRNA genes in Drosophila reported before 2007, only 5 are confirmed to be newly emerged in the genus (although many more can be found in the newly reported data set; e.g., Ruby et al. 2007; Stark et al. 2007; Lu et al. 2008). These new miRNA genes have undergone numerous changes, even in the normally invariant mature sequences. Four of them (the miR-310/311/312/313 cluster, denoted miR-310s) were duplicated from other conserved miRNA genes. The fifth one (miR-303) appears to be a very young gene, originating de novo from a non-miRNA sequence recently. We sequenced these 5 miRNA genes and their neighboring regions from a worldwide collection of Drosophila melanogaster lines. The levels of divergence and polymorphism in these miRNA genes, vis-à-vis those of the neighboring DNA sequences, suggest that these 5 genes are evolving adaptively. Furthermore, the polymorphism pattern of miR-310s in D. melanogaster is indicative of hitchhiking under positive selection. Thus, a large number of adaptive changes over a long period of time may be essential for the evolution of newly emerged miRNA genes.
Location of a major antigenic site involved in Ross River virus neutralization.
Vrati, S; Fernon, C A; Dalgarno, L; Weir, R C
1988-02-01
The location of a major antigenic domain involved in the neutralization of an alphavirus, Ross River virus, has been defined in terms of its position in the amino acid sequence of the E2 glycoprotein. The domain encompasses three topographically close epitopes which were identified using three E2-specific neutralizing monoclonal antibodies in competitive binding assays. Nucleotide sequencing of the structural protein genes of monoclonal antibody-selected antigenic variants showed that for each variant there was a single nucleotide change in the E2 gene leading to a nonconservative amino acid substitution in E2. Changes were at positions 216, 234, and 246-251 in the amino acid sequence. The epitopes are in a region of E2 which, though not strongly conserved as to sequence among Ross River virus, Semliki Forest virus, and Sindbis virus, is conserved in its hydropathy profile among the three alphaviruses. The epitopes lie between two asparagine-linked glycosylation sites (residues 200 and 262) in E2. They are conserved as to position between the mouse virulent T48 strain and the mouse avirulent NB5092 strain.
Comparative Genomics of Carp Herpesviruses
Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.
2013-01-01
Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803
Description and physical localization of the bovine survival of motor neuron gene (SMN).
Pietrowski, D; Goldammer, T; Meinert, S; Schwerin, M; Förster, M
1998-01-01
Proximal spinal muscular atrophy (SMA) is an autosomal recessive disease in humans and other mammals, characterized by degeneration of anterior horn cells of the spinal cord. In humans, the survival of motor neuron gene (SMN) has been recognized as the SMA-determining gene and has been mapped to 5q13. In cattle, SMA is a recurrent, inherited disease that plays an important economic role in breeding programs of Brown Swiss stock. Now we have identified the full- length cDNA sequence of the bovine SMN gene. Molecular analysis and characterization of the sequence documents 85% identity to its human counterpart and three evolutionarily conserved domains in different species. Physical mapping data reveals that bovine SMN is localized to chromosome region 20q12-->q13, supporting the conserved synteny of this chromosomal region between humans and cattle.
Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila
2010-07-16
Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.
Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology
Richard Cronn; Aaron Liston; Matthew Parks; David S. Gernandt; Rongkun Shen; Todd Mockler
2008-01-01
Organellar DNA sequences are widely used in evolutionary and population genetic studies; however, the conservative nature of chloroplast gene and genome evolution often limits phylogenetic resolution and statistical power. To gain maximal access to the historical record contained within chloroplast genomes, we have adapted multiplex sequencing-by-synthesis (MSBS) to...
Tanaka-Okuyama, Makiko; Shibata, Fukashi; Yoshido, Atsuo; Marec, František; Wu, Chengcang; Zhang, Hongbin; Goldsmith, Marian R.
2009-01-01
Background Genome sequencing projects have been completed for several species representing four highly diverged holometabolous insect orders, Diptera, Hymenoptera, Coleoptera, and Lepidoptera. The striking evolutionary diversity of insects argues a need for efficient methods to apply genome information from such models to genetically uncharacterized species. Constructing conserved synteny maps plays a crucial role in this task. Here, we demonstrate the use of fluorescence in situ hybridization with bacterial artificial chromosome probes as a powerful tool for physical mapping of genes and comparative genome analysis in Lepidoptera, which have numerous and morphologically uniform holokinetic chromosomes. Methodology/Principal Findings We isolated 214 clones containing 159 orthologs of well conserved single-copy genes of a sequenced lepidopteran model, the silkworm, Bombyx mori, from a BAC library of a sphingid with an unexplored genome, the tobacco hornworm, Manduca sexta. We then constructed a BAC-FISH karyotype identifying all 28 chromosomes of M. sexta by mapping 124 loci using the corresponding BAC clones. BAC probes from three M. sexta chromosomes also generated clear signals on the corresponding chromosomes of the convolvulus hawk moth, Agrius convolvuli, which belongs to the same subfamily, Sphinginae, as M. sexta. Conclusions/Significance Comparison of the M. sexta BAC physical map with the linkage map and genome sequence of B. mori pointed to extensive conserved synteny including conserved gene order in most chromosomes. Only a few rearrangements, including three inversions, three translocations, and two fission/fusion events were estimated to have occurred after the divergence of Bombycidae and Sphingidae. These results add to accumulating evidence for the stability of lepidopteran genomes. Generating signals on A. convolvuli chromosomes using heterologous M. sexta probes demonstrated that BAC-FISH with orthologous sequences can be used for karyotyping a wide range of related and genetically uncharacterized species, significantly extending the ability to develop synteny maps for comparative and functional genomics. PMID:19829706
Cox, Murray P; Dong, Ting; Shen, Genggeng; Dalvi, Yogesh; Scott, D Barry; Ganley, Austen R D
2014-03-01
Polyploidy, a state in which the chromosome complement has undergone an increase, is a major force in evolution. Understanding the consequences of polyploidy has received much attention, and allopolyploids, which result from the union of two different parental genomes, are of particular interest because they must overcome a suite of biological responses to this merger, known as "genome shock." A key question is what happens to gene expression of the two gene copies following allopolyploidization, but until recently the tools to answer this question on a genome-wide basis were lacking. Here we utilize high throughput transcriptome sequencing to produce the first genome-wide picture of gene expression response to allopolyploidy in fungi. A novel pipeline for assigning sequence reads to the gene copies was used to quantify their expression in a fungal allopolyploid. We find that the transcriptional response to allopolyploidy is predominantly conservative: both copies of most genes are retained; over half the genes inherit parental gene expression patterns; and parental differential expression is often lost in the allopolyploid. Strikingly, the patterns of gene expression change are highly concordant with the genome-wide expression results of a cotton allopolyploid. The very different nature of these two allopolyploids implies a conserved, eukaryote-wide transcriptional response to genome merger. We provide evidence that the transcriptional responses we observe are mostly driven by intrinsic differences between the regulatory systems in the parent species, and from this propose a mechanistic model in which the cross-kingdom conservation in transcriptional response reflects conservation of the mutational processes underlying eukaryotic gene regulatory evolution. This work provides a platform to develop a universal understanding of gene expression response to allopolyploidy and suggests that allopolyploids are an exceptional system to investigate gene regulatory changes that have evolved in the parental species prior to allopolyploidization.
A novel paired domain DNA recognition motif can mediate Pax2 repression of gene transcription.
Håvik, B; Ragnhildstveit, E; Lorens, J B; Saelemyr, K; Fauske, O; Knudsen, L K; Fjose, A
1999-12-20
The paired domain (PD) is an evolutionarily conserved DNA-binding domain encoded by the Pax gene family of developmental regulators. The Pax proteins are transcription factors and are involved in a variety of processes such as brain development, patterning of the central nervous system (CNS), and B-cell development. In this report we demonstrate that the zebrafish Pax2 PD can interact with a novel type of DNA sequences in vitro, the triple-A motif, consisting of a heptameric nucleotide sequence G/CAAACA/TC with an invariant core of three adjacent adenosines. This recognition sequence was found to be conserved in known natural Pax5 repressor elements involved in controlling the expression of the p53 and J-chain genes. By identifying similar high affinity binding sites in potential target genes of the Pax2 protein, including the pax2 gene itself, we obtained further evidence that the triple-A sites are biologically significant. The putative natural target sites also provide a basis for defining an extended consensus recognition sequence. In addition, we observed in transformation assays a direct correlation between Pax2 repressor activity and the presence of triple-A sites. The results suggest that a transcriptional regulatory function of Pax proteins can be modulated by PD binding to different categories of target sequences. Copyright 1999 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamb, A.; Weir, M.; Rudy, B.
1989-06-01
The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this methodmore » to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.« less
Flores, J; Midthun, K; Hoshino, Y; Green, K; Gorziglia, M; Kapikian, A Z; Chanock, R M
1986-01-01
RNA-RNA hybridization was performed to assess the extent of genetic relatedness among human rotaviruses isolated from children with gastroenteritis and from asymptomatic newborn infants. 32P-labeled single-stranded RNAs produced by in vitro transcription from viral cores of the different strains tested were used as probes in two different hybridization assays: undenatured genomic RNAs were resolved by polyacrylamide gel electrophoresis, denatured in situ, electrophoretically transferred to diazobenzyloxymethyl-paper (Northern blots), and then hybridized to the probes under two different conditions of stringency; and denatured genomic double-stranded RNAs were hybridized to the probes in solution and the hybrids which formed were identified by polyacrylamide gel electrophoresis. When analyzed by Northern blot hybridization at a low level of stringency, all genes from the strains tested cross-hybridized, providing evidence for some sequence homology in each of the corresponding genes. However, when hybridization stringency was increased, a difference in gene 4 sequence was detected between strains recovered from asymptomatic newborn infants ("nursery strains") and strains recovered from infants and young children with diarrhea. Although the nursery strains exhibited serotypic diversity (i.e., each of the four strains tested belonged to a different serotype), the fourth gene appeared to be highly conserved. Similarly, each of the virulent strains tested belonged to a different serotype; nonetheless, there was significant conservation of sequence among the fourth genes of three of these viruses. Significantly, the conserved fourth genes of the nursery strains were distinct from the fourth gene of each of the virulent viruses. These results were confirmed and extended during experiments in which the RNA-RNA hybridization was carried out in solution and the resulting hybrids were analyzed by polyacrylamide gel electrophoresis. Under these conditions, the fourth genes of the nursery strains were closely related to each other but not to the fourth genes of the virulent viruses. Full-length hybrids did not form between the fourth genes from the nursery strains and the corresponding genes from the strains recovered from symptomatic infants and young children. Images PMID:3023685
A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species
Jayaswal, Pawan Kumar; Dogra, Vivek; Shanker, Asheesh; Sharma, Tilak Raj
2017-01-01
Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP–ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes. PMID:28922368
Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays
Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel
2006-01-01
Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921
de Vries, G E; Arfman, N; Terpstra, P; Dijkhuizen, L
1992-01-01
The gene (mdh) coding for methanol dehydrogenase (MDH) of thermotolerant, methylotroph Bacillus methanolicus C1 has been cloned and sequenced. The deduced amino acid sequence of the mdh gene exhibited similarity to those of five other alcohol dehydrogenase (type III) enzymes, which are distinct from the long-chain zinc-containing (type I) or short-chain zinc-lacking (type II) enzymes. Highly efficient expression of the mdh gene in Escherichia coli was probably driven from its own promoter sequence. After purification of MDH from E. coli, the kinetic and biochemical properties of the enzyme were investigated. The physiological effect of MDH synthesis in E. coli and the role of conserved sequence patterns in type III alcohol dehydrogenases have been analyzed and are discussed. Images PMID:1644761
Palumbo, Michael J; Newberg, Lee A
2010-07-01
The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).
Li, Chibo; Ding, Xi-Qin; O’Brien, John; Al-Ubaidi, Muayyad R.
2010-01-01
PURPOSE A great deal of information about functionally significant domains of a protein may be obtained by comparison of primary sequences of gene homologues over a broad phylogenetic base. This study was designed to identify evolutionarily conserved domains of the photoreceptor disc membrane protein peripherin/rds by analysis of the homologue in a primitive vertebrate, the skate. METHODS A skate retinal cDNA library was screened using a mouse peripherin/rds clone. The 5′ and 3′ untranslated regions of the skate peripherin/rds (srds) cDNA were isolated by the rapid amplification of cDNA ends (RACE) approach. The gene structure was characterized by PCR amplification and sequencing of genomic fragments. Northern and Western blot analyses were used to identify srds transcript and protein, respectively. RESULTS A new homologue of peripherin/rds was identified from the skate retinal cDNA library. SRDS is a glycoprotein with a predicted molecular mass of 40.2 kDa. The srds gene consists of two exons and one small intron and transcribes into a single 6-kb message. Phylogenetic analysis places SRDS at the base of peripherin/rds family and near the division of that group and the branch leading to rds-like and rom-1 genes. SRDS protein is 54.5% identical with peripherin/rds across species. Identity is significantly higher (73%) in the intradiscal domains. Sequence comparison revealed the conservation of all residues that have been shown, on mutation, to associate with retinitis pigmentosa and showed conservation of most residues associated with macular dystrophies. Comparison with ROM-1 and other rds-like proteins revealed the presence of a highly conserved domain in the large intradiscal loop. CONCLUSIONS Srds represents the skate orthologue of mammalian peripherin/rds genes. Conservation of most of the residues associated with human retinal diseases indicates that these residues serve important functional roles. The high degree of conservation of a short stretch within the large intradiscal loop also suggests an important function for this domain. PMID:12766040
Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G
1993-08-05
The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.
Conservation of Toll-like receptor signaling pathways in teleost fish
Purcell, M.K.; Smith, K.D.; Aderem, A.; Hood, L.; Winton, J.R.; Roach, J.C.
2006-01-01
In mammals, toll-like receptors (TLR) recognize ligands, including pathogen-associated molecular patterns (PAMPs), and respond with ligand-specific induction of genes. In this study, we establish evolutionary conservation in teleost fish of key components of the TLR-signaling pathway that act as switches for differential gene induction, including MYD88, TIRAP, TRIF, TRAF6, IRF3, and IRF7. We further explore this conservation with a molecular phylogenetic analysis of MYD88. To the extent that current genomic analysis can establish, each vertebrate has one ortholog to each of these genes. For molecular tree construction and phylogeny inference, we demonstrate a methodology for including genes with only partial primary sequences without disrupting the topology provided by the high-confidence full-length sequences. Conservation of the TLR-signaling molecules suggests that the basic program of gene regulation by the TLR-signaling pathway is conserved across vertebrates. To test this hypothesis, leukocytes from a model fish, rainbow trout (Oncorhynchus mykiss), were stimulated with known mammalian TLR agonists including: diacylated and triacylated forms of lipoprotein, flagellin, two forms of LPS, synthetic double-stranded RNA, and two imidazoquinoline compounds (loxoribine and R848). Trout leukocytes responded in vitro to a number of these agonists with distinct patterns of cytokine expression that correspond to mammalian responses. Our results support the key prediction from our phylogenetic analyses that strong selective pressure of pathogenic microbes has preserved both TLR recognition and signaling functions during vertebrate evolution.
Chen, Yan ping; Pettis, Jeffery S; Zhao, Yan; Liu, Xinyue; Tallon, Luke J; Sadzewicz, Lisa D; Li, Renhua; Zheng, Huoqing; Huang, Shaokang; Zhang, Xuan; Hamilton, Michele C; Pernal, Stephen F; Melathopoulos, Andony P; Yan, Xianghe; Evans, Jay D
2013-07-05
The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections. We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia. The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.
Variability and repertoire size of T-cell receptor V alpha gene segments.
Becker, D M; Pattern, P; Chien, Y; Yokota, T; Eshhar, Z; Giedlin, M; Gascoigne, N R; Goodnow, C; Wolf, R; Arai, K
The immune system of higher organisms is composed largely of two distinct cell types, B lymphocytes and T lymphocytes, each of which is independently capable of recognizing an enormous number of distinct entities through their antigen receptors; surface immunoglobulin in the case of the former, and the T-cell receptor (TCR) in the case of the latter. In both cell types, the genes encoding the antigen receptors consist of multiple gene segments which recombine during maturation to produce many possible peptides. One striking difference between B- and T-cell recognition that has not yet been resolved by the structural data is the fact that T cells generally require a major histocompatibility determinant together with an antigen whereas, in most cases, antibodies recognize antigen alone. Recently, we and others have found that a series of TCR V beta gene sequences show conservation of many of the same residues that are conserved between heavy- and light-chain immunoglobulin V regions, and these V beta sequences are predicted to have an immunoglobulin-like secondary structure. To extend these studies, we have isolated and sequenced eight additional alpha-chain complementary cDNA clones and compared them with published sequences. Analyses of these sequences, reported here, indicate that V alpha regions have many of the characteristics of V beta gene segments but differ in that they almost always occur as cross-hybridizing gene families. We conclude that there may be very different selective pressures operating on V alpha and V beta sequences and that the V alpha repertoire may be considerably larger than that of V beta.
Catania, Francesco; Lynch, Michael
2010-05-04
In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.
Trower, M K; Orton, S M; Purvis, I J; Sanseau, P; Riley, J; Christodoulou, C; Burt, D; See, C G; Elgar, G; Sherrington, R; Rogaev, E I; St George-Hyslop, P; Brenner, S; Dykes, C W
1996-02-20
The genome of the pufferfish (Fugu rubripes) (400 Mb) is approximately 7.5 times smaller than the human genome, but it has a similar gene repertoire to that of man. If regions of the two genomes exhibited conservation of gene order (i.e., were syntenic), it should be possible to reduce dramatically the effort required for identification of candidate genes in human disease loci by sequencing syntenic regions of the compact Fugu genome. We have demonstrated that three genes (dihydrolipoamide succinyltransferase, S31iii125, and S20i15), which are linked to FOS in the familial Alzheimer disease focus (AD3) on human chromosome 14, have homologues in the Fugu genome adjacent to Fugu cFOS. The relative gene order of cFOS, S31iii125, and S20i15 was the same in both genomes, but in Fugu these three genes lay within a 12.4-kb region, compared to >600 kb in the human AD3 locus. These results demonstrate the conservation of synteny between the genomes of Fugu and man and highlight the utility of this approach for sequence-based identification of genes in human disease loci.
Dardick, Chris; Callahan, Ann; Horn, Renate; Ruiz, Karina B; Zhebentyayeva, Tetyana; Hollender, Courtney; Whitaker, Michael; Abbott, Albert; Scorza, Ralph
2013-08-01
Trees are capable of tremendous architectural plasticity, allowing them to maximize their light exposure under highly competitive environments. One key component of tree architecture is the branch angle, yet little is known about the molecular basis for the spatial patterning of branches in trees. Here, we report the identification of a candidate gene for the br mutation in Prunus persica (peach) associated with vertically oriented growth of branches, referred to as 'pillar' or 'broomy'. Ppa010082, annotated as hypothetical protein in the peach genome sequence, was identified as a candidate gene for br using a next generation sequence-based mapping approach. Sequence similarity searches identified rice TAC1 (tiller angle control 1) as a putative ortholog, and we thus named it PpeTAC1. In monocots, TAC1 is known to lead to less compact growth by increasing the tiller angle. In Arabidopsis, an attac1 mutant showed more vertical branch growth angles, suggesting that the gene functions universally to promote the horizontal growth of branches. TAC1 genes belong to a gene family (here named IGT for a shared conserved motif) found in all plant genomes, consisting of two clades: one containing TAC1-like genes; the other containing LAZY1, which contains an EAR motif, and promotes vertical shoot growth in Oryza sativa (rice) and Arabidopsis through influencing polar auxin transport. The data suggest that IGT genes are ancient, and play conserved roles in determining shoot growth angles in plants. Understanding how IGT genes modulate branch angles will provide insights into how different architectural growth habits evolved in terrestrial plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Matus, José Tomás; Aquea, Felipe; Arce-Johnson, Patricio
2008-01-01
Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions. PMID:18647406
Gupta, Sonal; Nawaz, Kashif; Parween, Sabiha; Roy, Riti; Sahu, Kamlesh; Kumar Pole, Anil; Khandal, Hitaishi; Srivastava, Rishi; Kumar Parida, Swarup; Chattopadhyay, Debasis
2017-02-01
Cicer reticulatum L. is the wild progenitor of the fourth most important legume crop chickpea (C. arietinum L.). We assembled short-read sequences into 416 Mb draft genome of C. reticulatum and anchored 78% (327 Mb) of this assembly to eight linkage groups. Genome annotation predicted 25,680 protein-coding genes covering more than 90% of predicted gene space. The genome assembly shared a substantial synteny and conservation of gene orders with the genome of the model legume Medicago truncatula. Resistance gene homologs of wild and domesticated chickpeas showed high sequence homology and conserved synteny. Comparison of gene sequences and nucleotide diversity using 66 wild and domesticated chickpea accessions suggested that the desi type chickpea was genetically closer to the wild species than the kabuli type. Comparative analyses predicted gene flow between the wild and the cultivated species during domestication. Molecular diversity and population genetic structure determination using 15,096 genome-wide single nucleotide polymorphisms revealed an admixed domestication pattern among cultivated (desi and kabuli) and wild chickpea accessions belonging to three population groups reflecting significant influence of parentage or geographical origin for their cultivar-specific population classification. The assembly and the polymorphic sequence resources presented here would facilitate the study of chickpea domestication and targeted use of wild Cicer germplasms for agronomic trait improvement in chickpea. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron
Hiesel, Rudolf; Brennicke, Axel
1983-01-01
The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484
Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.
2008-01-01
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.
Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai
2013-08-01
To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.
2012-01-01
Background Plants respond to external stimuli through fine regulation of gene expression partially ensured by small RNAs. Of these, microRNAs (miRNAs) play a crucial role. They negatively regulate gene expression by targeting the cleavage or translational inhibition of target messenger RNAs (mRNAs). In Hevea brasiliensis, environmental and harvesting stresses are known to affect natural rubber production. This study set out to identify abiotic stress-related miRNAs in Hevea using next-generation sequencing and bioinformatic analysis. Results Deep sequencing of small RNAs was carried out on plantlets subjected to severe abiotic stress using the Solexa technique. By combining the LeARN pipeline, data from the Plant microRNA database (PMRD) and Hevea EST sequences, we identified 48 conserved miRNA families already characterized in other plant species, and 10 putatively novel miRNA families. The results showed the most abundant size for miRNAs to be 24 nucleotides, except for seven families. Several MIR genes produced both 20-22 nucleotides and 23-27 nucleotides. The two miRNA class sizes were detected for both conserved and putative novel miRNA families, suggesting their functional duality. The EST databases were scanned with conserved and novel miRNA sequences. MiRNA targets were computationally predicted and analysed. The predicted targets involved in "responses to stimuli" and to "antioxidant" and "transcription activities" are presented. Conclusions Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs when the complete genome is not yet available. Our study provided additional information for evolutionary studies and revealed potentially specific regulation of the control of redox status in Hevea. PMID:22330773
Fritz, David T; Jiang, Shan; Xu, Junwang; Rogers, Melissa B
2006-07-01
The bone morphogenetic protein (BMP)2 gene has been genetically linked to osteoporosis and osteoarthritis. We have shown that the 3'-untranslated regions (UTR) of BMP2 genes from mammals to fishes are extraordinarily conserved. This indicates that the BMP2 3'-UTR is under stringent selective pressure. We present evidence that the conserved region is a strong posttranscriptional regulator of BMP2 expression. Polymorphisms in cis-regulatory elements have been proven to influence susceptibility to a growing number of diseases. A common single nucleotide polymorphism (SNP) disrupts a putative posttranscriptional regulatory motif, an AU-rich element, within the BMP2 3'-UTR. The affinity of specific proteins for the rs15705 SNP sequence differs from their affinity for the normal human sequence. More importantly, the in vitro decay rate of RNAs with the SNP is higher than that of RNAs with the normal sequence. Such changes in mRNA:protein interactions may influence the posttranscriptional mechanisms that control BMP2 gene expression. The consequent alterations in BMP2 protein levels may influence the development or physiology of bone or other BMP2-influenced tissues.
How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?
Rodriguez-R, Luis M; Castro, Juan C; Kyrpides, Nikos C; Cole, James R; Tiedje, James M; Konstantinidis, Konstantinos T
2018-03-15
The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas , Burkholderia , Escherichia , Campylobacter , and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary. IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA gene sequences at some threshold of nucleotide identity, typically 97% or 98.5%. Here, we explore how well this strategy reflects the more accurate whole-genome-based proxies and determine the frequency with which the high conservation of 16S rRNA sequences masks substantial species-level diversity. Copyright © 2018 American Society for Microbiology.
te Biesebeke, Rob; Levasseur, Anthony; Boussier, Amandine; Record, Eric; van den Hondel, Cees A M J J; Punt, Peter J
2010-01-01
The fhbA genes encoding putative flavohemoglobins (FHb) from Aspergillus niger and Aspergillus oryzae were isolated. Comparison of the deduced amino acid sequence of the A. niger fhbA gene and other putative filamentous fungal FHb-encoding genes to that of Ralstonia eutropha shows an overall conserved gene structure and completely conserved catalytic amino acids. Several yeasts and filamentous fungi, including both Aspergillus species have been found to contain a small FHb gene family mostly consisting of two family members. Based on these sequences the evolutionary history of the fungal FHb family was reconstructed. The isolated fhbA genes from A. oryzae and A. niger belong to a phylogenetic group, which exclusively contains Aspergillus genes. Different experimental approaches show that fhbA transcript levels appear during active hyphal growth. Moreover, in a pclA-disrupted strain with a hyperbranching growth phenotype, the transcript levels of the fhbA gene were 2–5 times higher compared to the wild-type. These results suggest that FHb from filamentous fungi have a function that is correlated to the hyphal growth phenotype.
Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.
Borodovsky, M; Rudd, K E; Koonin, E V
1994-01-01
The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428
Dynamics of actin evolution in dinoflagellates.
Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F
2011-04-01
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
The complete mitochondrial genome of the central chimpanzee, Pan troglodytes troglodytes.
Liu, Bang; Hu, Xiao-di; Gao, Li-Zhi
2016-07-01
This study first report the complete mitochondrial genome sequence of the central chimpanzee, Pan troglodytes troglodytes. The genome was a total of 16 556 bp in length and had a base composition of A (31.05%), G (12.95%), C (30.84%), and T (25.16%), indicating that the percentage of A + T (56.21%) is higher than G + C (43.79%). Similar to other primates, it possessed a typically conserved structure, including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop). Most of these genes were found to locate on the H-strand except for the ND6 gene and 8 tRNA genes. The phylogenetic analysis showed that the P. t. troglodytes mitochondrial genome formed a cluster with the other three Pan troglodytes genomes and that the genus Pan is closely related to the genus Homo. This mitochondrial genome sequence would supply useful genetic resources to help the conservation management of primate germplasm and uncover hominoid evolution.
The Intolerance of Regulatory Sequence to Genetic Variation Predicts Gene Dosage Sensitivity
Wang, Quanli; Halvorsen, Matt; Han, Yujun; Weir, William H.; Allen, Andrew S.; Goldstein, David B.
2015-01-01
Noncoding sequence contains pathogenic mutations. Yet, compared with mutations in protein-coding sequence, pathogenic regulatory mutations are notoriously difficult to recognize. Most fundamentally, we are not yet adept at recognizing the sequence stretches in the human genome that are most important in regulating the expression of genes. For this reason, it is difficult to apply to the regulatory regions the same kinds of analytical paradigms that are being successfully applied to identify mutations among protein-coding regions that influence risk. To determine whether dosage sensitive genes have distinct patterns among their noncoding sequence, we present two primary approaches that focus solely on a gene’s proximal noncoding regulatory sequence. The first approach is a regulatory sequence analogue of the recently introduced residual variation intolerance score (RVIS), termed noncoding RVIS, or ncRVIS. The ncRVIS compares observed and predicted levels of standing variation in the regulatory sequence of human genes. The second approach, termed ncGERP, reflects the phylogenetic conservation of a gene’s regulatory sequence using GERP++. We assess how well these two approaches correlate with four gene lists that use different ways to identify genes known or likely to cause disease through changes in expression: 1) genes that are known to cause disease through haploinsufficiency, 2) genes curated as dosage sensitive in ClinGen’s Genome Dosage Map, 3) genes judged likely to be under purifying selection for mutations that change expression levels because they are statistically depleted of loss-of-function variants in the general population, and 4) genes judged unlikely to cause disease based on the presence of copy number variants in the general population. We find that both noncoding scores are highly predictive of dosage sensitivity using any of these criteria. In a similar way to ncGERP, we assess two ensemble-based predictors of regional noncoding importance, ncCADD and ncGWAVA, and find both scores are significantly predictive of human dosage sensitive genes and appear to carry information beyond conservation, as assessed by ncGERP. These results highlight that the intolerance of noncoding sequence stretches in the human genome can provide a critical complementary tool to other genome annotation approaches to help identify the parts of the human genome increasingly likely to harbor mutations that influence risk of disease. PMID:26332131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Hanne; Schwemmer, M.; Tessmann, D.
1996-03-01
The mitochondrial capsule selenoprotein (MCS) (HGMW-approved symbol MCSP) is one of three proteins that are important for the maintenance and stabilization of the crescent structure of the sperm mitochondria. We describe here the isolation of a cDNA, the exon-intron organization, the expression, and the chromosomal localization of the human MCS gene. Nucleotide sequence analysis of the human and mouse MCS cDNAs reveals that the 5{prime}- and 3{prime}-untranslated sequences are more conserved (71%) than the coding sequences (59%). The open reading frame encodes a 116-amino-acid protein and lacks the UGA codons, which have been reported to encode the selenocysteines in themore » N-terminal of the deduced mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein. The deduced human protein shows a low degree of amino acid sequence identity to the mouse protein (39%). The most striking homology lies in the dicysteine motifs. Northern and Southern zooblot analyses reveal that the MCS gene in human, baboon, and bovine is more conserved than its counterparts in mouse and rat. The single intron in the human MCS gene is approximately 6 kb and interrupts the 5{prime}-untranslated region at a position equivalent to that in the mouse and rat genes. Northern blot and in situ hybridization experiments demonstrate that the expression of the human MCS gene is restricted to haploid spermatids. The human gene was assigned to q21 of chromosome 1. 30 refs., 9 figs.« less
Zhang, Fantao; Luo, Xiangdong; Zhou, Yi; Xie, Jiankun
2016-04-01
To identify drought stress-responsive conserved microRNA (miRNA) from Dongxiang wild rice (Oryza rufipogon Griff., DXWR) on a genome-wide scale, high-throughput sequencing technology was used to sequence libraries of DXWR samples, treated with and without drought stress. 505 conserved miRNAs corresponding to 215 families were identified. 17 were significantly down-regulated and 16 were up-regulated under drought stress. Stem-loop qRT-PCR revealed the same expression patterns as high-throughput sequencing, suggesting the accuracy of the sequencing result was high. Potential target genes of the drought-responsive miRNA were predicted to be involved in diverse biological processes. Furthermore, 16 miRNA families were first identified to be involved in drought stress response from plants. These results present a comprehensive view of the conserved miRNA and their expression patterns under drought stress for DXWR, which will provide valuable information and sequence resources for future basis studies.
Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick
2009-06-01
Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.
Nadin-Davis, S A; Huang, W; Wandeler, A I
1996-03-01
Since its recognition as a discrete epizootic in Florida in the early 1950s, the raccoon strain of rabies virus (RV) has spread over almost the entire eastern seaboard of the US and now threatens to enter the southernmost regions of Canada. To characterise this RV strain in more detail, nucleotide sequencing of the N and G genes, encoding the nucleoprotein and glycoprotein, respectively, of representative isolates has been undertaken. This sequence information generated a conserved restriction map of the N gene, thereby permitting unequivocal identification of this strain by molecular techniques. Comparisons of the predicted nucleoprotein and glycoprotein products with those of other RV strains identified a number of amino acid sequence variations conserved only in the raccoon strain. This information was used to design strain-specific primers targeted to the N gene sequences encoding these residues. The incorporation of these primers into a multiplex polymerase chain reaction (PCR) protocol permitted easy and rapid discrimination between the raccoon RV strain and indigenous Ontario RVs.
Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V
2016-01-01
Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.
Evolution of coding and non-coding genes in HOX clusters of a marsupial.
Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B
2012-06-18
The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
Evolution of coding and non-coding genes in HOX clusters of a marsupial
2012-01-01
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672
Whipps, Christopher M.; El-Matbouli, M.; Hedrick, R.P.; Blazer, V.; Kent, M.L.
2004-01-01
Molecular approaches for resolving relationships among the Myxozoa have relied mainly on small subunit (SSU) ribosomal DNA (rDNA) sequence analysis. This region of the gene is generally used for higher phylogenetic studies, and the conservative nature of this gene may make it inadequate for intraspecific comparisons. Previous intraspecific studies of Myxobolus cerebralis based on molecular analyses reported that the sequence of SSU rDNA and the internal transcribed spacer (ITS) were highly conserved in representatives of the parasite from North America and Europe. Considering that the ITS is usually a more variable region than the SSU, we reanalyzed available sequences on GenBank and obtained sequences from other M. cerebralis representatives from the states of California and West Virginia in the USA and from Germany and Russia. With the exception of 7 base pairs, most of the sequence designated as ITS-1 in GenBank was a highly conserved portion of the rDNA near the 3-prime end of the SSU region. Nonetheless, the additional ITS-1 sequences obtained from the available geographic representatives were well conserved. It is unlikely that we would have observed virtually identical ITS-1 sequences between European and American M. cerebralis samples had it spread naturally over time, particularly when compared to the variation seen between isolates of another myxozoan (Kudoa thyrsites) that has most likely spread naturally. These data further support the hypothesis that the current distribution of M. cerebralis in North America is a result of recent introductions followed by dispersal via anthropogenic means, largely through the stocking of infected trout for sport fishing.
Li, Ruixue; Chen, Dandan; Wang, Taichu; Wan, Yizhen; Li, Rongfang; Fang, Rongjun; Wang, Yuting; Hu, Fei; Zhou, Hong; Li, Long; Zhao, Weiguo
2017-01-01
MicroRNAs (miRNAs) play important regulatory roles by targeting mRNAs for cleavage or translational repression. Identification of miRNA targets is essential to better understanding the roles of miRNAs. miRNA targets have not been well characterized in mulberry (Morus alba). To anatomize miRNA guided gene regulation under drought stress, transcriptome-wide high throughput degradome sequencing was used in this study to directly detect drought stress responsive miRNA targets in mulberry. A drought library (DL) and a contrast library (CL) were constructed to capture the cleaved mRNAs for sequencing. In CL, 409 target genes of 30 conserved miRNA families and 990 target genes of 199 novel miRNAs were identified. In DL, 373 target genes of 30 conserved miRNA families and 950 target genes of 195 novel miRNAs were identified. Of the conserved miRNA families in DL, mno-miR156, mno-miR172, and mno-miR396 had the highest number of targets with 54, 52 and 41 transcripts, respectively, indicating that these three miRNA families and their target genes might play important functions in response to drought stress in mulberry. Additionally, we found that many of the target genes were transcription factors. By analyzing the miRNA-target molecular network, we found that the DL independent networks consisted of 838 miRNA-mRNA pairs (63.34%). The expression patterns of 11 target genes and 12 correspondent miRNAs were detected using qRT-PCR. Six miRNA targets were further verified by RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5' RACE). Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that these target transcripts were implicated in a broad range of biological processes and various metabolic pathways. This is the first study to comprehensively characterize target genes and their associated miRNAs in response to drought stress by degradome sequencing in mulberry. This study provides a framework for understanding the molecular mechanisms of drought resistance in mulberry.
Gubala, Aneta; Davis, Steven; Weir, Richard; Melville, Lorna; Cowled, Chris; Boyle, David
2011-09-01
Tibrogargan virus (TIBV) and Coastal Plains virus (CPV) were isolated from cattle in Australia and TIBV has also been isolated from the biting midge Culicoides brevitarsis. Complete genomic sequencing revealed that the viruses share a novel genome structure within the family Rhabdoviridae, each virus containing two additional putative genes between the matrix protein (M) and glycoprotein (G) genes and one between the G and viral RNA polymerase (L) genes. The predicted novel protein products are highly diverged at the sequence level but demonstrate clear conservation of secondary structure elements, suggesting conservation of biological functions. Phylogenetic analyses showed that TIBV and CPV form an independent group within the 'dimarhabdovirus supergroup'. Although no disease has been observed in association with these viruses, antibodies were detected at high prevalence in cattle and buffalo in northern Australia, indicating the need for disease monitoring and further study of this distinctive group of viruses.
Naghdi, Mohammad Reza; Smail, Katia; Wang, Joy X; Wade, Fallou; Breaker, Ronald R; Perreault, Jonathan
2017-03-15
The discovery of noncoding RNAs (ncRNAs) and their importance for gene regulation led us to develop bioinformatics tools to pursue the discovery of novel ncRNAs. Finding ncRNAs de novo is challenging, first due to the difficulty of retrieving large numbers of sequences for given gene activities, and second due to exponential demands on calculation needed for comparative genomics on a large scale. Recently, several tools for the prediction of conserved RNA secondary structure were developed, but many of them are not designed to uncover new ncRNAs, or are too slow for conducting analyses on a large scale. Here we present various approaches using the database RiboGap as a primary tool for finding known ncRNAs and for uncovering simple sequence motifs with regulatory roles. This database also can be used to easily extract intergenic sequences of eubacteria and archaea to find conserved RNA structures upstream of given genes. We also show how to extend analysis further to choose the best candidate ncRNAs for experimental validation. Copyright © 2017 Elsevier Inc. All rights reserved.
Xie, Weilong; Perry, Gregory; Martin, C Joe; Shim, Youn-Seb; Navabi, Alireza; Pauls, K Peter
2017-07-01
Common beans (Phaseolus vulgaris) are excellent sources of dietary folates, but different varieties contain different amounts of these compounds. Genes coding for dihydroneopterin aldolase (DHNA) and aminodeoxychorismate synthase (ADCS) of the folate synthesis pathway were characterized by PCR amplification, BAC clone sequencing, and whole genome sequencing. All DHNA and ADCS genes in the Mesoamerican cultivar OAC Rex were isolated and compared with those genes in the genome of Andean genotype G19833. Both genotypes have two functional DHNA genes and one pseudo gene. PvDHNA1 and PvDHNA2 proteins have similar secondary structures and conserved residues as DHNA homologs in Staphylococcus aureus and Arabidopsis. Sequence analysis and synteny mapping indicated that PvDHNA1 might be a duplicated and transposed copy of PvDHNA2. There is only one ADCS gene (PvADCS) identified in the bean genome and it is identical in OAC Rex and G19833. PvADCS has the conserved motifs required for catalytic activity similar to other plant ADCS homologs. DHNA and ADCS gene-specific markers were developed, mapped, and compared to their physical locations on chromosomes 1 and 7, respectively. The gene-specific markers developed in this study should be useful for detection and selection of varieties with enhanced folate contents in bean breeding programs.
A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes.
Hezroni, Hadas; Ben-Tov Perry, Rotem; Meir, Zohar; Housman, Gali; Lubelsky, Yoav; Ulitsky, Igor
2017-08-30
Only a small portion of human long non-coding RNAs (lncRNAs) appear to be conserved outside of mammals, but the events underlying the birth of new lncRNAs in mammals remain largely unknown. One potential source is remnants of protein-coding genes that transitioned into lncRNAs. We systematically compare lncRNA and protein-coding loci across vertebrates, and estimate that up to 5% of conserved mammalian lncRNAs are derived from lost protein-coding genes. These lncRNAs have specific characteristics, such as broader expression domains, that set them apart from other lncRNAs. Fourteen lncRNAs have sequence similarity with the loci of the contemporary homologs of the lost protein-coding genes. We propose that selection acting on enhancer sequences is mostly responsible for retention of these regions. As an example of an RNA element from a protein-coding ancestor that was retained in the lncRNA, we describe in detail a short translated ORF in the JPX lncRNA that was derived from an upstream ORF in a protein-coding gene and retains some of its functionality. We estimate that ~ 55 annotated conserved human lncRNAs are derived from parts of ancestral protein-coding genes, and loss of coding potential is thus a non-negligible source of new lncRNAs. Some lncRNAs inherited regulatory elements influencing transcription and translation from their protein-coding ancestors and those elements can influence the expression breadth and functionality of these lncRNAs.
Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.
Mapping cis-Regulatory Domains in the Human Genome UsingMulti-Species Conservation of Synteny
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahituv, Nadav; Prabhakar, Shyam; Poulin, Francis
2005-06-13
Our inability to associate distant regulatory elements with the genes that they regulate has largely precluded their examination for sequence alterations contributing to human disease. One major obstacle is the large genomic space surrounding targeted genes in which such elements could potentially reside. In order to delineate gene regulatory boundaries we used whole-genome human-mouse-chicken (HMC) and human-mouse-frog (HMF) multiple alignments to compile conserved blocks of synteny (CBS), under the hypothesis that these blocks have been kept intact throughout evolution at least in part by the requirement of regulatory elements to stay linked to the genes that they regulate. A totalmore » of 2,116 and 1,942 CBS>200 kb were assembled for HMC and HMF respectively, encompassing 1.53 and 0.86 Gb of human sequence. To support the existence of complex long-range regulatory domains within these CBS we analyzed the prevalence and distribution of chromosomal aberrations leading to position effects (disruption of a genes regulatory environment), observing a clear bias not only for mapping onto CBS but also for longer CBS size. Our results provide a genome wide data set characterizing the regulatory domains of genes and the conserved regulatory elements within them.« less
Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease
Kleinjan, Dirk A.; van Heyningen, Veronica
2005-01-01
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674
High levels of variation in Salix lignocellulose genes revealed using poplar genomic resources
2013-01-01
Background Little is known about the levels of variation in lignin or other wood related genes in Salix, a genus that is being increasingly used for biomass and biofuel production. The lignin biosynthesis pathway is well characterized in a number of species, including the model tree Populus. We aimed to transfer the genomic resources already available in Populus to its sister genus Salix to assess levels of variation within genes involved in wood formation. Results Amplification trials for 27 gene regions were undertaken in 40 Salix taxa. Twelve of these regions were sequenced. Alignment searches of the resulting sequences against reference databases, combined with phylogenetic analyses, showed the close similarity of these Salix sequences to Populus, confirming homology of the primer regions and indicating a high level of conservation within the wood formation genes. However, all sequences were found to vary considerably among Salix species, mainly as SNPs with a smaller number of insertions-deletions. Between 25 and 176 SNPs per kbp per gene region (in predicted exons) were discovered within Salix. Conclusions The variation found is sizeable but not unexpected as it is based on interspecific and not intraspecific comparison; it is comparable to interspecific variation in Populus. The characterisation of genetic variation is a key process in pre-breeding and for the conservation and exploitation of genetic resources in Salix. This study characterises the variation in several lignocellulose gene markers for such purposes. PMID:23924375
2010-01-01
Background Fragaria belongs to the Rosaceae, an economically important family that includes a number of important fruit producing genera such as Malus and Prunus. Using genomic sequences from 50 Fragaria fosmids, we have examined the microsynteny between Fragaria and other plant models. Results In more than half of the strawberry fosmids, we found syntenic regions that are conserved in Populus, Vitis, Medicago and/or Arabidopsis with Populus containing the greatest number of syntenic regions with Fragaria. The longest syntenic region was between LG VIII of the poplar genome and the strawberry fosmid 72E18, where seven out of twelve predicted genes were collinear. We also observed an unexpectedly high level of conserved synteny between Fragaria (rosid I) and Vitis (basal rosid). One of the strawberry fosmids, 34E24, contained a cluster of R gene analogs (RGAs) with NBS and LRR domains. We detected clusters of RGAs with high sequence similarity to those in 34E24 in all the genomes compared. In the phylogenetic tree we have generated, all the NBS-LRR genes grouped together with Arabidopsis CNL-A type NBS-LRR genes. The Fragaria RGA grouped together with those of Vitis and Populus in the phylogenetic tree. Conclusions Our analysis shows considerable microsynteny between Fragaria and other plant genomes such as Populus, Medicago, Vitis, and Arabidopsis to a lesser degree. We also detected a cluster of NBS-LRR type genes that are conserved in all the genomes compared. PMID:20565715
Amaral, Paulo P; Leonardi, Tommaso; Han, Namshik; Viré, Emmanuelle; Gascoigne, Dennis K; Arias-Carrasco, Raúl; Büscher, Magdalena; Pandolfini, Luca; Zhang, Anda; Pluchino, Stefano; Maracaja-Coutinho, Vinicius; Nakaya, Helder I; Hemberg, Martin; Shiekhattar, Ramin; Enright, Anton J; Kouzarides, Tony
2018-03-15
The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.
2014-01-01
Background Neisseria meningitidis expresses type four pili (Tfp) which are important for colonisation and virulence. Tfp have been considered as one of the most variable structures on the bacterial surface due to high frequency gene conversion, resulting in amino acid sequence variation of the major pilin subunit (PilE). Meningococci express either a class I or a class II pilE gene and recent work has indicated that class II pilins do not undergo antigenic variation, as class II pilE genes encode conserved pilin subunits. The purpose of this work was to use whole genome sequences to further investigate the frequency and variability of the class II pilE genes in meningococcal isolate collections. Results We analysed over 600 publically available whole genome sequences of N. meningitidis isolates to determine the sequence and genomic organization of pilE. We confirmed that meningococcal strains belonging to a limited number of clonal complexes (ccs, namely cc1, cc5, cc8, cc11 and cc174) harbour a class II pilE gene which is conserved in terms of sequence and chromosomal context. We also identified pilS cassettes in all isolates with class II pilE, however, our analysis indicates that these do not serve as donor sequences for pilE/pilS recombination. Furthermore, our work reveals that the class II pilE locus lacks the DNA sequence motifs that enable (G4) or enhance (Sma/Cla repeat) pilin antigenic variation. Finally, through analysis of pilin genes in commensal Neisseria species we found that meningococcal class II pilE genes are closely related to pilE from Neisseria lactamica and Neisseria polysaccharea, suggesting horizontal transfer among these species. Conclusions Class II pilins can be defined by their amino acid sequence and genomic context and are present in meningococcal isolates which have persisted and spread globally. The absence of G4 and Sma/Cla sequences adjacent to the class II pilE genes is consistent with the lack of pilin subunit variation in these isolates, although horizontal transfer may generate class II pilin diversity. This study supports the suggestion that high frequency antigenic variation of pilin is not universal in pathogenic Neisseria. PMID:24690385
Müller, M; Schnitzler, P; Koonin, E V; Darai, G
1995-05-01
Cytoplasmic DNA viruses encode a DNA-dependent RNA polymerase (DdRP) that is essential for transcription of viral genes. The amino acid sequences of the known largest subunits of DdRPs from different species contain highly conserved regions. Oligonucleotide primers, deduced from two conserved domains (RQP[T/S]LH and NADFDGDE) were used for detecting the corresponding gene of fish lymphocystis disease virus (FLCDV), a member of the family Iridoviridae, which replicates in the cytoplasm of infected cells of flatfish. The gene coding for the largest subunit of the DdRP was identified using a PCR-derived probe. The screening of the complete EcoRI gene library of the viral genome led to the identification of the gene locus of the largest subunit of the DdRP within the EcoRI DNA fragment B (12.4 kbp, 0.034 to 0.165 map units). The nucleotide sequence of a part (8334 bp) of the EcoRI DNA fragment B was determined and a large ORF on the lower strand (ATG = 5787; TAA = 2190) was detected which encodes a protein of 1199 amino acids. Comparison of the amino acid sequences of the largest subunits of the DdRP (RPO1) of FLCDV and Chilo iridescent virus (CIV) revealed a dramatic difference in their domain organization. Unlike the 1051 aa RPO1 of CIV, which lacks the C-terminal domain conserved in eukaryotic, eubacterial and other viral RNA polymerases, the 1199 aa RPO1 of FLCDV is fully collinear with its cellular and viral homologues. Despite this difference, comparative analysis of the amino acid sequences of viral and cellular RNA polymerases suggests a common origin for the largest RNA polymerase subunits of FLCDV and CIV.
Brok-Volchanskaya, Vera S; Kadyrov, Farid A; Sivogrivov, Dmitry E; Kolosov, Peter M; Sokolov, Andrey S; Shlyapnikov, Michael G; Kryukov, Valentine M; Granovsky, Igor E
2008-04-01
Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3' 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TpsiC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages.
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-11-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM.
Knowles, D P; Cheevers, W P; McGuire, T C; Brassfield, A L; Harwood, W G; Stem, T A
1991-01-01
To define the structure of the caprine arthritis-encephalitis virus (CAEV) env gene and characterize genetic changes which occur during antigenic variation, we sequenced the env genes of CAEV-63 and CAEV-Co, two antigenic variants of CAEV defined by serum neutralization. The deduced primary translation product of the CAEV env gene consists of a 60- to 80-amino-acid signal peptide followed by an amino-terminal surface protein (SU) and a carboxy-terminal transmembrane protein (TM) separated by an Arg-Lys-Lys-Arg cleavage site. The signal peptide cleavage site was verified by amino-terminal amino acid sequencing of native CAEV-63 SU. In addition, immunoprecipitation of [35S]methionine-labeled CAEV-63 proteins by sera from goats immunized with recombinant vaccinia virus expressing the CAEV-63 env gene confirmed that antibodies induced by env-encoded recombinant proteins react specifically with native virion SU and TM. The env genes of CAEV-63 and CAEV-Co encode 28 conserved cysteines and 25 conserved potential N-linked glycosylation sites. Nucleotide sequence variability results in 62 amino acid changes and one deletion within the SU and 34 amino acid changes within the TM. Images PMID:1656067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onda, M.; Kudo, S.; Fukuda, M.
Human glycophorin A, B, and E (GPA, GPB, and GPE) genes belong to a gene family located at the long arm of chromosome 4. These three genes are homologous from the 5'-flanking sequence to the Alu sequence, which is 1 kb downstream from the exon encoding the transmembrane domain. Analysis of the Alu sequence and flanking direct repeat sequences suggested that the GPA gene most closely resembles the ancestral gene, whereas the GPB and GPE gene arose by homologous recombination within the Alu sequence, acquiring 3' sequences from an unrelated precursor genomic segment. Here the authors describe the identification ofmore » this putative precursor genomic segment. A human genomic library was screened by using the sequence of the 3' region of the GPB gene as a probe. The genomic clones isolated were found to contain an Alu sequence that appeared to be involved in the recombination. Downstream from the Alu sequence, the nucleotide sequence of the precursor genomic segment is almost identical to that of the GPB or GPE gene. In contrast, the upstream sequence of the genomic segment differs entirely from that of the GPA, GPB, and GPE genes. Conservation of the direct repeats flanking the Alu sequence of the genomic segment strongly suggests that the sequence of this genomic segment has been maintained during evolution. This identified genomic segment was found to reside downstream from the GPA gene by both gene mapping and in situ chromosomal localization. The precursor genomic segment was also identified in the orangutan genome, which is known to lack GPB and GPE genes. These results indicate that one of the duplicated ancestral glycophorin genes acquired a unique 3' sequence by unequal crossing-over through its Alu sequence and the further downstream Alu sequence present in the duplicated gene. Further duplication and divergence of this gene yielded the GPB and GPE genes. 37 refs., 5 figs.« less
Kalyna, Maria; Lopato, Sergiy; Voronin, Viktor; Barta, Andrea
2006-01-01
Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins. PMID:16936312
Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).
Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang
2013-07-25
The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.
Hughes, Austin L.
2015-01-01
Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family. PMID:24675701
Mitochondrial Genome Sequence of the Legume Vicia faba
Negruk, Valentine
2013-01-01
The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376
Pang, Jiaohui; Cheng, Qiqun; Sun, Dandan; Zhang, Heng; Jin, Shaofei
2016-09-01
Yellowfin tuna (Thunnus albacares) is one of the most important economic fishes around the world. In the present study, we determined the complete mitochondrial DNA sequence and organization of T. albacares. The entire mitochondrial genome is a circular-molecule of 16,528 bp in length, which encodes 37 genes in all. These genes comprise 13 protein-coding genes (ATP6 and 8, COI-III, Cytb, ND1-6 and 4 L), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (12S and 16S rRNAs). The complete mitochondrial genome sequence of T. albacares can provide basic information for the studies on molecular taxonomy and conservation genetics of teleost fishes.
Singh, Vinay Kumar; Ambwani, Sonu; Marla, Soma; Kumar, Anil
2009-10-23
We describe the development of a user friendly tool that would assist in the retrieval of information relating to Cry genes in transgenic crops. The tool also helps in detection of transformed Cry genes from Bacillus thuringiensis present in transgenic plants by providing suitable designed primers for PCR identification of these genes. The tool designed based on relational database model enables easy retrieval of information from the database with simple user queries. The tool also enables users to access related information about Cry genes present in various databases by interacting with different sources (nucleotide sequences, protein sequence, sequence comparison tools, published literature, conserved domains, evolutionary and structural data). http://insilicogenomics.in/Cry-btIdentifier/welcome.html.
Traeger, Stefanie; Altegoer, Florian; Freitag, Michael; Gabaldon, Toni; Kempken, Frank; Kumar, Abhishek; Marcet-Houben, Marina; Pöggeler, Stefanie; Stajich, Jason E.; Nowrousian, Minou
2013-01-01
Fungi are a large group of eukaryotes found in nearly all ecosystems. More than 250 fungal genomes have already been sequenced, greatly improving our understanding of fungal evolution, physiology, and development. However, for the Pezizomycetes, an early-diverging lineage of filamentous ascomycetes, there is so far only one genome available, namely that of the black truffle, Tuber melanosporum, a mycorrhizal species with unusual subterranean fruiting bodies. To help close the sequence gap among basal filamentous ascomycetes, and to allow conclusions about the evolution of fungal development, we sequenced the genome and assayed transcriptomes during development of Pyronema confluens, a saprobic Pezizomycete with a typical apothecium as fruiting body. With a size of 50 Mb and ∼13,400 protein-coding genes, the genome is more characteristic of higher filamentous ascomycetes than the large, repeat-rich truffle genome; however, some typical features are different in the P. confluens lineage, e.g. the genomic environment of the mating type genes that is conserved in higher filamentous ascomycetes, but only partly conserved in P. confluens. On the other hand, P. confluens has a full complement of fungal photoreceptors, and expression studies indicate that light perception might be similar to distantly related ascomycetes and, thus, represent a basic feature of filamentous ascomycetes. Analysis of spliced RNA-seq sequence reads allowed the detection of natural antisense transcripts for 281 genes. The P. confluens genome contains an unusually high number of predicted orphan genes, many of which are upregulated during sexual development, consistent with the idea of rapid evolution of sex-associated genes. Comparative transcriptomics identified the transcription factor gene pro44 that is upregulated during development in P. confluens and the Sordariomycete Sordaria macrospora. The P. confluens pro44 gene (PCON_06721) was used to complement the S. macrospora pro44 deletion mutant, showing functional conservation of this developmental regulator. PMID:24068976
The Silkworm (Bombyx mori) microRNAs and Their Expressions in Multiple Developmental Stages
Luo, Qibin; Cai, Yimei; Lin, Wen-chang; Chen, Huan; Yang, Yue; Hu, Songnian; Yu, Jun
2008-01-01
Background MicroRNAs (miRNAs) play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. Methodology/Principal Findings We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs) and 14 novel miRNAs (including 11 predicted novel miRNAs). Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5′ and/or 3′ ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. Conclusions/Significance Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over multiple developmental stages allowed us to pinpoint molting stages as hotspots of miRNA expression both in sorts and quantities. Based on the analysis of target genes, we hypothesized that miRNAs regulate development through a particular emphasis on complex stages rather than general regulatory mechanisms. PMID:18714353
Heterogeneous conservation of Dlx paralog co-expression in jawed vertebrates.
Debiais-Thibaud, Mélanie; Metcalfe, Cushla J; Pollack, Jacob; Germon, Isabelle; Ekker, Marc; Depew, Michael; Laurenti, Patrick; Borday-Birraux, Véronique; Casane, Didier
2013-01-01
The Dlx gene family encodes transcription factors involved in the development of a wide variety of morphological innovations that first evolved at the origins of vertebrates or of the jawed vertebrates. This gene family expanded with the two rounds of genome duplications that occurred before jawed vertebrates diversified. It includes at least three bigene pairs sharing conserved regulatory sequences in tetrapods and teleost fish, but has been only partially characterized in chondrichthyans, the third major group of jawed vertebrates. Here we take advantage of developmental and molecular tools applied to the shark Scyliorhinus canicula to fill in the gap and provide an overview of the evolution of the Dlx family in the jawed vertebrates. These results are analyzed in the theoretical framework of the DDC (Duplication-Degeneration-Complementation) model. The genomic organisation of the catshark Dlx genes is similar to that previously described for tetrapods. Conserved non-coding elements identified in bony fish were also identified in catshark Dlx clusters and showed regulatory activity in transgenic zebrafish. Gene expression patterns in the catshark showed that there are some expression sites with high conservation of the expressed paralog(s) and other expression sites with events of paralog sub-functionalization during jawed vertebrate diversification, resulting in a wide variety of evolutionary scenarios within this gene family. Dlx gene expression patterns in the catshark show that there has been little neo-functionalization in Dlx genes over gnathostome evolution. In most cases, one tandem duplication and two rounds of vertebrate genome duplication have led to at least six Dlx coding sequences with redundant expression patterns followed by some instances of paralog sub-functionalization. Regulatory constraints such as shared enhancers, and functional constraints including gene pleiotropy, may have contributed to the evolutionary inertia leading to high redundancy between gene expression patterns.
Goldstone, Jared V; Sundaramoorthy, Munirathinam; Zhao, Bin; Waterman, Michael R; Stegeman, John J; Lamb, David C
2016-01-01
Biosynthesis of steroid hormones in vertebrates involves three cytochrome P450 hydroxylases, CYP11A1, CYP17A1 and CYP19A1, which catalyze sequential steps in steroidogenesis. These enzymes are conserved in the vertebrates, but their origin and existence in other chordate subphyla (Tunicata and Cephalochordata) have not been clearly established. In this study, selected protein sequences of CYP11A1, CYP17A1 and CYP19A1 were compiled and analyzed using multiple sequence alignment and phylogenetic analysis. Our analyses show that cephalochordates have sequences orthologous to vertebrate CYP11A1, CYP17A1 or CYP19A1, and that echinoderms and hemichordates possess CYP11-like but not CYP19 genes. While the cephalochordate sequences have low identity with the vertebrate sequences, reflecting evolutionary distance, the data show apparent origin of CYP11 prior to the evolution of CYP19 and possibly CYP17, thus indicating a sequential origin of these functionally related steroidogenic CYPs. Co-occurrence of the three CYPs in early chordates suggests that the three genes may have coevolved thereafter, and that functional conservation should be reflected in functionally important residues in the proteins. CYP19A1 has the largest number of conserved residues while CYP11A1 sequences are less conserved. Structural analyses of human CYP11A1, CYP17A1 and CYP19A1 show that critical substrate binding site residues are highly conserved in each enzyme family. The results emphasize that the steroidogenic pathways producing glucocorticoids and reproductive steroids are several hundred million years old and that the catalytic structural elements of the enzymes have been conserved over the same period of time. Analysis of these elements may help to identify when precursor functions linked to these enzymes first arose. Copyright © 2015 Elsevier Inc. All rights reserved.
Natural killer cell receptor genes in the family Equidae: not only Ly49.
Futas, Jan; Horin, Petr
2013-01-01
Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes.
Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49
Futas, Jan; Horin, Petr
2013-01-01
Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of NKR genes. PMID:23724088
The complete mitochondrial genome of Pholis nebulosus (Perciformes: Pholidae).
Wang, Zhongquan; Qin, Kaili; Liu, Jingxi; Song, Na; Han, Zhiqiang; Gao, Tianxiang
2016-11-01
In this study, the complete mitochondrial genome (mitogenome) sequence of Pholis nebulosus has been determined by long polymerase chain reaction and primer-walking methods. The mitogenome is a circular molecule of 16 524 bp in length, including the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 2 non-coding regions (L-strand replication origin and control region), the gene contents of which are identical to those observed in most bony fishes. Within the control region, we identified the termination-associated sequence domain (TAS), and the conserved sequence block domain (CSB-F, CSB-E, CSB-D, CSB-C, CSB-B, CSB-A, CSB-1, CSB-2, CSB-3).
Dong, Chongmei; Vincent, Kate; Sharp, Peter
2009-12-04
TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful tool for reverse genetics, combining traditional chemical mutagenesis with high-throughput PCR-based mutation detection to discover induced mutations that alter protein function. The most popular mutation detection method for TILLING is a mismatch cleavage assay using the endonuclease CelI. For this method, locus-specific PCR is essential. Most wheat genes are present as three similar sequences with high homology in exons and low homology in introns. Locus-specific primers can usually be designed in introns. However, it is sometimes difficult to design locus-specific PCR primers in a conserved region with high homology among the three homoeologous genes, or in a gene lacking introns, or if information on introns is not available. Here we describe a mutation detection method which combines High Resolution Melting (HRM) analysis of mixed PCR amplicons containing three homoeologous gene fragments and sequence analysis using Mutation Surveyor software, aimed at simultaneous detection of mutations in three homoeologous genes. We demonstrate that High Resolution Melting (HRM) analysis can be used in mutation scans in mixed PCR amplicons containing three homoeologous gene fragments. Combining HRM scanning with sequence analysis using Mutation Surveyor is sensitive enough to detect a single nucleotide mutation in the heterozygous state in a mixed PCR amplicon containing three homoeoloci. The method was tested and validated in an EMS (ethylmethane sulfonate)-treated wheat TILLING population, screening mutations in the carboxyl terminal domain of the Starch Synthase II (SSII) gene. Selected identified mutations of interest can be further analysed by cloning to confirm the mutation and determine the genomic origin of the mutation. Polyploidy is common in plants. Conserved regions of a gene often represent functional domains and have high sequence similarity between homoeologous loci. The method described here is a useful alternative to locus-specific based methods for screening mutations in conserved functional domains of homoeologous genes. This method can also be used for SNP (single nucleotide polymorphism) marker development and eco-TILLING in polyploid species.
Nishizawa, M; Nishizawa, K
2000-10-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.
Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.
2011-01-01
Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074
Porcine MYF6 gene: sequence, homology analysis, and variation in the promoter region.
Wyszyńska-Koko, J; Kurył, J
2004-01-01
MYF6 gene codes for the bHLH transcription factor belonging to MyoD family. Its expression accompanies the processes of differentiation and maturation of myotubes during embriogenesis and continues on a relatively high level after birth, affecting the muscle phenotype. The porcine MYF6 gene was amplified and sequenced and compared with MYF6 gene sequences of other species. The amino acid sequence was deduced and an interspecies homology analysis was performed. Myf-6 protein shows a high conservation among species of 99 and 97% identity when comparing pig with cow and human, respectively, and of 93% when comparing pig with mouse and rat. The single nucleotide polymorphism (SNP) was revealed within the promoter region, which appeared to be T --> C transition recognized by a MspI restriction enzyme.
