Sample records for conserved quantum numbers

  1. From Feynman rules to conserved quantum numbers, I

    NASA Astrophysics Data System (ADS)

    Nogueira, P.

    2017-05-01

    In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.

  2. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Gerardo, E-mail: ortizg@indiana.edu; Cobanera, Emilio

    We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules.more » Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.« less

  4. On the role of second number-conserving functional derivatives

    NASA Astrophysics Data System (ADS)

    Gál, Tamás

    2006-06-01

    It is found that number-conserving second derivatives, of functional differentiation constrained to the domain of functional variables ρ(x) of a given norm ∫ρ(x)dx, are not obtained via two successive number-conserving differentiations, contrary to the case of unrestricted second derivatives. Investigating the role of second number-conserving derivatives, with the density-functional formulation of time-dependent quantum mechanics in focus, it is shown how number-conserving differentiation handles the dual nature of the Kohn Sham potential arising in the practical use of the theory. On the other hand, it is pointed out that number-conserving derivatives cannot resolve the causality paradox connected with the second derivative of the exchange-correlation part of the action density functional.

  5. Boltzmann-conserving classical dynamics in quantum time-correlation functions: "Matsubara dynamics".

    PubMed

    Hele, Timothy J H; Willatt, Michael J; Muolo, Andrea; Althorpe, Stuart C

    2015-04-07

    We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or "classical Wigner approximation") results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e., a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads N → ∞, such that the lowest normal-mode frequencies take their "Matsubara" values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of ħ(2) at ħ(0) (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting "Matsubara" dynamics is inherently classical (since all terms O(ħ(2)) disappear from the Matsubara Liouvillian in the limit N → ∞) and conserves the quantum Boltzmann distribution because the Matsubara Hamiltonian is symmetric with respect to imaginary-time translation. Numerical tests show that the Matsubara approximation to the quantum time-correlation function converges with respect to the number of modes and gives better agreement than LSC-IVR with the exact quantum result. Matsubara dynamics is too computationally expensive to be applied to complex systems, but its further approximation may lead to practical methods.

  6. A perspective on quantum integrability in many-body-localized and Yang-Baxter systems

    NASA Astrophysics Data System (ADS)

    Moore, Joel E.

    2017-10-01

    Two of the most active areas in quantum many-particle dynamics involve systems with an unusually large number of conservation laws. Many-body-localized systems generalize ideas of Anderson localization by disorder to interacting systems. While localization still exists with interactions and inhibits thermalization, the interactions between conserved quantities lead to some dramatic differences from the Anderson case. Quantum integrable models such as the XXZ spin chain or Bose gas with delta-function interactions also have infinite sets of conservation laws, again leading to modifications of conventional thermalization. A practical way to treat the hydrodynamic evolution from local equilibrium to global equilibrium in such models is discussed. This paper expands upon a presentation at a discussion meeting of the Royal Society on 7 February 2017. The work described was carried out with a number of collaborators, including Jens Bardarson, Vir Bulchandani, Roni Ilan, Christoph Karrasch, Siddharth Parameswaran, Frank Pollmann and Romain Vasseur. This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

  7. Quantum reference frames and their applications to thermodynamics.

    PubMed

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  8. Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2015-09-01

    We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.

  9. A renormalization group approach to identifying the local quantum numbers in a many-body localized system

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.; Oganesyan, Vadim; Refael, Gil; Tian, Binbin

    Many-body localization is a dynamical phase of matter that is characterized by the absence of thermalization. One of the key characteristics of many-body localized systems is the emergence of a large (possibly maximal) number of local integrals of motion (local quantum numbers) and corresponding conserved quantities. We formulate a robust algorithm for identifying these conserved quantities, based on Wegner's flow equations - a form of the renormalization group that works by disentangling the degrees of freedom of the system as opposed to integrating them out. We test our algorithm by explicit numerical comparison with more engineering based algorithms - Jacobi rotations and bi-partite matching. We find that the Wegner flow algorithm indeed produces the more local conserved quantities and is therefore more optimal. A preliminary analysis of the conserved quantities produced by the Wegner flow algorithm reveals the existence of at least two different localization lengthscales. Work was supported by AFOSR FA9550-10-1-0524 and FA9550-12-1-0057, the Kaufmann foundation, and SciDAC FG02-12ER46875.

  10. Symmetry restoration and quantumness reestablishment.

    PubMed

    Zeng, Guo-Mo; Wu, Lian-Ao; Xing, Hai-Jun

    2014-09-18

    A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.

  11. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  12. Third Quantization and Quantum Universes

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    2014-01-01

    We study the third quantization of the Friedmann-Robertson-Walker cosmology with N-minimal massless fields. The third quantized Hamiltonian for the Wheeler-DeWitt equation in the minisuperspace consists of infinite number of intrinsic time-dependent, decoupled oscillators. The Hamiltonian has a pair of invariant operators for each universe with conserved momenta of the fields that play a role of the annihilation and the creation operators and that construct various quantum states for the universe. The closed universe exhibits an interesting feature of transitions from stable states to tachyonic states depending on the conserved momenta of the fields. In the classical forbidden unstable regime, the quantum states have googolplex growing position and conjugate momentum dispersions, which defy any measurements of the position of the universe.

  13. Wigner flow reveals topological order in quantum phase space dynamics.

    PubMed

    Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg

    2013-01-18

    The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.

  14. Generalized hydrodynamics and non-equilibrium steady states in integrable many-body quantum systems

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Bulchandani, Vir; Karrasch, Christoph; Moore, Joel

    The long-time dynamics of thermalizing many-body quantum systems can typically be described in terms of a conventional hydrodynamics picture that results from the decay of all but a few slow modes associated with standard conservation laws (such as particle number, energy, or momentum). However, hydrodynamics is expected to fail for integrable systems that are characterized by an infinite number of conservation laws, leading to unconventional transport properties and to complex non-equilibrium states beyond the traditional dogma of statistical mechanics. In this talk, I will describe recent attempts to understand such stationary states far from equilibrium using a generalized hydrodynamics picture. I will discuss the consistency of ``Bethe-Boltzmann'' kinetic equations with linear response Drude weights and with density-matrix renormalization group calculations. This work was supported by the Department of Energy through the Quantum Materials program (R. V.), NSF DMR-1206515, AFOSR MURI and a Simons Investigatorship (J. E. M.), DFG through the Emmy Noether program KA 3360/2-1 (C. K.).

  15. Mean field dynamics of some open quantum systems

    NASA Astrophysics Data System (ADS)

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of √{N }. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit N →∞ , of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  16. Mean field dynamics of some open quantum systems.

    PubMed

    Merkli, Marco; Rafiyi, Alireza

    2018-04-01

    We consider a large number N of quantum particles coupled via a mean field interaction to another quantum system (reservoir). Our main result is an expansion for the averages of observables, both of the particles and of the reservoir, in inverse powers of [Formula: see text]. The analysis is based directly on the Dyson series expansion of the propagator. We analyse the dynamics, in the limit [Formula: see text], of observables of a fixed number n of particles, of extensive particle observables and their fluctuations, as well as of reservoir observables. We illustrate our results on the infinite mode Dicke model and on various energy-conserving models.

  17. Analytical theory and possible detection of the ac quantum spin Hall effect

    DOE PAGES

    Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...

    2017-07-11

    Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  18. Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Xing; Liu, Chao-Xing

    2018-04-01

    One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.

  19. Entanglement Entropy of Eigenstates of Quantum Chaotic Hamiltonians.

    PubMed

    Vidmar, Lev; Rigol, Marcos

    2017-12-01

    In quantum statistical mechanics, it is of fundamental interest to understand how close the bipartite entanglement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with a deviation that is, at most, a constant. Here we prove that, in a system that is away from half filling and divided in two equal halves, an upper bound for the average entanglement entropy of random pure states with a fixed particle number and normally distributed real coefficients exhibits a deviation from the maximal value that grows with the square root of the volume of the system. Exact numerical results for highly excited eigenstates of a particle number conserving quantum chaotic model indicate that the bound is saturated with increasing system size.

  20. Bipartite charge fluctuations in one-dimensional Z2 superconductors and insulators

    NASA Astrophysics Data System (ADS)

    Herviou, Loïc; Mora, Christophe; Le Hur, Karyn

    2017-09-01

    Bipartite charge fluctuations (BCFs) have been introduced to provide an experimental indication of many-body entanglement. They have proved themselves to be a very efficient and useful tool to characterize quantum phase transitions in a variety of quantum models conserving the total number of particles (or magnetization for spin systems) and can be measured experimentally. We study the BCFs in generic one-dimensional Z2 (topological) models including the Kitaev superconducting wire model, the Ising chain, or various topological insulators such as the Su-Schrieffer-Heeger model. The considered charge (either the fermionic number or the relative density) is no longer conserved, leading to macroscopic fluctuations of the number of particles. We demonstrate that at phase transitions characterized by a linear dispersion, the BCFs probe the change in a winding number that allows one to pinpoint the transition and corresponds to the topological invariant for standard models. Additionally, we prove that a subdominant logarithmic contribution is still present at the exact critical point. Its quantized coefficient is universal and characterizes the critical model. Results are extended to the Rashba topological nanowires and to the X Y Z model.

  1. Entangled states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  2. Parafermionic zero modes in gapless edge states

    NASA Astrophysics Data System (ADS)

    Clarke, David

    It has been recently demonstrated1 that Majorana zero modes may occur in the gapless edge of Abelian quantum Hall states at a boundary between different edge phases bordering the same bulk. Such a zero mode is guaranteed to occur when an edge phase that supports fermionic excitations borders one that does not. Here we generalize to the non-charge conserving case such as may occur when a superconductor abuts the quantum Hall edge. We find that not only Majorana zero modes, but their ℤN generalizations (known as parafermionic zero modes) may occur at boundaries between edge phases in a fractional quantum Hall state. In particular, we find thst the ν = 1 / 3 fractional quantum Hall state supports topologically distinct edge phases separated by ℤ3 parafermionic zero modes when charge conservation is broken. Paradoxically, an arrangement of phases can be made such that only an odd number of localized parafermionic zero modes occur around the edge of a quantum Hall droplet. Such an arrangement is not allowed in a gapped system, but here the paradox is resolved due to an extended zero mode in the edge spectrum. LPS-MPO-CMTC, JQI-NSF-PFC, Microsoft Station Q.

  3. Performances and robustness of quantum teleportation with identical particles

    PubMed Central

    Marzolino, Ugo; Buchleitner, Andreas

    2016-01-01

    When quantum teleportation is performed with truly identical massive particles, indistinguishability allows us to teleport addressable degrees of freedom which do not identify particles, but, for example, orthogonal modes. The key resource of the protocol is a state of entangled modes, but the conservation of the total number of particles does not allow for perfect deterministic teleportation unless the number of particles in the resource state goes to infinity. Here, we study the convergence of teleportation performances in the above limit and provide sufficient conditions for asymptotic perfect teleportation. We also apply these conditions to the case of resource states affected by noise. PMID:26997896

  4. Performances and robustness of quantum teleportation with identical particles.

    PubMed

    Marzolino, Ugo; Buchleitner, Andreas

    2016-01-01

    When quantum teleportation is performed with truly identical massive particles, indistinguishability allows us to teleport addressable degrees of freedom which do not identify particles, but, for example, orthogonal modes. The key resource of the protocol is a state of entangled modes, but the conservation of the total number of particles does not allow for perfect deterministic teleportation unless the number of particles in the resource state goes to infinity. Here, we study the convergence of teleportation performances in the above limit and provide sufficient conditions for asymptotic perfect teleportation. We also apply these conditions to the case of resource states affected by noise.

  5. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Moore, Joel E.

    2016-06-01

    We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.

  6. Conservative classical and quantum resolution limits for incoherent imaging

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2018-06-01

    I propose classical and quantum limits to the statistical resolution of two incoherent optical point sources from the perspective of minimax parameter estimation. Unlike earlier results based on the Cramér-Rao bound (CRB), the limits proposed here, based on the worst-case error criterion and a Bayesian version of the CRB, are valid for any biased or unbiased estimator and obey photon-number scalings that are consistent with the behaviours of actual estimators. These results prove that, from the minimax perspective, the spatial-mode demultiplexing measurement scheme recently proposed by Tsang, Nair, and Lu [Phys. Rev. X 2016, 6 031033.] remains superior to direct imaging for sufficiently high photon numbers.

  7. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    DOE PAGES

    Brandino, G. P.; Caux, J. -S.; Konik, R. M.

    2015-12-16

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking,more » we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.« less

  8. Fermion-to-qubit mappings with varying resource requirements for quantum simulation

    NASA Astrophysics Data System (ADS)

    Steudtner, Mark; Wehner, Stephanie

    2018-06-01

    The mapping of fermionic states onto qubit states, as well as the mapping of fermionic Hamiltonian into quantum gates enables us to simulate electronic systems with a quantum computer. Benefiting the understanding of many-body systems in chemistry and physics, quantum simulation is one of the great promises of the coming age of quantum computers. Interestingly, the minimal requirement of qubits for simulating Fermions seems to be agnostic of the actual number of particles as well as other symmetries. This leads to qubit requirements that are well above the minimal requirements as suggested by combinatorial considerations. In this work, we develop methods that allow us to trade-off qubit requirements against the complexity of the resulting quantum circuit. We first show that any classical code used to map the state of a fermionic Fock space to qubits gives rise to a mapping of fermionic models to quantum gates. As an illustrative example, we present a mapping based on a nonlinear classical error correcting code, which leads to significant qubit savings albeit at the expense of additional quantum gates. We proceed to use this framework to present a number of simpler mappings that lead to qubit savings with a more modest increase in gate difficulty. We discuss the role of symmetries such as particle conservation, and savings that could be obtained if an experimental platform could easily realize multi-controlled gates.

  9. Diagonal and off-diagonal susceptibilities of conserved quantities in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar

    2016-12-01

    Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.

  10. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  11. Thermodynamics of quantum systems with multiple conserved quantities

    PubMed Central

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul

    2016-01-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems. PMID:27384384

  12. Angular momentum conservation law in light-front quantum field theory

    DOE PAGES

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    2017-03-31

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  13. Angular momentum conservation law in light-front quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3, the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QED andmore » QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  14. Angular momentum conservation law in light-front quantum field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Kelly Yu-Ju; Brodsky, Stanley J.

    We prove the Lorentz invariance of the angular momentum conservation law and the helicity sum rule for relativistic composite systems in the light-front formulation. We explicitly show that j 3 , the z -component of the angular momentum remains unchanged under Lorentz transformations generated by the light-front kinematical boost operators. The invariance of j 3 under Lorentz transformations is a feature unique to the front form. Applying the Lorentz invariance of the angular quantum number in the front form, we obtain a selection rule for the orbital angular momentum which can be used to eliminate certain interaction vertices in QEDmore » and QCD. We also generalize the selection rule to any renormalizable theory and show that there exists an upper bound on the change of orbital angular momentum in scattering processes at any fixed order in perturbation theory.« less

  15. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  16. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  17. Toward quantum plasmonic networks

    DOE PAGES

    Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...

    2016-08-30

    Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less

  18. Evaporation of (quantum) black holes and energy conservation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-03-01

    We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. This has consequences for the information loss paradox since the non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the backscattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.

  19. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain

    PubMed Central

    Lubatsch, Andreas; Frank, Regine

    2015-01-01

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes. PMID:26593237

  20. Tuning the Quantum Efficiency of Random Lasers - Intrinsic Stokes-Shift and Gain.

    PubMed

    Lubatsch, Andreas; Frank, Regine

    2015-11-23

    We report the theoretical analysis for tuning the quantum efficiency of solid state random lasers. Vollhardt-Wölfle theory of photonic transport in disordered non-conserving and open random media, is coupled to lasing dynamics and solved positionally dependent. The interplay of non-linearity and homogeneous non-radiative frequency conversion by means of a Stokes-shift leads to a reduction of the quantum efficiency of the random laser. At the threshold a strong decrease of the spot-size in the stationary state is found due to the increase of non-radiative losses. The coherently emitted photon number per unit of modal surface is also strongly reduced. This result allows for the conclusion that Stokes-shifts are not sufficient to explain confined and extended mode regimes.

  1. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

    NASA Astrophysics Data System (ADS)

    Scherer, Artur; Valiron, Benoît; Mau, Siun-Chuon; Alexander, Scott; van den Berg, Eric; Chapuran, Thomas E.

    2017-03-01

    We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X, Y, Z, H, S, T, { CNOT } }. In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N=332{,}020{,}680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ɛ =0.01 requires an approximate circuit width 340 and circuit depth of order 10^{25} if oracle costs are excluded, and a circuit width and circuit depth of order 10^8 and 10^{29}, respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.

  2. Energy carries information

    NASA Astrophysics Data System (ADS)

    Ilgin, Irfan; Yang, I.-Sheng

    2014-08-01

    We show that for every qubit of quantum information, there is a well-defined notion of "the amount of energy that carries it," because it is a conserved quantity. This generalizes to larger systems and any conserved quantities: the eigenvalue spectrum of conserved charges has to be preserved while transferring quantum information. It is possible to "apparently" violate these conservations by losing a small fraction of information, but that must invoke a specific process which requires a large scale coherence. We discuss its implication regarding the black hole information paradox.

  3. Time-evolution of quantum systems via a complex nonlinear Riccati equation. I. Conservative systems with time-independent Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Hans, E-mail: hans@ciencias.unam.mx; Schuch, Dieter; Castaños, Octavio, E-mail: ocasta@nucleares.unam.mx

    2015-09-15

    The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.

  4. The memory loophole

    NASA Astrophysics Data System (ADS)

    Shanahan, Daniel

    2008-05-01

    The memory loophole supposes that the measurement of an entangled pair is influenced by the measurements of earlier pairs in the same run of measurements. To assert the memory loophole is thus to deny that measurement is intrinsically random. It is argued that measurement might instead involve a process of recovery and equilibrium in the measuring apparatus akin to that described in thermodynamics by Le Chatelier's principle. The predictions of quantum mechanics would then arise from conservation of the measured property in the combined system of apparatus and measured ensemble. Measurement would be consistent with classical laws of conservation, not simply in the classical limit of large numbers, but whatever the size of the ensemble. However variances from quantum mechanical predictions would be self-correcting and centripetal, rather than Markovian and increasing as under the standard theory. Entanglement correlations would persist, not because the entangled particles act in concert (which would entail nonlocality), but because the measurements of the particles were influenced by the one fluctuating state of imbalance in the process of measurement.

  5. Trading coherence and entropy by a quantum Maxwell demon

    NASA Astrophysics Data System (ADS)

    Lebedev, A. V.; Oehri, D.; Lesovik, G. B.; Blatter, G.

    2016-11-01

    The second law of thermodynamics states that the entropy of a closed system is nondecreasing. Discussing the second law in the quantum world poses different challenges and provides different opportunities, involving fundamental quantum-information-theoretic questions and interesting quantum-engineered devices. In quantum mechanics, systems with an evolution described by a so-called unital quantum channel evolve with a nondecreasing entropy. Here, we seek the opposite, a system described by a nonunital and, furthermore, energy-conserving channel that describes a system whose entropy decreases with time. We propose a setup involving a mesoscopic four-lead scatterer augmented by a microenvironment in the form of a spin that realizes this goal. Within this nonunital and energy-conserving quantum channel, the microenvironment acts with two noncommuting operations on the system in an autonomous way. We find that the process corresponds to a partial exchange or swap between the system and environment quantum states, with the system's entropy decreasing if the environment's state is more pure. This entropy-decreasing process is naturally expressed through the action of a quantum Maxwell demon and we propose a quantum-thermodynamic engine with four qubits that extracts work from a single heat reservoir when provided with a reservoir of pure qubits. The special feature of this engine, which derives from the energy conservation in the nonunital quantum channel, is its separation into two cycles, a working cycle and an entropy cycle, allowing us to run this engine with no local waste heat.

  6. Non-conservation of global charges in the Brane Universe and baryogenesis

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gabadadze, Gregory

    1999-08-01

    We argue that global charges, such as baryon or lepton number, are not conserved in theories with the Standard Model fields localized on the brane which propagates in higher-dimensional space-time. The global-charge non-conservation is due to quantum fluctuations of the brane surface. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to ``evaporation'' into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes. As an example we discuss a possible cosmological scenario within the recently proposed ``Brane Inflation'' framework. Inflation is driven by displaced branes which slowly fall on top of each other. When the branes collide inflation stops and the Brane Universe reheats. During this non-equilibrium collision baryon number can be transported from one brane to another one. This results in the baryon number excess in our Universe which exactly equals to the hidden ``baryon number'' deficit in the other Brane Universe. © 1999

  7. Classicality condition on a system observable in a quantum measurement and a relative-entropy conservation law

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui; Ueda, Masahito

    2015-03-01

    We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.

