NASA Astrophysics Data System (ADS)
Poornima, C. S.; Dean, P. M.
1995-12-01
Water molecules are known to play an important rôle in mediating protein-ligand interactions. If water molecules are conserved at the ligand-binding sites of homologous proteins, such a finding may suggest the structural importance of water molecules in ligand binding. Structurally conserved water molecules change the conventional definition of `binding sites' by changing the shape and complementarity of these sites. Such conserved water molecules can be important for site-directed ligand/drug design. Therefore, five different sets of homologous protein/protein-ligand complexes have been examined to identify the conserved water molecules at the ligand-binding sites. Our analysis reveals that there are as many as 16 conserved water molecules at the FAD binding site of glutathione reductase between the crystal structures obtained from human and E. coli. In the remaining four sets of high-resolution crystal structures, 2-4 water molecules have been found to be conserved at the ligand-binding sites. The majority of these conserved water molecules are either bound in deep grooves at the protein-ligand interface or completely buried in cavities between the protein and the ligand. All these water molecules, conserved between the protein/protein-ligand complexes from different species, have identical or similar apolar and polar interactions in a given set. The site residues interacting with the conserved water molecules at the ligand-binding sites have been found to be highly conserved among proteins from different species; they are more conserved compared to the other site residues interacting with the ligand. These water molecules, in general, make multiple polar contacts with protein-site residues.
Ligand deconstruction: Why some fragment binding positions are conserved and others are not.
Kozakov, Dima; Hall, David R; Jehle, Stefan; Jehle, Sefan; Luo, Lingqi; Ochiana, Stefan O; Jones, Elizabeth V; Pollastri, Michael; Allen, Karen N; Whitty, Adrian; Vajda, Sandor
2015-05-19
Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots--regions of the protein where interactions with a ligand contribute substantial binding free energy--the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand.
Ligand deconstruction: Why some fragment binding positions are conserved and others are not
Kozakov, Dima; Hall, David R.; Jehle, Stefan; Luo, Lingqi; Ochiana, Stefan O.; Jones, Elizabeth V.; Pollastri, Michael; Allen, Karen N.; Whitty, Adrian; Vajda, Sandor
2015-01-01
Fragment-based drug discovery (FBDD) relies on the premise that the fragment binding mode will be conserved on subsequent expansion to a larger ligand. However, no general condition has been established to explain when fragment binding modes will be conserved. We show that a remarkably simple condition can be developed in terms of how fragments coincide with binding energy hot spots—regions of the protein where interactions with a ligand contribute substantial binding free energy—the locations of which can easily be determined computationally. Because a substantial fraction of the free energy of ligand binding comes from interacting with the residues in the energetically most important hot spot, a ligand moiety that sufficiently overlaps with this region will retain its location even when other parts of the ligand are removed. This hypothesis is supported by eight case studies. The condition helps identify whether a protein is suitable for FBDD, predicts the size of fragments required for screening, and determines whether a fragment hit can be extended into a higher affinity ligand. Our results show that ligand binding sites can usefully be thought of in terms of an anchor site, which is the top-ranked hot spot and dominates the free energy of binding, surrounded by a number of weaker satellite sites that confer improved affinity and selectivity for a particular ligand and that it is the intrinsic binding potential of the protein surface that determines whether it can serve as a robust binding site for a suitably optimized ligand. PMID:25918377
Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38α Kinase
Termathe, Martin; Grütter, Christian; Rabiller, Matthias; van Otterlo, Willem A. L.; Rauh, Daniel
2012-01-01
The vast majority of small molecules known to modulate kinase activity, target the highly conserved ATP-pocket. Consequently, such ligands are often less specific and in case of inhibitors, this leads to the inhibition of multiple kinases. Thus, selective modulation of kinase function remains a major hurdle. One of the next great challenges in kinase research is the identification of ligands which bind to less conserved sites and target the non-catalytic functions of protein kinases. However, approaches that allow for the unambiguous identification of molecules that bind to these less conserved sites are few in number. We have previously reported the use of fluorescent labels in kinases (FLiK) to develop direct kinase binding assays that exclusively detect ligands which stabilize inactive (DFG-out) kinase conformations. Here, we present the successful application of the FLiK approach to develop a high-throughput binding assay capable of directly monitoring ligand binding to a remote site within the MAPK insert of p38α mitogen-activated protein kinase (MAPK). Guided by the crystal structure of an initially identified hit molecule in complex with p38α, we developed a tight binding ligand which may serve as an ideal starting point for further investigations of the biological function of the MAPK insert in regulating the p38α signaling pathway. PMID:22768308
Fadda, Elisa; Woods, Robert J
2011-10-11
The ability of ligands to displace conserved water molecules in protein binding sites is of significant interest in drug design and is particularly pertinent in the case of glycomimetic drugs. This concept was explored in previous work [ Clarke et al. J. Am. Chem. Soc. 2001 , 123 , 12238 - 12247 and Kadirvelraj et al. J. Am. Chem. Soc. 2008 , 130 , 16933 - 16942 ] for a highly conserved water molecule located in the binding site of the prototypic carbohydrate-binding protein Concanavalin A (Con A). A synthetic ligand was designed with the aim of displacing such water. While the synthetic ligand bound to Con A in an analogous manner to that of the natural ligand, crystallographic analysis demonstrated that it did not displace the conserved water. In order to quantify the affinity of this particular water for the Con A surface, we report here the calculated standard binding free energy for this water in both ligand-bound and free Con A, employing three popular water models: TIP3P, TIP4P, and TIP5P. Although each model was developed to perform well in simulations of bulk-phase water, the computed binding energies for the isolated water molecule displayed a high sensitivity to the model. Both molecular dynamics simulation and free energy results indicate that the choice of water model may greatly influence the characterization of surface water molecules as conserved (TIP5P) or not (TIP3P) in protein binding sites, an observation of considerable significance to rational drug design. Structural and theoretical aspects at the basis of the different behaviors are identified and discussed.
Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics.
Graham, Sarah E; Smith, Richard D; Carlson, Heather A
2018-02-26
Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.
Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan
2016-03-24
Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.
Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matte, Allan; Grosse, Stephan; Bergeron, Hélène
The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally relatedmore » proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.« less
Electrostatic steering and ionic tethering in enzyme-ligand binding: insights from simulations.
Wade, R C; Gabdoulline, R R; Lüdemann, S K; Lounnas, V
1998-05-26
To bind at an enzyme's active site, a ligand must diffuse or be transported to the enzyme's surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and beta-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as "ionic tethering." We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme's surroundings even when the substrate is nonpolar.
NASA Technical Reports Server (NTRS)
Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.
1995-01-01
A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.
Electrostatic steering and ionic tethering in enzyme–ligand binding: Insights from simulations
Wade, Rebecca C.; Gabdoulline, Razif R.; Lüdemann, Susanna K.; Lounnas, Valère
1998-01-01
To bind at an enzyme’s active site, a ligand must diffuse or be transported to the enzyme’s surface, and, if the binding site is buried, the ligand must diffuse through the protein to reach it. Although the driving force for ligand binding is often ascribed to the hydrophobic effect, electrostatic interactions also influence the binding process of both charged and nonpolar ligands. First, electrostatic steering of charged substrates into enzyme active sites is discussed. This is of particular relevance for diffusion-influenced enzymes. By comparing the results of Brownian dynamics simulations and electrostatic potential similarity analysis for triose-phosphate isomerases, superoxide dismutases, and β-lactamases from different species, we identify the conserved features responsible for the electrostatic substrate-steering fields. The conserved potentials are localized at the active sites and are the primary determinants of the bimolecular association rates. Then we focus on a more subtle effect, which we will refer to as “ionic tethering.” We explore, by means of molecular and Brownian dynamics simulations and electrostatic continuum calculations, how salt links can act as tethers between structural elements of an enzyme that undergo conformational change upon substrate binding, and thereby regulate or modulate substrate binding. This is illustrated for the lipase and cytochrome P450 enzymes. Ionic tethering can provide a control mechanism for substrate binding that is sensitive to the electrostatic properties of the enzyme’s surroundings even when the substrate is nonpolar. PMID:9600896
Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-01-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740
Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich
2009-03-01
Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.
Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei
2010-05-05
Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.
Granovsky, Alexey E.; Clark, Mathew M.; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R.; Koide, Shohei
2010-01-01
Background Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. Methods/Findings In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. Conclusions/Significance This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential. PMID:20463977
NASA Astrophysics Data System (ADS)
Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre
2016-06-01
START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.
Affinity, Avidity, and Kinetics of Target Sequence Binding to LC8 Dynein Light Chain Isoforms*
Radnai, László; Rapali, Péter; Hódi, Zsuzsa; Süveges, Dániel; Molnár, Tamás; Kiss, Bence; Bécsi, Bálint; Erdödi, Ferenc; Buday, László; Kardos, József; Kovács, Mihály; Nyitray, László
2010-01-01
LC8 dynein light chain (DYNLL) is a highly conserved eukaryotic hub protein with dozens of binding partners and various functions beyond being a subunit of dynein and myosin Va motor proteins. Here, we compared the kinetic and thermodynamic parameters of binding of both mammalian isoforms, DYNLL1 and DYNLL2, to two putative consensus binding motifs (KXTQTX and XG(I/V)QVD) and report only subtle differences. Peptides containing either of the above motifs bind to DYNLL2 with micromolar affinity, whereas a myosin Va peptide (lacking the conserved Gln) and the noncanonical Pak1 peptide bind with Kd values of 9 and 40 μm, respectively. Binding of the KXTQTX motif is enthalpy-driven, although that of all other peptides is both enthalpy- and entropy-driven. Moreover, the KXTQTX motif shows strikingly slower off-rate constant than the other motifs. As most DYNLL partners are homodimeric, we also assessed the binding of bivalent ligands to DYNLL2. Compared with monovalent ligands, a significant avidity effect was found as follows: Kd values of 37 and 3.5 nm for a dimeric myosin Va fragment and a Leu zipper dimerized KXTQTX motif, respectively. Ligand binding kinetics of DYNLL can best be described by a conformational selection model consisting of a slow isomerization and a rapid binding step. We also studied the binding of the phosphomimetic S88E mutant of DYNLL2 to the dimeric myosin Va fragment, and we found a significantly lower apparent Kd value (3 μm). We conclude that the thermodynamic and kinetic fine-tuning of binding of various ligands to DYNLL could have physiological relevance in its interaction network. PMID:20889982
Prigozhin, Daniil M; Papavinasasundaram, Kadamba G; Baer, Christina E; Murphy, Kenan C; Moskaleva, Alisa; Chen, Tony Y; Alber, Tom; Sassetti, Christopher M
2016-10-28
Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Urate is a ligand for the transcriptional regulator PecS.
Perera, Inoka C; Grove, Anne
2010-09-24
PecS is a member of the MarR (multiple antibiotic resistance regulator) family, which has been shown in Erwinia to regulate the expression of virulence genes. MarR homologs typically bind a small molecule ligand, resulting in attenuated DNA binding. For PecS, the natural ligand has not been identified. We have previously shown that urate is a ligand for the Deinococcus radiodurans-encoded MarR homolog HucR (hypothetical uricase regulator) and identified residues responsible for ligand binding. We show here that all four residues involved in urate binding and propagation of conformational changes to DNA recognition helices are conserved in PecS homologs, suggesting that urate is the ligand for PecS. Consistent with this prediction, Agrobacterium tumefaciens PecS specifically binds urate, and urate attenuates DNA binding in vitro. PecS binds two operator sites in the intergenic region between the divergent pecS gene and pecM genes, one of which features two partially overlapping repeats to which PecS binds as a dimer on opposite faces of the duplex. Notably, urate dissociates PecS from cognate DNA, allowing transcription of both genes in vivo. Taken together, our data show that urate is a ligand for PecS and suggest that urate serves a novel function in signaling the colonization of a host plant. Copyright © 2010 Elsevier Ltd. All rights reserved.
Alternative dimerization interfaces in the glucocorticoid receptor-α ligand binding domain.
Bianchetti, Laurent; Wassmer, Bianca; Defosset, Audrey; Smertina, Anna; Tiberti, Marion L; Stote, Roland H; Dejaegere, Annick
2018-04-30
Nuclear hormone receptors (NRs) constitute a large family of multi-domain ligand-activated transcription factors. Dimerization is essential for their regulation, and both DNA binding domain (DBD) and ligand binding domain (LBD) are implicated in dimerization. Intriguingly, the glucocorticoid receptor-α (GRα) presents a DBD dimeric architecture similar to that of the homologous estrogen receptor-α (ERα), but an atypical dimeric architecture for the LBD. The physiological relevance of the proposed GRα LBD dimer is a subject of debate. We analyzed all GRα LBD homodimers observed in crystals using an energetic analysis based on the PISA and on the MM/PBSA methods and a sequence conservation analysis, using the ERα LBD dimer as a reference point. Several dimeric assemblies were observed for GRα LBD. The assembly generally taken to be physiologically relevant showed weak binding free energy and no significant residue conservation at the contact interface, while an alternative homodimer mediated by both helix 9 and C-terminal residues showed significant binding free energy and residue conservation. However, none of the GRα LBD assemblies found in crystals are as stable or conserved as the canonical ERα LBD dimer. GRα C-terminal sequence (F-domain) forms a steric obstacle to the canonical dimer assembly in all available structures. Our analysis calls for a re-examination of the currently accepted GRα homodimer structure and experimental investigations of the alternative architectures. This work questions the validity of the currently accepted architecture. This has implications for interpreting physiological data and for therapeutic design pertaining to glucocorticoid research. Copyright © 2018. Published by Elsevier B.V.
Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas
2001-01-01
Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both types of fimbria on the investigated Actinomyces strains. PMID:11705891
Molecular Basis of Ligand Dissociation in β-Adrenergic Receptors
González, Angel; Perez-Acle, Tomas; Pardo, Leonardo; Deupi, Xavier
2011-01-01
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process. PMID:21915263
Protein interactions and ligand binding: from protein subfamilies to functional specificity.
Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso
2010-02-02
The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.
Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro
2012-01-01
Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.
Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.
2011-01-01
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452
Guiding lead optimization with GPCR structure modeling and molecular dynamics.
Heifetz, Alexander; James, Tim; Morao, Inaki; Bodkin, Michael J; Biggin, Philip C
2016-10-01
G-protein coupled receptor (GPCR) modeling approaches are widely used in the hit-to-lead and lead optimization stages of drug discovery. Modern protocols that involve molecular dynamics simulation can address key issues such as the free energy of binding (affinity), ligand-induced GPCR flexibility, ligand binding kinetics, conserved water positions and their role in ligand binding and the effects of mutations. The goals of these calculations are to predict the structures of the complexes between existing ligands and their receptors, to understand the key interactions and to utilize these insights in the design of new molecules with improved binding, selectivity or other pharmacological properties. In this review we present a brief survey of various computational approaches illustrated through a hierarchical GPCR modeling protocol and its prospective application in three industrial drug discovery projects. Copyright © 2016 Elsevier Ltd. All rights reserved.
LiCata, V J; Bernlohr, D A
1998-12-01
Adipocyte lipid-binding protein (ALBP) is one of a family of intracellular lipid-binding proteins (iLBPs) that bind fatty acids, retinoids, and other hydrophobic ligands. The different members of this family exhibit a highly conserved three-dimensional structure; and where structures have been determined both with (holo) and without (apo) bound lipid, observed conformational changes are extremely small (Banaszak, et al., 1994, Adv. Prot. Chem. 45, 89; Bernlohr, et al., 1997, Annu. Rev. Nutr. 17, 277). We have examined the electrostatic, hydrophobic, and water accessible surfaces of ALBP in the apo form and of holo forms with a variety of bound ligands. These calculations reveal a number of previously unrecognized changes between apo and holo ALBP, including: 1) an increase in the overall protein surface area when ligand binds, 2) expansion of the binding cavity when ligand is bound, 3) clustering of individual residue exposure increases in the area surrounding the proposed ligand entry portal, and 4) ligand-binding dependent variation in the topology of the electrostatic potential in the area surrounding the ligand entry portal. These focused analyses of the crystallographic structures thus reveal a number of subtle but consistent conformational and surface changes that might serve as markers for differential targeting of protein-lipid complexes within the cell. Most changes are consistent from ligand to ligand, however there are some ligand-specific changes. Comparable calculations with intestinal fatty-acid-binding protein and other vertebrate iLBPs show differences in the electrostatic topology, hydrophobic topology, and in localized changes in solvent exposure near the ligand entry portal. These results provide a basis toward understanding the functional and mechanistic differences among these highly structurally homologous proteins. Further, they suggest that iLBPs from different tissues exhibit one of two predominant end-state structural distributions of the ligand entry portal.
Funatogawa, Chie; Li, Yang; Chen, Ying; McDonald, William; Szundi, Istvan; Fee, James A; Stout, C David; Einarsdóttir, Ólöf
2017-01-10
Knowledge of the role of conserved residues in the ligand channel of heme-copper oxidases is critical for understanding how the protein scaffold modulates the function of these enzymes. In this study, we investigated the role of the conserved valine 236 in the ligand channel of ba 3 cytochrome c oxidase from Thermus thermophilus by mutating the residue to a more polar (V236T), smaller (V236A), or larger (V236I, V236N, V236L, V236M, and V236F) residue. The crystal structures of the mutants were determined, and the effects of the mutations on the rates of CO, O 2 , and NO binding were investigated. O 2 reduction and NO binding were unaffected in V236T, while the oxidation of heme b during O-O bond cleavage was not detected in V236A. The V236A results are attributed to a decrease in the rate of electron transfer between heme b and heme a 3 during O-O bond cleavage in V236A, followed by faster re-reduction of heme b by Cu A . This interpretation is supported by classical molecular dynamics simulations of diffusion of O 2 to the active site in V236A that indicated a larger distance between the two hemes compared to that in the wild type and increased contact of heme a 3 with water and weakened interactions with residues R444 and R445. As the size of the mutant side chain increased and protruded more into the ligand cavity, the rates of ligand binding decreased correspondingly. These results demonstrate the importance of V236 in facilitating access of ligands to the active site in T. thermophilus ba 3 .
Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai
A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GRmore » LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.« less
Novel Functional Properties of Drosophila CNS Glutamate Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Dharkar, Poorva; Han, Tae-Hee
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation bymore » its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.« less
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L
2016-12-07
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation. VIDEO ABSTRACT. Published by Elsevier Inc.
Ho, Ngoc Anh Thu; Dawes, Stephanie S.; Crowe, Adam M.; Casabon, Israël; Gao, Chen; Kendall, Sharon L.; Baker, Edward N.; Eltis, Lindsay D.; Lott, J. Shaun
2016-01-01
Cholesterol can be a major carbon source for Mycobacterium tuberculosis during infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, including kstR, are either induced during infection or are essential for survival of M. tuberculosis in vivo. In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50 for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release. PMID:26858250
NASA Astrophysics Data System (ADS)
Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.
2017-03-01
Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.
Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward
2010-01-12
The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site,more » thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.« less
Solution structure of the chick TGFbeta type II receptor ligand-binding domain.
Marlow, Michael S; Brown, Christopher B; Barnett, Joey V; Krezel, Andrzej M
2003-02-28
The transforming growth factor beta (TGFbeta) signaling pathway influences cell proliferation, immune responses, and extracellular matrix reorganization throughout the vertebrate life cycle. The signaling cascade is initiated by ligand-binding to its cognate type II receptor. Here, we present the structure of the chick type II TGFbeta receptor determined by solution NMR methods. Distance and angular constraints were derived from 15N and 13C edited NMR experiments. Torsion angle dynamics was used throughout the structure calculations and refinement. The 20 final structures were energy minimized using the generalized Born solvent model. For these 20 structures, the average backbone root-mean-square distance from the average structure is below 0.6A. The overall fold of this 109-residue domain is conserved within the superfamily of these receptors. Chick receptors fully recognize and respond to human TGFbeta ligands despite only 60% identity at the sequence level. Comparison with the human TGFbeta receptor determined by X-ray crystallography reveals different conformations in several regions. Sequence divergence and crystal packing interactions under low pH conditions are likely causes. This solution structure identifies regions were structural changes, however subtle, may occur upon ligand-binding. We also identified two very well conserved molecular surfaces. One was found to bind ligand in the crystallized human TGFbeta3:TGFbeta type II receptor complex. The other, newly identified area can be the interaction site with type I and/or type III receptors of the TGFbeta signaling complex.
Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning.
Heredia, Jeremiah D; Park, Jihye; Brubaker, Riley J; Szymanski, Steven K; Gill, Kevin S; Procko, Erik
2018-06-01
Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H79 2.45 and W161 4.50 ) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously. Copyright © 2018 by The American Association of Immunologists, Inc.
Palencia, Andrés; Cobos, Eva S; Mateo, Pedro L; Martínez, Jose C; Luque, Irene
2004-02-13
The inhibition of the interactions between SH3 domains and their targets is emerging as a promising therapeutic strategy. To date, rational design of potent ligands for these domains has been hindered by the lack of understanding of the origins of the binding energy. We present here a complete thermodynamic analysis of the binding energetics of the p41 proline-rich decapeptide (APSYSPPPPP) to the SH3 domain of the c-Abl oncogene. Isothermal titration calorimetry experiments have revealed a thermodynamic signature for this interaction (very favourable enthalpic contributions opposed by an unfavourable binding entropy) inconsistent with the highly hydrophobic nature of the p41 ligand and the Abl-SH3 binding site. Our structural and thermodynamic analyses have led us to the conclusion, having once ruled out any possible ionization events or conformational changes coupled to the association, that the establishment of a complex hydrogen-bond network mediated by water molecules buried at the binding interface is responsible for the observed thermodynamic behaviour. The origin of the binding energetics for proline-rich ligands to the Abl-SH3 domain is further investigated by a comparative calorimetric analysis of a set of p41-related ligands. The striking effects upon the enthalpic and entropic contributions provoked by conservative substitutions at solvent-exposed positions in the ligand confirm the complexity of the interaction. The implications of these results for rational ligand design are discussed.
Bennett, T A; Maestas, D C; Prossnitz, E R
2000-08-11
Following activation by ligand, the N-formyl peptide receptor (FPR) undergoes processing events initiated by phosphorylation that lead to receptor desensitization and internalization. Our previous results have shown that FPR internalization can occur in the absence of receptor desensitization, suggesting that FPR desensitization and internalization are controlled by distinct mechanisms. More recently, we have provided evidence that internalization of the FPR occurs via a mechanism that is independent of the actions of arrestin, dynamin, and clathrin. In the present report, we demonstrate that stimulation of the FPR with agonist leads to a significant translocation of arrestin-2 from the cytosol to the membrane. Fluorescence microscopy revealed that the translocated arrestin-2 is highly colocalized with the ligand-bound FPR. A D71A mutant FPR, which does not undergo activation or phosphorylation in response to ligand, did not colocalize with arrestin-2. Surprisingly, an R123G mutant FPR, which does not bind G protein but does become phosphorylated and subsequently internalized, also did not bind arrestin. These results indicate that arrestin binding is not required for FPR internalization and demonstrate for the first time that a common motif, the conserved "DRY" domain of G protein-coupled receptors, is essential for phosphorylation-dependent arrestin binding, as well as G protein activation.
Mechanistic events underlying odorant binding protein chemoreception.
Golebiowski, Jérôme; Antonczak, Serge; Fiorucci, Sébastien; Cabrol-Bass, Daniel
2007-05-01
Odorant binding proteins (OBP's) are small hydrophilic proteins, belonging to the lipocalin family dedicated to bind and transport small hydrophobic ligands. Despite many works, the mechanism of ligand binding, together with the functional role of these proteins remains a topic of debate and little is known at the atomic level. The present work reports a computational study of odorants capture and release by an OBP, using both constrained and unconstrained simulations, giving a glimpse on the molecular mechanism of chemoreception. The residues at the origin of the regulation of the protein door opening are identified and a tyrosine amino-acid together with other nearby residues appear to play a crucial role in allowing this event to occur. The simulations reveal that this tyrosine and the protein's L5 loop are implicated in the ligand contact with the protein and act as an anchoring point for the ligand. The protein structural features required for the ligand entry are highly conserved among many transport proteins, suggesting that this mechanism could somewhat be extended to some members of the larger family of lipocalin. (c) 2007 Wiley-Liss, Inc.
Saleh, Noureldin; Ibrahim, Passainte; Saladino, Giorgio; Gervasio, Francesco Luigi; Clark, Timothy
2017-05-22
A generally applicable metadynamics scheme for predicting the free energy profile of ligand binding to G-protein-coupled receptors (GPCRs) is described. A common and effective collective variable (CV) has been defined using the ideally placed and highly conserved Trp6.48 as a reference point for ligand-GPCR distance measurement and the common orientation of GPCRs in the cell membrane. Using this single CV together with well-tempered multiple-walker metadynamics with a funnel-like boundary allows an efficient exploration of the entire ligand binding path from the extracellular medium to the orthosteric binding site, including vestibule and intermediate sites. The protocol can be used with X-ray structures or high-quality homology models (based on a high-quality template and after thorough refinement) for the receptor and is universally applicable to agonists, antagonists, and partial and reverse agonists. The root-mean-square error (RMSE) in predicted binding free energies for 12 diverse ligands in five receptors (a total of 23 data points) is surprisingly small (less than 1 kcal mol -1 ). The RMSEs for simulations that use receptor X-ray structures and homology models are very similar.
Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg
2016-01-01
Toxin–antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta–Epsilon toxin–antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε2ζ2 complex. Three α helices of Zeta forming the protein–protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε2ζ2 complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay. PMID:27438853
Fernández-Bachiller, María Isabel; Brzozowska, Iwona; Odolczyk, Norbert; Zielenkiewicz, Urszula; Zielenkiewicz, Piotr; Rademann, Jörg
2016-07-16
Toxin-antitoxin systems constitute a native survival strategy of pathogenic bacteria and thus are potential targets of antibiotic drugs. Here, we target the Zeta-Epsilon toxin-antitoxin system, which is responsible for the stable maintenance of certain multiresistance plasmids in Gram-positive bacteria. Peptide ligands were designed on the basis of the ε₂ζ₂ complex. Three α helices of Zeta forming the protein-protein interaction (PPI) site were selected and peptides were designed conserving the residues interacting with Epsilon antitoxin while substituting residues binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were used to define the hot spots of the ε₂ζ₂ complex. Further shortening and modification of the binding peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs and implement a robust competition binding assay.
Molecular Determinants of Epidermal Growth Factor Binding: A Molecular Dynamics Study
Sanders, Jeffrey M.; Wampole, Matthew E.; Thakur, Mathew L.; Wickstrom, Eric
2013-01-01
The epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinase family that plays a role in multiple cellular processes. Activation of EGFR requires binding of a ligand on the extracellular domain to promote conformational changes leading to dimerization and transphosphorylation of intracellular kinase domains. Seven ligands are known to bind EGFR with affinities ranging from sub-nanomolar to near micromolar dissociation constants. In the case of EGFR, distinct conformational states assumed upon binding a ligand is thought to be a determining factor in activation of a downstream signaling network. Previous biochemical studies suggest the existence of both low affinity and high affinity EGFR ligands. While these studies have identified functional effects of ligand binding, high-resolution structural data are lacking. To gain a better understanding of the molecular basis of EGFR binding affinities, we docked each EGFR ligand to the putative active state extracellular domain dimer and 25.0 ns molecular dynamics simulations were performed. MM-PBSA/GBSA are efficient computational approaches to approximate free energies of protein-protein interactions and decompose the free energy at the amino acid level. We applied these methods to the last 6.0 ns of each ligand-receptor simulation. MM-PBSA calculations were able to successfully rank all seven of the EGFR ligands based on the two affinity classes: EGF>HB-EGF>TGF-α>BTC>EPR>EPG>AR. Results from energy decomposition identified several interactions that are common among binding ligands. These findings reveal that while several residues are conserved among the EGFR ligand family, no single set of residues determines the affinity class. Instead we found heterogeneous sets of interactions that were driven primarily by electrostatic and Van der Waals forces. These results not only illustrate the complexity of EGFR dynamics but also pave the way for structure-based design of therapeutics targeting EGF ligands or the receptor itself. PMID:23382875
Rucktooa, Prakash; Antoine, Rudy; Herrou, Julien; Huvent, Isabelle; Locht, Camille; Jacob-Dubuisson, Françoise; Villeret, Vincent; Bompard, Coralie
2007-06-29
Gram-negative bacteria have developed several different transport systems for solute uptake. One of these, the tripartite ATP independent periplasmic transport system (TRAP-T), makes use of an extracytoplasmic solute receptor (ESR) which captures specific solutes with high affinity and transfers them to their partner permease complex located in the bacterial inner membrane. We hereby report the structures of DctP6 and DctP7, two such ESRs from Bordetella pertussis. These two proteins display a high degree of sequence and structural similarity and possess the "Venus flytrap" fold characteristic of ESRs, comprising two globular alpha/beta domains hinged together to form a ligand binding cleft. DctP6 and DctP7 both show a closed conformation due to the presence of one pyroglutamic acid molecule bound by highly conserved residues in their respective ligand binding sites. BLAST analyses have revealed that the DctP6 and DctP7 residues involved in ligand binding are strictly present in a number of predicted TRAP-T ESRs from other bacteria. In most cases, the genes encoding these TRAP-T systems are located in the vicinity of a gene coding for a pyroglutamic acid metabolising enzyme. Both the high degree of conservation of these ligand binding residues and the genomic context of these TRAP-T-coding operons in a number of bacterial species, suggest that DctP6 and DctP7 constitute the prototypes of a novel TRAP-T DctP subfamily involved in pyroglutamic acid transport.
Molecular modeling of ligand-receptor interactions in the OR5 olfactory receptor.
Singer, M S; Shepherd, G M
1994-06-02
Olfactory receptors belong to the superfamily of seven transmembrane domain, G protein-coupled receptors. In order to begin analysis of mechanisms of receptor activation, a computer model of the OR5 olfactory receptor has been constructed and compared with other members of this superfamily. We have tested docking of the odor molecule lyral, which is known to activate the OR5 receptor. The results point to specific ligand-binding residues on helices III through VII that form a binding pocket in the receptor. Some of these residues occupy sequence positions identical to ligand-binding residues conserved among other superfamily members. The results provide new insights into possible molecular mechanisms of odor recognition and suggest hypotheses to guide future experimental studies using site-directed mutagenesis.
Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*
Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul
2012-01-01
The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022
Elhaji, Youssef A; Stoica, Ileana; Dennis, Sheldon; Purisima, Enrico O; Lumbroso, Rose; Beitel, Lenore K; Trifiro, Mark A
2006-03-15
Structural studies of the ligand-binding domain (LBD) of several steroid receptors have revealed that the dynamic properties of the C-terminal helix 12 (H12) are the major determinant of the activation mode of these receptors. H12 exhibits high mobility and different conformations in the absence of ligand. Upon ligand binding, H12 is stabilized in a precise position to seal the ligand-binding pocket and finalize the assembly of the activation function (AF-2) domain. In this study, we investigated the role of the conserved proline 892 of the androgen receptor (AR) in directing the dynamic location and orientation of the AR-H12. We used a combined approach including kinetic and biochemical assays with molecular dynamic simulations to analyze two substitutions (P892A and P892L) identified in individuals with complete androgen insensitivity syndrome. Our analyses revealed distinct mechanisms by which these substitutions impair H12 function resulting in severely defective receptors. The AR-P892A receptor exhibited reduced ligand binding and transactivational potential because of an increased flexibility in H12. The AR-P892L substitution renders the receptor inactive due to a distorted, unstructured and misplaced H12. To confirm the mutants' inability to stabilize H12 in an active position, we have developed a novel in vivo assay to evaluate the accessibility of the H12-docking site on the AR-LBD surface. An extrinsic AR-H12 peptide was able to interact with wild-type and mutant LBDs in the absence of ligand. Ligand-induced proper positioning of the intrinsic H12 of wild-type AR prevented these interactions, whereas the misplacement of the mutants' H12 did not. Proline at this position may be critical for H12 dynamics not only in the AR, but also in other nuclear receptors where this proline is conserved.
NASA Astrophysics Data System (ADS)
Katritch, Vsevolod; Byrd, Chelsea M.; Tseitin, Vladimir; Dai, Dongcheng; Raush, Eugene; Totrov, Maxim; Abagyan, Ruben; Jordan, Robert; Hruby, Dennis E.
2007-10-01
Essential for viral replication and highly conserved among poxviridae, the vaccinia virus I7L ubiquitin-like proteinase (ULP) is an attractive target for development of smallpox antiviral drugs. At the same time, the I7L proteinase exemplifies several interesting challenges from the rational drug design perspective. In the absence of a published I7L X-ray structure, we have built a detailed 3D model of the I7L ligand binding site (S2-S2' pocket) based on exceptionally high structural conservation of this site in proteases of the ULP family. The accuracy and limitations of this model were assessed through comparative analysis of available X-ray structures of ULPs, as well as energy based conformational modeling. The 3D model of the I7L ligand binding site was used to perform covalent docking and VLS of a comprehensive library of about 230,000 available ketone and aldehyde compounds. Out of 456 predicted ligands, 97 inhibitors of I7L proteinase activity were confirmed in biochemical assays (˜20% overall hit rate). These experimental results both validate our I7L ligand binding model and provide initial leads for rational optimization of poxvirus I7L proteinase inhibitors. Thus, fragments predicted to bind in the prime portion of the active site can be combined with fragments on non-prime side to yield compounds with improved activity and specificity.
Probing protein flexibility reveals a mechanism for selective promiscuity
Pabon, Nicolas A; Camacho, Carlos J
2017-01-01
Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789
The role of water molecules in computational drug design.
de Beer, Stephanie B A; Vermeulen, Nico P E; Oostenbrink, Chris
2010-01-01
Although water molecules are small and only consist of two different atom types, they play various roles in cellular systems. This review discusses their influence on the binding process between biomacromolecular targets and small molecule ligands and how this influence can be modeled in computational drug design approaches. Both the structure and the thermodynamics of active site waters will be discussed as these influence the binding process significantly. Structurally conserved waters cannot always be determined experimentally and if observed, it is not clear if they will be replaced upon ligand binding, even if sufficient space is available. Methods to predict the presence of water in protein-ligand complexes will be reviewed. Subsequently, we will discuss methods to include water in computational drug research. Either as an additional factor in automated docking experiments, or explicitly in detailed molecular dynamics simulations, the effect of water on the quality of the simulations is significant, but not easily predicted. The most detailed calculations involve estimates of the free energy contribution of water molecules to protein-ligand complexes. These calculations are computationally demanding, but give insight in the versatility and importance of water in ligand binding.
Wu, Qing-Ping; Zhang, Lei; Shao, Xiao-Xia; Wang, Jia-Hui; Gao, Yu; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun
2016-04-01
Relaxin is a prototype of the relaxin family peptide hormones and plays important biological functions by binding and activating the G protein-coupled receptor RXFP1. To study their interactions, in the present work, we applied the newly developed bioluminescent ligand-receptor binding assay to the relaxin-RXFP1 system. First, a fully active easily labeled relaxin, in which three Lys residues of human relaxin-2 were replaced by Arg, was prepared through overexpression of a single-chain precursor in Pichia pastoris and in vitro enzymatic maturation. Thereafter, the B-chain N-terminus of the easily labeled relaxin was chemically cross-linked with a C-terminal cysteine residue of an engineered NanoLuc through a disulfide linkage. Receptor-binding assays demonstrated that the NanoLuc-conjugated relaxin retained high binding affinity with the receptor RXFP1 (K d = 1.11 ± 0.08 nM, n = 3) and was able to sensitively monitor binding of a variety of ligands with RXFP1. Using the novel bioluminescent binding assay, we demonstrated that three highly conserved B-chain Arg residues of relaxin-3 had distinct contributions to binding of the receptor RXFP1. In summary, our present work provides a novel bioluminescent ligand-receptor binding assay for the relaxin-RXFP1 system to facilitate their interaction studies, such as characterization of relaxin analogues or screening novel agonists or antagonists of RXFP1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ecale Zhou, C L; Zemla, A T; Roe, D
2005-01-29
Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set ofmore » ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan
2010-11-22
Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues thatmore » flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.« less
Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*
Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.
2015-01-01
Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele
Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites onmore » the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in similar fashion to Jnk-1 siRNA and to rosiglitazone treatment. Together, the data suggest that these new ligand series bind to a novel, allosteric, and physiologically relevant site and therefore represent a unique approach to identify kinase inhibitors.« less
Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mans, Ben J.; Ribeiro, Jose M.C.; Andersen, John F.
2008-08-19
Two highly abundant lipocalins, monomine and monotonin, have been isolated from the salivary gland of the soft tick Argas monolakensis and shown to bind histamine and 5-hydroxytryptamine (5-HT), respectively. The crystal structures of monomine and a paralog of monotonin were determined in the presence of ligands to compare the determinants of ligand binding. Both the structures and binding measurements indicate that the proteins have a single binding site rather than the two sites previously described for the female-specific histamine-binding protein (FS-HBP), the histamine-binding lipocalin of the tick Rhipicephalus appendiculatus. The binding sites of monomine and monotonin are similar to themore » lower, low affinity site of FS-HBP. The interaction of the protein with the aliphatic amine group of the ligand is very similar for the all of the proteins, whereas specificity is determined by interactions with the aromatic portion of the ligand. Interestingly, protein interaction with the imidazole ring of histamine differs significantly between the low affinity binding site of FS-HBP and monomine, suggesting that histamine binding has evolved independently in the two lineages. From the conserved features of these proteins, a tick lipocalin biogenic amine-binding motif could be derived that was used to predict biogenic amine-binding function in other tick lipocalins. Heterologous expression of genes from salivary gland libraries led to the discovery of biogenic amine-binding proteins in soft (Ornithodoros) and hard (Ixodes) tick genera. The data generated were used to reconstruct the most probable evolutionary pathway for the evolution of biogenic amine-binding in tick lipocalins.« less
Bührmann, Mike; Wiedemann, Bianca M.; Müller, Matthias P.; Hardick, Julia; Ecke, Maria
2017-01-01
In protein kinase research, identifying and addressing small molecule binding sites other than the highly conserved ATP-pocket are of intense interest because this line of investigation extends our understanding of kinase function beyond the catalytic phosphotransfer. Such alternative binding sites may be involved in altering the activation state through subtle conformational changes, control cellular enzyme localization, or in mediating and disrupting protein-protein interactions. Small organic molecules that target these less conserved regions might serve as tools for chemical biology research and to probe alternative strategies in targeting protein kinases in disease settings. Here, we present the structure-based design and synthesis of a focused library of 2-arylquinazoline derivatives to target the lipophilic C-terminal binding pocket in p38α MAPK, for which a clear biological function has yet to be identified. The interactions of the ligands with p38α MAPK was analyzed by SPR measurements and validated by protein X-ray crystallography. PMID:28892510
Structural insights into μ-opioid receptor activation
Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.
2015-01-01
Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379
Ligand-independent activation of the oestrogen receptor by mutation of a conserved tyrosine.
White, R; Sjöberg, M; Kalkhoven, E; Parker, M G
1997-01-01
The oestrogen receptor is a member of the nuclear receptor family of transcription factors which, on binding the steroid hormone 17beta-oestradiol, interacts with co-activator proteins and stimulates gene expression. Replacement of a single tyrosine in the hormone-binding domain generated activated forms of the receptor which stimulated transcription in the absence of hormone. This increased activation is related to a decrease in hydrophobicity and a reduction in size of the side chain of the amino acid with which the tyrosine is replaced. Ligand-independent, in common with ligand-dependent transcriptional activation, requires an amphipathic alpha-helix at the C-terminus of the ligand-binding domain which is essential for the interaction of the receptor with a number of potential co-activator proteins. In contrast to the wild-type protein, constitutively active receptors were able to bind both the receptor-interacting protein RIP-140 and the steroid receptor co-activator SRC-1 in a ligand-independent manner, although in the case of SRC-1 this was only evident when the receptors were prebound to DNA. We propose, therefore, that this tyrosine is required to maintain the receptor in a transcriptionally inactive state in the absence of hormone. Modification of this residue may generate a conformational change in the ligand-binding domain of the receptor to form an interacting surface which allows the recruitment of co-activators independent of hormone binding. This suggests that this tyrosine may be a target for a different signalling pathway which forms an alternative mechanism of activating oestrogen receptor-mediated transcription. PMID:9135157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wacker, Daniel; Fenalti, Gustavo; Brown, Monica A.
2010-11-15
G protein-coupled receptors (GPCRs) represent a large fraction of current pharmaceutical targets, and of the GPCRs, the {beta}{sub 2} adrenergic receptor ({beta}{sub 2}AR) is one of the most extensively studied. Previously, the X-ray crystal structure of {beta}{sub 2}AR has been determined in complex with two partial inverse agonists, but the global impact of additional ligands on the structure or local impacts on the binding site are not well-understood. To assess the extent of such ligand-induced conformational differences, we determined the crystal structures of a previously described engineered {beta}{sub 2}AR construct in complex with two inverse agonists: ICI 118,551 (2.8 {angstrom}),more » a recently described compound (2.8 {angstrom}) (Kolb et al, 2009), and the antagonist alprenolol (3.1 {angstrom}). The structures show the same overall fold observed for the previous {beta}{sub 2}AR structures and demonstrate that the ligand binding site can accommodate compounds of different chemical and pharmacological properties with only minor local structural rearrangements. All three compounds contain a hydroxy-amine motif that establishes a conserved hydrogen bond network with the receptor and chemically diverse aromatic moieties that form distinct interactions with {beta}{sub 2}AR. Furthermore, receptor ligand cross-docking experiments revealed that a single {beta}{sub 2}AR complex can be suitable for docking of a range of antagonists and inverse agonists but also indicate that additional ligand-receptor structures may be useful to further improve performance for in-silico docking or lead-optimization in drug design.« less
Structural and immunologic characterization of bovine, horse, and rabbit serum albumins
Majorek, Karolina A.; Porebski, Przemyslaw J.; Dayal, Arjun; Zimmerman, Matthew D.; Jablonska, Kamila; Stewart, Alan J.; Chruszcz, Maksymilian; Minor, Wladek
2012-01-01
Serum albumin (SA) is the most abundant plasma protein in mammals. SA is a multifunctional protein with extraordinary ligand binding capacity, making it a transporter molecule for a diverse range of metabolites, drugs, nutrients, metals and other molecules. Due to its ligand binding properties, albumins have wide clinical, pharmaceutical, and biochemical applications. Albumins are also allergenic, and exhibit a high degree of cross-reactivity due to significant sequence and structure similarity of SAs from different organisms. Here we present crystal structures of albumins from cattle (BSA), horse (ESA) and rabbit (RSA) serums. The structural data are correlated with the results of immunological studies of SAs. We also analyze the conservation or divergence of structures and sequences of SAs in the context of their potential allergenicity and cross-reactivity. In addition, we identified a previously uncharacterized ligand binding site in the structure of RSA, and calcium binding sites in the structure of BSA, which is the first serum albumin structure to contain metal ions. PMID:22677715
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, T.; Petrovich,; Mercier, K
2010-01-01
We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) {alpha} subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has beenmore » implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and {alpha}-bungarotoxin bind to ct-AChBP with high affinity, with KD values of 28.7 {micro}M, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K{sub D} = 163 {micro}M). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Coq, Johanne; Ghosh, Partho
2012-06-19
Anticipatory ligand binding through massive protein sequence variation is rare in biological systems, having been observed only in the vertebrate adaptive immune response and in a phage diversity-generating retroelement (DGR). Earlier work has demonstrated that the prototypical DGR variable protein, major tropism determinant (Mtd), meets the demands of anticipatory ligand binding by novel means through the C-type lectin (CLec) fold. However, because of the low sequence identity among DGR variable proteins, it has remained unclear whether the CLec fold is a general solution for DGRs. We have addressed this problem by determining the structure of a second DGR variable protein,more » TvpA, from the pathogenic oral spirochete Treponema denticola. Despite its weak sequence identity to Mtd ({approx}16%), TvpA was found to also have a CLec fold, with predicted variable residues exposed in a ligand-binding site. However, this site in TvpA was markedly more variable than the one in Mtd, reflecting the unprecedented approximate 10{sup 20} potential variability of TvpA. In addition, similarity between TvpA and Mtd with formylglycine-generating enzymes was detected. These results provide strong evidence for the conservation of the formylglycine-generating enzyme-type CLec fold among DGRs as a means of accommodating massive sequence variation.« less
Le Coq, Johanne; Ghosh, Partho
2011-01-01
Anticipatory ligand binding through massive protein sequence variation is rare in biological systems, having been observed only in the vertebrate adaptive immune response and in a phage diversity-generating retroelement (DGR). Earlier work has demonstrated that the prototypical DGR variable protein, major tropism determinant (Mtd), meets the demands of anticipatory ligand binding by novel means through the C-type lectin (CLec) fold. However, because of the low sequence identity among DGR variable proteins, it has remained unclear whether the CLec fold is a general solution for DGRs. We have addressed this problem by determining the structure of a second DGR variable protein, TvpA, from the pathogenic oral spirochete Treponema denticola. Despite its weak sequence identity to Mtd (∼16%), TvpA was found to also have a CLec fold, with predicted variable residues exposed in a ligand-binding site. However, this site in TvpA was markedly more variable than the one in Mtd, reflecting the unprecedented approximate 1020 potential variability of TvpA. In addition, similarity between TvpA and Mtd with formylglycine-generating enzymes was detected. These results provide strong evidence for the conservation of the formylglycine-generating enzyme-type CLec fold among DGRs as a means of accommodating massive sequence variation. PMID:21873231
Le Coq, Johanne; Ghosh, Partho
2011-08-30
Anticipatory ligand binding through massive protein sequence variation is rare in biological systems, having been observed only in the vertebrate adaptive immune response and in a phage diversity-generating retroelement (DGR). Earlier work has demonstrated that the prototypical DGR variable protein, major tropism determinant (Mtd), meets the demands of anticipatory ligand binding by novel means through the C-type lectin (CLec) fold. However, because of the low sequence identity among DGR variable proteins, it has remained unclear whether the CLec fold is a general solution for DGRs. We have addressed this problem by determining the structure of a second DGR variable protein, TvpA, from the pathogenic oral spirochete Treponema denticola. Despite its weak sequence identity to Mtd (∼16%), TvpA was found to also have a CLec fold, with predicted variable residues exposed in a ligand-binding site. However, this site in TvpA was markedly more variable than the one in Mtd, reflecting the unprecedented approximate 10(20) potential variability of TvpA. In addition, similarity between TvpA and Mtd with formylglycine-generating enzymes was detected. These results provide strong evidence for the conservation of the formylglycine-generating enzyme-type CLec fold among DGRs as a means of accommodating massive sequence variation.
Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru
2016-08-10
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB's specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions.