Insilico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer)
Mathiyalagan, Ramya; Subramaniyam, Sathiyamoorthy; Natarajan, Sathishkumar; Kim, Yeon Ju; Sun, Myung Suk; Kim, Se Young; Kim, Yu-Jin; Yang, Deok Chun
2013-01-01
MicroRNAs (miRNAs) are a class of recently discovered non-coding small RNA molecules, on average approximately 21 nucleotides in length, which underlie numerous important biological roles in gene regulation in various organisms. The miRNA database (release 18) has 18,226 miRNAs, which have been deposited from different species. Although miRNAs have been identified and validated in many plant species, no studies have been reported on discovering miRNAs in Panax ginseng Meyer, which is a traditionally known medicinal plant in oriental medicine, also known as Korean ginseng. It has triterpene ginseng saponins called ginsenosides, which are responsible for its various pharmacological activities. Predicting conserved miRNAs by homology-based analysis with available expressed sequence tag (EST) sequences can be powerful, if the species lacks whole genome sequence information. In this study by using the EST based computational approach, 69 conserved miRNAs belonging to 44 miRNA families were identified in Korean ginseng. The digital gene expression patterns of predicted conserved miRNAs were analyzed by deep sequencing using small RNA sequences of flower buds, leaves, and lateral roots. We have found that many of the identified miRNAs showed tissue specific expressions. Using the insilico method, 346 potential targets were identified for the predicted 69 conserved miRNAs by searching the ginseng EST database, and the predicted targets were mainly involved in secondary metabolic processes, responses to biotic and abiotic stress, and transcription regulator activities, as well as a variety of other metabolic processes. PMID:23717176
USDA-ARS?s Scientific Manuscript database
Comparative sequence analysis of six independent chicken and turkey parvovirus nonstructural (NS) genes revealed specific genomic regions with 100% nucleotide sequence identity. A PCR assay with primers targeting these conserved genome sequences proved to be highly specific and sensitive to detect p...
Sequence analysis and molecular characterization of Wnt4 gene in metacestodes of Taenia solium.
Hou, Junling; Luo, Xuenong; Wang, Shuai; Yin, Cai; Zhang, Shaohua; Zhu, Xueliang; Dou, Yongxi; Cai, Xuepeng
2014-04-01
Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.
Genetic evidence for conserved non-coding element function across species–the ears have it
Turner, Eric E.; Cox, Timothy C.
2014-01-01
Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing. PMID:24478720
Silencing Effect of Hominoid Highly Conserved Noncoding Sequences on Embryonic Brain Development
Mahmoudi Saber, Morteza
2017-01-01
Abstract Superfamily Hominoidea, which consists of Hominidae (humans and great apes) and Hylobatidae (gibbons), is well-known for sharing human-like characteristics, however, the genomic origins of these shared unique phenotypes have mainly remained elusive. To decipher the underlying genomic basis of Hominoidea-restricted phenotypes, we identified and characterized Hominoidea-restricted highly conserved noncoding sequences (HCNSs) that are a class of potential regulatory elements which may be involved in evolution of lineage-specific phenotypes. We discovered 679 such HCNSs from human, chimpanzee, gorilla, orangutan and gibbon genomes. These HCNSs were demonstrated to be under purifying selection but with lineage-restricted characteristics different from old CNSs. A significant proportion of their ancestral sequences had accelerated rates of nucleotide substitutions, insertions and deletions during the evolution of common ancestor of Hominoidea, suggesting the intervention of positive Darwinian selection for creating those HCNSs. In contrary to enhancer elements and similar to silencer sequences, these Hominoidea-restricted HCNSs are located in close proximity of transcription start sites. Their target genes are enriched in the nervous system, development and transcription, and they tend to be remotely located from the nearest coding gene. Chip-seq signals and gene expression patterns suggest that Hominoidea-restricted HCNSs are likely to be functional regulatory elements by imposing silencing effects on their target genes in a tissue-restricted manner during fetal brain development. These HCNSs, emerged through adaptive evolution and conserved through purifying selection, represent a set of promising targets for future functional studies of the evolution of Hominoidea-restricted phenotypes. PMID:28633494
Wang, Pei; Song, Fan; Cai, Wanzhi
2014-01-01
Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes. PMID:24988409
Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium
2010-01-01
Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes. PMID:20441586
Polymorphism at Expressed DQ and DR Loci in Five Common Equine MHC Haplotypes
Miller, Donald; Tallmadge, Rebecca L.; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A.; Antczak, Douglas F.
2016-01-01
The polymorphism of Major Histocompatibility Complex (MHC) class II DQ and DR genes in five common Equine Leukocyte Antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine Bacterial Artificial Chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next Generation Sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse. PMID:27889800
Massive Gene Transfer and Extensive RNA Editing of a Symbiotic Dinoflagellate Plastid Genome
Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi
2014-01-01
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8–3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. PMID:24881086
Wang, Cheng; Yu, Jie; Kallen, Caleb B
2008-01-01
The proliferating cell nuclear antigen (PCNA) is an essential component of DNA replication, cell cycle regulation, and epigenetic inheritance. High expression of PCNA is associated with poor prognosis in patients with breast cancer. The 5'-region of the PCNA gene contains two computationally-detected estrogen response element (ERE) sequences, one of which is evolutionarily conserved. Both of these sequences are of undocumented cis-regulatory function. We recently demonstrated that estradiol (E2) enhances PCNA mRNA expression in MCF7 breast cancer cells. MCF7 cells proliferate in response to E2. Here, we demonstrate that E2 rapidly enhanced PCNA mRNA and protein expression in a process that requires ERalpha as well as de novo protein synthesis. One of the two upstream ERE sequences was specifically bound by ERalpha-containing protein complexes, in vitro, in gel shift analysis. Yet, each ERE sequence, when cloned as a single copy, or when engineered as two tandem copies of the ERE-containing sequence, was not capable of activating a luciferase reporter construct in response to E2. In MCF7 cells, neither ERE-containing genomic region demonstrated E2-dependent recruitment of ERalpha by sensitive ChIP-PCR assays. We conclude that E2 enhances PCNA gene expression by an indirect process and that computational detection of EREs, even when evolutionarily conserved and when near E2-responsive genes, requires biochemical validation.
2010-01-01
Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. Conclusions A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana. PMID:20637079
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J
2014-12-19
The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.
smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni
2012-01-01
Background MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. Results To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. Conclusions This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits. PMID:23116282
smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni.
Mandhan, Vibha; Kaur, Jagdeep; Singh, Kashmir
2012-11-01
MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to understand their roles in key stevia traits.
Variation in conserved non-coding sequences on chromosome 5q andsusceptibility to asthma and atopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donfack, Joseph; Schneider, Daniel H.; Tan, Zheng
2005-09-10
Background: Evolutionarily conserved sequences likely havebiological function. Methods: To determine whether variation in conservedsequences in non-coding DNA contributes to risk for human disease, westudied six conserved non-coding elements in the Th2 cytokine cluster onhuman chromosome 5q31 in a large Hutterite pedigree and in samples ofoutbred European American and African American asthma cases and controls.Results: Among six conserved non-coding elements (>100 bp,>70percent identity; human-mouse comparison), we identified one singlenucleotide polymorphism (SNP) in each of two conserved elements and sixSNPs in the flanking regions of three conserved elements. We genotypedour samples for four of these SNPs and an additional three SNPs eachmore » inthe IL13 and IL4 genes. While there was only modest evidence forassociation with single SNPs in the Hutterite and European Americansamples (P<0.05), there were highly significant associations inEuropean Americans between asthma and haplotypes comprised of SNPs in theIL4 gene (P<0.001), including a SNP in a conserved non-codingelement. Furthermore, variation in the IL13 gene was strongly associatedwith total IgE (P = 0.00022) and allergic sensitization to mold allergens(P = 0.00076) in the Hutterites, and more modestly associated withsensitization to molds in the European Americans and African Americans (P<0.01). Conclusion: These results indicate that there is overalllittle variation in the conserved non-coding elements on 5q31, butvariation in IL4 and IL13, including possibly one SNP in a conservedelement, influence asthma and atopic phenotypes in diversepopulations.« less
Fukumori, F; Saint, C P
1997-01-01
A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol. PMID:8990291
Identification and characterization of microRNAs in Phaseolus vulgaris by high-throughput sequencing
2012-01-01
Background MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. Results Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. Conclusions This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes. PMID:22394504
Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells
Camp, J. Gray; Weiser, Matthew; Cocchiaro, Jordan L.; Kingsley, David M.; Furey, Terrence S.; Sheikh, Shehzad Z.; Rawls, John F.
2017-01-01
The intestinal epithelium serves critical physiologic functions that are shared among all vertebrates. However, it is unknown how the transcriptional regulatory mechanisms underlying these functions have changed over the course of vertebrate evolution. We generated genome-wide mRNA and accessible chromatin data from adult intestinal epithelial cells (IECs) in zebrafish, stickleback, mouse, and human species to determine if conserved IEC functions are achieved through common transcriptional regulation. We found evidence for substantial common regulation and conservation of gene expression regionally along the length of the intestine from fish to mammals and identified a core set of genes comprising a vertebrate IEC signature. We also identified transcriptional start sites and other putative regulatory regions that are differentially accessible in IECs in all 4 species. Although these sites rarely showed sequence conservation from fish to mammals, surprisingly, they drove highly conserved IEC expression in a zebrafish reporter assay. Common putative transcription factor binding sites (TFBS) found at these sites in multiple species indicate that sequence conservation alone is insufficient to identify much of the functionally conserved IEC regulatory information. Among the rare, highly sequence-conserved, IEC-specific regulatory regions, we discovered an ancient enhancer upstream from her6/HES1 that is active in a distinct population of Notch-positive cells in the intestinal epithelium. Together, these results show how combining accessible chromatin and mRNA datasets with TFBS prediction and in vivo reporter assays can reveal tissue-specific regulatory information conserved across 420 million years of vertebrate evolution. We define an IEC transcriptional regulatory network that is shared between fish and mammals and establish an experimental platform for studying how evolutionarily distilled regulatory information commonly controls IEC development and physiology. PMID:28850571
Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes
NASA Astrophysics Data System (ADS)
Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio
1998-10-01
A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.
A liver enhancer in the fibrinogen gene cluster.
Fort, Alexandre; Fish, Richard J; Attanasio, Catia; Dosch, Roland; Visel, Axel; Neerman-Arbez, Marguerite
2011-01-06
The plasma concentration of fibrinogen varies in the healthy human population between 1.5 and 3.5 g/L. Understanding the basis of this variability has clinical importance because elevated fibrinogen levels are associated with increased cardiovascular disease risk. To identify novel regulatory elements involved in the control of fibrinogen expression, we used sequence conservation and in silico-predicted regulatory potential to select 14 conserved noncoding sequences (CNCs) within the conserved block of synteny containing the fibrinogen locus. The regulatory potential of each CNC was tested in vitro using a luciferase reporter gene assay in fibrinogen-expressing hepatoma cell lines (HuH7 and HepG2). 4 potential enhancers were tested for their ability to direct enhanced green fluorescent protein expression in zebrafish embryos. CNC12, a sequence equidistant from the human fibrinogen alpha and beta chain genes, activates strong liver enhanced green fluorescent protein expression in injected embryos and their transgenic progeny. A transgenic assay in embryonic day 14.5 mouse embryos confirmed the ability of CNC12 to activate transcription in the liver. While additional experiments are necessary to prove the role of CNC12 in the regulation of fibrinogen, our study reveals a novel regulatory element in the fibrinogen locus that is active in the liver and may contribute to variable fibrinogen expression in humans.
Complete mitochondrial genome sequence of northeastern sika deer (Cervus nippon hortulorum).
Shao, Yuanchen; Zha, Daiming; Xing, Xiumei; Su, Weilin; Liu, Huamiao; Zhang, Ranran
2016-01-01
The complete mitochondrial genome of the northeastern sika deer, Cervus nippon hortulorum, was determined by accurate polymerase chain reaction. The entire genome is 16,434 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region, all of which are arranged in a typical vertebrate manner. The overall base composition of the northeastern sika deer's mitochondrial genome is 33.3% of A, 24.5% of C, 28.7% of T and 13.5% of G. A termination associated sequence and several conserved central sequence block domains were discovered within the control region.
Comeau, André M; Arbiol, Christine; Krisch, Henry M
2014-06-19
The diverse T4-like phages (Tquatrovirinae) infect a wide array of gram-negative bacterial hosts. The genome architecture of these phages is generally well conserved, most of the phylogenetically variable genes being grouped together in a series hyperplastic regions (HPRs) that are interspersed among large blocks of conserved core genes. Recent evidence from a pair of closely related T4-like phages has suggested that small, composite terminator/promoter sequences (promoterearly stem loop [PeSLs]) were implicated in mediating the high levels of genetic plasticity by indels occurring within the HPRs. Here, we present the genome sequence analysis of two T4-like phages, PST (168 kb, 272 open reading frames [ORFs]) and nt-1 (248 kb, 405 ORFs). These two phages were chosen for comparative sequence analysis because, although they are closely related to phages that have been previously sequenced (T4 and KVP40, respectively), they have different host ranges. In each case, one member of the pair infects a bacterial strain that is a human pathogen, whereas the other phage's host is a nonpathogen. Despite belonging to phylogenetically distant branches of the T4-likes, these pairs of phage have diverged from each other in part by a mechanism apparently involving PeSL-mediated recombination. This analysis confirms a role of PeSL sequences in the generation of genomic diversity by serving as a point of genetic exchange between otherwise unrelated sequences within the HPRs. Finally, the palette of divergent genes swapped by PeSL-mediated homologous recombination is discussed in the context of the PeSLs' potentially important role in facilitating phage adaption to new hosts and environments. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Deakin, Janine E; Edwards, Melanie J; Patel, Hardip; O'Meally, Denis; Lian, Jinmin; Stenhouse, Rachael; Ryan, Sam; Livernois, Alexandra M; Azad, Bhumika; Holleley, Clare E; Li, Qiye; Georges, Arthur
2016-06-10
Squamates (lizards and snakes) are a speciose lineage of reptiles displaying considerable karyotypic diversity, particularly among lizards. Understanding the evolution of this diversity requires comparison of genome organisation between species. Although the genomes of several squamate species have now been sequenced, only the green anole lizard has any sequence anchored to chromosomes. There is only limited gene mapping data available for five other squamates. This makes it difficult to reconstruct the events that have led to extant squamate karyotypic diversity. The purpose of this study was to anchor the recently sequenced central bearded dragon (Pogona vitticeps) genome to chromosomes to trace the evolution of squamate chromosomes. Assigning sequence to sex chromosomes was of particular interest for identifying candidate sex determining genes. By using two different approaches to map conserved blocks of genes, we were able to anchor approximately 42 % of the dragon genome sequence to chromosomes. We constructed detailed comparative maps between dragon, anole and chicken genomes, and where possible, made broader comparisons across Squamata using cytogenetic mapping information for five other species. We show that squamate macrochromosomes are relatively well conserved between species, supporting findings from previous molecular cytogenetic studies. Macrochromosome diversity between members of the Toxicofera clade has been generated by intrachromosomal, and a small number of interchromosomal, rearrangements. We reconstructed the ancestral squamate macrochromosomes by drawing upon comparative cytogenetic mapping data from seven squamate species and propose the events leading to the arrangements observed in representative species. In addition, we assigned over 8 Mbp of sequence containing 219 genes to the Z chromosome, providing a list of genes to begin testing as candidate sex determining genes. Anchoring of the dragon genome has provided substantial insight into the evolution of squamate genomes, enabling us to reconstruct ancestral macrochromosome arrangements at key positions in the squamate phylogeny, demonstrating that fusions between macrochromosomes or fusions of macrochromosomes and microchromosomes, have played an important role during the evolution of squamate genomes. Assigning sequence to the sex chromosomes has identified NR5A1 as a promising candidate sex determining gene in the dragon.
Nadjar-Boger, Elisabeth; Maccatrozzo, Lisa; Radaelli, Giuseppe; Funkenstein, Bruria
2013-02-01
Myostatin (MSTN) is a member of the transforming growth factor-ß superfamily, known as a negative regulator of skeletal muscle development and growth in mammals. In contrast to mammals, fish possess at least two paralogs of MSTN: MSTN-1 and MSTN-2. Here we describe the cloning and sequence analysis of spliced and precursor (unspliced) transcripts as well as the 5' flanking region of MSTN-2 from the marine fish Umbrina cirrosa (ucMSTN-2). In silico analysis revealed numerous putative cis regulatory elements including several E-boxes known as binding sites to myogenic transcription factors. Transient transfection experiments using non-muscle and muscle cell lines showed high transcriptional activity in muscle cells and in differentiated neural cells, in accordance with our previous findings in MSTN-2 promoter from Sparus aurata. Comparative informatics analysis of MSTN-2 from several fish species revealed high conservation of the predicted amino acid sequence as well as the gene structure (exon length) although intron length varied between species. The proximal promoter of MSTN-2 gene was found to be conserved among Perciforms. In conclusion, this study reinforces our conclusion that MSTN-2 promoter is a very strong promoter, especially in muscle cells. In addition, we show that the MSTN-2 gene structure is highly conserved among fishes as is the predicted amino acid sequence of the peptide. Copyright © 2012 Elsevier Inc. All rights reserved.
Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M
2017-03-27
Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.
Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S
2010-09-08
Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.
Huang, Youhua; Huang, Xiaohong; Liu, Hong; Gong, Jie; Ouyang, Zhengliang; Cui, Huachun; Cao, Jianhao; Zhao, Yingtao; Wang, Xiujie; Jiang, Yulin; Qin, Qiwei
2009-01-01
Background Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in cultured soft-shelled turtles (Trionyx sinensis). To our knowledge, the only molecular information available on STIV mainly concerns the highly conserved STIV major capsid protein. The complete sequence of the STIV genome is not yet available. Therefore, determining the genome sequence of STIV and providing a detailed bioinformatic analysis of its genome content and evolution status will facilitate further understanding of the taxonomic elements of STIV and the molecular mechanisms of reptile iridovirus pathogenesis. Results We determined the complete nucleotide sequence of the STIV genome using 454 Life Science sequencing technology. The STIV genome is 105 890 bp in length with a base composition of 55.1% G+C. Computer assisted analysis revealed that the STIV genome contains 105 potential open reading frames (ORFs), which encode polypeptides ranging from 40 to 1,294 amino acids and 20 microRNA candidates. Among the putative proteins, 20 share homology with the ancestral proteins of the nuclear and cytoplasmic large DNA viruses (NCLDVs). Comparative genomic analysis showed that STIV has the highest degree of sequence conservation and a colinear arrangement of genes with frog virus 3 (FV3), followed by Tiger frog virus (TFV), Ambystoma tigrinum virus (ATV), Singapore grouper iridovirus (SGIV), Grouper iridovirus (GIV) and other iridovirus isolates. Phylogenetic analysis based on conserved core genes and complete genome sequence of STIV with other virus genomes was performed. Moreover, analysis of the gene gain-and-loss events in the family Iridoviridae suggested that the genes encoded by iridoviruses have evolved for favoring adaptation to different natural host species. Conclusion This study has provided the complete genome sequence of STIV. Phylogenetic analysis suggested that STIV and FV3 are strains of the same viral species belonging to the Ranavirus genus in the Iridoviridae family. Given virus-host co-evolution and the phylogenetic relationship among vertebrates from fish to reptiles, we propose that iridovirus might transmit between reptiles and amphibians and that STIV and FV3 are strains of the same viral species in the Ranavirus genus. PMID:19439104
Kim, K H; Hemenway, C
1997-05-26
The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.
Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B
2016-03-05
Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.
Eastman, Alexander W; Heinrichs, David E; Yuan, Ze-Chun
2014-10-03
Members of the genus Paenibacillus are important plant growth-promoting rhizobacteria that can serve as bio-reactors. Paenibacillus polymyxa promotes the growth of a variety of economically important crops. Our lab recently completed the genome sequence of Paenibacillus polymyxa CR1. As of January 2014, four P. polymyxa genomes have been completely sequenced but no comparative genomic analyses have been reported. Here we report the comparative and genetic analyses of four sequenced P. polymyxa genomes, which revealed a significantly conserved core genome. Complex metabolic pathways and regulatory networks were highly conserved and allow P. polymyxa to rapidly respond to dynamic environmental cues. Genes responsible for phytohormone synthesis, phosphate solubilization, iron acquisition, transcriptional regulation, σ-factors, stress responses, transporters and biomass degradation were well conserved, indicating an intimate association with plant hosts and the rhizosphere niche. In addition, genes responsible for antimicrobial resistance and non-ribosomal peptide/polyketide synthesis are present in both the core and accessory genome of each strain. Comparative analyses also reveal variations in the accessory genome, including large plasmids present in strains M1 and SC2. Furthermore, a considerable number of strain-specific genes and genomic islands are irregularly distributed throughout each genome. Although a variety of plant-growth promoting traits are encoded by all strains, only P. polymyxa CR1 encodes the unique nitrogen fixation cluster found in other Paenibacillus sp. Our study revealed that genomic loci relevant to host interaction and ecological fitness are highly conserved within the P. polymyxa genomes analysed, despite variations in the accessory genome. This work suggets that plant-growth promotion by P. polymyxa is mediated largely through phytohormone production, increased nutrient availability and bio-control mechanisms. This study provides an in-depth understanding of the genome architecture of this species, thus facilitating future genetic engineering and applications in agriculture, industry and medicine. Furthermore, this study highlights the current gap in our understanding of complex plant biomass metabolism in Gram-positive bacteria.
Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong
2013-01-01
MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162
Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong
2013-01-01
MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis.
Spangler, Jacob B; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression.
Conserved Non-Coding Sequences are Associated with Rates of mRNA Decay in Arabidopsis
Spangler, Jacob B.; Feltus, Frank Alex
2013-01-01
Steady-state mRNA levels are tightly regulated through a combination of transcriptional and post-transcriptional control mechanisms. The discovery of cis-acting DNA elements that encode these control mechanisms is of high importance. We have investigated the influence of conserved non-coding sequences (CNSs), DNA patterns retained after an ancient whole genome duplication event, on the breadth of gene expression and the rates of mRNA decay in Arabidopsis thaliana. The absence of CNSs near α duplicate genes was associated with a decrease in breadth of gene expression and slower mRNA decay rates while the presence CNSs near α duplicates was associated with an increase in breadth of gene expression and faster mRNA decay rates. The observed difference in mRNA decay rate was fastest in genes with CNSs in both non-transcribed and transcribed regions, albeit through an unknown mechanism. This study supports the notion that some Arabidopsis CNSs regulate the steady-state mRNA levels through post-transcriptional control mechanisms and that CNSs also play a role in controlling the breadth of gene expression. PMID:23675377
Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T
1993-01-01
Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043
Antisense transcription is pervasive but rarely conserved in enteric bacteria.
Raghavan, Rahul; Sloan, Daniel B; Ochman, Howard
2012-01-01
Noncoding RNAs, including antisense RNAs (asRNAs) that originate from the complementary strand of protein-coding genes, are involved in the regulation of gene expression in all domains of life. Recent application of deep-sequencing technologies has revealed that the transcription of asRNAs occurs genome-wide in bacteria. Although the role of the vast majority of asRNAs remains unknown, it is often assumed that their presence implies important regulatory functions, similar to those of other noncoding RNAs. Alternatively, many antisense transcripts may be produced by chance transcription events from promoter-like sequences that result from the degenerate nature of bacterial transcription factor binding sites. To investigate the biological relevance of antisense transcripts, we compared genome-wide patterns of asRNA expression in closely related enteric bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, by performing strand-specific transcriptome sequencing. Although antisense transcripts are abundant in both species, less than 3% of asRNAs are expressed at high levels in both species, and only about 14% appear to be conserved among species. And unlike the promoters of protein-coding genes, asRNA promoters show no evidence of sequence conservation between, or even within, species. Our findings suggest that many or even most bacterial asRNAs are nonadaptive by-products of the cell's transcription machinery. IMPORTANCE Application of high-throughput methods has revealed the expression throughout bacterial genomes of transcripts encoded on the strand complementary to protein-coding genes. Because transcription is costly, it is usually assumed that these transcripts, termed antisense RNAs (asRNAs), serve some function; however, the role of most asRNAs is unclear, raising questions about their relevance in cellular processes. Because natural selection conserves functional elements, comparisons between related species provide a method for assessing functionality genome-wide. Applying such an approach, we assayed all transcripts in two closely related bacteria, Escherichia coli and Salmonella enterica serovar Typhimurium, and demonstrate that, although the levels of genome-wide antisense transcription are similarly high in both bacteria, only a small fraction of asRNAs are shared across species. Moreover, the promoters associated with asRNAs show no evidence of sequence conservation between, or even within, species. These findings indicate that despite the genome-wide transcription of asRNAs, many of these transcripts are likely nonfunctional.
Beysen, D; Raes, J; Leroy, B P; Lucassen, A; Yates, J R W; Clayton-Smith, J; Ilyina, H; Brooks, S Sklower; Christin-Maitre, S; Fellous, M; Fryns, J P; Kim, J R; Lapunzina, P; Lemyre, E; Meire, F; Messiaen, L M; Oley, C; Splitt, M; Thomson, J; Van de Peer, Y; Veitia, R A; De Paepe, A; De Baere, E
2005-08-01
The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes.
Beysen, D.; Raes, J.; Leroy, B. P.; Lucassen, A.; Yates, J. R. W.; Clayton-Smith, J.; Ilyina, H.; Brooks, S. Sklower; Christin-Maitre, S.; Fellous, M.; Fryns, J. P.; Kim, J. R.; Lapunzina, P.; Lemyre, E.; Meire, F.; Messiaen, L. M.; Oley, C.; Splitt, M.; Thomson, J.; Peer, Y. Van de; Veitia, R. A.; De Paepe, A.; De Baere, E.
2005-01-01
The expression of a gene requires not only a normal coding sequence but also intact regulatory regions, which can be located at large distances from the target genes, as demonstrated for an increasing number of developmental genes. In previous mutation studies of the role of FOXL2 in blepharophimosis syndrome (BPES), we identified intragenic mutations in 70% of our patients. Three translocation breakpoints upstream of FOXL2 in patients with BPES suggested a position effect. Here, we identified novel microdeletions outside of FOXL2 in cases of sporadic and familial BPES. Specifically, four rearrangements, with an overlap of 126 kb, are located 230 kb upstream of FOXL2, telomeric to the reported translocation breakpoints. Moreover, the shortest region of deletion overlap (SRO) contains several conserved nongenic sequences (CNGs) harboring putative transcription-factor binding sites and representing potential long-range cis-regulatory elements. Interestingly, the human region orthologous to the 12-kb sequence deleted in the polled intersex syndrome in goat, which is an animal model for BPES, is contained in this SRO, providing evidence of human-goat conservation of FOXL2 expression and of the mutational mechanism. Surprisingly, in a fifth family with BPES, one rearrangement was found downstream of FOXL2. In addition, we report nine novel rearrangements encompassing FOXL2 that range from partial gene deletions to submicroscopic deletions. Overall, genomic rearrangements encompassing or outside of FOXL2 account for 16% of all molecular defects found in our families with BPES. In summary, this is the first report of extragenic deletions in BPES, providing further evidence of potential long-range cis-regulatory elements regulating FOXL2 expression. It contributes to the enlarging group of developmental diseases caused by defective distant regulation of gene expression. Finally, we demonstrate that CNGs are candidate regions for genomic rearrangements in developmental genes. PMID:15962237
2010-01-01
Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162
van Zyl, Leonel; von Arnold, Sara; Bozhkov, Peter; Chen, Yongzhong; Egertsdotter, Ulrika; MacKay, John; Sederoff, Ronald R.; Shen, Jing; Zelena, Lyubov
2002-01-01
Hybridization of labelled cDNA from various cell types with high-density arrays of expressed sequence tags is a powerful technique for investigating gene expression. Few conifer cDNA libraries have been sequenced. Because of the high level of sequence conservation between Pinus and Picea we have investigated the use of arrays from one genus for studies of gene expression in the other. The partial cDNAs from 384 identifiable genes expressed in differentiating xylem of Pinus taeda were printed on nylon membranes in randomized replicates. These were hybridized with labelled cDNA from needles or embryogenic cultures of Pinus taeda, P. sylvestris and Picea abies, and with labelled cDNA from leaves of Nicotiana tabacum. The Spearman correlation of gene expression for pairs of conifer species was high for needles (r2 = 0.78 − 0.86), and somewhat lower for embryogenic cultures (r2 = 0.68 − 0.83). The correlation of gene expression for tobacco leaves and needles of each of the three conifer species was lower but sufficiently high (r2 = 0.52 − 0.63) to suggest that many partial gene sequences are conserved in angiosperms and gymnosperms. Heterologous probing was further used to identify tissue-specific gene expression over species boundaries. To evaluate the significance of differences in gene expression, conventional parametric tests were compared with permutation tests after four methods of normalization. Permutation tests after Z-normalization provide the highest degree of discrimination but may enhance the probability of type I errors. It is concluded that arrays of cDNA from loblolly pine are useful for studies of gene expression in other pines or spruces. PMID:18629264
Diehl, Adam G
2018-01-01
Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190
Positive selection in the SLC11A1 gene in the family Equidae.
Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan; Orlando, Ludovic; Horin, Petr
2016-05-01
Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.
[Sequencing and analysis of the complete genome of a rabies virus isolate from Sika deer].
Zhao, Yun-Jiao; Guo, Li; Huang, Ying; Zhang, Li-Shi; Qian, Ai-Dong
2008-05-01
One DRV strain was isolated from Sika Deer brain and sequenced. Nine overlapped gene fragments were amplified by RT-PCR through 3'-RACE and 5'-RACE method, and the complete DRV genome sequence was assembled. The length of the complete genome is 11863bp. The DRV genome organization was similar to other rabies viruses which were composed of five genes and the initiation sites and termination sites were highly conservative. There were mutated amino acids in important antigen sites of nucleoprotein and glycoprotein. The nucleotide and amino acid homologies of gene N, P, M, G, L in strains with completed genomie sequencing were compared. Compared with N gene sequence of other typical rabies viruses, a phylogenetic tree was established . These results indicated that DRV belonged to gene type 1. The highest homology compared with Chinese vaccine strain 3aG was 94%, and the lowest was 71% compared with WCBV. These findings provided theoretical reference for further research in rabies virus.
Segatto, Ana Lúcia Anversa; Thompson, Claudia Elizabeth; Freitas, Loreta Brandão
2016-01-01
Abstract Developmental genes are believed to contribute to major changes during plant evolution, from infrageneric to higher levels. Due to their putative high sequence conservation, developmental genes are rarely used as molecular markers, and few studies including these sequences at low taxonomic levels exist. WUSCHEL-related homeobox genes (WOX) are transcription factors exclusively present in plants and are involved in developmental processes. In this study, we characterized the infrageneric genetic variation of Petunia WOX genes. We obtained phylogenetic relationships consistent with other phylogenies based on nuclear markers, but with higher statistical support, resolution in terminals, and compatibility with flower morphological changes. PMID:27768156
Choi, Hong-Kyu; Kim, Dongjin; Uhm, Taesik; Limpens, Eric; Lim, Hyunju; Mun, Jeong-Hwan; Kalo, Peter; Penmetsa, R Varma; Seres, Andrea; Kulikova, Olga; Roe, Bruce A; Bisseling, Ton; Kiss, Gyorgy B; Cook, Douglas R
2004-01-01
A core genetic map of the legume Medicago truncatula has been established by analyzing the segregation of 288 sequence-characterized genetic markers in an F(2) population composed of 93 individuals. These molecular markers correspond to 141 ESTs, 80 BAC end sequence tags, and 67 resistance gene analogs, covering 513 cM. In the case of EST-based markers we used an intron-targeted marker strategy with primers designed to anneal in conserved exon regions and to amplify across intron regions. Polymorphisms were significantly more frequent in intron vs. exon regions, thus providing an efficient mechanism to map transcribed genes. Genetic and cytogenetic analysis produced eight well-resolved linkage groups, which have been previously correlated with eight chromosomes by means of FISH with mapped BAC clones. We anticipated that mapping of conserved coding regions would have utility for comparative mapping among legumes; thus 60 of the EST-based primer pairs were designed to amplify orthologous sequences across a range of legume species. As an initial test of this strategy, we used primers designed against M. truncatula exon sequences to rapidly map genes in M. sativa. The resulting comparative map, which includes 68 bridging markers, indicates that the two Medicago genomes are highly similar and establishes the basis for a Medicago composite map. PMID:15082563
Brok-Volchanskaya, Vera S.; Kadyrov, Farid A.; Sivogrivov, Dmitry E.; Kolosov, Peter M.; Sokolov, Andrey S.; Shlyapnikov, Michael G.; Kryukov, Valentine M.; Granovsky, Igor E.