  8. Hierarchical Partitioning of Metazoan Protein Conservation Profiles Provides New Functional Insights

    PubMed Central

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the “universal proteins”, those with homologues in all 17 other species, and of the “non-universal proteins”. A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the “tree of life” (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the “life style” of the related clades. Most previous approaches for studying function and conservation are “bottom up”, studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is “top down”. We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life. PMID:24594619

  9. Squeezing as a route to photonic analogues of topological superconductors

    NASA Astrophysics Data System (ADS)

    Houde, Martin; Peano, Vittorio; Brendel, Christian; Marquardt, Florian; Clerk, Aashish

    There has been considerable recent interest in studying topological phases of photonic systems. In many cases the resulting system is described by a quadratic particle-conserving Hamiltonian which is directly equivalent to its fermionic counterpart. Here, we consider a class of photonic topological phases where this correspondence fails: photonic systems where particle-number non-conserving terms break time-reversal symmetry. We show that these phases support protected edge modes which facilitate chiral inelastic and elastic transport channels. We also discuss the possibility of quantum amplification using these edge states. Our system could be realized in a variety of systems, including nonlinear photonic crystals, superconducting circuits and optomechanical systems.

  10. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Múnera, Héctor A., E-mail: hmunera@hotmail.com; Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America

    2016-07-07

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding amore » unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.« less

  11. Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension

    NASA Astrophysics Data System (ADS)

    Jaschke, Daniel; Wall, Michael L.; Carr, Lincoln D.

    2018-04-01

    Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose-Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them.

  12. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  13. Creation of Two-Particle Entanglement in Open Macroscopic Quantum Systems

    DOE PAGES

    Merkli, M.; Berman, G. P.; Borgonovi, F.; ...

    2012-01-01

    We considermore » an open quantum system of N not directly interacting spins (qubits) in contact with both local and collective thermal environments. The qubit-environment interactions are energy conserving. We trace out the variables of the thermal environments and N − 2 qubits to obtain the time-dependent reduced density matrix for two arbitrary qubits. We numerically simulate the reduced dynamics and the creation of entanglement (concurrence) as a function of the parameters of the thermal environments and the number of qubits, N . Our results demonstrate that the two-qubit entanglement generally decreases as N increases. We show analytically that, in the limit N → ∞ , no entanglement can be created. This indicates that collective thermal environments cannot create two-qubit entanglement when many qubits are located within a region of the size of the environment coherence length. We discuss possible relevance of our consideration to recent quantum information devices and biosystems.« less

  14. Linear stochastic Schrödinger equations in terms of quantum Bernoulli noises

    NASA Astrophysics Data System (ADS)

    Chen, Jinshu; Wang, Caishi

    2017-05-01

    Quantum Bernoulli noises (QBN) are the family of annihilation and creation operators acting on Bernoulli functionals, which satisfy a canonical anti-commutation relation. In this paper, we study linear stochastic Schrödinger equations (LSSEs) associated with QBN in the space of square integrable complex-valued Bernoulli functionals. We first rigorously prove a formula concerning the number operator N on Bernoulli functionals. And then, by using this formula as well as Mora and Rebolledo's results on a general LSSE [C. M. Mora and R. Rebolledo, Infinite. Dimens. Anal. Quantum Probab. Relat. Top. 10, 237-259 (2007)], we obtain an easily checking condition for a LSSE associated with QBN to have a unique Nr-strong solution of mean square norm conservation for given r ≥0 . Finally, as an application of this condition, we examine a special class of LSSEs associated with QBN and some further results are proven.

  15. DichotomY IdentitY: Euler-Bernoulli Numbers, Sets-Multisets, FD-BE Quantum-Statistics, 1 /f0 - 1 /f1 Power-Spectra, Ellipse-Hyperbola Conic-Sections, Local-Global Extent: ``Category-Semantics''

    NASA Astrophysics Data System (ADS)

    Rota, G.-C.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Seminal Apostol[Math.Mag.81,3,178(08);Am.Math.Month.115,9,795(08)]-Rota[Intro.Prob. Thy.(95)-p.50-55] DichotomY equivalence-class: set-theory: sets V multisets; closed V open; to Abromowitz-Stegun[Hdbk.Math.Fns.(64)]-ch.23,p.803!]: numbers/polynomials generating-functions: Euler V Bernoulli; to Siegel[Schrodinger Cent.Symp.(87); Symp.Fractals, MRS Fall Mtg.,(1989)-5-papers!] power-spectrum: 1/ f {0}-White V 1/ f {1}-Zipf/Pink (Archimedes) HYPERBOLICITY INEVITABILITY; to analytic-geometry Conic-Sections: Ellipse V (via Parabola) V Hyperbola; to Extent/Scale/Radius: Locality V Globality, Root-Causes/Ultimate-Origins: Dimensionality: odd-Z V (via fractal) V even-Z, to Symmetries/(Noether's-theorem connected)/Conservation-Laws Dichotomy: restored/conservation/convergence=0- V broken/non-conservation/divergence=/=0: with asymptotic-limit antipodes morphisms/ crossovers: Eureka!!!; "FUZZYICS"=''CATEGORYICS''!!! Connection to Kummer(1850) Bernoulli-numbers proof of FLT is via Siegel(CCNY;1964) < (1994)[AMS Joint Mtg. (2002)-Abs.973-60-124] short succinct physics proof: FLT = Least-Action Principle!!!

  16. Soft Hair on Black Holes

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen W.; Perry, Malcolm J.; Strominger, Andrew

    2016-06-01

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  17. Soft Hair on Black Holes.

    PubMed

    Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew

    2016-06-10

    It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.

  18. Optimal performance of generalized heat engines with finite-size baths of arbitrary multiple conserved quantities beyond independent-and-identical-distribution scaling

    NASA Astrophysics Data System (ADS)

    Ito, Kosuke; Hayashi, Masahito

    2018-01-01

    In quantum thermodynamics, effects of finiteness of the baths have been less considered. In particular, there is no general theory which focuses on finiteness of the baths of multiple conserved quantities. Then, we investigate how the optimal performance of generalized heat engines with multiple conserved quantities alters in response to the size of the baths. In the context of general theories of quantum thermodynamics, the size of the baths has been given in terms of the number of identical copies of a system, which does not cover even such a natural scaling as the volume. In consideration of the asymptotic extensivity, we deal with a generic scaling of the baths to naturally include the volume scaling. Based on it, we derive a bound for the performance of generalized heat engines reflecting finite-size effects of the baths, which we call fine-grained generalized Carnot bound. We also construct a protocol to achieve the optimal performance of the engine given by this bound. Finally, applying the obtained general theory, we deal with simple examples of generalized heat engines. As for an example of non-independent-and-identical-distribution scaling and multiple conserved quantities, we investigate a heat engine with two baths composed of an ideal gas exchanging particles, where the volume scaling is applied. The result implies that the mass of the particle explicitly affects the performance of this engine with finite-size baths.

  19. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    PubMed

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  20. Experimental tests of coherence and entanglement conservation under unitary evolutions

    NASA Astrophysics Data System (ADS)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  1. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    NASA Astrophysics Data System (ADS)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  2. Machine learning of accurate energy-conserving molecular force fields.

    PubMed

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E; Poltavsky, Igor; Schütt, Kristof T; Müller, Klaus-Robert

    2017-05-01

    Using conservation of energy-a fundamental property of closed classical and quantum mechanical systems-we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol -1 for energies and 1 kcal mol -1 Å̊ -1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  3. Machine learning of accurate energy-conserving molecular force fields

    PubMed Central

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel E.; Poltavsky, Igor; Schütt, Kristof T.; Müller, Klaus-Robert

    2017-01-01

    Using conservation of energy—a fundamental property of closed classical and quantum mechanical systems—we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potential energy surfaces of intermediate-sized molecules with an accuracy of 0.3 kcal mol−1 for energies and 1 kcal mol−1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods. PMID:28508076

  4. Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws

    NASA Astrophysics Data System (ADS)

    von Keyserlingk, C. W.; Rakovszky, Tibor; Pollmann, Frank; Sondhi, S. L.

    2018-04-01

    Thermalization and scrambling are the subject of much recent study from the perspective of many-body quantum systems with locally bounded Hilbert spaces ("spin chains"), quantum field theory, and holography. We tackle this problem in 1D spin chains evolving under random local unitary circuits and prove a number of exact results on the behavior of out-of-time-ordered commutators (OTOCs) and entanglement growth in this setting. These results follow from the observation that the spreading of operators in random circuits is described by a "hydrodynamical" equation of motion, despite the fact that random unitary circuits do not have locally conserved quantities (e.g., no conserved energy). In this hydrodynamic picture, quantum information travels in a front with a "butterfly velocity" vB that is smaller than the light-cone velocity of the system, while the front itself broadens diffusively in time. The OTOC increases sharply after the arrival of the light cone, but we do not observe a prolonged exponential regime of the form ˜eλL(t -x /v ) for a fixed Lyapunov exponent λL. We find that the diffusive broadening of the front has important consequences for entanglement growth, leading to an entanglement velocity that can be significantly smaller than the butterfly velocity. We conjecture that the hydrodynamical description applies to more generic Floquet ergodic systems, and we support this idea by verifying numerically that the diffusive broadening of the operator wavefront also holds in a more traditional nonrandom Floquet spin chain. We also compare our results to Clifford circuits, which have less rich hydrodynamics and consequently trivial OTOC behavior, but which can nevertheless exhibit linear entanglement growth and thermalization.

  5. Berry phase and Hannay angle of an interacting boson system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S. C.; Graduate School, China Academy of Engineering Physics, Beijing 100088; Liu, J.

    2011-04-15

    In the present paper, we investigate the Berry phase and the Hannay angle of an interacting two-mode boson system and obtain their analytic expressions in explicit forms. The relation between the Berry phase and the Hannay angle is discussed. We find that, in the large-particle-number limit, the classical Hannay angle equals the particle number derivative of the quantum Berry phase except for a sign. This relationship is applicable to other many-body boson systems where the coherent-state description is available and the total particle number is conserved. The measurement of the classical Hannay angle in the many-body systems is briefly discussedmore » as well.« less

  6. Non-conserved magnetization operator and 'fire-and-ice' ground states in the Ising-Heisenberg diamond chain

    NASA Astrophysics Data System (ADS)

    Torrico, Jordana; Ohanyan, Vadim; Rojas, Onofre

    2018-05-01

    We consider the diamond chain with S = 1/2 XYZ vertical dimers which interact with the intermediate sites via the interaction of the Ising type. We also suppose all four spins form the diamond-shaped plaquette to have different g-factors. The non-uniform g-factors within the quantum spin dimer as well as the XY-anisotropy of the exchange interaction lead to the non-conserving magnetization for the chain. We analyze the effects of non-conserving magnetization as well as the effects of the appearance of negative g-factors among the spins from the unit cell. A number of unusual frustrated states for ferromagnetic couplings and g-factors with non-uniform signs are found out. These frustrated states generalize the "half-fire-half-ice" state introduced in reference Yin et al. (2015). The corresponding zero-temperature ground state phase diagrams are presented.

  7. Electron-impact vibrational relaxation in high-temperature nitrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1992-01-01

    Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.

  8. Coherence Evolution and Transfer Supplemented by Sender's Initial-State Restoring

    NASA Astrophysics Data System (ADS)

    Fel'dman, E. B.; Zenchuk, A. I.

    2017-12-01

    The evolution of quantum coherences comes with a set of conservation laws provided that the Hamiltonian governing this evolution conserves the spin-excitation number. At that, coherences do not intertwist during the evolution. Using the transmission line and the receiver in the initial ground state we can transfer the coherences to the receiver without interaction between them, although the matrix elements contributing to each particular coherence intertwist in the receiver's state. Therefore we propose a tool based on the unitary transformation at the receiver side to untwist these elements and thus restore (at least partially) the structure of the sender's initial density matrix. A communication line with two-qubit sender and receiver is considered as an example of implementation of this technique.

  9. Darkessence

    NASA Astrophysics Data System (ADS)

    Gu, Je-An

    2014-01-01

    Darkessence, the dark source of anti-gravity and that of attractive gravity, serves as the largest testing ground of the interplay between quantum matter and classical gravity. We expect it to shed light on the conflict between quantum physics and gravity, the most important puzzle in fundamental physics in the 21st century. In this paper we attempt to reveal the guidelines hinted by darkessence for clarifying or even resolving the conflict. To this aim, we question (1) the compatibility of the renormalization-group (RG) running with the energy conservation, (2) the effectiveness of an effective action in quantum field theory for describing the gravitation of quantum matter, and (3) the way quantum vacuum energy gravitates. These doubts illustrate the conflict and suggest several guidelines on the resolution: the preservation of the energy conservation and the equivalence principle (or its variant) under RG running, and a natural relief of the vacuum energy catastrophe.

  10. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2011-03-14

    We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.

  11. Importance of counter-rotating coupling in the superfluid-to-Mott-insulator quantum phase transition of light in the Jaynes-Cummings lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Hang; Takada, Yasutami

    2011-10-15

    The quantum phase transition between Mott insulator and superfluid is studied in the two-dimensional Jaynes-Cummings square lattice in which the counter-rotating coupling (CRC) is included. Both the ground state and the spectra of low-lying excitations are obtained with use of a sophisticated unitary transformation. This CRC is shown not only to induce a long-range interaction between cavities, favoring the long-range superfluid order, but also to break the conservation of local polariton number at each site, leading to the absence of the Mott lobes in the phase diagram, in sharp contrast with the case without the CRC as well as thatmore » of the Bose-Hubbard model.« less

  12. Charge distributions and correlations in fragmentation models for soft hadron collisions

    NASA Astrophysics Data System (ADS)

    de Wolf, E. A.

    1984-03-01

    Data on charge distributions and charge correlations in pp and meson-proton interactions at PS and SPS energies are successfully compared with the Lund fragmentation model for low- P T hadron collisions. It is argued that local conservation of quantum numbers and resonance production, as implemented in fragmentation models, are sufficient ingredients to explain most of the available experimental results at these energies. No necessity is found for dual-sheet contributions considered in DTU-based parton models.

  13. Measuring effective temperatures in a generalized Gibbs ensemble

    NASA Astrophysics Data System (ADS)

    Foini, Laura; Gambassi, Andrea; Konik, Robert; Cugliandolo, Leticia F.

    2017-05-01

    The local physical properties of an isolated quantum statistical system in the stationary state reached long after a quench are generically described by the Gibbs ensemble, which involves only its Hamiltonian and the temperature as a parameter. If the system is instead integrable, additional quantities conserved by the dynamics intervene in the description of the stationary state. The resulting generalized Gibbs ensemble involves a number of temperature-like parameters, the determination of which is practically difficult. Here we argue that in a number of simple models these parameters can be effectively determined by using fluctuation-dissipation relationships between response and correlation functions of natural observables, quantities which are accessible in experiments.

  14. Covariant Approach of the Dynamics of Particles in External Gauge Fields, Killing Tensors and Quantum Gravitational Anomalies

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2011-04-01

    We give an overview of the first integrals of motion of particles in the presence of external gauge fields in a covariant Hamiltonian approach. The special role of Stäckel-Killing and Killing-Yano tensors is pointed out. Some nontrivial examples involving Runge-Lenz type conserved quantities are explicitly worked out. A condition of the electromagnetic field to maintain the hidden symmetry of the system is stated. A concrete realization of this condition is given by the Killing-Maxwell system and exemplified with the Kerr metric. Quantum symmetry operators for the Klein-Gordon and Dirac equations are constructed from Killing tensors. The transfer of the classical conserved quantities to the quantum mechanical level is analyzed in connection with quantum anomalies.

  15. Machine Learning of Accurate Energy-Conserving Molecular Force Fields

    NASA Astrophysics Data System (ADS)

    Chmiela, Stefan; Tkatchenko, Alexandre; Sauceda, Huziel; Poltavsky, Igor; Schütt, Kristof; Müller, Klaus-Robert; GDML Collaboration

    Efficient and accurate access to the Born-Oppenheimer potential energy surface (PES) is essential for long time scale molecular dynamics (MD) simulations. Using conservation of energy - a fundamental property of closed classical and quantum mechanical systems - we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio MD trajectories (AIMD). The GDML implementation is able to reproduce global potential-energy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol for energies and 1 kcal/mol/Å for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, malonaldehyde, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative MD simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

  16. Information Theoretic Characterization of Physical Theories with Projective State Space

    NASA Astrophysics Data System (ADS)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  17. Time-Dependent Density Functional Theory for Open Systems and Its Applications.

    PubMed

    Chen, Shuguang; Kwok, YanHo; Chen, GuanHua

    2018-02-20

    Photovoltaic devices, electrochemical cells, catalysis processes, light emitting diodes, scanning tunneling microscopes, molecular electronics, and related devices have one thing in common: open quantum systems where energy and matter are not conserved. Traditionally quantum chemistry is confined to isolated and closed systems, while quantum dissipation theory studies open quantum systems. The key quantity in quantum dissipation theory is the reduced system density matrix. As the reduced system density matrix is an O(M! × M!) matrix, where M is the number of the particles of the system of interest, quantum dissipation theory can only be employed to simulate systems of a few particles or degrees of freedom. It is thus important to combine quantum chemistry and quantum dissipation theory so that realistic open quantum systems can be simulated from first-principles. We have developed a first-principles method to simulate the dynamics of open electronic systems, the time-dependent density functional theory for open systems (TDDFT-OS). Instead of the reduced system density matrix, the key quantity is the reduced single-electron density matrix, which is an N × N matrix where N is the number of the atomic bases of the system of interest. As the dimension of the key quantity is drastically reduced, the TDDFT-OS can thus be used to simulate the dynamics of realistic open electronic systems and efficient numerical algorithms have been developed. As an application, we apply the method to study how quantum interference develops in a molecular transistor in time domain. We include electron-phonon interaction in our simulation and show that quantum interference in the given system is robust against nuclear vibration not only in the steady state but also in the transient dynamics. As another application, by combining TDDFT-OS with Ehrenfest dynamics, we study current-induced dissociation of water molecules under scanning tunneling microscopy and follow its time dependent dynamics. Given the rapid development in ultrafast experiments with atomic resolution in recent years, time dependent simulation of open electronic systems will be useful to gain insight and understanding of such experiments. This Account will mainly focus on the practical aspects of the TDDFT-OS method, describing the numerical implementation and demonstrating the method with applications.

  18. Quantum stochastic calculus associated with quadratic quantum noises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculusmore » extends the Hudson-Parthasarathy quantum stochastic calculus.« less

  19. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J

    2015-06-28

    We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.

  20. Stochastic mechanics of reciprocal diffusions

    NASA Astrophysics Data System (ADS)

    Levy, Bernard C.; Krener, Arthur J.

    1996-02-01

    The dynamics and kinematics of reciprocal diffusions were examined in a previous paper [J. Math. Phys. 34, 1846 (1993)], where it was shown that reciprocal diffusions admit a chain of conservation laws, which close after the first two laws for two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffusions. For the case of quantum diffusions, the conservation laws are equivalent to Schrödinger's equation. The Markov diffusions were employed by Schrödinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math Kl. 144 (1931); Ann. Inst. H. Poincaré 2, 269 (1932)], Nelson [Dynamical Theories of Brownian Motion (Princeton University, Princeton, NJ, 1967); Quantum Fluctuations (Princeton University, Princeton, NJ, 1985)], and other researchers to develop stochastic formulations of quantum mechanics, called stochastic mechanics. We propose here an alternative version of stochastic mechanics based on quantum diffusions. A procedure is presented for constructing the quantum diffusion associated to a given wave function. It is shown that quantum diffusions satisfy the uncertainty principle, and have a locality property, whereby given two dynamically uncoupled but statistically correlated particles, the marginal statistics of each particle depend only on the local fields to which the particle is subjected. However, like Wigner's joint probability distribution for the position and momentum of a particle, the finite joint probability densities of quantum diffusions may take negative values.

  1. Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain

    NASA Astrophysics Data System (ADS)

    Bulchandani, Vir B.; Vasseur, Romain; Karrasch, Christoph; Moore, Joel E.