Cortes-Hernandez, Paulina
2017-01-01
Periplasmic Binding Proteins (PBPs) trap nutrients for their internalization into bacteria by ABC transporters. Ligand binding triggers PBP closure by bringing its two domains together like a Venus flytrap. The atomic determinants that control PBP opening and closure for nutrient capture and release are not known, although it is proposed that opening and ligand release occur while in contact with the ABC transporter for concurrent substrate translocation. In this paper we evaluated the effect of the isomerization of a conserved proline, located near the binding site, on the propensity of PBPs to open and close. ArgT/LAO from Salmonella typhimurium and HisJ from Escherichia coli were studied through molecular mechanics at two different temperatures: 300 and 323 K. Eight microseconds were simulated per protein to analyze protein opening and closure in the absence of the ABC transporter. We show that when the studied proline is in trans, closed empty LAO and HisJ can open. In contrast, with the proline in cis, opening transitions were much less frequent and characterized by smaller changes. The proline in trans also renders the open trap prone to close over a ligand. Our data suggest that the isomerization of this conserved proline modulates the PBP mechanism: the proline in trans allows the exploration of conformational space to produce trap opening and closure, while in cis it restricts PBP movement and could limit ligand release until in productive contact with the ABC transporter. This is the first time that a proline isomerization has been related to the control of a large conformational change like the PBP flytrap mechanism. PMID:29190818
Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin*♦
Bensing, Barbara A.; Loukachevitch, Lioudmila V.; McCulloch, Kathryn M.; Yu, Hai; Vann, Kendra R.; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M.; Iverson, T. M.
2016-01-01
Streptococcus sanguinis is a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets. S. sanguinis expresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. PMID:26833566
The human fatty acid-binding protein family: Evolutionary divergences and functions
2011-01-01
Fatty acid-binding proteins (FABPs) are members of the intracellular lipid-binding protein (iLBP) family and are involved in reversibly binding intracellular hydrophobic ligands and trafficking them throughout cellular compartments, including the peroxisomes, mitochondria, endoplasmic reticulum and nucleus. FABPs are small, structurally conserved cytosolic proteins consisting of a water-filled, interior-binding pocket surrounded by ten anti-parallel beta sheets, forming a beta barrel. At the superior surface, two alpha-helices cap the pocket and are thought to regulate binding. FABPs have broad specificity, including the ability to bind long-chain (C16-C20) fatty acids, eicosanoids, bile salts and peroxisome proliferators. FABPs demonstrate strong evolutionary conservation and are present in a spectrum of species including Drosophila melanogaster, Caenorhabditis elegans, mouse and human. The human genome consists of nine putatively functional protein-coding FABP genes. The most recently identified family member, FABP12, has been less studied. PMID:21504868
Chandler, Jennifer C; Gandhi, Neha S; Mancera, Ricardo L; Smith, Greg; Elizur, Abigail; Ventura, Tomer
2017-08-23
The insulin signalling system is one of the most conserved endocrine systems of Animalia from mollusc to man. In decapod Crustacea , such as the Eastern spiny lobster, Sagmariasus verreauxi (Sv) and the red-claw crayfish, Cherax quadricarinatus (Cq), insulin endocrinology governs male sexual differentiation through the action of a male-specific, insulin-like androgenic gland peptide (IAG). To understand the bioactivity of IAG it is necessary to consider its bio-regulators such as the insulin-like growth factor binding protein (IGFBP). This work has employed various molecular modelling approaches to represent S. verreauxi IGFBP and IAG, along with additional Sv-ILP ligands, in order to characterise their binding interactions. Firstly, we present Sv- and Cq-ILP2: neuroendocrine factors that share closest homology with Drosophila ILP8 (Dilp8). We then describe the binding interaction of the N-terminal domain of Sv-IGFBP and each ILP through a synergy of computational analyses. In-depth interaction mapping and computational alanine scanning of IGFBP_N' highlight the conserved involvement of the hotspot residues Q 67 , G 70 , D 71 , S 72 , G 91 , G 92 , T 93 and D 94 . The significance of the negatively charged residues D 71 and D 94 was then further exemplified by structural electrostatics. The functional importance of the negative surface charge of IGFBP is exemplified in the complementary electropositive charge on the reciprocal binding interface of all three ILP ligands. When examined, this electrostatic complementarity is the inverse of vertebrate homologues; such physicochemical divergences elucidate towards ligand-binding specificity between Phyla.
Liu, Xinwei; Ridgway, Neale D.
2014-01-01
Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus. PMID:25255026
Liu, Xinwei; Ridgway, Neale D
2014-01-01
Oxysterol binding protein (OSBP) and OSBP-related proteins (ORPS) have a conserved lipid-binding fold that accommodates cholesterol, oxysterols and/or phospholipids. The diversity of OSBP/ORPs and their potential ligands has complicated the analysis of transfer and signalling properties of this mammalian gene family. In this study we explored the use of the fluorescent sterol cholestatrienol (CTL) to measure sterol binding by ORP9 and competition by other putative ligands. Relative to cholesterol, CTL and dehydroergosterol (DHE) were poor ligands for OSBP. In contrast, both long (ORP9L) and short (ORP9S) variants of ORP9 rapidly extracted CTL, and to a lesser extent DHE, from liposomes. ORP9L and ORP9S also extracted [32P]phosphatidylinositol 4-phosphate (PI-4P) from liposomes, which was inhibited by mutating two conserved histidine residues (HH488,489AA) at the entrance to the binding pocket but not by a mutation in the lid region that inhibited cholesterol binding. Results of direct binding and competition assays showed that phosphatidylserine was poorly extracted from liposomes by ORP9 compared to CTL and PI-4P. ORP9L and PI-4P did not co-localize in the trans-Golgi/TGN of HeLa cells, and siRNA silencing of ORP9L expression did not affect PI-4P distribution in the Golgi apparatus. However, transient overexpression of ORP9L or ORP9S in CHO cells, but not the corresponding PI-4P binding mutants, prevented immunostaining of Golgi-associated PI-4P. The apparent sequestration of Golgi PI-4P by ORP9S was identified as a possible mechanism for its growth inhibitory effects. These studies identify ORP9 as a dual sterol/PI-4P binding protein that could regulate PI-4P in the Golgi apparatus.
Flavonol Activation Defines an Unanticipated Ligand-Binding Site in the Kinase-RNase Domain of IRE1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiseman, R. Luke; Zhang, Yuhong; Lee, Kenneth P.K.
2010-08-18
Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence ofmore » enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.« less
Fischer, Marcus; Hopkins, Adam P.; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G.; Hubbard, Roderick E.; Thomas, Gavin H.
2015-01-01
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690
Translational co-regulation of a ligand and inhibitor by a conserved RNA element
Zaucker, Andreas; Nagorska, Agnieszka; Kumari, Pooja; Hecker, Nikolai; Wang, Yin; Huang, Sizhou; Cooper, Ledean; Sivashanmugam, Lavanya; VijayKumar, Shruthi; Brosens, Jan; Gorodkin, Jan
2018-01-01
Abstract In many organisms, transcriptional and post-transcriptional regulation of components of pathways or processes has been reported. However, to date, there are few reports of translational co-regulation of multiple components of a developmental signaling pathway. Here, we show that an RNA element which we previously identified as a dorsal localization element (DLE) in the 3′UTR of zebrafish nodal-related1/squint (ndr1/sqt) ligand mRNA, is shared by the related ligand nodal-related2/cyclops (ndr2/cyc) and the nodal inhibitors, lefty1 (lft1) and lefty2 mRNAs. We investigated the activity of the DLEs through functional assays in live zebrafish embryos. The lft1 DLE localizes fluorescently labeled RNA similarly to the ndr1/sqt DLE. Similar to the ndr1/sqt 3′UTR, the lft1 and lft2 3′UTRs are bound by the RNA-binding protein (RBP) and translational repressor, Y-box binding protein 1 (Ybx1), whereas deletions in the DLE abolish binding to Ybx1. Analysis of zebrafish ybx1 mutants shows that Ybx1 represses lefty1 translation in embryos. CRISPR/Cas9-mediated inactivation of human YBX1 also results in human NODAL translational de-repression, suggesting broader conservation of the DLE RNA element/Ybx1 RBP module in regulation of Nodal signaling. Our findings demonstrate translational co-regulation of components of a signaling pathway by an RNA element conserved in both sequence and structure and an RBP, revealing a ‘translational regulon’. PMID:29059375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Lihua; Lin, Shengchen; Rong, Hui
2012-03-15
Iloprost is a prostacyclin analog that has been used to treat many vascular conditions. Peroxisome proliferator-activated receptors (PPARs) are ligand-regulated transcription factors with various important biological effects such as metabolic and cardiovascular physiology. Here, we report the crystal structures of the PPAR{alpha} ligand-binding domain and PPAR{delta} ligand-binding domain bound to iloprost, thus providing unambiguous evidence for the direct interaction between iloprost and PPARs and a structural basis for the recognition of PPAR{alpha}/{delta} by this prostacyclin analog. In addition to conserved contacts for all PPAR{alpha} ligands, iloprost also initiates several specific interactions with PPARs using its unique structural groups. Structural andmore » functional studies of receptor-ligand interactions reveal strong functional correlations of the iloprost-PPAR{alpha}/{delta} interactions as well as the molecular basis of PPAR subtype selectivity toward iloprost ligand. As such, the structural mechanism may provide a more rational template for designing novel compounds targeting PPARs with more favorable pharmacologic impact based on existing iloprost drugs.« less
Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R
1992-01-01
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851
Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya
2014-07-01
Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less
Parravicini, Chiara; Ranghino, Graziella; Abbracchio, Maria P; Fantucci, Piercarlo
2008-06-04
GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor) were then modeled on the receptor. Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255). The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist/antagonist binding mode are similar, but not identical. An accessory external binding site could guide small ligands to the deeper principal binding site in a multi-step mechanism of activation. The nucleotide binding pocket appears to be unable to allocate the leukotrienic type ligands in the same effective way.
Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions
Velyvis, Algirdas; Zoltsman, Guy; Rosenzweig, Rina; Bouvignies, Guillaume
2018-01-01
Molecular recognition is integral to biological function and frequently involves preferred binding of a molecule to one of several exchanging ligand conformations in solution. In such a process the bound structure can be selected from the ensemble of interconverting ligands a priori (conformational selection, CS) or may form once the ligand is bound (induced fit, IF). Here we focus on the ubiquitous and conserved Hsp70 chaperone which oversees the integrity of the cellular proteome through its ATP-dependent interaction with client proteins. We directly quantify the flux along CS and IF pathways using solution NMR spectroscopy that exploits a methyl TROSY effect and selective isotope-labeling methodologies. Our measurements establish that both bacterial and human Hsp70 chaperones interact with clients by selecting the unfolded state from a pre-existing array of interconverting structures, suggesting a conserved mode of client recognition among Hsp70s and highlighting the importance of molecular dynamics in this recognition event. PMID:29460778
Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors
NASA Astrophysics Data System (ADS)
Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.
1986-11-01
Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.
Structural and Biochemical Determinants of Ligand Binding by the c-di-GMP Riboswitch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.; Lipchock, S; Livingston,
2010-01-01
The bacterial second messenger c-di-GMP is used in many species to control essential processes that allow the organism to adapt to its environment. The c-di-GMP riboswitch (GEMM) is an important downstream target in this signaling pathway and alters gene expression in response to changing concentrations of c-di-GMP. The riboswitch selectively recognizes its second messenger ligand primarily through contacts with two critical nucleotides. However, these two nucleotides are not the most highly conserved residues within the riboswitch sequence. Instead, nucleotides that stack with c-di-GMP and that form tertiary RNA contacts are the most invariant. Biochemical and structural evidence reveals that themore » most common natural variants are able to make alternative pairing interactions with both guanine bases of the ligand. Additionally, a high-resolution (2.3 {angstrom}) crystal structure of the native complex reveals that a single metal coordinates the c-di-GMP backbone. Evidence is also provided that after transcription of the first nucleotide on the 3{prime}-side of the P1 helix, which is predicted to be the molecular switch, the aptamer is functional for ligand binding. Although large energetic effects occur when several residues in the RNA are altered, mutations at the most conserved positions, rather than at positions that base pair with c-di-GMP, have the most detrimental effects on binding. Many mutants retain sufficient c-di-GMP affinity for the RNA to remain biologically relevant, which suggests that this motif is quite resilient to mutation.« less
Xu, Jin-Gen; Huang, Chunfeng; Yang, Zhengfeng; Jin, Mengmeng; Fu, Panhan; Zhang, Ni; Luo, Jian; Li, Dali; Liu, Mingyao; Zhou, Yan; Zhu, Yongqun
2015-01-23
Leucine-rich repeat G-protein-coupled receptors (LGRs) are a unique class of G-protein-coupled receptors characterized by a large extracellular domain to recognize ligands and regulate many important developmental processes. Among the three groups of LGRs, group B members (LGR4-6) recognize R-spondin family proteins (Rspo1-4) to stimulate Wnt signaling. In this study, we successfully utilized the "hybrid leucine-rich repeat technique," which fused LGR4 with the hagfish VLR protein, to obtain two recombinant human LGR4 proteins, LGR415 and LGR49. We determined the crystal structures of ligand-free LGR415 and the LGR49-Rspo1 complex. LGR4 exhibits a twisted horseshoe-like structure. Rspo1 adopts a flat and β-fold architecture and is bound in the concave surface of LGR4 in the complex through electrostatic and hydrophobic interactions. All the Rspo1-binding residues are conserved in LGR4-6, suggesting that LGR4-6 bind R-spondins through an identical surface. Structural analysis of our LGR4-Rspo1 complex with the previously determined LGR4 and LGR5 structures revealed that the concave surface of LGR4 is the sole binding site for R-spondins, suggesting a one-site binding model of LGR4-6 in ligand recognition. The molecular mechanism of LGR4-6 is distinct from the two-step mechanism of group A receptors LGR1-3 and the multiple-interface binding model of group C receptors LGR7-8, suggesting LGRs utilize the divergent mechanisms for ligand recognition. Our structures, together with previous reports, provide a comprehensive understanding of the ligand recognition by LGRs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru
2016-01-01
The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB’s specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions. PMID:27507097
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou
Tracheary Element Differentiation Inhibitory Factor (TDIF) belongs to the family of post-translationally modified CLE (CLAVATA3/embryo surrounding region (ESR)-related) peptide hormones that control root growth and define the delicate balance between stem cell proliferation and differentiation in SAM (shoot apical meristem) or RAM (root apical meristem). In Arabidopsis, Tracheary Element Differentiation Inhibitory Factor Receptor (TDR) and its ligand TDIF signaling pathway is involved in the regulation of procambial cell proliferation and inhibiting its differentiation into xylem cells. Here we present the crystal structures of the extracellular domains (ECD) of TDR alone and in complex with its ligand TDIF resolved at 2.65more » Åand 2.75 Å respectively. These structures provide insights about the ligand perception and specific interactions between the CLE peptides and their cognate receptors. Our in vitro biochemical studies indicate that the interactions between the ligands and the receptors at the C-terminal anchoring site provide conserved binding. While the binding interactions occurring at the N-terminal anchoring site dictate differential binding specificities between different ligands and receptors. Our studies will open different unknown avenues of TDR-TDIF signaling pathways that will enhance our knowledge in this field highlighting the receptor ligand interaction, receptor activation, signaling network, modes of action and will serve as a structure function relationship model between the ligand and the receptor for various similar leucine-rich repeat receptor-like kinases (LRR-RLKs).« less
Montanier, Cedric; van Bueren, Alicia Lammerts; Dumon, Claire; Flint, James E.; Correia, Marcia A.; Prates, Jose A.; Firbank, Susan J.; Lewis, Richard J.; Grondin, Gilles G.; Ghinet, Mariana G.; Gloster, Tracey M.; Herve, Cecile; Knox, J. Paul; Talbot, Brian G.; Turkenburg, Johan P.; Kerovuo, Janne; Brzezinski, Ryszard; Fontes, Carlos M. G. A.; Davies, Gideon J.; Boraston, Alisdair B.; Gilbert, Harry J.
2009-01-01
Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands. PMID:19218457
Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa
2009-05-12
The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified frommore » a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.« less
Ligand Binding Site Detection by Local Structure Alignment and Its Performance Complementarity
Lee, Hui Sun; Im, Wonpil
2013-01-01
Accurate determination of potential ligand binding sites (BS) is a key step for protein function characterization and structure-based drug design. Despite promising results of template-based BS prediction methods using global structure alignment (GSA), there is a room to improve the performance by properly incorporating local structure alignment (LSA) because BS are local structures and often similar for proteins with dissimilar global folds. We present a template-based ligand BS prediction method using G-LoSA, our LSA tool. A large benchmark set validation shows that G-LoSA predicts drug-like ligands’ positions in single-chain protein targets more precisely than TM-align, a GSA-based method, while the overall success rate of TM-align is better. G-LoSA is particularly efficient for accurate detection of local structures conserved across proteins with diverse global topologies. Recognizing the performance complementarity of G-LoSA to TM-align and a non-template geometry-based method, fpocket, a robust consensus scoring method, CMCS-BSP (Complementary Methods and Consensus Scoring for ligand Binding Site Prediction), is developed and shows improvement on prediction accuracy. The G-LoSA source code is freely available at http://im.bioinformatics.ku.edu/GLoSA. PMID:23957286
Structural Basis for Sialoglycan Binding by the Streptococcus sanguinis SrpA Adhesin.
Bensing, Barbara A; Loukachevitch, Lioudmila V; McCulloch, Kathryn M; Yu, Hai; Vann, Kendra R; Wawrzak, Zdzislaw; Anderson, Spencer; Chen, Xi; Sullam, Paul M; Iverson, T M
2016-04-01
Streptococcus sanguinisis a leading cause of infective endocarditis, a life-threatening infection of the cardiovascular system. An important interaction in the pathogenesis of infective endocarditis is attachment of the organisms to host platelets.S. sanguinisexpresses a serine-rich repeat adhesin, SrpA, similar in sequence to platelet-binding adhesins associated with increased virulence in this disease. In this study, we determined the first crystal structure of the putative binding region of SrpA (SrpABR) both unliganded and in complex with a synthetic disaccharide ligand at 1.8 and 2.0 Å resolution, respectively. We identified a conserved Thr-Arg motif that orients the sialic acid moiety and is required for binding to platelet monolayers. Furthermore, we propose that sequence insertions in closely related family members contribute to the modulation of structural and functional properties, including the quaternary structure, the tertiary structure, and the ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Iversen, L F; Brzozowski, M; Hastrup, S; Hubbard, R; Kastrup, J S; Larsen, I K; Naerum, L; Nørskov-Lauridsen, L; Rasmussen, P B; Thim, L; Wiberg, F C; Lundgren, K
1997-05-01
The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand.
Iversen, L. F.; Brzozowski, M.; Hastrup, S.; Hubbard, R.; Kastrup, J. S.; Larsen, I. K.; Naerum, L.; Nørskov-Lauridsen, L.; Rasmussen, P. B.; Thim, L.; Wiberg, F. C.; Lundgren, K.
1997-01-01
The structures of three complexes of human fructose-1,6-bisphosphatase (FB) with the allosteric inhibitor AMP and two AMP analogues have been determined and all fully refined. The data used for structure determination were collected at cryogenic temperature (110 K), and with the use of synchrotron radiation. The structures reveal a common mode of binding for AMP and formycine monophosphate (FMP). 5-Amino-4-carboxamido-1 beta-D-5-phosphate-ribofuranosyl-1H-imidazole (AICAR-P) shows an unexpected mode of binding to FB, different from that of the other two ligands. The imidazole ring of AICAR-P is rotated 180 degrees compared to the AMP and FMP bases. This rotation results in a slightly different hydrogen bonding pattern and minor changes in the water structure in the binding pocket. Common features of binding are seen for the ribose and phosphate moieties of all three compounds. Although binding in a different mode, AICAR-P is still capable of making all the important interactions with the residues building the allosteric binding pocket. The IC50 values of AMP, FMP, and AICAR-P were determined to be 1.7, 1.4, and 20.9 microM, respectively. Thus, the approximately 10 times lower potency of AICAR-P is difficult to explain solely from the variations observed in the binding pocket. Only one water molecule in the allosteric binding pocket was found to be conserved in all four subunits in all three structures. This water molecule coordinates to a phosphate oxygen atom and the N7 atom of the AMP molecule, and to similarly situated atoms in the FMP and AICAR-P complexes. This implies an important role of the conserved water molecule in binding of the ligand. PMID:9144768
Janero, David R; Korde, Anisha; Makriyannis, Alexandros
2017-01-01
Detailed characterization of the ligand-binding motifs and structure-function correlates of the principal GPCRs of the endocannabinoid-signaling system, the cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors, is essential to inform the rational design of drugs that modulate CB1R- and CB2R-dependent biosignaling for therapeutic gain. We discuss herein an experimental paradigm termed "ligand-assisted protein structure" (LAPS) that affords a means of characterizing, at the amino acid level, CB1R and CB2R structural features key to ligand engagement and receptor-dependent information transmission. For this purpose, LAPS integrates three key disciplines and methodologies: (a) medicinal chemistry: design and synthesis of high-affinity, pharmacologically active probes as reporters capable of reacting irreversibly with particular amino acids at (or in the immediate vicinity of) the ligand-binding domain of the functionally active receptor; (b) molecular and cellular biology: introduction of discrete, conservative point mutations into the target GPCR and determination of their effect on probe binding and pharmacological activity; (c) analytical chemistry: identification of the site(s) of probe-GPCR interaction through focused, bottom-up, amino acid-level proteomic identification of the probe-receptor complex using liquid chromatography tandem mass spectrometry. Subsequent in silico methods including ligand docking and computational modeling provide supplementary data on the probe-receptor interaction as defined by LAPS. Examples of LAPS as applied to human CB2R orthosteric binding site characterization for a biarylpyrazole antagonist/inverse agonist and a classical cannabinoid agonist belonging to distinct chemical classes of cannabinergic compounds are given as paradigms for further application of this methodology to other therapeutic protein targets. LAPS is well positioned to complement other experimental and in silico methods in contemporary structural biology such as X-ray crystallography. © 2017 Elsevier Inc. All rights reserved.
Structural Basis of Human CYP51 Inhibition by Antifungal Azoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won
2010-09-22
The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix andmore » F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.« less
Amano, Yasushi; Yamaguchi, Tomohiko; Tanabe, Eiki
2014-04-15
Soluble epoxide hydrolase (sEH) is a component of the arachidonic acid cascade and is a candidate target for therapies for hypertension or inflammation. Although many sEH inhibitors are available, their scaffolds are not structurally diverse, and knowledge of their specific interactions with sEH is limited. To obtain detailed structural information about protein-ligand interactions, we conducted fragment screening of sEH, analyzed the fragments using high-throughput X-ray crystallography, and determined 126 fragment-bound structures at high resolution. Aminothiazole and benzimidazole derivatives were identified as novel scaffolds that bind to the catalytic triad of sEH with good ligand efficiency. We further identified fragment hits that bound to subpockets of sEH called the short and long branches. The water molecule conserved in the structure plays an important role in binding to the long branch, whereas Asp496 and the main chain of Phe497 form hydrogen bonds with fragment hits in the short branch. Fragment hits and their crystal structures provide structural insights into ligand binding to sEH that will facilitate the discovery of novel and potent inhibitors of sEH. Copyright © 2014 Elsevier Ltd. All rights reserved.
Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J
2015-01-22
The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.
Medrano, Francisco Javier; de Souza, Cristiane Santos; Romero, Antonio; Balan, Andrea
2014-01-01
The uptake of maltose and related sugars in Gram-negative bacteria is mediated by an ABC transporter encompassing a periplasmic component (the maltose-binding protein or MalE), a pore-forming membrane protein (MalF and MalG) and a membrane-associated ATPase (MalK). In the present study, the structure determination of the apo form of the putative maltose/trehalose-binding protein (Xac-MalE) from the citrus pathogen Xanthomonas citri in space group P6522 is described. The crystals contained two protein molecules in the asymmetric unit and diffracted to 2.8 Å resolution. Xac-MalE conserves the structural and functional features of sugar-binding proteins and a ligand-binding pocket with similar characteristics to eight different orthologues, including the residues for maltose and trehalose interaction. This is the first structure of a sugar-binding protein from a phytopathogenic bacterium, which is highly conserved in all species from the Xanthomonas genus. PMID:24817711
Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.
G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less
Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A
2012-03-14
Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active and regulatory sites; ii) a simulated ensemble of unliganded Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii) visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces and regions whose conformation is known to change on inhibitor binding. Through post-processing of the output of a variety of pocket prediction software, Provar provides a flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related protein structures.
Structural basis for corepressor assembly by the orphan nuclear receptor TLX
Zhou, X. Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten
2015-01-01
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. PMID:25691470
Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C
2001-07-01
The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.
Snapp, Karen R.; Craig, Ron; Herron, Michael; Nelson, Robert D.; Stoolman, Lloyd M.; Kansas, Geoffrey S.
1998-01-01
Interactions between P-selectin, expressed on endothelial cells and activated platelets, and its leukocyte ligand, a homodimer termed P-selectin glycoprotein ligand-1 (PSGL-1), mediate the earliest adhesive events during an inflammatory response. To investigate whether dimerization of PSGL-1 is essential for functional interactions with P-selectin, a mutant form of PSGL-1 was generated in which the conserved membrane proximal cysteine was mutated to alanine (designated C320A). Western blotting under both denaturing and native conditions of the C320A PSGL-1 mutant isolated from stably transfected cells revealed expression of only a monomeric form of PSGL-1. In contrast to cells cotransfected with α1-3 fucosyltransferase-VII (FucT-VII) plus PSGL-1, K562 cells expressing FucT-VII plus C320A failed to bind COS cells transfected with P-selectin in a low shear adhesion assay, or to roll on CHO cells transfected with P-selectin under conditions of physiologic flow. In addition, C320A transfectants failed to bind chimeric P-selectin fusion proteins. Both PSGL-1 and C320A were uniformly distributed on the surface of transfected K562 cells. Thus, dimerization of PSGL-1 through the single, conserved, extracellular cysteine is essential for functional recognition of P-selectin. PMID:9660879
Bensing, Barbara A; Khedri, Zahra; Deng, Lingquan; Yu, Hai; Prakobphol, Akraporn; Fisher, Susan J; Chen, Xi; Iverson, Tina M; Varki, Ajit; Sullam, Paul M
2016-11-01
Serine-rich repeat glycoproteins are adhesins expressed by commensal and pathogenic Gram-positive bacteria. A subset of these adhesins, expressed by oral streptococci, binds sialylated glycans decorating human salivary mucin MG2/MUC7, and platelet glycoprotein GPIb. Specific sialoglycan targets were previously identified for the ligand-binding regions (BRs) of GspB and Hsa, two serine-rich repeat glycoproteins expressed by Streptococcus gordonii While GspB selectively binds sialyl-T antigen, Hsa displays broader specificity. Here we examine the binding properties of four additional BRs from Streptococcus sanguinis or Streptococcus mitis and characterize the molecular determinants of ligand selectivity and affinity. Each BR has two domains that are essential for sialoglycan binding by GspB. One domain is structurally similar to the glycan-binding module of mammalian Siglecs (sialic acid-binding immunoglobulin-like lectins), including an arginine residue that is critical for glycan recognition, and that resides within a novel, conserved YTRY motif. Despite low sequence similarity to GspB, one of the BRs selectively binds sialyl-T antigen. Although the other three BRs are highly similar to Hsa, each displayed a unique ligand repertoire, including differential recognition of sialyl Lewis antigens and sulfated glycans. These differences in glycan selectivity were closely associated with differential binding to salivary and platelet glycoproteins. Specificity of sialoglycan adherence is likely an evolving trait that may influence the propensity of streptococci expressing Siglec-like adhesins to cause infective endocarditis. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanova, Marina E.; Fletcher, Georgina C.; O’Reilly, Nicola
2015-03-01
This study characterizes the interaction between the carboxy-terminal (ERLI) motif of the essential polarity protein Crb and the Pals1/Stardust PDZ-domain protein. Structures of human Pals1 PDZ with and without a Crb peptide are described, explaining the highly conserved nature of the ERLI motif and revealing a sterically blocked peptide-binding groove in the absence of ligand. Many components of epithelial polarity protein complexes possess PDZ domains that are required for protein interaction and recruitment to the apical plasma membrane. Apical localization of the Crumbs (Crb) transmembrane protein requires a PDZ-mediated interaction with Pals1 (protein-associated with Lin7, Stardust, MPP5), a member ofmore » the p55 family of membrane-associated guanylate kinases (MAGUKs). This study describes the molecular interaction between the Crb carboxy-terminal motif (ERLI), which is required for Drosophila cell polarity, and the Pals1 PDZ domain using crystallography and fluorescence polarization. Only the last four Crb residues contribute to Pals1 PDZ-domain binding affinity, with specificity contributed by conserved charged interactions. Comparison of the Crb-bound Pals1 PDZ structure with an apo Pals1 structure reveals a key Phe side chain that gates access to the PDZ peptide-binding groove. Removal of this side chain enhances the binding affinity by more than fivefold, suggesting that access of Crb to Pals1 may be regulated by intradomain contacts or by protein–protein interaction.« less
Developing a Dynamic Pharmacophore Model for HIV-1 Integrase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen
2000-05-11
We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is amore » multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.« less
Rapid comparison of protein binding site surfaces with Property Encoded Shape Distributions (PESD)
Das, Sourav; Kokardekar, Arshad
2009-01-01
Patterns in shape and property distributions on the surface of binding sites are often conserved across functional proteins without significant conservation of the underlying amino-acid residues. To explore similarities of these sites from the viewpoint of a ligand, a sequence and fold-independent method was created to rapidly and accurately compare binding sites of proteins represented by property-mapped triangulated Gauss-Connolly surfaces. Within this paradigm, signatures for each binding site surface are produced by calculating their property-encoded shape distributions (PESD), a measure of the probability that a particular property will be at a specific distance to another on the molecular surface. Similarity between the signatures can then be treated as a measure of similarity between binding sites. As postulated, the PESD method rapidly detected high levels of similarity in binding site surface characteristics even in cases where there was very low similarity at the sequence level. In a screening experiment involving each member of the PDBBind 2005 dataset as a query against the rest of the set, PESD was able to retrieve a binding site with identical E.C. (Enzyme Commission) numbers as the top match in 79.5% of cases. The ability of the method in detecting similarity in binding sites with low sequence conservations were compared with state-of-the-art binding site comparison methods. PMID:19919089
Sehgal, Sheikh Arslan; Mannan, Shazia; Kanwal, Sumaira; Naveed, Ishrat; Mir, Asif
2015-01-01
Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor-ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ.
Sehgal, Sheikh Arslan; Mannan, Shazia; Kanwal, Sumaira; Naveed, Ishrat; Mir, Asif
2015-01-01
Schizophrenia (SZ), a chronic mental and heritable disorder characterized by neurophysiological impairment and neuropsychological abnormalities, is strongly associated with D-amino acid oxidase activator (DAOA, G72). Research studies emphasized that overexpression of DAOA may be responsible for improper functioning of neurotransmitters, resulting in neurological disorders like SZ. In the present study, a hybrid approach of comparative modeling and molecular docking followed by inhibitor identification and structure modeling was employed. Screening was performed by two-dimensional similarity search against selected inhibitor, keeping in view the physiochemical properties of the inhibitor. Here, we report an inhibitor compound which showed maximum binding affinity against four selected isoforms of DAOA. Docking studies revealed that Glu-53, Thr-54, Lys-58, Val-85, Ser-86, Tyr-87, Leu-88, Glu-90, Leu-95, Val-98, Ser-100, Glu-112, Tyr-116, Lys-120, Asp-121, and Arg-122 are critical residues for receptor–ligand interaction. The C-terminal of selected isoforms is conserved, and binding was observed on the conserved region of isoforms. We propose that selected inhibitor might be more potent on the basis of binding energy values. Further analysis of this inhibitor through site-directed mutagenesis could be helpful for exploring the details of ligand-binding pockets. Overall, the findings of this study may be helpful in designing novel therapeutic targets to cure SZ. PMID:26170631
Gonadotropin-Releasing Hormone (GnRH) Receptor Structure and GnRH Binding
Flanagan, Colleen A.; Manilall, Ashmeetha
2017-01-01
Gonadotropin-releasing hormone (GnRH) regulates reproduction. The human GnRH receptor lacks a cytoplasmic carboxy-terminal tail but has amino acid sequence motifs characteristic of rhodopsin-like, class A, G protein-coupled receptors (GPCRs). This review will consider how recent descriptions of X-ray crystallographic structures of GPCRs in inactive and active conformations may contribute to understanding GnRH receptor structure, mechanism of activation and ligand binding. The structures confirmed that ligands bind to variable extracellular surfaces, whereas the seven membrane-spanning α-helices convey the activation signal to the cytoplasmic receptor surface, which binds and activates heterotrimeric G proteins. Forty non-covalent interactions that bridge topologically equivalent residues in different transmembrane (TM) helices are conserved in class A GPCR structures, regardless of activation state. Conformation-independent interhelical contacts account for a conserved receptor protein structure and their importance in the GnRH receptor structure is supported by decreased expression of receptors with mutations of residues in the network. Many of the GnRH receptor mutations associated with congenital hypogonadotropic hypogonadism, including the Glu2.53(90) Lys mutation, involve amino acids that constitute the conserved network. Half of the ~250 intramolecular interactions in GPCRs differ between inactive and active structures. Conformation-specific interhelical contacts depend on amino acids changing partners during activation. Conserved inactive conformation-specific contacts prevent receptor activation by stabilizing proximity of TM helices 3 and 6 and a closed G protein-binding site. Mutations of GnRH receptor residues involved in these interactions, such as Arg3.50(139) of the DRY/S motif or Tyr7.53(323) of the N/DPxxY motif, increase or decrease receptor expression and efficiency of receptor coupling to G protein signaling, consistent with the native residues stabilizing the inactive GnRH receptor structure. Active conformation-specific interhelical contacts stabilize an open G protein-binding site. Progress in defining the GnRH-binding site has recently slowed, with evidence that Tyr6.58(290) contacts Tyr5 of GnRH, whereas other residues affect recognition of Trp3 and Gly10NH2. The surprisingly consistent observations that GnRH receptor mutations that disrupt GnRH binding have less effect on “conformationally constrained” GnRH peptides may now be explained by crystal structures of agonist-bound peptide receptors. Analysis of GPCR structures provides insight into GnRH receptor function. PMID:29123501
Monomeric Yeast Frataxin is an Iron-Binding Protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook,J.; Bencze, K.; Jankovic, A.
Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly)more » share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less
Monomeric Yeast Frataxin is an Iron Binding Protein†
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.; Bencze, K; Jankovic, A
Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) sharemore » requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron.« less
Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki
2015-02-15
A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure and dynamics of a constitutively active neurotensin receptor
Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; ...
2016-12-07
Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecularmore » dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. In conclusion, the loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.« less
Structure and dynamics of a constitutively active neurotensin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo
Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecularmore » dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. In conclusion, the loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.« less
Structure and dynamics of a constitutively active neurotensin receptor
Krumm, Brian E.; Lee, Sangbae; Bhattacharya, Supriyo; Botos, Istvan; White, Courtney F.; Du, Haijuan; Vaidehi, Nagarajan; Grisshammer, Reinhard
2016-01-01
Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist. PMID:27924846
Higgins, Matthew K; Carrington, Mark
2014-01-01
Trypanosoma and Plasmodium species are unicellular, eukaryotic pathogens that have evolved the capacity to survive and proliferate within a human host, causing sleeping sickness and malaria, respectively. They have very different survival strategies. African trypanosomes divide in blood and extracellular spaces, whereas Plasmodium species invade and proliferate within host cells. Interaction with host macromolecules is central to establishment and maintenance of an infection by both parasites. Proteins that mediate these interactions are under selection pressure to bind host ligands without compromising immune avoidance strategies. In both parasites, the expansion of genes encoding a small number of protein folds has established large protein families. This has permitted both diversification to form novel ligand binding sites and variation in sequence that contributes to avoidance of immune recognition. In this review we consider two such parasite surface protein families, one from each species. In each case, known structures demonstrate how extensive sequence variation around a conserved molecular architecture provides an adaptable protein scaffold that the parasites can mobilise to mediate interactions with their hosts. PMID:24442723
Liu, Chunqiao; Widen, Sonya A.; Williamson, Kathleen A.; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P.; Strachan, Erin; Manjunath, Souparnika H.; Balakrishnan, Archana; Floyd, James A.; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P.; Lehmann, Ordan J.; FitzPatrick, David R.; Swaroop, Anand
2016-01-01
Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt–Frizzled (FZD) signaling in ocular development and directly implicate WNT–FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma. PMID:26908622
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
Mauzy, C; Wu, L H; Egloff, A M; Mirzadegan, T; Chung, F Z
1992-01-01
In the G protein-coupled receptor family, a highly conserved aspartic acid located within the third transmembrane domain has been shown to be involved in ligand binding. Within the endothelin (ET) peptide receptor family, this aspartic acid has been replaced by a lysine. To assess the importance of this residue in ET binding, the lysine (position 181) of rat ET type B receptor was replaced by an aspartic acid. The effects on ligand binding and phosphoinositide turnover of both the wild-type and K181D mutant receptors were examined using transient receptor expression in COS-7 cells. Using [125I]ET-1 as the radioactive peptide ligand in displacement binding studies, the wild-type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three ET peptides (ET-1, ET-2, and ET-3). The mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM). The K181D mutant receptor still elicited full inositol phosphate (IP) accumulation responses in the presence of saturating concentrations of ETs (10 nM of ET-1, 100 nM of ET-2, or 1 microM of ET-3), indicating that the mutation did not affect G protein coupling.
Critical ligand binding reagent preparation/selection: when specificity depends on reagents.
Rup, Bonita; O'Hara, Denise
2007-05-11
Throughout the life cycle of biopharmaceutical products, bioanalytical support is provided using ligand binding assays to measure the drug product for pharmacokinetic, pharmacodynamic, and immunogenicity studies. The specificity and selectivity of these ligand binding assays are highly dependent on the ligand binding reagents. Thus the selection, characterization, and management processes for ligand binding reagents are crucial to successful assay development and application. This report describes process considerations for selection and characterization of ligand binding reagents that are integral parts of the different phases of assay development. Changes in expression, purification, modification, and storage of the ligand binding reagents may have a profound effect on the ligand binding assay performance. Thus long-term management of the critical ligand binding assay reagents is addressed including suggested characterization criteria that allow ligand binding reagents to be used in as consistent a manner as possible. Examples of challenges related to the selection, modification, and characterization of ligand binding reagents are included.
Wang, Jing-Fang; Chou, Kuo-Chen
2012-01-01
Human mitochondrial ornithine transporter-1 is reported in coupling with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, which is a rare autosomal recessive disorder. For in-depth understanding of the molecular mechanism of the disease, it is crucially important to acquire the 3D structure of human mitochondrial ornithine transporter-1. Since no such structure is available in the current protein structure database, we have developed it via computational approaches based on the recent NMR structure of human mitochondrial uncoupling protein (Berardi MJ, Chou JJ, et al. Nature 2011, 476:109–113). Subsequently, we docked the ligand L-ornithine into the computational structure to search for the favorable binding mode. It was observed that the binding interaction for the most favorable binding mode is featured by six remarkable hydrogen bonds between the receptor and ligand, and that the most favorable binding mode shared the same ligand-binding site with most of the homologous mitochondrial carriers from different organisms, implying that the ligand-binding sites are quite conservative in the mitochondrial carriers family although their sequences similarity is very low with 20% or so. Moreover, according to our structural analysis, the relationship between the disease-causing mutations of human mitochondrial ornithine transporter-1 and the HHH syndrome can be classified into the following three categories: (i) the mutation occurs in the pseudo-repeat regions so as to change the region of the protein closer to the mitochondrial matrix; (ii) the mutation is directly affecting the substrate binding pocket so as to reduce the substrate binding affinity; (iii) the mutation is located in the structural region closer to the intermembrane space that can significantly break the salt bridge networks of the protein. These findings may provide useful insights for in-depth understanding of the molecular mechanism of the HHH syndrome and developing effective drugs against the disease. PMID:22292090
Lefor Bradford, Julia
2015-01-01
This perspective article discusses key points to address in the establishment of sound partnerships between sponsors and bioanalytical CROs to assure the timeliness, quality and consistency of bioanalysis throughout biological therapeutic development. The performance of ligand-binding assays can be greatly impacted by low-grade reagents, lot-to-lot variability and lack of stability of the analyte in matrix, impacting both timelines and cost. Thorough characterization of the biologic of interest and its assay-enabling critical reagents will lend itself well to conservation of materials and continuity of assay performance. When unplanned events occur, such as performance declines or premature depletion of material, structured procedures are paramount to supplement the current loosely defined regulatory guidance on critical reagent characterization and method bridging.
WONKA: objective novel complex analysis for ensembles of protein-ligand structures.
Bradley, A R; Wall, I D; von Delft, F; Green, D V S; Deane, C M; Marsden, B D
2015-10-01
WONKA is a tool for the systematic analysis of an ensemble of protein-ligand structures. It makes the identification of conserved and unusual features within such an ensemble straightforward. WONKA uses an intuitive workflow to process structural co-ordinates. Ligand and protein features are summarised and then presented within an interactive web application. WONKA's power in consolidating and summarising large amounts of data is described through the analysis of three bromodomain datasets. Furthermore, and in contrast to many current methods, WONKA relates analysis to individual ligands, from which we find unusual and erroneous binding modes. Finally the use of WONKA as an annotation tool to share observations about structures is demonstrated. WONKA is freely available to download and install locally or can be used online at http://wonka.sgc.ox.ac.uk.
Exhaustive comparison and classification of ligand-binding surfaces in proteins
Murakami, Yoichi; Kinoshita, Kengo; Kinjo, Akira R; Nakamura, Haruki
2013-01-01
Many proteins function by interacting with other small molecules (ligands). Identification of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we classified the patches into ∼2000 well-characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes. PMID:23934772
Zhou, Lei; Olivier, Nelson B; Yao, Huan; Young, Edgar C; Siegelbaum, Steven A
2004-12-02
Cyclic nucleotides directly enhance the opening of the tetrameric CNG and HCN channels, although the mechanism remains unclear. We examined why HCN and certain CNG subunits form functional homomeric channels, whereas other CNG subunits only function in heteromeric channels. The "defect" in the CNGA4 subunit that prevents its homomeric expression was localized to its C-linker, which connects the transmembrane domain to the binding domain and contains a tripeptide that decreases the efficacy of ligand gating. Remarkably, replacement of the homologous HCN tripeptide with the CNGA4 sequence transformed cAMP into an inverse agonist that inhibits HCN channel opening. Using analytical ultracentrifugation, we identified the structural basis for this gating switch: whereas cAMP normally enhances the assembly of HCN C-terminal domains into a tetrameric gating ring, inclusion of the CNGA4 tripeptide reversed this action so that cAMP now causes gating ring disassembly. Thus, ligand gating depends on the dynamic oligomerization of C-terminal binding domains.
Structural basis for corepressor assembly by the orphan nuclear receptor TLX.
Zhi, Xiaoyong; Zhou, X Edward; He, Yuanzheng; Searose-Xu, Kelvin; Zhang, Chun-Li; Tsai, Chih-Cheng; Melcher, Karsten; Xu, H Eric
2015-02-15
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX-Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression. © 2015 Zhi et al.; Published by Cold Spring Harbor Laboratory Press.
Baines, Anthony J
2003-01-01
The spectrin superfamily (spectrin, alpha-actinin, utrophin and dystrophin) has in common a triple helical repeating unit of ~106 amino acid residues. In spectrin, alpha and beta chains contain multiple copies of this repeat. beta-spectrin chains contain the majority of binding activities in spectrin and are essential for animal life. Canonical beta-spectrins have 17 repeats; beta-heavy spectrins have 30. Here, the repeats of five human beta-spectrins, plus beta-spectrins from several other vertebrates and invertebrates, have been analysed. Repeats 1, 2, 14 and 17 in canonical beta are highly conserved between invertebrates and vertebrates, and repeat 8 in some isoforms. This is consistent with conservation of critical functions, since repeats 1, 2 and 17 bind alpha-spectrin. Repeats 1 of beta-spectrins are not always detected by SMART or Pfam tools. A profile hidden Markov model of beta-spectrin repeat 1 detects alpha-actinins, but not utrophin or dystrophin. Novel examples of repeat 1 were detected in the spectraplakins MACF1, BPAG1 and plectin close to the actin-binding domain. Ankyrin binds to the C-terminal portion of repeat 14; the high conservation of this entire repeat may point to additional, undiscovered ligand-binding activities. This analysis indicates that the basic triple helical repeat pattern was adapted early in the evolution of the spectrin superfamily to encompass essential binding activities, which characterise individual repeats in proteins extant today.
New tRNA contacts facilitate ligand binding in a Mycobacterium smegmatis T box riboswitch.
Sherwood, Anna V; Frandsen, Jane K; Grundy, Frank J; Henkin, Tina M
2018-04-10
T box riboswitches are RNA regulatory elements widely used by organisms in the phyla Firmicutes and Actinobacteria to regulate expression of amino acid-related genes. Expression of T box family genes is down-regulated by transcription attenuation or inhibition of translation initiation in response to increased charging of the cognate tRNA. Three direct contacts with tRNA have been described; however, one of these contacts is absent in a subclass of T box RNAs and the roles of several structural domains conserved in most T box RNAs are unknown. In this study, structural elements of a Mycobacterium smegmatis ileS T box riboswitch variant with an Ultrashort (US) Stem I were sequentially deleted, which resulted in a progressive decrease in binding affinity for the tRNA Ile ligand. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) revealed structural changes in conserved riboswitch domains upon interaction with the tRNA ligand. Cross-linking and mutational analyses identified two interaction sites, one between the S-turn element in Stem II and the T arm of tRNA Ile and the other between the Stem IIA/B pseudoknot and the D loop of tRNA Ile These newly identified RNA contacts add information about tRNA recognition by the T box riboswitch and demonstrate a role for the S-turn and pseudoknot elements, which resemble structural elements that are common in many cellular RNAs.
Ntumngia, Francis B.; King, Christopher L.; Adams, John H.
2014-01-01
Plasmodium vivax Duffy binding protein region II (DBPII) is an essential ligand for reticulocyte invasion, thereby making this molecule an attractive vaccine candidate against asexual blood-stage P. vivax. Similar to other Plasmodium blood-stage vaccine candidates, strain-specific immunity due to DBPII allelic variation may complicate vaccine efficacy. Targeting immune responses to more conserved epitopes that are potential targets of strain-transcending neutralizing immunity is necessary to avoid induction of strain-specific responses to dominant variant epitopes. In this article, we focus on different approaches to optimize the design of DBP immunogenicity to target conserved epitopes, which is important for developing a broadly effective vaccine against P. vivax. PMID:23068913
Bhagavat, Raghu; Srinivasan, Narayanaswamy; Chandra, Nagasuma
2017-09-01
Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ntumngia, Francis B.; Schloegel, Jesse; Barnes, Samantha J.; McHenry, Amy M.; Singh, Sanjay; King, Christopher L.
2012-01-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains. PMID:22215740
Ntumngia, Francis B; Schloegel, Jesse; Barnes, Samantha J; McHenry, Amy M; Singh, Sanjay; King, Christopher L; Adams, John H
2012-03-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains.
Structural basis for corepressor assembly by the orphan nuclear receptor TLX
Zhi, Xiaoyong; Zhou, X. Edward; He, Yuanzheng; ...