2008-01-01
Homing endonucleases initiate nonreciprocal transfer of DNA segments containing their own genes and the flanking sequences by cleaving the recipient DNA. Bacteriophage T4 segB gene, which is located in a cluster of tRNA genes, encodes a protein of unknown function, homologous to homing endonucleases of the GIY-YIG family. We demonstrate that SegB protein is a site-specific endonuclease, which produces mostly 3′ 2-nt protruding ends at its DNA cleavage site. Analysis of SegB cleavage sites suggests that SegB recognizes a 27-bp sequence. It contains 11-bp conserved sequence, which corresponds to a conserved motif of tRNA TψC stem-loop, whereas the remainder of the recognition site is rather degenerate. T4-related phages T2L, RB1 and RB3 contain tRNA gene regions that are homologous to that of phage T4 but lack segB gene and several tRNA genes. In co-infections of phages T4 and T2L, segB gene is inherited with nearly 100% of efficiency. The preferred inheritance depends absolutely on the segB gene integrity and is accompanied by the loss of the T2L tRNA gene region markers. We suggest that SegB is a homing endonuclease that functions to ensure spreading of its own gene and the surrounding tRNA genes among T4-related phages. PMID:18281701
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.
Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A
2014-11-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.
2013-01-01
Background The narrow-leafed lupin, Lupinus angustifolius L., is a grain legume species with a relatively compact genome. The species has 2n = 40 chromosomes and its genome size is 960 Mbp/1C. During the last decade, L. angustifolius genomic studies have achieved several milestones, such as molecular-marker development, linkage maps, and bacterial artificial chromosome (BAC) libraries. Here, these resources were integratively used to identify and sequence two gene-rich regions (GRRs) of the genome. Results The genome was screened with a probe representing the sequence of a microsatellite fragment length polymorphism (MFLP) marker linked to Phomopsis stem blight resistance. BAC clones selected by hybridization were subjected to restriction fingerprinting and contig assembly, and 232 BAC-ends were sequenced and annotated. BAC fluorescence in situ hybridization (BAC-FISH) identified eight single-locus clones. Based on physical mapping, cytogenetic localization, and BAC-end annotation, five clones were chosen for sequencing. Within the sequences of clones that hybridized in FISH to a single-locus, two large GRRs were identified. The GRRs showed strong and conserved synteny to Glycine max duplicated genome regions, illustrated by both identical gene order and parallel orientation. In contrast, in the clones with dispersed FISH signals, more than one-third of sequences were transposable elements. Sequenced, single-locus clones were used to develop 12 genetic markers, increasing the number of L. angustifolius chromosomes linked to appropriate linkage groups by five pairs. Conclusions In general, probes originating from MFLP sequences can assist genome screening and gene discovery. However, such probes are not useful for positional cloning, because they tend to hybridize to numerous loci. GRRs identified in L. angustifolius contained a low number of interspersed repeats and had a high level of synteny to the genome of the model legume G. max. Our results showed that not only was the gene nucleotide sequence conserved between soybean and lupin GRRs, but the order and orientation of particular genes in syntenic blocks was homologous, as well. These findings will be valuable to the forthcoming sequencing of the lupin genome. PMID:23379841
Reeves, R H; O'Brien, S J
1984-01-01
RD-114 is a replication-competent, xenotropic retrovirus which is homologous to a family of moderately repetitive DNA sequences present at ca. 20 copies in the normal cellular genome of domestic cats. To examine the extent and character of genomic divergence of the RD-114 gene family as well as to assess their positional association within the cat genome, we have prepared a series of molecular clones of endogenous RD-114 DNA segments from a genomic library of cat cellular DNA. Their restriction endonuclease maps were compared with each other as well as to that of the prototype-inducible RD-114 which was molecularly cloned from a chronically infected human cell line. The endogenous sequences analyzed were similar to each other in that they were colinear with RD-114 proviral DNA, were bounded by long terminal redundancies, and conserved many restriction sites in the gag and pol regions. However, the env regions of many of the sequences examined were substantially deleted. Several of the endogenous RD-114 genomes contained a novel envelope sequence which was unrelated to the env gene of the prototype RD-114 env gene but which, like RD-114 and endogenous feline leukemia virus provirus, was found only in species of the genus Felis, and not in other closely related Felidae genera. The endogenous RD-114 sequences each had a distinct cellular flank which indicates that these sequences are not tandem but dispersed nonspecifically throughout the genome. Southern analysis of cat cellular DNA confirmed the conclusions about conserved restriction sites in endogenous sequences and indicated that a single locus may be responsible for the production of the major inducible form of RD-114. Images PMID:6090693
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Nils; Scherthan, Harry
The telomere binding proteins TRF1 and TRF2 maintain and protect chromosome ends and confer karyotypic stability. Chromosome evolution in the genus Muntiacus is characterized by numerous tandem (end-to-end) fusions. To study TRF1 and TRF2 telomere binding proteins in Muntiacus species, we isolated and characterized the TERF1 and -2 genes from Indian muntjac (Muntiacus muntjak vaginalis; 2n = 6 female) and from Chinese muntjac (Muntiacus reveesi; 2n = 46). Expression analysis revealed that both genes are ubiquitously expressed and sequence analysis identified several transcript variants of both TERF genes. Control experiments disclosed a novel testis-specific splice variant of TERF1 in humanmore » testes. Amino acid sequence comparisons demonstrate that Muntiacus TRF1 and in particular TRF2 are highly conserved between muntjac and human. In vivo TRF2-GFP and immuno-staining studies in muntjac cell lines revealed telomeric TRF2 localization, while deletion of the DNA binding domain abrogated this localization, suggesting muntjac TRF2 represents a functional telomere protein. Finally, expression analysis of a set of telomere-related genes revealed their presence in muntjac fibroblasts and testis tissue, which suggests the presence of a conserved telomere complex in muntjacs. However, a deviation from the common theme was noted for the TERT gene, encoding the catalytic subunit of telomerase; TERT expression could not be detected in Indian or Chinese muntjac cDNA or genomic DNA using a series of conserved primers, while TRAP assay revealed functional telomerase in Chinese muntjac testis tissues. This suggests muntjacs may harbor a diverged telomerase sequence.« less
Mutation of domain III and domain VI in L gene conserved domain of Nipah virus
NASA Astrophysics Data System (ADS)
Jalani, Siti Aishah; Ibrahim, Nazlina
2016-11-01
Nipah virus (NiV) is the etiologic agent responsible for the respiratory illness and causes fatal encephalitis in human. NiV L protein subunit is thought to be responsible for the majority of enzymatic activities involved in viral transcription and replication. The L protein which is the viral RNA dependent RNA polymerase has high sequence homology among negative sense RNA viruses. In negative stranded RNA viruses, based on sequence alignment six conserved domain (domain I-IV) have been determined. Each domain is separated on variable regions that suggest the structure to consist concatenated functional domain. To directly address the roles of domains III and VI, site-directed mutations were constructed by the substitution of bases at sequences 2497, 2500, 5528 and 5532. Each mutated L gene can be used in future studies to test the ability for expression on in vitro translation.
The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum
Grohme, Markus A.; Mali, Brahim; Wełnicz, Weronika; Michel, Stephanie; Schill, Ralph O.; Frohme, Marcus
2013-01-01
Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters. PMID:23761966
Peng, Rui; Zeng, Bo; Meng, Xiuxiang; Yue, Bisong; Zhang, Zhihe; Zou, Fangdong
2007-08-01
The complete mitochondrial genome sequence of the giant panda, Ailuropoda melanoleuca, was determined by the long and accurate polymerase chain reaction (LA-PCR) with conserved primers and primer walking sequence methods. The complete mitochondrial DNA is 16,805 nucleotides in length and contains two ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and one control region. The total length of the 13 protein-coding genes is longer than the American black bear, brown bear and polar bear by 3 amino acids at the end of ND5 gene. The codon usage also followed the typical vertebrate pattern except for an unusual ATT start codon, which initiates the NADH dehydrogenase subunit 5 (ND5) gene. The molecular phylogenetic analysis was performed on the sequences of 12 concatenated heavy-strand encoded protein-coding genes, and suggested that the giant panda is most closely related to bears.
Sugita, Mamoru; Shinozaki, Kazuo; Sugiura, Masahiro
1985-01-01
The nucleotide sequence of a tRNALys(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNAGly(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long. Images PMID:16593561
Sugita, M; Shinozaki, K; Sugiura, M
1985-06-01
The nucleotide sequence of a tRNA(Lys)(UUU) gene on tobacco (Nicotiana tabacum) chloroplast DNA has been determined. This gene is located 215 base pairs upstream from the gene for the 32,000-dalton thylakoid membrane protein on the same DNA strand and has a 2526-base-pair intron in the anticodon loop. The intron boundary sequence does not follow the G-U/A-G rule but is similar to those of tobacco chloroplast split genes for tRNA(Gly)(UCC) and ribosomal proteins L2 and S12. The intron contains one major open reading frame of 509 codons. The codon usage in the open reading frame resembles those observed in the genes for tobacco chloroplast proteins so far analyzed. The primary transcript of this tRNA gene is 2.7 kilobases long.
Berke, Lidija; Snel, Berend
2014-01-01
The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants. PMID:24567304
Plucienniczak, A; Schroeder, E; Zettlmeissl, G; Streeck, R E
1985-01-01
The nucleotide sequence of a 7.6 kb vaccinia DNA segment from a genomic region conserved among different orthopox virus has been determined. This segment contains a tight cluster of 12 partly overlapping open reading frames most of which can be correlated with previously identified early and late proteins and mRNAs. Regulatory signals used by vaccinia virus have been studied. Presumptive promoter regions are rich in A, T and carry the consensus sequences TATA and AATAA spaced at 20-24 base pairs. Tandem repeats of a CTATTC consensus sequence are proposed to be involved in the termination of early transcription. PMID:2987815
Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript
Rose, Dominic; Stadler, Peter F.
2011-01-01
Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element. PMID:22303364
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roger, T.; Morisset, J.; Seman, M.
1996-12-31
The mouse Tcrg locus comprises seven Tcrg-V, four Tcrg-J, and four Tcrg-C segments which generate only six major types of functional g chains, Vg7-, Vg4-, Vg6-, or Vg5-Jg1-Cg1, Vg2-Jg2-Cg2, and Vg1-Jg4-Cg4. A complete analysis of restriction fragment length polymorphism (RFLP) of the Tcrg locus in wild and inbred mice suggested its relative conservation compared to other loci of the immunoglobulin (Ig) gene family. Three haplotypes have been characterized in laboratory mice: gA, gB, and gC, represented by BALB/c, DBA/2, and AKR prototypes. Tcr-gA and -gC haplotypes are highly related. By contrast, Tcr-gB, likely inherited from Asian mouse subspecies, appeared verymore » different by RFLP analysis. Yet only partial sequence data have been reported on gA and gB Tcrg-V genes. Here, the complete sequence of all Tcrg-V genes of the two haplotypes is described. 16 refs., 1 fig.« less
Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene
Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze
2013-01-01
Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode. PMID:24327775
Phylogenetic analysis of ruminant Theileria spp. from China based on 28S ribosomal RNA gene.
Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze; Yin, Hong; Luo, Jianxun
2013-10-01
Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode.
Organization of nif gene cluster in Frankia sp. EuIK1 strain, a symbiont of Elaeagnus umbellata.
Oh, Chang Jae; Kim, Ho Bang; Kim, Jitae; Kim, Won Jin; Lee, Hyoungseok; An, Chung Sun
2012-01-01
The nucleotide sequence of a 20.5-kb genomic region harboring nif genes was determined and analyzed. The fragment was obtained from Frankia sp. EuIK1 strain, an indigenous symbiont of Elaeagnus umbellata. A total of 20 ORFs including 12 nif genes were identified and subjected to comparative analysis with the genome sequences of 3 Frankia strains representing diverse host plant specificities. The nucleotide and deduced amino acid sequences showed highest levels of identity with orthologous genes from an Elaeagnus-infecting strain. The gene organization patterns around the nif gene clusters were well conserved among all 4 Frankia strains. However, characteristic features appeared in the location of the nifV gene for each Frankia strain, depending on the type of host plant. Sequence analysis was performed to determine the transcription units and suggested that there could be an independent operon starting from the nifW gene in the EuIK strain. Considering the organization patterns and their total extensions on the genome, we propose that the nif gene clusters remained stable despite genetic variations occurring in the Frankia genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devor, E.J.; Dill-Devor, R.M.
1994-09-01
We have obtained a number of unique sequences via PCR amplification of human genomic DNA using degenerate primers under low stringency (42{degrees}C). One of these, an 853 bp product, has been identified as a partial genomic sequence of the human homolog of the S. cerevisiae CDC27 gene, CDC27Hs (GenBank No. U00001). This gene, reported by Turgendreich et al. is also designated EST00556 from Adams et al. We have undertaken a more detailed examination of our sequence, MCP34N, and have found that: 1. the genomic sequence is nearly identical to CDC27Hs over its entire 853 bp length; 2. an MCP34N-specific PCRmore » assay of several non-human primate species reveals amplification products in chimpanzee and gorilla genomes having greater than 90% sequence identity with CDC27Hs; and 3. an MCP34N-specific PCR assay of the BIOS hybrid cell line panel gives a discordancy pattern suggesting multiple loci. Based upon these data, we present the following initial characterization: 1. the complete MCP34N sequence identity with CDC27Hs indicates that the latter is encoded by an intronless gene; 2. CDC27Hs is highly conserved among higher primates; and 3. CDC27Hs is present in multiple copies in the human genome. These characteristics, taken together with those initially reported for CDC27Hs, suggest that this is an old gene that carries out an important but, as yet, unknown function in the human brain.« less
Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Gupta, Vidya S
2012-05-08
The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions.
2012-01-01
Background The glycosylation process, catalyzed by ubiquitous glycosyltransferase (GT) family enzymes, is a prevalent modification of plant secondary metabolites that regulates various functions such as hormone homeostasis, detoxification of xenobiotics and biosynthesis and storage of secondary metabolites. Flax (Linum usitatissimum L.) is a commercially grown oilseed crop, important because of its essential fatty acids and health promoting lignans. Identification and characterization of UDP glycosyltransferase (UGT) genes from flax could provide valuable basic information about this important gene family and help to explain the seed specific glycosylated metabolite accumulation and other processes in plants. Plant genome sequencing projects are useful to discover complexity within this gene family and also pave way for the development of functional genomics approaches. Results Taking advantage of the newly assembled draft genome sequence of flax, we identified 137 UDP glycosyltransferase (UGT) genes from flax using a conserved signature motif. Phylogenetic analysis of these protein sequences clustered them into 14 major groups (A-N). Expression patterns of these genes were investigated using publicly available expressed sequence tag (EST), microarray data and reverse transcription quantitative real time PCR (RT-qPCR). Seventy-three per cent of these genes (100 out of 137) showed expression evidence in 15 tissues examined and indicated varied expression profiles. The RT-qPCR results of 10 selected genes were also coherent with the digital expression analysis. Interestingly, five duplicated UGT genes were identified, which showed differential expression in various tissues. Of the seven intron loss/gain positions detected, two intron positions were conserved among most of the UGTs, although a clear relationship about the evolution of these genes could not be established. Comparison of the flax UGTs with orthologs from four other sequenced dicot genomes indicated that seven UGTs were flax diverged. Conclusions Flax has a large number of UGT genes including few flax diverged ones. Phylogenetic analysis and expression profiles of these genes identified tissue and condition specific repertoire of UGT genes from this crop. This study would facilitate precise selection of candidate genes and their further characterization of substrate specificities and in planta functions. PMID:22568875
Okeke, Iruka N.; Borneman, Jade A.; Shin, Sooan; Mellies, Jay L.; Quinn, Laura E.; Kaper, James B.
2001-01-01
Enteropathogenic Escherichia coli (EPEC) strains that carry the EPEC adherence factor (EAF) plasmid were screened for the presence of different EAF sequences, including those of the plasmid-encoded regulator (per). Considerable variation in gene content of EAF plasmids from different strains was seen. However, bfpA, the gene encoding the structural subunit for the bundle-forming pilus, bundlin, and per genes were found in 96.8% of strains. Sequence analysis of the per operon and its promoter region from 15 representative strains revealed that it is highly conserved. Most of the variation occurs in the 5′ two-thirds of the perA gene. In contrast, the C-terminal portion of the predicted PerA protein that contains the DNA-binding helix-turn-helix motif is 100% conserved in all strains that possess a full-length gene. In a minority of strains including the O119:H2 and canine isolates and in a subset of O128:H2 and O142:H6 strains, frameshift mutations in perA leading to premature truncation and consequent inactivation of the gene were identified. Cloned perA, -B, and -C genes from these strains, unlike those from strains with a functional operon, failed to activate the LEE1 operon and bfpA transcriptional fusions or to complement a per mutant in reference strain E2348/69. Furthermore, O119, O128, and canine strains that carry inactive per operons were deficient in virulence protein expression. The context in which the perABC operon occurs on the EAF plasmid varies. The sequence upstream of the per promoter region in EPEC reference strains E2348/69 and B171-8 was present in strains belonging to most serogroups. In a subset of O119:H2, O128:H2, and O142:H6 strains and in the canine isolate, this sequence was replaced by an IS1294-homologous sequence. PMID:11500429
Insect sex determination: it all evolves around transformer.
Verhulst, Eveline C; van de Zande, Louis; Beukeboom, Leo W
2010-08-01
Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.
How the Sequence of a Gene Specifies Structural Symmetry in Proteins
Shen, Xiaojuan; Huang, Tongcheng; Wang, Guanyu; Li, Guanglin
2015-01-01
Internal symmetry is commonly observed in the majority of fundamental protein folds. Meanwhile, sufficient evidence suggests that nascent polypeptide chains of proteins have the potential to start the co-translational folding process and this process allows mRNA to contain additional information on protein structure. In this paper, we study the relationship between gene sequences and protein structures from the viewpoint of symmetry to explore how gene sequences code for structural symmetry in proteins. We found that, for a set of two-fold symmetric proteins from left-handed beta-helix fold, intragenic symmetry always exists in their corresponding gene sequences. Meanwhile, codon usage bias and local mRNA structure might be involved in modulating translation speed for the formation of structural symmetry: a major decrease of local codon usage bias in the middle of the codon sequence can be identified as a common feature; and major or consecutive decreases in local mRNA folding energy near the boundaries of the symmetric substructures can also be observed. The results suggest that gene duplication and fusion may be an evolutionarily conserved process for this protein fold. In addition, the usage of rare codons and the formation of higher order of secondary structure near the boundaries of symmetric substructures might have coevolved as conserved mechanisms to slow down translation elongation and to facilitate effective folding of symmetric substructures. These findings provide valuable insights into our understanding of the mechanisms of translation and its evolution, as well as the design of proteins via symmetric modules. PMID:26641668
Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim
2015-10-01
Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mitochondrial genome of the tomato clownfish Amphiprion frenatus (Pomacentridae, Amphiprioninae).
Ye, Le; Hu, Jing; Wu, Kaichang; Wang, Yu; Li, Jianlong
2016-01-01
The complete mitochondrial (mt) genome of the tomato clownfish Amphiprion frenatus was obtained in this study. The circular mtDNA molecule was 16,774 bp in size and the overall nucleotide composition of the H-strand was 29.72% A, 25.81% T, 15.38% G and 29.09% C, with an A + T bias. The complete mitogenome encoded 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a control region (D-loop), with the gene arrangement and translation direction basically identical to other typical vertebrate mitogenomes. The D-loop included termination associated sequence (TAS), central conserved domain (CCD) and conserved sequence block (CSB), and was composed of 6 complete continuity tandem repeat units and an imperfect tandem repeat unit.
Janes, D E; Chapus, C; Gondo, Y; Clayton, D F; Sinha, S; Blatti, C A; Organ, C L; Fujita, M K; Balakrishnan, C N; Edwards, S V
2011-01-01
Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation.
Janes, D.E.; Chapus, C.; Gondo, Y.; Clayton, D.F.; Sinha, S.; Blatti, C.A.; Organ, C.L.; Fujita, M.K.; Balakrishnan, C.N.; Edwards, S.V.
2010-01-01
Many noncoding regions of genomes appear to be essential to genome function. Conservation of large numbers of noncoding sequences has been reported repeatedly among mammals but not thus far among birds and reptiles. By searching genomes of chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and green anole (Anolis carolinensis), we quantified the conservation among birds and reptiles and across amniotes of long, conserved noncoding sequences (LCNS), which we define as sequences ≥500 bp in length and exhibiting ≥95% similarity between species. We found 4,294 LCNS shared between chicken and zebra finch and 574 LCNS shared by the two birds and Anolis. The percent of genomes comprised by LCNS in the two birds (0.0024%) is notably higher than the percent in mammals (<0.0003% to <0.001%), differences that we show may be explained in part by differences in genome-wide substitution rates. We reconstruct a large number of LCNS for the amniote ancestor (ca. 8,630) and hypothesize differential loss and substantial turnover of these sites in descendent lineages. By contrast, we estimated a small role for recruitment of LCNS via acquisition of novel functions over time. Across amniotes, LCNS are significantly enriched with transcription factor binding sites for many developmental genes, and 2.9% of LCNS shared between the two birds show evidence of expression in brain expressed sequence tag databases. These results show that the rate of retention of LCNS from the amniote ancestor differs between mammals and Reptilia (including birds) and that this may reflect differing roles and constraints in gene regulation. PMID:21183607
A functional analysis of the spacer of V(D)J recombination signal sequences.
Lee, Alfred Ian; Fugmann, Sebastian D; Cowell, Lindsay G; Ptaszek, Leon M; Kelsoe, Garnett; Schatz, David G
2003-10-01
During lymphocyte development, V(D)J recombination assembles antigen receptor genes from component V, D, and J gene segments. These gene segments are flanked by a recombination signal sequence (RSS), which serves as the binding site for the recombination machinery. The murine Jbeta2.6 gene segment is a recombinationally inactive pseudogene, but examination of its RSS reveals no obvious reason for its failure to recombine. Mutagenesis of the Jbeta2.6 RSS demonstrates that the sequences of the heptamer, nonamer, and spacer are all important. Strikingly, changes solely in the spacer sequence can result in dramatic differences in the level of recombination. The subsequent analysis of a library of more than 4,000 spacer variants revealed that spacer residues of particular functional importance are correlated with their degree of conservation. Biochemical assays indicate distinct cooperation between the spacer and heptamer/nonamer along each step of the reaction pathway. The results suggest that the spacer serves not only to ensure the appropriate distance between the heptamer and nonamer but also regulates RSS activity by providing additional RAG:RSS interaction surfaces. We conclude that while RSSs are defined by a "digital" requirement for absolutely conserved nucleotides, the quality of RSS function is determined in an "analog" manner by numerous complex interactions between the RAG proteins and the less-well conserved nucleotides in the heptamer, the nonamer, and, importantly, the spacer. Those modulatory effects are accurately predicted by a new computational algorithm for "RSS information content." The interplay between such binary and multiplicative modes of interactions provides a general model for analyzing protein-DNA interactions in various biological systems.
Hayden, M R; Hewitt, J; Wasmuth, J J; Kastelein, J J; Langlois, S; Conneally, M; Haines, J; Smith, B; Hilbert, C; Allard, D
1988-01-01
A polymorphic marker (D4S62) that is genetically closely linked to D4S10 and is in the region of the gene for Huntington disease is described. A four-allele polymorphism is detected when HincII-digested DNA is hybridized with D4S62. D4S62 maps, by Southern blot analysis using somatic-cell hybrids, to 4p16.1 closer to the centromere than does D4S10. The use of the polymorphisms detected by D4S62 increases the informativeness of markers close to the gene for Huntington disease and will be useful for preclinical diagnosis. D4S62 detects transcripts of approximately 6,000 nucleotides in rat, mouse, and monkey liver and brain. This represents the first demonstration of conserved expressed sequences close to the gene for Huntington disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 PMID:2892395
rpoB Gene Sequencing for Identification of Corynebacterium Species
Khamis, Atieh; Raoult, Didier; La Scola, Bernard
2004-01-01
The genus Corynebacterium is a heterogeneous group of species comprising human and animal pathogens and environmental bacteria. It is defined on the basis of several phenotypic characters and the results of DNA-DNA relatedness and, more recently, 16S rRNA gene sequencing. However, the 16S rRNA gene is not polymorphic enough to ensure reliable phylogenetic studies and needs to be completely sequenced for accurate identification. The almost complete rpoB sequences of 56 Corynebacterium species were determined by both PCR and genome walking methods. In all cases the percent similarities between different species were lower than those observed by 16S rRNA gene sequencing, even for those species with degrees of high similarity. Several clusters supported by high bootstrap values were identified. In order to propose a method for strain identification which does not require sequencing of the complete rpoB sequence (approximately 3,500 bp), we identified an area with a high degree of polymorphism, bordered by conserved sequences that can be used as universal primers for PCR amplification and sequencing. The sequence of this fragment (434 to 452 bp) allows accurate species identification and may be used in the future for routine sequence-based identification of Corynebacterium species. PMID:15364970
Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
Thompson, Dawn; Regev, Aviv; Roy, Sushmita
2015-01-01
Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.
Genome analysis of the platypus reveals unique signatures of evolution.
Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K
2008-05-08
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.
Genome analysis of the platypus reveals unique signatures of evolution
Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.
2009-01-01
We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734
Poyau, A; Buchet, K; Godinot, C
1999-12-03
The human SURF1 gene encoding a protein involved in cytochrome c oxidase (COX) assembly, is mutated in most patients presenting Leigh syndrome associated with COX deficiency. Proteins homologous to the human Surf1 have been identified in nine eukaryotes and six prokaryotes using database alignment tools, structure prediction and/or cDNA sequencing. Their sequence comparison revealed a remarkable Surf1 conservation during evolution and put forward at least four highly conserved domains that should be essential for Surf1 function. In Paracoccus denitrificans, the Surf1 homologue is found in the quinol oxidase operon, suggesting that Surf1 is associated with a primitive quinol oxidase which belongs to the same superfamily as cytochrome oxidase.
CoSMoS: Conserved Sequence Motif Search in the proteome
Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I
2006-01-01
Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915
Synteny of Prunus and other model plant species
Jung, Sook; Jiwan, Derick; Cho, Ilhyung; Lee, Taein; Abbott, Albert; Sosinski, Bryon; Main, Dorrie
2009-01-01
Background Fragmentary conservation of synteny has been reported between map-anchored Prunus sequences and Arabidopsis. With the availability of genome sequence for fellow rosid I members Populus and Medicago, we analyzed the synteny between Prunus and the three model genomes. Eight Prunus BAC sequences and map-anchored Prunus sequences were used in the comparison. Results We found a well conserved synteny across the Prunus species – peach, plum, and apricot – and Populus using a set of homologous Prunus BACs. Conversely, we could not detect any synteny with Arabidopsis in this region. Other peach BACs also showed extensive synteny with Populus. The syntenic regions detected were up to 477 kb in Populus. Two syntenic regions between Arabidopsis and these BACs were much shorter, around 10 kb. We also found syntenic regions that are conserved between the Prunus BACs and Medicago. The array of synteny corresponded with the proposed whole genome duplication events in Populus and Medicago. Using map-anchored Prunus sequences, we detected many syntenic blocks with several gene pairs between Prunus and Populus or Arabidopsis. We observed a more complex network of synteny between Prunus-Arabidopsis, indicative of multiple genome duplication and subsequence gene loss in Arabidopsis. Conclusion Our result shows the striking microsynteny between the Prunus BACs and the genome of Populus and Medicago. In macrosynteny analysis, more distinct Prunus regions were syntenic to Populus than to Arabidopsis. PMID:19208249
2013-01-01
Background MicroRNAs (miRNAs) are an abundant class of endogenous small RNA molecules that downregulate gene expression at the posttranscriptional level. They play important roles in multiple biological processes by regulating genes that control developmental timing, growth, stem cell division and apoptosis by binding to the mRNA of target genes. Despite the position Atlantic salmon (Salmo salar) has as an economically important domesticated animal, there has been little research on miRNAs in this species. Knowledge about miRNAs and their target genes may be used to control health and to improve performance of economically important traits. However, before their biological function can be unravelled they must be identified and annotated. The aims of this study were to identify and characterize miRNA genes in Atlantic salmon by deep sequencing analysis of small RNA libraries from nine different tissues. Results A total of 180 distinct mature miRNAs belonging to 106 families of evolutionary conserved miRNAs, and 13 distinct novel mature miRNAs were discovered and characterized. The mature miRNAs corresponded to 521 putative precursor sequences located at unique genome locations. About 40% of these precursors were part of gene clusters, and the majority of the Salmo salar gene clusters discovered were conserved across species. Comparison of expression levels in samples from different tissues applying DESeq indicated that there were tissue specific expression differences in three conserved and one novel miRNA. Ssa-miR 736 was detected in heart tissue only, while two other clustered miRNAs (ssa-miR 212 and132) seems to be at a higher expression level in brain tissue. These observations correlate well with their expected functions as regulators of signal pathways in cardiac and neuronal cells, respectively. Ssa-miR 8163 is one of the novel miRNAs discovered and its function remains unknown. However, differential expression analysis using DESeq suggests that this miRNA is enriched in liver tissue and the precursor was mapped to intron 7 of the transferrin gene. Conclusions The identification and annotation of evolutionary conserved and novel Salmo salar miRNAs as well as the characterization of miRNA gene clusters provide biological knowledge that will greatly facilitate further functional studies on miRNAs in this species. PMID:23865519
Comparative analysis of ribosomal protein L5 sequences from bacteria of the genus Thermus.
Jahn, O; Hartmann, R K; Boeckh, T; Erdmann, V A
1991-06-01
The genes for the ribosomal 5S rRNA binding protein L5 have been cloned from three extremely thermophilic eubacteria, Thermus flavus, Thermus thermophilus HB8 and Thermus aquaticus (Jahn et al, submitted). Genes for protein L5 from the three Thermus strains display 95% G/C in third positions of codons. Amino acid sequences deduced from the DNA sequence were shown to be identical for T flavus and T thermophilus, although the corresponding DNA sequences differed by two T to C transitions in the T thermophilus gene. Protein L5 sequences from T flavus and T thermophilus are 95% homologous to L5 from T aquaticus and 56.5% homologous to the corresponding E coli sequence. The lowest degrees of homology were found between the T flavus/T thermophilus L5 proteins and those of yeast L16 (27.5%), Halobacterium marismortui (34.0%) and Methanococcus vannielii (36.6%). From sequence comparison it becomes clear that thermostability of Thermus L5 proteins is achieved by an increase in hydrophobic interactions and/or by restriction of steric flexibility due to the introduction of amino acids with branched aliphatic side chains such as leucine. Alignment of the nine protein sequences equivalent to Thermus L5 proteins led to identification of a conserved internal segment, rich in acidic amino acids, which shows homology to subsequences of E coli L18 and L25. The occurrence of conserved sequence elements in 5S rRNA binding proteins and ribosomal proteins in general is discussed in terms of evolution and function.
Annotation of the Clostridium Acetobutylicum Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, M. J.
The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.
Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R
2006-01-01
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements. PMID:17069639
Gopal, J; Yebra, M J; Bhagwat, A S
1994-01-01
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework. Images PMID:7971279
Yedavalli, Venkat R. K.; Chappey, Colombe; Ahmad, Nafees
1998-01-01
The vpr sequences from six human immunodeficiency virus type 1 (HIV-1)-infected mother-infant pairs following perinatal transmission were analyzed. We found that 153 of the 166 clones analyzed from uncultured peripheral blood mononuclear cell DNA samples showed a 92.17% frequency of intact vpr open reading frames. There was a low degree of heterogeneity of vpr genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vpr sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Moreover, the infants’ sequences displayed patterns similar to those seen in their mothers. The functional domains essential for Vpr activity, including virion incorporation, nuclear import, and cell cycle arrest and differentiation were highly conserved in most of the sequences. Phylogenetic analyses of 166 mother-infant pairs and 195 other available vpr sequences from HIV databases formed distinct clusters for each mother-infant pair and for other vpr sequences and grouped the six mother-infant pairs’ sequences with subtype B sequences. A high degree of conservation of intact and functional vpr supports the notion that vpr plays an important role in HIV-1 infection and replication in mother-infant isolates that are involved in perinatal transmission. PMID:9658150
Conservation of CD44 exon v3 functional elements in mammals
Vela, Elena; Hilari, Josep M; Delclaux, María; Fernández-Bellon, Hugo; Isamat, Marcos
2008-01-01
Background The human CD44 gene contains 10 variable exons (v1 to v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms. Human CD44 variable exon v3 inclusion in the final mRNA depends on a multisite bipartite splicing enhancer located within the exon itself, which we have recently described, and provides the protein domain responsible for growth factor binding to CD44. Findings We have analyzed the sequence of CD44v3 in 95 mammalian species to report high conservation levels for both its splicing regulatory elements (the 3' splice site and the exonic splicing enhancer), and the functional glycosaminglycan binding site coded by v3. We also report the functional expression of CD44v3 isoforms in peripheral blood cells of different mammalian taxa with both consensus and variant v3 sequences. Conclusion CD44v3 mammalian sequences maintain all functional splicing regulatory elements as well as the GAG binding site with the same relative positions and sequence identity previously described during alternative splicing of human CD44. The sequence within the GAG attachment site, which in turn contains the Y motif of the exonic splicing enhancer, is more conserved relative to the rest of exon. Amplification of CD44v3 sequence from mammalian species but not from birds, fish or reptiles, may lead to classify CD44v3 as an exclusive mammalian gene trait. PMID:18710510
Exome-wide DNA capture and next generation sequencing in domestic and wild species.
Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon
2011-07-05
Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.
The Evolution of the Secreted Regulatory Protein Progranulin.
Palfree, Roger G E; Bennett, Hugh P J; Bateman, Andrew
2015-01-01
Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide sequence conservation of mammalian granulin modules identified potential structure-activity relationships that may be informative in designing progranulin based therapeutics.
The Evolution of the Secreted Regulatory Protein Progranulin
Palfree, Roger G. E.; Bennett, Hugh P. J.; Bateman, Andrew
2015-01-01
Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide sequence conservation of mammalian granulin modules identified potential structure-activity relationships that may be informative in designing progranulin based therapeutics. PMID:26248158
Patarca, R; Dorta, B; Ramirez, J L
1982-01-01
As part of a project pertaining the organization of ribosomal genes in Kinetoplastidae, we have created a data base for published sequences of ribosomal nucleic acids, with information in Spanish. As a first step in their processing, we have written a computer program which introduces the new feature of determining the length of the fragments produced after single or multiple digestion with any of the known restriction enzymes. With this information we have detected conserved SAU 3A sites: (i) at the 5' end of the 5.8S rRNA and at the 3' end of the small subunit rRNA, both included in similar larger sequences; (ii) in the 5.8S rRNA of vertebrates (a second one), which is not present in lower eukaryotes, showing a clear evolutive divergence; and, (iii) at the 5' terminal of the small subunit rRNA, included in a larger conserved sequence. The possible biological importance of these sequences is discussed. PMID:6278402
Parallel evolution of chordate cis-regulatory code for development.
Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg
2013-11-01
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.
Mateos, Jesús; Herranz, Raúl; Domingo, Alberto; Sparrow, John; Marco, Roberto
2006-01-01
In Drosophila melanogaster two high molecular weight tropomyosin isoforms, historically named heavy troponins (TnH-33 and TnH-34), are encoded by the Tm1 tropomyosin gene. They are specifically expressed in the indirect flight muscles (IFM). Their N-termini are conventional and complete tropomyosin sequences, but their C-termini consist of different IFM-specific domains that are rich in proline, alanine, glycine and glutamate. The evidence indicates that in Diptera these IFM-specific isoforms are conserved and are not troponins, but heavy tropomyosins (TmH). We report here that they are post-translationally modified by several phosphorylations in their C-termini in mature flies, but not in recently emerged flies that are incapable of flight. From stoichiometric measurements of thin filament proteins and interactions of the TmH isoforms with the standard Drosophila IFM tropomyosin isoform (protein 129), we propose that the TmH N-termini are integrated into the thin filament structural unit as tropomyosin dimers. The phosphorylated C-termini remain unlocated and may be important in IFM stretch-activation. Comparison of the Tm1 and Tm2 gene sequences shows a complete conservation of gene organisation in other Drosophilidae, such as Drosophila pseudoobscura, while in Anopheles gambiae only one exon encodes a single C-terminal domain, though overall gene organization is maintained. Interestingly, in Apis mellifera (hymenopteran), while most of the Tm1 and Tm2 gene features are conserved, the gene lacks any C-terminal exons. Instead these sequences are found at the 3' end of the troponin I gene. In this insect order, as in Lethocerus (hemipteran), the original designation of troponin H (TnH) should be retained. We discuss whether the insertion of the IFM-specific pro-ala-gly-glu-rich domain into the tropomyosin or troponin I genes in different insect orders may be related to proposals that the IFM stretch activation mechanism has evolved independently several times in higher insects.
Sakai, Kanae; Komaki, Hisayuki; Gonoi, Tohru
2015-01-01
Nocardithiocin is a thiopeptide compound isolated from the opportunistic pathogen Nocardia pseudobrasiliensis. It shows a strong activity against acid-fast bacteria and is also active against rifampicin-resistant Mycobacterium tuberculosis. Here, we report the identification of the nocardithiocin gene cluster in N. pseudobrasiliensis IFM 0761 based on conserved thiopeptide biosynthesis gene sequence and the whole genome sequence. The predicted gene cluster was confirmed by gene disruption and complementation. As expected, strains containing the disrupted gene did not produce nocardithiocin while gene complementation restored nocardithiocin production in these strains. The predicted cluster was further analyzed using RNA-seq which showed that the nocardithiocin gene cluster contains 12 genes within a 15.2-kb region. This finding will promote the improvement of nocardithiocin productivity and its derivatives production. PMID:26588225
Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1
Fluch, Silvia; Kopecky, Dieter; Burg, Kornel; Šimková, Hana; Taudien, Stefan; Petzold, Andreas; Kubaláková, Marie; Platzer, Matthias; Berenyi, Maria; Krainer, Siegfried; Doležel, Jaroslav; Lelley, Tamas
2012-01-01
Background The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. Methodology/Principal Findings Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. Conclusions The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye. PMID:22328922
Teng, Chang Ying; Dang, Yunkun; Danne, Jillian C; Waller, Ross F; Green, Beverley R
2013-01-01
Dinoflagellates are a large group of algae that contribute significantly to marine productivity and are essential photosynthetic symbionts of corals. Although these algae have fully-functioning mitochondria and chloroplasts, both their organelle genomes have been highly reduced and the genes fragmented and rearranged, with many aberrant transcripts. However, nothing is known about their RNA polymerases. We cloned and sequenced the gene for the nuclear-encoded mitochondrial polymerase (RpoTm) of the dinoflagellate Heterocapsa triquetra and showed that the protein presequence targeted a GFP construct into yeast mitochondria. The gene belongs to a small gene family, which includes a variety of 3'-truncated copies that may have originated by retroposition. The catalytic C-terminal domain of the protein shares nine conserved sequence blocks with other single-subunit polymerases and is predicted to have the same fold as the human enzyme. However, the N-terminal (promoter binding/transcription initiation) domain is not well-conserved. In conjunction with the degenerate nature of the mitochondrial genome, this suggests a requirement for novel accessory factors to ensure the accurate production of functional mRNAs.
Shu, Xianghua; Liu, Yonggang; Yang, Liangyu; Song, Chunlian; Hou, Jiafa
2008-01-01
The complete coding sequences of 3 porcine genes - ASPA, NAGA, and HEXA - were amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved sequence information of the mouse or other mammals and referenced pig ESTs. These 3 novel porcine genes were then deposited in the NCBI database and assigned GeneIDs: 100142661, 100142664 and 100142667. The phylogenetic tree analysis revealed that the porcine ASPA, NAGA, and HEXA all have closer genetic relationships with the ASPA, NAGA, and HEXA of cattle. Tissue expression profile analysis was also carried out and results revealed that swine ASPA, NAGA, and HEXA genes were differentially expressed in various organs, including skeletal muscle, the heart, liver, fat, kidney, lung, and small and large intestines. Our experiment is the first one to establish the foundation for further research on these 3 swine genes.
Bonasera, Jean M; Asselin, Jo Ann E; Beer, Steven V
2014-08-01
We have developed a method for the identification of Gram-negative bacteria, particularly members of the Enterobacteriaceae, based on sequence variation in a portion of the gyrB gene. Thus, we identified, in most cases to species level, over 1000 isolates from onion bulbs and leaves and soil in which onions were grown. Copyright © 2014 Elsevier B.V. All rights reserved.
2013-01-01
Background The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies. PMID:23496952
Francis, Warren R; Christianson, Lynne M; Kiko, Rainer; Powers, Meghan L; Shaner, Nathan C; Haddock, Steven H D
2013-03-12
The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies.
Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E
2013-01-01
Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships.
Proels, Reinhard K; Roitsch, Thomas
2006-03-01
Very few CACTA transposon-like sequences have been described in Solanaceae species. Sequence information has been restricted to partial transposase (TPase)-like fragments, and no target gene of CACTA-like transposon insertion has been described in tomato to date. In this manuscript, we report on a CACTA transposon-like insertion in intron I of tomato (Lycopersicon esculentum) invertase gene Lin5 and TPase-like sequences of several Solanaceae species. Consensus primers deduced from the TPase region of the tomato CACTA transposon-like element allowed the amplification of similar sequences from various Solanaceae species of different subfamilies including Solaneae (Solanum tuberosum), Cestreae (Nicotiana tabacum) and Datureae (Datura stramonium). This demonstrates the ubiquitous presence of CACTA-like elements in Solanaceae genomes. The obtained partial sequences are highly conserved, and allow further detection and detailed analysis of CACTA-like transposons throughout Solanaceae species. CACTA-like transposon sequences make possible the evaluation of their use for genome analysis, functional studies of genes and the evolutionary relationships between plant species.
McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P
2016-07-01
Matschie's tree kangaroo (Dendrolagus matschiei), New Guinea pademelon (Thylogale browni), and small dorcopsis (Dorcopsulus vanheurni) are sympatric macropodid taxa, of conservation concern, that inhabit the Yopno-Urawa-Som (YUS) Conservation Area on the Huon Peninsula, Papua New Guinea. We sequenced three partial mitochondrial DNA (mtDNA) genes from the three taxa to (i) investigate network structure; and (ii) identify conservation units within the YUS Conservation Area. All three taxa displayed a similar pattern in the spatial distribution of their mtDNA haplotypes and the Urawa and Som rivers on the Huon may have acted as a barrier to maternal gene flow. Matschie's tree kangaroo and New Guinea pademelon within the YUS Conservation Area should be managed as single conservation units because mtDNA nucleotides were not fixed for a given geographic area. However, two distinct conservation units were identified for small dorcopsis from the two different mountain ranges within the YUS Conservation Area.
Hahn, Steven; Young, Elton T.
2011-01-01
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms. PMID:22084422
Massive gene transfer and extensive RNA editing of a symbiotic dinoflagellate plastid genome.
Mungpakdee, Sutada; Shinzato, Chuya; Takeuchi, Takeshi; Kawashima, Takeshi; Koyanagi, Ryo; Hisata, Kanako; Tanaka, Makiko; Goto, Hiroki; Fujie, Manabu; Lin, Senjie; Satoh, Nori; Shoguchi, Eiichi
2014-05-31
Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.8-3.3 kb) contains one gene and a conserved noncoding region containing putative promoters and RNA-binding sites. Nine types of RNA editing, including a novel G/U type, were discovered in minicircle transcripts but not in genes transferred to the nucleus. In contrast to DNA editing sites in dinoflagellate mitochondria, which tend to be highly conserved across all taxa, editing sites employed in DNA minicircles are highly variable from species to species. Editing is crucial for core photosystem protein function. It restores evolutionarily conserved amino acids and increases peptidyl hydropathy. It also increases protein plasticity necessary to initiate photosystem complex assembly. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases
Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.
2014-01-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355
The genome sequence of taurine cattle: a window to ruminant biology and evolution.
Elsik, Christine G; Tellam, Ross L; Worley, Kim C; Gibbs, Richard A; Muzny, Donna M; Weinstock, George M; Adelson, David L; Eichler, Evan E; Elnitski, Laura; Guigó, Roderic; Hamernik, Debora L; Kappes, Steve M; Lewin, Harris A; Lynn, David J; Nicholas, Frank W; Reymond, Alexandre; Rijnkels, Monique; Skow, Loren C; Zdobnov, Evgeny M; Schook, Lawrence; Womack, James; Alioto, Tyler; Antonarakis, Stylianos E; Astashyn, Alex; Chapple, Charles E; Chen, Hsiu-Chuan; Chrast, Jacqueline; Câmara, Francisco; Ermolaeva, Olga; Henrichsen, Charlotte N; Hlavina, Wratko; Kapustin, Yuri; Kiryutin, Boris; Kitts, Paul; Kokocinski, Felix; Landrum, Melissa; Maglott, Donna; Pruitt, Kim; Sapojnikov, Victor; Searle, Stephen M; Solovyev, Victor; Souvorov, Alexandre; Ucla, Catherine; Wyss, Carine; Anzola, Juan M; Gerlach, Daniel; Elhaik, Eran; Graur, Dan; Reese, Justin T; Edgar, Robert C; McEwan, John C; Payne, Gemma M; Raison, Joy M; Junier, Thomas; Kriventseva, Evgenia V; Eyras, Eduardo; Plass, Mireya; Donthu, Ravikiran; Larkin, Denis M; Reecy, James; Yang, Mary Q; Chen, Lin; Cheng, Ze; Chitko-McKown, Carol G; Liu, George E; Matukumalli, Lakshmi K; Song, Jiuzhou; Zhu, Bin; Bradley, Daniel G; Brinkman, Fiona S L; Lau, Lilian P L; Whiteside, Matthew D; Walker, Angela; Wheeler, Thomas T; Casey, Theresa; German, J Bruce; Lemay, Danielle G; Maqbool, Nauman J; Molenaar, Adrian J; Seo, Seongwon; Stothard, Paul; Baldwin, Cynthia L; Baxter, Rebecca; Brinkmeyer-Langford, Candice L; Brown, Wendy C; Childers, Christopher P; Connelley, Timothy; Ellis, Shirley A; Fritz, Krista; Glass, Elizabeth J; Herzig, Carolyn T A; Iivanainen, Antti; Lahmers, Kevin K; Bennett, Anna K; Dickens, C Michael; Gilbert, James G R; Hagen, Darren E; Salih, Hanni; Aerts, Jan; Caetano, Alexandre R; Dalrymple, Brian; Garcia, Jose Fernando; Gill, Clare A; Hiendleder, Stefan G; Memili, Erdogan; Spurlock, Diane; Williams, John L; Alexander, Lee; Brownstein, Michael J; Guan, Leluo; Holt, Robert A; Jones, Steven J M; Marra, Marco A; Moore, Richard; Moore, Stephen S; Roberts, Andy; Taniguchi, Masaaki; Waterman, Richard C; Chacko, Joseph; Chandrabose, Mimi M; Cree, Andy; Dao, Marvin Diep; Dinh, Huyen H; Gabisi, Ramatu Ayiesha; Hines, Sandra; Hume, Jennifer; Jhangiani, Shalini N; Joshi, Vandita; Kovar, Christie L; Lewis, Lora R; Liu, Yih-Shin; Lopez, John; Morgan, Margaret B; Nguyen, Ngoc Bich; Okwuonu, Geoffrey O; Ruiz, San Juana; Santibanez, Jireh; Wright, Rita A; Buhay, Christian; Ding, Yan; Dugan-Rocha, Shannon; Herdandez, Judith; Holder, Michael; Sabo, Aniko; Egan, Amy; Goodell, Jason; Wilczek-Boney, Katarzyna; Fowler, Gerald R; Hitchens, Matthew Edward; Lozado, Ryan J; Moen, Charles; Steffen, David; Warren, James T; Zhang, Jingkun; Chiu, Readman; Schein, Jacqueline E; Durbin, K James; Havlak, Paul; Jiang, Huaiyang; Liu, Yue; Qin, Xiang; Ren, Yanru; Shen, Yufeng; Song, Henry; Bell, Stephanie Nicole; Davis, Clay; Johnson, Angela Jolivet; Lee, Sandra; Nazareth, Lynne V; Patel, Bella Mayurkumar; Pu, Ling-Ling; Vattathil, Selina; Williams, Rex Lee; Curry, Stacey; Hamilton, Cerissa; Sodergren, Erica; Wheeler, David A; Barris, Wes; Bennett, Gary L; Eggen, André; Green, Ronnie D; Harhay, Gregory P; Hobbs, Matthew; Jann, Oliver; Keele, John W; Kent, Matthew P; Lien, Sigbjørn; McKay, Stephanie D; McWilliam, Sean; Ratnakumar, Abhirami; Schnabel, Robert D; Smith, Timothy; Snelling, Warren M; Sonstegard, Tad S; Stone, Roger T; Sugimoto, Yoshikazu; Takasuga, Akiko; Taylor, Jeremy F; Van Tassell, Curtis P; Macneil, Michael D; Abatepaulo, Antonio R R; Abbey, Colette A; Ahola, Virpi; Almeida, Iassudara G; Amadio, Ariel F; Anatriello, Elen; Bahadue, Suria M; Biase, Fernando H; Boldt, Clayton R; Carroll, Jeffery A; Carvalho, Wanessa A; Cervelatti, Eliane P; Chacko, Elsa; Chapin, Jennifer E; Cheng, Ye; Choi, Jungwoo; Colley, Adam J; de Campos, Tatiana A; De Donato, Marcos; Santos, Isabel K F de Miranda; de Oliveira, Carlo J F; Deobald, Heather; Devinoy, Eve; Donohue, Kaitlin E; Dovc, Peter; Eberlein, Annett; Fitzsimmons, Carolyn J; Franzin, Alessandra M; Garcia, Gustavo R; Genini, Sem; Gladney, Cody J; Grant, Jason R; Greaser, Marion L; Green, Jonathan A; Hadsell, Darryl L; Hakimov, Hatam A; Halgren, Rob; Harrow, Jennifer L; Hart, Elizabeth A; Hastings, Nicola; Hernandez, Marta; Hu, Zhi-Liang; Ingham, Aaron; Iso-Touru, Terhi; Jamis, Catherine; Jensen, Kirsty; Kapetis, Dimos; Kerr, Tovah; Khalil, Sari S; Khatib, Hasan; Kolbehdari, Davood; Kumar, Charu G; Kumar, Dinesh; Leach, Richard; Lee, Justin C-M; Li, Changxi; Logan, Krystin M; Malinverni, Roberto; Marques, Elisa; Martin, William F; Martins, Natalia F; Maruyama, Sandra R; Mazza, Raffaele; McLean, Kim L; Medrano, Juan F; Moreno, Barbara T; Moré, Daniela D; Muntean, Carl T; Nandakumar, Hari P; Nogueira, Marcelo F G; Olsaker, Ingrid; Pant, Sameer D; Panzitta, Francesca; Pastor, Rosemeire C P; Poli, Mario A; Poslusny, Nathan; Rachagani, Satyanarayana; Ranganathan, Shoba; Razpet, Andrej; Riggs, Penny K; Rincon, Gonzalo; Rodriguez-Osorio, Nelida; Rodriguez-Zas, Sandra L; Romero, Natasha E; Rosenwald, Anne; Sando, Lillian; Schmutz, Sheila M; Shen, Libing; Sherman, Laura; Southey, Bruce R; Lutzow, Ylva Strandberg; Sweedler, Jonathan V; Tammen, Imke; Telugu, Bhanu Prakash V L; Urbanski, Jennifer M; Utsunomiya, Yuri T; Verschoor, Chris P; Waardenberg, Ashley J; Wang, Zhiquan; Ward, Robert; Weikard, Rosemarie; Welsh, Thomas H; White, Stephen N; Wilming, Laurens G; Wunderlich, Kris R; Yang, Jianqi; Zhao, Feng-Qi
2009-04-24
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Mitochondrial genome of the African lion Panthera leo leo.
Ma, Yue-ping; Wang, Shuo
2015-01-01
In this study, the complete mitochondrial genome sequence of the African lion P. leo leo was reported. The total length of the mitogenome was 17,054 bp. It contained the typical mitochondrial structure, including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region; 21 of the tRNA genes folded into typical cloverleaf secondary structure except for tRNASe. The overall composition of the mitogenome was A (32.0%), G (14.5%), C (26.5%) and T (27.0%). The new sequence will provide molecular genetic information for conservation genetics study of this important large carnivore.
Molecular cloning and characterization of alpha - galactosidase gene from Glaciozyma antarctica
NASA Astrophysics Data System (ADS)
Moheer, Reyad Qaed Al; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul
2015-09-01
Psychrophilic enzymes are proteins produced by psychrophilic organisms which recently are the limelight for industrial applications. A gene encoding α-galactosidase from a psychrophilic yeast, Glaciozyma antarctica PI12 which belongs to glycoside hydrolase family 27, was isolated and analyzed using several bioinformatic tools. The cDNA of the gene with the size of 1,404-bp encodes a protein with 467 amino acid residues. Predicted molecular weight of protein was 48.59 kDa and hence we name the gene encoding α-galactosidase as GAL48. We found that the predicted protein sequences possessed signal peptide sequence and are highly conserved among other fungal α-galactosidase.
The mini-exon genes of three Phytomonas isolates that differ in plant tissue tropism.
Sturm, N R; Fernandes, O; Campbell, D A
1995-08-01
The tandem mini-exon gene repeat is an ideal diagnostic target for trypanosomatids because it includes sequences that are conserved absolutely coupled with regions of extreme variability. We have exploited these features and the polymerase chain reaction to differentiate Phytomonas strains isolated from phloem, fruit or latex of various host plants. While the transcribed regions are nearly identical, the intergenic sequences are variable in size and content (130-332 base pairs). The mini-exon genes of these phytomonads can therefore be distinguished from each other and from the corresponding genes in insect trypanosomes, with which they are oft confused.
Wang, Zheng Jia; Huang, Jian Qin; Huang, You Jun; Li, Zheng; Zheng, Bing Song
2012-08-01
Hickory (Carya cathayensis Sarg.) is an economically important woody plant in China, but its long juvenile phase delays yield. MicroRNAs (miRNAs) are critical regulators of genes and important for normal plant development and physiology, including flower development. We used Solexa technology to sequence two small RNA libraries from two floral differentiation stages in hickory to identify miRNAs related to flower development. We identified 39 conserved miRNA sequences from 114 loci belonging to 23 families as well as two novel and ten potential novel miRNAs belonging to nine families. Moreover, 35 conserved miRNA*s and two novel miRNA*s were detected. Twenty miRNA sequences from 49 loci belonging to 11 families were differentially expressed; all were up-regulated at the later stage of flower development in hickory. Quantitative real-time PCR of 12 conserved miRNA sequences, five novel miRNA families, and two novel miRNA*s validated that all were expressed during hickory flower development, and the expression patterns were similar to those detected with Solexa sequencing. Finally, a total of 146 targets of the novel and conserved miRNAs were predicted. This study identified a diverse set of miRNAs that were closely related to hickory flower development and that could help in plant floral induction.
Ogura, Atsushi; Ikeo, Kazuho; Gojobori, Takashi
2004-01-01
Although the camera eye of the octopus is very similar to that of humans, phylogenetic and embryological analyses have suggested that their camera eyes have been acquired independently. It has been known as a typical example of convergent evolution. To study the molecular basis of convergent evolution of camera eyes, we conducted a comparative analysis of gene expression in octopus and human camera eyes. We sequenced 16,432 ESTs of the octopus eye, leading to 1052 nonredundant genes that have matches in the protein database. Comparing these 1052 genes with 13,303 already-known ESTs of the human eye, 729 (69.3%) genes were commonly expressed between the human and octopus eyes. On the contrary, when we compared octopus eye ESTs with human connective tissue ESTs, the expression similarity was quite low. To trace the evolutionary changes that are potentially responsible for camera eye formation, we also compared octopus-eye ESTs with the completed genome sequences of other organisms. We found that 1019 out of the 1052 genes had already existed at the common ancestor of bilateria, and 875 genes were conserved between humans and octopuses. It suggests that a larger number of conserved genes and their similar gene expression may be responsible for the convergent evolution of the camera eye. PMID:15289475
Rurek, Michał; Nuc, Katarzyna; Raczyńska, Katarzyna Dorota; Augustyniak, Halina
2003-10-02
The mitochondrial nad9 and nad6 genes were analyzed in four lupin species: Lupinus luteus, Lupinus angustifolius, Lupinus albus and Lupinus mutabilis. The nucleotide sequence of these genes confirmed their high conservation, however, higher number of nucleotide substitution was observed in the L. albus genes. Southern hybridizations confirmed the presence of single copy number of these genes in L. luteus, L. albus and L. angustifolius. The expression of nad9 and nad6 genes was analyzed by Northern in different tissue types of analyzed lupin species. Transcription analyses of the two nad genes displayed single predominant mRNA species of about 0.6 kb in L. luteus and L. angustifolius. The L. albus transcripts were larger in size. The nad9 and nad6 transcripts were modified by RNA editing at 8 and 11 positions, in L. luteus and L. angustifolius, respectively. The gene order, rps3-rpl16-nad9, found in Arabidopsis thaliana is also conserved in L. luteus and L. angustifolius mitochondria. L. luteus and L. angustifolius showed some variability in the sequence of the nad9 promoter region. The last feature along with the differences observed in nad9 mRNA 5' termini of two lupins differentiate L. luteus and L. angustifolius species.
Kikhno, Irina
2014-01-01
Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153
Böhne, Astrid; Heule, Corina; Boileau, Nicolas; Salzburger, Walter
2013-01-01
Sex determination mechanisms are highly variable across teleost fishes and sexual development is often plastic. Nevertheless, downstream factors establishing the two sexes are presumably conserved. Here, we study sequence evolution and gene expression of core genes of sexual development in a prime model system in evolutionary biology, the East African cichlid fishes. Using the available five cichlid genomes, we test for signs of positive selection in 28 genes including duplicates from the teleost whole-genome duplication, and examine the expression of these candidate genes in three cichlid species. We then focus on a particularly striking case, the A- and B-copies of the aromatase cyp19a1, and detect different evolutionary trajectories: cyp19a1A evolved under strong positive selection, whereas cyp19a1B remained conserved at the protein level, yet is subject to regulatory changes at its transcription start sites. Importantly, we find shifts in gene expression in both copies. Cyp19a1 is considered the most conserved ovary-factor in vertebrates, and in all teleosts investigated so far, cyp19a1A and cyp19a1B are expressed in ovaries and the brain, respectively. This is not the case in cichlids, where we find new expression patterns in two derived lineages: the A-copy gained a novel testis-function in the Ectodine lineage, whereas the B-copy is overexpressed in the testis of the speciest-richest cichlid group, the Haplochromini. This suggests that even key factors of sexual development, including the sex steroid pathway, are not conserved in fish, supporting the idea that flexibility in sexual determination and differentiation may be a driving force of speciation. PMID:23883521
Wheat CBF gene family: identification of polymorphisms in the CBF coding sequence.
Mohseni, Sara; Che, Hua; Djillali, Zakia; Dumont, Estelle; Nankeu, Joseph; Danyluk, Jean
2012-12-01
Expression of cold-regulated genes needed for protection against freezing stress is mediated, in part, by the CBF transcription factor family. Previous studies with temperate cereals suggested that the CBF gene family in wheat was large, and that CBF genes were at the base of an important low temperature tolerance trait. Therefore, the goal of our study was to identify the CBF repertoire in the freezing-tolerant hexaploid wheat cultivar Norstar, and then to examine if the coding region of CBF genes in two spring cultivars contain polymorphisms that could affect the protein sequence and structure. Our analyses reveal that hexaploid wheat contains a complex CBF family consisting of at least 65 CBF genes of which 60 are known to be expressed in the cultivar Norstar. They represent 27 paralogous genes with 1-3 homeologous copies for the A, B, and D genomes. The cultivar Norstar contains two pseudogenes and at least 24 additional proteins having sequences and (or) structures that deviate from the consensus in the conserved AP2 DNA-binding and (or) C-terminal activation-domains. This suggests that in cultivars such as Norstar, low temperature tolerance may be increased through breeding of additional optimal alleles. The examination of the CBF repertoire present in the two spring cultivars, Chinese Spring and Manitou, reveals that they have additional polymorphisms affecting conserved positions in these domains. Understanding the effects of these polymorphisms will provide additional information for the selection of optimum CBF alleles in Triticeae breeding programs.
Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P
2017-06-01
Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for <5% of ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Williams, Kelly P.
2003-01-01
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3′ end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3′ end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3′ end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed. PMID:12533482
Comparative functional characterization of the CSR-1 22G-RNA pathway in Caenorhabditis nematodes
Tu, Shikui; Wu, Monica Z.; Wang, Jie; Cutter, Asher D.; Weng, Zhiping; Claycomb, Julie M.
2015-01-01
As a champion of small RNA research for two decades, Caenorhabditis elegans has revealed the essential Argonaute CSR-1 to play key nuclear roles in modulating chromatin, chromosome segregation and germline gene expression via 22G-small RNAs. Despite CSR-1 being preserved among diverse nematodes, the conservation and divergence in function of the targets of small RNA pathways remains poorly resolved. Here we apply comparative functional genomic analysis between C. elegans and Caenorhabditis briggsae to characterize the CSR-1 pathway, its targets and their evolution. C. briggsae CSR-1-associated small RNAs that we identified by immunoprecipitation-small RNA sequencing overlap with 22G-RNAs depleted in cbr-csr-1 RNAi-treated worms. By comparing 22G-RNAs and target genes between species, we defined a set of CSR-1 target genes with conserved germline expression, enrichment in operons and more slowly evolving coding sequences than other genes, along with a small group of evolutionarily labile targets. We demonstrate that the association of CSR-1 with chromatin is preserved, and show that depletion of cbr-csr-1 leads to chromosome segregation defects and embryonic lethality. This first comparative characterization of a small RNA pathway in Caenorhabditis establishes a conserved nuclear role for CSR-1 and highlights its key role in germline gene regulation across multiple animal species. PMID:25510497
Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.
Neale, David B; Martínez-García, Pedro J; De La Torre, Amanda R; Montanari, Sara; Wei, Xiao-Xin
2017-04-28
Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.
Complete mitochondrial genome of the larch hawk moth, Sphinx morio (Lepidoptera: Sphingidae).
Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo
2013-12-01
The larch hawk moth, Sphinx morio, belongs to the lepidopteran family Sphingidae that has long been studied as a family of model insects in a diverse field. In this study, we describe the complete mitochondrial genome (mitogenome) sequences of the species in terms of general genomic features and characteristic short repetitive sequences found in the A + T-rich region. The 15,299-bp-long genome consisted of a typical set of genes (13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes) and one major non-coding A + T-rich region, with the typical arrangement found in Lepidoptera. The 316-bp-long A + T-rich region located between srRNA and tRNA(Met) harbored the conserved sequence blocks that are typically found in lepidopteran insects. Additionally, the A + T-rich region of S. morio contained three characteristic repeat sequences that are rarely found in Lepidoptera: two identical 12-bp repeat, three identical 5-bp-long tandem repeat, and six nearly identical 5-6 bp long repeat sequences.