    2018-01-01

    Quantum integrable systems, such as the interacting Bose gas in one dimension and the XXZ quantum spin chain, have an extensive number of local conserved quantities that endow them with exotic thermalization and transport properties. We discuss recently introduced hydrodynamic approaches for such integrable systems from the viewpoint of kinetic theory and extend the previous works by proposing a numerical scheme to solve the hydrodynamic equations for finite times and arbitrary locally equilibrated initial conditions. We then discuss how such methods can be applied to describe nonequilibrium steady states involving ballistic heat and spin currents. In particular, we show that the spin Drude weight in the XXZ chain, previously accessible only by rigorous techniques of limited scope or controversial thermodynamic Bethe ansatz arguments, may be evaluated from hydrodynamics in very good agreement with density-matrix renormalization group calculations.

  2. Measuring effective temperatures in a generalized Gibbs ensemble

    DOE PAGES

    Foini, Laura; Gambassi, Andrea; Konik, Robert; ...

    2017-05-11

    The local physical properties of an isolated quantum statistical system in the stationary state reached long after a quench are generically described by the Gibbs ensemble, which involves only its Hamiltonian and the temperature as a parameter. Additional quantities conserved by the dynamics intervene in the description of the stationary state, if the system is instead integrable. The resulting generalized Gibbs ensemble involves a number of temperature-like parameters, the determination of which is practically difficult. We argue that in a number of simple models these parameters can be effectively determined by using fluctuation-dissipation relationships between response and correlation functions ofmore » natural observables, quantities which are accessible in experiments.« less

  3. Atomic parity violation as a probe of new physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marciano, W.J.; Rosner, J.L.

    Effects of physics beyond the standard model on electroweak observables ares studied using the Peskin-Takeuchi isospin-conserving, {ital S}, and -breaking, {ital T}, parametrization of new'' quantum loop corrections. Experimental constraints on {ital S} and {ital T} are presented. Atomic parity-violating experiments are shown to be particularly sensitive to {ital S} with existing data giving {ital S}={minus}2.7{plus minus}2.0{plus minus}1.1. That constraint has important implications for generic technicolor models which predict {ital S}{approx equal}0.1{ital N}{sub {ital T}}{ital N}{sub {ital D}} ({ital N}{sub {ital T}} is the number of technicolors, {ital N}{sub {ital D}} is the number of technidoublets).

  4. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabowski, M.P.; Mathieu, P.

    1995-11-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, formore » two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model`s free parameter for all charges is derived in closed form. 62 refs., 4 figs.« less

  5. Entropy Conservation of Linear Dilaton Black Holes in Quantum Corrected Hawking Radiation

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Halilsoy, M.; Pasaoglu, H.

    2011-10-01

    It has been shown recently that information is lost in the Hawking radiation of the linear dilaton black holes in various theories when applying the tunneling formalism of Parikh and Wilczek without considering quantum gravity effects. In this paper, we recalculate the emission probability by taking into account the log-area correction to the Bekenstein-Hawking entropy and the statistical correlation between quanta emitted. The crucial role of the quantum gravity effects on the information leakage and black hole remnant is highlighted. The entropy conservation of the linear dilaton black holes is discussed in detail. We also model the remnant as an extreme linear dilaton black hole with a pointlike horizon in order to show that such a remnant cannot radiate and its temperature becomes zero. In summary, we show that the information can also leak out of the linear dilaton black holes together with preserving unitarity in quantum mechanics.

  6. Tensor network states and algorithms in the presence of a global SU(2) symmetry

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Vidal, Guifre

    2012-11-01

    The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g., with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely, (i) [Singh, Pfeifer, and Vidal, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.050301 82, 050301 (2010)] and (ii) [Singh, Pfeifer, and Vidal, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.115125 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible, and multiplicity free, acting as a global internal symmetry. Then, in (ii) we described the implementation of Abelian group symmetries in much more detail, considering a U(1) symmetry (e.g., conservation of global particle number) as a concrete example. In this paper, we describe the implementation of non-Abelian group symmetries in great detail. For concreteness, we consider an SU(2) symmetry (e.g., conservation of global quantum spin). Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multiscale entanglement renormalization ansatz and apply it to study the low-energy spectrum of a quantum spin chain with a global SU(2) symmetry.

  7. Relations between dissipated work and Rényi divergences in the generalized Gibbs ensemble

    NASA Astrophysics Data System (ADS)

    Wei, Bo-Bo

    2018-04-01

    In this work, we show that the dissipation in a many-body system under an arbitrary nonequilibrium process is related to the Rényi divergences between two states along the forward and reversed dynamics under a very general family of initial conditions. This relation generalizes the links between dissipated work and Rényi divergences to quantum systems with conserved quantities whose equilibrium state is described by the generalized Gibbs ensemble. The relation is applicable for quantum systems with conserved quantities and can be applied to protocols driving the system between integrable and chaotic regimes. We demonstrate our ideas by considering the one-dimensional transverse quantum Ising model and the Jaynes-Cummings model which are driven out of equilibrium.

  8. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  9. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  10. Different realizations of Cooper-Frye sampling with conservation laws

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Oliinychenko, D.; Pang, L.-G.; Ryu, S.; Petersen, H.

    2018-01-01

    Approaches based on viscous hydrodynamics for the hot and dense stage and hadronic transport for the final dilute rescattering stage are successfully applied to the dynamic description of heavy ion reactions at high beam energies. One crucial step in such hybrid approaches is the so-called particlization, which is the transition between the hydrodynamic description and the microscopic degrees of freedom. For this purpose, individual particles are sampled on the Cooper-Frye hypersurface. In this work, four different realizations of the sampling algorithms are compared, with three of them incorporating the global conservation laws of quantum numbers in each event. The algorithms are compared within two types of scenarios: a simple ‘box’ hypersurface consisting of only one static cell and a typical particlization hypersurface for Au+Au collisions at \\sqrt{{s}{NN}}=200 {GeV}. For all algorithms the mean multiplicities (or particle spectra) remain unaffected by global conservation laws in the case of large volumes. In contrast, the fluctuations of the particle numbers are affected considerably. The fluctuations of the newly developed SPREW algorithm based on the exponential weight, and the recently suggested SER algorithm based on ensemble rejection, are smaller than those without conservation laws and agree with the expectation from the canonical ensemble. The previously applied mode sampling algorithm produces dramatically larger fluctuations than expected in the corresponding microcanonical ensemble, and therefore should be avoided in fluctuation studies. This study might be of interest for the investigation of particle fluctuations and correlations, e.g. the suggested signatures for a phase transition or a critical endpoint, in hybrid approaches that are affected by global conservation laws.

  11. A minimalist approach to conceptualization of time in quantum theory

    NASA Astrophysics Data System (ADS)

    Kitada, Hitoshi; Jeknić-Dugić, Jasmina; Arsenijević, Momir; Dugić, Miroljub

    2016-12-01

    Ever since Schrödinger, Time in quantum theory is postulated Newtonian for every reference frame. With the help of certain known mathematical results, we show that the concept of the so-called Local Time allows avoiding the postulate. In effect, time appears as neither fundamental nor universal on the quantum-mechanical level while being consistently attributable to every, at least approximately, closed quantum system as well as to every of its (conservative or not) subsystems.

  12. On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation

    NASA Astrophysics Data System (ADS)

    San, Sait; Yaşar, Emrullah

    2015-05-01

    In this study, the nonlocal conservation theorem and multiplier approach are performed on the 1 + 1 dimensional Derrida-Lebowitz-Speer-Spohn (DLSS) equation which arises in quantum semi conductor theory. We obtain local conservation laws by using the both methods. Furthermore by utilizing the relationship between conservation laws and Lie point symmetries, the DLSS equation is reduced to third order ordinary differential equation.

  13. Time-dependent generalized Gibbs ensembles in open quantum systems

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2018-04-01

    Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.

  14. Dark Energy from Violation of Energy Conservation.

    PubMed

    Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel

    2017-01-13

    In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation-nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale-and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.

  15. Dark Energy from Violation of Energy Conservation

    NASA Astrophysics Data System (ADS)

    Josset, Thibaut; Perez, Alejandro; Sudarsky, Daniel

    2017-01-01

    In this Letter, we consider the possibility of reconciling metric theories of gravitation with a violation of the conservation of energy-momentum. Under some circumstances, this can be achieved in the context of unimodular gravity, and it leads to the emergence of an effective cosmological constant in Einstein's equation. We specifically investigate two potential sources of energy nonconservation—nonunitary modifications of quantum mechanics and phenomenological models motivated by quantum gravity theories with spacetime discreteness at the Planck scale—and show that such locally negligible phenomena can nevertheless become relevant at the cosmological scale.

  16. Multipion correlations induced by isospin conservation of coherent emission

    DOE PAGES

    Gangadharan, Dhevan

    2016-09-15

    Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made formore » two, three- and four-pion correlation functions and compared to the data from the LHC.« less

  17. Information Conservation is Fundamental: Recovering the Lost Information in Hawking Radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-Yu; Zhan, Ming-Sheng; You, Li

    2013-06-01

    In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed "information loss paradox." Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously considered lost, assuming the nonthermal spectrum of Parikh and Wilczek. Thus the information loss paradox can be falsified through experiments by detecting correlations, for instance, through measuring the covariances of Hawking radiations from black holes, such as the manmade ones speculated to appear in LHC experiments. The affirmation of information conservation in Hawking radiation will shine new light on the unification of gravity with quantum mechanics.

  18. Classical-Quantum Correspondence by Means of Probability Densities

    NASA Technical Reports Server (NTRS)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  19. Applications of quantum entropy to statistics

    NASA Astrophysics Data System (ADS)

    Silver, R. N.; Martz, H. F.

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.

  20. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  1. Helicity conservation under quantum reconnection of vortex rings.

    PubMed

    Zuccher, Simone; Ricca, Renzo L

    2015-12-01

    Here we show that under quantum reconnection, simulated by using the three-dimensional Gross-Pitaevskii equation, self-helicity of a system of two interacting vortex rings remains conserved. By resolving the fine structure of the vortex cores, we demonstrate that the total length of the vortex system reaches a maximum at the reconnection time, while both writhe helicity and twist helicity remain separately unchanged throughout the process. Self-helicity is computed by two independent methods, and topological information is based on the extraction and analysis of geometric quantities such as writhe, total torsion, and intrinsic twist of the reconnecting vortex rings.

  2. Quantum properties of double kicked systems with classical translational invariance in momentum

    NASA Astrophysics Data System (ADS)

    Dana, Itzhack

    2015-01-01

    Double kicked rotors (DKRs) appear to be the simplest nonintegrable Hamiltonian systems featuring classical translational symmetry in phase space (i.e., in angular momentum) for an infinite set of values (the rational ones) of a parameter η . The experimental realization of quantum DKRs by atom-optics methods motivates the study of the double kicked particle (DKP). The latter reduces, at any fixed value of the conserved quasimomentum β ℏ , to a generalized DKR, the "β -DKR ." We determine general quantum properties of β -DKRs and DKPs for arbitrary rational η . The quasienergy problem of β -DKRs is shown to be equivalent to the energy eigenvalue problem of a finite strip of coupled lattice chains. Exact connections are then obtained between quasienergy spectra of β -DKRs for all β in a generically infinite set. The general conditions of quantum resonance for β -DKRs are shown to be the simultaneous rationality of η ,β , and a scaled Planck constant ℏS. For rational ℏS and generic values of β , the quasienergy spectrum is found to have a staggered-ladder structure. Other spectral structures, resembling Hofstadter butterflies, are also found. Finally, we show the existence of particular DKP wave-packets whose quantum dynamics is free, i.e., the evolution frequencies of expectation values in these wave-packets are independent of the nonintegrability. All the results for rational ℏS exhibit unique number-theoretical features involving η ,ℏS, and β .

  3. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  4. Quantum quench in a p+ip superfluid: Winding numbers and topological states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Foster, Matthew S.; Dzero, Maxim; Gurarie, Victor; Yuzbashyan, Emil A.

    2013-09-01

    We study the nonadiabatic dynamics of a two-dimensional p+ip superfluid following an instantaneous quantum quench of the BCS coupling constant. The model describes a topological superconductor with a nontrivial BCS (trivial BEC) phase appearing at weak- (strong-) coupling strengths. We extract the exact long-time asymptotics of the order parameter Δ(t) by exploiting the integrability of the classical p-wave Hamiltonian, which we establish via a Lax construction. Three different types of asymptotic behavior can occur depending upon the strength and direction of the interaction quench. We refer to these as the nonequilibrium phases {I, II, III}, characterized as follows. In phase I, the order parameter asymptotes to zero due to dephasing. In phase II, Δ→Δ∞, a nonzero constant. Phase III is characterized by persistent oscillations of Δ(t). For quenches within phases I and II, we determine the topological character of the asymptotic states. We show that two different formulations of the bulk topological winding number, although equivalent in the BCS or BEC ground states, must be regarded as independent out of equilibrium. The first winding number Q characterizes the Anderson pseudospin texture of the initial state; we show that Q is generically conserved. For Q≠0, this leads to the prediction of a “gapless topological” state when Δ asymptotes to zero. The presence or absence of Majorana edge modes in a sample with a boundary is encoded in the second winding number W, which is formulated in terms of the retarded Green's function. We establish that W can change following a quench across the quantum critical point. When the order parameter asymptotes to a nonzero constant, the final value of W is well defined and quantized. We discuss the implications for the (dis)appearance of Majorana edge modes. Finally, we show that the parity of zeros in the bulk out-of-equilibrium Cooper-pair distribution function constitutes a Z2-valued quantum number, which is nonzero whenever W≠Q. The pair distribution can in principle be measured using rf spectroscopy in an ultracold-atom realization, allowing direct experimental detection of the Z2 number. This has the following interesting implication: topological information that is experimentally inaccessible in the bulk ground state can be transferred to an observable distribution function when the system is driven far from equilibrium.

  5. Simulated quantum computation of molecular energies.

    PubMed

    Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin

    2005-09-09

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  6. Particle merging algorithm for PIC codes

    NASA Astrophysics Data System (ADS)

    Vranic, M.; Grismayer, T.; Martins, J. L.; Fonseca, R. A.; Silva, L. O.

    2015-06-01

    Particle-in-cell merging algorithms aim to resample dynamically the six-dimensional phase space occupied by particles without distorting substantially the physical description of the system. Whereas various approaches have been proposed in previous works, none of them seemed to be able to conserve fully charge, momentum, energy and their associated distributions. We describe here an alternative algorithm based on the coalescence of N massive or massless particles, considered to be close enough in phase space, into two new macro-particles. The local conservation of charge, momentum and energy are ensured by the resolution of a system of scalar equations. Various simulation comparisons have been carried out with and without the merging algorithm, from classical plasma physics problems to extreme scenarios where quantum electrodynamics is taken into account, showing in addition to the conservation of local quantities, the good reproducibility of the particle distributions. In case where the number of particles ought to increase exponentially in the simulation box, the dynamical merging permits a considerable speedup, and significant memory savings that otherwise would make the simulations impossible to perform.

  7. Deterministic and storable single-photon source based on a quantum memory.

    PubMed

    Chen, Shuai; Chen, Yu-Ao; Strassel, Thorsten; Yuan, Zhen-Sheng; Zhao, Bo; Schmiedmayer, Jörg; Pan, Jian-Wei

    2006-10-27

    A single-photon source is realized with a cold atomic ensemble (87Rb atoms). A single excitation, written in an atomic quantum memory by Raman scattering of a laser pulse, is retrieved deterministically as a single photon at a predetermined time. It is shown that the production rate of single photons can be enhanced considerably by a feedback circuit while the single-photon quality is conserved. Such a single-photon source is well suited for future large-scale realization of quantum communication and linear optical quantum computation.

  8. Some conservative estimates in quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N.

    2006-08-15

    Relationship is established between the security of the BB84 quantum key distribution protocol and the forward and converse coding theorems for quantum communication channels. The upper bound Q{sub c} {approx} 11% on the bit error rate compatible with secure key distribution is determined by solving the transcendental equation H(Q{sub c})=C-bar({rho})/2, where {rho} is the density matrix of the input ensemble, C-bar({rho}) is the classical capacity of a noiseless quantum channel, and H(Q) is the capacity of a classical binary symmetric channel with error rate Q.

  9. Novel Principles and the Charge-Symmetric Design of Dirac's Quantum Mechanics: I. Enhanced Eriksen's Theorem and the Universal Charge-Index Formalism for Dirac's Equation in (Strong) External Static Fields

    NASA Astrophysics Data System (ADS)

    Kononets, Yu. V.

    2016-12-01

    The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.

  10. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less

  11. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE PAGES

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    2016-07-11

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  12. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  13. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  14. Beyond Moore's law: towards competitive quantum devices

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2015-05-01

    A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?

  15. Comparison of cross sections from the quasi-classical trajectory method and the j(z)-conserving centrifugal sudden approximation with accurate quantum results for an atom-rigid nonlinear polyatomic collision

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1993-01-01

    We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.

  16. Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gáliková, Veronika; Kováčik, Samuel; Prešnajder, Peter

    2013-12-15

    The main point of this paper is to examine a “hidden” dynamical symmetry connected with the conservation of Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of non-commutative quantum mechanics (NCQM). The basic features of NCQM will be introduced to the reader, the key one being the fact that the notion of a point, or a zero distance in the considered configuration space, is abandoned and replaced with a “fuzzy” structure in such a way that the rotational invariance is preserved. The main facts about the conservation of LRL vector in both classical and quantum theory willmore » be reviewed. Finally, we will search for an analogy in the NCQM, provide our results and their comparison with the QM predictions. The key notions we are going to deal with are non-commutative space, Coulomb-Kepler problem, and symmetry.« less

  17. Scrambling and thermalization in a diffusive quantum many-body system

    DOE PAGES

    Bohrdt, A.; Mendl, C. B.; Endres, M.; ...

    2017-06-02

    Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less

  18. Scrambling and thermalization in a diffusive quantum many-body system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohrdt, A.; Mendl, C. B.; Endres, M.

    Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated quantum matter. They are of particular interest in incoherent quantum systems lacking well defined quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical response of such a system using high-performance matrix-product-operator techniques. Specifically, we consider the non-integrable, one-dimensional Bose–Hubbard model in the incoherent high-temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum information. Themore » slowest process in the global thermalization of the system is thus diffusive, yet information spreading is not inhibited by such slow dynamics. We furthermore develop an experimentally feasible protocol to overcome some challenges faced by existing proposals and to probe time-ordered and OTO correlation functions. As a result, our study opens new avenues for both the theoretical and experimental exploration of thermalization and information scrambling dynamics.« less

  19. Study on spin and optical polarization in a coupled InGaN/GaN quantum well and quantum dots structure.

    PubMed

    Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-10-19

    The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.

  20. Quantum mechanics of Klein-Gordon fields I: Hilbert Space, localized states, and chiral symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafazadeh, A.; Zamani, F.

    2006-09-15

    We derive an explicit manifestly covariant expression for the most general positive-definite and Lorentz-invariant inner product on the space of solutions of the Klein-Gordon equation. This expression involves a one-parameter family of conserved current densities J{sub a}{sup {mu}}, with a-bar (-1,1), that are analogous to the chiral current density for spin half fields. The conservation of J{sub a}{sup {mu}} is related to a global gauge symmetry of the Klein-Gordon fields whose gauge group is U(1) for rational a and the multiplicative group of positive real numbers for irrational a. We show that the associated gauge symmetry is responsible for themore » conservation of the total probability of the localization of the field in space. This provides a simple resolution of the paradoxical situation resulting from the fact that the probability current density for free scalar fields is neither covariant nor conserved. Furthermore, we discuss the implications of our approach for free real scalar fields offering a direct proof of the uniqueness of the relativistically invariant positive-definite inner product on the space of real Klein-Gordon fields. We also explore an extension of our results to scalar fields minimally coupled to an electromagnetic field.« less

  1. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    NASA Astrophysics Data System (ADS)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  2. Mapping superintegrable quantum mechanics to resonant spacetimes

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Demirchian, Hovhannes; Nersessian, Armen

    2018-01-01

    We describe a procedure naturally associating relativistic Klein-Gordon equations in static curved spacetimes to nonrelativistic quantum motion on curved spaces in the presence of a potential. Our procedure is particularly attractive in application to (typically, superintegrable) problems whose energy spectrum is given by a quadratic function of the energy level number, since for such systems the spacetimes one obtains possess evenly spaced, resonant spectra of frequencies for scalar fields of a certain mass. This construction emerges as a generalization of the previously studied correspondence between the Higgs oscillator and anti-de Sitter spacetime, which has been useful for both understanding weakly nonlinear dynamics in anti-de Sitter spacetime and algebras of conserved quantities of the Higgs oscillator. Our conversion procedure ("Klein-Gordonization") reduces to a nonlinear elliptic equation closely reminiscent of the one emerging in relation to the celebrated Yamabe problem of differential geometry. As an illustration, we explicitly demonstrate how to apply this procedure to superintegrable Rosochatius systems, resulting in a large family of spacetimes with resonant spectra for massless wave equations.