2015-02-15
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conservedmore » ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.« less
Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery
NASA Astrophysics Data System (ADS)
Sato, Takato; Ohnuki, Jun; Takano, Mitsunori
2017-12-01
A protein molecule is a dielectric substance, so the binding of a ligand is expected to induce dielectric response in the protein molecule, considering that ligands are charged or polar in general. We previously reported that binding of adenosine triphosphate (ATP) to molecular motor myosin actually induces such a dielectric response in myosin due to the net negative charge of ATP. By this dielectric response, referred to as "dielectric allostery," spatially separated two regions in myosin, the ATP-binding region and the actin-binding region, are allosterically coupled. In this study, from the statistically stringent analyses of the extensive molecular dynamics simulation data obtained in the ATP-free and the ATP-bound states, we show that there exists the dielectric allostery that transmits the signal of ATP binding toward the distant lever-arm region. The ATP-binding-induced electrostatic potential change observed on the surface of the main domain induced a movement of the converter subdomain from which the lever arm extends. The dielectric response was found to be caused by an underlying large-scale concerted rearrangement of the electrostatic bond network, in which highly conserved charged/polar residues are involved. Our study suggests the importance of the dielectric property for molecular machines in exerting their function.
Shin, Jae-Min; Cho, Doo-Ho
2005-01-01
PDB-Ligand (http://www.idrtech.com/PDB-Ligand/) is a three-dimensional structure database of small molecular ligands that are bound to larger biomolecules deposited in the Protein Data Bank (PDB). It is also a database tool that allows one to browse, classify, superimpose and visualize these structures. As of May 2004, there are about 4870 types of small molecular ligands, experimentally determined as a complex with protein or DNA in the PDB. The proteins that a given ligand binds are often homologous and present the same binding structure to the ligand. However, there are also many instances wherein a given ligand binds to two or more unrelated proteins, or to the same or homologous protein in different binding environments. PDB-Ligand serves as an interactive structural analysis and clustering tool for all the ligand-binding structures in the PDB. PDB-Ligand also provides an easier way to obtain a number of different structure alignments of many related ligand-binding structures based on a simple and flexible ligand clustering method. PDB-Ligand will be a good resource for both a better interpretation of ligand-binding structures and the development of better scoring functions to be used in many drug discovery applications.
Sung, Nuri; Lee, Jungsoon; Kim, Ji-Hyun; Chang, Changsoo; Joachimiak, Andrzej; Lee, Sukyeong; Tsai, Francis T. F.
2016-01-01
Heat-shock protein of 90 kDa (Hsp90) is an essential molecular chaperone that adopts different 3D structures associated with distinct nucleotide states: a wide-open, V-shaped dimer in the apo state and a twisted, N-terminally closed dimer with ATP. Although the N domain is known to mediate ATP binding, how Hsp90 senses the bound nucleotide and facilitates dimer closure remains unclear. Here we present atomic structures of human mitochondrial Hsp90N (TRAP1N) and a composite model of intact TRAP1 revealing a previously unobserved coiled-coil dimer conformation that may precede dimer closure and is conserved in intact TRAP1 in solution. Our structure suggests that TRAP1 normally exists in an autoinhibited state with the ATP lid bound to the nucleotide-binding pocket. ATP binding displaces the ATP lid that signals the cis-bound ATP status to the neighboring subunit in a highly cooperative manner compatible with the coiled-coil intermediate state. We propose that TRAP1 is a ligand-activated molecular chaperone, which couples ATP binding to dramatic changes in local structure required for protein folding. PMID:26929380
Pfeiffer, M; Klein, A; Steinert, P; Schomburg, D
The 25 amino acid long subunit VhuU of the F420-non-reducing hydrogenase from Methanococcus voltae contains selenocysteine within the consensus sequence of known [NiFe] hydrogenases DP(C or U)CxxCxxH (U = selenocysteine). The sulfur-analogue VhuUc was chemically synthesized, purified and its metal binding capability, the catalytic properties, and structural features were investigated. The polypeptide was able to bind nickel, but did not catalyse the heterolytic activation of H2. 2D-NMR spectroscopy revealed an alpha-helical secondary structure for the 15 N-terminal amino acids in 50% TFE. Nickel only binds to the C-terminus, which contains the conserved amino acid motif. Structures derived from the NMR data are compatible with the participation of both sulfur atoms from the conserved cysteine residues in a metal ion binding. Structures obtained from the data sets for Ni.VhuUc as well as Zn.VhuUc showed no further ligands. The informational value for Ni.VhuUc was low due to paramagnetism.
Herrou, Julien; Willett, Jonathan W; Czyż, Daniel M; Babnigg, Gyorgy; Kim, Youngchang; Crosson, Sean
2017-03-01
Brucella abortus σ E1 is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon, bab1_0223-bab1_0226 , is among the most highly activated gene sets in the σ E1 regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription of yehZYXW is activated by the general stress sigma factor σ S in Enterobacteriaceae , which suggests a functional role for this transport system in bacterial stress response across the classes Alphaproteobacteria and Gammaproteobacteria We present evidence that B. abortus YehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1 -null strain. The sole in vitro phenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li + ion concentrations. A crystal structure of B. abortus YehZ revealed a class II periplasmic binding protein fold with significant structural homology to Archaeoglobus fulgidus ProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCE Brucella abortus σ E1 regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σ E1 remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σ E1 Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure of B. abortus YehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.
ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σ E1remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σ E1. Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure ofB. abortusYehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.« less
Non-thiolate ligation of nickel by nucleotide-free UreG of Klebsiella aerogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin-Diaconescu, Vlad; Joseph, Crisjoe A.; Boer, Jodi L.
Nickel-dependent ureases are activated by a multiprotein complex that includes the GTPase UreG. Prior studies showed that nucleotide-free UreG from Klebsiella aerogenes is monomeric and binds one nickel or zinc ion with near-equivalent affinity using an undefined binding site, whereas nucleotide-free UreG from Helicobacter pylori selectively binds one zinc ion per dimer via a universally conserved Cys-Pro-His motif in each protomer. Iodoacetamide-treated K. aerogenes UreG was nearly unaffected in nickel binding compared to non-treated sample, suggesting the absence of thiolate ligands to the metal. X-ray absorption spectroscopy of nickel-bound UreG showed the metal possessed four-coordinate geometry with all O/N donormore » ligands including one imidazole, thus confirming the absence of thiolate ligation. The nickel site in Strep-tag II-modified protein possessed six-coordinate geometry, again with all O/N donor ligands, but now including two or three imidazoles. An identical site was noted for the Strep-tag II-modified H74A variant, substituted in the Cys-Pro-His motif, ruling out coordination by this His residue. These results are consistent with metal binding to both His6 and a His residue of the fusion peptide in Strep-tagged K. aerogenes UreG. We conclude that the nickel- and zinc-binding site in nucleotide-free K. aerogenes UreG is distinct from that of nucleotide-free H. pylori UreG and does not involve the Cys-Pro-His motif. Further, we show the Strep-tag II can perturb metal coordination of this protein.« less
An alternate binding site for PPARγ ligands
Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2014-01-01
PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063
Conformational Changes in Small Ligands Upon Tetanus Toxin Binding
2008-06-01
lectin-like N-terminal jelly -roll domain and a C-terminal P-trefoil domain;2’ see Figure 2. The ganglioside binding site has been found to occur along...C-terminal P-trefoil and N-terminal jelly -roll sub- domains.’ 0 The site has been identified as the most highly conserved pocket in the structures of...the TeNT and botulinum toxins.23 p-trefoil jelly -roll Figure 2: Crystal Structure of TetC Determined to 1.6 A Resolution. a-Helices are red, P-sheets
Ligand-based virtual screening under partial shape constraints.
von Behren, Mathias M; Rarey, Matthias
2017-04-01
Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise ).
Ligand-based virtual screening under partial shape constraints
NASA Astrophysics Data System (ADS)
von Behren, Mathias M.; Rarey, Matthias
2017-04-01
Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise).
Scoring ligand similarity in structure-based virtual screening.
Zavodszky, Maria I; Rohatgi, Anjali; Van Voorst, Jeffrey R; Yan, Honggao; Kuhn, Leslie A
2009-01-01
Scoring to identify high-affinity compounds remains a challenge in virtual screening. On one hand, protein-ligand scoring focuses on weighting favorable and unfavorable interactions between the two molecules. Ligand-based scoring, on the other hand, focuses on how well the shape and chemistry of each ligand candidate overlay on a three-dimensional reference ligand. Our hypothesis is that a hybrid approach, using ligand-based scoring to rank dockings selected by protein-ligand scoring, can ensure that high-ranking molecules mimic the shape and chemistry of a known ligand while also complementing the binding site. Results from applying this approach to screen nearly 70 000 National Cancer Institute (NCI) compounds for thrombin inhibitors tend to support the hypothesis. EON ligand-based ranking of docked molecules yielded the majority (4/5) of newly discovered, low to mid-micromolar inhibitors from a panel of 27 assayed compounds, whereas ranking docked compounds by protein-ligand scoring alone resulted in one new inhibitor. Since the results depend on the choice of scoring function, an analysis of properties was performed on the top-scoring docked compounds according to five different protein-ligand scoring functions, plus EON scoring using three different reference compounds. The results indicate that the choice of scoring function, even among scoring functions measuring the same types of interactions, can have an unexpectedly large effect on which compounds are chosen from screening. Furthermore, there was almost no overlap between the top-scoring compounds from protein-ligand versus ligand-based scoring, indicating the two approaches provide complementary information. Matchprint analysis, a new addition to the SLIDE (Screening Ligands by Induced-fit Docking, Efficiently) screening toolset, facilitated comparison of docked molecules' interactions with those of known inhibitors. The majority of interactions conserved among top-scoring compounds for a given scoring function, and from the different scoring functions, proved to be conserved interactions in known inhibitors. This was particularly true in the S1 pocket, which was occupied by all the docked compounds. (c) 2009 John Wiley & Sons, Ltd.
Bergner, Laura M.; Hickman, F. Edward; Wood, Kathleen H.; Wakeman, Carolyn M.; Stone, Hunter H.; Campbell, Tessa J.; Lightcap, Samantha B.; Favors, Sheena M.; Aldridge, Amanda C.
2010-01-01
Temporal coordination of meiosis with spermatid morphogenesis is crucial for successful generation of mature sperm cells. We identified a recessive male sterile Drosophila melanogaster mutant, mitoshell, in which events of spermatid morphogenesis are initiated too early, before meiotic onset. Premature mitochondrial aggregation and fusion lead to an aberrant mitochondrial shell around premeiotic nuclei. Despite successful meiotic karyokinesis, improper mitochondrial localization in mitoshell testes is associated with defective astral central spindles and a lack of contractile rings, leading to meiotic cytokinesis failure. We mapped and cloned the mitoshell gene and found that it encodes a novel protein with a bromodomain-related region. It is conserved in some insect lineages. Bromodomains typically bind to histone acetyl-lysine residues and therefore are often associated with chromatin. The Mitoshell bromodomain-related region is predicted to have an alpha helical structure similar to that of bromodomains, but not all the crucial residues in the ligand-binding loops are conserved. We speculate that Mitoshell may participate in transcriptional regulation of spermatogenesis-specific genes, though perhaps with different ligand specificity compared to traditional bromodomains. PMID:20491580
Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes
Alberstein, Robert; Grey, Richard; Zimmet, Austin; ...
2015-10-12
Recent genome projects for ctenophores have revealed the presence of numerous ionotropic glutamate receptors (iGluRs) in Mnemiopsis leidyi and Pleurobrachia bachei, among our earliest metazoan ancestors. Sequence alignments and phylogenetic analysis show that these form a distinct clade from the well-characterized AMPA, kainate, and NMDA iGluR subtypes found in vertebrates. Although annotated as glutamate and kainate receptors, crystal structures of the ML032222a and PbiGluR3 ligand-binding domains (LBDs) reveal endogenous glycine in the binding pocket, whereas ligand-binding assays show that glycine binds with nanomolar affinity; biochemical assays and structural analysis establish that glutamate is occluded from the binding cavity. Further analysismore » reveals ctenophore-specific features, such as an interdomain Arg-Glu salt bridge, present only in subunits that bind glycine, but also a conserved disulfide in loop 1 of the LBD that is found in all vertebrate NMDA but not AMPA or kainate receptors. In this paper, we hypothesize that ctenophore iGluRs are related to an early ancestor of NMDA receptors, suggesting a common evolutionary path for ctenophores and bilaterian species, and finally suggest that future work should consider both glycine and glutamate as candidate neurotransmitters in ctenophore species.« less
Ntumngia, Francis B; King, Christopher L; Adams, John H
2012-11-01
Plasmodium vivax Duffy binding protein region II (DBPII) is an essential ligand for reticulocyte invasion, thereby making this molecule an attractive vaccine candidate against asexual blood-stage P. vivax. Similar to other Plasmodium blood-stage vaccine candidates, strain-specific immunity due to DBPII allelic variation may complicate vaccine efficacy. Targeting immune responses to more conserved epitopes that are potential targets of strain-transcending neutralising immunity is necessary to avoid induction of strain-specific responses to dominant variant epitopes. In this article, we focus on different approaches to optimise the design of DBP immunogenicity to target conserved epitopes, which is important for developing a broadly effective vaccine against P. vivax. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemčovičová, Ivana; Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava; Zajonc, Dirk M., E-mail: dzajonc@liai.org
2014-03-01
The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155more » as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host–receptor interactions are evolutionary conserved.« less
2012-01-01
Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery. PMID:23281852
Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon
2012-01-01
To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.
Protein tyrosine phosphatases: Ligand interaction analysis and optimisation of virtual screening.
Ghattas, Mohammad A; Atatreh, Noor; Bichenkova, Elena V; Bryce, Richard A
2014-07-01
Docking-based virtual screening is an established component of structure-based drug discovery. Nevertheless, scoring and ranking of computationally docked ligand libraries still suffer from many false positives. Identifying optimal docking parameters for a target protein prior to virtual screening can improve experimental hit rates. Here, we examine protocols for virtual screening against the important but challenging class of drug target, protein tyrosine phosphatases. In this study, common interaction features were identified from analysis of protein-ligand binding geometries of more than 50 complexed phosphatase crystal structures. It was found that two interactions were consistently formed across all phosphatase inhibitors: (1) a polar contact with the conserved arginine residue, and (2) at least one interaction with the P-loop backbone amide. In order to investigate the significance of these features on phosphatase-ligand binding, a series of seeded virtual screening experiments were conducted on three phosphatase enzymes, PTP1B, Cdc25b and IF2. It was observed that when the conserved arginine and P-loop amide interactions were used as pharmacophoric constraints during docking, enrichment of the virtual screen significantly increased in the three studied phosphatases, by up to a factor of two in some cases. Additionally, the use of such pharmacophoric constraints considerably improved the ability of docking to predict the inhibitor's bound pose, decreasing RMSD to the crystallographic geometry by 43% on average. Constrained docking improved enrichment of screens against both open and closed conformations of PTP1B. Incorporation of an ordered water molecule in PTP1B screening was also found to generally improve enrichment. The knowledge-based computational strategies explored here can potentially inform structure-based design of new phosphatase inhibitors using docking-based virtual screening. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Xiang; Choi, Sung Hee; Hu, Tiancen; Tiyanont, Kittichoat; Habets, Roger; Groot, Arjan J; Vooijs, Marc; Aster, Jon C; Chopra, Rajiv; Fryer, Christy; Blacklow, Stephen C
2015-07-07
Notch receptors are transmembrane proteins that undergo activating proteolysis in response to ligand stimulation. A negative regulatory region (NRR) maintains receptor quiescence by preventing protease cleavage prior to ligand binding. We report here the X-ray structure of the NRR of autoinhibited human Notch3, and compare it with the Notch1 and Notch2 NRRs. The overall architecture of the autoinhibited conformation, in which three LIN12-Notch repeat (LNR) modules wrap around a heterodimerization domain, is preserved in Notch3, but the autoinhibited conformation of the Notch3 NRR is less stable. The Notch3 NRR uses a highly conserved surface on the third LNR module to form a dimer in the crystal. Similar homotypic interfaces exist in Notch1 and Notch2. Together, these studies reveal distinguishing structural features associated with increased basal activity of Notch3, demonstrate increased ligand-independent signaling for disease-associated mutations that map to the Notch3 NRR, and identify a conserved dimerization interface present in multiple Notch receptors. Copyright © 2015 Elsevier Ltd. All rights reserved.
A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.
Essen, L O; Perisic, O; Lynch, D E; Katan, M; Williams, R L
1997-03-11
We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.
Loughran, Gary; Jungreis, Irwin; Tzani, Ioanna; Power, Michael; Dmitriev, Ruslan I.; Ivanov, Ivaylo P.; Kellis, Manolis; Atkins, John F.
2018-01-01
Although stop codon readthrough is used extensively by viruses to expand their gene expression, verified instances of mammalian readthrough have only recently been uncovered by systems biology and comparative genomics approaches. Previously, our analysis of conserved protein coding signatures that extend beyond annotated stop codons predicted stop codon readthrough of several mammalian genes, all of which have been validated experimentally. Four mRNAs display highly efficient stop codon readthrough, and these mRNAs have a UGA stop codon immediately followed by CUAG (UGA_CUAG) that is conserved throughout vertebrates. Extending on the identification of this readthrough motif, we here investigated stop codon readthrough, using tissue culture reporter assays, for all previously untested human genes containing UGA_CUAG. The readthrough efficiency of the annotated stop codon for the sequence encoding vitamin D receptor (VDR) was 6.7%. It was the highest of those tested but all showed notable levels of readthrough. The VDR is a member of the nuclear receptor superfamily of ligand-inducible transcription factors, and it binds its major ligand, calcitriol, via its C-terminal ligand-binding domain. Readthrough of the annotated VDR mRNA results in a 67 amino acid–long C-terminal extension that generates a VDR proteoform named VDRx. VDRx may form homodimers and heterodimers with VDR but, compared with VDR, VDRx displayed a reduced transcriptional response to calcitriol even in the presence of its partner retinoid X receptor. PMID:29386352
Speranskiy, Kirill; Kurnikova, Maria
2005-08-30
Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.
A Crayfish Insulin-like-binding Protein
Rosen, Ohad; Weil, Simy; Manor, Rivka; Roth, Ziv; Khalaila, Isam; Sagi, Amir
2013-01-01
Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a “pulldown” methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23–38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development. PMID:23775079
Lai, Yen-Ting; Cheng, Chao-Sheng; Liu, Yu-Nan; Liu, Yaw-Jen; Lyu, Ping-Chiang
2008-09-01
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding. 2008 Wiley-Liss, Inc.
Wangkanont, Kittikhun; Wesener, Darryl A; Vidani, Jack A; Kiessling, Laura L; Forest, Katrina T
2016-03-11
Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Wangkanont, Kittikhun; Wesener, Darryl A.; Vidani, Jack A.; Kiessling, Laura L.; Forest, Katrina T.
2016-01-01
Intelectins (X-type lectins), broadly distributed throughout chordates, have been implicated in innate immunity. Xenopus laevis embryonic epidermal lectin (XEEL), an intelectin secreted into environmental water by the X. laevis embryo, is postulated to function as a defense against microbes. XEEL is homologous (64% identical) to human intelectin-1 (hIntL-1), which is also implicated in innate immune defense. We showed previously that hIntL-1 binds microbial glycans bearing exocyclic vicinal diol groups. It is unknown whether XEEL has the same ligand specificity. Also unclear is whether XEEL and hIntL-1 have similar quaternary structures, as XEEL lacks the corresponding cysteine residues in hIntL-1 that stabilize the disulfide-linked trimer. These observations prompted us to further characterize XEEL. We found that hIntL-1 and XEEL have similar structural features. Even without the corresponding intermolecular disulfide bonds present in hIntL-1, the carbohydrate recognition domain of XEEL (XEELCRD) forms a stable trimer in solution. The structure of XEELCRD in complex with d-glycerol-1-phosphate, a residue present in microbe-specific glycans, indicated that the exocyclic vicinal diol coordinates to a protein-bound calcium ion. This ligand-binding mode is conserved between XEEL and hIntL-1. The domain architecture of full-length XEEL is reminiscent of a barbell, with two sets of three glycan-binding sites oriented in opposite directions. This orientation is consistent with our observation that XEEL can promote the agglutination of specific serotypes of Streptococcus pneumoniae. These data support a role for XEEL in innate immunity, and they highlight structural and functional conservation of X-type lectins among chordates. PMID:26755729
Gill, Samuel C; Lim, Nathan M; Grinaway, Patrick B; Rustenburg, Ariën S; Fass, Josh; Ross, Gregory A; Chodera, John D; Mobley, David L
2018-05-31
Accurately predicting protein-ligand binding affinities and binding modes is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation time scales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes. In this technique, the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over 2 orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step toward applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding modes of ligands using enhanced sampling (BLUES) package which is freely available on GitHub.
Structural basis for molecular recognition at serotonin receptors.
Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric
2013-05-03
Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.
Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Zhong; rajer, Vukica; Knapp, James E.
2013-04-08
Here we present a meta-analysis of a large collection of static structures of a protein in the Protein Data Bank in order to extract the progression of structural events during protein function. We apply this strategy to the homodimeric hemoglobin HbI from Scapharca inaequivalvis. We derive a simple dynamic model describing how binding of the first ligand in one of the two chemically identical subunits facilitates a second binding event in the other partner subunit. The results of our ultrafast time-resolved crystallographic studies support this model. We demonstrate that HbI functions like a homodimeric mechanical device, such as pliers ormore » scissors. Ligand-induced motion originating in one subunit is transmitted to the other via conserved pivot points, where the E and F' helices from two partner subunits are 'bolted' together to form a stable dimer interface permitting slight relative rotation but preventing sliding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borziak, Kirill; Jouline, Igor B
2007-01-01
Motivation: Sensory domains that are conserved among Bacteria, Archaea and Eucarya are important detectors of common signals detected by living cells. Due to their high sequence divergence, sensory domains are difficult to identify. We systematically look for novel sensory domains using sensitive profile-based searches initi-ated with regions of signal transduction proteins where no known domains can be identified by current domain models. Results: Using profile searches followed by multiple sequence alignment, structure prediction, and domain architecture analysis, we have identified a novel sensory domain termed FIST, which is present in signal transduction proteins from Bacteria, Archaea and Eucarya. Remote similaritymore » to a known ligand-binding fold and chromosomal proximity of FIST-encoding genes to those coding for proteins involved in amino acid metabolism and transport suggest that FIST domains bind small ligands, such as amino acids.« less
Zhao, Li-Hua; Zhou, X Edward; Yi, Wei; Wu, Zhongshan; Liu, Yue; Kang, Yanyong; Hou, Li; de Waal, Parker W; Li, Suling; Jiang, Yi; Scaffidi, Adrian; Flematti, Gavin R; Smith, Steven M; Lam, Vinh Q; Griffin, Patrick R; Wang, Yonghong; Li, Jiayang; Melcher, Karsten; Xu, H Eric
2015-01-01
Strigolactones (SLs) are endogenous hormones and exuded signaling molecules in plant responses to low levels of mineral nutrients. Key mediators of the SL signaling pathway in rice include the α/β-fold hydrolase DWARF 14 (D14) and the F-box component DWARF 3 (D3) of the ubiquitin ligase SCFD3 that mediate ligand-dependent degradation of downstream signaling repressors. One perplexing feature is that D14 not only functions as the SL receptor but is also an active enzyme that slowly hydrolyzes diverse natural and synthetic SLs including GR24, preventing the crystallization of a binary complex of D14 with an intact SL as well as the ternary D14/SL/D3 complex. Here we overcome these barriers to derive a structural model of D14 bound to intact GR24 and identify the interface that is required for GR24-mediated D14-D3 interaction. The mode of GR24-mediated signaling, including ligand recognition, hydrolysis by D14, and ligand-mediated D14-D3 interaction, is conserved in structurally diverse SLs. More importantly, D14 is destabilized upon the binding of ligands and D3, thus revealing an unusual mechanism of SL recognition and signaling, in which the hormone, the receptor, and the downstream effectors are systematically destabilized during the signal transduction process. PMID:26470846
Triki, Dhoha; Cano Contreras, Mario Enrique; Flatters, Delphine; Visseaux, Benoit; Descamps, Diane; Camproux, Anne-Claude; Regad, Leslie
2018-01-15
The HIV-2 protease (PR2) is a homodimer of 99 residues with asymmetric assembly and binding various ligands. We propose an exhaustive study of the local structural asymmetry between the two monomers of all available PR2 structures complexed with various inhibitors using a structural alphabet approach. On average, PR2 exhibits asymmetry in 31% of its positions-i.e., exhibiting different backbone local conformations in the two monomers. This asymmetry was observed all along its structure, particularly in the elbow and flap regions. We first differentiated structural asymmetry conserved in most PR2 structures from the one specific to some PR2. Then, we explored the origin of the detected asymmetry in PR2. We localized asymmetry that could be induced by PR2's flexibility, allowing transition from the semi-open to closed conformations and the asymmetry potentially induced by ligand binding. This latter could be important for the PR2's adaptation to diverse ligands. Our results highlighted some differences between asymmetry of PR2 bound to darunavir and amprenavir that could explain their differences of affinity. This knowledge is critical for a better description of PR2's recognition and adaptation to various ligands and for a better understanding of the resistance of PR2 to most PR2 inhibitors, a major antiretroviral class.
Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans.
Motola, Daniel L; Cummins, Carolyn L; Rottiers, Veerle; Sharma, Kamalesh K; Li, Tingting; Li, Yong; Suino-Powell, Kelly; Xu, H Eric; Auchus, Richard J; Antebi, Adam; Mangelsdorf, David J
2006-03-24
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
An excited state underlies gene regulation of a transcriptional riboswitch
Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi
2017-01-01
Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589
Purinergic P2X receptors: structural models and analysis of ligand-target interaction.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria
2015-01-07
The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Kanagarajadurai, Karuppiah; Malini, Manoharan; Bhattacharya, Aditi; Panicker, Mitradas M; Sowdhamini, Ramanathan
2009-12-01
The serotonergic system has been implicated in emotional and cognitive function. In particular, 5-HT(2A) (5-hydroxytrytamine receptor 2A) is attributed to a number of disorders like schizophrenia, depression, eating disorders and anxiety. 5-HT(2A), being a GPCR (G-protein coupled receptor), is important in the pharmaceutical industry as a proven target for these disorders. Despite their extensive clinical importance, the structural studies of this protein is lacking due to difficulties in determining its crystal structure. We have performed sequence analysis and molecular modeling of 5-HT(2A) that has revealed a set of conserved residues and motifs considered to play an important role in maintaining structural integrity and function of the receptor. The analysis also revealed a set of residues specific to the receptor which distinguishes them from other members of the subclass and their orthologs. Further, starting from the model structure of human 5-HT(2A) receptor, docking studies were attempted to envisage how it might interact with eight of its ligands (such as serotonin, dopamine, DOI, LSD, haloperidol, ketanserin, risperidone and clozapine). The binding studies of dopamine to 5-HT(2A) receptor can bring up better understanding in the etiology of a number of neurological disorders involving both these two receptors. Our sequence analysis and study of interactions of this receptor with other ligands reveal additional residue hotspots such as Asn 363 and Tyr 370. The function of these residues can be further analyzed by rational design of site-directed mutagenesis. Two distinct binding sites are identified which could play important roles in ligand binding and signaling.
2015-01-01
In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4–ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level. PMID:25231537
Li, Yan; Li, Xiang; Dong, Zigang
2014-10-14
In this work, we investigate the dynamic motions of fatty acid binding protein 4 (FABP4) in the absence and presence of a ligand by explicitly solvated all-atom molecular dynamics simulations. The dynamics of one ligand-free FABP4 and four ligand-bound FABP4s is compared via multiple 1.2 μs simulations. In our simulations, the protein interconverts between the open and closed states. Ligand-free FABP4 prefers the closed state, whereas ligand binding induces a conformational transition to the open state. Coupled with opening and closing of FABP4, the ligand adopts distinct binding modes, which are identified and compared with crystal structures. The concerted dynamics of protein and ligand suggests that there may exist multiple FABP4-ligand binding conformations. Thus, this work provides details about how ligand binding affects the conformational preference of FABP4 and how ligand binding is coupled with a conformational change of FABP4 at an atomic level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sine, Steven M.; Huang, Sun; Li, Shu-Xing
2013-09-01
The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr 184 in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr 184 depends on local residues, we generated mutations in an α7/5HT 3A (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured 125I-labelled α-btx binding. The results show that mutations of individual residues near Tyr 184 do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurementsmore » show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr 184 to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr 184 to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr 184 and local residues contributes to high-affinity subtype-selective α-btx binding.« less
Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul
2008-11-21
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.
Mumford, Andrew D; Dawood, Ban B; Daly, Martina E; Murden, Sherina L; Williams, Michael D; Protty, Majd B; Spalton, Jennifer C; Wheatley, Mark; Mundell, Stuart J; Watson, Steve P
2010-01-14
We investigated the cause of mild mucocutaneous bleeding in a 14-year-old male patient (P1). Platelet aggregation and ATP secretion induced by arachidonic acid and the thromboxane A(2) receptor (TxA(2)R) agonist U46619 were reduced in P1 compared with controls, whereas the responses to other platelet agonists were retained. P1 was heterozygous for a transversion within the TBXA2R gene predictive of a D304N substitution in the TxA(2)R. In Chinese hamster ovary-K1 cells expressing the variant D304N TxA(2)R, U46619 did not increase cytosolic free Ca(2+) concentration, indicating loss of receptor function. The TxA(2)R antagonist [(3)H]-SQ29548 showed an approximate 50% decrease in binding to platelets from P1 but absent binding to Chinese hamster ovary-K1 cells expressing variant D304N TxA(2)R. This is the second naturally occurring TxA(2)R variant to be associated with platelet dysfunction and the first in which loss of receptor function is associated with reduced ligand binding. D304 lies within a conserved NPXXY motif in transmembrane domain 7 of the TxA(2)R that is a key structural element in family A G protein-coupled receptors. Our demonstration that the D304N substitution causes clinically significant platelet dysfunction by reducing ligand binding establishes the importance of the NPXXY motif for TxA(2)R function in vivo.
Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.
Yu, Alvin; Lau, Albert Y
2017-11-22
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.
Liu, Yang; Xu, Shenyuan; Woodruff, Andrew L; Xia, Ming; Tan, Ming; Kennedy, Michael A; Jiang, Xi
2017-11-01
Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.
Moreno, Andrew; Froehlig, John R; Bachas, Sharrol; Gunio, Drew; Alexander, Teressa; Vanya, Aaron; Wade, Herschel
2016-08-30
Multidrug resistance (MDR) refers to the acquired ability of cells to tolerate a broad range of toxic compounds. One mechanism cells employ is to increase the level of expression of efflux pumps for the expulsion of xenobiotics. A key feature uniting efflux-related mechanisms is multidrug (MD) recognition, either by efflux pumps themselves or by their transcriptional regulators. However, models describing MD binding by MDR effectors are incomplete, underscoring the importance of studies focused on the recognition elements and key motifs that dictate polyspecific binding. One such motif is the GyrI-like domain, which is found in several MDR proteins and is postulated to have been adapted for small-molecule binding and signaling. Here we report the solution binding properties and crystal structures of two proteins containing GyrI-like domains, SAV2435 and CTR107, bound to various ligands. Furthermore, we provide a comparison with deposited crystal structures of GyrI-like proteins, revealing key features of GyrI-like domains that not only support polyspecific binding but also are conserved among GyrI-like domains. Together, our studies suggest that GyrI-like domains perform evolutionarily conserved functions connected to multidrug binding and highlight the utility of these types of studies for elucidating mechanisms of MDR.
RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J.
Wacker, Stephan Armin; Alvarado, Cristobal; von Wichert, Götz; Knippschild, Uwe; Wiedenmann, Jörg; Clauss, Karen; Nienhaus, Gerd Ulrich; Hameister, Horst; Baumann, Bernd; Borggrefe, Tilman; Knöchel, Walter; Oswald, Franz
2011-01-05
The evolutionarily conserved Notch signal transduction pathway regulates fundamental cellular processes during embryonic development and in the adult. Ligand binding induces presenilin-dependent cleavage of the receptor and a subsequent nuclear translocation of the Notch intracellular domain (NICD). In the nucleus, NICD binds to the recombination signal sequence-binding protein J (RBP-J)/CBF-1 transcription factor to induce expression of Notch target genes. Here, we report the identification and functional characterization of RBP-J interacting and tubulin associated (RITA) (C12ORF52) as a novel RBP-J/CBF-1-interacting protein. RITA is a highly conserved 36 kDa protein that, most interestingly, binds to tubulin in the cytoplasm and shuttles rapidly between cytoplasm and nucleus. This shuttling RITA exports RBP-J/CBF-1 from the nucleus. Functionally, we show that RITA can reverse a Notch-induced loss of primary neurogenesis in Xenopus laevis. Furthermore, RITA is able to downregulate Notch-mediated transcription. Thus, we propose that RITA acts as a negative modulator of the Notch signalling pathway, controlling the level of nuclear RBP-J/CBF-1, where its amounts are limiting.
Group Additivity in Ligand Binding Affinity: An Alternative Approach to Ligand Efficiency.
Reynolds, Charles H; Reynolds, Ryan C
2017-12-26
Group additivity is a concept that has been successfully applied to a variety of thermochemical and kinetic properties. This includes drug discovery, where functional group additivity is often assumed in ligand binding. Ligand efficiency can be recast as a special case of group additivity where ΔG/HA is the group equivalent (HA is the number of non-hydrogen atoms in a ligand). Analysis of a large data set of protein-ligand binding affinities (K i ) for diverse targets shows that in general ligand binding is distinctly nonlinear. It is possible to create a group equivalent scheme for ligand binding, but only in the context of closely related proteins, at least with regard to size. This finding has broad implications for drug design from both experimental and computational points of view. It also offers a path forward for a more general scheme to assess the efficiency of ligand binding.
Marsh, Lorraine
2015-01-01
Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.
Structure-based Understanding of Binding Affinity and Mode ...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab
Li, Changqing; Tian, Mi; Yuan, Ye; Zhou, Qinxin
2008-12-01
Human peroxisome proliferator-activated receptors (hPPARs) are ligand-activated transcription factors and are the target for the treatment of many diseases. Screening of their ligands is mainly based on assays of ligand binding to the ligand binding domain (LBD) of hPPARs.However, such assays are difficult because of the preparation of hPPARs LBD. In order to yield functional hPPARs LBD for screening ligands, hPPARs LBD was fused with maltose-binding protein(MBP) using the pMAL-p2x expression system through the gene engineering technique. The radioligand binding assay showed that MBP did not affect ligand binding with hPPARs LBD in the fusion proteins, which means that MBP-hPPARs LBD can be used instead of hPPARs LBD in ligand screening work. The results show that the new strategy using MBP as a fusion tag for preparing hPPARs LBD for screening ligands is a convenient and reliable method. It may be used to easily obtain the other nuclear receptors.
Li, Yi-Ching; Chiang, Chia-Wang; Yeh, Hui-Chun; Hsu, Pei-Yung; Whitby, Frank G.; Wang, Lee-Ho; Chan, Nei-Li
2008-01-01
Prostacyclin synthase (PGIS) is a cytochrome P450 (P450) enzyme that catalyzes production of prostacyclin from prostaglandin H2. PGIS is unusual in that it catalyzes an isomerization rather than a monooxygenation, which is typical of P450 enzymes. To understand the structural basis for prostacyclin biosynthesis in greater detail, we have determined the crystal structures of ligand-free, inhibitor (minoxidil)-bound and substrate analog U51605-bound PGIS. These structures demonstrate a stereo-specific substrate binding and suggest features of the enzyme that facilitate isomerization. Unlike most microsomal P450s, where large substrate-induced conformational changes take place at the distal side of the heme, conformational changes in PGIS are observed at the proximal side and in the heme itself. The conserved and extensive heme propionate-protein interactions seen in all other P450s, which are largely absent in the ligand-free PGIS, are recovered upon U51605 binding accompanied by water exclusion from the active site. In contrast, when minoxidil binds, the propionate-protein interactions are not recovered and water molecules are largely retained. These findings suggest that PGIS represents a divergent evolution of the P450 family, in which a heme barrier has evolved to ensure strict binding specificity for prostaglandin H2, leading to a radical-mediated isomerization with high product fidelity. The U51605-bound structure also provides a view of the substrate entrance and product exit channels. PMID:18032380
ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.
Konc, Janez; Janežič, Dušanka
2014-07-01
The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew
2015-11-01
Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.
Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.; Ulrich, Robert G.; Burke, Terrence R.; Waugh, David S.
2011-01-01
Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacing a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors. PMID:21697602
Wei, Shipeng; Roessler, Bryan C.; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L.; Kirk, Kevin L.
2014-01-01
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5′-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. PMID:24876383
Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L
2014-07-18
ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
A web server for analysis, comparison and prediction of protein ligand binding sites.
Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S
2016-03-25
One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .
Asher, O; Jensen, B S; Lupu-Meiri, M; Oron, Y; Fuchs, S
1998-04-17
The mongoose AChR alpha-subunit has been cloned and shown to be highly homologous to other AChR alpha-subunits, with only six differences in amino acid residues at positions that are conserved in animal species that bind alpha-bungarotoxin (alpha-BTX). Four of these six substitutions cluster in the ligand binding site, and one of them, Asn-187, forms a consensus N-glycosylation site. The mongoose glycosylated alpha-subunit has a higher apparent molecular mass than that of the rat glycosylated alpha-subunit, probably resulting from the additional glycosylation at Asn-187 of the mongoose subunit. The in vitro translated mongoose alpha-subunit, in a glycosylated or non-glycosylated form, does not bind alpha-BTX, indicating that lack of alpha-BTX binding can be achieved also in the absence of glycosylation.
A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward
2010-01-12
Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loopsmore » that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.« less
Identification of Conserved Water Sites in Protein Structures for Drug Design.
Jukič, Marko; Konc, Janez; Gobec, Stanislav; Janežič, Dušanka
2017-12-26
Identification of conserved waters in protein structures is a challenging task with applications in molecular docking and protein stability prediction. As an alternative to computationally demanding simulations of proteins in water, experimental cocrystallized waters in the Protein Data Bank (PDB) in combination with a local structure alignment algorithm can be used for reliable prediction of conserved water sites. We developed the ProBiS H2O approach based on the previously developed ProBiS algorithm, which enables identification of conserved water sites in proteins using experimental protein structures from the PDB or a set of custom protein structures available to the user. With a protein structure, a binding site, or an individual water molecule as a query, ProBiS H2O collects similar proteins from the PDB and performs local or binding site-specific superimpositions of the query structure with similar proteins using the ProBiS algorithm. It collects the experimental water molecules from the similar proteins and transposes them to the query protein. Transposed waters are clustered by their mutual proximity, which enables identification of discrete sites in the query protein with high water conservation. ProBiS H2O is a robust and fast new approach that uses existing experimental structural data to identify conserved water sites on the interfaces of protein complexes, for example protein-small molecule interfaces, and elsewhere on the protein structures. It has been successfully validated in several reported proteins in which conserved water molecules were found to play an important role in ligand binding with applications in drug design.
NASA Astrophysics Data System (ADS)
Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan
2018-01-01
Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.
Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude
2017-10-01
While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism
Hughes, Travis S.; Chalmers, Michael J.; Novick, Scott; Kuruvilla, Dana S.; Chang, Mi Ra; Kamenecka, Theodore M.; Rance, Mark; Johnson, Bruce A.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2011-01-01
SUMMARY Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution NMR studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators. PMID:22244763
Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei
2015-02-10
Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.
Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle
2015-06-09
Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges.
2016-01-01
Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the ligands. This improved the root-mean-square error (RMSE) for the predicted binding free energy from 1.9 kcal/mol with the original partial charges to 1.3 kcal/mol with the corrected partial charges. PMID:26085821
Núñez-Vivanco, Gabriel; Valdés-Jiménez, Alejandro; Besoaín, Felipe; Reyes-Parada, Miguel
2016-01-01
Since the structure of proteins is more conserved than the sequence, the identification of conserved three-dimensional (3D) patterns among a set of proteins, can be important for protein function prediction, protein clustering, drug discovery and the establishment of evolutionary relationships. Thus, several computational applications to identify, describe and compare 3D patterns (or motifs) have been developed. Often, these tools consider a 3D pattern as that described by the residues surrounding co-crystallized/docked ligands available from X-ray crystal structures or homology models. Nevertheless, many of the protein structures stored in public databases do not provide information about the location and characteristics of ligand binding sites and/or other important 3D patterns such as allosteric sites, enzyme-cofactor interaction motifs, etc. This makes necessary the development of new ligand-independent methods to search and compare 3D patterns in all available protein structures. Here we introduce Geomfinder, an intuitive, flexible, alignment-free and ligand-independent web server for detailed estimation of similarities between all pairs of 3D patterns detected in any two given protein structures. We used around 1100 protein structures to form pairs of proteins which were assessed with Geomfinder. In these analyses each protein was considered in only one pair (e.g. in a subset of 100 different proteins, 50 pairs of proteins can be defined). Thus: (a) Geomfinder detected identical pairs of 3D patterns in a series of monoamine oxidase-B structures, which corresponded to the effectively similar ligand binding sites at these proteins; (b) we identified structural similarities among pairs of protein structures which are targets of compounds such as acarbose, benzamidine, adenosine triphosphate and pyridoxal phosphate; these similar 3D patterns are not detected using sequence-based methods; (c) the detailed evaluation of three specific cases showed the versatility of Geomfinder, which was able to discriminate between similar and different 3D patterns related to binding sites of common substrates in a range of diverse proteins. Geomfinder allows detecting similar 3D patterns between any two pair of protein structures, regardless of the divergency among their amino acids sequences. Although the software is not intended for simultaneous multiple comparisons in a large number of proteins, it can be particularly useful in cases such as the structure-based design of multitarget drugs, where a detailed analysis of 3D patterns similarities between a few selected protein targets is essential.
Real-Time Ligand Binding Pocket Database Search Using Local Surface Descriptors
Chikhi, Rayan; Sael, Lee; Kihara, Daisuke
2010-01-01
Due to the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of a particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two dimensional pseudo-Zernike moments or the 3D Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark study employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed. PMID:20455259
Real-time ligand binding pocket database search using local surface descriptors.
Chikhi, Rayan; Sael, Lee; Kihara, Daisuke
2010-07-01
Because of the increasing number of structures of unknown function accumulated by ongoing structural genomics projects, there is an urgent need for computational methods for characterizing protein tertiary structures. As functions of many of these proteins are not easily predicted by conventional sequence database searches, a legitimate strategy is to utilize structure information in function characterization. Of particular interest is prediction of ligand binding to a protein, as ligand molecule recognition is a major part of molecular function of proteins. Predicting whether a ligand molecule binds a protein is a complex problem due to the physical nature of protein-ligand interactions and the flexibility of both binding sites and ligand molecules. However, geometric and physicochemical complementarity is observed between the ligand and its binding site in many cases. Therefore, ligand molecules which bind to a local surface site in a protein can be predicted by finding similar local pockets of known binding ligands in the structure database. Here, we present two representations of ligand binding pockets and utilize them for ligand binding prediction by pocket shape comparison. These representations are based on mapping of surface properties of binding pockets, which are compactly described either by the two-dimensional pseudo-Zernike moments or the three-dimensional Zernike descriptors. These compact representations allow a fast real-time pocket searching against a database. Thorough benchmark studies employing two different datasets show that our representations are competitive with the other existing methods. Limitations and potentials of the shape-based methods as well as possible improvements are discussed.
Valdramidou, Dimitra; Humphries, Martin J.; Mould, A. Paul
2012-01-01
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as α2β1, ligand recognition takes place exclusively at the α subunit I domain. However, activation of the αI domain depends on its interaction with a structurally similar domain in the β subunit known as the I-like or βI domain. The top face of the βI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS) and LIMBS (ligand-associated metal binding site). The role of these sites in controlling ligand binding to the αI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to α2β1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating mAb TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between αI and βI whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of βI. An activating mutation in the α2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca2+, Mg2+ and Mn2+ on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn2+ stimulates ligand binding, whereas the LIMBS is a stimulatory Ca2+-binding site, occupancy of which increases the affinity of Mg2+ for the MIDAS. PMID:18820259
Diehl, Carl; Engström, Olof; Delaine, Tamara; Håkansson, Maria; Genheden, Samuel; Modig, Kristofer; Leffler, Hakon; Ryde, Ulf; Nilsson, Ulf J; Akke, Mikael
2010-10-20
Rational drug design is predicated on knowledge of the three-dimensional structure of the protein-ligand complex and the thermodynamics of ligand binding. Despite the fundamental importance of both enthalpy and entropy in driving ligand binding, the role of conformational entropy is rarely addressed in drug design. In this work, we have probed the conformational entropy and its relative contribution to the free energy of ligand binding to the carbohydrate recognition domain of galectin-3. Using a combination of NMR spectroscopy, isothermal titration calorimetry, and X-ray crystallography, we characterized the binding of three ligands with dissociation constants ranging over 2 orders of magnitude. (15)N and (2)H spin relaxation measurements showed that the protein backbone and side chains respond to ligand binding by increased conformational fluctuations, on average, that differ among the three ligand-bound states. Variability in the response to ligand binding is prominent in the hydrophobic core, where a distal cluster of methyl groups becomes more rigid, whereas methyl groups closer to the binding site become more flexible. The results reveal an intricate interplay between structure and conformational fluctuations in the different complexes that fine-tunes the affinity. The estimated change in conformational entropy is comparable in magnitude to the binding enthalpy, demonstrating that it contributes favorably and significantly to ligand binding. We speculate that the relatively weak inherent protein-carbohydrate interactions and limited hydrophobic effect associated with oligosaccharide binding might have exerted evolutionary pressure on carbohydrate-binding proteins to increase the affinity by means of conformational entropy.
Catalytic zinc site and mechanism of the metalloenzyme PR-AMP cyclohydrolase.
D'Ordine, Robert L; Linger, Rebecca S; Thai, Carolyn J; Davisson, V Jo
2012-07-24
The enzyme N(1)-(5'-phosphoribosyl) adenosine-5'-monophosphate cyclohydrolase (PR-AMP cyclohydrolase) is a Zn(2+) metalloprotein encoded by the hisI gene. It catalyzes the third step of histidine biosynthesis, an uncommon ring-opening of a purine heterocycle for use in primary metabolism. A three-dimensional structure of the enzyme from Methanobacterium thermoautotrophicum has revealed that three conserved cysteine residues occur at the dimer interface and likely form the catalytic site. To investigate the functions of these cysteines in the enzyme from Methanococcus vannielii, a series of biochemical studies were pursued to test the basic hypothesis regarding their roles in catalysis. Inactivation of the enzyme activity by methyl methane thiosulfonate (MMTS) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) also compromised the Zn(2+) binding properties of the protein inducing loss of up to 90% of the metal. Overall reaction stoichiometry and the potassium cyanide (KCN) induced cleavage of the protein suggested that all three cysteines were modified in the process. The enzyme was protected from DTNB-induced inactivation by inclusion of the substrate N(1)-(5'-phosphoribosyl)adenosine 5'-monophosphate; (PR-AMP), while Mg(2+), a metal required for catalytic activity, enhanced the rate of inactivation. Site-directed mutations of the conserved C93, C109, C116 and the double mutant C109/C116 were prepared and analyzed for catalytic activity, Zn(2+) content, and reactivity with DTNB. Substitution of alanine for each of the conserved cysteines showed no measurable catalytic activity, and only the C116A was still capable of binding Zn(2+). Reactions of DTNB with the C109A/C116A double mutant showed that C93 is completely modified within 0.5 s. A model consistent with these data involves a DTNB-induced mixed disulfide linkage between C93 and C109 or C116, followed by ejection of the active site Zn(2+) and provides further evidence that the Zn(2+) coordination site involves the three conserved cysteine residues. The C93 reactivity is modulated by the presence of the Zn(2+) and Mg(2+) and substantiates the role of this residue as a metal ligand. In addition, Mg(2+) ligand binding site(s) indicated by the structural analysis were probed by site-directed mutagenesis of three key aspartate residues flanking the conserved C93 which were shown to have a functional impact on catalysis, cysteine activation, and metal (zinc) binding capacity. The unique amino acid sequence, the dynamic properties of the cysteine ligands involved in Zn(2+) coordination, and the requirement for a second metal (Mg(2+)) are discussed in the context of their roles in catalysis. The results are consistent with a Zn(2+)-mediated activation of H(2)O mechanism involving histidine as a general base that has features similar to but distinct from those of previously characterized purine and pyrimidine deaminases.