Wang, Xiao-Jing; Wang, Xiao-Xing; Wang, Ya-Jun; Wang, Xi-Zhong; He, Guang-Xin; Chen, Hong-Wei; Fei, Li-Song
2002-09-01
Activin, which is included in the transforming growth factor-beta (TGF beta) superfamily of proteins and receptors, is known to have broad-ranging effects in the creatures. The mature peptide of beta A subunit of this gene, one of the most highly conserved sequence, can elevate the basal secretion of follicle-stimulating hormone (FSH) in the pituitary and FSH is pivotal to organism's reproduction. Reproduction block is one of the main reasons which cause giant panda to extinct. The sequence of Activin beta A subunit gene mature peptides has been successfully amplified from giant panda, red panda and malayan sun bear's genomic DNA by using polymerase chain reaction (PCR) with a pair of degenerate primers. The PCR products were cloned into the vector pBlueScript+ of Esherichia coli. Sequence analysis of Activin beta A subunit gene mature peptides shows that the length of this gene segment is the same (359 bp) and there is no intron in all three species. The sequence encodes a peptide of 119 amino acid residues. The homology comparison demonstrates 93.9% DNA homology and 99% homology in amino acid among these three species. Both GenBank blast search result and restriction enzyme map reveal that the sequences of Activin beta A subunit gene mature peptides of different species are highly conserved during the evolution process. Phylogeny analysis is performed with PHYLIP software package. A consistent phylogeny tree has been drawn with three different methods. The software analysis outcome accords with the academic view that giant panda has a closer relationship to the malayan sun bear than the red panda. Giant panda should be grouped into the bear family (Uersidae) with the malayan sun bear. As to the red panda, it would be better that this animal be grouped into the unique family (red panda family) because of great difference between the red panda and the bears (Uersidae).
Nishibuchi, M; Murakami, A; Arita, M; Jikuya, H; Takano, J; Honda, T; Miwatani, T
1989-01-01
We examined variations in the genes encoding heat-stable enterotoxin (ST) and heat-labile enterotoxin (LT) in 88 strains of Escherichia coli isolated from individuals with traveler's diarrhea to find suitable sequences for use as oligonucleotide probes. Four oligonucleotide probes of the gene encoding ST of human origin (STIb or STh), one oligonucleotide probe of the gene encoding ST of porcine origin (STIa or STp), and three oligonucleotide probes of the gene encoding LT of human origin (LTIh) were used in DNA colony hybridization tests. In 15 of 22 strains possessing the STh gene and 28 of 42 strains producing LT, the sequences of all regions tested were identical to the published sequences. One region in the STh gene examined with a 18-mer probe was relatively well conserved and was shown to be closely associated with the enterotoxicity of the E. coli strains in suckling mice. This oligonucleotide, however, hybridized with strains of Vibrio cholerae O1, V. parahaemolyticus, and Yersinia enterocolitica that gave negative results in the suckling mouse assay. PMID:2685027
Comparative genomics approaches to understanding and manipulating plant metabolism.
Bradbury, Louis M T; Niehaus, Tom D; Hanson, Andrew D
2013-04-01
Over 3000 genomes, including numerous plant genomes, are now sequenced. However, their annotation remains problematic as illustrated by the many conserved genes with no assigned function, vague annotations such as 'kinase', or even wrong ones. Around 40% of genes of unknown function that are conserved between plants and microbes are probably metabolic enzymes or transporters; finding functions for these genes is a major challenge. Comparative genomics has correctly predicted functions for many such genes by analyzing genomic context, and gene fusions, distributions and co-expression. Comparative genomics complements genetic and biochemical approaches to dissect metabolism, continues to increase in power and decrease in cost, and has a pivotal role in modeling and engineering by helping identify functions for all metabolic genes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Haarmann, Thomas; Machado, Caroline; Lübbe, Yvonne; Correia, Telmo; Schardl, Christopher L; Panaccione, Daniel G; Tudzynski, Paul
2005-06-01
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., Hölter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.
Conserved small mRNA with an unique, extended Shine-Dalgarno sequence
Hahn, Julia; Migur, Anzhela; von Boeselager, Raphael Freiherr; Kubatova, Nina; Kubareva, Elena; Schwalbe, Harald
2017-01-01
ABSTRACT Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level. PMID:27834614
Shahinyan, Grigor; Margaryan, Armine; Panosyan, Hovik; Trchounian, Armen
2017-05-02
Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5-70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98-99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh. Newly isolated bacilli strains could be prospective source for thermostable lipases and their genes.
2013-01-01
Background Salamanders are unique among vertebrates in their ability to completely regenerate amputated limbs through the mediation of blastema cells located at the stump ends. This regeneration is nerve-dependent because blastema formation and regeneration does not occur after limb denervation. To obtain the genomic information of blastema tissues, de novo transcriptomes from both blastema tissues and denervated stump ends of Ambystoma mexicanum (axolotls) 14 days post-amputation were sequenced and compared using Solexa DNA sequencing. Results The sequencing done for this study produced 40,688,892 reads that were assembled into 307,345 transcribed sequences. The N50 of transcribed sequence length was 562 bases. A similarity search with known proteins identified 39,200 different genes to be expressed during limb regeneration with a cut-off E-value exceeding 10-5. We annotated assembled sequences by using gene descriptions, gene ontology, and clusters of orthologous group terms. Targeted searches using these annotations showed that the majority of the genes were in the categories of essential metabolic pathways, transcription factors and conserved signaling pathways, and novel candidate genes for regenerative processes. We discovered and confirmed numerous sequences of the candidate genes by using quantitative polymerase chain reaction and in situ hybridization. Conclusion The results of this study demonstrate that de novo transcriptome sequencing allows gene expression analysis in a species lacking genome information and provides the most comprehensive mRNA sequence resources for axolotls. The characterization of the axolotl transcriptome can help elucidate the molecular mechanisms underlying blastema formation during limb regeneration. PMID:23815514
Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen
2016-07-01
Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.
Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James
2015-02-14
Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements.
Evolutionary genetics of insect innate immunity.
Viljakainen, Lumi
2015-11-01
Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immune defense. The focus is on the conserved and divergent components of immunity with an emphasis on gene family evolution and evolution at the sequence level; both population genetics and molecular evolution frameworks are considered. © The Author 2015. Published by Oxford University Press.
Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza.
Li, Caili; Li, Dongqiao; Shao, Fenjuan; Lu, Shanfa
2015-03-17
WRKY proteins comprise a large family of transcription factors and play important regulatory roles in plant development and defense response. The WRKY gene family in Salvia miltiorrhiza has not been characterized. A total of 61 SmWRKYs were cloned from S. miltiorrhiza. Multiple sequence alignment showed that SmWRKYs could be classified into 3 groups and 8 subgroups. Sequence features, the WRKY domain and other motifs of SmWRKYs are largely conserved with Arabidopsis AtWRKYs. Each group of WRKY domains contains characteristic conserved sequences, and group-specific motifs might attribute to functional divergence of WRKYs. A total of 17 pairs of orthologous SmWRKY and AtWRKY genes and 21 pairs of paralogous SmWRKY genes were identified. Maximum likelihood analysis showed that SmWRKYs had undergone strong selective pressure for adaptive evolution. Functional divergence analysis suggested that the SmWRKY subgroup genes and many paralogous SmWRKY gene pairs were divergent in functions. Various critical amino acids contributed to functional divergence among subgroups were detected. Of the 61 SmWRKYs, 22, 13, 4 and 1 were predominantly expressed in roots, stems, leaves, and flowers, respectively. The other 21 were mainly expressed in at least two tissues analyzed. In S. miltiorrhiza roots treated with MeJA, significant changes of gene expression were observed for 49 SmWRKYs, of which 26 were up-regulated, 18 were down-regulated, while the other 5 were either up-regulated or down-regulated at different time-points of treatment. Analysis of published RNA-seq data showed that 42 of the 61 identified SmWRKYs were yeast extract and Ag(+)-responsive. Through a systematic analysis, SmWRKYs potentially involved in tanshinone biosynthesis were predicted. These results provide insights into functional conservation and diversification of SmWRKYs and are useful information for further elucidating SmWRKY functions.
Sweedler, J V; Li, L; Floyd, P; Gilly, W
2000-12-01
A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods.
Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin
2015-01-01
Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.
Peoples, R; Franke, Y; Wang, Y K; Pérez-Jurado, L; Paperna, T; Cisco, M; Francke, U
2000-01-01
Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although >/=16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present a physical map of the WBS deletion and flanking regions, based on assembly of a bacterial artificial chromosome/P1-derived artificial chromosome contig, analysis of high-throughput genome-sequence data, and long-range restriction mapping of genomic and cloned DNA by pulsed-field gel electrophoresis. Our map encompasses 3 Mb, including 1.6 Mb within the deletion. Two large duplicons, flanking the deletion, of >/=320 kb contain unique sequence elements from the internal border regions of the deletion, such as sequences from GTF2I (telomeric) and FKBP6 (centromeric). A third copy of this duplicon exists in inverted orientation distal to the telomeric flanking one. These duplicons show stronger sequence conservation with regard to each other than to the presumptive ancestral loci within the common deletion region. Sequence elements originating from beyond 7q11.23 are also present in these duplicons. Although the duplicons are not present in mice, the order of the single-copy genes in the conserved syntenic region of mouse chromosome 5 is inverted relative to the human map. A model is presented for a mechanism of WBS-deletion formation, based on the orientation of duplicons' components relative to each other and to the ancestral elements within the deletion region.
de Cambiaire, Jean-Charles; Otis, Christian; Turmel, Monique; Lemieux, Claude
2007-01-01
Background In the Chlorophyta – the green algal phylum comprising the classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae – the chloroplast genome displays a highly variable architecture. While chlorophycean chloroplast DNAs (cpDNAs) deviate considerably from the ancestral pattern described for the prasinophyte Nephroselmis olivacea, the degree of remodelling sustained by the two ulvophyte cpDNAs completely sequenced to date is intermediate relative to those observed for chlorophycean and trebouxiophyte cpDNAs. Chlorella vulgaris (Chlorellales) is currently the only photosynthetic trebouxiophyte whose complete cpDNA sequence has been reported. To gain insights into the evolutionary trends of the chloroplast genome in the Trebouxiophyceae, we sequenced cpDNA from the filamentous alga Leptosira terrestris (Ctenocladales). Results The 195,081-bp Leptosira chloroplast genome resembles the 150,613-bp Chlorella genome in lacking a large inverted repeat (IR) but differs greatly in gene order. Six of the conserved genes present in Chlorella cpDNA are missing from the Leptosira gene repertoire. The 106 conserved genes, four introns and 11 free standing open reading frames (ORFs) account for 48.3% of the genome sequence. This is the lowest gene density yet observed among chlorophyte cpDNAs. Contrary to the situation in Chlorella but similar to that in the chlorophycean Scenedesmus obliquus, the gene distribution is highly biased over the two DNA strands in Leptosira. Nine genes, compared to only three in Chlorella, have significantly expanded coding regions relative to their homologues in ancestral-type green algal cpDNAs. As observed in chlorophycean genomes, the rpoB gene is fragmented into two ORFs. Short repeats account for 5.1% of the Leptosira genome sequence and are present mainly in intergenic regions. Conclusion Our results highlight the great plasticity of the chloroplast genome in the Trebouxiophyceae and indicate that the IR was lost on at least two separate occasions. The intriguing similarities of the derived features exhibited by Leptosira cpDNA and its chlorophycean counterparts suggest that the same evolutionary forces shaped the IR-lacking chloroplast genomes in these two algal lineages. PMID:17610731
Functional analysis and transcriptional output of the Göttingen minipig genome.
Heckel, Tobias; Schmucki, Roland; Berrera, Marco; Ringshandl, Stephan; Badi, Laura; Steiner, Guido; Ravon, Morgane; Küng, Erich; Kuhn, Bernd; Kratochwil, Nicole A; Schmitt, Georg; Kiialainen, Anna; Nowaczyk, Corinne; Daff, Hamina; Khan, Azinwi Phina; Lekolool, Isaac; Pelle, Roger; Okoth, Edward; Bishop, Richard; Daubenberger, Claudia; Ebeling, Martin; Certa, Ulrich
2015-11-14
In the past decade the Göttingen minipig has gained increasing recognition as animal model in pharmaceutical and safety research because it recapitulates many aspects of human physiology and metabolism. Genome-based comparison of drug targets together with quantitative tissue expression analysis allows rational prediction of pharmacology and cross-reactivity of human drugs in animal models thereby improving drug attrition which is an important challenge in the process of drug development. Here we present a new chromosome level based version of the Göttingen minipig genome together with a comparative transcriptional analysis of tissues with pharmaceutical relevance as basis for translational research. We relied on mapping and assembly of WGS (whole-genome-shotgun sequencing) derived reads to the reference genome of the Duroc pig and predict 19,228 human orthologous protein-coding genes. Genome-based prediction of the sequence of human drug targets enables the prediction of drug cross-reactivity based on conservation of binding sites. We further support the finding that the genome of Sus scrofa contains about ten-times less pseudogenized genes compared to other vertebrates. Among the functional human orthologs of these minipig pseudogenes we found HEPN1, a putative tumor suppressor gene. The genomes of Sus scrofa, the Tibetan boar, the African Bushpig, and the Warthog show sequence conservation of all inactivating HEPN1 mutations suggesting disruption before the evolutionary split of these pig species. We identify 133 Sus scrofa specific, conserved long non-coding RNAs (lncRNAs) in the minipig genome and show that these transcripts are highly conserved in the African pigs and the Tibetan boar suggesting functional significance. Using a new minipig specific microarray we show high conservation of gene expression signatures in 13 tissues with biomedical relevance between humans and adult minipigs. We underline this relationship for minipig and human liver where we could demonstrate similar expression levels for most phase I drug-metabolizing enzymes. Higher expression levels and metabolic activities were found for FMO1, AKR/CRs and for phase II drug metabolizing enzymes in minipig as compared to human. The variability of gene expression in equivalent human and minipig tissues is considerably higher in minipig organs, which is important for study design in case a human target belongs to this variable category in the minipig. The first analysis of gene expression in multiple tissues during development from young to adult shows that the majority of transcriptional programs are concluded four weeks after birth. This finding is in line with the advanced state of human postnatal organ development at comparative age categories and further supports the minipig as model for pediatric drug safety studies. Genome based assessment of sequence conservation combined with gene expression data in several tissues improves the translational value of the minipig for human drug development. The genome and gene expression data presented here are important resources for researchers using the minipig as model for biomedical research or commercial breeding. Potential impact of our data for comparative genomics, translational research, and experimental medicine are discussed.
Lambracht-Washington, Doris; Moore, Yuki F; Wonigeit, Kurt; Lindahl, Kirsten Fischer
2008-04-01
The M region at the telomeric end of the murine major histocompatibility complex (MHC) contains class I genes that are highly conserved in rat and mouse. We have sequenced a cosmid clone of the LEW rat strain (RT1 haplotype) containing three class I genes, RT1.M6-1, RT1.M4, and RT1.M5. The sequences of allelic genes of the BN strain (RT1n haplotype) were obtained either from cDNAs or genomic clones. For the coding parts of the genes few differences were found between the two RT1 haplotypes. In LEW, however, only RT1.M5 and RT1.M6 have open reading frames; whereas in BN all three genes were intact. In line with the findings in BN, transcription was found for all three rat genes in several tissues from strain Sprague Dawley. Protein expression in transfectants could be demonstrated for RT1.M6-1 using the monoclonal antibody OX18. By sequencing of transcripts obtained by RT-PCR, a second, transcribed M6 gene, RT1.M6-2, was discovered, which maps next to RT1.M6-1 outside of the region covered by the cosmid. In addition, alternatively spliced forms for RT1.M5 and RT1.M6 were detected. Of the orthologous mouse genes, H2-M4, H2-M5, and H2-M6, only H2-M5 has an open reading frame. Other important differences between the corresponding parts of the M region of the two species are insertion of long LINE repeats, duplication of RT1.M6, and the inversion of RT1.M5 in the rat. This demonstrates substantial evolutionary dynamics in this region despite conservation of the class I gene sequences themselves.
2011-01-01
Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non-conserved structure both in gene number and organisation, as well as in the features of the noncoding DNA. The transfer of nuclear DNA to the melon mitochondrial genome and the high proportion of repetitive DNA appear to explain the size of the largest mitochondrial genome reported so far. PMID:21854637
Schnable, James C; Pedersen, Brent S; Subramaniam, Sabarinath; Freeling, Michael
2011-01-01
Whole genome duplications, or tetraploidies, are an important source of increased gene content. Following whole genome duplication, duplicate copies of many genes are lost from the genome. This loss of genes is biased both in the classes of genes deleted and the subgenome from which they are lost. Many or all classes are genes preferentially retained as duplicate copies are engaged in dose sensitive protein-protein interactions, such that deletion of any one duplicate upsets the status quo of subunit concentrations, and presumably lowers fitness as a result. Transcription factors are also preferentially retained following every whole genome duplications studied. This has been explained as a consequence of protein-protein interactions, just as for other highly retained classes of genes. We show that the quantity of conserved noncoding sequences (CNSs) associated with genes predicts the likelihood of their retention as duplicate pairs following whole genome duplication. As many CNSs likely represent binding sites for transcriptional regulators, we propose that the likelihood of gene retention following tetraploidy may also be influenced by dose-sensitive protein-DNA interactions between the regulatory regions of CNS-rich genes - nicknamed bigfoot genes - and the proteins that bind to them. Using grass genomes, we show that differential loss of CNSs from one member of a pair following the pre-grass tetraploidy reduces its chance of retention in the subsequent maize lineage tetraploidy.
Schnable, James C.; Pedersen, Brent S.; Subramaniam, Sabarinath; Freeling, Michael
2011-01-01
Whole genome duplications, or tetraploidies, are an important source of increased gene content. Following whole genome duplication, duplicate copies of many genes are lost from the genome. This loss of genes is biased both in the classes of genes deleted and the subgenome from which they are lost. Many or all classes are genes preferentially retained as duplicate copies are engaged in dose sensitive protein–protein interactions, such that deletion of any one duplicate upsets the status quo of subunit concentrations, and presumably lowers fitness as a result. Transcription factors are also preferentially retained following every whole genome duplications studied. This has been explained as a consequence of protein–protein interactions, just as for other highly retained classes of genes. We show that the quantity of conserved noncoding sequences (CNSs) associated with genes predicts the likelihood of their retention as duplicate pairs following whole genome duplication. As many CNSs likely represent binding sites for transcriptional regulators, we propose that the likelihood of gene retention following tetraploidy may also be influenced by dose–sensitive protein–DNA interactions between the regulatory regions of CNS-rich genes – nicknamed bigfoot genes – and the proteins that bind to them. Using grass genomes, we show that differential loss of CNSs from one member of a pair following the pre-grass tetraploidy reduces its chance of retention in the subsequent maize lineage tetraploidy. PMID:22645525
van der Vossen, E A; van der Voort, J N; Kanyuka, K; Bendahmane, A; Sandbrink, H; Baulcombe, D C; Bakker, J; Stiekema, W J; Klein-Lankhorst, R M
2000-09-01
The isolation of the nematode-resistance gene Gpa2 in potato is described, and it is demonstrated that highly homologous resistance genes of a single resistance-gene cluster can confer resistance to distinct pathogen species. Molecular analysis of the Gpa2 locus resulted in the identification of an R-gene cluster of four highly homologous genes in a region of approximately 115 kb. At least two of these genes are active: one corresponds to the previously isolated Rx1 gene that confers resistance to potato virus X, while the other corresponds to the Gpa2 gene that confers resistance to the potato cyst nematode Globodera pallida. The proteins encoded by the Gpa2 and the Rx1 genes share an overall homology of over 88% (amino-acid identity) and belong to the leucine-zipper, nucleotide-binding site, leucine-rich repeat (LZ-NBS-LRR)-containing class of plant resistance genes. From the sequence conservation between Gpa2 and Rx1 it is clear that there is a direct evolutionary relationship between the two proteins. Sequence diversity is concentrated in the LRR region and in the C-terminus. The putative effector domains are more conserved suggesting that, at least in this case, nematode and virus resistance cascades could share common components. These findings underline the potential of protein breeding for engineering new resistance specificities against plant pathogens in vitro.
Kim, Bo-Mi; Kang, Seunghyun; Ahn, Do-Hwan; Kim, Jin-Hyoung; Ahn, Inhye; Lee, Chi-Woo; Cho, Joo-Lae; Min, Gi-Sik; Park, Hyun
2017-01-01
Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crustaceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occasionally found in caves and even hot springs. In this study, we sequenced the whole transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, no opsin or related sequences were identified, and no contig aligned to the crustacean visual opsins and non-visual opsins (i.e. arthropsins, peropsins, and melaopsins), suggesting potential regressive adaptation to the dark environment. However, A. bangokensis expressed conserved gene family sets, such as heat shock proteins and those related to key innate immunity pathways and antioxidant defense systems, at the transcriptional level, suggesting that this species has evolved adaptations involving molecular mechanisms of homeostasis. The transcriptomic information of A. bangokensis will be useful for investigating molecular adaptations and response mechanisms to subterranean environmental conditions. PMID:28107438
Hezroni, Hadas; Koppstein, David; Schwartz, Matthew G; Avrutin, Alexandra; Bartel, David P; Ulitsky, Igor
2015-05-19
The inability to predict long noncoding RNAs from genomic sequence has impeded the use of comparative genomics for studying their biology. Here, we develop methods that use RNA sequencing (RNA-seq) data to annotate the transcriptomes of 16 vertebrates and the echinoid sea urchin, uncovering thousands of previously unannotated genes, most of which produce long intervening noncoding RNAs (lincRNAs). Although in each species, >70% of lincRNAs cannot be traced to homologs in species that diverged >50 million years ago, thousands of human lincRNAs have homologs with similar expression patterns in other species. These homologs share short, 5'-biased patches of sequence conservation nested in exonic architectures that have been extensively rewired, in part by transposable element exonization. Thus, over a thousand human lincRNAs are likely to have conserved functions in mammals, and hundreds beyond mammals, but those functions require only short patches of specific sequences and can tolerate major changes in gene architecture. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Sequence verification of synthetic DNA by assembly of sequencing reads
Wilson, Mandy L.; Cai, Yizhi; Hanlon, Regina; Taylor, Samantha; Chevreux, Bastien; Setubal, João C.; Tyler, Brett M.; Peccoud, Jean
2013-01-01
Gene synthesis attempts to assemble user-defined DNA sequences with base-level precision. Verifying the sequences of construction intermediates and the final product of a gene synthesis project is a critical part of the workflow, yet one that has received the least attention. Sequence validation is equally important for other kinds of curated clone collections. Ensuring that the physical sequence of a clone matches its published sequence is a common quality control step performed at least once over the course of a research project. GenoREAD is a web-based application that breaks the sequence verification process into two steps: the assembly of sequencing reads and the alignment of the resulting contig with a reference sequence. GenoREAD can determine if a clone matches its reference sequence. Its sophisticated reporting features help identify and troubleshoot problems that arise during the sequence verification process. GenoREAD has been experimentally validated on thousands of gene-sized constructs from an ORFeome project, and on longer sequences including whole plasmids and synthetic chromosomes. Comparing GenoREAD results with those from manual analysis of the sequencing data demonstrates that GenoREAD tends to be conservative in its diagnostic. GenoREAD is available at www.genoread.org. PMID:23042248
Analysis of human herpesvirus-6 IE1 sequence variation in clinical samples.
Stanton, Richard; Wilkinson, Gavin W G; Fox, Julie D
2003-12-01
Herpesvirus immediate early (IE) proteins are known to play key roles in establishing productive infections, regulating reactivation from latency, and creating a cellular environment favourable to viral replication. Human herpesvirus-6 (HHV-6) IE genes have not been studied as intensively as their homologues in the prototype betaherpesvirus human cytomegalovirus (HCMV). Whilst the HCMV IE1 gene is relatively conserved, early studies indicated that HHV-6 IE1 exhibited a high level of sequence variation between HHV-6A and HHV-6B isolates, although the observation was based primarily on virus stocks that had been isolated and propagated in vitro. In this study, we investigated the level of HHV-6 IE1 sequence variation in vivo by direct sequencing of circulating virus in clinical samples without prior in vitro culture. Sequences exactly matching those reported for reference HHV-6 isolates were identified in clinical samples, thus the HHV-6 laboratory strains used in the majority of in vitro studies appear to be representative of virus circulating in vivo with respect to the IE1 gene. The HHV-6 IE1 sequence is also conserved in reference strains that had been passaged extensively in vitro. The high degree of divergence between variant A and B type IE1 sequences was confirmed, but interestingly HHV-6B IE1 sequences were observed to further segregate into two distinct subgroups, with the laboratory strains Z29 and HST representative of these two subgroups. Within each HHV-6B subgroup, a remarkably high level of homology was observed. Thus the HHV-6 IE1 sequence appears highly stable, underlining its potential importance to the viral life cycle. Copyright 2003 Wiley-Liss, Inc.
Functionally conserved cis-regulatory elements of COL18A1 identified through zebrafish transgenesis.
Kague, Erika; Bessling, Seneca L; Lee, Josephine; Hu, Gui; Passos-Bueno, Maria Rita; Fisher, Shannon
2010-01-15
Type XVIII collagen is a component of basement membranes, and expressed prominently in the eye, blood vessels, liver, and the central nervous system. Homozygous mutations in COL18A1 lead to Knobloch Syndrome, characterized by ocular defects and occipital encephalocele. However, relatively little has been described on the role of type XVIII collagen in development, and nothing is known about the regulation of its tissue-specific expression pattern. We have used zebrafish transgenesis to identify and characterize cis-regulatory sequences controlling expression of the human gene. Candidate enhancers were selected from non-coding sequence associated with COL18A1 based on sequence conservation among mammals. Although these displayed no overt conservation with orthologous zebrafish sequences, four regions nonetheless acted as tissue-specific transcriptional enhancers in the zebrafish embryo, and together recapitulated the major aspects of col18a1 expression. Additional post-hoc computational analysis on positive enhancer sequences revealed alignments between mammalian and teleost sequences, which we hypothesize predict the corresponding zebrafish enhancers; for one of these, we demonstrate functional overlap with the orthologous human enhancer sequence. Our results provide important insight into the biological function and regulation of COL18A1, and point to additional sequences that may contribute to complex diseases involving COL18A1. More generally, we show that combining functional data with targeted analyses for phylogenetic conservation can reveal conserved cis-regulatory elements in the large number of cases where computational alignment alone falls short. Copyright 2009 Elsevier Inc. All rights reserved.
Lampel, J S; Aphale, J S; Lampel, K A; Strohl, W R
1992-01-01
The gene encoding a novel milk protein-hydrolyzing proteinase was cloned on a 6.56-kb SstI fragment from Streptomyces sp. strain C5 genomic DNA into Streptomyces lividans 1326 by using the plasmid vector pIJ702. The gene encoding the small neutral proteinase (snpA) was located within a 2.6-kb BamHI-SstI restriction fragment that was partially sequenced. The molecular mass of the deduced amino acid sequence of the mature protein was determined to be 15,740, which corresponds very closely with the relative molecular mass of the purified protein (15,500) determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified neutral proteinase was determined, and the DNA encoding this sequence was found to be located within the sequenced DNA. The deduced amino acid sequence contains a conserved zinc binding site, although secondary ligand binding and active sites typical of thermolysinlike metalloproteinases are absent. The combination of its small size, deduced amino acid sequence, and substrate and inhibition profile indicate that snpA encodes a novel neutral proteinase. Images PMID:1569011
Evidence of function for conserved noncoding sequences in Arabidopsis thaliana.
Spangler, Jacob B; Subramaniam, Sabarinath; Freeling, Michael; Feltus, F Alex
2012-01-01
• Whole genome duplication events provide a lineage with a large reservoir of genes that can be molded by evolutionary forces into phenotypes that fit alternative environments. A well-studied whole genome duplication, the α-event, occurred in an ancestor of the model plant Arabidopsis thaliana. Retained segments of the α-event have been defined in recent years in the form of duplicate protein coding sequences (α-pairs) and associated conserved noncoding DNA sequences (CNSs). Our aim was to identify any association between CNSs and α-pair co-functionality at the gene expression level. • Here, we tested for correlation between CNS counts and α-pair co-expression and expression intensity across nine expression datasets: aerial tissue, flowers, leaves, roots, rosettes, seedlings, seeds, shoots and whole plants. • We provide evidence for a putative regulatory role of the CNSs. The association of CNSs with α-pair co-expression and expression intensity varied by gene function, subgene position and the presence of transcription factor binding motifs. A range of possible CNS regulatory mechanisms, including intron-mediated enhancement, messenger RNA fold stability and transcriptional regulation, are discussed. • This study provides a framework to understand how CNS motifs are involved in the maintenance of gene expression after a whole genome duplication event. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Genome sequence of the lager brewing yeast, an interspecies hybrid.
Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko
2009-04-01
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production.
Genome Sequence of the Lager Brewing Yeast, an Interspecies Hybrid
Nakao, Yoshihiro; Kanamori, Takeshi; Itoh, Takehiko; Kodama, Yukiko; Rainieri, Sandra; Nakamura, Norihisa; Shimonaga, Tomoko; Hattori, Masahira; Ashikari, Toshihiko
2009-01-01
This work presents the genome sequencing of the lager brewing yeast (Saccharomyces pastorianus) Weihenstephan 34/70, a strain widely used in lager beer brewing. The 25 Mb genome comprises two nuclear sub-genomes originating from Saccharomyces cerevisiae and Saccharomyces bayanus and one circular mitochondrial genome originating from S. bayanus. Thirty-six different types of chromosomes were found including eight chromosomes with translocations between the two sub-genomes, whose breakpoints are within the orthologous open reading frames. Several gene loci responsible for typical lager brewing yeast characteristics such as maltotriose uptake and sulfite production have been increased in number by chromosomal rearrangements. Despite an overall high degree of conservation of the synteny with S. cerevisiae and S. bayanus, the syntenies were not well conserved in the sub-telomeric regions that contain lager brewing yeast characteristic and specific genes. Deletion of larger chromosomal regions, a massive unilateral decrease of the ribosomal DNA cluster and bilateral truncations of over 60 genes reflect a post-hybridization evolution process. Truncations and deletions of less efficient maltose and maltotriose uptake genes may indicate the result of adaptation to brewing. The genome sequence of this interspecies hybrid yeast provides a new tool for better understanding of lager brewing yeast behavior in industrial beer production. PMID:19261625
Chalcone synthase genes from milk thistle (Silybum marianum): isolation and expression analysis.
Sanjari, Sepideh; Shobbar, Zahra Sadat; Ebrahimi, Mohsen; Hasanloo, Tahereh; Sadat-Noori, Seyed-Ahmad; Tirnaz, Soodeh
2015-12-01
Silymarin is a flavonoid compound derived from milk thistle (Silybum marianum) seeds which has several pharmacological applications. Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids; thereby, the identification of CHS encoding genes in milk thistle plant can be of great importance. In the current research, fragments of CHS genes were amplified using degenerate primers based on the conserved parts of Asteraceae CHS genes, and then cloned and sequenced. Analysis of the resultant nucleotide and deduced amino acid sequences led to the identification of two different members of CHS gene family,SmCHS1 and SmCHS2. Third member, full-length cDNA (SmCHS3) was isolated by rapid amplification of cDNA ends (RACE), whose open reading frame contained 1239 bp including exon 1 (190 bp) and exon 2 (1049 bp), encoding 63 and 349 amino acids, respectively. In silico analysis of SmCHS3 sequence contains all the conserved CHS sites and shares high homology with CHS proteins from other plants.Real-time PCR analysis indicated that SmCHS1 and SmCHS3 had the highest transcript level in petals in the early flowering stage and in the stem of five upper leaves, followed by five upper leaves in the mid-flowering stage which are most probably involved in anthocyanin and silymarin biosynthesis.