  3. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  4. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  5. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption.

    PubMed

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-29

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  6. The transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2001-06-01

    The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."

  7. Thermal quantum time-correlation functions from classical-like dynamics

    NASA Astrophysics Data System (ADS)

    Hele, Timothy J. H.

    2017-07-01

    Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

  8. Revealing missing charges with generalised quantum fluctuation relations.

    PubMed

    Mur-Petit, J; Relaño, A; Molina, R A; Jaksch, D

    2018-05-22

    The non-equilibrium dynamics of quantum many-body systems is one of the most fascinating problems in physics. Open questions range from how they relax to equilibrium to how to extract useful work from them. A critical point lies in assessing whether a system has conserved quantities (or 'charges'), as these can drastically influence its dynamics. Here we propose a general protocol to reveal the existence of charges based on a set of exact relations between out-of-equilibrium fluctuations and equilibrium properties of a quantum system. We apply these generalised quantum fluctuation relations to a driven quantum simulator, demonstrating their relevance to obtain unbiased temperature estimates from non-equilibrium measurements. Our findings will help guide research on the interplay of quantum and thermal fluctuations in quantum simulation, in studying the transition from integrability to chaos and in the design of new quantum devices.

  9. Asymptotics of quantum weighted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  10. Gravity at a Quantum Condensate

    NASA Astrophysics Data System (ADS)

    Atanasov, Victor

    2017-07-01

    Provided a quantum superconducting condensate is allowed to occupy a curved hyper-plane of space-time, a geometric potential from the kinetic term arises. An energy conservation relation involving the geometric field at every material point in the superconductor can be demonstrated. The induced three-dimensional scalar curvature is directly related to the wavefunction/order parameter of the quantum condensate thus pointing the way to a possible experimental procedure to artificially induce curvature of space-time via change in the electric/probability current density.

  11. Quantum Evaporation from Liquid 4He by Rotons

    NASA Astrophysics Data System (ADS)

    Hope, F. R.; Baird, M. J.; Wyatt, A. F. G.

    1984-04-01

    We have shown that rotons as well as phonons can evaporate 4He atoms in a single-quantum process. Measurements of the time of flight and the angular distribution of the evaporated atoms clearly distinguish between evaporation by phonons and rotons. The results indicate that energy and the parallel component of momentum are conserved at the free liquid surface.

  12. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  13. "A dedicated missionary". Charles Galton Darwin and the new quantum mechanics in Britain

    NASA Astrophysics Data System (ADS)

    Navarro, Jaume

    In this paper I discuss the work on quantum physics and wave mechanics by Charles Galton Darwin, a Cambridge wrangler of the last generation, as a case study to better understand the early reception of quantum physics in Britain. I argue that his proposal in the early 1920s to abandon the strict conservation of energy, as well as his enthusiastic embracement of wave mechanics at the end of the decade, can be easily understood by tracing his ontological and epistemological commitments to his early training in the Cambridge Mathematical Tripos. I also suggest that Darwin's work cannot be neglected in a study of quantum physics in Britain, since he was one of very few fellows of the Royal Society able to judge and explain quantum physics and quantum mechanics.

  14. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  15. Spin-Orbit Coupling and the Conservation of Angular Momentum

    ERIC Educational Resources Information Center

    Hnizdo, V.

    2012-01-01

    In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…

  16. Conservation laws in the quantum Hall Liouvillian theory and its generalizations

    NASA Astrophysics Data System (ADS)

    Moore, Joel

    2003-03-01

    It is known that the localization length scaling of noninteracting electrons near the quantum Hall plateau transition can be described in a theory of the bosonic density operators, with no reference to the underlying fermions. The resulting ``Liouvillian'' theory has a U(1|1) global supersymmetry as well as a hierarchy of geometric conservation laws related to the noncommutative geometry of the lowest Landau level (LLL). Mean-field and large-N generalizations of the Liouvillian are shown to describe problems of noninteracting bosons (without any obvious pathologies, contrary to recent claims) that enlarge the U(1|1) supersymmetry to U(1|1) × SO(N) or U(1|1) × SU(N). The N>1 generalizations preserve the first two of the hierarchy of geometric conservation laws, leading to logarithmic corrections at order 1/N to the diffusive large-N limit, but do not preserve the remaining conservation laws. The emergence of nontrivial scaling at the plateau transition, in the Liouvillian approach, is shown to depend sensitively on the unusual geometry of Landau levels.

  17. Generalized Gibbs ensembles for quantum field theories

    NASA Astrophysics Data System (ADS)

    Essler, F. H. L.; Mussardo, G.; Panfil, M.

    2015-05-01

    We consider the nonequilibrium dynamics in quantum field theories (QFTs). After being prepared in a density matrix that is not an eigenstate of the Hamiltonian, such systems are expected to relax locally to a stationary state. In the presence of local conservation laws, these stationary states are believed to be described by appropriate generalized Gibbs ensembles. Here we demonstrate that in order to obtain a correct description of the stationary state, it is necessary to take into account conservation laws that are not (ultra)local in the usual sense of QFTs, but fulfill a significantly weaker form of locality. We discuss the implications of our results for integrable QFTs in one spatial dimension.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangadharan, Dhevan

    Recent measurements have revealed a significant suppression of multipion Bose–Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose–Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made formore » two, three- and four-pion correlation functions and compared to the data from the LHC.« less

  19. Generalized continuity equations from two-field Schrödinger Lagrangians

    NASA Astrophysics Data System (ADS)

    Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-11-01

    A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.

  20. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  1. Radial position-momentum uncertainties for the infinite circular well and Fisher entropy

    NASA Astrophysics Data System (ADS)

    Torres-Arenas, Ariadna J.; Dong, Qian; Sun, Guo-Hua; Dong, Shi-Hai

    2018-07-01

    We show how the product of the radial position and momentum uncertainties can be obtained analytically for the infinite circular well potential. Some interesting features are found. First, the uncertainty Δr increases with the radius R and the quantum number n, the n-th root of the Bessel function. The variation of the Δr is almost independent of the quantum number n for n > 4 and it will arrive to a constant for a large n, say n > 4. Second, we find that the relative dispersion Δr / 〈 r 〉 is independent of the radius R. Moreover, the relative dispersion increases with the quantum number n but decreases with the azimuthal quantum number m. Third, the momentum uncertainty Δp decreases with the radius R and increases with the quantum numbers m > 1 and n. Fourth, the product ΔrΔpr of the position-momentum uncertainty relations is independent of the radius R and increases with the quantum numbers m and n. Finally, we present the analytical expression for the Fisher entropy. Notice that the Fisher entropy decreases with the radius R and it increases with the quantum numbers m > 0 and n. Also, we find that the Cramer-Rao uncertainty relation is satisfied and it increases with the quantum numbers m > 0 and n, too.

  2. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection

    PubMed Central

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-01-01

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442

  3. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    PubMed

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  4. Resonance dynamics of DCO (X ˜ '2A ) simulated with the dynamically pruned discrete variable representation (DP-DVR)

    NASA Astrophysics Data System (ADS)

    Larsson, Henrik R.; Riedel, Jens; Wei, Jie; Temps, Friedrich; Hartke, Bernd

    2018-05-01

    Selected resonance states of the deuterated formyl radical in the electronic ground state X ˜ '2A are computed using our recently introduced dynamically pruned discrete variable representation [H. R. Larsson, B. Hartke, and D. J. Tannor, J. Chem. Phys. 145, 204108 (2016)]. Their decay and asymptotic distributions are analyzed and, for selected resonances, compared to experimental results obtained by a combination of stimulated emission pumping and velocity-map imaging of the product D atoms. The theoretical results show good agreement with the experimental kinetic energy distributions. The intramolecular vibrational energy redistribution is analyzed and compared with previous results from an effective polyad Hamiltonian. Specifically, we analyzed the part of the wavefunction that remains in the interaction region during the decay. The results from the polyad Hamiltonian could mainly be confirmed. The C=O stretch quantum number is typically conserved, while the D—C=O bend quantum number decreases. Differences are due to strong anharmonic coupling such that all resonances have major contributions from several zero-order states. For some of the resonances, the coupling is so strong that no further zero-order states appear during the dynamics in the interaction region, even after propagating for 300 ps.

  5. The Role of Frame Force in Quantum Detection

    DTIC Science & Technology

    2007-01-01

    42040) 10. C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68 (1992), no. 21, 3121–3124. MR 1 163 546 11. S ...SUBTITLE The Role of Frame Force in Quantum Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...equivalent to a quantum detection problem from quantum mechanics. To this end we first reformulate Problem 1.2 in terms of orthonormal bases instead of 1

  6. Towards a Quantum Memory assisted MDI-QKD node

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-04-01

    The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.

  7. Beable-guided quantum theories: Generalizing quantum probability laws

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2013-02-01

    Beable-guided quantum theories (BGQT) are generalizations of quantum theory, inspired by Bell's concept of beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other elements of quasiclassical reality by probability laws that depend on the realized configuration of beables. For example, they may define an additional probability weight factor for a beable configuration, independent of the quantum dynamics. Beable-guided quantum theories can be fitted to observational data to provide foils against which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle, characterize the effects attributed to dark energy or dark matter, or any other deviation from the predictions of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity of the beable-guided theory would then parametrize how far we are from a standard quantum explanation. Less conservatively, we give reasons for taking suitably simple beable-guided quantum theories as serious phenomenological theories in their own right. Among these are the possibility that cosmological models defined by BGQT might in fact fit the empirical data better than any standard quantum explanation, and the fact that BGQT suggest potentially interesting nonstandard ways of coupling quantum matter to gravity.

  8. Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph

    2016-04-01

    Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.

  9. New insight into the spin-conserving excitation of the negatively charged nitrogen-vacancy center in diamond

    PubMed Central

    Deng, Bei; Zhang, R. Q.; Shi, X. Q.

    2014-01-01

    The negatively charged nitrogen-vacancy (N-V−) color center in diamond is an important solid-state single photon source for applications to quantum communication and distributed quantum computation. Its full usefulness relies on sufficient radiative emission of the optical photons which requires realizable control to enhance emission into the zero-phonon line (ZPL) but until now is still a challenge. Detailed understanding of the associated excitation process would be of essential importance for such objective. Here we report a theoretical work that probes the spin-conserving optical excitation of the N-V− center. Using density-functional-theory (DFT) calculations, we find that the ZPL and the phonon-side band (PSB) depend sensitively on the axial strain of the system. Besides, we find a relatively small PSB appearing at about 100 GPa in the emission spectrum at low temperatures, which provides a means to enhance the coherent emission of the N-V− center in quantum optical networks. PMID:24888367

  10. A Rigorous Theory of Many-Body Prethermalization for Periodically Driven and Closed Quantum Systems

    NASA Astrophysics Data System (ADS)

    Abanin, Dmitry; De Roeck, Wojciech; Ho, Wen Wei; Huveneers, François

    2017-09-01

    Prethermalization refers to the transient phenomenon where a system thermalizes according to a Hamiltonian that is not the generator of its evolution. We provide here a rigorous framework for quantum spin systems where prethermalization is exhibited for very long times. First, we consider quantum spin systems under periodic driving at high frequency {ν}. We prove that up to a quasi-exponential time {τ_* ˜ e^{c ν/log^3 ν}}, the system barely absorbs energy. Instead, there is an effective local Hamiltonian {\\widehat D} that governs the time evolution up to {τ_*}, and hence this effective Hamiltonian is a conserved quantity up to {τ_*}. Next, we consider systems without driving, but with a separation of energy scales in the Hamiltonian. A prime example is the Fermi-Hubbard model where the interaction U is much larger than the hopping J. Also here we prove the emergence of an effective conserved quantity, different from the Hamiltonian, up to a time {τ_*} that is (almost) exponential in {U/J}.

  11. Computing quantum hashing in the model of quantum branching programs

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander

    2018-02-01

    We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.

  12. Analytic structure of the S-matrix for singular quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner

    2015-06-15

    The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.

  13. Wigner's quantum phase-space current in weakly-anharmonic weakly-excited two-state systems

    NASA Astrophysics Data System (ADS)

    Kakofengitis, Dimitris; Steuernagel, Ole

    2017-09-01

    There are no phase-space trajectories for anharmonic quantum systems, but Wigner's phase-space representation of quantum mechanics features Wigner current J . This current reveals fine details of quantum dynamics —finer than is ordinarily thought accessible according to quantum folklore invoking Heisenberg's uncertainty principle. Here, we focus on the simplest, most intuitive, and analytically accessible aspects of J. We investigate features of J for bound states of time-reversible, weakly-anharmonic one-dimensional quantum-mechanical systems which are weakly-excited. We establish that weakly-anharmonic potentials can be grouped into three distinct classes: hard, soft, and odd potentials. We stress connections between each other and the harmonic case. We show that their Wigner current fieldline patterns can be characterised by J's discrete stagnation points, how these arise and how a quantum system's dynamics is constrained by the stagnation points' topological charge conservation. We additionally show that quantum dynamics in phase space, in the case of vanishing Planck constant ℏ or vanishing anharmonicity, does not pointwise converge to classical dynamics.

  14. Nonequilibrium spin crossover in copper phthalocyanine

    NASA Astrophysics Data System (ADS)

    Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena

    2016-03-01

    We demonstrate the nonequilibrium tip induced control of the spin state of copper phthalocyanine on an insulator coated substrate. We find that, under the condition of energetic proximity of many-body neutral excited states to the anionic ground state, the system can undergo a population inversion towards these excited states. The resulting state of the system is accompanied by a change in the total spin quantum number. Experimental signatures of the crossover are the appearance of additional nodal planes in the topographical scanning tunneling microscopy images as well as a strong suppression of the current near the center of the molecule. The robustness of the effect against moderate charge conserving relaxation processes has also been tested.

  15. Droplet states in quantum XXZ spin systems on general graphs

    NASA Astrophysics Data System (ADS)

    Fischbacher, C.; Stolz, G.

    2018-05-01

    We study XXZ spin systems on general graphs. In particular, we describe the formation of droplet states near the bottom of the spectrum in the Ising phase of the model, where the Z-term dominates the XX-term. As key tools, we use particle number conservation of XXZ systems and symmetric products of graphs with their associated adjacency matrices and Laplacians. Of particular interest to us are strips and multi-dimensional Euclidean lattices, for which we discuss the existence of spectral gaps above the droplet regime. We also prove a Combes-Thomas bound which shows that the eigenstates in the droplet regime are exponentially small perturbations of strict (classical) droplets.

  16. Double line groups: structure, irreducible representations and spin splitting of the bands

    NASA Astrophysics Data System (ADS)

    Lazić, N.; Milivojević, M.; Vuković, T.; Damnjanović, M.

    2018-06-01

    Double line groups are derived, structurally examined and classified within 13 infinite families. Their irreducible representations, found and tabulated, single out the complete set of conserved quantum numbers in fermionic quasi-one-dimensional systems possessing either translational periodicity or incommensurate helical symmetry. Spin–orbit interaction is analyzed: the induced orbital band splitting and the consequent removal of the spin degeneracy are completely explained. Being incompatible with vertical mirror symmetry, as well as with simultaneous invariance under time-reversal and horizontal (roto)reflections, spin splitting and spin polarized currents may occur only in the systems with the first and the fifth family double line group symmetry. The effects are illustrated on carbon nanotubes.

  17. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  18. Hidden symmetry in the confined hydrogen atom problem

    NASA Astrophysics Data System (ADS)

    Pupyshev, Vladimir I.; Scherbinin, Andrei V.

    2002-07-01

    The classical counterpart of the well-known quantum mechanical model of a spherically confined hydrogen atom is examined in terms of the Lenz vector, a dynamic variable featuring the conventional Kepler problem. It is shown that a conditional conservation law associated with the Lenz vector is true, in fair agreement with the corresponding quantum problem previously found to exhibit a hidden symmetry as well.

  19. Understanding Quantum Numbers in General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Fernandez, Ramon

    2008-01-01

    Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…

  20. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors.

    PubMed

    Meair, Jonathan; Jacquod, Philippe

    2013-02-27

    We construct a scattering theory of weakly nonlinear thermoelectric transport through sub-micron scale conductors. The theory incorporates the leading nonlinear contributions in temperature and voltage biases to the charge and heat currents. Because of the finite capacitances of sub-micron scale conducting circuits, fundamental conservation laws such as gauge invariance and current conservation require special care to be preserved. We do this by extending the approach of Christen and Büttiker (1996 Europhys. Lett. 35 523) to coupled charge and heat transport. In this way we write relations connecting nonlinear transport coefficients in a manner similar to Mott's relation between the linear thermopower and the linear conductance. We derive sum rules that nonlinear transport coefficients must satisfy to preserve gauge invariance and current conservation. We illustrate our theory by calculating the efficiency of heat engines and the coefficient of performance of thermoelectric refrigerators based on quantum point contacts and resonant tunneling barriers. We identify, in particular, rectification effects that increase device performance.

  1. Quantum correlation properties in Matrix Product States of finite-number spin rings

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  2. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  3. Scaffold: Quantum Programming Language

    DTIC Science & Technology

    2012-07-24

    Europe, 2012. [8] B. Eastin and S . T. Flammia , “Q-circuit tutorial,” arXiv:quant-ph/0406003v2. [9] A. I. Faruque et al., “Scaffold: Quantum Programming...TITLE AND SUBTITLE Scaffold: Quantum Programming Language 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Princeton University,Department of Computer

  4. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  5. Top quark polarization and T-odd spin correlations as tools for testing (non) Standard Model predictions

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Ma, J. P.; Schroeder, T.

    In this paper a number of T-odd spin-momentum correlations are defined for t and t-bar quarks and directly measurable correlations involving the momenta of the charged leptons and/or b jets from t and t-bar decay are identified. It concentrates on observables which can be classified as being even under a CP symmetry transformation in the case of e(sup +)e(sup -) yields tt-bar X or pp-bar yields tt-bar X (unpolarized or transversely polarized beams). These correlations project onto absorptive parts of the scattering matrix which are induced by CP-conserving interactions. In order to estimate the effects of the Standard Model interactions the Quantum Chromodynamics and Higgs boson contributions were calculated to a number of these observables. Several of them are considered to be useful tools for a detailed study of the tt-bar system at future hadron colliders.

  6. Effects of hydrostatic pressure on the donor impurity in a cylindrical quantum dot with Morse confining potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.

    2016-12-01

    The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.

  7. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  8. Optical model with multiple band couplings using soft rotator structure

    NASA Astrophysics Data System (ADS)

    Martyanov, Dmitry; Soukhovitskii, Efrem; Capote, Roberto; Quesada, Jose Manuel; Chiba, Satoshi

    2017-09-01

    A new dispersive coupled-channel optical model (DCCOM) is derived that describes nucleon scattering on 238U and 232Th targets using a soft-rotator-model (SRM) description of the collective levels of the target nucleus. SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate coupling matrix elements of the generalized optical model. Five rotational bands are coupled: the ground-state band, β-, γ-, non-axial- bands, and a negative parity band. Such coupling scheme includes almost all levels below 1.2 MeV of excitation energy of targets. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a monopolar deformed potential leading to additional couplings between rotational bands. The present DCCOM describes the total cross section differences between 238U and 232Th targets within experimental uncertainty from 50 keV up to 200 MeV of neutron incident energy. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus (CN) formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials with any number of coupled levels.

  9. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.

    PubMed

    Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2012-03-30

    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.

  10. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  11. Real quantum cybernetics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    1987-05-01

    It is shown on the basis of quantum cybernetics that one can obtain the usual predictions of quantum theory without ever referring to complex numbered “quantum mechanical amplitudes”. Instead, a very simple formula for transition and certain conditional probabilities is developed that involves real numbers only, thus relating intuitively understandable and in principle directly observable physical quantities.