Fedoroff, Oleg Y; Townson, Sharon A; Golovanov, Alexander P; Baron, Martin; Avis, Johanna M
2004-08-13
WW domains mediate protein recognition, usually though binding to proline-rich sequences. In many proteins, WW domains occur in tandem arrays. Whether or how individual domains within such arrays cooperate to recognize biological partners is, as yet, poorly characterized. An important question is whether functional diversity of different WW domain proteins is reflected in the structural organization and ligand interaction mechanisms of their multiple domains. We have determined the solution structure and dynamics of a pair of WW domains (WW3-4) from a Drosophila Nedd4 family protein called Suppressor of deltex (Su(dx)), a regulator of Notch receptor signaling. We find that the binding of a type 1 PPPY ligand to WW3 stabilizes the structure with effects propagating to the WW4 domain, a domain that is not active for ligand binding. Both WW domains adopt the characteristic triple-stranded beta-sheet structure, and significantly, this is the first example of a WW domain structure to include a domain (WW4) lacking the second conserved Trp (replaced by Phe). The domains are connected by a flexible linker, which allows a hinge-like motion of domains that may be important for the recognition of functionally relevant targets. Our results contrast markedly with those of the only previously determined three-dimensional structure of tandem WW domains, that of the rigidly oriented WW domain pair from the RNA-splicing factor Prp40. Our data illustrate that arrays of WW domains can exhibit a variety of higher order structures and ligand interaction mechanisms.
Fink, Inge R; Pietretti, Danilo; Voogdt, Carlos G P; Westphal, Adrie H; Savelkoul, Huub F J; Forlenza, Maria; Wiegertjes, Geert F
2016-09-01
Toll-like receptors (TLRs) are fundamental components of innate immunity that play significant roles in the defence against pathogen invasion. In this study, we present the molecular characterization of the full-length coding sequence of tlr1, tlr2a and tlr2b from common carp (Cyprinus carpio). Each is encoded within a single exon and contains a conserved number of leucine-rich repeats, a transmembrane region and an intracellular TIR domain for signalling. Indeed, sequence, phylogenetic and synteny analysis of carp tlr1, tlr2a and tlr2b support that these genes are orthologues of mammalian TLR1 and TLR2. The tlr genes are expressed in various immune organs and cell types. Furthermore, the carp sequences exhibited a good three-dimensional fit with the heterodimer structure of human TLR1-TLR2, including the potential to bind to the ligand Pam3CSK4. This supports the possible formation of carp Tlr1-Tlr2 heterodimers. However, we were unable to demonstrate Tlr1/Tlr2-mediated ligand binding in transfected cell lines through NF-κB activation, despite showing the expression and co-localization of Tlr1 and Tlr2. We discuss possible limitations when studying ligand-specific activation of NF-κB after expression of Tlr1 and/or Tlr2 in human but also fish cell lines and we propose alternative future strategies for studying ligand-binding properties of fish Tlrs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W
2017-08-01
We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.
Ohashi, Nami; Nomura, Wataru; Narumi, Tetsuo; Lewin, Nancy E; Itotani, Kyoko; Blumberg, Peter M; Tamamura, Hirokazu
2011-01-19
Protein kinase C (PKC) is a critical cell signaling pathway involved in many disorders such as cancer and Alzheimer-type dementia. To date, evaluation of PKC ligand binding affinity has been performed by competitive studies against radiolabeled probes that are problematic for high-throughput screening. In the present study, we have developed a fluorescent-based binding assay system for identifying ligands that target the PKC ligand binding domain (C1 domain). An environmentally sensitive fluorescent dye (solvatochromic fluorophore), which has been used in multiple applications to assess protein-binding interactions, was inserted in proximity to the binding pocket of a novel PKCδ C1b domain. These resultant fluorescent-labeled δC1b domain analogues underwent a significant change in fluorescent intensity upon ligand binding, and we further demonstrate that the fluorescent δC1b domain analogues can be used to evaluate ligand binding affinity.
DHS Summer Student Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawamoto, S
2005-08-19
Tetanus and botulinum neurotoxins are among the most potent toxins known to man (Montecucco et al. al., 1995). Produced by the Clostridium tetani and Clostridium botulinum bacteria, respectively, these toxins concentrate in presynaptic axons and inhibit the release of neurotransmitters leading to paralysis and possibly death. Due to the potency of this lethal class of neurotoxins, we have undertaken a project to develop high affinity ligands that specifically bind to these toxins. Such compounds can have significant implications in both the design of detection systems to monitor for the possible release of these neurotoxins into the public and also themore » design of possible therapeutics to treat individuals exposed to tetanus or botulinum neurotoxins. The Clostridial neurotoxins are synthesized as 150 kDa proteins that are post-translationally cleaved into N- and C-terminal fragments held together by a single disulfide bond. The tetanus C-terminal fragment (TetC) has been shown to bind specifically to gangliosides present on the neuronal membrane surface and facilitate endocytosis of the toxin (Morris et al., 1980). Once the toxin is internalized in a membrane-bound vesicle, the light chain (N-terminal fragment) translocates to the cytosol where it interferes with neurotransmitter release. Previous work has demonstrated that various small molecule and peptide-based compounds bind to TetC, albeit in different locations. Among these molecules are the anticancer agent doxorubicin (Dox) and the tripeptides WEY and YEW (Figure 1; Cosman et al. al., 2002). The crystal structure of botulinum toxin and Dox (PDB code: 1I1E) demonstrates that Dox binds in a surface groove of in C-terminal fragment that is conserved in both botulinum and tetanus toxins. Similarly, YEW has been shown to bind to a second binding site that is highly conserved and also relatively close to the binding site of Dox. Thus, in our quest to design and synthesize high affinity ligands, we proposed to link Dox and YEW (or WEY) in hopes of creating a bidentate ligand. In theory, such a ligand could have a binding affinity approaching the product of the two binding affinities of the individual ligands. For my internship project, I was charged with the task of creating libraries of compounds linking Dox and YEW (or WEY) with linkers of varying lengths (Figure 2a). In addition, I was to attach a fluorescein dye to the molecules (Figure 2b) so that they could be used to develop a fluorescence polarization (FP) binding assay. The FP assay will greatly increase the ease with which future ligands can be rapidly screened and binding affinities can be accurately determined. As a side project, I worked on optimizing the conditions necessary to employ the Huisgen 1,3-dipolar cycloaddition reaction to be able to optimize linker lengths and possibly compound solubility (Huisgen, 1984). This reaction, often termed ''click chemistry'', utilizes molecules terminally functionalized with either an acetylene moiety or an azide. In the presence of a copper(I) catalyst, the alkyne and azide undergo a step-wise cycloaddition reaction to link the two molecules together via the formation of a 1,4-disubstituted triazole ring (Figure 3; Rostovtsev et al., 2002). By varying the length of the tethers between the terminal acetylene or azide and their respective molecules, the overall length of the linker between the two molecules can be ''fine tuned'' by one carbon unit at a time. At the completion of my internship I had synthesized conjugates of Doxorubicin and N-acyl-WEY linked together by linkers having 0-2 polyethylene glycol (PEG) linkers. These compounds are currently being used in experiments that employ electrospray ionization mass spectrometry (ESI-MS) to determine whether they bind to TetC with higher affinity than either Dox or WEY alone. I also synthesized the fluorescein tagged versions of the same three molecules. It is expected that these molecules will be used in the near future to develop a fluorescence polarization-based competitive binding assay for TetC and possibly botulinum C-terminal fragment (BotC).« less
From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors.
Zafra Ruano, Ana; Cilia, Elisa; Couceiro, José R; Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic; Luque, Irene; Lenaerts, Tom
2016-05-01
Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis.
Tron, Cecile M; McNae, Iain W; Nutley, Margaret; Clarke, David J; Cooper, Alan; Walkinshaw, Malcolm D; Baxter, Robert L; Campopiano, Dominic J
2009-03-20
Biotin protein ligase (BPL; EC 6.3.4.15) catalyses the formation of biotinyl-5'-AMP from biotin and ATP, and the succeeding biotinylation of the biotin carboxyl carrier protein. We describe the crystal structures, at 2.4 A resolution, of the class I BPL from the hyperthermophilic bacteria Aquifex aeolicus (AaBPL) in its ligand-free form and in complex with biotin and ATP. The solvent-exposed beta- and gamma-phosphates of ATP are located in the inter-subunit cavity formed by the N- and C-terminal domains. The Arg40 residue from the conserved GXGRXG motif is shown to interact with the carboxyl group of biotin and to stabilise the alpha- and beta-phosphates of the nucleotide. The structure of the mutant AaBPL R40G in both the ligand-free and biotin-bound forms reveals that the mutated loop has collapsed, thus hindering ATP binding. Isothermal titration calorimetry indicated that the presence of biotin is not required for ATP binding to wild-type AaBPL in the absence of Mg(2+), and the binding of biotin and ATP has been determined to occur via a random but cooperative process. The affinity for biotin is relatively unaffected by the R40G mutation. In contrast, the thermodynamic data indicate that binding of ATP to AaBPL R40G is very weak in the absence or in the presence of biotin. The AaBPL R40G mutant remains catalytically active but shows poor substrate specificity; mass spectrometry and Western blot studies revealed that the mutant biotinylates both the target A. aeolicus BCCPDelta67 fragment and BSA, and is subject to self-biotinylation.
From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors
Ruiz Sanz, Javier; Schymkowitz, Joost; Rousseau, Frederic
2016-01-01
Src Homology 3 domains are ubiquitous small interaction modules known to act as docking sites and regulatory elements in a wide range of proteins. Prior experimental NMR work on the SH3 domain of Src showed that ligand binding induces long-range dynamic changes consistent with an induced fit mechanism. The identification of the residues that participate in this mechanism produces a chart that allows for the exploration of the regulatory role of such domains in the activity of the encompassing protein. Here we show that a computational approach focusing on the changes in side chain dynamics through ligand binding identifies equivalent long-range effects in the Src SH3 domain. Mutation of a subset of the predicted residues elicits long-range effects on the binding energetics, emphasizing the relevance of these positions in the definition of intramolecular cooperative networks of signal transduction in this domain. We find further support for this mechanism through the analysis of seven other publically available SH3 domain structures of which the sequences represent diverse SH3 classes. By comparing the eight predictions, we find that, in addition to a dynamic pathway that is relatively conserved throughout all SH3 domains, there are dynamic aspects specific to each domain and homologous subgroups. Our work shows for the first time from a structural perspective, which transduction mechanisms are common between a subset of closely related and distal SH3 domains, while at the same time highlighting the differences in signal transduction that make each family member unique. These results resolve the missing link between structural predictions of dynamic changes and the domain sectors recently identified for SH3 domains through sequence analysis. PMID:27213566
2011-01-01
Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852
Drakou, Christina E; Tsitsanou, Katerina E; Potamitis, Constantinos; Fessas, Dimitrios; Zervou, Maria; Zographos, Spyros E
2017-01-01
Anopheles gambiae Odorant Binding Protein 1 in complex with the most widely used insect repellent DEET, was the first reported crystal structure of an olfactory macromolecule with a repellent, and paved the way for OBP1-structure-based approaches for discovery of new host-seeking disruptors. In this work, we performed STD-NMR experiments to directly monitor and verify the formation of a complex between AgamOBP1 and Icaridin, an efficient DEET alternative. Furthermore, Isothermal Titration Calorimetry experiments provided evidence for two Icaridin-binding sites with different affinities (Kd = 0.034 and 0.714 mM) and thermodynamic profiles of ligand binding. To elucidate the binding mode of Icaridin, the crystal structure of AgamOBP1•Icaridin complex was determined at 1.75 Å resolution. We found that Icaridin binds to the DEET-binding site in two distinct orientations and also to a novel binding site located at the C-terminal region. Importantly, only the most active 1R,2S-isomer of Icaridin's equimolar diastereoisomeric mixture binds to the AgamOBP1 crystal, providing structural evidence for the possible contribution of OBP1 to the stereoselectivity of Icaridin perception in mosquitoes. Structural analysis revealed two ensembles of conformations differing mainly in spatial arrangement of their sec-butyl moieties. Moreover, structural comparison with DEET indicates a common recognition mechanism for these structurally related repellents. Ligand interactions with both sites and binding modes were further confirmed by 2D 1 H- 15 N HSQC NMR spectroscopy. The identification of a novel repellent-binding site in AgamOBP1 and the observed structural conservation and stereoselectivity of its DEET/Icaridin-binding sites open new perspectives for the OBP1-structure-based discovery of next-generation insect repellents.
Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris
2011-12-08
The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.
Freed, Alexander S; Garde, Shekhar; Cramer, Steven M
2011-11-17
Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.
Michelow, Ian C; Dong, Mingdong; Mungall, Bruce A; Yantosca, L Michael; Lear, Calli; Ji, Xin; Karpel, Marshall; Rootes, Christina L; Brudner, Matthew; Houen, Gunnar; Eisen, Damon P; Kinane, T Bernard; Takahashi, Kazue; Stahl, Gregory L; Olinger, Gene G; Spear, Gregory T; Ezekowitz, R Alan B; Schmidt, Emmett V
2010-08-06
Ebola viruses constitute a newly emerging public threat because they cause rapidly fatal hemorrhagic fevers for which no treatment exists, and they can be manipulated as bioweapons. We targeted conserved N-glycosylated carbohydrate ligands on viral envelope surfaces using novel immune therapies. Mannose-binding lectin (MBL) and L-ficolin (L-FCN) were selected because they function as opsonins and activate complement. Given that MBL has a complex quaternary structure unsuitable for large scale cost-effective production, we sought to develop a less complex chimeric fusion protein with similar ligand recognition and enhanced effector functions. We tested recombinant human MBL and three L-FCN/MBL variants that contained the MBL carbohydrate recognition domain and varying lengths of the L-FCN collagenous domain. Non-reduced chimeric proteins formed predominantly nona- and dodecameric oligomers, whereas recombinant human MBL formed octadecameric and larger oligomers. Surface plasmon resonance revealed that L-FCN/MBL76 had the highest binding affinities for N-acetylglucosamine-bovine serum albumin and mannan. The same chimeric protein displayed superior complement C4 cleavage and binding to calreticulin (cC1qR), a putative receptor for MBL. L-FCN/MBL76 reduced infection by wild type Ebola virus Zaire significantly greater than the other molecules. Tapping mode atomic force microscopy revealed that L-FCN/MBL76 was significantly less tall than the other molecules despite similar polypeptide lengths. We propose that alterations in the quaternary structure of L-FCN/MBL76 resulted in greater flexibility in the collagenous or neck region. Similarly, a more pliable molecule might enhance cooperativity between the carbohydrate recognition domains and their cognate ligands, complement activation, and calreticulin binding dynamics. L-FCN/MBL chimeric proteins should be considered as potential novel therapeutics.
Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen
2010-01-01
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.
Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H.; Rudolph, Rainer; Reedtz-Runge, Steffen
2010-01-01
GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor. PMID:19861722
Roy, Sourav; Karmakar, Tarak; Prahlada Rao, Vasudeva S; Nagappa, Lakshmeesha K; Balasubramanian, Sundaram; Balaram, Hemalatha
2015-05-01
P. falciparum (Pf) hypoxanthine guanine xanthine phosphoribosyltransferase (HGXPRT) exhibits a unique mechanism of activation where the enzyme switches from a low activity (unactivated) to a high activity (activated) state upon pre-incubation with substrate/products. Xanthine phosphoribosylation by unactivated PfHGXPRT exhibits a lag phase, the duration of which reduces with an increase in concentration of the enzyme or substrate, PRPP·Mg(2+). Activated PfHGXPRT does not display the lag phase and exhibits a ten-fold drop in the Km value for PRPP·Mg(2+). These observations suggest the involvement of ligand-mediated oligomerization and conformational changes in the process of activation. The dipeptide Leu-Lys in the PPi binding site of human and T. gondii HG(X)PRT that facilitates PRPP·Mg(2+) binding by isomerization from trans to cis conformation is conserved in PfHGXPRT. Free energy calculations using the well-tempered metadynamics technique show the ligand-free enzyme to be more stable when this dipeptide is in the trans conformation than in the cis conformation. The high rotational energy barrier observed for the conformational change from experimental and computational studies permits delineation of the activation mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrou, Julien; Willett, Jonathan W.; Czyż, Daniel M.
ABSTRACT Brucella abortusσ E1is an EcfG family sigma factor that regulates the transcription of dozens of genes in response to diverse stress conditions and is required for maintenance of chronic infection in a mouse model. A putative ATP-binding cassette transporter operon,bab1_0223-bab1_0226, is among the most highly activated gene sets in the σ E1regulon. The proteins encoded by the operon resemble quaternary ammonium-compatible solute importers but are most similar in sequence to the broadly conserved YehZYXW system, which remains largely uncharacterized. Transcription ofyehZYXWis activated by the general stress sigma factor σ SinEnterobacteriaceae, which suggests a functional role for this transport systemmore » in bacterial stress response across the classesAlphaproteobacteriaandGammaproteobacteria. We present evidence thatB. abortusYehZYXW does not function as an importer of known compatible solutes under physiological conditions and does not contribute to the virulence defect of a σ E1-null strain. The solein vitrophenotype associated with genetic disruption of this putative transport system is reduced growth in the presence of high Li +ion concentrations. A crystal structure ofB. abortusYehZ revealed a class II periplasmic binding protein fold with significant structural homology toArchaeoglobus fulgidusProX, which binds glycine betaine. However, the structure of the YehZ ligand-binding pocket is incompatible with high-affinity binding to glycine betaine. This is consistent with weak measured binding of YehZ to glycine betaine and related compatible solutes. We conclude that YehZYXW is a conserved, stress-regulated transport system that is phylogenetically and functionally distinct from quaternary ammonium-compatible solute importers. IMPORTANCEBrucella abortusσ E1regulates transcription in response to stressors encountered in its mammalian host and is necessary for maintenance of chronic infection in a mouse model. The functions of the majority of genes regulated by σ E1remain undefined. We present a functional/structural analysis of a conserved putative membrane transport system (YehZYXW) whose expression is strongly activated by σ E1. Though annotated as a quaternary ammonium osmolyte uptake system, experimental physiological studies and measured ligand-binding properties of the periplasmic binding protein (PBP), YehZ, are inconsistent with this function. A crystal structure ofB. abortusYehZ provides molecular insight into differences between bona fide quaternary ammonium osmolyte importers and YehZ-related proteins, which form a distinct phylogenetic and functional group of PBPs.« less
Sasmal, Dibyendu Kumar; Yadav, Rajeev; Lu, H Peter
2016-07-20
N-methyl-d-aspartate (NMDA) receptor ion channel is activated by the binding of two pairs of glycine and glutamate along with the application of action potential. Binding and unbinding of ligands changes its conformation that plays a critical role in the open-close activities of NMDA receptor. Conformation states and their dynamics due to ligand binding are extremely difficult to characterize either by conventional ensemble experiments or single-channel electrophysiology method. Here we report the development of a new correlated technical approach, single-molecule patch-clamp FRET anisotropy imaging and demonstrate by probing the dynamics of NMDA receptor ion channel and kinetics of glycine binding with its ligand binding domain. Experimentally determined kinetics of ligand binding with receptor is further verified by computational modeling. Single-channel patch-clamp and four-channel fluorescence measurement are recorded simultaneously to get correlation among electrical on and off states, optically determined conformational open and closed states by FRET, and binding-unbinding states of the glycine ligand by anisotropy measurement at the ligand binding domain of GluN1 subunit. This method has the ability to detect the intermediate states in addition to electrical on and off states. Based on our experimental results, we have proposed that NMDA receptor gating goes through at least one electrically intermediate off state, a desensitized state, when ligands remain bound at the ligand binding domain with the conformation similar to the fully open state.
Cui, Xian-Wei; Xiao, Wen; Ji, Chen-Bo; Tian, Ai-Ying; Zhang, Jie; Zhang, Shuang-Quan
2012-05-01
Here we describe the identification of the hedgehog Erinaceus europaeus homologue of a proliferation-inducing ligand (APRIL) of the TNF family (designated heAPRIL). Hedgehog APRIL contains two cysteine residues (Cys(196) and Cys(211)), a furin protease cleavage site and a conserved putative N-glycosylation site (Asn(124)). Real-time quantitative PCR (qPCR) analysis revealed that heAPRIL could be detected in various tissues. MTT assays and flow cytometric analysis revealed that Nus-hesAPRIL and hesAPRIL could promote the survival/proliferation of splenic B cells. Laser scanning confocal microscopy analysis showed GFP-hesAPRIL could successfully bind to the APRIL receptors of lymphocytes.
Methyl group reorientation under ligand binding probed by pseudocontact shifts.
Lescanne, Mathilde; Ahuja, Puneet; Blok, Anneloes; Timmer, Monika; Akerud, Tomas; Ubbink, Marcellus
2018-06-02
Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.
Wang, Lan; Ren, Shifang; Zhu, Haiyan; Zhang, Dongmei; Hao, Yuqing; Ruan, Yuanyuan; Zhou, Lei; Lee, Chiayu; Qiu, Lin; Yun, Xiaojing; Xie, Jianhui
2012-08-01
CLEC-2 was first identified by sequence similarity to C-type lectin-like molecules with immune functions and has been reported as a receptor for the platelet-aggregating snake venom toxin rhodocytin and the endogenous sialoglycoprotein podoplanin. Recent researches indicate that CLEC-2-deficient mice were lethal at the embryonic stage associated with disorganized and blood-filled lymphatic vessels and severe edema. In view of a necessary role of CLEC-2 in the individual development, it is of interest to investigate its phylogenetic homology and highly conserved functional regions. In this work, we reported that CLEC-2 from different species holds with an extraordinary conservation by sequence alignment and phylogenetic tree analysis. The functional structures including N-linked oligosaccharide sites and ligand-binding domain implement a structural and functional conservation in a variety of species. The glycosylation sites (N120 and N134) are necessary for the surface expression CLEC-2. CLEC-2 from different species possesses the binding activity of mouse podoplanin. Nevertheless, the expression of CLEC-2 is regulated with a species-specific manner. The alternative splicing of pre-mRNA, a regulatory mechanism of gene expression, and the binding sites on promoter for several key transcription factors vary between different species. Therefore, CLEC-2 shares high sequence homology and functional identity. However the transcript expression might be tightly regulated by different mechanisms in evolution.
sc-PDB: a 3D-database of ligandable binding sites—10 years on
Desaphy, Jérémy; Bret, Guillaume; Rognan, Didier; Kellenberger, Esther
2015-01-01
The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data. PMID:25300483
Implicit ligand theory for relative binding free energies
NASA Astrophysics Data System (ADS)
Nguyen, Trung Hai; Minh, David D. L.
2018-03-01
Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.
1991-01-01
Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, J.-P.; Stehle, T.; Zhang, R.
The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less
NASA Astrophysics Data System (ADS)
Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.
2018-05-01
Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.
The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structuresmore » of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.« less
NASA Astrophysics Data System (ADS)
Rosenfeld, Robin J.; Goodsell, David S.; Musah, Rabi A.; Morris, Garrett M.; Goodin, David B.; Olson, Arthur J.
2003-08-01
The W191G cavity of cytochrome c peroxidase is useful as a model system for introducing small molecule oxidation in an artificially created cavity. A set of small, cyclic, organic cations was previously shown to bind in the buried, solvent-filled pocket created by the W191G mutation. We docked these ligands and a set of non-binders in the W191G cavity using AutoDock 3.0. For the ligands, we compared docking predictions with experimentally determined binding energies and X-ray crystal structure complexes. For the ligands, predicted binding energies differed from measured values by ± 0.8 kcal/mol. For most ligands, the docking simulation clearly predicted a single binding mode that matched the crystallographic binding mode within 1.0 Å RMSD. For 2 ligands, where the docking procedure yielded an ambiguous result, solutions matching the crystallographic result could be obtained by including an additional crystallographically observed water molecule in the protein model. For the remaining 2 ligands, docking indicated multiple binding modes, consistent with the original electron density, suggesting disordered binding of these ligands. Visual inspection of the atomic affinity grid maps used in docking calculations revealed two patches of high affinity for hydrogen bond donating groups. Multiple solutions are predicted as these two sites compete for polar hydrogens in the ligand during the docking simulation. Ligands could be distinguished, to some extent, from non-binders using a combination of two trends: predicted binding energy and level of clustering. In summary, AutoDock 3.0 appears to be useful in predicting key structural and energetic features of ligand binding in the W191G cavity.
Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity
Cole, David K.; Bulek, Anna M.; Dolton, Garry; Schauenberg, Andrea J.; Szomolay, Barbara; Trimby, Andrew; Jothikumar, Prithiviraj; Fuller, Anna; Skowera, Ania; Rossjohn, Jamie; Zhu, Cheng; Miles, John J.; Wooldridge, Linda; Rizkallah, Pierre J.; Sewell, Andrew K.
2016-01-01
The cross-reactivity of T cells with pathogen- and self-derived peptides has been implicated as a pathway involved in the development of autoimmunity. However, the mechanisms that allow the clonal T cell antigen receptor (TCR) to functionally engage multiple peptide–major histocompatibility complexes (pMHC) are unclear. Here, we studied multiligand discrimination by a human, preproinsulin reactive, MHC class-I–restricted CD8+ T cell clone (1E6) that can recognize over 1 million different peptides. We generated high-resolution structures of the 1E6 TCR bound to 7 altered peptide ligands, including a pathogen-derived peptide that was an order of magnitude more potent than the natural self-peptide. Evaluation of these structures demonstrated that binding was stabilized through a conserved lock-and-key–like minimal binding footprint that enables 1E6 TCR to tolerate vast numbers of substitutions outside of this so-called hotspot. Highly potent antigens of the 1E6 TCR engaged with a strong antipathogen-like binding affinity; this engagement was governed though an energetic switch from an enthalpically to entropically driven interaction compared with the natural autoimmune ligand. Together, these data highlight how T cell cross-reactivity with pathogen-derived antigens might break self-tolerance to induce autoimmune disease. PMID:27183389
Zinc-mediated Allosteric Inhibition of Caspase-6*
Velázquez-Delgado, Elih M.; Hardy, Jeanne A.
2012-01-01
Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250
Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck
2015-09-11
Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.
2015-01-01
Hemophores from Pseudomonas aeruginosa (HasAp), Serratia marcescens (HasAsm), and Yersinia pestis (HasAyp) bind hemin between two loops. One of the loops harbors conserved axial ligand Tyr75 (Y75 loop) in all three structures, whereas the second loop (H32 loop) contains axial ligand His32 in HasAp and HasAsm, but a noncoordinating Gln32 in HasAyp. Binding of hemin to the Y75 loop of HasAp or HasAsm causes a large rearrangement of the H32 loop that allows His32 coordination. The Q32 loop in apo-HasAyp is already in the closed conformation, such that binding of hemin to the conserved Y75 loop occurs with minimal structural rearrangement and without coordinative interaction with the Q32 loop. In this study, structural and spectroscopic investigations of the hemophore HasAp were conducted to probe (i) the role of the conserved Tyr75 loop in hemin binding and (ii) the proposed requirement of the His83–Tyr75 hydrogen bond to allow the coordination of hemin by Tyr75. High-resolution crystal structures of H83A holo-HasAp obtained at pH 6.5 (0.89 Å) and pH 5.4 (1.25 Å) show that Tyr75 remains coordinated to the heme iron, and that a water molecule can substitute for Nδ of His83 to interact with the Oη atom of Tyr75, likely stabilizing the Tyr75–Fe interaction. Nuclear magnetic resonance spectroscopy revealed that in apo-Y75A and apo-H83A HasAp, the Y75 loop is disordered, and that disorder propagates to nearby elements of secondary structure, suggesting that His83 Nδ–Tyr75 Oη interaction is important to the organization of the Y75 loop in apo-HasA. Kinetic analysis of hemin loading conducted via stopped-flow UV–vis and rapid-freeze-quench resonance Raman shows that both mutants load hemin with biphasic kinetic parameters that are not significantly dissimilar from those previously observed for wild-type HasAp. When the structural and kinetic data are taken together, a tentative model emerges, which suggests that HasA hemophores utilize hydrophobic, π–π stacking, and van der Waals interactions to load hemin efficiently, while axial ligation likely functions to slow hemin release, thus allowing the hemophore to meet the challenge of capturing hemin under inhospitable conditions and delivering it selectively to its cognate receptor. PMID:24625274
Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.
Li, Huameng; Li, Chenglong
2010-07-30
Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. 2010 Wiley Periodicals, Inc.
Binding and thermodynamics of REV peptide-ctDNA interaction.
Upadhyay, Santosh Kumar
2017-03-01
The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.
Matulis, Daumantas; Kranz, James K; Salemme, F Raymond; Todd, Matthew J
2005-04-05
ThermoFluor (a miniaturized high-throughput protein stability assay) was used to analyze the linkage between protein thermal stability and ligand binding. Equilibrium binding ligands increase protein thermal stability by an amount proportional to the concentration and affinity of the ligand. Binding constants (K(b)) were measured by examining the systematic effect of ligand concentration on protein stability. The precise ligand effects depend on the thermodynamics of protein stability: in particular, the unfolding enthalpy. An extension of current theoretical treatments was developed for tight binding inhibitors, where ligand effect on T(m) can also reveal binding stoichiometry. A thermodynamic analysis of carbonic anhydrase by differential scanning calorimetry (DSC) enabled a dissection of the Gibbs free energy of stability into enthalpic and entropic components. Under certain conditions, thermal stability increased by over 30 degrees C; the heat capacity of protein unfolding was estimated from the dependence of calorimetric enthalpy on T(m). The binding affinity of six sulfonamide inhibitors to two isozymes (human type 1 and bovine type 2) was analyzed by both ThermoFluor and isothermal titration calorimetry (ITC), resulting in a good correlation in the rank ordering of ligand affinity. This combined investigation by ThermoFluor, ITC, and DSC provides a detailed picture of the linkage between ligand binding and protein stability. The systematic effect of ligands on stability is shown to be a general tool to measure affinity.
Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.
Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A
2011-05-31
Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.
Deng, Nanjie; Cui, Di; Zhang, Bin W; Xia, Junchao; Cruz, Jeffrey; Levy, Ronald
2018-06-13
Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.
NASA Astrophysics Data System (ADS)
Kurnikova, Maria
2009-03-01
Understanding of protein motion and energetics of conformational transitions is crucial to understanding protein function. The glutamate receptor ligand binding domain (GluR2 S1S2) is a two lobe protein, which binds ligand at the interface of two lobes and undergoes conformational transition. The cleft closure conformational transition of S1S2 has been implicated in gating of the ion channel formed by the transmembrane domain of the receptor. In this study we present a composite multi-faceted theoretical analysis of the detailed mechanism of this conformational transition based on rigid cluster decomposition of the protein structure [1] and identifying hydrogen bonds that are responsible for stabilizing the closed conformation [2]. Free energy of the protein reorganization upon ligand binding was calculated using combined Thermodynamic Integration (TI) and Umbrella Sampling (US) simulations [3]. Ligand -- protein interactions in the binding cleft were analyzed using Molecular Dynamics, continuum electrostatics and QM/MM models [4]. All model calculations compare well with corresponding experimental measurements. [4pt] [1] Protein Flexibility using Constraints from Molecular Dynamics Simulations T. Mamonova, B. Hespenheide, R. Straub, M. F. Thorpe, M. G. Kurnikova , Phys. Biol., 2, S137 (2005)[0pt] [2] Theoretical Study of the Glutamate Receptor Ligand Binding Domain Flexibility and Conformational Reorganization T. Mamonova, K. Speranskiy, and M. Kurnikova , Prot.: Struct., Func., Bioinf., 73,656 (2008)[0pt] [3] Energetics of the cleft closing transition and glutamate binding in the Glutamate Receptor ligand Binding Domain T. Mamonova, M. Yonkunas, and M. Kurnikova Biochemistry 47, 11077 (2008)[0pt] [4] On the Binding Determinants of the Glutamate Agonist with the Glutamate Receptor Ligand Binding Domain K. Speranskiy and M. Kurnikova Biochemistry 44, 11208 (2005)
Carraher, Colm; Authier, Astrid; Steinwender, Bernd; Newcomb, Richard D.
2012-01-01
In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2), and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants - methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception. PMID:22701634
Yuan, Shuguang; Le Roy, Katrien; Venken, Tom; Lammens, Willem; Van den Ende, Wim; De Maeyer, Marc
2012-01-01
Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst. PMID:22662155
Sun, Ying-Chieh; Hsu, Wen-Chi; Hsu, Chia-Jen; Chang, Chia-Ming; Cheng, Kai-Hsiang
2015-11-01
Thermodynamic integration (TI) molecular dynamics (MD) simulations for the binding of a pair of a reference ("ref") ligand and an analogous ("analog") ligand to either tagged (with six extra residues at the N-terminus) or untagged p38 kinase proteins were carried out in order to probe how the binding affinity is influenced by the presence or absence of the peptide tag in p38 kinase. This possible effect of protein length on the binding affinity of a ligand-which is seldom addressed in the literature-is important because, even when two labs claim to have performed experiments with the same protein, they may actually have studied variants of the same protein with different lengths because they applied different protein expression conditions/procedures. Thus, if we wanted to compare ligand binding affinities measured in the two labs, it would be necessary to account for any variation in ligand binding affinity with protein length. The pair of ligand-p38 kinase complexes examined in this work (pdb codes: 3d7z and 3lhj, respectively) were ideal for investigating this effect. The experimentally determined binding energy for the ref ligand with the untagged p38 kinase was -10.9 kcal mol(-1), while that for the analog ligand with the tagged p38 kinase was -11.9 kcal mol(-1). The present TI-MD simulation of the mutation of the ref ligand into the analog ligand while the ligand is bound to the untagged p38 kinase predicted that the binding affinity of the analog ligand is 2.0 kcal mol(-1) greater than that of the ref ligand. A similar simulation also indicated that the same was true for ligand binding to the tagged protein, but in this case the binding affinity for the analog ligand is 2.5 kcal mol(-1) larger than that for the ref ligand. These results therefore suggest that the presence of the peptide tag on p38 kinase increased the difference in the binding energies of the ligands by a small amount of 0.5 kcal mol(-1). This result supports the assumption that the presence of a peptide tag has only a minor effect on ΔG values. The error bars in the computed ΔG values were then estimated via confidence interval analysis and a time autocorrelation function for the quantity dV/dλ. The estimated correlation time was ~0.5 ps and the error bar in the ΔG values estimated using nanosecond-scale simulations was ±0.3 kcal mol(-1) at a confidence level of 95%. These predicted results can be verified in future experiments and should prove useful in subsequent similar studies. Graphical Abstract Thermodynamic cycles for binding of two analogous ligands with untagged and tagged p38 kinases and associated Gibbs free energy.
Orac, Crina M; Zhou, Shu; Means, John A; Boehm, David; Bergmeier, Stephen C; Hines, Jennifer V
2011-10-13
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.
Orac, Crina M.; Zhou, Shu; Means, John A.; Boehm, David; Bergmeier, Stephen C.; Hines, Jennifer V.
2012-01-01
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized and their binding to the T-box riboswitch antiterminator model RNA investigated in detail. Characterization of ligand affinities and binding site localization indicate that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets. PMID:21812425
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interact...
Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad
2014-01-01
YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809
Ravindranath, Pradeep Anand; Sanner, Michel F.
2016-01-01
Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702
Comparison of ligand migration and binding in heme proteins of the globin family
NASA Astrophysics Data System (ADS)
Karin, Nienhaus; Ulrich Nienhaus, G.
2015-12-01
The binding of small diatomic ligands such as carbon monoxide or dioxygen to heme proteins is among the simplest biological processes known. Still, it has taken many decades to understand the mechanistic aspects of this process in full detail. Here, we compare ligand binding in three heme proteins of the globin family, myoglobin, a dimeric hemoglobin, and neuroglobin. The combination of structural, spectroscopic, and kinetic experiments over many years by many laboratories has revealed common properties of globins and a clear mechanistic picture of ligand binding at the molecular level. In addition to the ligand binding site at the heme iron, a primary ligand docking site exists that ensures efficient ligand binding to and release from the heme iron. Additional, secondary docking sites can greatly facilitate ligand escape after its dissociation from the heme. Although there is only indirect evidence at present, a preformed histidine gate appears to exist that allows ligand entry to and exit from the active site. The importance of these features can be assessed by studies involving modified proteins (via site-directed mutagenesis) and comparison with heme proteins not belonging to the globin family.
sc-PDB: a 3D-database of ligandable binding sites--10 years on.
Desaphy, Jérémy; Bret, Guillaume; Rognan, Didier; Kellenberger, Esther
2015-01-01
The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Ligand binding and dynamics of the monomeric epidermal growth factor receptor ectodomain
Loeffler, Hannes H; Winn, Martyn D
2013-01-01
The ectodomain of the human epidermal growth factor receptor (hEGFR) controls input to several cell signalling networks via binding with extracellular growth factors. To gain insight into the dynamics and ligand binding of the ectodomain, the hEGFR monomer was subjected to molecular dynamics simulation. The monomer was found to be substantially more flexible than the ectodomain dimer studied previously. Simulations where the endogeneous ligand EGF binds to either Subdomain I or Subdomain III, or where hEGFR is unbound, show significant differences in dynamics. The molecular mechanics Poisson–Boltzmann surface area method has been used to derive relative free energies of ligand binding, and we find that the ligand is capable of binding either subdomain with a slight preference for III. Alanine-scanning calculations for the effect of selected ligand mutants on binding reproduce the trends of affinity measurements. Taken together, these results emphasize the possible role of the ectodomain monomer in the initial step of ligand binding, and add details to the static picture obtained from crystal structures. Proteins 2013; 81:1931–1943. © 2013 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:23760854
Pal-Bhowmick, Ipsita; Andersen, John; Srinivasan, Prakash; Narum, David L; Bosch, Jürgen; Miller, Louis H
2012-01-01
Invasion of erythrocytes by Plasmodium falciparum requires a connection between the cytoplasmic tail of the parasite's ligands for its erythrocyte receptors and the actin-myosin motor of the parasite. For the thromobospondin-related anonymous protein (TRAP) ligand on Plasmodium sporozoites, aldolase forms this connection and requires tryptophan and negatively charged amino acids in the ligand's cytoplasmic tail. Because of the importance of the Duffy binding-like (DBL) and the reticulocyte homology (RH) ligand families in erythrocyte binding and merozoite invasion, we characterized the ability of their cytoplasmic tails to bind aldolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), both of which bind actin. We tested the binding of the cytoplasmic peptides of the two ligand families to aldolase and GAPDH. Only the cytoplasmic peptides of some RH ligands showed strong binding to aldolase, and the binding depended on the presence of an aromatic amino acid (phenylalanine or tyrosine), rather than tryptophan, in the context of negatively charged amino acids. The binding was confirmed by surface plasmon resonance analysis and was found to represent affinity similar to that seen with TRAP. An X-ray crystal structure of aldolase at 2.5 Å in the presence of RH2b peptide suggested that the binding site location was near the TRAP-binding site. GAPDH bound to some of the cytoplasmic tails of certain RH and DBL ligands in an aromatic amino acid-dependent manner. Thus, the connection between Plasmodium merozoite ligands and erythrocyte receptors and the actin motor can be achieved through the activity of either aldolase or GAPDH by mechanisms that do not require tryptophan but, rather, other aromatic amino acids. IMPORTANCE The invasion of the Plasmodium merozoite into erythrocytes is a critical element in malaria pathogenesis. It is important to understand the molecular details of this process, as this machinery can be a target for both vaccine and drug development. In Plasmodium sporozoites and Toxoplasma tachyzoites, invasion involves a glycolytic enzyme aldolase, linking the cytoplasmic tail domains of the parasite ligands to the actin-myosin motor that drives invasion. This binding requires a tryptophan that cannot be replaced by other aromatic residues. Here we show that aldolase binds the cytoplasmic tails of some P. falciparum merozoite erythrocyte-binding ligands but that the binding involves aromatic residues other than tryptophan. The biological relevance of aldolase binding to cytoplasmic tails of parasite ligands in invasion is demonstrated by our observation that RH2b but not RH2a binds to aldolase and, as previously shown, that RH2b but not RH2a is required for P. falciparum invasion of erythrocytes.
Structural and Biochemical Studies of ALIX/AlP1 and Its Role in Retrovirus Budding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher,R.; Chung, H.; Zhai, Q.
2007-01-01
ALIX/AIP1 functions in enveloped virus budding, endosomal protein sorting, and many other cellular processes. Retroviruses, including HIV-1, SIV, and EIAV, bind and recruit ALIX through YPXnL late-domain motifs (X = any residue; n = 1-3). Crystal structures reveal that human ALIX is composed of an N-terminal Bro1 domain and a central domain that is composed of two extended three-helix bundles that form elongated arms that fold back into a 'V.'. The structures also reveal conformational flexibility in the arms that suggests that the V domain may act as a flexible hinge in response to ligand binding. YPXnL late domains bindmore » in a conserved hydrophobic pocket on the second arm near the apex of the V, whereas CHMP4/ESCRT-III proteins bind a conserved hydrophobic patch on the Bro1 domain, and both interactions are required for virus budding. ALIX therefore serves as a flexible, extended scaffold that connects retroviral Gag proteins to ESCRT-III and other cellular-budding machinery.« less
Distinct Iron-binding Ligands in the Upper Water Column at Station ALOHA
NASA Astrophysics Data System (ADS)
Bundy, R.; Boiteau, R.; Repeta, D.
2016-02-01
The distribution and chemical properties of iron-binding organic ligands at station ALOHA were examined using a combination of solid phase extraction (SPE) followed by high pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). HPLC-ICPMS ligand measurements were complemented by competitive ligand exchange adsorptive cathodic stripping voltammetry (CLE-ACSV) analysis using salicylaldoxime as the added ligand. By HPLC-ICPMS, we find enhanced concentrations of distinct naturally-occurring polar iron-binding ligands present at the surface and in the chlorophyll maximum. Lower concentrations were found in the subsurface, where a suite of non-polar ligands was detected. Siderophores were present at the deepest depths sampled at station ALOHA, down to 400m. Incubation studies provided evidence for the production of iron-binding ligands associated with nutrient amended phytoplankton growth in surface waters, and as a result of microbial particle remineralization in the subsurface water column. Ligands classes identified via SPE were then compared to CLE-ACSV ligand measurements, as well as the conditional stability constants measured from model polar and non-polar siderophores, yielding insight to the sources of iron-binding ligands throughout the water column at station ALOHA.
Zubrienė, Asta; Matulienė, Jurgita; Baranauskienė, Lina; Jachno, Jelena; Torresan, Jolanta; Michailovienė, Vilma; Cimmperman, Piotras; Matulis, Daumantas
2009-01-01
The analysis of tight protein-ligand binding reactions by isothermal titration calorimetry (ITC) and thermal shift assay (TSA) is presented. The binding of radicicol to the N-terminal domain of human heat shock protein 90 (Hsp90αN) and the binding of ethoxzolamide to human carbonic anhydrase (hCAII) were too strong to be measured accurately by direct ITC titration and therefore were measured by displacement ITC and by observing the temperature-denaturation transitions of ligand-free and ligand-bound protein. Stabilization of both proteins by their ligands was profound, increasing the melting temperature by more than 10 ºC, depending on ligand concentration. Analysis of the melting temperature dependence on the protein and ligand concentrations yielded dissociation constants equal to 1 nM and 2 nM for Hsp90αN-radicicol and hCAII-ethoxzolamide, respectively. The ligand-free and ligand-bound protein fractions melt separately, and two melting transitions are observed. This phenomenon is especially pronounced when the ligand concentration is equal to about half the protein concentration. The analysis compares ITC and TSA data, accounts for two transitions and yields the ligand binding constant and the parameters of protein stability, including the Gibbs free energy and the enthalpy of unfolding. PMID:19582223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, K.D.; Handen, J.S.; Rosenberg, H.F.
The Charcot-Leyden crystal (CLC) protein, or eosinophil lysophospholipase, is a characteristic protein of human eosinophils and basophils; recent work has demonstrated that the CLC protein is both structurally and functionally related to the galectin family of {beta}-galactoside binding proteins. The galectins as a group share a number of features in common, including a linear ligand binding site encoded on a single exon. In this work, we demonstrate that the intron-exon structure of the gene encoding CLC is analogous to those encoding the galectins. The coding sequence of the CLC gene is divided into four exons, with the entire {beta}-galactoside bindingmore » site encoded by exon III. We have isolated CLC {beta}-galactoside binding sites from both orangutan (Pongo pygmaeus) and murine (Mus musculus) genomic DNAs, both encoded on single exons, and noted conservation of the amino acids shown to interact directly with the {beta}-galactoside ligand. The most likely interpretation of these results suggests the occurrence of one or more exon duplication and insertion events, resulting in the distribution of this lectin domain to CLC as well as to the multiple galectin genes. 35 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Kinsella, Gemma K.; Rozas, Isabel; Watson, Graeme W.
2005-06-01
Adrenoceptors are members of the important G protein coupled receptor family for which the detailed mechanism of activation remains unclear. In this study, we have combined docking and molecular dynamics simulations to model the ligand induced effect on an homology derived human α1A adrenoceptor. Analysis of agonist/α1A adrenoceptor complex interactions focused on the role of the charged amine group, the aromatic ring, the N-methyl group of adrenaline, the beta hydroxyl group and the catechol meta and para hydroxyl groups of the catecholamines. The most critical interactions for the binding of the agonists are consistent with many earlier reports and our study suggests new residues possibly involved in the agonist-binding site, namely Thr-174 and Cys-176. We further observe a number of structural changes that occur upon agonist binding including a movement of TM-V away from TM-III and a change in the interactions of Asp-123 of the conserved DRY motif. This may cause Arg-124 to move out of the TM helical bundle and change the orientation of residues in IC-II and IC-III, allowing for increased affinity of coupling to the G-protein.