Gupta, Deepak K; Rühl, Martin; Mishra, Bagdevi; Kleofas, Vanessa; Hofrichter, Martin; Herzog, Robert; Pecyna, Marek J; Sharma, Rahul; Kellner, Harald; Hennicke, Florian; Thines, Marco
2018-01-15
Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology. Here, the genome of the species is reported and analysed with respect to carbohydrate active genes and genes known to play a role during fruit body formation. In terms of fruit body development, our analyses revealed a conserved repertoire of fruiting-related genes, which corresponds well to the archetypal fruit body morphology of this mushroom. For some genes involved in fruit body formation, paralogisation was observed, but not all fruit body maturation-associated genes known from other agaricomycetes seem to be conserved in the genome sequence of A. aegerita. In terms of lytic enzymes, our analyses suggest a versatile arsenal of biopolymer-degrading enzymes that likely account for the flexible life style of this species. Regarding the amount of genes encoding CAZymes relevant for lignin degradation, A. aegerita shows more similarity to white-rot fungi than to litter decomposers, including 18 genes coding for unspecific peroxygenases and three dye-decolourising peroxidase genes expanding its lignocellulolytic machinery. The genome resource will be useful for developing strategies towards genetic manipulation of A. aegerita, which will subsequently allow functional genetics approaches to elucidate fundamentals of fruiting and vegetative growth including lignocellulolysis.
Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites.
Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying
2012-10-01
To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi'an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi'an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%-99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites.
Cloning and sequence analysis of chitin synthase gene fragments of Demodex mites*
Zhao, Ya-e; Wang, Zheng-hang; Xu, Yang; Xu, Ji-ru; Liu, Wen-yan; Wei, Meng; Wang, Chu-ying
2012-01-01
To our knowledge, few reports on Demodex studied at the molecular level are available at present. In this study our group, for the first time, cloned, sequenced and analyzed the chitin synthase (CHS) gene fragments of Demodex folliculorum, Demodex brevis, and Demodex canis (three isolates from each species) from Xi’an China, by designing specific primers based on the only partial sequence of the CHS gene of D. canis from Japan, retrieved from GenBank. Results show that amplification was successful only in three D. canis isolates and one D. brevis isolate out of the nine Demodex isolates. The obtained fragments were sequenced to be 339 bp for D. canis and 338 bp for D. brevis. The CHS gene sequence similarities between the three Xi’an D. canis isolates and one Japanese D. canis isolate ranged from 99.7% to 100.0%, and those between four D. canis isolates and one D. brevis isolate were 99.1%–99.4%. Phylogenetic trees based on maximum parsimony (MP) and maximum likelihood (ML) methods shared the same clusters, according with the traditional classification. Two open reading frames (ORFs) were identified in each CHS gene sequenced, and their corresponding amino acid sequences were located at the catalytic domain. The relatively conserved sequences could be deduced to be a CHS class A gene, which is associated with chitin synthesis in the integument of Demodex mites. PMID:23024043
Liu, X Q; Xu, H; Huang, C
1993-10-01
Light-independent chlorophyll synthesis occurs in some algae, lower plants, and gymnosperms, but not in angiosperms. We have identified a new chloroplast gene, chlB, that is required for the light-independent accumulation of chlorophyll in the green alga Chlamydomonas reinhardtii. The chlB gene was cloned, sequenced, and then disrupted by performing particle gun-mediated chloroplast transformation. The resulting homoplasmic mutant was unable to accumulate chlorophyll in the dark and thus exhibited a 'yellow-in-the-dark' phenotype. The chlB gene encodes a polypeptide of 688 amino acid residues, and is distinct from two previously characterized chloroplast genes (chlN and chlL) also required for light-independent chlorophyll accumulation in C. reinhardtii. Three unidentified open reading frames in chloroplast genomes of liverwort, black pine, and Chlamydomonas moewusii were also identified as chlB genes, based on their striking sequence similarities to the C. reinhardtii chlB gene. A chlB-like gene is absent in chloroplast genomes of tobacco and rice, consistent with the lack of light-independent chlorophyll synthesis in these plants. Polypeptides encoded by the chloroplast chlB genes also show significant sequence similarities with the bchB gene product of Rhodobacter capsulatus. Comparisons among the chloroplast chlB and the bacterial bchB gene products revealed five highly conserved sequence areas that are interspersed by four stretches of highly variable and probably insertional sequences.
Analysis of the cytochrome c oxidase subunit II (COX2) gene in giant panda, Ailuropoda melanoleuca.
Ling, S S; Zhu, Y; Lan, D; Li, D S; Pang, H Z; Wang, Y; Li, D Y; Wei, R P; Zhang, H M; Wang, C D; Hu, Y D
2017-01-23
The giant panda, Ailuropoda melanoleuca (Ursidae), has a unique bamboo-based diet; however, this low-energy intake has been sufficient to maintain the metabolic processes of this species since the fourth ice age. As mitochondria are the main sites for energy metabolism in animals, the protein-coding genes involved in mitochondrial respiratory chains, particularly cytochrome c oxidase subunit II (COX2), which is the rate-limiting enzyme in electron transfer, could play an important role in giant panda metabolism. Therefore, the present study aimed to isolate, sequence, and analyze the COX2 DNA from individuals kept at the Giant Panda Protection and Research Center, China, and compare these sequences with those of the other Ursidae family members. Multiple sequence alignment showed that the COX2 gene had three point mutations that defined three haplotypes, with 60% of the sequences corresponding to haplotype I. The neutrality tests revealed that the COX2 gene was conserved throughout evolution, and the maximum likelihood phylogenetic analysis, using homologous sequences from other Ursidae species, showed clustering of the COX2 sequences of giant pandas, suggesting that this gene evolved differently in them.
The primary structure of the thymidine kinase gene of fish lymphocystis disease virus.
Schnitzler, P; Handermann, M; Szépe, O; Darai, G
1991-06-01
The DNA nucleotide sequence of the thymidine kinase (TK) gene of fish lymphocystis disease virus (FLDV) which has been localized between the coordinates 0.678 to 0.688 of the viral genome was determined. The analysis of the DNA nucleotide sequence located between the recognition sites of HindIII (0.669 map unit; nucleotide position 1) and AccI (nucleotide position 2032) revealed the presence of an open reading frame of 954 bp on the lower strand of this region between nucleotide positions 1868 (ATG) and 915 (TAA). It encodes for a protein of 318 amino acid residues. The evolutionary relationships of the TK gene of FLDV to the other known TK genes was investigated using the method of progressive sequence alignment. These analyses revealed a high degree of diversity between the protein sequence of FLDV TK gene and the amino acid composition of other TKs tested. However, significant conservations were detected at several regions of amino acid residues of the FLDV TK protein when compared to the amino acid sequence of TKs of African swine fever virus, fowlpox virus, shope fibroma virus, and vaccinia virus and to the amino acid sequences of the cellular cytoplasmic TK of chicken, mouse, and man.
Zhang, Tingting; Hu, Shuhao; Yan, Caixia; Li, Chunjuan; Zhao, Xiaobo; Wan, Shubo; Shan, Shihua
2017-02-01
In the present investigation, a total of 60 conserved peanut (Arachis hypogaea L.) microRNA (miRNA) sequences, belonging to 16 families, were identified using bioinformatics methods. There were 392 target gene sequences, identified from 58 miRNAs with Target-align software and BLASTx analyses. Gene Ontology (GO) functional analysis suggested that these target genes were involved in mediating peanut growth and development, signal transduction and stress resistance. There were 55 miRNA sequences, verified employing a poly (A) tailing test, with a success rate of up to 91.67%. Twenty peanut target gene sequences were randomly selected, and the 5' rapid amplification of the cDNA ends (5'-RACE) method were used to validate the cleavage sites of these target genes. Of these, 14 (70%) peanut miRNA targets were verified by means of gel electrophoresis, cloning and sequencing. Furthermore, functional analysis and homologous sequence retrieval were conducted for target gene sequences, and 26 target genes were chosen as the objects for stress resistance experimental study. Real-time fluorescence quantitative PCR (qRT-PCR) technology was applied to measure the expression level of resistance-associated miRNAs and their target genes in peanut exposed to Aspergillus flavus (A. flavus) infection and drought stress, respectively. In consequence, 5 groups of miRNAs & targets were found accorded with the mode of miRNA negatively controlling the expression of target genes. This study, preliminarily determined the biological functions of some resistance-associated miRNAs and their target genes in peanut. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Pánek, Josef; Kolář, Michal; Vohradský, Jiří; Shivaya Valášek, Leoš
2013-01-01
There are several key mechanisms regulating eukaryotic gene expression at the level of protein synthesis. Interestingly, the least explored mechanisms of translational control are those that involve the translating ribosome per se, mediated for example via predicted interactions between the ribosomal RNAs (rRNAs) and mRNAs. Here, we took advantage of robustly growing large-scale data sets of mRNA sequences for numerous organisms, solved ribosomal structures and computational power to computationally explore the mRNA–rRNA complementarity that is statistically significant across the species. Our predictions reveal highly specific sequence complementarity of 18S rRNA sequences with mRNA 5′ untranslated regions (UTRs) forming a well-defined 3D pattern on the rRNA sequence of the 40S subunit. Broader evolutionary conservation of this pattern may imply that 5′ UTRs of eukaryotic mRNAs, which have already emerged from the mRNA-binding channel, may contact several complementary spots on 18S rRNA situated near the exit of the mRNA binding channel and on the middle-to-lower body of the solvent-exposed 40S ribosome including its left foot. We discuss physiological significance of this structurally conserved pattern and, in the context of previously published experimental results, propose that it modulates scanning of the 40S subunit through 5′ UTRs of mRNAs. PMID:23804757
Wittenberger, T; Schaller, H C; Hellebrand, S
2001-03-30
We have developed a comprehensive expressed sequence tag database search method and used it for the identification of new members of the G-protein coupled receptor superfamily. Our approach proved to be especially useful for the detection of expressed sequence tag sequences that do not encode conserved parts of a protein, making it an ideal tool for the identification of members of divergent protein families or of protein parts without conserved domain structures in the expressed sequence tag database. At least 14 of the expressed sequence tags found with this strategy are promising candidates for new putative G-protein coupled receptors. Here, we describe the sequence and expression analysis of five new members of this receptor superfamily, namely GPR84, GPR86, GPR87, GPR90 and GPR91. We also studied the genomic structure and chromosomal localization of the respective genes applying in silico methods. A cluster of six closely related G-protein coupled receptors was found on the human chromosome 3q24-3q25. It consists of four orphan receptors (GPR86, GPR87, GPR91, and H963), the purinergic receptor P2Y1, and the uridine 5'-diphosphoglucose receptor KIAA0001. It seems likely that these receptors evolved from a common ancestor and therefore might have related ligands. In conclusion, we describe a data mining procedure that proved to be useful for the identification and first characterization of new genes and is well applicable for other gene families. Copyright 2001 Academic Press.
Molecular identification of the ompL1 gene within Leptospira interrogans standard serovars.
Dezhbord, Mehrangiz; Esmaelizad, Majid; Khaki, Pejvak; Fotohi, Fariba; Zarehparvar Moghaddam, Athena
2014-06-11
Leptospirosis, caused by infection with pathogenic Leptospira species, is one of the most prevalent zoonotic diseases in the world. Current leptospiral vaccines are mainly multivalent dead whole-cell mixtures made of several local dominant serovars. Therefore, design and construction of an efficient recombinant vaccine for leptospirosis control is very important. OmpL1 is an immunogenic porin protein that could be of special significance in vaccination and serodiagnosis for leptospirosis. Three strains belonging to pathogenic L. interrogans were analyzed. The specific primers for proliferation of the ompL1 gene were designed. The amplified gene was cloned. In order to investigate the ompL1 nucleotide sequence and homological analysis of this gene, ompL1 genes cloned from standard vaccinal Leptospira serovars prevalent in Iran were sequenced and cloned. PCR amplification of the ompL1 gene using the designed primers resulted in a 963 bp ompL1 gene product. The PCR based on the ompL1 gene detected all pathogenic reference serovars of Leptospira spp. tested. Based on alignment and phylogenetic analysis, although the ompL1 nucleotide sequence was slightly different within three vaccinal serovars (100%-85% identity), amino acid alignment of the OmpL1 proteins revealed that there would be inconsiderable difference among them. The ompL1 gene of the three isolates was well conserved, differing only by a total of 6 bp and the proteins by 2 amino acids. The cloned gene could be further used for expression and recombinant OmpL1 as an efficient and conserved antigen, and may be a useful vaccine candidate against leptospirosis in our region.
Zahraei Salehi, Taghi; Derakhshandeh, Abdollah; Tadjbakhsh, Hasan; Karimi, Vahid
2013-02-01
The ISS (increased serum survival) gene and its protein product (ISS) of avian pathogenic Escherichia coli (APEC) are important characteristics of resistance to the complement system. The aims of this study were to clone, sequence and characterize sequence diversity of the ISS gene between two predominant serogroups in Iran and among those previously deposited in Genbank. The ISS gene of 309 bp from the APEC χ1390 strain was amplified by PCR, cloned and sequenced using pTZ57R/T vector. The ISS gene from the χ1390 strain has 100% identity among different serogroups of APEC in different geographical regions throughout the world. Phylogenetic analysis shows two different phylogenic groups among the different strains. Strong association of nucleotide sequences among different E. coli strains suggests that it may be a conserved gene and could be a suitable antigen to control and detect avian pathogenic E. coli, at least in our region. Currently, our group is working on the ISS protein as candidate vaccine in SPF poultry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Evolutionary growth process of highly conserved sequences in vertebrate genomes.
Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi
2012-08-01
Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.
The Genome Sequence of Taurine Cattle: A window to ruminant biology and evolution
Elsik, Christine G.; Tellam, Ross L.; Worley, Kim C.
2010-01-01
To understand the biology and evolution of ruminants, the cattle genome was sequenced to ∼7× coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1,217 are absent or undetected in non-eutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides an enabling resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production. PMID:19390049
Wood, David L. A.; Nones, Katia; Steptoe, Anita; Christ, Angelika; Harliwong, Ivon; Newell, Felicity; Bruxner, Timothy J. C.; Miller, David; Cloonan, Nicole; Grimmond, Sean M.
2015-01-01
Genetic variation modulates gene expression transcriptionally or post-transcriptionally, and can profoundly alter an individual’s phenotype. Measuring allelic differential expression at heterozygous loci within an individual, a phenomenon called allele-specific expression (ASE), can assist in identifying such factors. Massively parallel DNA and RNA sequencing and advances in bioinformatic methodologies provide an outstanding opportunity to measure ASE genome-wide. In this study, matched DNA and RNA sequencing, genotyping arrays and computationally phased haplotypes were integrated to comprehensively and conservatively quantify ASE in a single human brain and liver tissue sample. We describe a methodological evaluation and assessment of common bioinformatic steps for ASE quantification, and recommend a robust approach to accurately measure SNP, gene and isoform ASE through the use of personalized haplotype genome alignment, strict alignment quality control and intragenic SNP aggregation. Our results indicate that accurate ASE quantification requires careful bioinformatic analyses and is adversely affected by sample specific alignment confounders and random sampling even at moderate sequence depths. We identified multiple known and several novel ASE genes in liver, including WDR72, DSP and UBD, as well as genes that contained ASE SNPs with imbalance direction discordant with haplotype phase, explainable by annotated transcript structure, suggesting isoform derived ASE. The methods evaluated in this study will be of use to researchers performing highly conservative quantification of ASE, and the genes and isoforms identified as ASE of interest to researchers studying those loci. PMID:25965996
Hernández-Martínez, Miguel Ángel; Escalante, Ananías A.; Arévalo-Herrera, Myriam; Herrera, Sócrates
2011-01-01
Circumsporozoite (CS) protein is a malaria antigen involved in sporozoite invasion of hepatocytes, and thus considered to have good vaccine potential. We evaluated the polymorphism of the Plasmodium vivax CS gene in 24 parasite isolates collected from malaria-endemic areas of Colombia. We sequenced 27 alleles, most of which (25/27) corresponded to the VK247 genotype and the remainder to the VK210 type. All VK247 alleles presented a mutation (Gly → Asn) at position 28 in the N-terminal region, whereas the C-terminal presented three insertions: the ANKKAGDAG, which is common in all VK247 isolates; 12 alleles presented the insertion GAGGQAAGGNAANKKAGDAG; and 5 alleles presented the insertion GGNAGGNA. Both repeat regions were polymorphic in gene sequence and size. Sequences coding for B-, T-CD4+, and T-CD8+ cell epitopes were found to be conserved. This study confirms the high polymorphism of the repeat domain and the highly conserved nature of the flanking regions. PMID:21292878
Busk, P K; Pilgaard, B; Lezyk, M J; Meyer, A S; Lange, L
2017-04-12
Carbohydrate-active enzymes are found in all organisms and participate in key biological processes. These enzymes are classified in 274 families in the CAZy database but the sequence diversity within each family makes it a major task to identify new family members and to provide basis for prediction of enzyme function. A fast and reliable method for de novo annotation of genes encoding carbohydrate-active enzymes is to identify conserved peptides in the curated enzyme families followed by matching of the conserved peptides to the sequence of interest as demonstrated for the glycosyl hydrolase and the lytic polysaccharide monooxygenase families. This approach not only assigns the enzymes to families but also provides functional prediction of the enzymes with high accuracy. We identified conserved peptides for all enzyme families in the CAZy database with Peptide Pattern Recognition. The conserved peptides were matched to protein sequence for de novo annotation and functional prediction of carbohydrate-active enzymes with the Hotpep method. Annotation of protein sequences from 12 bacterial and 16 fungal genomes to families with Hotpep had an accuracy of 0.84 (measured as F1-score) compared to semiautomatic annotation by the CAZy database whereas the dbCAN HMM-based method had an accuracy of 0.77 with optimized parameters. Furthermore, Hotpep provided a functional prediction with 86% accuracy for the annotated genes. Hotpep is available as a stand-alone application for MS Windows. Hotpep is a state-of-the-art method for automatic annotation and functional prediction of carbohydrate-active enzymes.
CRISPR Diversity and Microevolution in Clostridium difficile
Andersen, Joakim M.; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E.P.; Barrangou, Rodolphe
2016-01-01
Abstract Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538
Genomic organization of plant aminopropyl transferases.
Rodríguez-Kessler, Margarita; Delgado-Sánchez, Pablo; Rodríguez-Kessler, Gabriela Theresia; Moriguchi, Takaya; Jiménez-Bremont, Juan Francisco
2010-07-01
Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin. 2010 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairney, J.; Hays, D.; Stockand, J.D.
1991-05-01
The rangeland shrub Atriplex canescens (saltbush) is extremely drought-tolerant and is capable of growing at water potentials below {minus}40 bar. To discover the molecular basis of this tolerance, the authors have isolated a number of cDNA clones of drought-stress induced genes. Analysis of the nucleotide sequence and expression of these genes in different tissues and in response to different stresses reveals the diversity of the stress response. Members of a drought-induced, multi-gene family, have been sequenced. Although 95% homologous, non-conservative substitutions result in proteins of different tertiary structure. Additionally, the genes are expressed through a number of mature forms ofmore » mRNA which may arise by alternative RNA processing.« less
Howard, John; Finch, Nicole A; Ochrietor, Judith D
2010-07-01
The purpose of this study was to determine the binding affinities of Basigin gene products and neural cell adhesion molecule L1cam for monocarboxylate transporter-1 (MCT1). ELISA binding assays were performed in which recombinant proteins of the transmembrane domains of Basigin gene products and L1cam were incubated with MCT1 captured from mouse brain. It was determined that Basigin gene products bind MCT1 with moderate affinity, but L1cam does not bind MCT1. Despite a high degree of sequence conservation between Basigin gene products and L1cam, the sequences are different enough to prevent L1cam from interacting with MCT1.
Diversity of the P2 protein among nontypeable Haemophilus influenzae isolates.
Bell, J; Grass, S; Jeanteur, D; Munson, R S
1994-01-01
The genes for outer membrane protein P2 of four nontypeable Haemophilus influenzae strains were cloned and sequenced. The derived amino acid sequences were compared with the outer membrane protein P2 sequence from H. influenzae type b MinnA and the sequences of P2 from three additional nontypeable H. influenzae strains. The sequences were 76 to 94% identical. The sequences had regions with considerable variability separated by regions which were highly conserved. The variable regions mapped to putative surface-exposed loops of the protein. PMID:8188390
Collin, Matthew A; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y
2018-07-01
A powerful system for studying protein aggregation, particularly rapid self-assembly, is spider silk. Spider silks are proteinaceous and silk proteins are synthesized and stored within silk glands as liquid dope. As needed, liquid dope is near-instantaneously transformed into solid fibers or viscous adhesives. The dominant constituents of silks are spidroins (spider fibroins) and their terminal domains are vital for the tight control of silk self-assembly. To better understand spidroin termini, we used target capture and deep sequencing to identify spidroin gene sequences from six species representing the araneoid families of Araneidae, Nephilidae, and Theridiidae. We obtained 145 terminal regions, of which 103 are newly annotated here, as well as novel variants within nine diverse spidroin types. Our comparative analyses demonstrated the conservation of acidic, basic, and cysteine amino acid residues across spidroin types that had been proposed to be important for monomer stability, dimer formation, and self-assembly from a limited sampling of spidroins. Computational, protein homology modeling revealed areas of spidroin terminal regions that are highly conserved in three-dimensions despite sequence divergence across spidroin types. Analyses of our dense sampling of terminal regions suggest that most spidroins share stabilization mechanisms, dimer formation, and tertiary structure, despite producing functionally distinct materials. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Evolution of the alternative AQP2 gene: Acquisition of a novel protein-coding sequence in dolphins.
Kishida, Takushi; Suzuki, Miwa; Takayama, Asuka
2018-01-01
Taxon-specific de novo protein-coding sequences are thought to be important for taxon-specific environmental adaptation. A recent study revealed that bottlenose dolphins acquired a novel isoform of aquaporin 2 generated by alternative splicing (alternative AQP2), which helps dolphins to live in hyperosmotic seawater. The AQP2 gene consists of four exons, but the alternative AQP2 gene lacks the fourth exon and instead has a longer third exon that includes the original third exon and a part of the original third intron. Here, we show that the latter half of the third exon of the alternative AQP2 arose from a non-protein-coding sequence. Intact ORF of this de novo sequence is shared not by all cetaceans, but only by delphinoids. However, this sequence is conservative in all modern cetaceans, implying that this de novo sequence potentially plays important roles for marine adaptation in cetaceans. Copyright © 2017 Elsevier Inc. All rights reserved.
PCR and RFLP analyses based on the ribosomal protein operon
USDA-ARS?s Scientific Manuscript database
Differentiation and classification of phytoplasmas have been primarily based on the highly conserved 16Sr RNA gene. RFLP analysis of 16Sr RNA gene sequences has identified 31 16Sr RNA (16Sr) groups and more than 100 16Sr subgroups. Classification of phytoplasma strains can however, become more refin...
PCR Cloning of Partial "nbs" Sequences from Grape ("Vitis aestivalis" Michx)
ERIC Educational Resources Information Center
Chang, Ming-Mei; DiGennaro, Peter; Macula, Anthony
2009-01-01
Plants defend themselves against pathogens via the expressions of disease resistance (R) genes. Many plant R gene products contain the characteristic nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. There are highly conserved motifs within the NBS domain which could be targeted for polymerase chain reaction (PCR) cloning of R…
The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.
Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug
2017-03-01
The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.
Danno, Hiroki; Michiue, Tatsuo; Hitachi, Keisuke; Yukita, Akira; Ishiura, Shoichi; Asashima, Makoto
2008-04-08
The neural-related genes Sox2, Pax6, Otx2, and Rax have been associated with severe ocular malformations such as anophthalmia and microphthalmia, but it remains unclear as to how these genes are linked functionally. We analyzed the upstream signaling of Xenopus Rax (also known as Rx1) and identified the Otx2 and Sox2 proteins as direct upstream regulators of Rax. We revealed that endogenous Otx2 and Sox2 proteins bound to the conserved noncoding sequence (CNS1) located approximately 2 kb upstream of the Rax promoter. This sequence is conserved among vertebrates and is required for potent transcriptional activity. Reporter assays showed that Otx2 and Sox2 synergistically activated transcription via CNS1. Furthermore, the Otx2 and Sox2 proteins physically interacted with each other, and this interaction was affected by the Sox2-missense mutations identified in these ocular disorders. These results demonstrate that the direct interaction and interdependence between the Otx2 and Sox2 proteins coordinate Rax expression in eye development, providing molecular linkages among the genes responsible for ocular malformation.
Database resources of the National Center for Biotechnology Information.
Sayers, Eric W; Barrett, Tanya; Benson, Dennis A; Bolton, Evan; Bryant, Stephen H; Canese, Kathi; Chetvernin, Vyacheslav; Church, Deanna M; Dicuccio, Michael; Federhen, Scott; Feolo, Michael; Fingerman, Ian M; Geer, Lewis Y; Helmberg, Wolfgang; Kapustin, Yuri; Krasnov, Sergey; Landsman, David; Lipman, David J; Lu, Zhiyong; Madden, Thomas L; Madej, Tom; Maglott, Donna R; Marchler-Bauer, Aron; Miller, Vadim; Karsch-Mizrachi, Ilene; Ostell, James; Panchenko, Anna; Phan, Lon; Pruitt, Kim D; Schuler, Gregory D; Sequeira, Edwin; Sherry, Stephen T; Shumway, Martin; Sirotkin, Karl; Slotta, Douglas; Souvorov, Alexandre; Starchenko, Grigory; Tatusova, Tatiana A; Wagner, Lukas; Wang, Yanli; Wilbur, W John; Yaschenko, Eugene; Ye, Jian
2012-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Website. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central (PMC), Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link (BLink), Primer-BLAST, COBALT, Splign, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, Genome and related tools, the Map Viewer, Model Maker, Evidence Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, Retroviral Genotyping Tools, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus (GEO), Probe, Online Mendelian Inheritance in Animals (OMIA), the Molecular Modeling Database (MMDB), the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov.
Expression of beta-expansins is correlated with internodal elongation in deepwater rice.
Lee, Y; Kende, H
2001-10-01
Fourteen putative rice (Oryza sativa) beta-expansin genes, Os-EXPB1 through Os-EXPB14, were identified in the expressed sequence tag and genomic databases. The DNA and deduced amino acid sequences are highly conserved in all 14 beta-expansins. They have a series of conserved C (cysteine) residues in the N-terminal half of the protein, an HFD (histidine-phenylalanine-aspartate) motif in the central region, and a series of W (tryptophan) residues near the carboxyl terminus. Five beta-expansin genes are expressed in deepwater rice internodes, with especially high transcript levels in the growing region. Expression of four beta-expansin genes in the internode was induced by treatment with gibberellin and by wounding. The wound response resulted from excising stem sections or from piercing pinholes into the stem of intact plants. The level of wound-induced beta-expansin transcripts declined rapidly 5 h after cutting of stem sections. We conclude that the expression of beta-expansin genes is correlated with rapid elongation of deepwater rice internodes, it is induced by gibberellin and wounding, and wound-induced beta-expansin mRNA appears to turn over rapidly.
Maslov, D A; Hollar, L; Haghighat, P; Nawathean, P
1998-06-01
Maxicircle molecules of kDNA in several isolates of Phytomonas were detected by hybridization with the 12S rRNA gene probe from Leishmania tarentolae. The estimated size of maxicircles is isolate-specific and varies from 27 to 36 kb. Fully edited and polyadenylated mRNA for kinetoplast-encoded ribosomal protein S12 (RPS12) was found in the steady-state kinetoplast RNA isolated from Phytomonas serpens strain 1G. Two minicircles (1.45 kb) from this strain were also sequenced. Each minicircle contains two 120 bp conserved regions positioned 180 degrees apart, a region enriched with G and T bases and a variable region. One minicircle encodes a gRNA for the first block of editing of RPSl2 mRNA, and the other encodes a gRNA with unknown function. A gRNA gene for the second block of RPSl2 was found on a minicircle sequenced previously. On each minicircle, a gRNA gene is located in the variable region in a similar position and orientation with respect to the conserved regions.
Database resources of the National Center for Biotechnology Information
Acland, Abigail; Agarwala, Richa; Barrett, Tanya; Beck, Jeff; Benson, Dennis A.; Bollin, Colleen; Bolton, Evan; Bryant, Stephen H.; Canese, Kathi; Church, Deanna M.; Clark, Karen; DiCuccio, Michael; Dondoshansky, Ilya; Federhen, Scott; Feolo, Michael; Geer, Lewis Y.; Gorelenkov, Viatcheslav; Hoeppner, Marilu; Johnson, Mark; Kelly, Christopher; Khotomlianski, Viatcheslav; Kimchi, Avi; Kimelman, Michael; Kitts, Paul; Krasnov, Sergey; Kuznetsov, Anatoliy; Landsman, David; Lipman, David J.; Lu, Zhiyong; Madden, Thomas L.; Madej, Tom; Maglott, Donna R.; Marchler-Bauer, Aron; Karsch-Mizrachi, Ilene; Murphy, Terence; Ostell, James; O'Sullivan, Christopher; Panchenko, Anna; Phan, Lon; Pruitt, Don Preussm Kim D.; Rubinstein, Wendy; Sayers, Eric W.; Schneider, Valerie; Schuler, Gregory D.; Sequeira, Edwin; Sherry, Stephen T.; Shumway, Martin; Sirotkin, Karl; Siyan, Karanjit; Slotta, Douglas; Soboleva, Alexandra; Soussov, Vladimir; Starchenko, Grigory; Tatusova, Tatiana A.; Trawick, Bart W.; Vakatov, Denis; Wang, Yanli; Ward, Minghong; John Wilbur, W.; Yaschenko, Eugene; Zbicz, Kerry
2014-01-01
In addition to maintaining the GenBank® nucleic acid sequence database, the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov) provides analysis and retrieval resources for the data in GenBank and other biological data made available through the NCBI Web site. NCBI resources include Entrez, the Entrez Programming Utilities, MyNCBI, PubMed, PubMed Central, PubReader, Gene, the NCBI Taxonomy Browser, BLAST, BLAST Link, Primer-BLAST, COBALT, RefSeq, UniGene, HomoloGene, ProtEST, dbMHC, dbSNP, dbVar, Epigenomics, the Genetic Testing Registry, Genome and related tools, the Map Viewer, Trace Archive, Sequence Read Archive, BioProject, BioSample, ClinVar, MedGen, HIV-1/Human Protein Interaction Database, Gene Expression Omnibus, Probe, Online Mendelian Inheritance in Animals, the Molecular Modeling Database, the Conserved Domain Database, the Conserved Domain Architecture Retrieval Tool, Biosystems, Protein Clusters and the PubChem suite of small molecule databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All these resources can be accessed through the NCBI home page. PMID:24259429
Wang, Aishuai; Sun, Yuena; Wu, Changwen
2016-11-01
The complete mitochondrial genome of the Cheilodactylus quadricornis was firstly determined in the present study. The mitochondrial genome of C. quadricornis is 16 521 nucleotides, comprising 13 protein-coding genes and 2 ribosomal RNA genes, 22 tRNA genes and 2 main non-coding regions (the control region and the origin of the light-strand replication). The overall base composition was T, 26.3%; C, 29.6%; A, 27.8% and G, 16.3%. The gene arrangement, base composition, and tRNA structures of the complete mitochondrial genome of C. quadricornis is similar to other teleosts. Only two central conserved sequence blocks (CSB-2 and CSB-3) were identified in the control region. In addition, the conserved motif 5'-GCCGG-3' was identified in the origin of light-strand replication of C. quadricornis. The complete mitochondrial genome of C. quadricornis was used to construct phylogenetic tree, which shows that C. quadricornis and C. variegatus clustered in a clade and formed a sister relationship. This mitogenome sequence data would play an important role in population genetics and phylogenetic analysis of the Cheilodactylidae.
Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.
Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei
2011-10-01
In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.
Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min
2015-08-01
Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Evans, Tyler G.; Hofmann, Gretchen E.
2012-01-01
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean. PMID:22566679
Pietan, Lucas L.; Spradling, Theresa A.
2016-01-01
In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916–1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function. PMID:27589589
Identification of two allelic IgG1 C(H) coding regions (Cgamma1) of cat.
Kanai, T H; Ueda, S; Nakamura, T
2000-01-31
Two types of cDNA encoding IgG1 heavy chain (gamma1) were isolated from a single domestic short-hair cat. Sequence analysis indicated a higher level of similarity of these Cgamma1 sequences to human Cgamma1 sequence (76.9 and 77.0%) than to mouse sequence (70.0 and 69.7%) at the nucleotide level. Predicted primary structures of both the feline Cgamma1 genes, designated as Cgamma1a and Cgamma1b, were similar to that of human Cgamma1 gene, for instance, as to the size of constant domains, the presence of six conserved cysteine residues involved in formation of the domain structure, and the location of a conserved N-linked glycosylation site. Sequence comparison between the two alleles showed that 7 out of 10 nucleotide differences were within the C(H)3 domain coding region, all leading to nonsynonymous changes in amino acid residues. Partial sequence analysis of genomic clones showed three nucleotide substitutions between the two Cgamma1 alleles in the intron between the CH2 and C(H)3 domain coding regions. In 12 domestic short-hair cats used in this study, the frequency of Cgamma1a allele (62.5%) was higher than that of the Cgamma1b allele (37.5%).
Kashuk, Carl S.; Stone, Eric A.; Grice, Elizabeth A.; Portnoy, Matthew E.; Green, Eric D.; Sidow, Arend; Chakravarti, Aravinda; McCallion, Andrew S.
2005-01-01
The ability to discriminate between deleterious and neutral amino acid substitutions in the genes of patients remains a significant challenge in human genetics. The increasing availability of genomic sequence data from multiple vertebrate species allows inclusion of sequence conservation and physicochemical properties of residues to be used for functional prediction. In this study, the RET receptor tyrosine kinase serves as a model disease gene in which a broad spectrum (≥116) of disease-associated mutations has been identified among patients with Hirschsprung disease and multiple endocrine neoplasia type 2. We report the alignment of the human RET protein sequence with the orthologous sequences of 12 non-human vertebrates (eight mammalian, one avian, and three teleost species), their comparative analysis, the evolutionary topology of the RET protein, and predicted tolerance for all published missense mutations. We show that, although evolutionary conservation alone provides significant information to predict the effect of a RET mutation, a model that combines comparative sequence data with analysis of physiochemical properties in a quantitative framework provides far greater accuracy. Although the ability to discern the impact of a mutation is imperfect, our analyses permit substantial discrimination between predicted functional classes of RET mutations and disease severity even for a multigenic disease such as Hirschsprung disease. PMID:15956201
Huang, Yuhong; Busk, Peter Kamp; Grell, Morten Nedergaard; Zhao, Hai; Lange, Lene
2014-12-01
Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which is a non-alignment based method for sequence analysis to map conserved sequences in glycoside hydrolase families. The conserved sequences were used to identify similar genes in the M. circinelloides genome. We found 12 different novel genes encoding members of the GH3, GH5, GH9, GH16, GH38, GH47 and GH125 families in M. circinelloides. One of the two GH3-encoding genes was predicted to encode a β-glucosidase (EC 3.2.1.21). We expressed this gene in Pichia pastoris KM71H and found that the purified recombinant protein had relative high β-glucosidase activity (1.73U/mg) at pH5 and 50°C. The Km and Vmax with p-nitrophenyl-β-d-glucopyranoside as substrate was 0.20mM and 2.41U/mg, respectively. The enzyme was not inhibited by glucose and retained 84% activity at glucose concentrations up to 140mM. Although zygomycetes are not considered to be important degraders of lignocellulosic biomass in nature, the present finding of an active β-glucosidase in M. circinelloides demonstrates that enzymes from this group of fungi have a potential for cellulose degradation. Copyright © 2014 Elsevier Inc. All rights reserved.
Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza
2017-06-01
The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.
Visualizing conserved gene location across microbe genomes
NASA Astrophysics Data System (ADS)
Shaw, Chris D.
2009-01-01
This paper introduces an analysis-based zoomable visualization technique for displaying the location of genes across many related species of microbes. The purpose of this visualizatiuon is to enable a biologist to examine the layout of genes in the organism of interest with respect to the gene organization of related organisms. During the genomic annotation process, the ability to observe gene organization in common with previously annotated genomes can help a biologist better confirm the structure and function of newly analyzed microbe DNA sequences. We have developed a visualization and analysis tool that enables the biologist to observe and examine gene organization among genomes, in the context of the primary sequence of interest. This paper describes the visualization and analysis steps, and presents a case study using a number of Rickettsia genomes.
The complete mitochondrial genome of black-footed ferret, Mustela nigripes (Mustela, Mustelinae).
Zhao, Ren-Bin; Zhou, Chao-Yang; Lu, Zhi-Xiang; Hu, Peng; Liu, Jian-Qiong; Tan, Wei-Wei; Yang, Tong-Hua
2016-05-01
In this study, the complete mitochondrial genome sequence of black-footed ferret, Mustela nigripes, is determined for the first time. This mitogenome is 16,556 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region (D-loop). The overall base composition is A (32.9%), C (26.1%), G (13.8%), and T (27.2%), so the percentage of A and T (60.1%) is higher than that of G and C. Most of the genes are encoded on H-strand, except for the ND6 subunit gene and six tRNA genes. The complete mitochondrial genome sequence reported here would be useful for further phylogenetic analysis and conservation genetic studies in M. nigripes.
Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis
Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando
2008-01-01
Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433
Characterization and Comparative Profiling of MiRNA Transcriptomes in Bighead Carp and Silver Carp
Chi, Wei; Tong, Chaobo; Gan, Xiaoni; He, Shunping
2011-01-01
MicroRNAs (miRNAs) are small non-coding RNA molecules that are processed from large ‘hairpin’ precursors and function as post-transcriptional regulators of target genes. Although many individual miRNAs have recently been extensively studied, there has been very little research on miRNA transcriptomes in teleost fishes. By using high throughput sequencing technology, we have identified 167 and 166 conserved miRNAs (belonging to 108 families) in bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix), respectively. We compared the expression patterns of conserved miRNAs by means of hierarchical clustering analysis and log2 ratio. Results indicated that there is not a strong correlation between sequence conservation and expression conservation, most of these miRNAs have similar expression patterns. However, high expression differences were also identified for several individual miRNAs. Several miRNA* sequences were also found in our dataset and some of them may have regulatory functions. Two computational strategies were used to identify novel miRNAs from un-annotated data in the two carps. A first strategy based on zebrafish genome, identified 8 and 22 novel miRNAs in bighead carp and silver carp, respectively. We postulate that these miRNAs should also exist in the zebrafish, but the methodologies used have not allowed for their detection. In the second strategy we obtained several carp-specific miRNAs, 31 in bighead carp and 32 in silver carp, which showed low expression. Gain and loss of family members were observed in several miRNA families, which suggests that duplication of animal miRNA genes may occur through evolutionary processes which are similar to the protein-coding genes. PMID:21858165
Zhang, Jing; Zhang, Qingwen; Liu, Xiaoxia; Li, Zhen
2017-01-01
MicroRNAs (miRNAs) are a group of endogenous non-coding small RNAs that have critical regulatory functions in almost all known biological processes at the post-transcriptional level in a variety of organisms. The oriental fruit moth Grapholita molesta is one of the most serious pests in orchards worldwide and threatens the production of Rosacea fruits. In this study, a de novo small RNA library constructed from mixed stages of G. molesta was sequenced through Illumina sequencing platform and a total of 536 mature miRNAs consisting of 291 conserved and 245 novel miRNAs were identified. Most of the conserved and novel miRNAs were detected with moderate abundance. The miRNAs in the same cluster normally showed correlated expressional profiles. A comparative analysis of the 79 conserved miRNA families within 31 arthropod species indicated that these miRNA families were more conserved among insects and within orders of closer phylogenetic relationships. The KEGG pathway analysis and network prediction of target genes indicated that the complex composed of miRNAs, clock genes and developmental regulation genes may play vital roles to regulate the developmental circadian rhythm of G. molesta. Furthermore, based on the sRNA library of G. molesta, suitable reference genes were selected and validated for study of miRNA transcriptional profile in G. molesta under two biotic and six abiotic experimental conditions. This study systematically documented the miRNA profile in G. molesta, which could lay a foundation for further understanding of the regulatory roles of miRNAs in the development and metabolism in this pest and might also suggest clues to the development of genetic-based techniques for agricultural pest control. PMID:28158242
Wang, Yin-qiu; Qian, Ya-ping; Yang, Su; Shi, Hong; Liao, Cheng-hong; Zheng, Hong-Kun; Wang, Jun; Lin, Alice A.; Cavalli-Sforza, L. Luca; Underhill, Peter A.; Chakraborty, Ranajit; Jin, Li; Su, Bing
2005-01-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide abundantly expressed in the central nervous system and involved in regulating neurogenesis and neuronal signal transduction. The amino acid sequence of PACAP is extremely conserved across vertebrate species, indicating a strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans is at least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. PMID:15834139
Patterns of conservation and change in honey bee developmental genes
Dearden, Peter K.; Wilson, Megan J.; Sablan, Lisha; Osborne, Peter W.; Havler, Melanie; McNaughton, Euan; Kimura, Kiyoshi; Milshina, Natalia V.; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Brown, Susan J.; Elsik, Christine G.; Holland, Peter W.H.; Kadowaki, Tatsuhiko; Beye, Martin
2006-01-01
The current insect genome sequencing projects provide an opportunity to extend studies of the evolution of developmental genes and pathways in insects. In this paper we examine the conservation and divergence of genes and developmental processes between Drosophila and the honey bee; two holometabolous insects whose lineages separated ∼300 million years ago, by comparing the presence or absence of 308 Drosophila developmental genes in the honey bee. Through examination of the presence or absence of genes involved in conserved pathways (cell signaling, axis formation, segmentation and homeobox transcription factors), we find that the vast majority of genes are conserved. Some genes involved in these processes are, however, missing in the honey bee. We have also examined the orthology of Drosophila genes involved in processes that differ between the honey bee and Drosophila. Many of these genes are preserved in the honey bee despite the process in which they act in Drosophila being different or absent in the honey bee. Many of the missing genes in both situations appear to have arisen recently in the Drosophila lineage, have single known functions in Drosophila, and act early in developmental pathways, while those that are preserved have pleiotropic functions. An evolutionary interpretation of these data is that either genes with multiple functions in a common ancestor are more likely to be preserved in both insect lineages, or genes that are preserved throughout evolution are more likely to co-opt additional functions. PMID:17065607
Glynn, Neil C; Comstock, Jack C; Sood, Sushma G; Dang, Phat M; Chaparro, Jose X
2008-01-01
Resistance gene analogues (RGAs) have been isolated from many crops and offer potential in breeding for disease resistance through marker-assisted selection, either as closely linked or as perfect markers. Many R-gene sequences contain kinase domains, and indeed kinase genes have been reported as being proximal to R-genes, making kinase analogues an additionally promising target. The first step towards utilizing RGAs as markers for disease resistance is isolation and characterization of the sequences. Sugarcane clone US01-1158 was identified as resistant to yellow leaf caused by the sugarcane yellow leaf virus (SCYLV) and moderately resistant to rust caused by Puccinia melanocephala Sydow & Sydow. Degenerate primers that had previously proved useful for isolating RGAs and kinase analogues in wheat and soybean were used to amplify DNA from sugarcane (Saccharum spp.) clone US-01-1158. Sequences generated from 1512 positive clones were assembled into 134 contigs of between two and 105 sequences. Comparison of the contig consensuses with the NCBI sequence database using BLASTx showed that 20 had sequence homology to nuclear binding site and leucine rich repeat (NBS-LRR) RGAs, and eight to kinase genes. Alignment of the deduced amino acid sequences with similar sequences from the NCBI database allowed the identification of several conserved domains. The alignment and resulting phenetic tree showed that many of the sequences had greater similarity to sequences from other species than to one another. The use of degenerate primers is a useful method for isolating novel sugarcane RGA and kinase gene analogues. Further studies are needed to evaluate the role of these genes in disease resistance.
Functional Organization of hsp70 Cluster in Camel (Camelus dromedarius) and Other Mammals
Garbuz, David G.; Astakhova, Lubov N.; Zatsepina, Olga G.; Arkhipova, Irina R.; Nudler, Eugene; Evgen'ev, Michael B.
2011-01-01
Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius). Two hsp70 family genes comprising the cluster contain heat shock elements (HSEs), while the third gene lacks HSEs and should not be induced by heat shock. Comparison of the camel hsp70 cluster with the corresponding regions from several mammalian species revealed similar organization of genes forming the cluster. Specifically, the two heat inducible hsp70 genes are arranged in tandem, while the third constitutively expressed hsp70 family member is present in inverted orientation. Comparison of regulatory regions of hsp70 genes from camel and other mammals demonstrates that transcription factor matches with highest significance are located in the highly conserved 250-bp upstream region and correspond to HSEs followed by NF-Y and Sp1 binding sites. The high degree of sequence conservation leaves little room for putative camel-specific regulatory elements. Surprisingly, RT-PCR and 5′/3′-RACE analysis demonstrated that all three hsp70 genes are expressed in camel's muscle and blood cells not only after heat shock, but under normal physiological conditions as well, and may account for tolerance of camel cells to extreme environmental conditions. A high degree of evolutionary conservation observed for the hsp70 cluster always linked with MHC locus in mammals suggests an important role of such organization for coordinated functioning of these vital genes. PMID:22096537
Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions
Wilson, R. Bryce; Davis, Dana; Mitchell, Aaron P.
1999-01-01
Disruption of newly identified genes in the pathogen Candida albicans is a vital step in determination of gene function. Several gene disruption methods described previously employ long regions of homology flanking a selectable marker. Here, we describe disruption of C. albicans genes with PCR products that have 50 to 60 bp of homology to a genomic sequence on each end of a selectable marker. We used the method to disrupt two known genes, ARG5 and ADE2, and two sequences newly identified through the Candida genome project, HRM101 and ENX3. HRM101 and ENX3 are homologous to genes in the conserved RIM101 (previously called RIM1) and PacC pathways of Saccharomyces cerevisiae and Aspergillus nidulans. We show that three independent hrm101/hrm101 mutants and two independent enx3/enx3 mutants are defective in filamentation on Spider medium. These observations argue that HRM101 and ENX3 sequences are indeed portions of genes and that the respective gene products have related functions. PMID:10074081
Two fundamentally different classes of microbial genes.
Wolf, Yuri I; Makarova, Kira S; Lobkovsky, Alexander E; Koonin, Eugene V
2016-11-07
The evolution of bacterial and archaeal genomes is highly dynamic and involves extensive horizontal gene transfer and gene loss 1-4 . Furthermore, many microbial species appear to have open pangenomes, where each newly sequenced genome contains more than 10% ORFans, that is, genes without detectable homologues in other species 5,6 . Here, we report a quantitative analysis of microbial genome evolution by fitting the parameters of a simple, steady-state evolutionary model to the comparative genomic data on the gene content and gene order similarity between archaeal genomes. The results reveal two sharply distinct classes of microbial genes, one of which is characterized by effectively instantaneous gene replacement, and the other consists of genes with finite, distributed replacement rates. These findings imply a conservative estimate of the size of the prokaryotic genomic universe, which appears to consist of at least a billion distinct genes. Furthermore, the same distribution of constraints is shown to govern the evolution of gene complement and gene order, without the need to invoke long-range conservation or the selfish operon concept 7 .
Unique Trichomonas vaginalis gene sequences identified in multinational regions of Northwest China.
Liu, Jun; Feng, Meng; Wang, Xiaolan; Fu, Yongfeng; Ma, Cailing; Cheng, Xunjia
2017-07-24
Trichomonas vaginalis (T. vaginalis) is a flagellated protozoan parasite that infects humans worldwide. This study determined the sequence of the 18S ribosomal RNA gene of T. vaginalis infecting both females and males in Xinjiang, China. Samples from 73 females and 28 males were collected and confirmed for infection with T. vaginalis, a total of 110 sequences were identified when the T. vaginalis 18S ribosomal RNA gene was sequenced. These sequences were used to prepare a phylogenetic network. The rooted network comprised three large clades and several independent branches. Most of the Xinjiang sequences were in one group. Preliminary results suggest that Xinjiang T. vaginalis isolates might be genetically unique, as indicated by the sequence of their 18S ribosomal RNA gene. Low migration rate of local people in this province may contribute to a genetic conservativeness of T. vaginalis. The unique genetic feature of our isolates may suggest a different clinical presentation of trichomoniasis, including metronidazole susceptibility, T. vaginalis virus or Mycoplasma co-infection characteristics. The transmission and evolution of Xinjiang T. vaginalis is of interest and should be studied further. More attention should be given to T. vaginalis infection in both females and males in Xinjiang.
Wang, Yongkang; Song, Xiaodan; Li, Xiaorong; Yang, Sang-tian; Zou, Xiang
2017-01-04
To explore the genome sequence of Aureobasidium pullulans CCTCC M2012223, analyze the key genes related to the biosynthesis of important metabolites, and provide genetic background for metabolic engineering. Complete genome of A. pullulans CCTCC M2012223 was sequenced by Illumina HiSeq high throughput sequencing platform. Then, fragment assembly, gene prediction, functional annotation, and GO/COG cluster were analyzed in comparison with those of other five A. pullulans varieties. The complete genome sequence of A. pullulans CCTCC M2012223 was 30756831 bp with an average GC content of 47.49%, and 9452 genes were successfully predicted. Genome-wide analysis showed that A. pullulans CCTCC M2012223 had the biggest genome assembly size. Protein sequences involved in the pullulan and polymalic acid pathway were highly conservative in all of six A. pullulans varieties. Although both A. pullulans CCTCC M2012223 and A. pullulans var. melanogenum have a close affinity, some point mutation and inserts were occurred in protein sequences involved in melanin biosynthesis. Genome information of A. pullulans CCTCC M2012223 was annotated and genes involved in melanin, pullulan and polymalic acid pathway were compared, which would provide a theoretical basis for genetic modification of metabolic pathway in A. pullulans.
Bharathi, Kosaraju; Sreenath, H L
2017-07-01
Coffea canephora is the commonly cultivated coffee species in the world along with Coffea arabica . Different pests and pathogens affect the production and quality of the coffee. Jasmonic acid (JA) is a plant hormone which plays an important role in plants growth, development, and defense mechanisms, particularly against insect pests. The key enzymes involved in the production of JA are lipoxygenase, allene oxide synthase, allene oxide cyclase, and 12-oxo-phytodienoic reductase. There is no report on the genes involved in JA pathway in coffee plants. We made an attempt to identify and analyze the genes coding for these enzymes in C. canephora . First, protein sequences of jasmonate pathway genes from model plant Arabidopsis thaliana were identified in the National Center for Biotechnology Information (NCBI) database. These protein sequences were used to search the web-based database Coffee Genome Hub to identify homologous protein sequences in C. canephora genome using Basic Local Alignment Search Tool (BLAST). Homologous protein sequences for key genes were identified in the C. canephora genome database. Protein sequences of the top matches were in turn used to search in NCBI database using BLAST tool to confirm the identity of the selected proteins and to identify closely related genes in species. The protein sequences from C. canephora database and the top matches in NCBI were aligned, and phylogenetic trees were constructed using MEGA6 software and identified the genetic distance of the respective genes. The study identified the four key genes of JA pathway in C. canephora , confirming the conserved nature of the pathway in coffee. The study expected to be useful to further explore the defense mechanisms of coffee plants. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC, and OPR are identified in C. canephora (robusta coffee) by bioinformatic approaches confirming the conserved nature of the pathway in coffee. The findings are useful to understand the defense mechanisms of C. canephora and coffee breeding in the long run. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC and OPR were identified and analyzed in C. canephora (robusta coffee) by in silico approach. The study has confirmed the conserved nature of JA pathway in coffee; the findings are useful to further explore the defense mechanisms of coffee plants. Abbreviations used: C. canephora : Coffea canephora ; C. arabica : Coffea arabica ; JA: Jasmonic acid; CGH: Coffee Genome Hub; NCBI: National Centre for Biotechnology Information; BLAST: Basic Local Alignment Search Tool; A. thaliana : Arabidopsis thaliana ; LOX: Lipoxygenase, AOS: Allene oxide synthase; AOC: Allene oxide cyclase; OPR: 12 oxo phytodienoic reductase.
Database resources of the National Center for Biotechnology Information
2015-01-01
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (Bookshelf, PubMed Central (PMC) and PubReader); medical genetics (ClinVar, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen); genes and genomics (BioProject, BioSample, dbSNP, dbVar, Epigenomics, Gene, Gene Expression Omnibus (GEO), Genome, HomoloGene, the Map Viewer, Nucleotide, PopSet, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser, Trace Archive and UniGene); and proteins and chemicals (Biosystems, COBALT, the Conserved Domain Database (CDD), the Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB), Protein Clusters, Protein and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for many of these databases. Augmenting many of the Web applications are custom implementations of the BLAST program optimized to search specialized data sets. All of these resources can be accessed through the NCBI home page at http://www.ncbi.nlm.nih.gov. PMID:25398906
Database resources of the National Center for Biotechnology Information
2016-01-01
The National Center for Biotechnology Information (NCBI) provides a large suite of online resources for biological information and data, including the GenBank® nucleic acid sequence database and the PubMed database of citations and abstracts for published life science journals. Additional NCBI resources focus on literature (PubMed Central (PMC), Bookshelf and PubReader), health (ClinVar, dbGaP, dbMHC, the Genetic Testing Registry, HIV-1/Human Protein Interaction Database and MedGen), genomes (BioProject, Assembly, Genome, BioSample, dbSNP, dbVar, Epigenomics, the Map Viewer, Nucleotide, Probe, RefSeq, Sequence Read Archive, the Taxonomy Browser and the Trace Archive), genes (Gene, Gene Expression Omnibus (GEO), HomoloGene, PopSet and UniGene), proteins (Protein, the Conserved Domain Database (CDD), COBALT, Conserved Domain Architecture Retrieval Tool (CDART), the Molecular Modeling Database (MMDB) and Protein Clusters) and chemicals (Biosystems and the PubChem suite of small molecule databases). The Entrez system provides search and retrieval operations for most of these databases. Augmenting many of the web applications are custom implementations of the BLAST program optimized to search specialized datasets. All of these resources can be accessed through the NCBI home page at www.ncbi.nlm.nih.gov. PMID:26615191
NASA Astrophysics Data System (ADS)
Li, Shengjie; Bai, Junjie; Wang, Lin
2008-08-01
Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.
RNase 1 genes from the Family Sciuridae define a novel rodent ribonuclease cluster
Siegel, Steven J.; Percopo, Caroline M.; Dyer, Kimberly D.; Zhao, Wei; Roth, V. Louise; Mercer, John M.; Rosenberg, Helene F.
2009-01-01
The RNase A ribonucleases are complex group of functionally diverse secretory proteins with conserved enzymatic activity. We have identified novel RNase 1 genes from four species of squirrel (order Rodentia, family Sciuridae). Squirrel RNase 1 genes encode typical RNase A ribonucleases, each with eight cysteines, a conserved CKXXNTF signature motif, and a canonical His12-Lys41-His119 catalytic triad. Two alleles encode Callosciurus prevostii RNase 1, which include a Ser18↔Pro, analogous to the sequence polymorphisms found among the RNase 1 duplications in the genome of Rattus exulans. Interestingly, although the squirrel RNase 1 genes are closely related to one another (77 to 95% amino acid sequence identity), the cluster as a whole is distinct and divergent from the clusters including RNase 1 genes from other rodent species. We examined the specific sites at which Sciuridae RNase 1s diverge from Muridae / Cricetidae RNase 1s, and determined that the divergent sites are located on the external surface, with complete sparing of the catalytic crevice. The full significance of these findings awaits a more complete understanding of biological role of mammalian RNase 1s. PMID:19771477
Revealing the missing expressed genes beyond the human reference genome by RNA-Seq.
Chen, Geng; Li, Ruiyuan; Shi, Leming; Qi, Junyi; Hu, Pengzhan; Luo, Jian; Liu, Mingyao; Shi, Tieliu
2011-12-02
The complete and accurate human reference genome is important for functional genomics researches. Therefore, the incomplete reference genome and individual specific sequences have significant effects on various studies. we used two RNA-Seq datasets from human brain tissues and 10 mixed cell lines to investigate the completeness of human reference genome. First, we demonstrated that in previously identified ~5 Mb Asian and ~5 Mb African novel sequences that are absent from the human reference genome of NCBI build 36, ~211 kb and ~201 kb of them could be transcribed, respectively. Our results suggest that many of those transcribed regions are not specific to Asian and African, but also present in Caucasian. Then, we found that the expressions of 104 RefSeq genes that are unalignable to NCBI build 37 in brain and cell lines are higher than 0.1 RPKM. 55 of them are conserved across human, chimpanzee and macaque, suggesting that there are still a significant number of functional human genes absent from the human reference genome. Moreover, we identified hundreds of novel transcript contigs that cannot be aligned to NCBI build 37, RefSeq genes and EST sequences. Some of those novel transcript contigs are also conserved among human, chimpanzee and macaque. By positioning those contigs onto the human genome, we identified several large deletions in the reference genome. Several conserved novel transcript contigs were further validated by RT-PCR. Our findings demonstrate that a significant number of genes are still absent from the incomplete human reference genome, highlighting the importance of further refining the human reference genome and curating those missing genes. Our study also shows the importance of de novo transcriptome assembly. The comparative approach between reference genome and other related human genomes based on the transcriptome provides an alternative way to refine the human reference genome.
Yang, Deying; Fu, Yan; Wu, Xuhang; Xie, Yue; Nie, Huaming; Chen, Lin; Nong, Xiang; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yan, Ning; Zhang, Runhui; Zheng, Wanpeng; Yang, Guangyou
2012-01-01
Background Taenia pisiformis is one of the most common intestinal tapeworms and can cause infections in canines. Adult T. pisiformis (canines as definitive hosts) and Cysticercus pisiformis (rabbits as intermediate hosts) cause significant health problems to the host and considerable socio-economic losses as a consequence. No complete genomic data regarding T. pisiformis are currently available in public databases. RNA-seq provides an effective approach to analyze the eukaryotic transcriptome to generate large functional gene datasets that can be used for further studies. Methodology/Principal Findings In this study, 2.67 million sequencing clean reads and 72,957 unigenes were generated using the RNA-seq technique. Based on a sequence similarity search with known proteins, a total of 26,012 unigenes (no redundancy) were identified after quality control procedures via the alignment of four databases. Overall, 15,920 unigenes were mapped to 203 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through analyzing the glycolysis/gluconeogenesis and axonal guidance pathways, we achieved an in-depth understanding of the biochemistry of T. pisiformis. Here, we selected four unigenes at random and obtained their full-length cDNA clones using RACE PCR. Functional distribution characteristics were gained through comparing four cestode species (72,957 unigenes of T. pisiformis, 30,700 ESTs of T. solium, 1,058 ESTs of Eg+Em [conserved ESTs between Echinococcus granulosus and Echinococcus multilocularis]), with the cluster of orthologous groups (COG) and gene ontology (GO) functional classification systems. Furthermore, the conserved common genes in these four cestode species were obtained and aligned by the KEGG database. Conclusion This study provides an extensive transcriptome dataset obtained from the deep sequencing of T. pisiformis in a non-model whole genome. The identification of conserved genes may provide novel approaches for potential drug targets and vaccinations against cestode infections. Research can now accelerate into the functional genomics, immunity and gene expression profiles of cestode species. PMID:22514598
Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo
2003-01-01
To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979
Nikolaidis, Nikolas; Nei, Masatoshi
2004-03-01
We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.
Hambly, Emma; Tétart, Francoise; Desplats, Carine; Wilson, William H.; Krisch, Henry M.; Mann, Nicholas H.
2001-01-01
Sequence analysis of a 10-kb region of the genome of the marine cyanomyovirus S-PM2 reveals a homology to coliphage T4 that extends as a contiguous block from gene (g)18 to g23. The order of the S-PM2 genes in this region is similar to that of T4, but there are insertions and deletions of small ORFs of unknown function. In T4, g18 codes for the tail sheath, g19, the tail tube, g20, the head portal protein, g21, the prohead core protein, g22, a scaffolding protein, and g23, the major capsid protein. Thus, the entire module that determines the structural components of the phage head and contractile tail is conserved between T4 and this cyanophage. The significant differences in the morphology of these phages must reflect the considerable divergence of the amino acid sequence of their homologous virion proteins, which uniformly exceeds 50%. We suggest that their enormous diversity in the sea could be a result of genetic shuffling between disparate phages mediated by such commonly shared modules. These conserved sequences could facilitate genetic exchange by providing partially homologous substrates for recombination between otherwise divergent phage genomes. Such a mechanism would thus expand the pool of phage genes accessible by recombination to all those phages that share common modules. PMID:11553768
Shen, K A; Meyers, B C; Islam-Faridi, M N; Chin, D B; Stelly, D M; Michelmore, R W
1998-08-01
The recent cloning of genes for resistance against diverse pathogens from a variety of plants has revealed that many share conserved sequence motifs. This provides the possibility of isolating numerous additional resistance genes by polymerase chain reaction (PCR) with degenerate oligonucleotide primers. We amplified resistance gene candidates (RGCs) from lettuce with multiple combinations of primers with low degeneracy designed from motifs in the nucleotide binding sites (NBSs) of RPS2 of Arabidopsis thaliana and N of tobacco. Genomic DNA, cDNA, and bacterial artificial chromosome (BAC) clones were successfully used as templates. Four families of sequences were identified that had the same similarity to each other as to resistance genes from other species. The relationship of the amplified products to resistance genes was evaluated by several sequence and genetic criteria. The amplified products contained open reading frames with additional sequences characteristic of NBSs. Hybridization of RGCs to genomic DNA and to BAC clones revealed large numbers of related sequences. Genetic analysis demonstrated the existence of clustered multigene families for each of the four RGC sequences. This parallels classical genetic data on clustering of disease resistance genes. Two of the four families mapped to known clusters of resistance genes; these two families were therefore studied in greater detail. Additional evidence that these RGCs could be resistance genes was gained by the identification of leucine-rich repeat (LRR) regions in sequences adjoining the NBS similar to those in RPM1 and RPS2 of A. thaliana. Fluorescent in situ hybridization confirmed the clustered genomic distribution of these sequences. The use of PCR with degenerate oligonucleotide primers is therefore an efficient method to identify numerous RGCs in plants.
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci
Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.
2000-01-01
The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes. PMID:11092850
Gene family innovation, conservation and loss on the animal stem lineage.
Richter, Daniel J; Fozouni, Parinaz; Eisen, Michael; King, Nicole
2018-05-31
Choanoflagellates, the closest living relatives of animals, can provide unique insights into the changes in gene content that preceded the origin of animals. However, only two choanoflagellate genomes are currently available, providing poor coverage of their diversity. We sequenced transcriptomes of 19 additional choanoflagellate species to produce a comprehensive reconstruction of the gains and losses that shaped the ancestral animal gene repertoire. We identified ~1,944 gene families that originated on the animal stem lineage, of which only 39 are conserved across all animals in our study. In addition, ~372 gene families previously thought to be animal-specific, including Notch, Delta, and homologs of the animal Toll-like receptor genes, instead evolved prior to the animal-choanoflagellate divergence. Our findings contribute to an increasingly detailed portrait of the gene families that defined the biology of the Urmetazoan and that may underpin core features of extant animals. © 2018, Richter et al.
Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C
1986-01-01
The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730