  12. Quantum Electrodynamics in d=3 from the ε Expansion.

    PubMed

    Di Pietro, Lorenzo; Komargodski, Zohar; Shamir, Itamar; Stamou, Emmanuel

    2016-04-01

    We study quantum electrodynamics in d=3 coupled to N_{f} flavors of fermions. The theory flows to an IR fixed point for N_{f} larger than some critical number N_{f}^{c}. For N_{f}≤N_{f}^{c}, chiral-symmetry breaking is believed to take place. In analogy with the Wilson-Fisher description of the critical O(N) models in d=3, we make use of the existence of a fixed point in d=4-2ε to study the three-dimensional conformal theory. We compute, in perturbation theory, the IR dimensions of fermion bilinear and quadrilinear operators. For small N_{f}, a quadrilinear operator can become relevant in the IR and destabilize the fixed point. Therefore, the epsilon expansion can be used to estimate N_{f}^{c}. An interesting novelty compared to the O(N) models is that the theory in d=3 has an enhanced symmetry due to the structure of 3D spinors. We identify the operators in d=4-2ε that correspond to the additional conserved currents at d=3 and compute their infrared dimensions.

  13. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    PubMed Central

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  14. The Misapplication of Probability Theory in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  15. A synchronous game for binary constraint systems

    NASA Astrophysics Data System (ADS)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  16. The scalable implementation of quantum walks using classical light

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas

    2014-02-01

    A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.

  17. Quantum random number generation

    DOE PAGES

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; ...

    2016-06-28

    Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  18. Coherent frequency bridge between visible and telecommunications band for vortex light.

    PubMed

    Liu, Shi-Long; Liu, Shi-Kai; Li, Yin-Hai; Shi, Shuai; Zhou, Zhi-Yuan; Shi, Bao-Sen

    2017-10-02

    In quantum communications, vortex photons can encode higher-dimensional quantum states and build high-dimensional communication networks (HDCNs). The interfaces that connect different wavelengths are significant in HDCNs. We construct a coherent orbital angular momentum (OAM) frequency bridge via difference frequency conversion in a nonlinear bulk crystal for HDCNs. Using a single resonant cavity, maximum quantum conversion efficiencies from visible to infrared are 36%, 15%, and 7.8% for topological charges of 0,1, and 2, respectively. The average fidelity obtained using quantum state tomography for the down-converted infrared OAM-state of topological charge 1 is 96.51%. We also prove that the OAM is conserved in this process by measuring visible and infrared interference patterns. This coherent OAM frequency-down conversion bridge represents a basis for an interface between two high-dimensional quantum systems operating with different spectra.

  19. Experimental observation of spatial quantum noise reduction below the standard quantum limit with bright twin beams of light

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Nunley, Hayden; Marino, Alberto

    2016-05-01

    Quantum noise reduction (QNR) below the standard quantum limit (SQL) has been a subject of interest for the past two to three decades due to its wide range of applications in quantum metrology and quantum information processing. To date, most of the attention has focused on the study of QNR in the temporal domain. However, many areas in quantum optics, specifically in quantum imaging, could benefit from QNR not only in the temporal domain but also in the spatial domain. With the use of a high quantum efficiency electron multiplier charge coupled device (EMCCD) camera, we have observed spatial QNR below the SQL in bright narrowband twin light beams generated through a four-wave mixing (FWM) process in hot rubidium atoms. Owing to momentum conservation in this process, the twin beams are momentum correlated. This leads to spatial quantum correlations and spatial QNR. Our preliminary results show a spatial QNR of over 2 dB with respect to the SQL. Unlike previous results on spatial QNR with faint and broadband photon pairs from parametric down conversion (PDC), we demonstrate spatial QNR with spectrally and spatially narrowband bright light beams. The results obtained will be useful for atom light interaction based quantum protocols and quantum imaging. Work supported by the W.M. Keck Foundation.

  20. External quantum efficiency exceeding 100% in a singlet-exciton-fission-based solar cell

    NASA Astrophysics Data System (ADS)

    Baldo, Marc

    2013-03-01

    Singlet exciton fission can be used to split a molecular excited state in two. In solar cells, it promises to double the photocurrent from high energy photons, thereby breaking the single junction efficiency limit. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per incident photon in the visible spectrum. Using a fullerene acceptor, a poly(3-hexylthiophene) exciton confinement layer, and a conventional optical trapping scheme, the peak external quantum efficiency is (109 +/-1)% at λ = 670 nm for a 15-nm-thick pentacene film. The corresponding internal quantum efficiency is (160 +/-10)%. Independent confirmation of the high internal efficiency is obtained by analysis of the magnetic field effect on photocurrent, which determines that the triplet yield approaches 200% for pentacene films thicker than 5 nm. To our knowledge, this is the first solar cell to generate quantum efficiencies above 100% in the visible spectrum. Alternative multiple exciton generation approaches have been demonstrated previously in the ultraviolet, where there is relatively little sunlight. Singlet exciton fission differs from these other mechanisms because spin conservation disallows the usual dominant loss process: a thermal relaxation of the high-energy exciton into a single low-energy exciton. Consequently, pentacene is efficient in the visible spectrum at λ = 670 nm because only the collapse of the singlet exciton into twotriplets is spin-allowed. Supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088.

  1. Asymptotic dynamics in perturbative quantum gravity and BMS supertranslations

    NASA Astrophysics Data System (ADS)

    Choi, Sangmin; Kol, Uri; Akhoury, Ratindranath

    2018-01-01

    Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be cured by using the Faddeev-Kulish (FK) asymptotic states as the basis for S-matrix elements. Motivated by this connection, we study the action of BMS supertranslations on the FK asymptotic states of perturbative quantum gravity. We compute the BMS charge of the FK states and show that it characterizes the superselection sector to which the state belongs. Conservation of the BMS charge then implies that there is no transition between different superselection sectors, hence showing that the FK graviton clouds implement the necessary transition induced by the scattering process.

  2. Dicke states in multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  3. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    PubMed

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  4. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  5. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoshchekov, Sergey V.; Stepanov, Nikolay F.

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys.more » 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.« less

  6. Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization

    NASA Astrophysics Data System (ADS)

    Pareek, Tribhuvan Prasad

    2015-09-01

    In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.

  7. Spatial evolution of quantum mechanical states

    NASA Astrophysics Data System (ADS)

    Christensen, N. D.; Unger, J. E.; Pinto, S.; Su, Q.; Grobe, R.

    2018-02-01

    The time-dependent Schrödinger equation is solved traditionally as an initial-time value problem, where its solution is obtained by the action of the unitary time-evolution propagator on the quantum state that is known at all spatial locations but only at t = 0. We generalize this approach by examining the spatial evolution from a state that is, by contrast, known at all times t, but only at one specific location. The corresponding spatial-evolution propagator turns out to be pseudo-unitary. In contrast to the real energies that govern the usual (unitary) time evolution, the spatial evolution can therefore require complex phases associated with dynamically relevant solutions that grow exponentially. By introducing a generalized scalar product, for which the spatial generator is Hermitian, one can show that the temporal integral over the probability current density is spatially conserved, in full analogy to the usual norm of the state, which is temporally conserved. As an application of the spatial propagation formalism, we introduce a spatial backtracking technique that permits us to reconstruct any quantum information about an atom from the ionization data measured at a detector outside the interaction region.

  8. Spin correlations in quantum wires

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  9. Hidden Variables and Placebo Effects

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2006-03-01

    God's response to prayers and placebo leads to a question. How does He respond deterministically? He may be controlling at least one of the two variables of the uncertainty principle by extending His invisible soul to each body particle locally. Amazingly, many Vedic verses support this answer. One describes the size of the soul as arithmetically matching the size of the nucleons as if a particle is a soul. One gives a name meaning particle soul (anu-atma), consistent with particle's indeterministic behavior like that of (soulful) bird’s flying in any directions irrespective of the direction of throw. One describes souls as eternal consistent with the conservation of baryon number. One links the souls to the omnipresent (param- atma) like Einstein Rosen bridges link particles to normal spacetime. One claims eternal coexistence of matter and soul as is inflationary universe in physics/0210040 V2. The implicit scientific consistency of such verses makes the relationship of particle source of consciousness to the omnipresent Supreme analogous to the relationship of quantum source of gravitons in my gr-qc/0507130 to normal spacetime This frees us from the postulation of quantum wormholes and quantum foam. Dr. Hooft's view in ``Does God play dice,'' Physicsword, Dec 2005 seems consistent with my progressive conference presentations in Russia, Europe, India, and USA (Hindu University) in 2004/05. I see implications for nanoscience.

  10. Security of Quantum Repeater Network Operation

    DTIC Science & Technology

    2016-10-03

    AFRL-AFOSR-JP-TR-2016-0079 Security of Quantum Repeater Network Operation Rodney Van Meter KEIO UNIVERSITY Final Report 10/03/2016 DISTRIBUTION A...To)  29 May 2014 to 28 May 2016 4. TITLE AND SUBTITLE Security of Quantum Repeater Network Operation 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386...ABSTRACT Much of the work on quantum networks , both entangled and unentangled, has been about the uses of quantum networks to enhance end- host security

  11. Grassmann phase space methods for fermions. I. Mode theory

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Jeffers, J.; Barnett, S. M.

    2016-07-01

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggest the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. The theory of Grassmann phase space methods for fermions based on separate modes is developed, showing how the distribution function is defined and used to determine quantum correlation functions, Fock state populations and coherences via Grassmann phase space integrals, how the Fokker-Planck equations are obtained and then converted into equivalent Ito equations for stochastic Grassmann variables. The fermion distribution function is an even Grassmann function, and is unique. The number of c-number Wiener increments involved is 2n2, if there are n modes. The situation is somewhat different to the bosonic c-number case where only 2 n Wiener increments are involved, the sign of the drift term in the Ito equation is reversed and the diffusion matrix in the Fokker-Planck equation is anti-symmetric rather than symmetric. The un-normalised B distribution is of particular importance for determining Fock state populations and coherences, and as pointed out by Plimak, Collett and Olsen, the drift vector in its Fokker-Planck equation only depends linearly on the Grassmann variables. Using this key feature we show how the Ito stochastic equations can be solved numerically for finite times in terms of c-number stochastic quantities. Averages of products of Grassmann stochastic variables at the initial time are also involved, but these are determined from the initial conditions for the quantum state. The detailed approach to the numerics is outlined, showing that (apart from standard issues in such numerics) numerical calculations for Grassmann phase space theories of fermion systems could be carried out without needing to represent Grassmann phase space variables on the computer, and only involving processes using c-numbers. We compare our approach to that of Plimak, Collett and Olsen and show that the two approaches differ. As a simple test case we apply the B distribution theory and solve the Ito stochastic equations to demonstrate coupling between degenerate Cooper pairs in a four mode fermionic system involving spin conserving interactions between the spin 1 / 2 fermions, where modes with momenta - k , + k-each associated with spin up, spin down states, are involved.

  12. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2015-05-27

    Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY...Technologies Kathryn Carson Program Manager Quantum Information Processing Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...2016 4. TITLE AND SUBTITLE Seaworthy Quantum Key Distribution Design and Validation (SEAKEY) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  13. Diluted Magnetic Semiconductors for Magnetic Field Tunable Infrared Detectors

    DTIC Science & Technology

    2005-06-30

    significantly improved performance and technological advances of quantum well infrared photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15...NUMBER FA8655-04-1-3069 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Magnetic Field Tunable Terahertz Quantum Well Infrared Photodetector 5c...fabrication in II-VI materials, quantum well infrared photodetector device design and magneto-optical characterisation are all well understood

  14. Single-photon test of hyper-complex quantum theories using a metamaterial.

    PubMed

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  15. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  16. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE PAGES

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  17. Single-photon test of hyper-complex quantum theories using a metamaterial

    PubMed Central

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-01-01

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711

  18. Number-unconstrained quantum sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  19. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  20. Quantum number theoretic transforms on multipartite finite systems.

    PubMed

    Vourdas, A; Zhang, S

    2009-06-01

    A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.

  1. Remanent Magnetization: Signature of Many-Body Localization in Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Ros, V.; Müller, M.

    2017-06-01

    We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin chains, initialized in a fully magnetized state. Its long time limit is an order parameter for the localization transition, which is readily accessible by standard experimental probes in magnets. We analytically calculate its value in the strong-disorder regime exploiting the explicit construction of quasilocal conserved quantities of the localized phase. We discuss analogies in cold atomic systems.

  2. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  3. Protecting Information

    NASA Astrophysics Data System (ADS)

    Loepp, Susan; Wootters, William K.

    2006-09-01

    For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices. Accessible to readers familiar with matrix algebra, vector spaces and complex numbers First undergraduate text to cover cryptography, error-correction, and quantum computation together Features exercises designed to enhance understanding, including a number of computational problems, available from www.cambridge.org/9780521534765

  4. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    DTIC Science & Technology

    2007-01-01

    found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band

  5. Experimental study of a quantum random-number generator based on two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  6. Defect in the Joint Spectrum of Hydrogen due to Monodromy.

    PubMed

    Dullin, Holger R; Waalkens, Holger

    2018-01-12

    In addition to the well-known case of spherical coordinates, the Schrödinger equation of the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, the z component of the angular momentum, and an operator involving the z component of the quantum Laplace-Runge-Lenz vector obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. The precise value of the energy above which monodromy is observed depends on the distance of the focus points of the spheroidal coordinates. The presence of monodromy means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number n and the magnetic quantum number m correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multivalued.

  7. Conservation laws in the quantum Hall Liouvillian theory and its generalizations

    NASA Astrophysics Data System (ADS)

    Moore, Joel E.

    2003-06-01

    It is known that the localization length scaling of noninteracting electrons near the quantum Hall plateau transition can be described in a theory of the bosonic density operators, with no reference to the underlying fermions. The resulting "Liouvillian" theory has a U(1|1) global supersymmetry as well as a hierarchy of geometric conservation laws related to the noncommutative geometry of the lowest Landau level (LLL). Approximations to the Liouvillian theory contain quite different physics from standard approximations to the underlying fermionic theory. Mean-field and large- N generalizations of the Liouvillian are shown to describe problems of noninteracting bosons that enlarge the U(1|1) supersymmetry to U(1|1)× SO( N) or U(1|1)× SU( N). These noninteracting bosonic problems are studied numerically for 2⩽ N⩽8 by Monte Carlo simulation and compared to the original N=1 Liouvillian theory. The N>1 generalizations preserve the first two of the hierarchy of geometric conservation laws, leading to logarithmic corrections at order 1/ N to the diffusive large- N limit, but do not preserve the remaining conservation laws. The emergence of nontrivial scaling at the plateau transition, in the Liouvillian approach, is shown to depend sensitively on the unusual geometry of Landau levels.

  8. The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Frey, Kimberly

    The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum mathematics in a sense which parallels the foundational role of classical set theory in classical mathematics. One immediate application of the quantum set theory we develop is to provide a foundation on which to construct quantum natural numbers, which are the quantum analog of the classical counting numbers. It turns out that in a special class of models, there exists a 1-1 correspondence between the quantum natural numbers and bounded observables in quantum theory whose eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying, and not only gives us great confidence in our quantum set theory, but indicates the naturalness of such models for quantum theory itself. We go on to develop a Peano-like arithmetic for these new "numbers," as well as consider some of its consequences. Finally, we conclude by summarizing our results, and discussing directions for future work.

  9. A generator for unique quantum random numbers based on vacuum states

    NASA Astrophysics Data System (ADS)

    Gabriel, Christian; Wittmann, Christoffer; Sych, Denis; Dong, Ruifang; Mauerer, Wolfgang; Andersen, Ulrik L.; Marquardt, Christoph; Leuchs, Gerd

    2010-10-01

    Random numbers are a valuable component in diverse applications that range from simulations over gambling to cryptography. The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics. However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique. Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.

  10. Qubit transfer between photons at telecom and visible wavelengths in a slow-light atomic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogyan, A.

    We propose a method that enables efficient conversion of the quantum information frequency between different regions of a spectrum of light based on recently demonstrated strong parametric coupling between two narrow-band single-photon pulses propagating in a slow-light atomic medium [N. Sisakyan and Yu. Malakyan, Phys. Rev. A, 75, 063831 (2007)]. We show that an input qubit at telecom wavelength is transformed into another at a visible domain in a lossless and shape-conserving manner while keeping the initial quantum coherence and entanglement. These transformations can be realized with a quantum efficiency close to its maximum value.

  11. Generating and using truly random quantum states in Mathematica

    NASA Astrophysics Data System (ADS)

    Miszczak, Jarosław Adam

    2012-01-01

    The problem of generating random quantum states is of a great interest from the quantum information theory point of view. In this paper we present a package for Mathematica computing system harnessing a specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating statistical properties of quantum states. The described package implements a number of functions for generating random states, which use Quantis QRNG as a source of randomness. It also provides procedures which can be used in simulations not related directly to quantum information processing. Program summaryProgram title: TRQS Catalogue identifier: AEKA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7924 No. of bytes in distributed program, including test data, etc.: 88 651 Distribution format: tar.gz Programming language: Mathematica, C Computer: Requires a Quantis quantum random number generator (QRNG, http://www.idquantique.com/true-random-number-generator/products-overview.html) and supporting a recent version of Mathematica Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit) RAM: Case dependent Classification: 4.15 Nature of problem: Generation of random density matrices. Solution method: Use of a physical quantum random number generator. Running time: Generating 100 random numbers takes about 1 second, generating 1000 random density matrices takes more than a minute.

  12. A high-temperature single-photon source from nanowire quantum dots.

    PubMed

    Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak

    2008-12-01

    We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.

  13. Coherent inflation for large quantum superpositions of levitated microspheres

    NASA Astrophysics Data System (ADS)

    Romero-Isart, Oriol

    2017-12-01

    We show that coherent inflation (CI), namely quantum dynamics generated by inverted conservative potentials acting on the center of mass of a massive object, is an enabling tool to prepare large spatial quantum superpositions in a double-slit experiment. Combined with cryogenic, extreme high vacuum, and low-vibration environments, we argue that it is experimentally feasible to exploit CI to prepare the center of mass of a micrometer-sized object in a spatial quantum superposition comparable to its size. In such a hitherto unexplored parameter regime gravitationally-induced decoherence could be unambiguously falsified. We present a protocol to implement CI in a double-slit experiment by letting a levitated microsphere traverse a static potential landscape. Such a protocol could be experimentally implemented with an all-magnetic scheme using superconducting microspheres.

  14. Heat Coulomb blockade of one ballistic channel

    NASA Astrophysics Data System (ADS)

    Sivre, E.; Anthore, A.; Parmentier, F. D.; Cavanna, A.; Gennser, U.; Ouerghi, A.; Jin, Y.; Pierre, F.

    2018-02-01

    Quantum mechanics and Coulomb interaction dictate the behaviour of small circuits. The thermal implications cover fundamental topics from quantum control of heat to quantum thermodynamics, with prospects of novel thermal machines and an ineluctably growing influence on nanocircuit engineering. Experimentally, the rare observations thus far include the universal thermal conductance quantum and heat interferometry. However, evidence for many-body thermal effects paving the way to markedly different heat and electrical behaviours in quantum circuits remains wanting. Here we report on the observation of the Coulomb blockade of electronic heat flow from a small metallic circuit node, beyond the widespread Wiedemann-Franz law paradigm. We demonstrate this thermal many-body phenomenon for perfect (ballistic) conduction channels to the node, where it amounts to the universal suppression of precisely one quantum of conductance for the transport of heat, but none for electricity. The inter-channel correlations that give rise to such selective heat current reduction emerge from local charge conservation, in the floating node over the full thermal frequency range (<~temperature × kB/h). This observation establishes the different nature of the quantum laws for thermal transport in nanocircuits.

  15. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  16. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals

    NASA Astrophysics Data System (ADS)

    Kheiri, R.

    2016-09-01

    As an undergraduate exercise, in an article (2012 Am. J. Phys. 80 780-14), quantum and classical uncertainties for dimensionless variables of position and momentum were evaluated in three potentials: infinite well, bouncing ball, and harmonic oscillator. While original quantum uncertainty products depend on {{\\hslash }} and the number of states (n), a dimensionless approach makes the comparison between quantum uncertainty and classical dispersion possible by excluding {{\\hslash }}. But the question is whether the uncertainty still remains dependent on quantum number n. In the above-mentioned article, there lies this contrast; on the one hand, the dimensionless quantum uncertainty of the potential box approaches classical dispersion only in the limit of large quantum numbers (n\\to ∞ )—consistent with the correspondence principle. On the other hand, similar evaluations for bouncing ball and harmonic oscillator potentials are equal to their classical counterparts independent of n. This equality may hide the quantum feature of low energy levels. In the current study, we change the potential intervals in order to make them symmetric for the linear potential and non-symmetric for the quadratic potential. As a result, it is shown in this paper that the dimensionless quantum uncertainty of these potentials in the new potential intervals is expressed in terms of quantum number n. In other words, the uncertainty requires the correspondence principle in order to approach the classical limit. Therefore, it can be concluded that the dimensionless analysis, as a useful pedagogical method, does not take away the quantum feature of the n-dependence of quantum uncertainty in general. Moreover, our numerical calculations include the higher powers of the position for the potentials.