Rydzak, Joanna; Kaczmarek, Radoslaw; Czerwinski, Marcin; Lukasiewicz, Jolanta; Tyborowska, Jolanta; Szewczyk, Boguslaw; Jaskiewicz, Ewa
2015-01-01
The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F1 and F2 domains and is responsible for ligand-erythrocyte receptor interaction during invasion. In this report we describe, for the first time, the glycophorin C specificity of the recombinant, baculovirus-expressed binding region (Region II) of P. falciparum EBA-140 ligand. It was found that the recombinant EBA-140 Region II binds to the endogenous and recombinant glycophorin C, but does not bind to Gerbich-type glycophorin C, neither normal nor recombinant, which lacks amino acid residues 36–63 of its polypeptide chain. Our results emphasize the crucial role of this glycophorin C region in EBA-140 ligand binding. Moreover, the EBA-140 Region II did not bind either to glycophorin D, the truncated form of glycophorin C lacking the N-glycan or to desialylated GPC. These results draw attention to the role of glycophorin C glycans in EBA-140 binding. The full identification of the EBA-140 binding site on glycophorin C molecule, consisting most likely of its glycans and peptide backbone, may help to design therapeutics or vaccines that target the erythrocyte binding merozoite ligands. PMID:25588042
Shen, Zhanhang; Mulholland, Kelly A; Zheng, Yujun; Wu, Chun
2017-09-01
DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.
Ligand binding to telomeric G-quadruplex DNA investigated by funnel-metadynamics simulations
Moraca, Federica; Amato, Jussara; Ortuso, Francesco; Artese, Anna; Novellino, Ettore; Alcaro, Stefano; Parrinello, Michele; Limongelli, Vittorio
2017-01-01
G-quadruplexes (G4s) are higher-order DNA structures typically present at promoter regions of genes and telomeres. Here, the G4 formation decreases the replicative DNA at each cell cycle, finally leading to apoptosis. The ability to control this mitotic clock, particularly in cancer cells, is fascinating and passes through a rational understanding of the ligand/G4 interaction. We demonstrate that an accurate description of the ligand/G4 binding mechanism is possible using an innovative free-energy method called funnel-metadynamics (FM), which we have recently developed to investigate ligand/protein interaction. Using FM simulations, we have elucidated the binding mechanism of the anticancer alkaloid berberine to the human telomeric G4 (d[AG3(T2AG3)3]), computing also the binding free-energy landscape. Two ligand binding modes have been identified as the lowest energy states. Furthermore, we have found prebinding sites, which are preparatory to reach the final binding mode. In our simulations, the ions and the water molecules have been explicitly represented and the energetic contribution of the solvent during ligand binding evaluated. Our theoretical results provide an accurate estimate of the absolute ligand/DNA binding free energy (ΔGb0 = −10.3 ± 0.5 kcal/mol) that we validated through steady-state fluorescence binding assays. The good agreement between the theoretical and experimental value demonstrates that FM is a most powerful method to investigate ligand/DNA interaction and can be a useful tool for the rational design also of G4 ligands. PMID:28232513
Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin
Treuheit, Nicholas A.; Beach, Muneera A.; Komives, Elizabeth A.
2011-01-01
Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethylketone to the active site serine, as well as non-covalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1, however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-L-arginine-(3-methyl-1,5-pantanediyl) amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause the same reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or to exosite 1. PMID:21526769
Cang, Zixuan; Wei, Guo-Wei
2018-02-01
Protein-ligand binding is a fundamental biological process that is paramount to many other biological processes, such as signal transduction, metabolic pathways, enzyme construction, cell secretion, and gene expression. Accurate prediction of protein-ligand binding affinities is vital to rational drug design and the understanding of protein-ligand binding and binding induced function. Existing binding affinity prediction methods are inundated with geometric detail and involve excessively high dimensions, which undermines their predictive power for massive binding data. Topology provides the ultimate level of abstraction and thus incurs too much reduction in geometric information. Persistent homology embeds geometric information into topological invariants and bridges the gap between complex geometry and abstract topology. However, it oversimplifies biological information. This work introduces element specific persistent homology (ESPH) or multicomponent persistent homology to retain crucial biological information during topological simplification. The combination of ESPH and machine learning gives rise to a powerful paradigm for macromolecular analysis. Tests on 2 large data sets indicate that the proposed topology-based machine-learning paradigm outperforms other existing methods in protein-ligand binding affinity predictions. ESPH reveals protein-ligand binding mechanism that can not be attained from other conventional techniques. The present approach reveals that protein-ligand hydrophobic interactions are extended to 40Å away from the binding site, which has a significant ramification to drug and protein design. Copyright © 2017 John Wiley & Sons, Ltd.
Intrinsic disorder mediates the diverse regulatory functions of the Cdk inhibitor p21
Wang, Yuefeng; Fisher, John C.; Mathew, Rose; Ou, Li; Otieno, Steve; Sublett, Jack; Xiao, Limin; Chen, Jianhan; Roussel, Martine F.; Kriwacki, Richard W.
2011-01-01
Traditionally, well-defined three-dimensional structure was thought to be essential for protein function. However, myriad biological functions are performed by highly dynamic, intrinsically disordered proteins (IDPs). IDPs often fold upon binding their biological targets and frequently exhibit “binding diversity” by targeting multiple ligands. We sought to understand the physical basis of IDP binding diversity and herein report that the cyclin-dependent kinase (Cdk) inhibitor, p21Cip1, adaptively binds to and inhibits the various Cdk/cyclin complexes that regulate eukaryotic cell division. Based on results from NMR spectroscopy, and biochemical and cellular assays, we show that structural adaptability of a helical sub-domain within p21 termed LH enables two other sub-domains termed D1 and D2 to specifically bind conserved surface features of the cyclin and Cdk subunits, respectively, within otherwise structurally distinct Cdk/cyclin complexes. Adaptive folding upon binding is likely to mediate the diverse biological functions of the thousands of IDPs present in eukaryotes. PMID:21358637
NASA Astrophysics Data System (ADS)
Wrobel, Eva; Rothenberg, Ina; Krisp, Christoph; Hundt, Franziska; Fraenzel, Benjamin; Eckey, Karina; Linders, Joannes T. M.; Gallacher, David J.; Towart, Rob; Pott, Lutz; Pusch, Michael; Yang, Tao; Roden, Dan M.; Kurata, Harley T.; Schulze-Bahr, Eric; Strutz-Seebohm, Nathalie; Wolters, Dirk; Seebohm, Guiscard
2016-10-01
Most small-molecule inhibitors of voltage-gated ion channels display poor subtype specificity because they bind to highly conserved residues located in the channel's central cavity. Using a combined approach of scanning mutagenesis, electrophysiology, chemical ligand modification, chemical cross-linking, MS/MS-analyses and molecular modelling, we provide evidence for the binding site for adamantane derivatives and their putative access pathway in Kv7.1/KCNE1 channels. The adamantane compounds, exemplified by JNJ303, are highly potent gating modifiers that bind to fenestrations that become available when KCNE1 accessory subunits are bound to Kv7.1 channels. This mode of regulation by auxiliary subunits may facilitate the future development of potent and highly subtype-specific Kv channel inhibitors.
Determinants of the heme-CO vibrational modes in the H-NOX family.
Tran, Rosalie; Weinert, Emily E; Boon, Elizabeth M; Mathies, Richard A; Marletta, Michael A
2011-08-02
The Heme Nitric oxide/OXygen binding (H-NOX) family of proteins have important functions in gaseous ligand signaling in organisms from bacteria to humans, including nitric oxide (NO) sensing in mammals, and provide a model system for probing ligand selectivity in hemoproteins. A unique vibrational feature that is ubiquitous throughout the H-NOX family is the presence of a high C-O stretching frequency. To investigate the cause of this spectroscopic characteristic, the Fe-CO and C-O stretching frequencies were probed in the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) using resonance Raman (RR) spectroscopy. Four classes of heme pocket mutants were generated to assess the changes in stretching frequency: (i) the distal H-bonding network, (ii) the proximal histidine ligand, (iii) modulation of the heme conformation via Ile-5 and Pro-115, and (iv) the conserved Tyr-Ser-Arg (YxSxR) motif. These mutations revealed important electrostatic interactions that dampen the back-donation of the Fe(II) d(π) electrons into the CO π* orbitals. The most significant change occurred upon disruption of the H-bonds between the strictly conserved YxSxR motif and the heme propionate groups, producing two dominant CO-bound heme conformations. One conformer was structurally similar to Tt H-NOX WT, whereas the other displayed a decrease in ν(C-O) of up to ∼70 cm(-1) relative to the WT protein, with minimal changes in ν(Fe-CO). Taken together, these results show that the electrostatic interactions in the Tt H-NOX binding pocket are primarily responsible for the high ν(C-O) by decreasing the Fe d(π) → CO π* back-donation and suggest that the dominant mechanism by which this family modulates the Fe(II)-CO bond likely involves the YxSxR motif.
Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude
2013-01-01
Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding.
Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A.; Villoutreix, Bruno O.; Camproux, Anne-Claude
2013-01-01
Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding. PMID:23840299
A conserved mechanism for gating in an ionotropic glutamate receptor.
Moore, Bryn S; Mirshahi, Uyenlinh L; Ebersole, Tonya L; Mirshahi, Tooraj
2013-06-28
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.
Gülbakan, Basri; Barylyuk, Konstantin; Schneider, Petra; Pillong, Max; Schneider, Gisbert; Zenobi, Renato
2018-06-20
Aptamers are oligonucleotide receptors obtained through an iterative selection process from random-sequence libraries. Though many aptamers for a broad range of targets with high affinity and selectivity have been generated, a lack of high-resolution structural data and the limitations of currently available biophysical tools greatly impede understanding of the mechanisms of aptamer-ligand interactions. Here we demonstrate that an approach based on native electrospray ionization mass spectrometry (ESI-MS) can be successfully applied to characterize aptamer-ligand complexes in all details. We studied an adenosine-binding aptamer (ABA), a l-argininamide-binding aptamer (LABA), and a cocaine-binding aptamer (CBA) and their noncovalent interactions with ligands by native ESI-MS and complemented these measurements by ion mobility spectrometry (IMS), isothermal titration calorimetry (ITC), and circular dichroism (CD) spectroscopy. The ligand selectivity of the aptamers and the respective complex stoichiometry could be determined by the native ESI-MS approach. The ESI-MS data can also help refining the binding model for aptamer-ligand complexes and deliver accurate aptamer-ligand binding affinities for specific and nonspecific binding events. For specific ligands, we found K d1 = 69.7 μM and K d2 = 5.3 μM for ABA (two binding sites); K d1 = 22.04 μM for LABA; and K d1 = 8.5 μM for CBA.
Muller, François L L; Cuscov, Marco
2017-03-21
Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L 2 ]/[C org ], where L 2 was the second strongest copper-binding ligand, was 0.75 × 10 -4 when the reservoir residence time was 5 h but 0.34 × 10 -4 when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[C org ] = (0.80 ± 0.20) × 10 -2 . Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.
Crystal Structures of a Quorum-Quenching Antibody
Debler, Erik W.; Kaufmann, Gunnar F.; Kirchdoerfer, Robert N.; Mee, Jenny M.; Janda, Kim D.; Wilson, Ian A.
2007-01-01
Summary A large number of Gram-negative bacteria employ N-acyl homoserine lactones (AHLs) as signaling molecules in quorum sensing, which is a population density-dependent mechanism to coordinate gene expression. Antibody RS2-1G9 was elicited against a lactam mimetic of the N-acyl homoserine lactone and represents the only reported monoclonal antibody that recognizes the naturally-occuring N-acyl homoserine lactone with high affinity. Due to its high cross-reactivity, RS2-1G9 showed remarkable inhibition of quorum sensing signaling in Pseudomonas aeruginosa, a common opportunistic pathogen in humans. The crystal structure of Fab RS2-1G9 in complex with a lactam analog revealed complete encapsulation of the polar lactam moiety in the antibody combining site. This mode of recognition provides an elegant immunological solution for tight binding to an aliphatic, lipid-like ligand with a small head group lacking typical haptenic features, such as aromaticity or charge, which are often incorporated into hapten design to generate high-affinity antibodies. The ability of RS2-1G9 to discriminate between closely-related AHLs is conferred by six hydrogen bonds to the ligand. Conversely, cross-reactivity of RS2-1G9 towards the lactone is likely to originate from conservation of these hydrogen bonds as well as an additional hydrogen bond to the oxygen of the lactone ring. A short and narrow tunnel exiting at the protein surface harbors a portion of the acyl chain and would not allow for entry of the head group. The crystal structure of the antibody without its cognate lactam or lactone ligands revealed a considerably altered antibody combining site with a closed binding pocket, suggestive of an induced fit mechanism for ligand binding. Curiously, a completely buried ethylene glycol molecule mimics the lactam ring and, thus, serves as a surrogate ligand. The detailed structural delineation of this quorum-quenching antibody will now aid in further development of an antibody-based therapy against bacterial pathogens by interference with quorum sensing. PMID:17400249
Association of TLR1, TLR2, TLR4, TLR6, and TIRAP polymorphisms with disease susceptibility.
Noreen, Mamoona; Arshad, Muhammad
2015-06-01
Toll like receptors (TLRs) play a crucial role in regulation of innate as well as adaptive immunity. TLRs recognize a distinct but limited repertoire of conserved microbial products. Ligand binding to TLRs activates the signaling cascade and results in activation of multiple inflammatory genes. Variation in this immune response is under genetic control. Polymorphisms in genes associated with inflammatory pathway especially influence the outcome of diseases. TLR2 makes heterodimer with TLR1 or TLR6 and recognizes a wide variety of microbial ligands. In this review, we summarize studies of polymorphisms in genes encoding TLR1, TLR2, TLR4, TLR6, and most polymorphic adaptor protein, Mal/TIRAP, revealing their effect on susceptibility to diseases.
Regulation of the catalytic activity of the EGF receptor
Endres, Nicholas F.; Engel, Kate; Das, Rahul; Kovacs, Erika; Kuriyan, John
2011-01-01
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase involved in cell growth that is often misregulated in cancer. Several recent studies highlight the unique structural mechanisms involved in its regulation. Some elucidate the important role that the juxtamembrane segment and the transmembrane helix play in stabilizing the activating asymmetric kinase dimer, and suggest that its activation mechanism is likely to be conserved amongst the other human EGFR-related receptors. Other studies provide new explanations for two long observed, but poorly understood phenomena, the apparent heterogeneity in ligand binding and the formation of ligand-independent dimers. New insights into the allosteric mechanisms utilized by intracellular regulators of EGFR provide hope that allosteric sites could be used as targets for drug development. PMID:21868214
Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad
2014-12-01
YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. © 2014 FEBS.
Tshabalala, Thabiso N; Tomescu, Mihai-Silviu; Prior, Allan; Balakrishnan, Vijayakumar; Sayed, Yasien; Dirr, Heini W; Achilonu, Ikechukwu
2016-12-01
The energetics of ligand binding to human eukaryotic elongation factor 1 gamma (heEF1γ) was investigated using reduced glutathione (GSH), oxidised glutathione (GSSG), glutathione sulfonate and S-hexylglutathione as ligands. The experiments were conducted using isothermal titration calorimetry, and the findings were supported using computational studies. The data show that the binding of these ligands to heEF1γ is enthalpically favourable and entropically driven (except for the binding of GSSG). The full length heEF1γ binds GSSG with lower affinity (K d = 115 μM), with more hydrogen-bond contacts (ΔH = -73.8 kJ/mol) and unfavourable entropy (-TΔS = 51.7 kJ/mol) compared to the glutathione transferase-like N-terminus domain of heEF1γ, which did not show preference to any specific ligand. Computational free binding energy calculations from the 10 ligand poses show that GSSG and GSH consistently bind heEF1γ, and that both ligands bind at the same site with a folded bioactive conformation. This study reveals the possibility that heEF1γ is a glutathione-binding protein.
Negative Cooperativity in the EGF Receptor
Pike, Linda J.
2012-01-01
Scatchard analyses of the binding of EGF to its receptor yield concave up Scatchard plots, indicative of some type of heterogenity in ligand binding affinity. This was typically interpreted as being due to the presence of two independent binding site–one of high affinity representing ≤10% of the receptor population and one of low affinity making up the bulk of the receptors. However, the concept of two independent binding sites is difficult to reconcile with the X-ray structures of the dimerized EGF receptor that show symmetric binding of the two ligands. A new approach to the analysis of 125I-EGF binding data combined with the structure of the singly-occupied Drosophila EGF receptor have now shown that this heterogeneity is due to the presence of negative cooperativity in the EGF receptor. Concerns that negative cooperativity precludes ligand-induced dimerization of the EGF receptor confuse the concepts of linkage cooperativity. Linkage refers to the effect of ligand on the assembly of dimers while cooperativity refers to the effect of ligand binding to one subunit on ligand binding to the other subunit within a preassembled dimer. Binding of EGF to its receptor is positively linked with dimer assembly but shows negative cooperativity within the dimer. PMID:22260659
Katre, Uma V.; Mazumder, Suman; Mohanty, Smita
2013-01-01
Pheromone-binding proteins (PBPs) in lepidopteran moths selectively transport the hydrophobic pheromone molecules across the sensillar lymph to trigger the neuronal response. Moth PBPs are known to bind ligand at physiological pH and release it at acidic pH while undergoing a conformational change. Two molecular switches are considered to play a role in this mechanism: (i) Protonation of His70 and His95 situated at one end of binding pocket, and (ii) Switch of the unstructured C-terminus at the other end of the binding pocket to a helix that enters the pocket. We have reported previously the role of the histidine-driven switch in ligand release for Antheraea polyphemus PBP1 (ApolPBP1). Here we show that the C-terminus plays a role in ligand release and binding mechanism of ApolPBP1. The C-terminus truncated mutants of ApolPBP1 (ApolPBP1ΔP129-V142 and ApolPBP1H70A/H95AΔP129-V142) exist only in the bound conformation at all pH levels, and they fail to undergo pH- or ligand- dependent conformational switch. Although these proteins could bind ligands even at acidic pH unlike the wild-type ApolPBP1, they had ~4 fold reduced affinity towards the ligand at both acidic and physiological pH than that of ApolPBP1wt and ApolPBP1H70A/H95A. Thus, apart from helping in the ligand-release at acidic pH, the C-terminus in ApolPBP1 also plays an important role in ligand binding and/or locking the ligand in the binding pocket. Our results are in stark contrast to those reported for BmorPBP and AtraPBP, where C-terminus truncated proteins had similar or increased pheromone-binding affinity at any pH. PMID:23327454
Substrate-bound structure of the E. coli multidrug resistance transporter MdfA
Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C
2015-01-01
Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402
Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0
Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke
2015-01-01
Motivation: Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. Results: We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. Availability and implementation: http://kiharalab.org/patchsurfer2.0/ Contact: dkihara@purdue.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25359888
Duan, Lili; Liu, Xiao; Zhang, John Z H
2016-05-04
Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect.
Ligand Binding Analysis and Screening by Chemical Denaturation Shift
Sch n, Arne; Brown, Richard K.; Hutchins, Burleigh M.; Freire, Ernesto
2013-01-01
The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Towards this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Since ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities and the ligand rank order obtained at denaturation temperatures (60°C or higher) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations in which binding changes the cooperativity of the unfolding transition. In this paper we develop the basic analytical equations and provide several experimental examples. PMID:23994566
Ligand binding analysis and screening by chemical denaturation shift.
Schön, Arne; Brown, Richard K; Hutchins, Burleigh M; Freire, Ernesto
2013-12-01
The identification of small molecule ligands is an important first step in drug development, especially drugs that target proteins with no intrinsic activity. Toward this goal, it is important to have access to technologies that are able to measure binding affinities for a large number of potential ligands in a fast and accurate way. Because ligand binding stabilizes the protein structure in a manner dependent on concentration and binding affinity, the magnitude of the protein stabilization effect elicited by binding can be used to identify and characterize ligands. For example, the shift in protein denaturation temperature (Tm shift) has become a popular approach to identify potential ligands. However, Tm shifts cannot be readily transformed into binding affinities, and the ligand rank order obtained at denaturation temperatures (≥60°C) does not necessarily coincide with the rank order at physiological temperature. An alternative approach is the use of chemical denaturation, which can be implemented at any temperature. Chemical denaturation shifts allow accurate determination of binding affinities with a surprisingly wide dynamic range (high micromolar to sub nanomolar) and in situations where binding changes the cooperativity of the unfolding transition. In this article, we develop the basic analytical equations and provide several experimental examples. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Minjiao; Jiang, Ming; Sun, Yueru; Guo, Zu-Feng; Guo, Zhihong
2011-07-05
1,4-Dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes an intramolecular Claisen condensation involving two oxyanion intermediates in the biosynthetic pathway of menaquinone, an essential respiration electron transporter in many microorganisms. Here we report the finding that the DHNA-CoA product and its analogues bind and inhibit the synthase from Escherichia coli with significant ultraviolet--visible spectral changes, which are similar to the changes induced by deprotonation of the free inhibitors in a basic solution. Dissection of the structure--affinity relationships of the inhibitors identifies the hydroxyl groups at positions 1 (C1-OH) and 4 (C4-OH) of DHNA-CoA or their equivalents as the dominant and minor sites, respectively, for the enzyme--ligand interaction that polarizes or deprotonates the bound ligands to cause the observed spectral changes. In the meantime, spectroscopic studies with active site mutants indicate that C4-OH of the enzyme-bound DHNA-CoA interacts with conserved polar residues Arg-91, Tyr-97, and Tyr-258 likely through a hydrogen bonding network that also includes Ser-161. In addition, site-directed mutation of the conserved Asp-163 to alanine causes a complete loss of the ligand binding ability of the protein, suggesting that the Asp-163 side chain is most likely hydrogen-bonded to C1-OH of DHNA-CoA to provide the dominant polarizing effect. Moreover, this mutation also completely eliminates the enzyme activity, strongly supporting the possibility that the Asp-163 side chain provides a strong stabilizing hydrogen bond to the tetrahedral oxyanion, which takes a position similar to that of C1-OH of the enzyme-bound DHNA-CoA and is the second high-energy intermediate in the intracellular Claisen condensation reaction. Interestingly, both Arg-91 and Tyr-97 are located in a disordered loop forming part of the active site of all available DHNA-CoA synthase structures. Their involvement in the interaction with the small molecule ligands suggests that the disordered loop is folded in interaction with the substrates or reaction intermediates, supporting an induced-fit catalytic mechanism for the enzyme.
Naz, Sadia; Ngo, Tony; Farooq, Umar
2017-01-01
Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099
Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben
2017-01-01
The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Saeyoung; Park, Eun-Hye; Ko, Hyeok-Jin
2015-11-13
The atomic structure of a bacterial aryl acylamidase (EC 3.5.1.13; AAA) is reported and structural features are investigated to better understand the catalytic profile of this enzyme. Structures of AAA were determined in its native form and in complex with the analgesic acetanilide, p-acetaminophenol, at 1.70 Å and 1.73 Å resolutions, respectively. The overall structural fold of AAA was identified as an α/β fold class, exhibiting an open twisted β-sheet core surrounded by α-helices. The asymmetric unit contains one AAA molecule and the monomeric form is functionally active. The core structure enclosing the signature sequence region, including the canonical Ser-cisSer-Lys catalytic triad,more » is conserved in all members of the Amidase Signature enzyme family. The structure of AAA in a complex with its ligand reveals a unique organization in the substrate-binding pocket. The binding pocket consists of two loops (loop1 and loop2) in the amidase signature sequence and one helix (α10) in the non-amidase signature sequence. We identified two residues (Tyr{sup 136} and Thr{sup 330}) that interact with the ligand via water molecules, and a hydrogen-bonding network that explains the catalytic affinity over various aryl acyl compounds. The optimum activity of AAA at pH > 10 suggests that the reaction mechanism employs Lys{sup 84} as the catalytic base to polarize the Ser{sup 187} nucleophile in the catalytic triad. - Highlights: • We determined the first structure of a bacterial aryl acylamidase (EC 3.5.1.13). • Structure revealed spatially distinct architecture of the substrate-binding pocket. • Hydrogen-bonding with Tyr{sup 136} and Thr{sup 330} mediates ligand-binding and substrate.« less
Podust, Larissa M.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.
2009-01-01
Mycobacterium tuberculosis responds to the changes in environmental conditions through a two-component signaling system that detects reduced O2 tension and NO and CO exposures via the heme-binding GAF domains of two sensory histidine kinases, DosT and DevS, and the transcriptional regulator DosR. We report the first x-ray structure of the DosT heme-bound GAF domain (GAFDosT) in both oxy and deoxy forms determined to a resolution of 2.3 Å. In GAFDosT, heme binds in an orientation orthogonal to that in the PAS domains via a highly conserved motif including invariant H147 as a proximal heme axial ligand. On the distal side, invariant Y169 is in stacking interactions with the heme with its long axis parallel and the plane of the ring orthogonal to the heme plane. In one of the two protein monomers in an asymmetric unit, O2 binds as a second axial ligand to the heme iron, and is stabilized via an H-bond to the OH-group of Y169. The structure reveals two small tunnel-connected cavities and a pore on the protein surface that suggest a potential route for O2 access to the sensing pocket. The limited conformational differences observed between differently heme iron-ligated GAFDosT monomers in the asymmetric unit may result from crystal lattice limitations since atmospheric oxygen binding likely occurs in the crystal as a result of x-ray induced Fe3+ photoreduction during diffraction data collection. Determination of the GAFDosT structure sets up a framework in which to address ligand-recognition, discrimination, and signal propagation schemes in the heme-based GAF domains of biological sensors. PMID:18980385
Molecular characterization of a family of ligands for eph-related tyrosine kinase receptors.
Beckmann, M P; Cerretti, D P; Baum, P; Vanden Bos, T; James, L; Farrah, T; Kozlosky, C; Hollingsworth, T; Shilling, H; Maraskovsky, E
1994-01-01
A family of tyrosine kinase receptors related to the product of the eph gene has been described recently. One of these receptors, elk, has been shown to be expressed only in brain and testes. Using a direct expression cloning technique, a ligand for the elk receptor has been isolated by screening a human placenta cDNA library with a fusion protein containing the extracellular domain of the receptor. This isolated cDNA encodes a transmembrane protein. While the sequence of the ligand cDNA is unique, it is related to a previously described sequence known as B61. Northern blot analysis of human tissue mRNA showed that the elk ligand's mRNA is 3.5 kb long and is found in placenta, heart, lung, liver, skeletal muscle, kidney and pancreas. Southern blot analysis showed that the gene is highly conserved in a wide variety of species. Both elk ligand and B61 mRNAs are inducible by tumour necrosis factor in human umbilical vein endothelial cells. In addition, both proteins show promiscuity in binding to the elk and the related hek receptors. Since these two ligand sequences are similar, and since elk and hek are members of a larger family of eph-related receptor molecules, we refer to these ligands as LERKs (ligands for eph-related kinases). Images PMID:8070404
Low capping group surface density on zinc oxide nanocrystals.
Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M
2014-09-23
The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.
Architecture effects on multivalent interactions by polypeptide-based multivalent ligands
NASA Astrophysics Data System (ADS)
Liu, Shuang
Multivalent interactions are characterized by the simultaneous binding between multiple ligands and multiple binding sites, either in solutions or at interfaces. In biological systems, most multivalent interactions occur between protein receptors and carbohydrate ligands through hydrogen-bonding and hydrophobic interactions. Compared with weak affinity binding between one ligand and one binding site, i.e. monovalent interaction, multivalent interactioins provide greater avidity and specificity, and therefore play unique roles in a broad range of biological activities. Moreover, the studies of multivalent interactions are also essential for producing effective inhibitors and effectors of biological processes that could have important therapeutic applications. Synthetic multivalent ligands have been designed to mimic the biological functions of natural multivalent interactions, and various types of scaffolds have been used to display multiple ligands, including small molecules, linear polymers, dendrimers, nanoparticle surfaces, monolayer surfaces and liposomes. Studies have shown that multivalent interactions can be highly affected by various architectural parameters of these multivalent ligands, including ligand identities, valencies, spacing, ligand densities, nature of linker arms, scaffold length and scaffold conformation. Most of these multivalent ligands are chemically synthesized and have limitations of controlling over sequence and conformation, which is a barrier for mimicking ordered and controlled natural biological systems. Therefore, multivalent ligands with precisely controlled architecture are required for improved structure-function relationship studies. Protein engineering methods with subsequent chemical coupling of ligands provide significant advantages of controlling over backbone conformation and functional group placement, and therefore have been used to synthesize recombinant protein-based materials with desired properties similar to natural protein materials, including structural as well as functional proteins. Therefore, polypeptide-based multivalent scaffolds are used to display ligands to assess the contribution of different architectural parameters to the multivalent binding events. In this work, a family of alanine-rich alpha-helical glycopolypeptides was designed and synthesized by a combination of protein engineering and chemical coupling, to display two types of saccharide ligands for two different multivalent binding systems. The valencies, chain length and spacing between adjacent ligands of these multivalent ligands were designed in order to study architecture effects on multivalent interactions. The polypeptides and their glycoconjugates were characterized via various methods, including SDS-PAGE, NMR, HPLC, amino acid analysis (AAA), MALDI, circular dichroism (CD) and GPC. In the first multivalent binding system, cholera toxin B pentamer (CT B5) was chosen to be the protein receptor due to its well-characterized structure, lack of significant steric interference of binding to multiple binding sites, and requirement of only simple monosaccharide as ligands. Galactopyranoside was incorporated into polypeptide scaffolds through amine-carboxylic acid coupling to the side chains of glutamic acid residues. The inhibition and binding to CT B5 of these glycopolypeptide ligands were evaluated by direct enzyme-linked assay (DELA). As a complement method, weak affinity chromatography (WAC) was also used to evaluate glycopolypeptides binding to a CT B5 immobilized column. The architecture effects on CT B 5 inhibition are discussed. In the second system, cell surface receptor L-selectin was targeted by polypeptide-based multivalent ligands containing disulfated galactopyranoside ligands, due to its important roles in various immunological activities. The effects of glycopolypeptide architectural variables L-selectin shedding were evaluated via ELISA-based assays. These polypeptide-based multivalent ligands are suggested to be useful for elucidating architecture effects on multivalent interactions, manipulating multivalent interactions and the subsequent cellular responses in different systems. These materials have great potential applications in therapeutics and could also provide guidelines for design of multivalent ligands for other protein receptors.
Insights into Protein–Ligand Interactions: Mechanisms, Models, and Methods
Du, Xing; Li, Yi; Xia, Yuan-Ling; Ai, Shi-Meng; Liang, Jing; Sang, Peng; Ji, Xing-Lai; Liu, Shu-Qun
2016-01-01
Molecular recognition, which is the process of biological macromolecules interacting with each other or various small molecules with a high specificity and affinity to form a specific complex, constitutes the basis of all processes in living organisms. Proteins, an important class of biological macromolecules, realize their functions through binding to themselves or other molecules. A detailed understanding of the protein–ligand interactions is therefore central to understanding biology at the molecular level. Moreover, knowledge of the mechanisms responsible for the protein-ligand recognition and binding will also facilitate the discovery, design, and development of drugs. In the present review, first, the physicochemical mechanisms underlying protein–ligand binding, including the binding kinetics, thermodynamic concepts and relationships, and binding driving forces, are introduced and rationalized. Next, three currently existing protein-ligand binding models—the “lock-and-key”, “induced fit”, and “conformational selection”—are described and their underlying thermodynamic mechanisms are discussed. Finally, the methods available for investigating protein–ligand binding affinity, including experimental and theoretical/computational approaches, are introduced, and their advantages, disadvantages, and challenges are discussed. PMID:26821017
Vauquelin, Georges; Hall, David; Charlton, Steven J
2015-01-01
Background and Purpose Non-competitive drugs that confer allosteric modulation of orthosteric ligand binding are of increasing interest as therapeutic agents. Sought-after advantages include a ceiling level to drug effect and greater receptor-subtype selectivity. It is thus important to determine the mode of interaction of newly identified receptor ligands early in the drug discovery process and binding studies with labelled orthosteric ligands constitute a traditional approach for this. According to the general allosteric ternary complex model, allosteric ligands that exhibit negative cooperativity may generate distinctive ‘competition’ curves: they will not reach baseline levels and their nadir will increase in par with the orthosteric ligand concentration. This behaviour is often considered a key hallmark of allosteric interactions. Experimental Approach The present study is based on differential equation-based simulations. Key Results The differential equation-based simulations revealed that the same ‘competition binding’ pattern was also obtained when a monovalent ligand binds to one of the target sites of a heterobivalent ligand, even if this process is exempt of allosteric interactions. This pattern was not strictly reciprocal when the binding of each of the ligands was recorded. The prominence of this phenomenon may vary from one heterobivalent ligand to another and we suggest that this phenomenon may take place with ligands that have been proposed to bind according to ‘two-domain’ and ‘charnière’ models. Conclusions and Implications The present findings indicate a familiar experimental situation where bivalency may give rise to observations that could inadvertently be interpreted as allosteric binding. Yet, both mechanisms could be differentiated based on alternative experiments and structural considerations. PMID:25537684
Tomoo, Koji; Miki, Yasuhiro; Morioka, Hideaki; Seike, Kiho; Ishida, Toshimasa; Ikenishi, Sadao; Miyamoto, Katsushiro; Hasegawa, Tomokazu; Yamano, Akihito; Hamada, Kensaku; Tsujibo, Hiroshi
2017-06-01
BxlE from Streptomyces thermoviolaceus OPC-520 is a xylo-oligosaccharide (mainly xylobiose)-binding protein that serves as the initial receptor for the bacterial ABC-type xylo-oligosaccharide transport system. To determine the ligand-binding mechanism of BxlE, X-ray structures of ligand-free (open form) and ligand (xylobiose)-bound (closed form) BxlE were determined at 1.85 Å resolution. BxlE consists of two globular domains that are linked by two β-strands, with the cleft at the interface of the two domains creating the ligand-binding pocket. In the ligand-free open form, this pocket consists of a U-shaped and negatively charged groove located between the two domains. In the xylobiose-bound closed form of BxlE, both the N and C domains move to fold the ligand without conformational changes in either domain. Xylobiose is buried in the groove and wrapped by the N-domain mainly via hydrogen bond interactions and by the C-domain primarily via non-polar interactions with Trp side chains. In addition to the concave shape matching the binding of xylobiose, an inter-domain salt bridge between Asp-47 and Lys-294 limits the space in the ligand-binding site. This domain-stabilized mechanism of ligand binding to BxlE is a unique feature that is not observed with other solute-binding proteins. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Deng, Nanjie; Flynn, William F; Xia, Junchao; Vijayan, R S K; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
NASA Astrophysics Data System (ADS)
Deng, Nanjie; Flynn, William F.; Xia, Junchao; Vijayan, R. S. K.; Zhang, Baofeng; He, Peng; Mentes, Ahmet; Gallicchio, Emilio; Levy, Ronald M.
2016-09-01
We describe binding free energy calculations in the D3R Grand Challenge 2015 for blind prediction of the binding affinities of 180 ligands to Hsp90. The present D3R challenge was built around experimental datasets involving Heat shock protein (Hsp) 90, an ATP-dependent molecular chaperone which is an important anticancer drug target. The Hsp90 ATP binding site is known to be a challenging target for accurate calculations of ligand binding affinities because of the ligand-dependent conformational changes in the binding site, the presence of ordered waters and the broad chemical diversity of ligands that can bind at this site. Our primary focus here is to distinguish binders from nonbinders. Large scale absolute binding free energy calculations that cover over 3000 protein-ligand complexes were performed using the BEDAM method starting from docked structures generated by Glide docking. Although the ligand dataset in this study resembles an intermediate to late stage lead optimization project while the BEDAM method is mainly developed for early stage virtual screening of hit molecules, the BEDAM binding free energy scoring has resulted in a moderate enrichment of ligand screening against this challenging drug target. Results show that, using a statistical mechanics based free energy method like BEDAM starting from docked poses offers better enrichment than classical docking scoring functions and rescoring methods like Prime MM-GBSA for the Hsp90 data set in this blind challenge. Importantly, among the three methods tested here, only the mean value of the BEDAM binding free energy scores is able to separate the large group of binders from the small group of nonbinders with a gap of 2.4 kcal/mol. None of the three methods that we have tested provided accurate ranking of the affinities of the 147 active compounds. We discuss the possible sources of errors in the binding free energy calculations. The study suggests that BEDAM can be used strategically to discriminate binders from nonbinders in virtual screening and to more accurately predict the ligand binding modes prior to the more computationally expensive FEP calculations of binding affinity.
Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Le; Ghimire-Rijal, Sudipa; Lucas, Sarah L.
Here, the ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimericmore » apo PBP leads to a tightening of the interface alpha-helices so that the hydrogen bonding pattern shifts to that of a 3 10 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.« less
Periplasmic Binding Protein Dimer Has a Second Allosteric Event Tied to Ligand Binding
Li, Le; Ghimire-Rijal, Sudipa; Lucas, Sarah L.; ...
2017-09-06
Here, the ligand-induced conformational changes of periplasmic binding proteins (PBP) play a key role in the acquisition of metabolites in ATP binding cassette (ABC) transport systems. This conformational change allows for differential recognition of the ligand occupancy of the PBP by the ABC transporter. This minimizes futile ATP hydrolysis in the transporter, a phenomenon in which ATP hydrolysis is not coupled to metabolite transport. In many systems, the PBP conformational change is insufficient at eliminating futile ATP hydrolysis. Here we identify an additional state of the PBP that is also allosterically regulated by the ligand. Ligand binding to the homodimericmore » apo PBP leads to a tightening of the interface alpha-helices so that the hydrogen bonding pattern shifts to that of a 3 10 helix, in-turn altering the contacts and the dynamics of the protein interface so that the monomer exists in the presence of ligand.« less
Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.
Hu, Xiaotang; Li, Hongbin
2014-10-01
Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Sun, Kai; Montana, Vedrana; Chellappa, Karthikeyani; Brelivet, Yann; Moras, Dino; Maeda, Yutaka; Parpura, Vladimir; Paschal, Bryce M; Sladek, Frances M
2007-06-01
Nuclear receptors (NRs) are a superfamily of transcription factors whose genomic functions are known to be activated by lipophilic ligands, but little is known about how to deactivate them or how to turn on their nongenomic functions. One obvious mechanism is to alter the nuclear localization of the receptors. Here, we show that protein kinase C (PKC) phosphorylates a highly conserved serine (Ser) between the two zinc fingers of the DNA binding domain of orphan receptor hepatocyte nuclear factor 4alpha (HNF4alpha). This Ser (S78) is adjacent to several positively charged residues (Arg or Lys), which we show here are involved in nuclear localization of HNF4alpha and are conserved in nearly all other NRs, along with the Ser/threonine (Thr). A phosphomimetic mutant of HNF4alpha (S78D) reduced DNA binding, transactivation ability, and protein stability. It also impaired nuclear localization, an effect that was greatly enhanced in the MODY1 mutant Q268X. Treatment of the hepatocellular carcinoma cell line HepG2 with PKC activator phorbol 12-myristate 13-acetate also resulted in increased cytoplasmic localization of HNF4alpha as well as decreased endogenous HNF4alpha protein levels in a proteasome-dependent fashion. We also show that PKC phosphorylates the DNA binding domain of other NRs (retinoic acid receptor alpha, retinoid X receptor alpha, and thyroid hormone receptor beta) and that phosphomimetic mutants of the same Ser/Thr result in cytoplasmic localization of retinoid X receptor alpha and peroxisome proliferator-activated receptor alpha. Thus, phosphorylation of this conserved Ser between the two zinc fingers may be a common mechanism for regulating the function of NRs.
Almejun, Maria B.; Cols, Montserrat; Zelazko, Marta; Oleastro, Matias; Cerutti, Andrea; Oppezzo, Pablo; Cunningham-Rundles, Charlotte; Danielian, Silvia
2013-01-01
Mutations in the transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI) were previously found to be associated with hypogammaglobulinemia in humans. It has been shown that proliferation inducing ligand (APRIL) elicits class switch recombination (CSR) by inducing recruitment of MyD88 to a TACI highly conserved cytoplasmic domain (THC). We have identified a patient with hypogammaglobulinemia carrying a missense mutation (S231R) predicted to affect the THC. Aiming to evaluate the relevance of this novel mutation of TACI in CSR induction, we tested the ability of TACI, TLR9, or/and CD40 ligands to trigger CSR in naive B cells and B-cell lines carrying S231R. IgG secretion was impaired when triggered by TACI or/and TLR9 ligands on S231R-naive B cells. Likewise, these stimuli induced less expression of activation-induced cytidine deaminase, I(γ)1-C(μ), and I(γ)1-C(μ), while induction by optimal CD40 stimulation was indistinguishable from controls. These cells also showed an impaired cooperation between TACI and TLR9 pathways, as well as a lack of APRIL-mediated enhancement of CD40 activation in suboptimal conditions. Finally, after APRIL ligation, S231R-mutated TACI failed to colocalize with MyD88. Collectively, these results highlight the requirement of an intact MyD88-binding site in TACI to trigger CSR. PMID:23225259
Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Sun; Li, Shu-Xing; Bren, Nina
2013-09-01
To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Å 2 (1 Å=0.1 nm) of surface area, within which Arg 36 and Phe 32 from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr 184 from loop-C of α7, while Asp 30 of α-btx forms a hydrogen bond with the hydroxy group of Tyr 184. These inter-residue interactions diverge from thosemore » in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr 184 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Y.; Chan, S; Ong, T
2009-01-01
Inhalant allergens from cockroaches are an important cause of asthma to millions of individuals worldwide. Here we report for the first time the structures of two major cockroach allergens, Bla g 4 and Per a 4, that adopt a typical lipocalin fold but with distinct structural features as compared with other known lipocalin allergens. Both Bla g 4 and Per a 4 contain two long-range disulfide bonds linking the N and C termini to a beta-barrel. The C-terminal helix of Bla g 4 is bent and greatly extended toward the N terminus. Bla g 4 is found to be amore » monomer, whereas Per a 4 exists as a dimer in solution with a novel dimeric interface involving residues from loops at the top and bottom of the beta-barrel. Putative ligand binding sites of both allergens are determined by docking of the juvenile hormone III inside the beta-barrel and found to interact with the ligand using non-conserved residues. Bla g 4 and Per a 4 are found to be cross-reactive in sera IgE binding, at least in the Singaporean Chinese population tested. A major IgE binding epitope unique to Per a 4 is found on the loops at the bottom of the beta-barrel that may aid the development of hypoallergens for immunotherapy.« less
Silva, Daniel-Adriano; Domínguez-Ramírez, Lenin; Rojo-Domínguez, Arturo; Sosa-Peinado, Alejandro
2011-07-01
The molecular basis of multiple ligand binding affinity for amino acids in periplasmic binding proteins (PBPs) and in the homologous domain for class C G-protein coupled receptors is an unsolved question. Here, using unrestrained molecular dynamic simulations, we studied the ligand binding mechanism present in the L-lysine, L-arginine, L-ornithine binding protein. We developed an analysis based on dihedral angles for the description of the conformational changes upon ligand binding. This analysis has an excellent correlation with each of the two main movements described by principal component analysis (PCA) and it's more convenient than RMSD measurements to describe the differences in the conformational ensembles observed. Furthermore, an analysis of hydrogen bonds showed specific interactions for each ligand studied as well as the ligand interaction with the aromatic residues Tyr-14 and Phe-52. Using uncharged histidine tautomers, these interactions are not observed. On the basis of these results, we propose a model in which hydrogen bond interactions place the ligand in the correct orientation to induce a cation-π interaction with Tyr-14 and Phe-52 thereby stabilizing the closed state. Our results also show that this protein adopts slightly different closed conformations to make available specific hydrogen bond interactions for each ligand thus, allowing a single mechanism to attain multiple ligand specificity. These results shed light on the experimental evidence for ligand-dependent conformational plasticity not explained by the previous crystallographic data. Copyright © 2011 Wiley-Liss, Inc.
Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0.
Zhu, Xiaolei; Xiong, Yi; Kihara, Daisuke
2015-03-01
Ligand binding is a key aspect of the function of many proteins. Thus, binding ligand prediction provides important insight in understanding the biological function of proteins. Binding ligand prediction is also useful for drug design and examining potential drug side effects. We present a computational method named Patch-Surfer2.0, which predicts binding ligands for a protein pocket. By representing and comparing pockets at the level of small local surface patches that characterize physicochemical properties of the local regions, the method can identify binding pockets of the same ligand even if they do not share globally similar shapes. Properties of local patches are represented by an efficient mathematical representation, 3D Zernike Descriptor. Patch-Surfer2.0 has significant technical improvements over our previous prototype, which includes a new feature that captures approximate patch position with a geodesic distance histogram. Moreover, we constructed a large comprehensive database of ligand binding pockets that will be searched against by a query. The benchmark shows better performance of Patch-Surfer2.0 over existing methods. http://kiharalab.org/patchsurfer2.0/ CONTACT: dkihara@purdue.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yao, Q; Fischer, K P; Tyrrell, D L; Gutfreund, K S
2015-04-01
Programmed death ligand-1 (PD-L1) plays an important role in the attenuation of adaptive immune responses in higher vertebrates. Here, we describe the identification of the Pekin duck PD-L1 orthologue (duPD-L1) and its gene structure. The duPD-L1 cDNA encodes a 311-amino acid protein that has an amino acid identity of 78% and 42% with chicken and human PD-L1, respectively. Mapping of the duPD-L1 cDNA with duck genomic sequences revealed an exonic structure of its coding sequence similar to those of other vertebrates but lacked a noncoding exon 1. Homology modelling of the duPD-L1 extracellular domain was compatible with the tandem IgV-like and IgC-like IgSF domain structure of human PD-L1 (PDB ID: 3BIS). Residues known to be important for receptor binding of human PD-L1 were mostly conserved in duPD-L1 within the N-terminus and the G sheet, and partially conserved within the F sheet but not within sheets C and C'. DuPD-L1 mRNA was constitutively expressed in all tissues examined with highest expression levels in lung and spleen and very low levels of expression in muscle, kidney and brain. Mitogen stimulation of duck peripheral blood mononuclear cells transiently increased duPD-L1 mRNA expression. Our observations demonstrate evolutionary conservation of the exonic structure of its coding sequence, the extracellular domain structure and residues implicated in receptor binding, but the role of the longer cytoplasmic tail in avian PD-L1 proteins remains to be determined. © 2014 John Wiley & Sons Ltd.
Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1
Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; ...
2016-09-01
DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less
Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong
DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less
NASA Astrophysics Data System (ADS)
Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.
2016-01-01
The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.
Characterizing protein domain associations by Small-molecule ligand binding
Li, Qingliang; Cheng, Tiejun; Wang, Yanli; Bryant, Stephen H.
2012-01-01
Background Protein domains are evolutionarily conserved building blocks for protein structure and function, which are conventionally identified based on protein sequence or structure similarity. Small molecule binding domains are of great importance for the recognition of small molecules in biological systems and drug development. Many small molecules, including drugs, have been increasingly identified to bind to multiple targets, leading to promiscuous interactions with protein domains. Thus, a large scale characterization of the protein domains and their associations with respect to small-molecule binding is of particular interest to system biology research, drug target identification, as well as drug repurposing. Methods We compiled a collection of 13,822 physical interactions of small molecules and protein domains derived from the Protein Data Bank (PDB) structures. Based on the chemical similarity of these small molecules, we characterized pairwise associations of the protein domains and further investigated their global associations from a network point of view. Results We found that protein domains, despite lack of similarity in sequence and structure, were comprehensively associated through binding the same or similar small-molecule ligands. Moreover, we identified modules in the domain network that consisted of closely related protein domains by sharing similar biochemical mechanisms, being involved in relevant biological pathways, or being regulated by the same cognate cofactors. Conclusions A novel protein domain relationship was identified in the context of small-molecule binding, which is complementary to those identified by traditional sequence-based or structure-based approaches. The protein domain network constructed in the present study provides a novel perspective for chemogenomic study and network pharmacology, as well as target identification for drug repurposing. PMID:23745168
Neelakanta, G; Sultana, H; Sonenshine, D E; Andersen, J F
2018-04-01
Lipocalins are low molecular weight membrane transporters that are abundantly expressed in the salivary glands and other tissues of ticks. In this study, we identified a lipocalin-like molecule, designated as otlip, from the soft ticks Ornithodoros turicata, the vector for the relapsing fever causing spirochete Borrelia turicatae. We noted that the expression of otlip was developmentally regulated, with adult ticks expressing significantly higher levels in comparison to the larvae or nymphal ticks. Expression of otlip was evident in both fed and unfed O. turicata ticks, with significantly increased expression in the salivary glands in comparison to the midgut or ovary tissues. High conservation of the biogenic amine-binding motif was evident in the deduced primary amino acid sequence of Otlip. Protein modelling of Otlip revealed conservation of most of the residues involved in binding histamine or serotonin ligand. In vitro assays demonstrated binding of recombinant Otlip with histamine. Furthermore, prediction of post-translational modifications revealed that Otlip contained phosphorylation and myristoylation sites. Taken together, our study not only provides evidence for the presence of a lipocalin-like molecule in O. turicata ticks but also suggests a role for this molecule in the salivary glands of this medically important vector. © 2017 The Royal Entomological Society.
NASA Astrophysics Data System (ADS)
Stewart, Kent D.; Steffy, Kevin; Harris, Kevin; Harlan, John E.; Stoll, Vincent S.; Huth, Jeffrey R.; Walter, Karl A.; Gramling-Evans, Emily; Mendoza, Renaldo R.; Severin, Jean M.; Richardson, Paul L.; Barrett, Leo W.; Matayoshi, Edmund D.; Swift, Kerry M.; Betz, Stephen F.; Muchmore, Steve W.; Kempf, Dale J.; Molla, Akhter
2007-01-01
Two new proteins of approximately 70 amino acids in length, corresponding to an unnaturally-linked N- and C-helix of the ectodomain of the gp41 protein from the human immunodeficiency virus (HIV) type 1, were designed and characterized. A designed tripeptide links the C-terminus of the C-helix with the N-terminus of the N-helix in a circular permutation so that the C-helix precedes the N-helix in sequence. In addition to the artificial peptide linkage, the C-helix is truncated at its N-terminus to expose a region of the N-helix known as the "Trp-Trp-Ile" binding pocket. Sedimentation, crystallographic, and nuclear magnetic resonance studies confirmed that the protein had the desired trimeric structure with an unoccupied binding site. Spectroscopic and centrifugation studies demonstrated that the engineered protein had ligand binding characteristics similar to previously reported constructs. Unlike previous constructs which expose additional, shallow, non-conserved, and undesired binding pockets, only the single deep and conserved Trp-Trp-Ile pocket is exposed in the proteins of this study. This engineered version of gp41 protein will be potentially useful in research programs aimed at discovery of new drugs for therapy of HIV-infection in humans.
Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors
Woods, Kristina N.; Pfeffer, Jürgen; Dutta, Arpana; Klein-Seetharaman, Judith
2016-01-01
G protein-coupled receptors are a large family of membrane proteins activated by a variety of structurally diverse ligands making them highly adaptable signaling molecules. Despite recent advances in the structural biology of this protein family, the mechanism by which ligands induce allosteric changes in protein structure and dynamics for its signaling function remains a mystery. Here, we propose the use of terahertz spectroscopy combined with molecular dynamics simulation and protein evolutionary network modeling to address the mechanism of activation by directly probing the concerted fluctuations of retinal ligand and transmembrane helices in rhodopsin. This approach allows us to examine the role of conformational heterogeneity in the selection and stabilization of specific signaling pathways in the photo-activation of the receptor. We demonstrate that ligand-induced shifts in the conformational equilibrium prompt vibrational resonances in the protein structure that link the dynamics of conserved interactions with fluctuations of the active-state ligand. The connection of vibrational modes creates an allosteric association of coupled fluctuations that forms a coherent signaling pathway from the receptor ligand-binding pocket to the G-protein activation region. Our evolutionary analysis of rhodopsin-like GPCRs suggest that specific allosteric sites play a pivotal role in activating structural fluctuations that allosterically modulate functional signals. PMID:27849063
[NMR structure and dynamics of the chimeric protein SH3-F2].
Kutyshenko, V P; Gushchina, L V; Khristoforov, V S; Prokhorov, D A; Timchenko, M A; Kudrevatykh, Iu A; Fediukina, D V; Filimonov, V V
2010-01-01
For the further elucidation of structural and dynamic principles of protein self-organization and protein-ligand interactions the design of new chimeric protein SH3-F2 was made and genetically engineered construct was created. The SH3-F2 amino acid sequence consists of polyproline ligand mgAPPLPPYSA, GG linker and the sequence of spectrin SH3 domain circular permutant S19-P20s. Structural and dynamics properties of the protein were studied by high-resolution NMR. According to NMR data the tertiary structure of the chimeric protein SH3-F2 has the topology which is typical of SH3 domains in the complex with the ligand, forming polyproline type II helix, located in the conservative region of binding in the orientation II. The polyproline ligand closely adjoins with the protein globule and is stabilized by hydrophobic interactions. However the interaction of ligand and the part of globule relative to SH3 domain is not too large because the analysis of protein dynamic characteristics points to the low amplitude, high-frequency ligand tumbling in relation to the slow intramolecular motions of the main globule. The constructed chimera permits to carry out further structural and thermodynamic investigations of polyproline helix properties and its interaction with regulatory domains.
Cheng, Mu; Ziora, Zyta M.; Hansford, Karl A.; Blaskovich, Mark A.; Butler, Mark S.
2014-01-01
Dalbavancin, a semi-synthetic glycopeptide with enhanced antibiotic activity compared to vancomycin and teicoplanin, binds to the C-terminal lysyl-d-alanyl-d-alanine subunit of Lipid II, inhibiting peptidoglycan biosynthesis. In this study, micro-calorimetry and electrospray ionization (ESI)-MS have been used to investigate the relationship between oligomerisation of dalbavancin and binding of a Lipid II peptide mimic, diacetyl-Lys-d-Ala-d-Ala (Ac2-Kaa). Dalbavancin dimerised strongly in an anti-cooperative manner with ligand-binding, as was the case for ristocetin A, but not for vancomycin and teicoplanin. Dalbavancin and ristocetin A both adopt an ‘closed’ conformation upon ligand binding, suggesting anti-cooperative dimerisation with ligand-binding may be a general feature of dalbavancin/ristocetin A-like glycopeptides. Understanding these effects may provide insight into design of novel dalbavancin derivatives with cooperative ligand-binding and dimerisation characteristics that could enhance antibiotic activity. PMID:24608916
Structural analysis of the binding modes of minor groove ligands comprised of disubstituted benzenes
Hawkins, Cheryl A.; Watson, Charles; Yan, Yinfa; Gong, Bing; Wemmer, David E.
2001-01-01
Two-dimensional homonuclear NMR was used to characterize synthetic DNA minor groove-binding ligands in complexes with oligonucleotides containing three different A-T binding sites. The three ligands studied have a C2 axis of symmetry and have the same general structural motif of a central para-substituted benzene ring flanked by two meta-substituted rings, giving the molecules a crescent shape. As with other ligands of this shape, specificity seems to arise from a tight fit in the narrow minor groove of the preferred A-T-rich sequences. We found that these ligands slide between binding subsites, behavior attributed to the fact that all of the amide protons in the ligand backbone cannot hydrogen bond to the minor groove simultaneously. PMID:11160926
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sung-Eun; Bahta, Medhanit; Lountos, George T.
2011-07-01
The first X-ray crystal structure of the Y. pestis protein tyrosine phosphatase YopH in complex with an isothiazolidinone-based lead-fragment compound is reported. Isothiazolidinone (IZD) heterocycles can act as effective components of protein tyrosine phosphatase (PTP) inhibitors by simultaneously replicating the binding interactions of both a phosphoryl group and a highly conserved water molecule, as exemplified by the structures of several PTP1B–inhibitor complexes. In the first unambiguous demonstration of IZD interactions with a PTP other than PTP1B, it is shown by X-ray crystallography that the IZD motif binds within the catalytic site of the Yersinia pestis PTP YopH by similarly displacingmore » a highly conserved water molecule. It is also shown that IZD-based bidentate ligands can inhibit YopH in a nonpromiscuous fashion at low micromolar concentrations. Hence, the IZD moiety may represent a useful starting point for the development of YopH inhibitors.« less
Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands
NASA Astrophysics Data System (ADS)
Lu, Haiyun; Li, Hao; Banu Bte Sm Rashid, Shamima; Leow, Wee Kheng; Liou, Yih-Cherng
Studies of interactions between protein domains and ligands are important in many aspects such as cellular signaling. We present a knowledge-guided approach for docking protein domains and flexible ligands. The approach is applied to the WW domain, a small protein module mediating signaling complexes which have been implicated in diseases such as muscular dystrophy and Liddle’s syndrome. The first stage of the approach employs a substring search for two binding grooves of WW domains and possible binding motifs of peptide ligands based on known features. The second stage aligns the ligand’s peptide backbone to the two binding grooves using a quasi-Newton constrained optimization algorithm. The backbone-aligned ligands produced serve as good starting points to the third stage which uses any flexible docking algorithm to perform the docking. The experimental results demonstrate that the backbone alignment method in the second stage performs better than conventional rigid superposition given two binding constraints. It is also shown that using the backbone-aligned ligands as initial configurations improves the flexible docking in the third stage. The presented approach can also be applied to other protein domains that involve binding of flexible ligand to two or more binding sites.
Li, Yan; Li, Xiang; Dong, Zigang
2015-12-28
Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and the Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for the development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level.
Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P
2018-01-22
Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.
NASA Astrophysics Data System (ADS)
Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin
2017-08-01
The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.
Rational and Modular Design of Potent Ligands Targeting the RNA that Causes Myotonic Dystrophy 2
Lee, Melissa M.; Pushechnikov, Alexei; Disney, Matthew D.
2009-01-01
Most ligands targeting RNA are identified through screening a therapeutic target for binding members of a ligand library. A potential alternative way to construct RNA binders is through rational design using information about the RNA motifs ligands prefer to bind. Herein, we describe such an approach to design modularly assembled ligands targeting the RNA that causes myotonic dystrophy type 2 (DM2), a currently untreatable disease. A previous study identified that 6′-N-5-hexynoate kanamycin A (1) prefers to bind 2×2 nucleotide, pyrimidine-rich RNA internal loops. Multiple copies of such loops were found in the RNA hairpin that causes DM2. The 1 ligand was then modularly displayed on a peptoid scaffold with varied number and spacing to target several internal loops simultaneously. Modularly assembled ligands were tested for binding to a series of RNAs and for inhibiting the formation of the toxic DM2 RNA-muscleblind protein (MBNL-1) interaction. The most potent ligand displays three 1 modules, each separated by four spacing submonomers, and inhibits the formation of the RNA-protein complex with an IC50 of 25 nM. This ligand is higher affinity and more specific for binding DM2 RNA than MBNL-1. It binds the DM2 RNA at least 20-times more tightly than related RNAs and 15-fold more tightly than MBNL-1. A related control peptoid displaying 6′-N-5-hexynoate neamine (2) is >100-fold less potent at inhibiting the RNA-protein interaction and binds to DM2 RNA >125-fold more weakly. Uptake studies into a mouse myoblast cell line also show that the most potent ligand is cell permeable. PMID:19348464
Rudling, Axel; Orro, Adolfo; Carlsson, Jens
2018-02-26
Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.
The Study of the Successive Metal-ligand Binding Energies for Fe(+), Fe(-), V(+) and Co(+)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)
1994-01-01
The successive binding energies of CO and H2O to Fe(+), CO to Fe(-), and H2 to Co(+) and V(+) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.
The Study Of The Successive Metal-Ligand Binding Energies For Fe+, Fe-, V+ and Co+
NASA Technical Reports Server (NTRS)
Bauschicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The successive binding energies of CO and H2O to Fe(+), CO to Fe(-), and H2 to Co(+) and V(+) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.
Chu, Byron C. H.; Otten, Renee; Krewulak, Karla D.; Mulder, Frans A. A.; Vogel, Hans J.
2014-01-01
The periplasmic binding protein (PBP) FepB plays a key role in transporting the catecholate siderophore ferric enterobactin from the outer to the inner membrane in Gram-negative bacteria. The solution structures of the 34-kDa apo- and holo-FepB from Escherichia coli, solved by NMR, represent the first solution structures determined for the type III class of PBPs. Unlike type I and II PBPs, which undergo large “Venus flytrap” conformational changes upon ligand binding, both forms of FepB maintain similar overall folds; however, binding of the ligand is accompanied by significant loop movements. Reverse methyl cross-saturation experiments corroborated chemical shift perturbation results and uniquely defined the binding pocket for gallium enterobactin (GaEnt). NMR relaxation experiments indicated that a flexible loop (residues 225–250) adopted a more rigid and extended conformation upon ligand binding, which positioned residues for optimal interactions with the ligand and the cytoplasmic membrane ABC transporter (FepCD), respectively. In conclusion, this work highlights the pivotal role that structural dynamics plays in ligand binding and transporter interactions in type III PBPs. PMID:25173704
Ding, Xi-Qin; Pinon, Delia I; Furse, Kristina E; Lybrand, Terry P; Miller, Laurence J
2002-05-01
Insight into the molecular basis of cholecystokinin (CCK) binding to its receptor has come from receptor mutagenesis and photoaffinity labeling studies, with both contributing to the current hypothesis that the acidic Tyr-sulfate-27 residue within the peptide is situated adjacent to basic Arg(197) in the second loop of the receptor. Here, we refine our understanding of this region of interaction by examining a structure-activity series of these positions within both ligand and receptor and by performing three-dimensional molecular modeling of key pairs of modified ligand and receptor constructs. The important roles of Arg(197) and Tyr-sulfate-27 were supported by the marked negative impact on binding and biological response with their natural partner molecule when the receptor residue was replaced by acidic Asp or Glu and when the peptide residue was replaced by basic Arg, Lys, p-amino-Phe, p-guanidino-Phe, or p-methylamino-Phe. Complementary ligand-receptor charge-exchange experiments were unable to regain the lost function. This was supported by the molecular modeling, which demonstrated that the charge-reversed double mutants could not form a good interaction without extensive rearrangement of receptor conformation. The models further predicted that R197D and R197E mutations would lead to conformational changes in the extracellular domain, and this was experimentally supported by data showing that these mutations decreased peptide agonist and antagonist binding and increased nonpeptidyl antagonist binding. These receptor constructs also had increased susceptibility to trypsin degradation relative to the wild-type receptor. In contrast, the relatively conservative R197K mutation had modest negative impact on peptide agonist binding, again consistent with the modeling demonstration of loss of a series of stabilizing inter- and intramolecular bonds. The strong correlation between predicted and experimental results support the reported refinement in the three-dimensional structure of the CCK-occupied receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.
2016-01-01
Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.
Li, Wenhui; Xu, Jiachao; Kou, Xiaolong; Zhao, Rong; Zhou, Wei; Fang, Xiaohong
2018-05-01
Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.
Evaluation of water displacement energetics in protein binding sites with grid cell theory.
Gerogiokas, G; Southey, M W Y; Mazanetz, M P; Heifetz, A; Hefeitz, A; Bodkin, M; Law, R J; Michel, J
2015-04-07
Excess free energies, enthalpies and entropies of water in protein binding sites were computed via classical simulations and Grid Cell Theory (GCT) analyses for three pairs of congeneric ligands in complex with the proteins scytalone dehydratase, p38α MAP kinase and EGFR kinase respectively. Comparative analysis is of interest since the binding modes for each ligand pair differ in the displacement of one binding site water molecule, but significant variations in relative binding affinities are observed. Protocols that vary in their use of restraints on protein and ligand atoms were compared to determine the influence of protein-ligand flexibility on computed water structure and energetics, and to assess protocols for routine analyses of protein-ligand complexes. The GCT-derived binding affinities correctly reproduce experimental trends, but the magnitude of the predicted changes in binding affinities is exaggerated with respect to results from a previous Monte Carlo Free Energy Perturbation study. Breakdown of the GCT water free energies into enthalpic and entropic components indicates that enthalpy changes dominate the observed variations in energetics. In EGFR kinase GCT analyses revealed that replacement of a pyrimidine by a cyanopyridine perturbs water energetics up three hydration shells away from the ligand.
Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands
ERIC Educational Resources Information Center
King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.
2016-01-01
Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…
Mapping of ligand-binding cavities in proteins.
Andersson, C David; Chen, Brian Y; Linusson, Anna
2010-05-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of "orphan structures", selection of protein structures for docking studies in structure-based design, and identification of proteins for selectivity screens in drug design programs. 2009 Wiley-Liss, Inc.
Mapping of Ligand-Binding Cavities in Proteins
Andersson, C. David; Chen, Brian Y.; Linusson, Anna
2010-01-01
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterise and map the ligand-binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity and charge). This approach can provide valuable information on the similarities, and dissimilarities, of binding cavities due to mutations, between-species differences and flexibility upon ligand-binding. The presented results show that information on ligand-binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand-binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterisation and mapping of “orphan structures”, selection of protein structures for docking studies in structure-based design and identification of proteins for selectivity screens in drug design programs. PMID:20034113
Stoddard, Colby D.; Widmann, Jeremy; Trausch, Jeremiah J.; Marcano-Velázquez, Joan G.; Knight, Rob; Batey, Robert T.
2013-01-01
Direct sensing of intracellular metabolite concentrations by riboswitch RNAs provides an economical and rapid means to maintain metabolic homeostasis. Since many organisms employ the same class of riboswitch to control different genes or transcription units, it is likely that functional variation exists in riboswitches such that activity is tuned to meet cellular needs. Using a bioinformatic approach, we have identified a region of the purine riboswitch aptamer domain that displays conservation patterns linked to riboswitch activity. Aptamer domain compositions within this region can be divided into nine classes that display a spectrum of activities. Naturally occurring compositions in this region favor rapid association rate constants and slow dissociation rate constants for ligand binding. Using X-ray crystallography and chemical probing, we demonstrate that both the free and bound states are influenced by the composition of this region and that modest sequence alterations have a dramatic impact on activity. The introduction of non-natural compositions result in the inability to regulate gene expression in vivo, suggesting that aptamer domain activity is highly plastic and thus readily tunable to meet cellular needs. PMID:23485418
Stegemann, Björn; Klebe, Gerhard
2012-02-01
Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Copyright © 2011 Wiley Periodicals, Inc.
Gopal, J Vinay; Kannabiran, K
2013-12-01
The aim of the study was to identify the interactions between insect repellent compounds and target olfactory proteins. Four compounds, camphor (C10H16O), carvacrol (C10H14O), oleic acid (C18H34O2) and firmotox (C22H28O5) were chosen as ligands. Seven olfactory proteins of insects with PDB IDs: 3K1E, 1QWV, 1TUJ, 1OOF, 2ERB, 3R1O and OBP1 were chosen for docking analysis. Patch dock was used and pymol for visualizing the structures. The interactions of these ligands with few odorant binding proteins showed binding energies. The ligand camphor had showed a binding energy of -136 kcal/mol with OBP1 protein. The ligand carvacrol interacted with 1QWV and 1TUJ proteins with a least binding energy of -117.45 kcal/mol and -21.78 kcal/mol respectively. The ligand oleic acid interacted with 1OOF, 2ERB, 3R1O and OBP1 with least binding energies. Ligand firmotox interacted with OBP1 and showed least binding energies. Three ligands (camphor, oleic acid and firmotox) had one, two, three interactions with a single protein OBP1 of Nilaparvatha lugens (Rice pest). From this in silico study we identified the interaction patterns for insect repellent compounds with the target insect odarant proteins. The results of our study revealed that the chosen ligands showed hydrogen bond interactions with the target olfactory receptor proteins.
Bahira, Meriem; McCauley, Micah J; Almaqwashi, Ali A; Lincoln, Per; Westerlund, Fredrik; Rouzina, Ioulia; Williams, Mark C
2015-10-15
Several multi-component DNA intercalating small molecules have been designed around ruthenium-based intercalating monomers to optimize DNA binding properties for therapeutic use. Here we probe the DNA binding ligand [μ-C4(cpdppz)2(phen)4Ru2](4+), which consists of two Ru(phen)2dppz(2+) moieties joined by a flexible linker. To quantify ligand binding, double-stranded DNA is stretched with optical tweezers and exposed to ligand under constant applied force. In contrast to other bis-intercalators, we find that ligand association is described by a two-step process, which consists of fast bimolecular intercalation of the first dppz moiety followed by ∼10-fold slower intercalation of the second dppz moiety. The second step is rate-limited by the requirement for a DNA-ligand conformational change that allows the flexible linker to pass through the DNA duplex. Based on our measured force-dependent binding rates and ligand-induced DNA elongation measurements, we are able to map out the energy landscape and structural dynamics for both ligand binding steps. In addition, we find that at zero force the overall binding process involves fast association (∼10 s), slow dissociation (∼300 s), and very high affinity (Kd ∼10 nM). The methodology developed in this work will be useful for studying the mechanism of DNA binding by other multi-step intercalating ligands and proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri
2017-05-01
Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selamat, Norhidayah; Heng, Lee Yook; Hassan, Nurul Izzaty
2015-09-25
The tetradentate ligand with four donor atoms OONN was synthesized. Bis(phenoxy)bipyridine ligand was prepared by Suzuki coupling reaction between 6,6’-dibromo-2,2’-bipyridyl and 2-hydroxyphenylboronic acid with presence of palladium (II) acetate. Bis(phenoxy)bipyridine ligand was also synthesized by demethylating of 6,6’-bis(2-methoxyphenyl)-2,2’-bipyridyl ligand through solvent free reaction using pyridine hydrocloride. The formation of both phenoxy and methoxy ligands was confirmed by {sup 1}H, 2D cosy and {sup 13}C NMR spectroscopy, ESI-MS spectrometry, FTIR spectroscopy. The purity of the ligand was confirmed by melting point. Binding studies of small molecules with DNA are useful to understand the reaction mechanism and to provide guidance for themore » application and design of new and more efficient drugs targeted to DNA. In this study, the binding interaction between the synthesized ligand with calf thymus-DNA (ct-DNA) has been investigated by UV/Vis DNA titration study. From the UV/Vis DNA study, it shows that bis(phenoxy)bipyridine ligand bind with ct-DNA via outside binding with binding contant K{sub b} = 1.19 × 10{sup 3} ± 0.08 M{sup −1}.« less
Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei
2017-09-01
Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.
Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.
Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng
2009-09-30
Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the prediction of protein-ligand binding free energy.
Grade, Carla Vermeulen Carvalho; Mantovani, Carolina Stefano; Fontoura, Marina Alves; Yusuf, Faisal; Brand-Saberi, Beate; Alvares, Lúcia Elvira
2017-10-01
Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.
Sequence Alignment to Predict Across Species Susceptibility ...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev
Rapid and accurate prediction and scoring of water molecules in protein binding sites.
Ross, Gregory A; Morris, Garrett M; Biggin, Philip C
2012-01-01
Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.
C-type lectins: their network and roles in pathogen recognition and immunity.
Mayer, Sabine; Raulf, Marie-Kristin; Lepenies, Bernd
2017-02-01
C-type lectins (CTLs) represent the most complex family of animal/human lectins that comprises 17 different groups. During evolution, CTLs have developed by diversification to cover a broad range of glycan ligands. However, ligand binding by CTLs is not necessarily restricted to glycans as some CTLs also bind to proteins, lipids, inorganic molecules, or ice crystals. CTLs share a common fold that harbors a Ca 2+ for contact to the sugar and about 18 invariant residues in a phylogenetically conserved pattern. In vertebrates, CTLs have numerous functions, including serum glycoprotein homeostasis, pathogen sensing, and the initiation of immune responses. Myeloid CTLs in innate immunity are mainly expressed by antigen-presenting cells and play a prominent role in the recognition of a variety of pathogens such as fungi, bacteria, viruses, and parasites. However, myeloid CTLs such as the macrophage inducible CTL (Mincle) or Clec-9a may also bind to self-antigens and thus contribute to immune homeostasis. While some CTLs induce pro-inflammatory responses and thereby lead to activation of adaptive immune responses, other CTLs act as inhibitory receptors and dampen cellular functions. Since CTLs are key players in pathogen recognition and innate immunity, targeting CTLs may be a promising strategy for cell-specific delivery of drugs or vaccine antigens and to modulate immune responses.
Functions of galectins as 'self/non-self'-recognition and effector factors.
Vasta, Gerardo R; Feng, Chiguang; González-Montalbán, Nuria; Mancini, Justin; Yang, Lishi; Abernathy, Kelsey; Frost, Graeme; Palm, Cheyenne
2017-07-31
Carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Proton movement and coupling in the POT family of peptide transporters
Parker, Joanne L.; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M. J.; Caffrey, Martin; Voth, Gregory A.
2017-01-01
POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. PMID:29180426
Proton movement and coupling in the POT family of peptide transporters.
Parker, Joanne L; Li, Chenghan; Brinth, Allete; Wang, Zhi; Vogeley, Lutz; Solcan, Nicolae; Ledderboge-Vucinic, Gregory; Swanson, Jessica M J; Caffrey, Martin; Voth, Gregory A; Newstead, Simon
2017-12-12
POT transporters represent an evolutionarily well-conserved family of proton-coupled transport systems in biology. An unusual feature of the family is their ability to couple the transport of chemically diverse ligands to an inwardly directed proton electrochemical gradient. For example, in mammals, fungi, and bacteria they are predominantly peptide transporters, whereas in plants the family has diverged to recognize nitrate, plant defense compounds, and hormones. Although recent structural and biochemical studies have identified conserved sites of proton binding, the mechanism through which transport is coupled to proton movement remains enigmatic. Here we show that different POT transporters operate through distinct proton-coupled mechanisms through changes in the extracellular gate. A high-resolution crystal structure reveals the presence of ordered water molecules within the peptide binding site. Multiscale molecular dynamics simulations confirm proton transport occurs through these waters via Grotthuss shuttling and reveal that proton binding to the extracellular side of the transporter facilitates a reorientation from an inward- to outward-facing state. Together these results demonstrate that within the POT family multiple mechanisms of proton coupling have likely evolved in conjunction with variation of the extracellular gate. Copyright © 2017 the Author(s). Published by PNAS.
Konidala, Praveen; Niemeyer, Bernd
2007-07-01
The mitogenic pea (Pisum sativum) lectin is a legume protein of non-immunoglobulin nature capable of specific recognition of glucose derivatives without altering its structure. Molecular dynamics simulations were performed in a realistic environment to investigate the structure and interaction properties of pea lectin with various concentrations of n-octyl-beta-d-glucopyranoside (OG) detergent monomers distributed inside explicit solvent cell. In addition, the diffusion coefficients of the ligands (OG, Ca2+, Mn2+, and Cl-) and the water molecules were also reported. The structural flexibility of the lectin was conserved in all simulations. The self-assembly of OG monomers into a small micelle at the hydrophobic site of the lectin was noticed in the simulation with 20 OG monomers. The interaction energy analysis concludes that the lectin was appropriately termed an adaptive structure. One or rarely two binding sites were observed at an instant in each simulation that were electrostatically favoured for the OG to interact with the surface amino acid residues. Enhanced binding of OG to the pea lectin was quantified in the system containing only Ca2+ divalent ions. Interestingly, no binding was observed in the simulation without divalent ions. Furthermore, the lectin-ligand complex was stabilized by multiple hydrogen bonds and at least one water bridge. Finally, the work was also in accordance with the published work elsewhere that the simulations performed with different initial conditions and using higher nonbonded cutoffs for the van der Waals and electrostatic interactions provide more accurate information and clues than the single large simulation of the biomolecular system of interest.
Clausen, Rasmus P; Mohr, Andreas Ø; Riise, Erik; Jensen, Anders A; Gill, Avinash; Madden, Dean R; Kastrup, Jette S; Skottrup, Peter D
2016-11-01
A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4, the likely binding epitope for FabL9 was predicted. This study demonstrates a simple approach for development of antibody fragments towards specific sub-domains of a large ligand-gated ion channel, and this method could be utilized for all multi-domain surface receptors where antibody domain-selectivity may be desirable. Furthermore, we present for the first time a GluA4 subtype-specific murine Fab fragment targeting the LBD of the receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
Yao, Chenxi; Wang, Tao; Zhang, Buqing; He, Dacheng; Na, Na; Ouyang, Jin
2015-11-01
The interaction between bioactive small molecule ligands and proteins is one of the important research areas in proteomics. Herein, a simple and rapid method is established to screen small ligands that bind to proteins. We designed an agarose slide to immobilize different proteins. The protein microarrays were allowed to interact with different small ligands, and after washing, the microarrays were screened by desorption electrospray ionization mass spectrometry (DESI MS). This method can be applied to screen specific protein binding ligands and was shown for seven proteins and 34 known ligands for these proteins. In addition, a high-throughput screening was achieved, with the analysis requiring approximately 4 s for one sample spot. We then applied this method to determine the binding between the important protein matrix metalloproteinase-9 (MMP-9) and 88 small compounds. The molecular docking results confirmed the MS results, demonstrating that this method is suitable for the rapid and accurate screening of ligands binding to proteins. Graphical Abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedynyshyn, J.P.
The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO,more » DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.« less
Heptameric Targeting Ligands against EGFR and HER2 with High Stability and Avidity
Kim, Dongwook; Yan, Yitang; Valencia, C. Alexander; Liu, Rihe
2012-01-01
Multivalency of targeting ligands provides significantly increased binding strength towards their molecular targets. Here, we report the development of a novel heptameric targeting system, with general applications, constructed by fusing a target-binding domain with the heptamerization domain of the Archaeal RNA binding protein Sm1 through a flexible hinge peptide. The previously reported affibody molecules against EGFR and HER2, ZEGFR and ZHER2, were used as target binding moieties. The fusion molecules were highly expressed in E. coli as soluble proteins and efficiently self-assembled into multimeric targeting ligands with the heptamer as the predominant form. We demonstrated that the heptameric molecules were resistant to protease-mediated digestion or heat- and SDS-induced denaturation. Surface plasmon resonance (SPR) analysis showed that both heptameric ZEGFR and ZHER2 ligands have a significantly enhanced binding strength to their target receptors with a nearly 100 to 1000 fold increase relative to the monomeric ligands. Cellular binding assays showed that heptameric ligands maintained their target-binding specificities similar to the monomeric forms towards their respective receptor. The non-toxic property of each heptameric ligand was demonstrated by the cell proliferation assay. In general,, the heptamerization strategy we describe here could be applied to the facile and efficient engineering of other protein domain- or short peptide-based affinity molecules to acquire significantly improved target-binding strengths with potential applications in the targeted delivery of various imaging or therapeutic agents.. PMID:22912791
Gold, Nicola D; Jackson, Richard M
2006-02-03
The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.
Ligand Binding to Macromolecules: Allosteric and Sequential Models of Cooperativity.
ERIC Educational Resources Information Center
Hess, V. L.; Szabo, Attila
1979-01-01
A simple model is described for the binding of ligands to macromolecules. The model is applied to the cooperative binding by hemoglobin and aspartate transcarbamylase. The sequential and allosteric models of cooperative binding are considered. (BB)
Patching, Simon G
2014-01-01
Surface plasmon resonance (SPR) spectroscopy is a rapidly developing technique for the study of ligand binding interactions with membrane proteins, which are the major molecular targets for validated drugs and for current and foreseeable drug discovery. SPR is label-free and capable of measuring real-time quantitative binding affinities and kinetics for membrane proteins interacting with ligand molecules using relatively small quantities of materials and has potential to be medium-throughput. The conventional SPR technique requires one binding component to be immobilised on a sensor chip whilst the other binding component in solution is flowed over the sensor surface; a binding interaction is detected using an optical method that measures small changes in refractive index at the sensor surface. This review first describes the basic SPR experiment and the challenges that have to be considered for performing SPR experiments that measure membrane protein-ligand binding interactions, most importantly having the membrane protein in a lipid or detergent environment that retains its native structure and activity. It then describes a wide-range of membrane protein systems for which ligand binding interactions have been characterised using SPR, including the major drug targets G protein-coupled receptors, and how challenges have been overcome for achieving this. Finally it describes some recent advances in SPR-based technology and future potential of the technique to screen ligand binding in the discovery of drugs. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.
The rhizotoxicity of metal cations is related to their strength of binding to hard ligands.
Kopittke, Peter M; Menzies, Neal W; Wang, Peng; McKenna, Brigid A; Wehr, J Bernhard; Lombi, Enzo; Kinraide, Thomas B; Blamey, F Pax C
2014-02-01
Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al(3+) and Hg(2+), which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca(2+), Na(+), Mn(2+), and Zn(2+) , which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl(+), Ag(+), Cs(+), and Cu(2+)) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms. © 2013 SETAC.
Ligand recognition by RAR and RXR receptors: binding and selectivity.
Sussman, Fredy; de Lera, Angel R
2005-10-06
Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.
Dynamics and intramolecular ligand binding of DtxR studied by MD simulations and NMR spectroscopy
NASA Astrophysics Data System (ADS)
Yi, Myunggi; Bhattacharya, Nilakshee; Zhou, Huan-Xiang
2005-11-01
Diphtheria toxin repressor (DtxR) regulates the expression of the diphtheria toxin gene through intramolecular ligand binding (Wylie et al., Biochemistry 2005, 44:40-51). Protein dynamics is essential to the binding process of the Pro-rich (Pr) ligand to the C-terminal SH3 domain. We present MD and NMR results on the dynamics and ligand interactions of a Pr-SH3 construct of DtxR. NMR relaxation data (T1, T2, and NOE) showed that the Pr ligand is very flexible, suggesting that it undergoes binding/unbinding transitions. A 50-ns MD trajectory of the protein was used to calculate T1, T2, and NOE, reproducing the NMR results for the SH3 domain but not for the Pr segment. During the MD simulation, the ligand stayed bound to the SH3 domain; thus the simulation represented the bound state. The NMR data for the Pr-segment could be explained by assuming that they represented the average behavior of a fast binding/unbinding exchange. Though unbinding was not observed in the MD simulation, the simulation did show large fluctuations of a loop which forms part of the wall of the binding pocket. The fluctuations led to opening up of the binding pocket, thus weakening the interaction with the Pr segment and perhaps ultimately leading to ligand unbinding.
Articles including thin film monolayers and multilayers
Li, DeQuan; Swanson, Basil I.
1995-01-01
Articles of manufacture including: (a) a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, (b) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, and a metal species attached to the multidentate ligand, (c) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, and a multifunctional organic ligand attached to the metal species, and (d) a base substrate having an oxide surface layer, a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate, a metal species attached to the multidentate ligand, a multifunctional organic ligand attached to the metal species, and a second metal species attached to the multifunctional organic ligand, are provided, such articles useful in detecting the presence of a selected target species, as nonliear optical materials, or as scavengers for selected target species.
Conformational selection in protein binding and function
Weikl, Thomas R; Paul, Fabian
2014-01-01
Protein binding and function often involves conformational changes. Advanced nuclear magnetic resonance (NMR) experiments indicate that these conformational changes can occur in the absence of ligand molecules (or with bound ligands), and that the ligands may “select” protein conformations for binding (or unbinding). In this review, we argue that this conformational selection requires transition times for ligand binding and unbinding that are small compared to the dwell times of proteins in different conformations, which is plausible for small ligand molecules. Such a separation of timescales leads to a decoupling and temporal ordering of binding/unbinding events and conformational changes. We propose that conformational-selection and induced-change processes (such as induced fit) are two sides of the same coin, because the temporal ordering is reversed in binding and unbinding direction. Conformational-selection processes can be characterized by a conformational excitation that occurs prior to a binding or unbinding event, while induced-change processes exhibit a characteristic conformational relaxation that occurs after a binding or unbinding event. We discuss how the ordering of events can be determined from relaxation rates and effective on- and off-rates determined in mixing experiments, and from the conformational exchange rates measured in advanced NMR or single-molecule fluorescence resonance energy transfer experiments. For larger ligand molecules such as peptides, conformational changes and binding events can be intricately coupled and exhibit aspects of conformational-selection and induced-change processes in both binding and unbinding direction. PMID:25155241
Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel
Sauguet, Ludovic; Howard, Rebecca J.; Malherbe, Laurie; Lee, Ui S.; Corringer, Pierre-Jean; Harris, R. Adron; Delarue, Marc
2014-01-01
Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experiments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentrations of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol. PMID:23591864
Origins of Allostery and Evolvability in Proteins: A Case Study.
Raman, Arjun S; White, K Ian; Ranganathan, Rama
2016-07-14
Proteins display the capacity for adaptation to new functions, a property critical for evolvability. But what structural principles underlie the capacity for adaptation? Here, we show that adaptation to a physiologically distinct class of ligand specificity in a PSD95, DLG1, ZO-1 (PDZ) domain preferentially occurs through class-bridging intermediate mutations located distant from the ligand-binding site. These mutations provide a functional link between ligand classes and demonstrate the principle of "conditional neutrality" in mediating evolutionary adaptation. Structures show that class-bridging mutations work allosterically to open up conformational plasticity at the active site, permitting novel functions while retaining existing function. More generally, the class-bridging phenotype arises from mutations in an evolutionarily conserved network of coevolving amino acids in the PDZ family (the sector) that connects the active site to distant surface sites. These findings introduce the concept that allostery in proteins could have its origins not in protein function but in the capacity to adapt. Copyright © 2016 Elsevier Inc. All rights reserved.
Affinity modulation of small-molecule ligands by borrowing endogenous protein surfaces
Briesewitz, Roger; Ray, Gregory T.; Wandless, Thomas J.; Crabtree, Gerald R.
1999-01-01
A general strategy is described for improving the binding properties of small-molecule ligands to protein targets. A bifunctional molecule is created by chemically linking a ligand of interest to another small molecule that binds tightly to a second protein. When the ligand of interest is presented to the target protein by the second protein, additional protein–protein interactions outside of the ligand-binding sites serve either to increase or decrease the affinity of the binding event. We have applied this approach to an intractable target, the SH2 domain, and demonstrate a 3-fold enhancement over the natural peptide. This approach provides a way to modulate the potency and specificity of biologically active compounds. PMID:10051576
Peptide ligands specific to the oxidized form of escherichia coli thioredoxin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholle, M. D.; Banach, B. S.; Hamdan, S. M.
Thioredoxin (Trx) is a highly conserved redox protein involved in several essential cellular processes. In this study, our goal was to isolate peptide ligands to Escherichia coli Trx that mimic protein-protein interactions, specifically the T7 polymerase-Trx interaction. To do this, we subjected Trx to affinity selection against a panel of linear and cysteine-constrained peptides using M13 phage display. A novel cyclized conserved peptide sequence, with a motif of C(D/N/S/T/G)D(S/T)-hydrophobic-C-X-hydrophobic-P, was isolated to Trx. These peptides bound specifically to the E. coli Trx when compared to the human and spirulina homologs. An alanine substitution of the active site cysteines (CGPC) resultedmore » in a significant loss of peptide binding affinity to the Cys-32 mutant. The peptides were also characterized in the context of Trx's role as a processivity factor of the T7 DNA polymerase (gp5). As the interaction between gp5 and Trx normally takes place under reducing conditions, which might interfere with the conformation of the disulfide-bridged peptides, we made use of a 22 residue deletion mutant of gp5 in the thioredoxin binding domain (gp5{Delta}22) that bypassed the requirements of reducing conditions to interact with Trx. A competition study revealed that the peptide selectively inhibits the interaction of gp5{Delta}22 with Trx, under oxidizing conditions, with an IC50 of {approx} 10 {micro}M.« less
Wu, Xue; Xiu, Zhilong; Li, Guohui; Luo, Bing-Hao
2013-01-01
The Asp of the RGD motif of the ligand coordinates with the β I domain metal ion dependent adhesion site (MIDAS) divalent cation, emphasizing the importance of the MIDAS in ligand binding. There appears to be two distinct groups of integrins that differ in their ligand binding affinity and adhesion ability. These differences may be due to a specific residue associated with the MIDAS, particularly the β3 residue Ala252 and corresponding Ala in the β1 integrin compared to the analogous Asp residue in the β2 and β7 integrins. Interestingly, mutations in the adjacent to MIDAS (ADMIDAS) of integrins α4β7 and αLβ2 increased the binding and adhesion abilities compared to the wild-type, while the same mutations in the α2β1, α5β1, αVβ3, and αIIbβ3 integrins demonstrated decreased ligand binding and adhesion. We introduced a mutation in the αIIbβ3 to convert this MIDAS associated Ala252 to Asp. By combination of this mutant with mutations of one or two ADMIDAS residues, we studied the effects of this residue on ligand binding and adhesion. Then, we performed molecular dynamics simulations on the wild-type and mutant αIIbβ3 integrin β I domains, and investigated the dynamics of metal ion binding sites in different integrin-RGD complexes. We found that the tendency of calculated binding free energies was in excellent agreement with the experimental results, suggesting that the variation in this MIDAS associated residue accounts for the differences in ligand binding and adhesion among different integrins, and it accounts for the conflicting results of ADMIDAS mutations within different integrins. This study sheds more light on the role of the MIDAS associated residue pertaining to ligand binding and adhesion and suggests that this residue may play a pivotal role in integrin-mediated cell rolling and firm adhesion. PMID:24116162
Seth, P; Ganapathy, M E; Conway, S J; Bridges, C D; Smith, S B; Casellas, P; Ganapathy, V
2001-07-25
The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.
Free-energy relationships in ion channels activated by voltage and ligand
Chowdhury, Sandipan
2013-01-01
Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866
Morando, Maria Agnese; Saladino, Giorgio; D’Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi
2016-01-01
Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed. PMID:27087366
NASA Astrophysics Data System (ADS)
Morando, Maria Agnese; Saladino, Giorgio; D'Amelio, Nicola; Pucheta-Martinez, Encarna; Lovera, Silvia; Lelli, Moreno; López-Méndez, Blanca; Marenchino, Marco; Campos-Olivas, Ramón; Gervasio, Francesco Luigi
2016-04-01
Understanding the conformational changes associated with the binding of small ligands to their biological targets is a fascinating and meaningful question in chemistry, biology and drug discovery. One of the most studied and important is the so-called “DFG-flip” of tyrosine kinases. The conserved three amino-acid DFG motif undergoes an “in to out” movement resulting in a particular inactive conformation to which “type II” kinase inhibitors, such as the anti-cancer drug Imatinib, bind. Despite many studies, the details of this prototypical conformational change are still debated. Here we combine various NMR experiments and surface plasmon resonance with enhanced sampling molecular dynamics simulations to shed light into the conformational dynamics associated with the binding of Imatinib to the proto-oncogene c-Src. We find that both conformational selection and induced fit play a role in the binding mechanism, reconciling opposing views held in the literature. Moreover, an external binding pose and local unfolding (cracking) of the aG helix are observed.
Lin, Ying-Ting
2013-04-30
A tandem technique of hard equipment is often used for the chemical analysis of a single cell to first isolate and then detect the wanted identities. The first part is the separation of wanted chemicals from the bulk of a cell; the second part is the actual detection of the important identities. To identify the key structural modifications around ligand binding, the present study aims to develop a counterpart of tandem technique for cheminformatics. A statistical regression and its outliers act as a computational technique for separation. A PPARγ (peroxisome proliferator-activated receptor gamma) agonist cellular system was subjected to such an investigation. Results show that this tandem regression-outlier analysis, or the prioritization of the context equations tagged with features of the outliers, is an effective regression technique of cheminformatics to detect key structural modifications, as well as their tendency of impact to ligand binding. The key structural modifications around ligand binding are effectively extracted or characterized out of cellular reactions. This is because molecular binding is the paramount factor in such ligand cellular system and key structural modifications around ligand binding are expected to create outliers. Therefore, such outliers can be captured by this tandem regression-outlier analysis.
Armen, Roger S; Schiller, Stefan M; Brooks, Charles L
2010-06-01
Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-alpha-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable.
He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.
2011-01-01
Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and a R122L/S124A mutant in which electrostatic interactions viewed as essential to fatty acid binding were removed. For wild-type LFABP the results compared favorably with previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, 1H/15N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535
PatchSurfers: Two methods for local molecular property-based binding ligand prediction.
Shin, Woong-Hee; Bures, Mark Gregory; Kihara, Daisuke
2016-01-15
Protein function prediction is an active area of research in computational biology. Function prediction can help biologists make hypotheses for characterization of genes and help interpret biological assays, and thus is a productive area for collaboration between experimental and computational biologists. Among various function prediction methods, predicting binding ligand molecules for a target protein is an important class because ligand binding events for a protein are usually closely intertwined with the proteins' biological function, and also because predicted binding ligands can often be directly tested by biochemical assays. Binding ligand prediction methods can be classified into two types: those which are based on protein-protein (or pocket-pocket) comparison, and those that compare a target pocket directly to ligands. Recently, our group proposed two computational binding ligand prediction methods, Patch-Surfer, which is a pocket-pocket comparison method, and PL-PatchSurfer, which compares a pocket to ligand molecules. The two programs apply surface patch-based descriptions to calculate similarity or complementarity between molecules. A surface patch is characterized by physicochemical properties such as shape, hydrophobicity, and electrostatic potentials. These properties on the surface are represented using three-dimensional Zernike descriptors (3DZD), which are based on a series expansion of a 3 dimensional function. Utilizing 3DZD for describing the physicochemical properties has two main advantages: (1) rotational invariance and (2) fast comparison. Here, we introduce Patch-Surfer and PL-PatchSurfer with an emphasis on PL-PatchSurfer, which is more recently developed. Illustrative examples of PL-PatchSurfer performance on binding ligand prediction as well as virtual drug screening are also provided. Copyright © 2015 Elsevier Inc. All rights reserved.
Kolafa, J; Perram, J W; Bywater, R P
2000-01-01
We have studied protein-ligand interactions by molecular dynamics simulations using software designed to exploit parallel computing architectures. The trajectories were analyzed to extract the essential motions and to estimate the individual contributions of fragments of the ligand to overall binding enthalpy. Two forms of the bound ligand are compared, one with the termini blocked by covalent derivatization, and one in the underivatized, zwitterionic form. The ends of the peptide tend to bind more loosely in the capped form. We can observe significant motions in the bound ligand and distinguish between motions of the peptide backbone and of the side chains. This could be useful in designing ligands, which fit optimally to the binding protein. We show that it is possible to determine the different contributions of each residue in a peptide to the enthalpy of binding. Proline is a major net contributor to binding enthalpy, in keeping with the known propensity for this family of proteins to bind proline-rich peptides. PMID:10919999
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Maitre, Philippe; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The successive binding energies of CO and H2O to Fe(sup +), CO to Fe(sup -), and H2 to Co(sup +) and V(sup +) are presented. Overall the computed results are in good agreement with experiment. The trends in binding energies are analyzed in terms of metal to ligand donation, ligand to metal donation, ligand-ligand repulsion, and changes in the metal atom, such as hybridization, promotion, and spin multiplicity. The geometry and vibrational frequencies are also shown to be directly affected by these effects.