  17. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance

  18. Quantum κ-deformed differential geometry and field theory

    NASA Astrophysics Data System (ADS)

    Mercati, Flavio

    2016-03-01

    I introduce in κ-Minkowski noncommutative spacetime the basic tools of quantum differential geometry, namely bicovariant differential calculus, Lie and inner derivatives, the integral, the Hodge-∗ and the metric. I show the relevance of these tools for field theory with an application to complex scalar field, for which I am able to identify a vector-valued four-form which generalizes the energy-momentum tensor. Its closedness is proved, expressing in a covariant form the conservation of energy-momentum.

  19. Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming.

    PubMed

    Gültas, Mehmet; Düzgün, Güncel; Herzog, Sebastian; Jäger, Sven Joachim; Meckbach, Cornelia; Wingender, Edgar; Waack, Stephan

    2014-04-03

    The identification of functionally or structurally important non-conserved residue sites in protein MSAs is an important challenge for understanding the structural basis and molecular mechanism of protein functions. Despite the rich literature on compensatory mutations as well as sequence conservation analysis for the detection of those important residues, previous methods often rely on classical information-theoretic measures. However, these measures usually do not take into account dis/similarities of amino acids which are likely to be crucial for those residues. In this study, we present a new method, the Quantum Coupled Mutation Finder (QCMF) that incorporates significant dis/similar amino acid pair signals in the prediction of functionally or structurally important sites. The result of this study is twofold. First, using the essential sites of two human proteins, namely epidermal growth factor receptor (EGFR) and glucokinase (GCK), we tested the QCMF-method. The QCMF includes two metrics based on quantum Jensen-Shannon divergence to measure both sequence conservation and compensatory mutations. We found that the QCMF reaches an improved performance in identifying essential sites from MSAs of both proteins with a significantly higher Matthews correlation coefficient (MCC) value in comparison to previous methods. Second, using a data set of 153 proteins, we made a pairwise comparison between QCMF and three conventional methods. This comparison study strongly suggests that QCMF complements the conventional methods for the identification of correlated mutations in MSAs. QCMF utilizes the notion of entanglement, which is a major resource of quantum information, to model significant dissimilar and similar amino acid pair signals in the detection of functionally or structurally important sites. Our results suggest that on the one hand QCMF significantly outperforms the previous method, which mainly focuses on dissimilar amino acid signals, to detect essential sites in proteins. On the other hand, it is complementary to the existing methods for the identification of correlated mutations. The method of QCMF is computationally intensive. To ensure a feasible computation time of the QCMF's algorithm, we leveraged Compute Unified Device Architecture (CUDA).The QCMF server is freely accessible at http://qcmf.informatik.uni-goettingen.de/.

  20. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  1. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    PubMed Central

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-01-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742

  2. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    NASA Astrophysics Data System (ADS)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  3. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    PubMed

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  4. Electrostatically defined silicon quantum dots with counted antimony donor implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  5. Electrostatically defined silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  6. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    NASA Astrophysics Data System (ADS)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  7. DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS

    DTIC Science & Technology

    2017-10-01

    DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS UNIVERSITY OF SOUTHERN CALIFORNIA OCTOBER 2017 FINAL...SUBTITLE DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS 5a. CONTRACT NUMBER FA8750-15-C-0203 5b. GRANT NUMBER N/A 5c. PROGRAM...of this project was to investigate the state-of-the-art in design and optimization of single-flux quantum (SFQ) logic circuits, e.g., RSFQ and ERSFQ

  8. Security of Quantum Repeater Network Operation

    DTIC Science & Technology

    2016-10-03

    readily in quantum networks than in classical networks. Our presentation at the SENT workshop attracted the attention of computer and network researchers...AFRL-AFOSR-JP-TR-2016-0079 Security of Quantum Repeater Network Operation Rodney Van Meter KEIO UNIVERSITY Final Report 10/03/2016 DISTRIBUTION A...To)  29 May 2014 to 28 May 2016 4. TITLE AND SUBTITLE Security of Quantum Repeater Network Operation 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386

  9. Transport electron through a quantum wire by side-attached asymmetric quantum-dot rings

    NASA Astrophysics Data System (ADS)

    Rostami, A.; Zabihi, S.; Rasooli S., H.; Seyyedi, S. K.

    2011-12-01

    The electronic conductance at zero temperature through a quantum wire with side-attached asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Anderson tunneling Hamiltonian method. We show that the asymmetric configuration of QD- scatter system strongly impresses the amplitude and spectrum of quantum wire nanostructure transmission characteristics. It is shown that whenever the balanced number of quantum dots in two rings is substituted by unbalanced scheme, the number of forbidden mini-bands in quantum wire conductance increases and QW-nanostructure electronic conductance contains rich spectral properties due to appearance of the new anti-resonance and resonance points in spectrum. Considering the suitable gap between nano-rings can strengthen the amplitude of new resonant peaks in the QW conductance spectrum. The proposed asymmetric quantum ring scatter system idea in this paper opens a new insight on designing quantum wire nano structure for given electronic conductance.

  10. Trapped-Ion Quantum Logic with Global Radiation Fields.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  11. Bound states, scattering states, and resonant states in PT -symmetric open quantum systems

    NASA Astrophysics Data System (ADS)

    Garmon, Savannah; Gianfreda, Mariagiovanna; Hatano, Naomichi

    2015-08-01

    We study a simple open quantum system with a PT -symmetric defect potential as a prototype in order to illustrate a number of general features of PT -symmetric open quantum systems; however, the potential itself could be mimicked by a number of PT systems that have been experimentally studied quite recently. One key feature is the resonance in continuum (RIC), which appears in both the discrete spectrum and the scattering spectrum of such systems. The RIC wave function forms a standing wave extending throughout the spatial extent of the system and in this sense represents a resonance between the open environment associated with the leads of our model and the central PT -symmetric potential. We also illustrate that as one deforms the system parameters, the RIC may exit the continuum by splitting into a bound state and a virtual bound state at the band edge, a process which should be experimentally observable. We also study the exceptional points appearing in the discrete spectrum at which two eigenvalues coalesce; we categorize these as either EP2As, at which two real-valued solutions coalesce before becoming complex-valued, and EP2Bs, for which the two solutions are complex on either side of the exceptional point. The EP2As are associated with PT -symmetry breaking; we argue that these are more stable against parameter perturbation than the EP2Bs. We also study complex-valued solutions of the discrete spectrum for which the wave function is nevertheless spatially localized, something that is not allowed in traditional open quantum systems; we illustrate that these may form quasibound states in continuum under some circumstances. We also study the scattering properties of the system, including states that support invisible propagation and some general features of perfect transmission states. We finally use our model as a prototype for the construction of scattering states that satisfy PT -symmetric boundary conditions; while these states do not conserve the traditional probability current, we introduce the PT current which is preserved. The perfect transmission states appear as a special case of the PT -symmetric scattering states.

  12. Metric adjusted skew information

    PubMed Central

    Hansen, Frank

    2008-01-01

    We extend the concept of Wigner–Yanase–Dyson skew information to something we call “metric adjusted skew information” (of a state with respect to a conserved observable). This “skew information” is intended to be a non-negative quantity bounded by the variance (of an observable in a state) that vanishes for observables commuting with the state. We show that the skew information is a convex function on the manifold of states. It also satisfies other requirements, proposed by Wigner and Yanase, for an effective measure-of-information content of a state relative to a conserved observable. We establish a connection between the geometrical formulation of quantum statistics as proposed by Chentsov and Morozova and measures of quantum information as introduced by Wigner and Yanase and extended in this article. We show that the set of normalized Morozova–Chentsov functions describing the possible quantum statistics is a Bauer simplex and determine its extreme points. We determine a particularly simple skew information, the “λ-skew information,” parametrized by a λ ∈ (0, 1], and show that the convex cone this family generates coincides with the set of all metric adjusted skew informations. PMID:18635683

  13. Azobenzene as a photoregulator covalently attached to RNA: a quantum mechanics/molecular mechanics-surface hopping dynamics study.

    PubMed

    Mondal, Padmabati; Granucci, Giovanni; Rastädter, Dominique; Persico, Maurizio; Burghardt, Irene

    2018-05-28

    The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA-azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a β-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans -to- cis isomerization is slowed down to a time scale of ∼10-15 picoseconds, in contrast to 500 femtoseconds in vacuo , with a quantum yield reduced by a factor of two. By contrast, cis -to- trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis -azobenzene chromophore in the two RNA-azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.

  14. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  15. Across-horizon scattering and information transfer

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  16. Propagation of self-localized Q -ball solitons in the 3He universe

    NASA Astrophysics Data System (ADS)

    Autti, S.; Heikkinen, P. J.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B.

    2018-01-01

    In relativistic quantum field theories, compact objects of interacting bosons can become stable owing to conservation of an additive quantum number Q . Discovering such Q balls propagating in the universe would confirm supersymmetric extensions of the standard model and may shed light on the mysteries of dark matter, but no unambiguous experimental evidence exists. We have created long-lived Q -ball solitons in superfluid 3He, where the role of the Q ball is played by a Bose-Einstein condensate of magnon quasiparticles. The principal qualitative attribute of a Q ball is observed experimentally: its propagation in space together with the self-created potential trap. Additionally, we show that this system allows for a quantitatively accurate representation of the Q -ball Hamiltonian. Our Q ball belongs to the class of the Friedberg-Lee-Sirlin Q balls with an additional neutral field ζ , which is provided by the orbital part of the Nambu-Goldstone mode. Multiple Q balls can be created in the experiment, and we have observed collisions between them. This set of features makes the magnon condensates in superfluid 3He a versatile platform for studies of Q -ball dynamics and interactions in three spatial dimensions.

  17. Modeling electron fractionalization with unconventional Fock spaces.

    PubMed

    Cobanera, Emilio

    2017-08-02

    It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality [Formula: see text] of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.

  18. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    PubMed

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  19. Exotic quantum order in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Girvin, S. M.

    1998-08-01

    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.

  20. Decentralized Routing and Diameter Bounds in Entangled Quantum Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-04-01

    Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.

  1. On the number of entangled qubits in quantum wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mohapatra, Amit Kumar; Balakrishnan, S.

    2016-08-01

    Wireless sensor networks (WSNs) can take the advantages by utilizing the security schemes based on the concepts of quantum computation and cryptography. However, quantum wireless sensor networks (QWSNs) are shown to have many practical constraints. One of the constraints is the number of entangled qubits which is very high in the quantum security scheme proposed by [Nagy et al., Nat. Comput. 9 (2010) 819]. In this work, we propose a modification of the security scheme introduced by Nagy et al. and hence the reduction in the number of entangled qubits is shown. Further, the modified scheme can overcome some of the constraints in the QWSNs.

  2. Joint measurement of multiple noncommuting parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiamin; Liu, Yuhong; Cui, Liang; Huo, Nan; Assad, Syed M.; Li, Xiaoying; Ou, Z. Y.

    2018-05-01

    Although quantum metrology allows us to make precision measurements beyond the standard quantum limit, it mostly works on the measurement of only one observable due to the Heisenberg uncertainty relation on the measurement precision of noncommuting observables for one system. In this paper, we study the schemes of joint measurement of multiple observables which do not commute with each other using the quantum entanglement between two systems. We focus on analyzing the performance of a SU(1,1) nonlinear interferometer on fulfilling the task of joint measurement. The results show that the information encoded in multiple noncommuting observables on an optical field can be simultaneously measured with a signal-to-noise ratio higher than the standard quantum limit, and the ultimate limit of each observable is still the Heisenberg limit. Moreover, we find a resource conservation rule for the joint measurement.

  3. Microscopic models of non-radiative and high-current effects in LEDs: state of the art and future developments

    NASA Astrophysics Data System (ADS)

    Bertazzi, Francesco; Goano, Michele; Calciati, Marco; Zhou, Xiangyu; Ghione, Giovanni; Bellotti, Enrico

    2014-02-01

    Auger recombination is at the hearth of the debate on droop, the decline of the internal quantum efficiency at high injection levels. The theory of Auger recombination in quantum wells is reviewed. The proposed microscopic model is based on a full-Brillouin-zone description of the electronic structure obtained by nonlocal empirical pseudopotential calculations and the linear combination of bulk bands. The lack of momentum conservation along the confining direction in InGaN/GaN quantum wells enhances direct (i.e. phononless) Auger transitions, leading to Auger coefficients in the range of those predicted for phonon-dressed processes in bulk InGaN.

  4. The dynamics of the optically driven Lambda transition of the 15N-V- center in diamond.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2010-07-09

    Recent experimental results demonstrate the possibility of writing quantum information in the ground state triplet of the (15)N-V(-) center in diamond by means of an optically driven spin non-conserving two-photon Lambda transition in the presence of a strong applied electric field. Our calculations show that the hyperfine interaction in the (15)N-V(-) center is capable of mediating such a transition. We use a density matrix approach to describe the exact dynamics for the allowed optical spin non-conserving transitions between two sublevels of the ground state triplet. This approach allows us to calculate the Rabi oscillations, by means of which we obtain a Rabi frequency with an upper bound determined by the hyperfine interaction. This result is crucial for the success of implementing optically driven quantum information processing with the N-V center in diamond.

  5. Fractonic line excitations: An inroad from three-dimensional elasticity theory

    NASA Astrophysics Data System (ADS)

    Pai, Shriya; Pretko, Michael

    2018-06-01

    We demonstrate the existence of a fundamentally new type of excitation, fractonic lines, which are linelike excitations with the restricted mobility properties of fractons. These excitations, described using an amalgamation of higher-form gauge theories with symmetric tensor gauge theories, see direct physical realization as the topological lattice defects of ordinary three-dimensional quantum crystals. Starting with the more familiar elasticity theory, we show how theory maps onto a rank-4 tensor gauge theory, with phonons corresponding to gapless gauge modes and disclination defects corresponding to linelike charges. We derive flux conservation laws which lock these linelike excitations in place, analogous to the higher moment charge conservation laws of fracton theories. This way of encoding mobility restrictions of lattice defects could shed light on melting transitions in three dimensions. This new type of extended object may also be a useful tool in the search for improved quantum error-correcting codes in three dimensions.

  6. Detection of Atmospheric Carbon Dioxide from a Shuttle-Borne Lidar.

    DTIC Science & Technology

    1982-12-01

    d, e_! *Pnl * cooling of the stratosphere. This will occur due to absorp- tion of the earth’s infrared radiation by CO2, and subse- quent emission of...and four vibrational modes. The available energy bands are a function of three vibrational quantum numbers describing the four vibrational modes: 1...insufficient to describe the energy levels based solely on three vibrational quantum numbers, and the rotational quantum number (J). Two additional .".,. 8

  7. Exact quantum numbers of collapsed and non-collapsed two-string solutions in the spin-1/2 Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Deguchi, Tetsuo; Ranjan Giri, Pulak

    2016-04-01

    Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.

  8. On the quantum Landau collision operator and electron collisions in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck formmore » of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.« less

  9. On the quantum Landau collision operator and electron collisions in dense plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  10. A Quantum-Based Similarity Method in Virtual Screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2015-10-02

    One of the most widely-used techniques for ligand-based virtual screening is similarity searching. This study adopted the concepts of quantum mechanics to present as state-of-the-art similarity method of molecules inspired from quantum theory. The representation of molecular compounds in mathematical quantum space plays a vital role in the development of quantum-based similarity approach. One of the key concepts of quantum theory is the use of complex numbers. Hence, this study proposed three various techniques to embed and to re-represent the molecular compounds to correspond with complex numbers format. The quantum-based similarity method that developed in this study depending on complex pure Hilbert space of molecules called Standard Quantum-Based (SQB). The recall of retrieved active molecules were at top 1% and top 5%, and significant test is used to evaluate our proposed methods. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiment show that the effectiveness of SQB method was significantly increased due to the role of representational power of molecular compounds in complex numbers forms compared to Tanimoto benchmark similarity measure.

  11. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  12. Quantum random number generation for loophole-free Bell tests

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  13. Quantum Rotational Effects in Nanomagnetic Systems

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Michael F.

    Quantum tunneling of the magnetic moment in a nanomagnet must conserve the total angular momentum. For a nanomagnet embedded in a rigid body, reversal of the magnetic moment will cause the body to rotate as a whole. When embedded in an elastic environment, tunneling of the magnetic moment will cause local elastic twists of the crystal structure. In this thesis, I will present a theoretical study of the interplay between magnetization and rotations in a variety of nanomagnetic systems which have some degree of rotational freedom. We investigate the effect of rotational freedom on the tunnel splitting of a nanomagnet which is free to rotate about its easy axis. Calculating the exact instanton of the coupled equations of motion shows that mechanical freedom of the particle renormalizes the easy axis anisotropy, increasing the tunnel splitting. To understand magnetization dynamics in free particles, we study a quantum mechanical model of a tunneling spin embedded in a rigid rotor. The exact energy levels for a symmetric rotor exhibit first and second order quantum phase transitions between states with different values the magnetic moment. A quantum phase diagram is obtained in which the magnetic moment depends strongly on the moments of inertia. An intrinsic contribution to decoherence of current oscillations of a flux qubit must come from the angular momentum it transfers to the surrounding body. Within exactly solvable models of a qubit embedded in a rigid body and an elastic medium, we show that slow decoherence is permitted if the solid is macroscopically large. The spin-boson model is one of the simplest representations of a two-level system interacting with a quantum harmonic oscillator, yet has eluded a closed-form solution. I investigate some possible approaches to understanding its spectrum. The Landau-Zener dynamics of a tunneling spin coupled to a torsional resonator show that for certain parameter ranges the system exhibits multiple Landau-Zener transitions. These transitions coincide in time with changes in the oscillator dynamics. A large number of spins on a single oscillator coupled only through the in-phase oscillations behaves as a single large spin, greatly enhancing the spin-phonon coupling.

  14. Experimental demonstration of counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ren, M.; Wu, G.; Wu, E.; Zeng, H.

    2011-04-01

    Counterfactual quantum key distribution provides natural advantage against the eavesdropping on the actual signal particles. It can prevent the photon-number-splitting attack when a weak coherent light source is used for the practical implementation. We experimentally realized the counterfactual quantum key distribution in an unbalanced Mach-Zehnder interferometer of 12.5-km-long quantum channel with a high-fringe visibility of 97.4%. According to the security analysis, the system was robust against the photon-number-splitting attack. The article is published in the original.

  15. FPGA and USB based control board for quantum random number generator

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao

    2009-09-01

    The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.

  16. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  17. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    NASA Astrophysics Data System (ADS)

    Miszczak, Jarosław Adam

    2013-01-01

    The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random numbers generated by quantum real number generator. Reasons for new version: Added support for the high-speed on-line quantum random number generator and improved methods for retrieving lists of random numbers. Summary of revisions: The presented version provides two signicant improvements. The first one is the ability to use the on-line Quantum Random Number Generation service developed by PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt University. The on-line service supported in the version 2.0 of the TRQS package provides faster access to true randomness sources constructed using the laws of quantum physics. The service is freely available at https://qrng.physik.hu-berlin.de/. The use of this service allows using the presented package with the need of a physical quantum random number generator. The second improvement introduced in this version is the ability to retrieve arrays of random data directly for the used source. This increases the speed of the random number generation, especially in the case of an on-line service, where it reduces the time necessary to establish the connection. Thanks to the speed improvement of the presented version, the package can now be used in simulations requiring larger amounts of random data. Moreover, the functions for generating random numbers provided by the current version of the package more closely follow the pattern of functions for generating pseudo- random numbers provided in Mathematica. Additional comments: Speed comparison: The implementation of the support for the QRNG on-line service provides a noticeable improvement in the speed of random number generation. For the samples of real numbers of size 101; 102,…,107 the times required to generate these samples using Quantis USB device and QRNG service are compared in Fig. 1. The presented results show that the use of the on-line service provides faster access to random numbers. One should note, however, that the speed gain can increase or decrease depending on the connection speed between the computer and the server providing random numbers. Running time: Depends on the used source of randomness and the amount of random data used in the experiment. References: [1] M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, O. Benson., An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements, Applied Physics Letters, Vol. 098, 171105 (2011). http://dx.doi.org/10.1063/1.3578456.

  18. Locality for quantum systems on graphs depends on the number field

    NASA Astrophysics Data System (ADS)

    Hall, H. Tracy; Severini, Simone

    2013-07-01

    Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.

  19. A scalable quantum computer with ions in an array of microtraps

    PubMed

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  20. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  1. Picosecond timing resolution detection of ggr-photons utilizing microchannel-plate detectors: experimental tests of quantum nonlocality and photon localization

    NASA Astrophysics Data System (ADS)

    Irby, Victor D.

    2004-09-01

    The concept and subsequent experimental verification of the proportionality between pulse amplitude and detector transit time for microchannel-plate detectors is presented. This discovery has led to considerable improvement in the overall timing resolution for detection of high-energy ggr-photons. Utilizing a 22Na positron source, a full width half maximum (FWHM) timing resolution of 138 ps has been achieved. This FWHM includes detector transit-time spread for both chevron-stack-type detectors, timing spread due to uncertainties in annihilation location, all electronic uncertainty and any remaining quantum mechanical uncertainty. The first measurement of the minimum quantum uncertainty in the time interval between detection of the two annihilation photons is reported. The experimental results give strong evidence against instantaneous spatial localization of ggr-photons due to measurement-induced nonlocal quantum wavefunction collapse. The experimental results are also the first that imply momentum is conserved only after the quantum uncertainty in time has elapsed (Yukawa H 1935 Proc. Phys. Math. Soc. Japan 17 48).

  2. Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states

    PubMed Central

    Bonet-Luz, Esther

    2016-01-01

    The dynamics of quantum expectation values is considered in a geometric setting. First, expectation values of the canonical observables are shown to be equivariant momentum maps for the action of the Heisenberg group on quantum states. Then, the Hamiltonian structure of Ehrenfest’s theorem is shown to be Lie–Poisson for a semidirect-product Lie group, named the Ehrenfest group. The underlying Poisson structure produces classical and quantum mechanics as special limit cases. In addition, quantum dynamics is expressed in the frame of the expectation values, in which the latter undergo canonical Hamiltonian motion. In the case of Gaussian states, expectation values dynamics couples to second-order moments, which also enjoy a momentum map structure. Eventually, Gaussian states are shown to possess a Lie–Poisson structure associated with another semidirect-product group, which is called the Jacobi group. This structure produces the energy-conserving variant of a class of Gaussian moment models that have previously appeared in the chemical physics literature. PMID:27279764

  3. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics

    DTIC Science & Technology

    2012-02-24

    AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15

  4. Parametric number covariance in quantum chaotic spectra.

    PubMed

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  5. Rényi entropies and topological quantum numbers in 2D gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Bolívar, Juan Carlos; Romera, Elvira

    2017-05-01

    New topological quantum numbers are introduced by analyzing complexity measures and relative Rényi entropies in silicene in the presence of perpendicular electric and magnetic fields. These topological quantum numbers characterize the topological insulator and band insulator phases in silicene. In addition, we have found that, these information measures reach extremum values at the charge neutrality points. These results are valid for other 2D gapped Dirac materials analogous to silicene with a buckled honeycomb structure and a significant spin-orbit coupling.

  6. Linear optical quantum metrology with single photons: Experimental errors, resource counting, and quantum Cramér-Rao bounds

    NASA Astrophysics Data System (ADS)

    Olson, Jonathan P.; Motes, Keith R.; Birchall, Patrick M.; Studer, Nick M.; LaBorde, Margarite; Moulder, Todd; Rohde, Peter P.; Dowling, Jonathan P.

    2017-07-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement is thought to have been resource intensive to create in the first place, typically requiring either very strong nonlinearities or nondeterministic preparation schemes with feedforward, which are difficult to implement. Recently [K. R. Motes et al., Phys. Rev. Lett. 114, 170802 (2015), 10.1103/PhysRevLett.114.170802], it was shown that number-path entanglement from a BosonSampling inspired interferometer can be used to beat the shot-noise limit. In this paper we compare and contrast different interferometric schemes, discuss resource counting, calculate exact quantum Cramér-Rao bounds, and study details of experimental errors.

  7. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Baocheng; Graduate University of Chinese Academy of Sciences, Beijing 100049; Cai Qingyu, E-mail: qycai@wipm.ac.cn

    2011-02-15

    Research Highlights: > Information is found to be encoded and carried away by Hawking radiations. > Entropy is conserved in Hawking radiation. > We thus conclude no information is lost. > The dynamics of black hole may be unitary. - Abstract: We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordstroem black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling throughmore » a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.« less

  8. Paradigms and Plastic Facts in the History of Valence.

    ERIC Educational Resources Information Center

    Zavaleta, David

    1988-01-01

    Traces the development of bonding theory and notes the influence of preconceived theory upon this development. Considers ideas of alchemy, Newton, Dalton, Lewis, and quantum mechanics. Suggests a move away from conservative descriptive approaches of bonding theory. (ML)

  9. Interference in the classical probabilistic model and its representation in complex Hilbert space

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei Yu.

    2005-10-01

    The notion of a context (complex of physical conditions, that is to say: specification of the measurement setup) is basic in this paper.We show that the main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present already in a latent form in the classical Kolmogorov probability model. However, this model should be considered as a calculus of contextual probabilities. In our approach it is forbidden to consider abstract context independent probabilities: “first context and only then probability”. We construct the representation of the general contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function (in particular, Schrödinger's dynamics) can be considered as Hilbert space projections of a realistic dynamics in a “prespace”. The basic condition for representing of the prespace-dynamics is the law of statistical conservation of energy-conservation of probabilities. In general the Hilbert space projection of the “prespace” dynamics can be nonlinear and even irreversible (but it is always unitary). Methods developed in this paper can be applied not only to quantum mechanics, but also to classical statistical mechanics. The main quantum-like structures (e.g., interference of probabilities) might be found in some models of classical statistical mechanics. Quantum-like probabilistic behavior can be demonstrated by biological systems. In particular, it was recently found in some psychological experiments.

  10. Efficient state initialization by a quantum spectral filtering algorithm

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond

    2017-04-01

    An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.

  11. Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.

    2018-05-01

    Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.

  12. Preface of the special issue quantum foundations: information approach

    PubMed Central

    2016-01-01

    This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161

  13. Quantum Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Williams, Colin P.

    1997-01-01

    The capacity of classical neurocomputers is limited by the number of classical degrees of freedom which is roughly proportional to the size of the computer. By Contrast, a Hypothetical quantum neurocomputer can implement an exponentially large number of the degrees of freedom within the same size. In this paper an attempt is made to reconcile linear reversible structure of quantum evolution with nonlinear irreversible dynamics for neural nets.

  14. Tomographic measurement of joint photon statistics of the twin-beam quantum state

    PubMed

    Vasilyev; Choi; Kumar; D'Ariano

    2000-03-13

    We report the first measurement of the joint photon-number probability distribution for a two-mode quantum state created by a nondegenerate optical parametric amplifier. The measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the marginal distributions are thermal as expected for parametric fluorescence.

  15. Quantum random number generator based on quantum nature of vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  16. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  17. High-Performance Single-Photon Sources via Spatial Multiplexing

    DTIC Science & Technology

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  18. Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots

    DTIC Science & Technology

    2010-03-12

    coupled quantum dots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory,,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER...9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION

  19. Entropy generation, particle creation, and quantum field theory in a cosmological spacetime: When do number and entropy increase\\?

    NASA Astrophysics Data System (ADS)

    Kandrup, Henry E.

    1988-06-01

    This paper reexamines the statistical quantum field theory of a free, minimally coupled, real scalar field Φ in a statically bounded, classical Friedmann cosmology, where the time-dependent scale factor Ω(t) tends to constant values Ω1 and Ω2 for tt2. The principal objective is to investigate the intuition that ``entropy'' S correlates with average particle number , so that increases in induced by parametric amplification manifest a one-to-one connection with increases in S. The definition of particle number Nk becomes unambiguous for t>t2 and t- is guaranteed generically to be positive only for special initial data which, in a number representation, are characterized by ``random phases'' in the sense that any relative phase for the projection of ρ(t1) into two different number eigenstates is ``random'' or ``unobservable physically,'' and averaged over in a density matrix. More importantly for the notion of entropy, random-phase initial data also guarantee an increase in the spread of P(\\{k,Nk\\}), so that, e.g., the sum of the variances Δ2N+/-k(t2) exceeds the initial Δ2N+/-k(t1). It is this increasing spread in P, rather than the growth in average numbers per se, which suggests that, for initial data manifesting random phases, SN(t2)>SN(t1), a result established rigorously in the limits of strong and weak particle creation.

  20. Physical implementation of protected qubits

    NASA Astrophysics Data System (ADS)

    Douçot, B.; Ioffe, L. B.

    2012-07-01

    We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory. We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible.

  1. Electromagnetic energy flux vector for a dispersive linear medium.

    PubMed

    Crenshaw, Michael E; Akozbek, Neset

    2006-05-01

    The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.

  2. Inhibition, Conflict Detection, and Number Conservation

    ERIC Educational Resources Information Center

    Lubin, Amélie; Simon, Grégory; Houdé, Olivier; De Neys, Wim

    2015-01-01

    The acquisition of number conservation is a critical step in children's numerical and mathematical development. Classic developmental studies have established that children's number conservation is often biased by misleading intuitions. However, the precise nature of these conservation errors is not clear. A key question is whether conservation…

  3. Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination

    NASA Astrophysics Data System (ADS)

    Brask, Jonatan Bohr; Martin, Anthony; Esposito, William; Houlmann, Raphael; Bowles, Joseph; Zbinden, Hugo; Brunner, Nicolas

    2017-05-01

    An approach to quantum random number generation based on unambiguous quantum state discrimination is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Our protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on experimental data and a few general assumptions about the setup alone. It is also practically relevant, which we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits /s . Combining ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising approach intermediate between fully device-independent protocols and commercial quantum random number generators.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu

    Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  5. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers

    NASA Astrophysics Data System (ADS)

    Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.

    2018-04-01

    Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.

  6. Quasimodular instanton partition function and the elliptic solution of Korteweg-de Vries equations

    NASA Astrophysics Data System (ADS)

    He, Wei

    2015-02-01

    The Gauge/Bethe correspondence relates Omega-deformed N = 2 supersymmetric gauge theories to some quantum integrable models, in simple cases the integrable models can be treated as solvable quantum mechanics models. For SU(2) gauge theory with an adjoint matter, or with 4 fundamental matters, the potential of corresponding quantum model is the elliptic function. If the mass of matter takes special value then the potential is an elliptic solution of KdV hierarchy. We show that the deformed prepotential of gauge theory can be obtained from the average densities of conserved charges of the classical KdV solution, the UV gauge coupling dependence is assembled into the Eisenstein series. The gauge theory with adjoint mass is taken as the example.

  7. Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems

    NASA Astrophysics Data System (ADS)

    Morozov, V. G.

    2018-01-01

    We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.

  8. Fractional Quantum Hall Effect in n = 0 Landau Band of Graphene with Chern Number Matrix

    NASA Astrophysics Data System (ADS)

    Kudo, Koji; Hatsugai, Yasuhiro

    2018-06-01

    Fully taking into account the honeycomb lattice structure, fractional quantum Hall states of graphene are considered by a pseudopotential projected into the n = 0 Landau band. By using chirality as an internal degree of freedom, the Chern number matrices are defined and evaluated numerically. Quantum phase transition induced by changing a range of the interaction is demonstrated that is associated with chirality ferromagnetism. The chirality-unpolarized ground state is consistent with the Halperin 331 state of the bilayer quantum Hall system.

  9. Quantum Computation of Fluid Dynamics

    DTIC Science & Technology

    1998-02-16

    state of the quantum computer’s "memory". With N qubits, the quantum state IT) resides in an exponentially large Hilbert space with 2 N dimensions. A new...size of the Hilbert space in which the entanglement occurs. And to make matters worse, even if a quantum computer was constructed with a large number of...number of qubits "* 2 N is the size of the full Hilbert space "* 2 B is the size of the on-site submanifold, denoted 71 "* B is the size of the

  10. Outlining social physics for modern societies—locating culture, economics, and politics: The Enlightenment reconsidered

    PubMed Central

    Iberall, A. S.

    1985-01-01

    A groundwork is laid for a formulation of the modern human social system as a field continuum. As in a simple material physical field, the independent implied relationships of materials or processes in flux have to be based on local conservations of mass, energy, and momentum. In complex fields, the transport fluctuations of momentum are transformed into action modes (e.g., [unk] pdq = ΣHi = H, a characteristic quantum of action over a characteristic cycle time). In complex living systems, a fourth local conservation of population number, the demographic variable, has to be added as a renormalized variable. Modern man, settled in place via agriculture, urbanized, and engaged largely in trade and war, invents a fifth local conservation—value-in-trade, the economic variable. The potentials that drive these five fluxes are also enumerated. Among the more evident external and internal physical-chemical potentials, the driving potentials include a sheaf of internal potential-like components that represent the command-control system emergent as politics. In toto, culture represents the social solvent with the main processes of economics and politics being driven by a social pressure. PMID:16593594

  11. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    NASA Astrophysics Data System (ADS)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  12. Creating entanglement using integrals of motion

    NASA Astrophysics Data System (ADS)

    Olshanii, Maxim; Scoquart, Thibault; Yampolsky, Dmitry; Dunjko, Vanja; Jackson, Steven Glenn

    2018-01-01

    A quantum Galilean cannon is a one-dimensional sequence of N hard-core particles with special mass ratios and a hard wall; conservation laws due to the reflection group AN prevent both classical stochastization and quantum diffraction. It is realizable through specie-alternating mutually repulsive bosonic soliton trains. We show that an initial disentangled state can evolve into one where the heavy and light particles are entangled, and we propose a sensor, containing Ntotal atoms, with a √{Ntotal} times higher sensitivity than in a one-atom sensor with Ntotal repetitions.

  13. Fractal universe and quantum gravity.

    PubMed

    Calcagni, Gianluca

    2010-06-25

    We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.

  14. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    DOE PAGES

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; ...

    2018-02-12

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less

  15. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    NASA Astrophysics Data System (ADS)

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; Blok, M. S.; Kimchi-Schwartz, M. E.; McClean, J. R.; Carter, J.; de Jong, W. A.; Siddiqi, I.

    2018-02-01

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.

  16. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less

  17. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    PubMed

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  18. Graph-theoretic approach to quantum correlations.

    PubMed

    Cabello, Adán; Severini, Simone; Winter, Andreas

    2014-01-31

    Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.

  19. On the theory of quantum measurement

    NASA Technical Reports Server (NTRS)

    Haus, Hermann A.; Kaertner, Franz X.

    1994-01-01

    Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.

  20. The Grammatical Universe and the Laws of Thermodynamics and Quantum Entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcer, Peter J.; Rowlands, Peter

    2010-11-24

    The universal nilpotent computational rewrite system (UNCRS) is shown to formalize an irreversible process of evolution in conformity with the First, Second and Third Laws of Thermodynamics, in terms of a single algebraic creation operator (ikE+ip+jm) which delivers the whole quantum mechanical language apparatus, where k, i, j are quaternions units and E, p, m are energy, momentum and rest mass. This nilpotent evolution describes 'a dynamic zero totality universe' in terms of its fermion states (each of which, by Pauli exclusion, is unique and nonzero), where, together with their boson interactions, these define physics at the fundamental level. (Themore » UNCRS implies that the inseparability of objects and fields in the quantum universe is based on the fact that the only valid mathematical representations are all automorphisms of the universe itself, and that this is the mathematical meaning of quantum entanglement. It thus appears that the nilpotent fermion states are in fact what is called the splitting field in Quantum Mechanics of the Galois group which leads to the roots of the corresponding algebraic equation, and concerns in this case the alternating group of even permutations which are themselves automorphisms). In the nilpotent evolutionary process: (i) the Quantum Carnot Engine (QCE) extended model of thermodynamic irreversibility, consisting of a single heat bath of an ensemble of Standard Model elementary particles, retains a small amount of quantum coherence / entanglement, so as to constitute new emergent fermion states of matter, and (ii) the metric (E{sup 2}-p{sup 2}m{sup 2}) = 0 ensures the First Law of the conservation of energy operates at each nilpotent stage, so that (iii) prior to each creation (and implied corresponding annihilation / conserve operation), E and m can be postulated to constitute dark energy and matter respectively. It says that the natural language form of the rewrite grammar of the evolution consists of the well known precepts of the Laws of Thermodynamics, formalized by the UNCRS regress, so as to become (as UNCRS rewrites already published at CASYS), firstly the Quantum Laws of Physics in the form of the generalized Dirac equation and later at higher stages of QCE ensemble complexity, the Laws of Life in the form of Nature's (DNA / RNA genetic) Code and then subsequently those of Intelligence and Consciousness (Nature's Rules).« less

  1. Probability Distributions for Random Quantum Operations

    NASA Astrophysics Data System (ADS)

    Schultz, Kevin

    Motivated by uncertainty quantification and inference of quantum information systems, in this work we draw connections between the notions of random quantum states and operations in quantum information with probability distributions commonly encountered in the field of orientation statistics. This approach identifies natural sample spaces and probability distributions upon these spaces that can be used in the analysis, simulation, and inference of quantum information systems. The theory of exponential families on Stiefel manifolds provides the appropriate generalization to the classical case. Furthermore, this viewpoint motivates a number of additional questions into the convex geometry of quantum operations relative to both the differential geometry of Stiefel manifolds as well as the information geometry of exponential families defined upon them. In particular, we draw on results from convex geometry to characterize which quantum operations can be represented as the average of a random quantum operation. This project was supported by the Intelligence Advanced Research Projects Activity via Department of Interior National Business Center Contract Number 2012-12050800010.

  2. 77 FR 14512 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ...: 5 p.m. ET 3/23/12. Docket Numbers: ER12-458-004. Applicants: Quantum Choctaw Power, LLC. Description: Quantum Choctaw Power Compliance Filing to be effective 2/14/2012. Filed Date: 3/2/12. Accession Number...

  3. Extracting random numbers from quantum tunnelling through a single diode.

    PubMed

    Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J

    2017-12-19

    Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.

  4. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  5. Research on Electrically Driven Single Photon Emitter by Diamond for Quantum Cryptography

    DTIC Science & Technology

    2015-03-24

    by diamond for quantum cryptography 5a. CONTRACT NUMBER FA2386-14-1-4037 5b. GRANT NUMBE R Grant 14IOA093_144037 5c. PROGRAM ELEMENT...emerged as a highly competitive platform for applications in quantum cryptography , quantum computing, spintronics, and sensing or metrology...15. SUBJECT TERMS Diamond LED, Nitrogen Vacancy Complex, Quantum Computing, Quantum Cryptography , Single Spin Single Photon 16. SECURITY

  6. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  7. Performance Analysis and Optimization of the Winnow Secret Key Reconciliation Protocol

    DTIC Science & Technology

    2011-06-01

    use in a quantum key system can be defined in two ways :  The number of messages passed between Alice and Bob  The...classical and quantum environment. Post- quantum cryptography , which is generally used to describe classical quantum -resilient protocols, includes...composed of a one- way quantum channel and a two - way classical channel. Owing to the physics of the channel, the quantum channel is subject to

  8. Gravity Duals of Lifshitz-Like Fixed Points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao

    2008-11-05

    We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less

  9. When the C in C P does not matter: Anatomy of order-4 C P eigenstates and their Yukawa interactions

    NASA Astrophysics Data System (ADS)

    Aranda, Alfredo; Ivanov, Igor P.; Jiménez, Enrique

    2017-03-01

    We explore the origin and Yukawa interactions of the scalars with peculiar C P properties which were recently found in a multi-Higgs model based on an order-4 C P symmetry. We relate the existence of such scalars to the enhanced freedom of defining C P , even beyond the well-known generalized C P symmetries, which arises in models with several zero-charge scalar fields. We also show that despite possessing exotic C P quantum numbers, these scalars do not have to be inert: they can have C P -conserving Yukawa interactions provided the C P acts on fermions by also mixing generations. This paper focuses on formal aspects—exposed in a pedagogical manner—and includes a brief discussion of possible phenomenological consequences.