NASA Astrophysics Data System (ADS)
Böhm, Hans-Joachim
1998-07-01
A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.
Raman, E. Prabhu; MacKerell, Alexander D.
2015-01-01
The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202
Simulation analysis of formycin 5?-monophosphate analog substrates in the ricin A-chain active site
NASA Astrophysics Data System (ADS)
Olson, Mark A.; Scovill, John P.; Hack, Dallas C.
1995-06-01
Ricin is an RNA N-glycosidase that hydrolyzes a single adenine base from a conserved loop of 28S ribosomal RNA, thus inactivating protein synthesis. Molecular-dynamics simulation methods are used to analyze the structural interactions and thermodynamics that govern the binding of formycin 5'-monophosphate (FMP) and several of its analogs to the active site of ricin A-chain. Simulations are carried out initiated from the X-ray crystal structure of the ricin-FMP complex with the ligand modeled as a dianion, monoanion and zwitterion. Relative changes in binding free energies are estimated for FMP analogs constructed from amino substitutions at the 2- and 2'-positions, and from hydroxyl substitution at the 2'-position.
Simulation analysis of formycin 5'-monophosphate analog substrates in the ricin A-chain active site.
Olson, M A; Scovill, J P; Hack, D C
1995-06-01
Ricin is an RNA N-glycosidase that hydrolyzes a single adenine base from a conserved loop of 28S ribosomal RNA, thus inactivating protein synthesis. Molecular-dynamics simulation methods are used to analyze the structural interactions and thermodynamics that govern the binding of formycin 5'-monophosphate (FMP) and several of its analogs to the active site of ricin A-chain. Simulations are carried out initiated from the X-ray crystal structure of the ricin-FMP complex with the ligand modeled as a dianion, monoanion and zwitterion. Relative changes in binding free energies are estimated for FMP analogs constructed from amino substitutions at the 2- and 2'-positions, and from hydroxyl substitution at the 2'-position.
Is the isolated ligand binding domain a good model of the domain in the native receptor?
Deming, Dustin; Cheng, Qing; Jayaraman, Vasanthi
2003-05-16
Numerous studies have used the atomic level structure of the isolated ligand binding domain of the glutamate receptor to elucidate the agonist-induced activation and desensitization processes in this group of proteins. However, no study has demonstrated the structural equivalence of the isolated ligand binding fragments and the protein in the native receptor. In this report, using visible absorption spectroscopy we show that the electronic environment of the antagonist 6-cyano-7-nitro-2,3-dihydroxyquinoxaline is identical for the isolated protein and the native glutamate receptors expressed in cells. Our results hence establish that the local structure of the ligand binding site is the same in the two proteins and validate the detailed structure-function relationships that have been developed based on a comparison of the structure of the isolated ligand binding domain and electrophysiological consequences in the native receptor.
Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions
Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; West, Graham M; Griffin, Patrick R
2011-01-01
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery. PMID:21329427
Exploiting protein flexibility to predict the location of allosteric sites
2012-01-01
Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors. PMID:23095452
Exploiting protein flexibility to predict the location of allosteric sites.
Panjkovich, Alejandro; Daura, Xavier
2012-10-25
Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors.
Ligand-protein docking using a quantum stochastic tunneling optimization method.
Mancera, Ricardo L; Källblad, Per; Todorov, Nikolay P
2004-04-30
A novel hybrid optimization method called quantum stochastic tunneling has been recently introduced. Here, we report its implementation within a new docking program called EasyDock and a validation with the CCDC/Astex data set of ligand-protein complexes using the PLP score to represent the ligand-protein potential energy surface and ScreenScore to score the ligand-protein binding energies. When taking the top energy-ranked ligand binding mode pose, we were able to predict the correct crystallographic ligand binding mode in up to 75% of the cases. By using this novel optimization method run times for typical docking simulations are significantly shortened. Copyright 2004 Wiley Periodicals, Inc. J Comput Chem 25: 858-864, 2004
Litfin, Thomas; Zhou, Yaoqi; Yang, Yuedong
2017-04-15
The high cost of drug discovery motivates the development of accurate virtual screening tools. Binding-homology, which takes advantage of known protein-ligand binding pairs, has emerged as a powerful discrimination technique. In order to exploit all available binding data, modelled structures of ligand-binding sequences may be used to create an expanded structural binding template library. SPOT-Ligand 2 has demonstrated significantly improved screening performance over its previous version by expanding the template library 15 times over the previous one. It also performed better than or similar to other binding-homology approaches on the DUD and DUD-E benchmarks. The server is available online at http://sparks-lab.org . yaoqi.zhou@griffith.edu.au or yuedong.yang@griffith.edu.au. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Harris, Edward N; Weigel, Paul H
2008-08-01
The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.
Harris, Edward N.; Weigel, Paul H.
2008-01-01
The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341–17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. 125I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE. PMID:18499864
West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.
2014-01-01
Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamiaux, C.; Stanley, D.; Greenwood, D.R.
Takeout (To) proteins are found exclusively in insects and have been proposed to have important roles in various aspects of their physiology and behavior. Limited sequence similarity with juvenile hormone-binding proteins (JHBPs), which specifically bind and transport juvenile hormones in Lepidoptera, suggested a role for To proteins in binding hydrophobic ligands. We present the first crystal structure of a To protein, EpTo1 from the light brown apple moth Epiphyas postvittana, solved in-house by the single-wavelength anomalous diffraction technique using sulfur anomalous dispersion, and refined to 1.3 {angstrom} resolution. EpTo1 adopts the unusual {alpha}/{beta}-wrap fold, seen only for JHBP and severalmore » mammalian lipid carrier proteins, a scaffold tailored for the binding and/or transport of hydrophobic ligands. EpTo1 has a 45 {angstrom} long, purely hydrophobic, internal tunnel that extends for the full length of the protein and accommodates a bound ligand. The latter was shown by mass spectrometry to be ubiquinone-8 and is probably derived from Escherichia coli. The structure provides the first direct experimental evidence that To proteins are ligand carriers; gives insights into the nature of endogenous ligand(s) of EpTo1; shows, by comparison with JHBP, a basis for different ligand specificities; and suggests a mechanism for the binding/release of ligands.« less
Winiewska, Maria; Bugajska, Ewa
2017-01-01
The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit. PMID:28273138
Dissecting Orthosteric Contacts for a Reverse-Fragment-Based Ligand Design.
Chandramohan, Arun; Tulsian, Nikhil K; Anand, Ganesh S
2017-08-01
Orthosteric sites on proteins are formed typically from noncontiguous interacting sites in three-dimensional space where the composite binding interaction of a biological ligand is mediated by multiple synergistic interactions of its constituent functional groups. Through these multiple interactions, ligands stabilize both the ligand binding site and the local secondary structure. However, relative energetic contributions of the individual contacts in these protein-ligand interactions are difficult to resolve. Deconvolution of the contributions of these various functional groups in natural inhibitors/ligand would greatly aid in iterative fragment-based drug discovery (FBDD). In this study, we describe an approach of progressive unfolding of a target protein using a gradient of denaturant urea to reveal the individual energetic contributions of various ligand-functional groups to the affinity of the entire ligand. Through calibrated unfolding of two protein-ligand systems: cAMP-bound regulatory subunit of Protein Kinase A (RIα) and IBMX-bound phosphodiesterase8 (PDE8), monitored by amide hydrogen-deuterium exchange mass spectrometry, we show progressive disruption of individual orthosteric contacts in the ligand binding sites, allowing us to rank the energetic contributions of these individual interactions. In the two cAMP-binding sites of RIα, exocyclic phosphate oxygens of cAMP were identified to mediate stronger interactions than ribose 2'-OH in both the RIα-cAMP binding interfaces. Further, we have also ranked the relative contributions of the different functional groups of IBMX based on their interactions with the orthosteric residues of PDE8. This strategy for deconstruction of individual binding sites and identification of the strongest functional group interaction in enzyme orthosteric sites offers a rational starting point for FBDD.
ProBiS-CHARMMing: Web Interface for Prediction and Optimization of Ligands in Protein Binding Sites.
Konc, Janez; Miller, Benjamin T; Štular, Tanja; Lešnik, Samo; Woodcock, H Lee; Brooks, Bernard R; Janežič, Dušanka
2015-11-23
Proteins often exist only as apo structures (unligated) in the Protein Data Bank, with their corresponding holo structures (with ligands) unavailable. However, apoproteins may not represent the amino-acid residue arrangement upon ligand binding well, which is especially problematic for molecular docking. We developed the ProBiS-CHARMMing web interface by connecting the ProBiS ( http://probis.cmm.ki.si ) and CHARMMing ( http://www.charmming.org ) web servers into one functional unit that enables prediction of protein-ligand complexes and allows for their geometry optimization and interaction energy calculation. The ProBiS web server predicts ligands (small compounds, proteins, nucleic acids, and single-atom ligands) that may bind to a query protein. This is achieved by comparing its surface structure against a nonredundant database of protein structures and finding those that have binding sites similar to that of the query protein. Existing ligands found in the similar binding sites are then transposed to the query according to predictions from ProBiS. The CHARMMing web server enables, among other things, minimization and potential energy calculation for a wide variety of biomolecular systems, and it is used here to optimize the geometry of the predicted protein-ligand complex structures using the CHARMM force field and to calculate their interaction energies with the corresponding query proteins. We show how ProBiS-CHARMMing can be used to predict ligands and their poses for a particular binding site, and minimize the predicted protein-ligand complexes to obtain representations of holoproteins. The ProBiS-CHARMMing web interface is freely available for academic users at http://probis.nih.gov.
Receptor binding kinetics equations: Derivation using the Laplace transform method.
Hoare, Sam R J
Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time-dependent pharmacological activities. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Lei; Wang, Jin; Jia, Zhihui; Shaw, Neil
2018-04-01
Recent studies suggest a link between infection by Zika virus (ZIKV) and the development of neurological complications. The lack of ZIKV-specific therapeutics has alarmed healthcare professionals worldwide. Here, crystal structures of apo and AMPPNP- and Mn 2+ -bound forms of the essential helicase of ZIKV refined to 1.78 and 1.3 Å resolution, respectively, are reported. The structures reveal a conserved trimodular topology of the helicase. ATP and Mn 2+ are tethered between two RecA-like domains by conserved hydrogen-bonding interactions. The binding of ligands induces the movement of backbone Cα and side-chain atoms. Numerous solvent molecules are observed in the vicinity of the AMPPNP, suggesting a role in catalysis. These high-resolution structures could be useful for the design of inhibitors targeting the helicase of ZIKV for the treatment of infections caused by ZIKV.
Mascarenhas, Nahren Manuel; Kästner, Johannes
2013-02-01
A well-studied periplasmic-binding protein involved in the abstraction of maltose is maltose-binding protein (MBP), which undergoes a ligand-induced conformational transition from an open (ligand-free) to a closed (ligand-bound) state. Umbrella sampling simulations have been us to estimate the free energy of binding of maltose to MBP and to trace the potential of mean force of the unbinding event using the center-of-mass distance between the protein and ligand as the reaction coordinate. The free energy thus obtained compares nicely with the experimentally measured value justifying our theoretical basis. Measurement of the domain angle (N-terminal-domain - hinge - C-terminal-domain) along the unbinding pathway established the existence of three different states. Starting from a closed state, the protein shifts to an open conformation during the initial unbinding event of the ligand then resides in a semi-open conformation and later resides predominantly in an open-state. These transitions along the ligand unbinding pathway have been captured in greater depth using principal component analysis. It is proposed that in mixed-model, both conformational selection and an induced-fit mechanism combine to the ligand recognition process in MBP. Copyright © 2012 Wiley Periodicals, Inc.
Kundu, Sangeeta; Roy, Debjani
2010-01-01
The major birch pollen allergen, Betv1 of Betula verrucosa is the main causative agent of birch pollen allergy in humans. Betv1 is capable of binding several physiological ligands including fatty acids, flavones, cytokinins and sterols. Until now, no structural information from crystallography or NMR is available regarding binding mode of any of these ligands into the binding pocket of Betv1. In the present study thirteen ligands have been successfully docked into the hydrophobic cavity of Betv1 and binding free energies of the complexes have been calculated using AutoDock 3.0.5. A linear relationship with correlation coefficient (R2) of 0.6 is obtained between ΔGbs values plotted against their corresponding IC50 values. The complex formed between Betv1 and the best docking pose for each ligand has been optimized by molecular dynamics simulation. Here, we describe the ligand binding of Betv1, which provides insight into the biological function of this protein. This knowledge is required for structural alteration or inhibition of some of these ligands in order to modify the allergenic properties of this protein. PMID:20978606
The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong
2015-11-30
Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibitsmore » constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.« less
Allostery Mediates Ligand Binding to WWOX Tumor Suppressor via a Conformational Switch
Schuchardt, Brett J.; Mikles, David C.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad
2014-01-01
While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to WW1 domain in the context of WW1-WW2 tandem module of WWOX tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of WW1-WW2 tandem module to an array of putative PPXY ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically-relevant manner, the WW2 domain does not. Moreover, ligand binding to WW1 domain in the context of WW1-WW2 tandem module is two-to-three-fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of WW2 domain with WW1 blocks access to ligand. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of WW2 orphan domain to chaperone physiological action of WW1 domain within the context of the WW1-WW2 tandem module of WWOX. PMID:25703206
Fluorescence and NMR investigations in the ligand binding properties of adenylate kinases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinstein, J.; Vetter, I.R.; Schlichting, I.
A new system for measurement of affinities of adenylate kinases (AK) for substrates and inhibitors is presented. This system is based on the use of the fluorescent ligand {alpha},{omega}-di((3{prime} or 2{prime})-O-(N-methyl-anthraniloyl)adenosine-5{prime}) pentaphosphate (MAP5Am), which is an analogue of the bisubstrate inhibitor diadenosine pentaphosphate (AP5A). It allows the determination of dissociation constants for any ligand in the range of 1 {times} 10{sup {minus}9} to 5 {times} 10{sup {minus}2} M. Affinities for different bisubstrate inhibitors (AP4A, AP5A, AP6A) and substrates (AMP, ADP, ATP, GTP) were determined in the presence and absence of magnesium. An analysis of the binding of bisubstrate inhibitors ismore » proposed and applied to these data. Temperature denaturation experiments indicate that the mutant enzyme has the same thermal stability as the wild-type enzyme and, as NMR studies indicate, also a very similar structure. Together with the results obtained by Tian et al on the effect of replacement of the conserved His-36 in the cytosolic AK (AK1) from chicken by glutamine and asparagine, this shows that residues 28 of AK from E. coli (AKec) and 36 of AK1 are situated in a comparable environment and are not essential for catalytic activity.« less
Zels, Sven; Verlinden, Heleen; Dillen, Senne; Vleugels, Rut; Nachman, Ronald J; Vanden Broeck, Jozef
2014-01-01
Sulfakinin is an insect neuropeptide that constitutes an important component of the complex network of hormonal and neural factors that regulate feeding and digestion. The key modulating functions of sulfakinin are mediated by binding and signaling via G-protein coupled receptors. Although a substantial amount of functional data have already been reported on sulfakinins in different insect species, only little information is known regarding the properties of their respective receptors. In this study, we report on the molecular cloning, functional expression and characterization of two sulfakinin receptors in the red flour beetle, Tribolium castaneum. Both receptor open reading frames show extensive sequence similarity with annotated sulfakinin receptors from other insects. Comparison of the sulfakinin receptor sequences with homologous vertebrate cholecystokinin receptors reveals crucial conserved regions for ligand binding and receptor activation. Quantitative reverse transcriptase PCR shows that transcripts of both receptors are primarily expressed in the central nervous system of the beetle. Pharmacological characterization using 29 different peptide ligands clarified the essential requirements for efficient activation of these sulfakinin receptors. Analysis of the signaling pathway in multiple cell lines disclosed that the sulfakinin receptors of T. castaneum can stimulate both the Ca²⁺ and cyclic AMP second messenger pathways. This in depth characterization of two insect sulfakinin receptors may provide useful leads for the further development of receptor ligands with a potential applicability in pest control and crop protection.
Postprocessing of docked protein-ligand complexes using implicit solvation models.
Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna
2011-02-28
Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.
Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin
2016-04-15
Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Bairagya, Hridoy R; Bansal, Manju
2016-03-01
Human Guanine Monophosphate Synthetase (hGMPS) converts XMP to GMP, and acts as a bifunctional enzyme with N-terminal "glutaminase" (GAT) and C-terminal "synthetase" domain. The enzyme is identified as a potential target for anti-cancer and immunosuppressive therapies. GAT domain of enzyme plays central role in metabolism, and contains conserved catalytic residues Cys104, His190, and Glu192. MD simulation studies on GAT domain suggest that position of oxyanion in unliganded conformation is occupied by one conserved water molecule (W1), which also stabilizes that pocket. This position is occupied by a negatively charged atom of the substrate or ligand in ligand bound crystal structures. In fact, MD simulation study of Ser75 to Val indicates that W1 conserved water molecule is stabilized by Ser75, while Thr152, and His190 also act as anchor residues to maintain appropriate architecture of oxyanion pocket through water mediated H-bond interactions. Possibly, four conserved water molecules stabilize oxyanion hole in unliganded state, but they vacate these positions when the enzyme (hGMPS)-substrate complex is formed. Thus this study not only reveals functionally important role of conserved water molecules in GAT domain, but also highlights essential role of other non-catalytic residues such as Ser75 and Thr152 in this enzymatic domain. The results from this computational study could be of interest to experimental community and provide a testable hypothesis for experimental validation. Conserved sites of water molecules near and at oxyanion hole highlight structural importance of water molecules and suggest a rethink of the conventional definition of chemical geometry of inhibitor binding site. © 2016 Wiley Periodicals, Inc.
Jarmuła, Adam; Wilk, Piotr; Maj, Piotr; Ludwiczak, Jan; Dowierciał, Anna; Banaszak, Katarzyna; Rypniewski, Wojciech; Cieśla, Joanna; Dąbrowska, Magdalena; Frączyk, Tomasz; Bronowska, Agnieszka K; Jakowiecki, Jakub; Filipek, Sławomir; Rode, Wojciech
2017-10-01
Three crystal structures are presented of nematode thymidylate synthases (TS), including Caenorhabditis elegans (Ce) enzyme without ligands and its ternary complex with dUMP and Raltitrexed, and binary complex of Trichinella spiralis (Ts) enzyme with dUMP. In search of differences potentially relevant for the development of species-specific inhibitors of the nematode enzyme, a comparison was made of the present Ce and Ts enzyme structures, as well as binary complex of Ce enzyme with dUMP, with the corresponding mammalian (human, mouse and rat) enzyme crystal structures. To complement the comparison, tCONCOORD computations were performed to evaluate dynamic behaviors of mammalian and nematode TS structures. Finally, comparative molecular docking combined with molecular dynamics and free energy of binding calculations were carried out to search for ligands showing selective affinity to T. spiralis TS. Despite an overall strong similarity in structure and dynamics of nematode vs mammalian TSs, a pool of ligands demonstrating predictively a strong and selective binding to TsTS has been delimited. These compounds, the E63 family, locate in the dimerization interface of TsTS where they exert species-specific interactions with certain non-conserved residues, including hydrogen bonds with Thr174 and hydrophobic contacts with Phe192, Cys191 and Tyr152. The E63 family of ligands opens the possibility of future development of selective inhibitors of TsTS and effective agents against trichinellosis. Copyright © 2017 Elsevier Inc. All rights reserved.
In silico ligand binding studies of cyanogenic β-glucosidase, dhurrinase-2 from Sorghum bicolor.
Mahajan, Chavi; Patel, Krunal; Khan, Bashir M; Rawal, Shuban S
2015-07-01
Dhurrinase, a cyanogenic β-glucosidase from Sorghum bicolor is the key enzyme responsible for the hydrolysis of dhurrin to produce toxic hydrogen cyanide, as a part of plant defence mechanism. Dhurrinase 1 (SbDhr1) and dhurrinase 2 (SbDhr2), two isozymes have been isolated and characterized from S. bicolor. However, there is no information in the literature about the three dimensional (3D) structure of SbDhr2 and molecular interactions involved between the protein and ligand. In this study, the three dimensional structure of SbDhr2 was built based on homology modeling by using the X-ray crystallographic structure of its close homologue SbDhr1 as the template. The generated 3D model was energy minimized and the quality was validated by Ramachndran plot, various bioinformatic tools and their relevant parameters. Stability, folding-unfolding and flexibility of the modeled SbDhr2 was evaluated on the basis of RMSD, radius of gyration (Rg) and RMSF values respectively, obtained through molecular dynamic (MD) simulation. Further, molecular docking was performed with its natural substrate dhurrin, one substrate analogue, three un-natural substrates, and one inhibitor. Analysis of molecular interactions in the SbDhr2-ligand complexes revealed the key amino acid residues responsible to stabilize the ligands within the binding pocket through non-bonded interactions and some of them were found to be conserved (Glu239, Tyr381, Trp426, Glu454, Trp511). Reasonably broader substrate specificity of SbDhr2 was explained through the wider entrance passage observed in comparison to SbDhr1.
Xu, Zhenglei; Yu, Zhichao; Nai, Shumei; Shi, Ruiyue; Tang, Qinhong; Zhang, Haiyang; Ye, Lijuan; Wang, Lisheng; Hong, Yincai
2017-10-01
Spon2 is a proto-oncogene matrix protein that plays an essential role in the tumorigenesis and metastasis of gastric cancer. The protein has recently been found to function as a guanine nucleotide exchange factor through the activation of RhoGTPase. Here, computational modeling and bioinformatics analysis were employed to investigate the molecular mechanism and biological implication underlying Spon2 autoinhibition. It is revealed that the binding of PxxP motif to SH domain can stabilize the intramolecular interaction between the N-terminal helix and DH domain of Spon2, thus shifting the protein into an autoinhibitory state. Here, we proposed releasing Spon2 autoinhibition by targeting SH domain with competitive peptide ligands. To verify this notion, the PxxP sequence was adopted as the start to derive an array of efficient SH binders by using a structure-based rational design strategy, which were then substantiated with fluorescence spectroscopy analysis and guanine nucleotide exchange test. Consequently, the obtained peptide ligands were determined to have a moderate or high affinity for SH domain; they can also enhance Spon2 exchange activity by 1.2-6.1 folds, exhibiting a significant correlation with their SH-binding affinity (Pearson's coefficient=0.92). In addition, neutral substitution of conserved residues in a high-affinity peptide ligand can largely reduce its Spon2-activating potency, confirming that the designed peptide activates Spon2 by competitively disrupting SH-PxxP interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Conrad, Karen S; Jordan, Christopher D; Brown, Kenneth L; Brunold, Thomas C
2015-04-20
5'-deoxyadenosylcobalamin (coenzyme B12, AdoCbl) serves as the cofactor for several enzymes that play important roles in fermentation and catabolism. All of these enzymes initiate catalysis by promoting homolytic cleavage of the cofactor's Co-C bond in response to substrate binding to their active sites. Despite considerable research efforts, the role of the lower axial ligand in facilitating Co-C bond homolysis remains incompletely understood. In the present study, we characterized several derivatives of AdoCbl and its one-electron reduced form, Co(II)Cbl, by using electronic absorption and magnetic circular dichroism spectroscopies. To complement our experimental data, we performed computations on these species, as well as additional Co(II)Cbl analogues. The geometries of all species investigated were optimized using a quantum mechanics/molecular mechanics method, and the optimized geometries were used to compute absorption spectra with time-dependent density functional theory. Collectively, our results indicate that a reduction in the basicity of the lower axial ligand causes changes to the cofactor's electronic structure in the Co(II) state that replicate the effects seen upon binding of Co(II)Cbl to Class I isomerases, which replace the lower axial dimethylbenzimidazole ligand of AdoCbl with a protein-derived histidine (His) residue. Such a reduction of the basicity of the His ligand in the enzyme active site may be achieved through proton uptake by the catalytic triad of conserved residues, DXHXGXK, during Co-C bond homolysis.
Cohen-Khait, Ruth; Schreiber, Gideon
2016-01-01
Protein–protein interactions occur via well-defined interfaces on the protein surface. Whereas the location of homologous interfaces is conserved, their composition varies, suggesting that multiple solutions may support high-affinity binding. In this study, we examined the plasticity of the interface of TEM1 β-lactamase with its protein inhibitor BLIP by low-stringency selection of a random TEM1 library using yeast surface display. Our results show that most interfacial residues could be mutated without a loss in binding affinity, protein stability, or enzymatic activity, suggesting plasticity in the interface composition supporting high-affinity binding. Interestingly, many of the selected mutations promoted faster association. Further selection for faster binders was achieved by drastically decreasing the library–ligand incubation time to 30 s. Preequilibrium selection as suggested here is a novel methodology for specifically selecting faster-associating protein complexes. PMID:27956635
Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2013-09-17
Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.
Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan
2015-08-01
Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.
Rigid-body Ligand Recognition Drives Cytotoxic T-lymphocyte Antigen 4 (CTLA-4) Receptor Triggering
Yu, Chao; Sonnen, Andreas F.-P.; George, Roger; Dessailly, Benoit H.; Stagg, Loren J.; Evans, Edward J.; Orengo, Christine A.; Stuart, David I.; Ladbury, John E.; Ikemizu, Shinji; Gilbert, Robert J. C.; Davis, Simon J.
2011-01-01
The inhibitory T-cell surface-expressed receptor, cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), which belongs to the class of cell surface proteins phosphorylated by extrinsic tyrosine kinases that also includes antigen receptors, binds the related ligands, B7-1 and B7-2, expressed on antigen-presenting cells. Conformational changes are commonly invoked to explain ligand-induced “triggering” of this class of receptors. Crystal structures of ligand-bound CTLA-4 have been reported, but not the apo form, precluding analysis of the structural changes accompanying ligand binding. The 1.8-Å resolution structure of an apo human CTLA-4 homodimer emphasizes the shared evolutionary history of the CTLA-4/CD28 subgroup of the immunoglobulin superfamily and the antigen receptors. The ligand-bound and unbound forms of both CTLA-4 and B7-1 are remarkably similar, in marked contrast to B7-2, whose binding to CTLA-4 has elements of induced fit. Isothermal titration calorimetry reveals that ligand binding by CTLA-4 is enthalpically driven and accompanied by unfavorable entropic changes. The similarity of the thermodynamic parameters determined for the interactions of CTLA-4 with B7-1 and B7-2 suggests that the binding is not highly specific, but the conformational changes observed for B7-2 binding suggest some level of selectivity. The new structure establishes that rigid-body ligand interactions are capable of triggering CTLA-4 phosphorylation by extrinsic kinase(s). PMID:21156796
E-novo: an automated workflow for efficient structure-based lead optimization.
Pearce, Bradley C; Langley, David R; Kang, Jia; Huang, Hongwei; Kulkarni, Amit
2009-07-01
An automated E-Novo protocol designed as a structure-based lead optimization tool was prepared through Pipeline Pilot with existing CHARMm components in Discovery Studio. A scaffold core having 3D binding coordinates of interest is generated from a ligand-bound protein structural model. Ligands of interest are generated from the scaffold using an R-group fragmentation/enumeration tool within E-Novo, with their cores aligned. The ligand side chains are conformationally sampled and are subjected to core-constrained protein docking, using a modified CHARMm-based CDOCKER method to generate top poses along with CDOCKER energies. In the final stage of E-Novo, a physics-based binding energy scoring function ranks the top ligand CDOCKER poses using a more accurate Molecular Mechanics-Generalized Born with Surface Area method. Correlation of the calculated ligand binding energies with experimental binding affinities were used to validate protocol performance. Inhibitors of Src tyrosine kinase, CDK2 kinase, beta-secretase, factor Xa, HIV protease, and thrombin were used to test the protocol using published ligand crystal structure data within reasonably defined binding sites. In-house Respiratory Syncytial Virus inhibitor data were used as a more challenging test set using a hand-built binding model. Least squares fits for all data sets suggested reasonable validation of the protocol within the context of observed ligand binding poses. The E-Novo protocol provides a convenient all-in-one structure-based design process for rapid assessment and scoring of lead optimization libraries.
The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands.
Mogensen, Jesper E; Wimmer, Reinhard; Larsen, Jørgen N; Spangfort, Michael D; Otzen, Daniel E
2002-06-28
Bet v 1 is a 17-kDa protein abundantly present in the pollen of the White birch tree and is the primary cause of birch pollen allergy in humans. Its three-dimensional structure is remarkable in that a solvent-accessible cavity traverses the core of the molecule. The biological function of Bet v 1 is unknown, although it is homologous to a family of pathogenesis-related proteins in plants. In this study we first show that Bet v 1 in the native state is able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonic acid (ANS). ANS binds to Bet v 1 with 1:1 stoichiometry, and NMR data indicate that binding takes place in the cavity. Using an ANS displacement assay, we then identify a range of physiologically relevant ligands, including fatty acids, flavonoids, and cytokinins, which generally bind with low micromolar affinity. The ability of these ligands to displace ANS suggests that they also bind in the cavity, although the exact binding sites seem to vary among different ligands. The cytokinins, for example, seem to bind at a separate site close to ANS, because they increase the fluorescence of the ANS. Bet v 1 complex. Also, the fluorescent sterol dehydroergosterol binds to Bet v 1 as demonstrated by direct titrations. This study provides the first qualitative and quantitative data on the ligand binding properties of this important pollen allergen. Our findings indicate that ligand binding is important for the biological function of Bet v 1.
Essential role of conformational selection in ligand binding.
Vogt, Austin D; Pozzi, Nicola; Chen, Zhiwei; Di Cera, Enrico
2014-02-01
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered. © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla
2012-04-18
Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change ofmore » a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.« less
Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.
Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim
2013-01-01
Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.
Madeja, Michael; Steffen, Wibke; Mesic, Ivana; Garic, Bojan; Zhorov, Boris S.
2010-01-01
Kv2.1 channels, which are expressed in brain, heart, pancreas, and other organs and tissues, are important targets for drug design. Flecainide and propafenone are known to block Kv2.1 channels more potently than other Kv channels. Here, we sought to explore structural determinants of this selectivity. We demonstrated that flecainide reduced the K+ currents through Kv2.1 channels expressed in Xenopus laevis oocytes in a voltage- and time-dependent manner. By systematically exchanging various segments of Kv2.1 with those from Kv1.2, we determined flecainide-sensing residues in the P-helix and inner helix S6. These residues are not exposed to the inner pore, a conventional binding region of open channel blockers. The flecainide-sensing residues also contribute to propafenone binding, suggesting overlapping receptors for the drugs. Indeed, propafenone and flecainide compete for binding in Kv2.1. We further used Monte Carlo-energy minimizations to map the receptors of the drugs. Flecainide docking in the Kv1.2-based homology model of Kv2.1 predicts the ligand ammonium group in the central cavity and the benzamide moiety in a niche between S6 and the P-helix. Propafenone also binds in the niche. Its carbonyl group accepts an H-bond from the P-helix, the amino group donates an H-bond to the P-loop turn, whereas the propyl group protrudes in the pore and blocks the access to the selectivity filter. Thus, besides the binding region in the central cavity, certain K+ channel ligands can expand in the subunit interface whose residues are less conserved between K+ channels and hence may be targets for design of highly desirable subtype-specific K+ channel drugs. PMID:20709754
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasiliou, M.; Lumbroso, R.; Alvarado, C.
1994-09-01
The stereochemistry of the androgen receptor (AR) that is responsible for androgen-specific binding and for its contribution to the transregulatory attributes of an androgen-receptor complex are unknown. Our objective is to define structure-function relations of the human AR by correlating germline missense mutations at its X-linked locus with its resultant misbehavior. Subjects with Arg773Cys have complete androgen insensitivity. We and several other laboratories have reported that their genital skin fibroblasts (GSF) have negligible androgen-binding activity at 37{degrees}. We have found that Phe763Leu also causes CAI, but with approximately 10 fmol/mg protein androgen-binding activity at 37{degrees} (R-deficient). Within COS-1 cells transfectedmore » with each mutant AR cDNA, Phe763Leu and Arg773Cys androgen-binding activities are reversibly thermolabile, by a factor of 2, at 37{degrees} versus 22{degrees}, only in the presence of androgen; in the absence of androgen they are thermostable at 37{degrees}. We have discovered that (for a reason yet unknown) the GSF from a third family with Arg773Cys (and no other coding sequence mutation) have 20-40 mol/mg protein of androgen-binding activity at 37{degrees} when measured with 3-6 nFM androgen. This activity reversibly doubles at 22{degrees}. The reversible thermolability of an AR with Arg773Cys (and probably with Phe763Leu) is demonstrable within GSF. Ligand-dependence of this thermolability implies that ligand induces these mutant AR to undergo a deviant conformational change in, or near, a 14-aa region that shares 90% identity/similarity with its closest receptor relatives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bade-Döding, Christina; Theodossis, Alex; Gras, Stephanie
2011-09-28
Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to amore » natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal p{Omega} anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide-HLA complexes.« less
Nasief, Nader N; Tan, Hongwei; Kong, Jing; Hangauer, David
2012-01-01
Ligand functional groups can modulate the contributions of one another to the ligand-protein binding thermodynamics, producing either positive or negative cooperativity. Data presented for four thermolysin phosphonamidate inhibitors demonstrate that the differential binding free energy and enthalpy caused by replacement of a H with a Me group, which binds in the well-hydrated S2′ pocket, are more favorable in presence of a ligand carboxylate. The differential entropy is however less favorable. Dissection of these differential thermodynamic parameters, X-ray crystallography, and density-functional theory calculations suggest that these cooperativities are caused by variations in the thermodynamics of the complex hydration shell changes accompanying the H→Me replacement. Specifically, the COO− reduces both the enthalpic penalty and the entropic advantage of displacing water molecules from the S2′ pocket, and causes a subsequent acquisition of a more enthalpically, less entropically, favorable water network. This study contributes to understanding the important role water plays in ligand-protein binding. PMID:22894131
Moroni, Elisabetta; Zhao, Huiping; Blagg, Brian S.J.; Colombo, Giorgio
2014-01-01
The interaction that occurs between molecules is a dynamic process that impacts both structural and conformational properties of the ligand and the ligand binding site. Herein, we investigate the dynamic cross-talk between a protein and the ligand as a source for new opportunities in ligand design. Analysis of the formation/disappearance of protein pockets produced in response to a first-generation inhibitor assisted in the identification of functional groups that could be introduced onto scaffolds to facilitate optimal binding, which allowed for increased binding with previously uncharacterized regions. MD simulations were used to elucidate primary changes that occur in the Hsp90 C-terminal binding pocket in the presence of first-generation ligands. This data was then used to design ligands that adapt to these receptor conformations, which provides access to an energy landscape that is not visible in a static model. The newly synthesized compounds demonstrated anti-proliferative activity at ~150 nanomolar concentration. The method identified herein may be used to design chemical probes that provide additional information on structural variations of Hsp90 C-terminal binding site. PMID:24397468
Lee, Kayoung; Goh, Grace Ying Shyen; Wong, Marcus Andrew; Klassen, Tara Leah
2016-01-01
Nuclear hormone receptors (NHRs) are transcription factors that regulate numerous physiological and developmental processes and represent important drug targets. NHR-49, an ortholog of Hepatocyte Nuclear Factor 4 (HNF4), has emerged as a key regulator of lipid metabolism and life span in the nematode worm Caenorhabditis elegans. However, many aspects of NHR-49 function remain poorly understood, including whether and how it regulates individual sets of target genes and whether its activity is modulated by a ligand. A recent study identified three gain-of-function (gof) missense mutations in nhr-49 (nhr-49(et7), nhr-49(et8), and nhr-49(et13), respectively). These substitutions all affect the ligand-binding domain (LBD), which is critical for ligand binding and protein interactions. Thus, these alleles provide an opportunity to test how three specific residues contribute to NHR-49 dependent gene regulation. We used computational and molecular methods to delineate how these mutations alter NHR-49 activity. We find that despite originating from a screen favoring the activation of specific NHR-49 targets, all three gof alleles cause broad upregulation of NHR-49 regulated genes. Interestingly, nhr-49(et7) and nhr-49(et8) exclusively affect nhr-49 dependent activation, whereas the nhr-49(et13) surprisingly affects both nhr-49 mediated activation and repression, implicating the affected residue as dually important. We also observed phenotypic non-equivalence of these alleles, as they unexpectedly caused a long, short, and normal life span, respectively. Mechanistically, the gof substitutions altered neither protein interactions with the repressive partner NHR-66 and the coactivator MDT-15 nor the subcellular localization or expression of NHR-49. However, in silico structural modeling revealed that NHR-49 likely interacts with small molecule ligands and that the missense mutations might alter ligand binding, providing a possible explanation for increased NHR-49 activity. In sum, our findings indicate that the three nhr-49 gof alleles are non-equivalent, and highlight the conserved V411 residue affected by et13 as critical for gene activation and repression alike. PMID:27618178
LigSearch: a knowledge-based web server to identify likely ligands for a protein target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Tjaart A. P. de; Laskowski, Roman A.; Duban, Mark-Eugene
LigSearch is a web server for identifying ligands likely to bind to a given protein. Identifying which ligands might bind to a protein before crystallization trials could provide a significant saving in time and resources. LigSearch, a web server aimed at predicting ligands that might bind to and stabilize a given protein, has been developed. Using a protein sequence and/or structure, the system searches against a variety of databases, combining available knowledge, and provides a clustered and ranked output of possible ligands. LigSearch can be accessed at http://www.ebi.ac.uk/thornton-srv/databases/LigSearch.
Goubran-Botros, H; Nanak, E; Abdul Nour, J; Birkenmeir, G; Vijayalakshmi, M A
1992-04-24
Immobilized metal ion affinity electrophoresis (IMA-Elec) is one among the many methods derived from the immobilized metal ion affinity chromatography. Two approaches for incorporating the metal ligand, were studied. One was in the form of insoluble particulate material based on Sepharose 6B and the other in the form of soluble polymer based on polyethylene glycol (PEG) 5000. Both the polymers coupled with iminodiacetate and metallized with copper or zinc were used as ligands, incorporated into soluble agarose as the electrophoretic gel. Several histidine-containing model proteins were studied with both the systems and their metal binding strengths were determined as the dissociation constants, Kd. The results clearly demonstrated that the mechanism of protein recognition by immobilized copper or zinc via the accessible histidyl residues was maintained in the IMA-Elec system. Proteins with increasing numbers of histidine residues showed increasing binding strength (lower Kd values). While this basic mechanism was conserved, the supporting polymers (Sepharose 6B and the PEG 5000) showed significant differences in the metal binding to the protein. The polysaccharide Sepharose 6B enhanced the binding strength compared with PEG 5000. The optimum electrophoretic parameters were determined to be current intensities up to 20 mA and pH ca. 7.0. At pH greater than 8.0, a significant decrease in the affinity was observed, this decrease being greater with PEG 5000 than Sepharose 6B as supporting material.
Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations
Seeliger, Daniel; de Groot, Bert L.
2010-01-01
Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034
Cloud computing approaches for prediction of ligand binding poses and pathways.
Lawrenz, Morgan; Shukla, Diwakar; Pande, Vijay S
2015-01-22
We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.
Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang
2018-01-24
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus
2018-01-31
Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.
Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer
Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.
2011-01-01
The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051
Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert
2017-11-22
We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme
Ahalawat, Navjeet; Pandit, Subhendu; Kay, Lewis E.
2018-01-01
Ligand binding sites in proteins are often localized to deeply buried cavities, inaccessible to bulk solvent. Yet, in many cases binding of cognate ligands occurs rapidly. An intriguing system is presented by the L99A cavity mutant of T4 Lysozyme (T4L L99A) that rapidly binds benzene (~106 M-1s-1). Although the protein has long served as a model system for protein thermodynamics and crystal structures of both free and benzene-bound T4L L99A are available, the kinetic pathways by which benzene reaches its solvent-inaccessible binding cavity remain elusive. The current work, using extensive molecular dynamics simulation, achieves this by capturing the complete process of spontaneous recognition of benzene by T4L L99A at atomistic resolution. A series of multi-microsecond unbiased molecular dynamics simulation trajectories unequivocally reveal how benzene, starting in bulk solvent, diffuses to the protein and spontaneously reaches the solvent inaccessible cavity of T4L L99A. The simulated and high-resolution X-ray derived bound structures are in excellent agreement. A robust four-state Markov model, developed using cumulative 60 μs trajectories, identifies and quantifies multiple ligand binding pathways with low activation barriers. Interestingly, none of these identified binding pathways required large conformational changes for ligand access to the buried cavity. Rather, these involve transient but crucial opening of a channel to the cavity via subtle displacements in the positions of key helices (helix4/helix6, helix7/helix9) leading to rapid binding. Free energy simulations further elucidate that these channel-opening events would have been unfavorable in wild type T4L. Taken together and via integrating with results from experiments, these simulations provide unprecedented mechanistic insights into the complete ligand recognition process in a buried cavity. By illustrating the power of subtle helix movements in opening up multiple pathways for ligand access, this work offers an alternate view of ligand recognition in a solvent-inaccessible cavity, contrary to the common perception of a single dominant pathway for ligand binding. PMID:29775455
Armen, Roger S.; Schiller, Stefan M.; Brooks, Charles L.
2015-01-01
Orthogonal aminoacyl-tRNA synthetase/tRNA pairs from archaea have been evolved to facilitate site specific in vivo incorporation of unnatural amino acids into proteins in Escherichia coli. Using this approach, unnatural amino acids have been successfully incorporated with high translational efficiency and fidelity. In this study, CHARMM-based molecular docking and free energy calculations were used to evaluate rational design of specific protein-ligand interactions for aminoacyl-tRNA synthetases. A series of novel unnatural amino acid ligands were docked into the p-benzoyl-L-phenylalanine tRNA synthetase, which revealed that the binding pocket of the enzyme does not provide sufficient space for significantly larger ligands. Specific binding site residues were mutated to alanine to create additional space to accommodate larger target ligands, and then mutations were introduced to improve binding free energy. This approach was used to redesign binding sites for several different target ligands, which were then tested against the standard 20 amino acids to verify target specificity. Only the synthetase designed to bind Man-α-O-Tyr was predicted to be sufficiently selective for the target ligand and also thermodynamically stable. Our study suggests that extensive redesign of the tRNA synthatase binding pocket for large bulky ligands may be quite thermodynamically unfavorable. PMID:20310065
On the interaction of luminol with human serum albumin: Nature and thermodynamics of ligand binding
NASA Astrophysics Data System (ADS)
Moyon, N. Shaemningwar; Mitra, Sivaprasad
2010-09-01
The mechanism and thermodynamic parameters for the binding of luminol (LH 2) with human serum albumin was explored by steady state and picosecond time-resolved fluorescence spectroscopy. It was shown that out of two possible LH 2 conformers present is solution, only one is accessible for binding with HSA. The thermodynamic parameters like enthalpy (Δ H) and entropy (Δ S) change corresponding to the ligand binding process were also estimated by performing the experiment at different temperatures. The ligand replacement experiment with bilirubin confirms that LH 2 binds into the sub-domain IIA of the protein.
Complement factor H family proteins in their non-canonical role as modulators of cellular functions.
Józsi, Mihály; Schneider, Andrea E; Kárpáti, Éva; Sándor, Noémi
2018-01-04
Complement factor H is a major regulator of the alternative pathway of the complement system. The factor H-related proteins are less characterized, but recent data indicate that they rather promote complement activation. These proteins have some common ligands with factor H and have both overlapping and distinct functions depending on domain composition and the degree of conservation of amino acid sequence. Factor H and some of the factor H-related proteins also appear in a non-canonical function that is beyond their role in the modulation of complement activation. This review covers our current understanding on this emerging role of factor H family proteins in modulating the activation and function of various cells by binding to receptors or receptor ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Misini Ignjatović, Majda; Caldararu, Octav; Dong, Geng; Muñoz-Gutierrez, Camila; Adasme-Carreño, Francisco; Ryde, Ulf
2016-09-01
We have estimated the binding affinity of three sets of ligands of the heat-shock protein 90 in the D3R grand challenge blind test competition. We have employed four different methods, based on five different crystal structures: first, we docked the ligands to the proteins with induced-fit docking with the Glide software and calculated binding affinities with three energy functions. Second, the docked structures were minimised in a continuum solvent and binding affinities were calculated with the MM/GBSA method (molecular mechanics combined with generalised Born and solvent-accessible surface area solvation). Third, the docked structures were re-optimised by combined quantum mechanics and molecular mechanics (QM/MM) calculations. Then, interaction energies were calculated with quantum mechanical calculations employing 970-1160 atoms in a continuum solvent, combined with energy corrections for dispersion, zero-point energy and entropy, ligand distortion, ligand solvation, and an increase of the basis set to quadruple-zeta quality. Fourth, relative binding affinities were estimated by free-energy simulations, using the multi-state Bennett acceptance-ratio approach. Unfortunately, the results were varying and rather poor, with only one calculation giving a correlation to the experimental affinities larger than 0.7, and with no consistent difference in the quality of the predictions from the various methods. For one set of ligands, the results could be strongly improved (after experimental data were revealed) if it was recognised that one of the ligands displaced one or two water molecules. For the other two sets, the problem is probably that the ligands bind in different modes than in the crystal structures employed or that the conformation of the ligand-binding site or the whole protein changes.
Gutiérrez Sánchez, Cristina; Su, Qiang; Schönherr, Holger; Grininger, Martin; Nöll, Gilbert
2015-01-01
In this paper the multiple (re)programming of protein-DNA nanostructures comprising generation, deletion, and reprogramming on the same flavin-DNA-modified surface is introduced. This work is based on a systematic study of the binding affinity of the multi-ligand-binding flavoprotein dodecin on flavin-terminated DNA monolayers by surface plasmon resonance and quartz crystal microbalance with dissipation (QCM-D) measurements, surface plasmon fluorescence spectroscopy (SPFS), and dynamic AFM force spectroscopy. Depending on the flavin surface coverage, a single apododecin is captured by one or more surface-immobilized flavins. The corresponding complex binding and unbinding rate constants kon(QCM) = 7.7 × 10(3) M(-1)·s(-1) and koff(QCM) = 4.5 × 10(-3) s(-1) (Kd(QCM) = 580 nM) were determined by QCM and were found to be in agreement with values for koff determined by SPFS and force spectroscopy. Even though a single apododecin-flavin bond is relatively weak, stable dodecin monolayers were formed on flavin-DNA-modified surfaces at high flavin surface coverage due to multivalent interactions between apododecin bearing six binding pockets and the surface-bound flavin-DNA ligands. If bi- or multivalent flavin ligands are adsorbed on dodecin monolayers, stable sandwich-type surface-DNA-flavin-apododecin-flavin ligand arrays are obtained. Nevertheless, the apododecin flavin complex is easily and quantitatively disassembled by flavin reduction. Binding and release of apododecin are reversible processes, which can be carried out alternatingly several times to release one type of ligand by an external redox trigger and subsequently replace it with a different ligand. Hence the versatile concept of reprogrammable functional biointerfaces with the multi-ligand-binding flavoprotein dodecin is demonstrated.
Conserved chemosensory proteins in the proboscis and eyes of Lepidoptera.
Zhu, Jiao; Iovinella, Immacolata; Dani, Francesca Romana; Liu, Yu-Ling; Huang, Ling-Qiao; Liu, Yang; Wang, Chen-Zhu; Pelosi, Paolo; Wang, Guirong
2016-01-01
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are endowed with several different functions besides being carriers for pheromones and odorants. Based on a previous report of a CSP acting as surfactant in the proboscis of the moth Helicoverpa armigera , we revealed the presence of orthologue proteins in two other moths Plutella xylostella and Chilo suppressalis , as well as two butterflies Papilio machaon and Pieris rapae , using immunodetection and proteomic analysis. The unusual conservation of these proteins across large phylogenetic distances indicated a common specific function for these CSPs. This fact prompted us to search for other functions of these proteins and discovered that CSPs are abundantly expressed in the eyes of H. armigera and possibly involved as carriers for carotenoids and visual pigments. This hypothesis is supported by ligand-binding experiments and docking simulations with retinol and β-carotene. This last orange pigment, occurring in many fruits and vegetables, is an antioxidant and the precursor of visual pigments. We propose that structurally related CSPs solubilise nutritionally important carotenoids in the proboscis, while they act as carriers of both β-carotene and its derived products 3-hydroxyretinol and 3-hydroxyretinal in the eye. The use of soluble olfactory proteins, such as CSPs, as carriers for visual pigments in insects, here reported for the first time, parallels the function of retinol-binding protein in vertebrates, a lipocalin structurally related to vertebrate odorant-binding proteins.
Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...
Decatur, S M; DePillis, G D; Boxer, S G
1996-04-02
A variety of heterocyclic ligands can be exchanged into the proximal cavity of sperm whale myoglobin mutant H93G, providing a simple method for introduction of the equivalent of unnatural amino acid side chains into a functionally critical location in this protein. These modified proteins bind CO on the distal side. 1H NMR data on H93G(Im)CO, where Im is imidazole, demonstrate that the structure of the distal heme pocket in H93G(Im)CO is very similar to that of wild type; thus, the effects of the proximal ligand's properties on CO binding can be studied with minimal perturbation of distal pocket structure. The exogenous proximal ligands used in this study include imidazole (Im), 4-methylimidazole (4-MeIm), 4-bromoimidazole (4-BrIm), N-methylimidazole (N-MeIm), pyridine (Pyr), and 3-fluoropyridine (3-FPyr). Substitution of the proximal ligand is found to produce substantial changes in the CO on and off rates, the equilibrium binding constant, and the vibrational stretch frequency of CO. Many of the changes are as large as those reported for distal pocket mutants prepared by site-directed mutagenesis. The ability to systematically vary the nature of the proximal ligand is exploited to test the effects of particular properties of the proximal ligand on CO binding. For example, 4-MeIm and 4-BrIm are similar in size and shape but differ significantly in pKa. The same relationship is true for Pyr and 3-FPyr. By comparison of the IR spectra and CO recombination kinetics of these complexes, the effects of proximal ligand pKa on the CO binding are assessed. Likewise, N-MeIm and 4-MeIm are similar in size and pKa but differ in their ability to hydrogen bond to amino acid residues in the proximal cavity. Comparisons of IR spectra and CO binding kinetics in these complexes reveal that proximal ligand conformation and hydrogen bonding affect the kinetics of CO binding. The mechanism of proximal ligand exchange between solution and the proximal cavity in CO complexes was investigated by obtaining the 19F NMR spectrum of H93G(3-FPyr)CO, whose 19F signal can be observed without interference from resonances of the protein. The proximal ligand is found to exchange within a few seconds by saturation transfer. This exchange rate is about 2 orders of magniture faster than what is observed for the isoelectronic metcyano complex [Decatur, S. M., & Boxer, S. G. (1995) Biochemistry 34, 2122-2129]; in both the ferrous CO and ferric cyano complexes, the proximal ligand exchange rate is independent of ligand concentration. These results suggest that the rate-limiting step in proximal ligand exchange is breakage of the iron-ligand bond, followed by rapid diffusion of the ligand through the protein to bulk solution.
Hinsen, Konrad; Vaitinadapoule, Aurore; Ostuni, Mariano A; Etchebest, Catherine; Lacapere, Jean-Jacques
2015-02-01
The 18 kDa protein TSPO is a highly conserved transmembrane protein found in bacteria, yeast, animals and plants. TSPO is involved in a wide range of physiological functions, among which the transport of several molecules. The atomic structure of monomeric ligand-bound mouse TSPO in detergent has been published recently. A previously published low-resolution structure of Rhodobacter sphaeroides TSPO, obtained from tubular crystals with lipids and observed in cryo-electron microscopy, revealed an oligomeric structure without any ligand. We analyze this electron microscopy density in view of available biochemical and biophysical data, building a matching atomic model for the monomer and then the entire crystal. We compare its intra- and inter-molecular contacts with those predicted by amino acid covariation in TSPO proteins from evolutionary sequence analysis. The arrangement of the five transmembrane helices in a monomer of our model is different from that observed for the mouse TSPO. We analyze possible ligand binding sites for protoporphyrin, for the high-affinity ligand PK 11195, and for cholesterol in TSPO monomers and/or oligomers, and we discuss possible functional implications. Copyright © 2014 Elsevier B.V. All rights reserved.
Determinants of the heme-CO vibrational modes in the H-NOX family†
Tran, Rosalie; Weinert, Emily E.; Boon, Elizabeth M.; Mathies, Richard A.; Marletta, Michael A.
2011-01-01
The H-NOX family of proteins have important functions in gaseous ligand signaling in organisms from bacteria to humans, including nitric oxide (NO) sensing in mammals, and provide a model system for probing ligand selectivity in hemoproteins. A unique vibrational feature that is ubiquitous throughout the Heme-Nitric oxide/OXygen binding (H-NOX) family is the presence of a high C-O stretching frequency. To investigate the cause of this spectroscopic characteristic, the Fe-CO and C-O stretching frequencies were probed in the H-NOX domain from Thermoanaerobacter tengcongensis (Tt H-NOX) using resonance Raman (RR) spectroscopy. Four classes of heme pocket mutants were generated to assess the changes in stretching frequency: (i) the distal H-bonding network, (ii) the proximal histidine ligand, (iii) modulation of the heme conformation via Ile-5 and Pro-115, and (iv) the conserved Tyr-Ser-Arg (YxSxR) motif. These mutations revealed important electrostatic interactions that dampen the back-donation of the FeII dπ electrons into the CO π* orbitals. The most significant change occurred upon disruption of the H-bonds between the strictly conserved YxSxR motif and the heme propionate groups, producing two dominant CO-bound heme conformations. One conformer was structurally similar to Tt H-NOX WT; whereas the other displayed a decrease in ν(C-O) of up to ~70 cm−1 relative to the WT protein, with minimal changes in ν(Fe-CO). Taken together, these results show that the electrostatic interactions in the Tt H-NOX binding pocket are primarily responsible for the high ν(C-O) by decreasing the Fe dπ → CO π* back-donation, and suggest that the dominant mechanism by which this family modulates the FeII-CO bond likely involves the YxSxR motif. PMID:21714509
Cembran, Alessandro; Kim, Jonggul; Gao, Jiali; Veglia, Gianluigi
2014-01-01
Proteins exist as an ensemble of conformers that are distributed on free energy landscapes resembling folding funnels. While the most stable conformers populate low energy basins, protein function is often carried out through low-populated conformational states that occupy high energy basins. Ligand binding shifts the populations of these states, changing the distribution of these conformers. Understanding how the equilibrium among the states is altered upon ligand binding, interaction with other binding partners, and/or mutations and post-translational modifications is of critical importance for explaining allosteric signaling in proteins. Here, we propose a statistical analysis of the chemical shifts (CONCISE, COordiNated ChemIcal Shifts bEhavior) for the interpretation of protein conformational equilibria following linear trajectories of NMR chemical shifts. CONCISE enables one to quantitatively measure the population shifts associated with ligand titrations and estimate the degree of collectiveness of the protein residues’ response to ligand binding, giving a concise view of the structural transitions. The combination of CONCISE with thermocalorimetric and kinetic data allows one to depict a protein’s approximate conformational energy landscape. We tested this method with the catalytic subunit of cAMP-dependent protein kinase A, a ubiquitous enzyme that undergoes conformational transitions upon both nucleotide and pseudo-substrate binding. When complemented with chemical shift covariance analysis (CHESCA), this new method offers both collective response and residue-specific correlations for ligand binding to proteins. PMID:24604024
The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites
2013-01-01
Background Many Protein Data Bank (PDB) users assume that the deposited structural models are of high quality but forget that these models are derived from the interpretation of experimental data. The accuracy of atom coordinates is not homogeneous between models or throughout the same model. To avoid basing a research project on a flawed model, we present a tool for assessing the quality of ligands and binding sites in crystallographic models from the PDB. Results The Validation HElper for LIgands and Binding Sites (VHELIBS) is software that aims to ease the validation of binding site and ligand coordinates for non-crystallographers (i.e., users with little or no crystallography knowledge). Using a convenient graphical user interface, it allows one to check how ligand and binding site coordinates fit to the electron density map. VHELIBS can use models from either the PDB or the PDB_REDO databank of re-refined and re-built crystallographic models. The user can specify threshold values for a series of properties related to the fit of coordinates to electron density (Real Space R, Real Space Correlation Coefficient and average occupancy are used by default). VHELIBS will automatically classify residues and ligands as Good, Dubious or Bad based on the specified limits. The user is also able to visually check the quality of the fit of residues and ligands to the electron density map and reclassify them if needed. Conclusions VHELIBS allows inexperienced users to examine the binding site and the ligand coordinates in relation to the experimental data. This is an important step to evaluate models for their fitness for drug discovery purposes such as structure-based pharmacophore development and protein-ligand docking experiments. PMID:23895374
Allostery mediates ligand binding to WWOX tumor suppressor via a conformational switch.
Schuchardt, Brett J; Mikles, David C; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad
2015-04-01
While being devoid of the ability to recognize ligands itself, the WW2 domain is believed to aid ligand binding to the WW1 domain in the context of a WW1-WW2 tandem module of WW domain-containing oxidoreductase (WWOX) tumor suppressor. In an effort to test the generality of this hypothesis, we have undertaken here a detailed biophysical analysis of the binding of WW domains of WWOX alone and in the context of the WW1-WW2 tandem module to an array of putative proline-proline-x-tyrosine (PPXY) ligands. Our data show that while the WW1 domain of WWOX binds to all ligands in a physiologically relevant manner, the WW2 domain does not. Moreover, ligand binding to the WW1 domain in the context of the WW1-WW2 tandem module is two-to-three-fold stronger than when treated alone. We also provide evidence that the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. Of particular note is the observation that the physical association of the WW2 domain with WW1 blocks access to ligands. Consequently, ligand binding to the WW1 domain not only results in the displacement of the WW2 lid but also disrupts the physical association of WW domains in the liganded conformation. Taken together, our study underscores a key role of allosteric communication in the ability of the WW2 orphan domain to chaperone physiological action of the WW1 domain within the context of the WW1-WW2 tandem module of WWOX. Copyright © 2015 John Wiley & Sons, Ltd.
Shi, Biyun; Zuo, Guanghong; Xiu, Peng; Zhou, Ruhong
2013-04-04
With the widespread applications of nanomaterials such as carbon nanotubes, there is a growing concern on the biosafety of these engineered nanoparticles, in particular their interactions with proteins. In molecular simulations of nanoparticle-protein interactions, the choice of empirical parameters (force fields) plays a decisive role, and thus is of great importance and should be examined carefully before wider applications. Here we compare three commonly used force fields, CHARMM, OPLSAA, and AMBER in study of the competitive binding of a single wall carbon nanotube (SWCNT) with a native proline-rich motif (PRM) ligand on its target protein SH3 domain, a ubiquitous protein-protein interaction mediator involved in signaling and regulatory pathways. We find that the SWCNT displays a general preference over the PRM in binding with SH3 domain in all the three force fields examined, although the degree of preference can be somewhat different, with the AMBER force field showing the highest preference. The SWCNT prevents the ligand from reaching its native binding pocket by (i) occupying the binding pocket directly, and (ii) binding with the ligand itself and then being trapped together onto some off-sites. The π-π stacking interactions between the SWCNT and aromatic residues are found to play a significant role in its binding to the SH3 domain in all the three force fields. Further analyses show that even the SWCNT-ligand binding can also be relatively more stable than the native ligand-protein binding, indicating a serious potential disruption to the protein SH3 function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, Eric; Mans, Ben J.; Ribeiro, José M.C.
The mosquito D7 salivary proteins are encoded by a multigene family related to the arthropod odorant-binding protein (OBP) superfamily. Forms having either one or two OBP domains are found in mosquito saliva. Four single-domain and one two-domain D7 proteins from Anopheles gambiae and Aedes aegypti (AeD7), respectively, were shown to bind biogenic amines with high affinity and with a stoichiometry of one ligand per protein molecule. Sequence comparisons indicated that only the C-terminal domain of AeD7 is homologous to the single-domain proteins from A. gambiae, suggesting that the N-terminal domain may bind a different class of ligands. Here, we describemore » the 3D structure of AeD7 and examine the ligand-binding characteristics of the N- and C-terminal domains. Isothermal titration calorimetry and ligand complex crystal structures show that the N-terminal domain binds cysteinyl leukotrienes (cysLTs) with high affinities (50-60 nM) whereas the C-terminal domain binds biogenic amines. The lipid chain of the cysLT binds in a hydrophobic pocket of the N-terminal domain, whereas binding of norepinephrine leads to an ordering of the C-terminal portion of the C-terminal domain into an alpha-helix that, along with rotations of Arg-176 and Glu-268 side chains, acts to bury the bound ligand.« less
Liu, Lijun; Baase, Walter A; Michael, Miya M; Matthews, Brian W
2009-09-22
Both large-to-small and nonpolar-to-polar mutations in the hydrophobic core of T4 lysozyme cause significant loss in stability. By including supplementary stabilizing mutations we constructed a variant that combines the cavity-creating substitution Leu99 --> Ala with the buried charge mutant Met102 --> Glu. Crystal structure determination confirmed that this variant has a large cavity with the side chain of Glu102 located within the cavity wall. The cavity includes a large disk-shaped region plus a bulge. The disk-like region is essentially nonpolar, similar to L99A, while the Glu102 substituent is located in the vicinity of the bulge. Three ordered water molecules bind within this part of the cavity and appear to stabilize the conformation of Glu102. Glu102 has an estimated pKa of about 5.5-6.5, suggesting that it is at least partially charged in the crystal structure. The polar ligands pyridine, phenol and aniline bind within the cavity, and crystal structures of the complexes show one or two water molecules to be retained. Nonpolar ligands of appropriate shape can also bind in the cavity and in some cases exclude all three water molecules. This disrupts the hydrogen-bond network and causes the Glu102 side chain to move away from the ligand by up to 0.8 A where it remains buried in a completely nonpolar environment. Isothermal titration calorimetry revealed that the binding of these compounds stabilizes the protein by 4-6 kcal/mol. For both polar and nonpolar ligands the binding is enthalpically driven. Large negative changes in entropy adversely balance the binding of the polar ligands, whereas entropy has little effect on the nonpolar ligand binding.
Computational design of nanoparticle drug delivery systems for selective targeting
NASA Astrophysics Data System (ADS)
Duncan, Gregg A.; Bevan, Michael A.
2015-09-01
Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues.Ligand-functionalized nanoparticles capable of selectively binding to diseased versus healthy cell populations are attractive for improved efficacy of nanoparticle-based drug and gene therapies. However, nanoparticles functionalized with high affinity targeting ligands may lead to undesired off-target binding to healthy cells. In this work, Monte Carlo simulations were used to quantitatively determine net surface interactions, binding valency, and selectivity between targeted nanoparticles and cell surfaces. Dissociation constant, KD, and target membrane protein density, ρR, are explored over a range representative of healthy and cancerous cell surfaces. Our findings show highly selective binding to diseased cell surfaces can be achieved with multiple, weaker affinity targeting ligands that can be further optimized by varying the targeting ligand density, ρL. Using the approach developed in this work, nanomedicines can be optimally designed for exclusively targeting diseased cells and tissues. Electronic supplementary information (ESI) available: Movie showing simulation renderings of targeted (ρL = 1820/μm2, KD = 120 μM) nanoparticle selective binding to cancer (ρR = 256/μm2) vs. healthy (ρR = 64/μm2) cell surfaces. Target membrane proteins have linear color scale depending on binding energy ranging from white when unbound (URL = 0) to red when tightly bound (URL = UM). See DOI: 10.1039/c5nr03691g
Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G; Kihara, Daisuke
2014-08-27
Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets.
Hu, Bingjie; Zhu, Xiaolei; Monroe, Lyman; Bures, Mark G.; Kihara, Daisuke
2014-01-01
Structure-based computational methods have been widely used in exploring protein-ligand interactions, including predicting the binding ligands of a given protein based on their structural complementarity. Compared to other protein and ligand representations, the advantages of a surface representation include reduced sensitivity to subtle changes in the pocket and ligand conformation and fast search speed. Here we developed a novel method named PL-PatchSurfer (Protein-Ligand PatchSurfer). PL-PatchSurfer represents the protein binding pocket and the ligand molecular surface as a combination of segmented surface patches. Each patch is characterized by its geometrical shape and the electrostatic potential, which are represented using the 3D Zernike descriptor (3DZD). We first tested PL-PatchSurfer on binding ligand prediction and found it outperformed the pocket-similarity based ligand prediction program. We then optimized the search algorithm of PL-PatchSurfer using the PDBbind dataset. Finally, we explored the utility of applying PL-PatchSurfer to a larger and more diverse dataset and showed that PL-PatchSurfer was able to provide a high early enrichment for most of the targets. To the best of our knowledge, PL-PatchSurfer is the first surface patch-based method that treats ligand complementarity at protein binding sites. We believe that using a surface patch approach to better understand protein-ligand interactions has the potential to significantly enhance the design of new ligands for a wide array of drug-targets. PMID:25167137
Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vera, D.R.; Krohn, K.A.; Stadalnik, R.C.
1984-07-01
Hepatic binding protein (HBP) is a membrane receptor that binds and transports plasma glycoproteins from hepatic blood to hepatocellular lysosomes. A characterization is made of the in vitro binding of Tc-99m galactosyl-neoglycoalbumin (Tc-NGA), a synthetic HBP ligand, to liver membrane. Structural modifications of NGA resulted in the alteration of the equilibrium constant, KA, and the forward-binding rate constant, kb. Binding was second-order; the relative amount of membrane-bound NGA depended on the initial concentrations of ligand and membrane. Membrane displacement studies, using carrier ligands in contrast to previously bound Tc-NGA or I-NGA, correlated with the binding characteristics of a native HBPmore » ligand, asialo-orosomucoid. Computer simulation was used to study the detectability of the changes in HBP concentration at different values of kb. The simulations indicated that radiopharmacokinetic sensitivity to alterations in (HBP) should be possible using a neoglycoalbumin preparation with a carbohydrate density within the range of 15 to 25 galactose units per albumin molecule.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, G.; Henis, Y.I.; Sokolovsky, M.
The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization ofmore » the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.« less
Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove
McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William
2016-01-01
HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI: http://dx.doi.org/10.7554/eLife.12556.001 PMID:26824387
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi
2009-08-01
The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less
2013-01-01
Background The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. PMID:23731667
Macauley, Matthew S.; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M.; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C.
2015-01-01
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2–6Galβ1–4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. PMID:26507663
Macauley, Matthew S; Kawasaki, Norihito; Peng, Wenjie; Wang, Shui-Hua; He, Yuan; Arlian, Britni M; McBride, Ryan; Kannagi, Reiji; Khoo, Kay-Hooi; Paulson, James C
2015-12-11
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2-6Galβ1-4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations.
Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori
2017-02-01
The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.
Transport capabilities of environmental Pseudomonads for sulfur compounds
Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.; ...
2017-01-27
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerbs, Sarah; Korajczyk, Peter J.; Noirot, Philippe H.
Sulfur is an essential element in plant rhizospheres and microbial activity plays a key role in increasing the biological availability of sulfur in soil environments. To better understand the mechanisms facilitating the exchange of sulfur-containing molecules in soil, we profiled the binding specificities of eight previously uncharacterized ABC transporter solute-binding proteins from plant-associated Pseudomonads. A high-throughput screening procedure indicated eighteen significant organosulfur binding ligands, with at least one high-quality screening hit for each protein target. Calorimetric and spectroscopic methods were used to validate the best ligand assignments and catalog the thermodynamic properties of the protein-ligand interactions. Two novel high-affinity ligandmore » binding activities were identified and quantified in this set of solute binding proteins. Bacteria were cultured in minimal media with screening library components supplied as the sole sulfur sources, demonstrating that these organosulfur compounds can be metabolized and confirming the relevance of ligand assignments. These results expand the set of experimentally validated ligands amenable to transport by this ABC transporter family and demonstrate the complex range of protein-ligand interactions that can be accomplished by solute-binding proteins. As a result, characterizing new nutrient import pathways provides insight into Pseudomonad metabolic capabilities which can be used to further interrogate bacterial survival and participation in soil and rhizosphere communities.« less
Reshetnyak, Andrey V; Murray, Phillip B; Shi, Xiarong; Mo, Elizabeth S; Mohanty, Jyotidarsini; Tome, Francisco; Bai, Hanwen; Gunel, Murat; Lax, Irit; Schlessinger, Joseph
2015-12-29
Receptor tyrosine kinases (RTKs) are a class of cell surface receptors that, upon ligand binding, stimulate a variety of critical cellular functions. The orphan receptor anaplastic lymphoma kinase (ALK) is one of very few RTKs that remain without a firmly established protein ligand. Here we present a novel cytokine, FAM150B, which we propose naming augmentor-α (AUG-α), as a ligand for ALK. AUG-α binds ALK with high affinity and activates ALK in cells with subnanomolar potency. Detailed binding experiments using cells expressing ALK or the related receptor leukocyte tyrosine kinase (LTK) demonstrate that AUG-α binds and robustly activates both ALK and LTK. We show that the previously established LTK ligand FAM150A (AUG-β) is specific for LTK and only weakly binds to ALK. Furthermore, expression of AUG-α stimulates transformation of NIH/3T3 cells expressing ALK, induces IL-3 independent growth of Ba/F3 cells expressing ALK, and is expressed in neuroblastoma, a cancer partly driven by ALK. These experiments reveal the hierarchy and specificity of two cytokines as ligands for ALK and LTK and set the stage for elucidating their roles in development and disease states.
Nguyen, Khiem; Li, Jin; Puthenveetil, Robbins; Lin, Xiaochen; Poe, Michael M; Hsiao, Chia-Hung Christine; Vinogradova, Olga; Wiemer, Andrew J
2017-11-01
Small isoprenoid diphosphates, such as ( E )-4-hydroxy-3-methyl-but-2-enyl diphosphate (HMBPP), are ligands of the internal domain of BTN3A1. Ligand binding in target cells promotes activation of Vγ9Vδ2 T cells. We demonstrate by small-angle X-ray scattering (SAXS) that HMBPP binding to the internal domain of BTN3A1 induces a conformational change in the position of the B30.2 domain relative to the juxtamembrane (JM) region. To better understand the molecular details of this conformational rearrangement, NMR spectroscopy was used to discover that the JM region interacts with HMBPP, specifically at the diphosphate. The spectral location of the affected amide peaks, partial NMR assignments, and JM mutants (ST 296 AA or T 304 A) investigated, confirm that the backbone amide of at least one Thr (Thr 304 ), adjacent to conserved Ser, comes close to the HMBPP diphosphate, whereas double mutation of nonconserved residues (Ser/Thr 296/297 ) may perturb the local fold. Cellular mutation of either of the identified Thr residues reduces the activation of Vγ9Vδ2 T cells by HMBPP, zoledronate, and POM 2 -C-HMBP, but not by a partial agonist BTN3 antibody. Taken together, our results show that ligand binding to BTN3A1 induces a conformational change within the intracellular domain that involves the JM region and is required for full activation.-Nguyen, K., Li, J., Puthenveetil, R., Lin, X., Poe, M. M., Hsiao, C.-H. C., Vinogradova, O., Wiemer, A. J. The butyrophilin 3A1 intracellular domain undergoes a conformational change involving the juxtamembrane region. © FASEB.
Martin, Gregory G.; McIntosh, Avery L.; Huang, Huan; Gupta, Shipra; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm
2014-01-01
Although the human L-FABP T94A variant arises from the most commonly occurring SNP in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in complete loss of ligand binding ability and function analogous to L-FABP gene ablation. This possibility was addressed using recombinant human WT T94T and T94A variant L-FABP and cultured primary human hepatocytes. Non-conservative replacement of the medium sized, polar, uncharged T residue by a smaller, nonpolar, aliphatic A residue at position 94 of human L-FABP significantly increased L-FABP protein α-helical structure at the expense of β-sheet and concomitantly decreased thermal stability. T94A did not alter binding affinities for PPARα agonist ligands (phytanic acid, fenofibrate, fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on human L-FABP secondary structure, the active metabolite fenofibric acid altered T94A secondary structure much more than that of WT T94T L-FABP. Finally, in cultured primary human hepatocytes the T94A variant exhibited significantly reduced fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while T94A substitution did not alter the affinity of human L-FABP for PPARα agonist ligands, it significantly altered human L-FABP structure, stability, as well as conformational and functional response to fibrate. PMID:24299557
Divergent Ah Receptor Ligand Selectivity during Hominin Evolution
Hubbard, Troy D.; Murray, Iain A.; Bisson, William H.; Sullivan, Alexis P.; Sebastian, Aswathy; Perry, George H.; Jablonski, Nina G.; Perdew, Gary H.
2016-01-01
We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150–1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking. PMID:27486223
Cloud Computing for Protein-Ligand Binding Site Comparison
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824
Cloud computing for protein-ligand binding site comparison.
Hung, Che-Lun; Hua, Guan-Jie
2013-01-01
The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.
Receptor-ligand binding sites and virtual screening.
Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R
2006-01-01
Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.
Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella
2017-06-14
Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, M.; Canoll, P.D.; Musacchio, J.M.
1991-01-01
The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less
Ligand Binding Pathways and Conformational Transitions of the HIV Protease.
Miao, Yinglong; Huang, Yu-Ming M; Walker, Ross C; McCammon, J Andrew; Chang, Chia-En A
2018-03-06
It is important to determine the binding pathways and mechanisms of ligand molecules to target proteins to effectively design therapeutic drugs. Molecular dynamics (MD) is a promising computational tool that allows us to simulate protein-drug binding at an atomistic level. However, the gap between the time scales of current simulations and those of many drug binding processes has limited the usage of conventional MD, which has been reflected in studies of the HIV protease. Here, we have applied a robust enhanced simulation method, Gaussian accelerated molecular dynamics (GaMD), to sample binding pathways of the XK263 ligand and associated protein conformational changes in the HIV protease. During two of 10 independent GaMD simulations performed over 500-2500 ns, the ligand was observed to successfully bind to the protein active site. Although GaMD-derived free energy profiles were not fully converged because of insufficient sampling of the complex system, the simulations still allowed us to identify relatively low-energy intermediate conformational states during binding of the ligand to the HIV protease. Relative to the X-ray crystal structure, the XK263 ligand reached a minimum root-mean-square deviation (RMSD) of 2.26 Å during 2.5 μs of GaMD simulation. In comparison, the ligand RMSD reached a minimum of only ∼5.73 Å during an earlier 14 μs conventional MD simulation. This work highlights the enhanced sampling power of the GaMD approach and demonstrates its wide applicability to studies of drug-receptor interactions for the HIV protease and by extension many other target proteins.
NASA Astrophysics Data System (ADS)
Zhou, Zhigang; Li, Yumin
2009-10-01
As a tumor suppressor, p53 plays an important role in cancer suppression. The biological function of p53 as a tumor suppressor is disabled when it binds to S100B. Developing the ligands to block the S100B-p53 interaction has been proposed as one of the most important approaches to the development of anti-cancer agents. We screened a small compound library against the binding interface of S100B and p53 to identify potential compounds to interfere with the interaction. The ligand-binding effect on the S100B-p53 interaction was explored by molecular dynamics at the atomic level. The results show that the ligand bound between S100B and p53 propels the two proteins apart by about 2 Å compared to the unligated S100B-p53 complex. The binding affinity of S100B and p53 decreases by 8.5-14.6 kcal/mol after a ligand binds to the interface from the original unligated state of the S100B-p53 complex. Ligand-binding interferes with the interaction of S100B and p53. Such interference could impact the association of S100B and p53, which would free more p53 protein from the pairing with S100B and restore the biological function of p53 as a tumor suppressor. The analysis of the binding mode and ligand structural features would facilitate our effort to identify and design ligands to block S100B-p53 interaction effectively. The results from the work suggest that developing ligands targeting the interface of S100B and p53 could be a promising approach to recover the normal function of p53 as a tumor suppressor.
Computation of pH-Dependent Binding Free Energies
Kim, M. Olivia; McCammon, J. Andrew
2015-01-01
Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes. PMID:26202905
Measuring the Valence of Nanocrystal Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, Jonathan Scharle
2016-11-30
The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystalmore » with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.« less
A look at ligand binding thermodynamics in drug discovery.
Claveria-Gimeno, Rafael; Vega, Sonia; Abian, Olga; Velazquez-Campoy, Adrian
2017-04-01
Drug discovery is a challenging endeavor requiring the interplay of many different research areas. Gathering information on ligand binding thermodynamics may help considerably in reducing the risk within a high uncertainty scenario, allowing early rejection of flawed compounds and pushing forward optimal candidates. In particular, the free energy, the enthalpy, and the entropy of binding provide fundamental information on the intermolecular forces driving such interaction. Areas covered: The authors review the current status and recent developments in the application of ligand binding thermodynamics in drug discovery. The thermodynamic binding profile (Gibbs energy, enthalpy, and entropy of binding) can be used for lead selection and optimization (binding enthalpy, selectivity, and adaptability). Expert opinion: Binding thermodynamics provides fundamental information on the forces driving the formation of the drug-target complex. It has been widely accepted that binding thermodynamics may be used as a decision criterion along the ligand optimization process in drug discovery and development. In particular, the binding enthalpy may be used as a guide when selecting and optimizing compounds over a set of potential candidates. However, this has been recently called into question by arguing certain difficulties and in the light of certain experimental examples.
Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy
2018-07-01
The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.
Macpherson, Alex; Smith-Penzel, Susanne; Basse, Nicolas; Lecomte, Fabien; Deboves, Hervé; Taylor, Richard D.; Norman, Tim; Porter, John; Waters, Lorna C.; Westwood, Marta; Cossins, Ben; Cain, Katharine; White, James; Griffin, Robert; Prosser, Christine; Kelm, Sebastian; Sullivan, Amy H.; Fox, David; Carr, Mark D.; Henry, Alistair; Taylor, Richard; Meier, Beat H.; Oschkinat, Hartmut; Lawson, Alastair D.
2018-01-01
Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)–Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and β2-microglobulin (β2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to β2m, both of which participate in the FcRnECD–IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns. PMID:29782488
Stöppler, Daniel; Macpherson, Alex; Smith-Penzel, Susanne; Basse, Nicolas; Lecomte, Fabien; Deboves, Hervé; Taylor, Richard D; Norman, Tim; Porter, John; Waters, Lorna C; Westwood, Marta; Cossins, Ben; Cain, Katharine; White, James; Griffin, Robert; Prosser, Christine; Kelm, Sebastian; Sullivan, Amy H; Fox, David; Carr, Mark D; Henry, Alistair; Taylor, Richard; Meier, Beat H; Oschkinat, Hartmut; Lawson, Alastair D
2018-05-01
Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and β2-microglobulin (β2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to β2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.
Dong, Su-Ying; Zhao, Zhen-Wen; Ma, Hui-Min
2006-01-01
Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).
The hypothetical protein Atu4866 from Agrobacterium tumefaciens adopts a streptavidin-like fold
Ai, Xuanjun; Semesi, Anthony; Yee, Adelinda; Arrowsmith, Cheryl H.; Choy, Wing-Yiu; Li, Shawn S.C.
2008-01-01
Atu4866 is a 79-residue conserved hypothetical protein of unknown function from Agrobacterium tumefaciens. Protein sequence alignments show that it shares ≥60% sequence identity with 20 other hypothetical proteins of bacterial origin. However, the structures and functions of these proteins remain unknown so far. To gain insight into the function of this family of proteins, we have determined the structure of Atu4866 as a target of a structural genomics project using solution NMR spectroscopy. Our results reveal that Atu4866 adopts a streptavidin-like fold featuring a β-barrel/sandwich formed by eight antiparallel β-strands. Further structural analysis identified a continuous patch of conserved residues on the surface of Atu4866 that may constitute a potential ligand-binding site. PMID:18042676
EGF receptor ligands: recent advances.
Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J
2016-01-01
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.
Structural organization of G-protein-coupled receptors
NASA Astrophysics Data System (ADS)
Lomize, Andrei L.; Pogozheva, Irina D.; Mosberg, Henry I.
1999-07-01
Atomic-resolution structures of the transmembrane 7-α-helical domains of 26 G-protein-coupled receptors (GPCRs) (including opsins, cationic amine, melatonin, purine, chemokine, opioid, and glycoprotein hormone receptors and two related proteins, retinochrome and Duffy erythrocyte antigen) were calculated by distance geometry using interhelical hydrogen bonds formed by various proteins from the family and collectively applied as distance constraints, as described previously [Pogozheva et al., Biophys. J., 70 (1997) 1963]. The main structural features of the calculated GPCR models are described and illustrated by examples. Some of the features reflect physical interactions that are responsible for the structural stability of the transmembrane α-bundle: the formation of extensive networks of interhelical H-bonds and sulfur-aromatic clusters that are spatially organized as 'polarity gradients' the close packing of side-chains throughout the transmembrane domain; and the formation of interhelical disulfide bonds in some receptors and a plausible Zn2+ binding center in retinochrome. Other features of the models are related to biological function and evolution of GPCRs: the formation of a common 'minicore' of 43 evolutionarily conserved residues; a multitude of correlated replacements throughout the transmembrane domain; an Na+-binding site in some receptors, and excellent complementarity of receptor binding pockets to many structurally dissimilar, conformationally constrained ligands, such as retinal, cyclic opioid peptides, and cationic amine ligands. The calculated models are in good agreement with numerous experimental data.
Akuffo, Afua A; Alontaga, Aileen Y; Metcalf, Rainer; Beatty, Matthew S; Becker, Andreas; McDaniel, Jessica M; Hesterberg, Rebecca S; Goodheart, William E; Gunawan, Steven; Ayaz, Muhammad; Yang, Yan; Karim, Md Rezaul; Orobello, Morgan E; Daniel, Kenyon; Guida, Wayne; Yoder, Jeffrey A; Rajadhyaksha, Anjali M; Schönbrunn, Ernst; Lawrence, Harshani R; Lawrence, Nicholas J; Epling-Burnette, Pearlie K
2018-04-20
Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Hanke, Christian A.
2017-01-01
Riboswitches are genetic regulatory elements that control gene expression depending on ligand binding. The guanine-sensing riboswitch (Gsw) binds ligands at a three-way junction formed by paired regions P1, P2, and P3. Loops L2 and L3 cap the P2 and P3 helices and form tertiary interactions. Part of P1 belongs to the switching sequence dictating the fate of the mRNA. Previous studies revealed an intricate relationship between ligand binding and presence of the tertiary interactions, and between ligand binding and influence on the P1 region. However, no information is available on the interplay among these three main regions in Gsw. Here we show that stabilization of the L2-L3 region by tertiary interactions, and the ligand binding site by ligand binding, cooperatively influences the structural stability of terminal base pairs in the P1 region in the presence of Mg2+ ions. The results are based on molecular dynamics simulations with an aggregate simulation time of ~10 μs across multiple systems of the unbound state of the Gsw aptamer and a G37A/C61U mutant, and rigidity analyses. The results could explain why the three-way junction is a central structural element also in other riboswitches and how the cooperative effect could become contextual with respect to intracellular Mg2+ concentration. The results suggest that the transmission of allosteric information to P1 can be entropy-dominated. PMID:28640851
Alqarni, Mohammed; Myint, Kyaw Zeyar; Tong, Qin; Yang, Peng; Bartlow, Patrick; Wang, Lirong; Feng, Rentian; Xie, Xiang-Qun
2014-09-26
We performed molecular modeling and docking to predict a putative binding pocket and associated ligand-receptor interactions for human cannabinoid receptor 2 (CB2). Our data showed that two hydrophobic residues came in close contact with three structurally distinct CB2 ligands: CP-55,940, SR144528 and XIE95-26. Site-directed mutagenesis experiments and subsequent functional assays implicated the roles of Valine residue at position 3.32 (V113) and Leucine residue at position 5.41 (L192) in the ligand binding function and downstream signaling activities of the CB2 receptor. Four different point mutations were introduced to the wild type CB2 receptor: V113E, V113L, L192S and L192A. Our results showed that mutation of Val113 with a Glutamic acid and Leu192 with a Serine led to the complete loss of CB2 ligand binding as well as downstream signaling activities. Substitution of these residues with those that have similar hydrophobic side chains such as Leucine (V113L) and Alanine (L192A), however, allowed CB2 to retain both its ligand binding and signaling functions. Our modeling results validated by competition binding and site-directed mutagenesis experiments suggest that residues V113 and L192 play important roles in ligand binding and downstream signaling transduction of the CB2 receptor. Copyright © 2014 Elsevier Inc. All rights reserved.
2015-01-01
Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, Sarah E; Frank, Ashley M; Corgliano, Danielle M
Abstract Background: Transporter proteins are one of an organism s primary interfaces with the environment. The expressed set of transporters mediates cellular metabolic capabilities and influences signal transduction pathways and regulatory networks. The functional annotation of most transporters is currently limited to general classification into families. The development of capabilities to map ligands with specific transporters would improve our knowledge of the function of these proteins, improve the annotation of related genomes, and facilitate predictions for their role in cellular responses to environmental changes. Results: To improve the utility of the functional annotation for ABC transporters, we expressed and purifiedmore » the set of solute binding proteins from Rhodopseudomonas palustris and characterized their ligand-binding specificity. Our approach utilized ligand libraries consisting of environmental and cellular metabolic compounds, and fluorescence thermal shift based high throughput ligand binding screens. This process resulted in the identification of specific binding ligands for approximately 64% of the purified and screened proteins. The collection of binding ligands is representative of common functionalities associated with many bacterial organisms as well as specific capabilities linked to the ecological niche occupied by R. palustris. Conclusion: The functional screen identified specific ligands that bound to ABC transporter periplasmic binding subunits from R. palustris. These assignments provide unique insight for the metabolic capabilities of this organism and are consistent with the ecological niche of strain isolation. This functional insight can be used to improve the annotation of related organisms and provides a route to evaluate the evolution of this important and diverse group of transporter proteins.« less
NASA Astrophysics Data System (ADS)
Duan, Rui; Xu, Xianjin; Zou, Xiaoqin
2018-01-01
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.
Quantitative Assessment of the Interplay Between DNA Elasticity and Cooperative Binding of Ligands
NASA Astrophysics Data System (ADS)
Siman, L.; Carrasco, I. S. S.; da Silva, J. K. L.; de Oliveira, M. C.; Rocha, M. S.; Mesquita, O. N.
2012-12-01
Binding of ligands to DNA can be studied by measuring the change of the persistence length of the complex formed, in single-molecule assays. We propose a methodology for persistence length data analysis based on a quenched disorder statistical model and describing the binding isotherm by a Hill-type equation. We obtain an expression for the effective persistence length as a function of the total ligand concentration, which we apply to our data of the DNA-cationic β-cyclodextrin and to the DNA-HU protein data available in the literature, determining the values of the local persistence lengths, the dissociation constant, and the degree of cooperativity for each set of data. In both cases the persistence length behaves nonmonotonically as a function of ligand concentration and based on the results obtained we discuss some physical aspects of the interplay between DNA elasticity and cooperative binding of ligands.
Klein, Tobias; Tucker, Julie; Holdgate, Geoffrey A; Norman, Richard A; Breeze, Alexander L
2014-02-13
The binding of a ligand to its target protein is often accompanied by conformational changes of both the protein and the ligand. This is of particular interest, since structural rearrangements of the macromolecular target and the ligand influence the free energy change upon complex formation. In this study, we use X-ray crystallography, isothermal titration calorimetry, and surface-plasmon resonance biosensor analysis to investigate the binding of pyrazolylaminopyrimidine inhibitors to FGFR1 tyrosine kinase, an important anticancer target. Our results highlight that structurally close analogs of this inhibitor series interact with FGFR1 with different binding modes, which are a consequence of conformational changes in both the protein and the ligand as well as the bound water network. Together with the collected kinetic and thermodynamic data, we use the protein-ligand crystal structure information to rationalize the observed inhibitory potencies on a molecular level.
Woods, Kristina N.; Pfeffer, Jürgen; Klein-Seetharaman, Judith
2017-01-01
Retinal is the light-absorbing chromophore that is responsible for the activation of visual pigments and light-driven ion pumps. Evolutionary changes in the intermolecular interactions of the retinal with specific amino acids allow for adaptation of the spectral characteristics, referred to as spectral tuning. However, it has been proposed that a specific species of dragon fish has bypassed the adaptive evolutionary process of spectral tuning and replaced it with a single evolutionary event: photosensitization of rhodopsin by chlorophyll derivatives. Here, by using a combination of experimental measurements and computational modeling to probe retinal-receptor interactions in rhodopsin, we show how the binding of the chlorophyll derivative, chlorin-e6 (Ce6) in the intracellular domain (ICD) of the receptor allosterically excites G-protein coupled receptor class A (GPCR-A) conserved long-range correlated fluctuations that connect distant parts of the receptor. These long-range correlated motions are associated with regulating the dynamics and intermolecular interactions of specific amino acids in the retinal ligand-binding pocket that have been associated with shifts in the absorbance peak maximum (λmax) and hence, spectral sensitivity of the visual system. Moreover, the binding of Ce6 affects the overall global properties of the receptor. Specifically, we find that Ce6-induced dynamics alter the thermal stability of rhodopsin by adjusting hydrogen-bonding interactions near the receptor active-site that consequently also influences the intrinsic conformational equilibrium of the receptor. Due to the conservation of the ICD residues amongst different receptors in this class and the fact that all GPCR-A receptors share a common mechanism of activation, it is possible that the allosteric associations excited in rhodopsin with Ce6 binding are a common feature in all class A GPCRs. PMID:29312953
Naschberger, Andreas; Fürnrohr, Barbara G; Lenac Rovis, Tihana; Malic, Suzana; Scheffzek, Klaus; Dieplinger, Hans; Rupp, Bernhard
2016-12-01
The monoclonal antibody N14 is used as a detection antibody in ELISA kits for the human glycoprotein afamin, a member of the albumin family, which has recently gained interest in the capture and stabilization of Wnt signalling proteins, and for its role in metabolic syndrome and papillary thyroid carcinoma. As a rare occurrence, the N14 Fab is N-glycosylated at Asn26L at the onset of the V L 1 antigen-binding loop, with the α-1-6 core fucosylated complex glycan facing out of the L1 complementarity-determining region. The crystal structures of two non-apparent (pseudo) isomorphous crystals of the N14 Fab were analyzed, which differ significantly in the elbow angles, thereby cautioning against the overinterpretation of domain movements upon antigen binding. In addition, the map quality at 1.9 Å resolution was sufficient to crystallographically re-sequence the variable V L and V H domains and to detect discrepancies in the hybridoma-derived sequence. Finally, a conservatively refined parsimonious model is presented and its statistics are compared with those from a less conservatively built model that has been modelled more enthusiastically. Improvements to the PDB validation reports affecting ligands, clashscore and buried surface calculations are suggested.
Comparative genomics on Norrie disease gene.
Katoh, Masuko; Katoh, Masaru
2005-05-01
DAND1 (NBL1), DAND2 (CKTSF1B1 or GREM1 or GREMLIN), DAND3 (CKTSF1B2 or GREM2 or PRDC), DAND4 (CER1), DAND5 (CKTSF1B3 or GREM3 or DANTE), MUC2, MUC5AC, MUC5B, MUC6, MUC19, WISP1, WISP2, WISP3, VWF, NOV and Norrie disease (NDP or NORRIN) genes encode proteins with cysteine knot domain. Cysteine-knot superfamily proteins regulate ligand-receptor interactions for a variety of signaling pathways implicated in embryogenesis, homeostasis, and carcinogenesis. Although Ndp is unrelated to Wnt family members, Ndp is claimed to function as a ligand for Fzd4. Here, we identified and characterized rat Ndp, cow Ndp, chicken ndp and zebrafish ndp genes by using bioinformatics. Rat Ndp gene, consisting of three exons, was located within AC105563.4 genome sequence. Cow Ndp and chicken ndp complete CDS were derived from CB467544.1 EST and BX932859.2 cDNA, respectively. Zebrafish ndp gene was located within BX572627.5 genome sequence. Rat Ndp (131 aa) was a secreted protein with C-terminal cysteine knot-like (CTCK) domain. Rat Ndp showed 100, 96.9, 95.4, 87.8 and 66.4 total-amino-acid identity with mouse Ndp, cow Ndp, human NDP, chicken ndp and zebrafish ndp, respectively. Exon-intron structure of mammalian Ndp orthologs was well conserved. FOXA2, CUTL1 (CCAAT displacement protein), LMO2, CEBPA (C/EBPalpha)-binding sites and triple POU2F1 (OCT1)-binding sites were conserved among promoters of mammalian Ndp orthologs.
An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity.
Albert, Isabell; Böhm, Hannah; Albert, Markus; Feiler, Christina E; Imkampe, Julia; Wallmeroth, Niklas; Brancato, Caterina; Raaymakers, Tom M; Oome, Stan; Zhang, Heqiao; Krol, Elzbieta; Grefen, Christopher; Gust, Andrea A; Chai, Jijie; Hedrich, Rainer; Van den Ackerveken, Guido; Nürnberger, Thorsten
2015-10-05
Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.
NASA Astrophysics Data System (ADS)
Di Lella, Santiago; Petruk, Ariel A.; Armiño, Diego J. Alonso de; Álvarez, Rosa M. S.
2010-08-01
Water molecules, rigidly associated to protein surfaces, play a key role in stabilizing biomolecules and participating in their biological functions. Recent studies on the solvation properties of the carbohydrate recognition domain of Galectin-1 by means of molecular dynamic simulations have revealed the existence of several water sites which were well correlated to both the bound water molecules observed in the crystal structure of the protein in the free state and to some of the hydroxyl groups of the carbohydrate ligand observed in the crystal structure of the complexed protein. In this work, we present a study using quantum mechanical methods (B3LYP/6-311++G(3df,3dp)//B3LYP/6-31+G(d)) to determine the energy involved in the binding of these water molecules to specific amino acids in the carbohydrate recognition domain of the protein. By modeling the hydroxyl groups of the carbohydrate by methanol, the energies associated to the local interactions between the ligand and the protein have been evaluated by replacing specific water molecules with methanol. The values of the binding energies have been compared to those previously obtained by the molecular dynamic method.
NASA Astrophysics Data System (ADS)
Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe
2018-01-01
Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of sufficiently high quality are available.