  10. A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control

    DTIC Science & Technology

    2003-06-01

    interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  11. Novel pseudo-random number generator based on quantum random walks.

    PubMed

    Yang, Yu-Guang; Zhao, Qian-Qian

    2016-02-04

    In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.

  12. Novel pseudo-random number generator based on quantum random walks

    PubMed Central

    Yang, Yu-Guang; Zhao, Qian-Qian

    2016-01-01

    In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation. PMID:26842402

  13. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  14. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    PubMed

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  15. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities

    NASA Astrophysics Data System (ADS)

    Demory, Brandon; Hill, Tyler A.; Teng, Chu-Hsiang; Deng, Hui; Ku, P. C.

    2018-01-01

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  16. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities.

    PubMed

    Demory, Brandon; Hill, Tyler A; Teng, Chu-Hsiang; Deng, Hui; Ku, P C

    2018-01-05

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  17. Existence of dark matter with observed properties of cosmic microwave background radiation substantiates three conservation laws of classical physics and all principles of quantum mechanics as creates the value of Planck’s constant

    NASA Astrophysics Data System (ADS)

    Boriev, I. A.

    2018-03-01

    Astronomical data indicate a presence of dark matter (DM) in the space, what is necessary for explanation of observed dynamics of the galaxies within Newtonian mechanics. DM, at its very low density (∼10-26kg/m3), constitutes main part of the matter in the Universe, 10 times the mass of all visible cosmic bodies. No doubt, namely properties of DM, which fills space, must determine its physical properties and fundamental physical laws. Taking into account observed properties of cosmic microwave background radiation (CMBR), whose energy is ∼90% of all cosmic radiation, and understanding that this radiation is produced by DM motion, conservation laws of classical physics and principles of quantum mechanics receive their materialistic substantiation. Thus, CMBR high homogeneity and isotropy (∼10-4), and hence the same properties of DM (and space) justify momentum and angular momentum conservation laws, respectively, according to E. Noether's theorems. CMBR has black body spectrum at ∼2.7K with maximum wavelength ∼1.9·10-3m, what allows calculate the value of mechanical action produced by DM thermal motion (∼7·10-34 J·s). This value corresponds well to the Planck’s constant, which is the mechanical action too, what gives materialistic basis for all principles of quantum mechanics. Obtained results directly confirm the reality of DM existence, and show that CMBR is an observed display of DM thermal motion. Understanding that namely from DM occur known creation of electron-positron pairs as contrarily rotating material vortexes (according to their spins) let substantiate positron nature of ball lightning what first explains all its observed specific properties.

  18. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  19. Conservation of quantum efficiency in quantum well intermixing by stress engineering with dielectric bilayers

    NASA Astrophysics Data System (ADS)

    Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla

    2018-02-01

    In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.

  20. Controlling neutron orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Clark, Charles W.; Barankov, Roman; Huber, Michael G.; Arif, Muhammad; Cory, David G.; Pushin, Dmitry A.

    2015-09-01

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a `twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

  1. Symmetry and conservation laws in semiclassical wave packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less

  2. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    PubMed

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  3. Unconditional polarization qubit quantum memory at room temperature

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  4. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  5. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  6. Electron-Phonon Systems on a Universal Quantum Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James

    We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less

  7. Scheme for Entering Binary Data Into a Quantum Computer

    NASA Technical Reports Server (NTRS)

    Williams, Colin

    2005-01-01

    A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.

  8. Experimental entanglement of 25 individually accessible atomic quantum interfaces

    PubMed Central

    Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng

    2018-01-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing. PMID:29725621

  9. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  10. Integrability versus Thermalizability in Isolated Quantum Systems

    NASA Astrophysics Data System (ADS)

    Olshanii, Maxim

    2012-02-01

    The purpose of this presentation is to assess the status of our understanding of the transition from integrability to thermalizability in isolated quantum systems. In Classical Mechanics, the boundary stripe between the two is relatively sharp: its integrability edge is marked by the appearance of finite Lyapunov's exponents that further converge to a unique value when the ergodicity edge is reached. Classical ergodicity is a universal property: if a system is ergodic, then every observable attains its microcanonical value in the infinite time average over the trajectory. On the contrary, in Quantum Mechanics, Lyapunov's exponents are always zero. Furthermore, since quantum dynamics necessarily invokes coherent superpositions of eigenstates of different energy, projectors to the eigenstates become more relevant; those in turn never thermalize. All of the above indicates that in quantum many-body systems, (a) the integrability-thermalizability transition is smooth, and (b) the degree of thermalizability is not absolute like in classical mechanics, but it is relative to the class of observables of interest. In accordance with these observations, we propose a concrete measure of the degree of quantum thermalizability, consistent with the expected empirical manifestations of it. As a practical application of this measure, we devise a unified recipe for choosing an optimal set of conserved quantities to govern the after-relaxation values of observables, in both integrable quantum systems and in quantum systems in between integrable and thermalizable.

  11. Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    DTIC Science & Technology

    2016-09-13

    computation [1] provides a gen- eral framework for fundamental investigations into sub- jects such as entanglement, quantum measurement, and quantum ...information theory. Since quantum computation relies on entanglement between qubits, any implementa- tion of a quantum computer must offer isolation from the...for realiz- ing a quantum computer , which is scalable to an arbitrary number of qubits. Their scheme is based on a collection of trapped atomic ions

  12. Affine q-deformed symmetry and the classical Yang-Baxter σ-model

    NASA Astrophysics Data System (ADS)

    Delduc, F.; Kameyama, T.; Magro, M.; Vicedo, B.

    2017-03-01

    The Yang-Baxter σ-model is an integrable deformation of the principal chiral model on a Lie group G. The deformation breaks the G × G symmetry to U(1)rank( G) × G. It is known that there exist non-local conserved charges which, together with the unbroken U(1)rank( G) local charges, form a Poisson algebra [InlineMediaObject not available: see fulltext.], which is the semiclassical limit of the quantum group {U}_q(g) , with g the Lie algebra of G. For a general Lie group G with rank( G) > 1, we extend the previous result by constructing local and non-local conserved charges satisfying all the defining relations of the infinite-dimensional Poisson algebra [InlineMediaObject not available: see fulltext.], the classical analogue of the quantum loop algebra {U}_q(Lg) , where Lg is the loop algebra of g. Quite unexpectedly, these defining relations are proved without encountering any ambiguity related to the non-ultralocality of this integrable σ-model.

  13. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology.

    PubMed

    Barrett, Harrison H; Myers, Kyle J; Caucci, Luca

    2014-08-17

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.

  14. RADIANCE AND PHOTON NOISE: Imaging in geometrical optics, physical optics, quantum optics and radiology

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca

    2016-01-01

    A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293

  15. Entropy is conserved in Hawking radiation as tunneling: A revisit of the black hole information loss paradox

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng; You, Li

    2011-02-01

    We revisit in detail the paradox of black hole information loss due to Hawking radiation as tunneling. We compute the amount of information encoded in correlations among Hawking radiations for a variety of black holes, including the Schwarzchild black hole, the Reissner-Nordström black hole, the Kerr black hole, and the Kerr-Newman black hole. The special case of tunneling through a quantum horizon is also considered. Within a phenomenological treatment based on the accepted emission probability spectrum from a black hole, we find that information is leaked out hidden in the correlations of Hawking radiation. The recovery of this previously unaccounted for information helps to conserve the total entropy of a system composed of a black hole plus its radiations. We thus conclude, irrespective of the microscopic picture for black hole collapsing, the associated radiation process: Hawking radiation as tunneling, is consistent with unitarity as required by quantum mechanics.

  16. A quantum Szilard engine without heat from a thermal reservoir

    NASA Astrophysics Data System (ADS)

    Hamed Mohammady, M.; Anders, Janet

    2017-11-01

    We study a quantum Szilard engine that is not powered by heat drawn from a thermal reservoir, but rather by projective measurements. The engine is constituted of a system { S }, a weight { W }, and a Maxwell demon { D }, and extracts work via measurement-assisted feedback control. By imposing natural constraints on the measurement and feedback processes, such as energy conservation and leaving the memory of the demon intact, we show that while the engine can function without heat from a thermal reservoir, it must give up at least one of the following features that are satisfied by a standard Szilard engine: (i) repeatability of measurements; (ii) invariant weight entropy; or (iii) positive work extraction for all measurement outcomes. This result is shown to be a consequence of the Wigner-Araki-Yanase theorem, which imposes restrictions on the observables that can be measured under additive conservation laws. This observation is a first-step towards developing ‘second-law-like’ relations for measurement-assisted feedback control beyond thermality.

  17. Efficient Manufacturing of Therapeutic Mesenchymal Stromal Cells Using the Quantum Cell Expansion System

    PubMed Central

    Hanley, Patrick J.; Mei, Zhuyong; Durett, April G.; Cabreira-Harrison, Marie da Graca; Klis, Mariola; Li, Wei; Zhao, Yali; Yang, Bing; Parsha, Kaushik; Mir, Osman; Vahidy, Farhaan; Bloom, Debra; Rice, R. Brent; Hematti, Peiman; Savitz, Sean I; Gee, Adrian P.

    2014-01-01

    Background The use of bone marrow-derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host-disease, diabetes, ischemic cardiomyopathy, and Crohn's disease has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells needs to be cost effective, safe, and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures, and require prolonged culture times. Methods We evaluated the Quantum Cell Expansion system for the expansion of large numbers of MSCs from unprocessed bone marrow in a functionally closed system and compared the results to a flask-based method currently in clinical trials. Results After only two passages, we were able to expand a mean of 6.6×108 MSCs from 25 mL of bone marrow reproducibly. The mean expansion time was 21 days, and cells obtained were able to differentiate into all three lineages: chondrocytes, osteoblasts, and adipocytes. The Quantum was able to generate the target cell number of 2.0×108 cells in an average of 9-fewer days and in half the number of passages required during flask-based expansion. We estimated the Quantum would involve 133 open procedures versus 54,400 in flasks when manufacturing for a clinical trial. Quantum-expanded MSCs infused into an ischemic stroke rat model were therapeutically active. Discussion The Quantum is a novel method of generating high numbers of MSCs in less time and at lower passages when compared to flasks. In the Quantum, the risk of contamination is substantially reduced due to the substantial decrease in open procedures. PMID:24726657

  18. Fast Single-Shot Hold Spin Readout in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry

    Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.

  19. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials.

    PubMed

    Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L; Cococcioni, Matteo; Dabo, Ismaila; Dal Corso, Andrea; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M

    2009-09-30

    QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.

  20. A Rout to Protect Quantum Gates constructed via quantum walks from Noises.

    PubMed

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2018-05-08

    The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.

  1. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  2. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  3. Photon-number correlation for quantum enhanced imaging and sensing

    NASA Astrophysics Data System (ADS)

    Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.

    2017-09-01

    In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.

  4. The Open Gate of the KV1.2 Channel: Quantum Calculations Show the Key Role of Hydration

    PubMed Central

    Kariev, Alisher M.; Njau, Philipa; Green, Michael E.

    2014-01-01

    The open gate of the Kv1.2 voltage-gated potassium channel can just hold a hydrated K+ ion. Quantum calculations starting from the x-ray coordinates of the channel confirm this, showing little change from the x-ray coordinates for the protein. Water molecules not in the x-ray coordinates, and the ion itself, are placed by the calculation. The water molecules, including their orientation and hydrogen bonding, with and without an ion, are critical for the path of the ion, from the solution to the gate. A sequence of steps is postulated in which the potential experienced by the ion in the pore is influenced by the position of the ion. The gate structure, with and without the ion, has been optimized. The charges on the atoms and bond lengths have been calculated using natural bond orbital calculations, giving K+ ∼0.77 charges, rather than 1.0. The PVPV hinge sequence has been mutated in silico to PVVV (P407V in the 2A79 numbering). The water structure around the ion becomes discontinuous, separated into two sections, above and below the ion. PVPV conservation closely relates to maintaining the water structure. Finally, these results have implications concerning gating. PMID:24507595

  5. Emergent gravity of fractons: Mach's principle revisited

    NASA Astrophysics Data System (ADS)

    Pretko, Michael

    2017-07-01

    Recent work has established the existence of stable quantum phases of matter described by symmetric tensor gauge fields, which naturally couple to particles of restricted mobility, such as fractons. We focus on a minimal toy model of a rank 2 tensor gauge field, consisting of fractons coupled to an emergent graviton (massless spin-2 excitation). We show how to reconcile the immobility of fractons with the expected gravitational behavior of the model. First, we reformulate the fracton phenomenon in terms of an emergent center of mass quantum number, and we show how an effective attraction arises from the principles of locality and conservation of center of mass. This interaction between fractons is always attractive and can be recast in geometric language, with a geodesiclike formulation, thereby satisfying the expected properties of a gravitational force. This force will generically be short-ranged, but we discuss how the power-law behavior of Newtonian gravity can arise under certain conditions. We then show that, while an isolated fracton is immobile, fractons are endowed with finite inertia by the presence of a large-scale distribution of other fractons, in a concrete manifestation of Mach's principle. Our formalism provides suggestive hints that matter plays a fundamental role, not only in perturbing, but in creating the background space in which it propagates.

  6. Relational particle models: I. Reconciliation with standard classical and quantum theory

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2006-04-01

    This paper concerns the absolute versus relative motion debate. The Barbour and Bertotti (1982) work may be viewed as an indirectly set up relational formulation of a portion of Newtonian mechanics. I consider further direct formulations of this and argue that the portion in question—universes with zero total angular momentum that are conservative and with kinetic terms that are (homogeneous) quadratic in their velocities—is capable of accommodating a wide range of classical physics phenomena. Furthermore, as I develop in paper II, this relational particle model is a useful toy model for canonical general relativity. I consider what happens if one quantizes relational rather than absolute mechanics, indeed whether the latter is misleading. By exploiting Jacobi coordinates, I show how to access many examples of quantized relational particle models and then interpret these from a relational perspective. By these means, previous suggestions of bad semiclassicality for such models can be eluded. I show how small (particle number) universe relational particle model examples display eigenspectrum truncation, gaps, energy interlocking and counterbalanced total angular momentum. These features mean that these small universe models make interesting toy models for some aspects of closed-universe quantum cosmology. Meanwhile, these features do not compromise the recovery of reality as regards the practicalities of experimentation in a large universe such as our own.

  7. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  8. Implications of causality for quantum biology - I: topology change

    NASA Astrophysics Data System (ADS)

    Scofield, D. F.; Collins, T. C.

    2018-06-01

    A framework for describing the causal, topology changing, evolution of interacting biomolecules is developed. The quantum dynamical manifold equations (QDMEs) derived from this framework can be related to the causality restrictions implied by a finite speed of light and to Planck's constant to set a transition frequency scale. The QDMEs imply conserved stress-energy, angular-momentum and Noether currents. The functional whose extremisation leads to this result provides a causal, time-dependent, non-equilibrium generalisation of the Hohenberg-Kohn theorem. The system of dynamical equations derived from this functional and the currents J derived from the QDMEs are shown to be causal and consistent with the first and second laws of thermodynamics. This has the potential of allowing living systems to be quantum mechanically distinguished from non-living ones.

  9. Characterization and Analysis of a Multicolor Quantum Well Infrared Photodetector

    DTIC Science & Technology

    2006-06-01

    and characterization of performance of a newly designed, multicolor quantum well infrared photodetector ( QWIP ). Specifically, it focuses on a detector...quantum well infrared detectors makes them suitable for use in the field. 15. NUMBER OF PAGES 67 14. SUBJECT TERMS Quantum Well, QWIP , Three...characterization of performance of a newly designed, multicolor quantum well infrared photodetector ( QWIP ). Specifically, it focuses on a detector

  10. A Revelation: Quantum-Statistics and Classical-Statistics are Analytic-Geometry Conic-Sections and Numbers/Functions: Euler, Riemann, Bernoulli Generating-Functions: Conics to Numbers/Functions Deep Subtle Connections

    NASA Astrophysics Data System (ADS)

    Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!

  11. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation

    NASA Astrophysics Data System (ADS)

    Liu, Shengshuai; Wang, Hailong; Jing, Jietai

    2018-04-01

    We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.

  12. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state.

    PubMed

    Huang, Yun-Feng; Liu, Bi-Heng; Peng, Liang; Li, Yu-Hu; Li, Li; Li, Chuan-Feng; Guo, Guang-Can

    2011-11-22

    Multi-partite entangled states are important for developing studies of quantum networking and quantum computation. To date, the largest number of particles that have been successfully manipulated is 14 trapped ions. Yet in quantum information science, photons have particular advantages over other systems. In particular, they are more easily transportable qubits and are more robust against decoherence. Thus far, the largest number of photons to have been successfully manipulated in an experiment is six. Here we demonstrate, for the first time, an eight-photon Greenberger-Horne-Zeilinger state with a measured fidelity of 0.59±0.02, which proved the presence of genuine eight-partite entanglement. This is achieved by improving the photon detection efficiency to 25% with a 300-mW pump laser. With this state, we also demonstrate an eight-party quantum communication complexity scenario. This eight-photon entangled-state source may be useful in one-way quantum computation, quantum networks and other quantum information processing tasks.

  13. Memory assisted free space quantum communication

    NASA Astrophysics Data System (ADS)

    Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden

    2016-05-01

    A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  14. Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2016-03-01

    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.

  15. An efficient quantum algorithm for spectral estimation

    NASA Astrophysics Data System (ADS)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  16. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  17. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  18. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  19. Quantum non-demolition phonon counter with a hybrid optomechnical system

    NASA Astrophysics Data System (ADS)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  20. Orbital and spin dynamics of intraband electrons in quantum rings driven by twisted light.

    PubMed

    Quinteiro, G F; Tamborenea, P I; Berakdar, J

    2011-12-19

    We theoretically investigate the effect that twisted light has on the orbital and spin dynamics of electrons in quantum rings possessing sizable Rashba spin-orbit interaction. The system Hamiltonian for such a strongly inhomogeneous light field exhibits terms which induce both spin-conserving and spin-flip processes. We analyze the dynamics in terms of the perturbation introduced by a weak light field on the Rasha electronic states, and describe the effects that the orbital angular momentum as well as the inhomogeneous character of the beam have on the orbital and the spin dynamics.

  1. On the Treatment of l-changing Proton-hydrogen Rydberg Atom Collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel; Onofrio, Roberto; Sadeghpour, Hossein

    2018-01-01

    Energy-conserving, angular momentum-changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of the primordial recombination cascade, and the elemental abundance.Early approaches to l-changing collisions used perturbation theory for only dipole-allowed (Δl = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at computational cost for highly excited Rydberg states. In this note we show how to obtain a semi-classical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  2. Influence of the nanoparticles agglomeration state in the quantum-confinement effects: Experimental evidences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorite, I., E-mail: lorite@physik.uni-leipzig.de; Division of Superconductivity and Magnetism, Faculty of Physics and Earth Sciences, Linnestrasse 5, D-04103 Leipzig; Romero, J. J.

    2015-03-15

    The agglomeration state facilitates particle-particle interaction which produces important effects in the phonon confinement effects at the nanoscale. A partial phonon transmission between close nanoparticles yields a lower momentum conservation relaxation than in a single isolated nanoparticle. It means a larger red shift and broadening of the Raman modes than the expected ones for Raman quantum confinement effects. This particle-particle interaction can drive to error when Raman responses are used to estimate the size of the nanoscaled materials. In this work different corrections are suggested to overtake this source of error.

  3. 𝒩 = 4 supersymmetric quantum mechanical model: Novel symmetries

    NASA Astrophysics Data System (ADS)

    Krishna, S.

    2017-04-01

    We discuss a set of novel discrete symmetry transformations of the 𝒩 = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent 𝒩 = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions 𝜃α and 𝜃¯α onto (1, 4)-dimensional supermanifold.

  4. Stable long-time semiclassical description of zero-point energy in high-dimensional molecular systems.

    PubMed

    Garashchuk, Sophya; Rassolov, Vitaly A

    2008-07-14

    Semiclassical implementation of the quantum trajectory formalism [J. Chem. Phys. 120, 1181 (2004)] is further developed to give a stable long-time description of zero-point energy in anharmonic systems of high dimensionality. The method is based on a numerically cheap linearized quantum force approach; stabilizing terms compensating for the linearization errors are added into the time-evolution equations for the classical and nonclassical components of the momentum operator. The wave function normalization and energy are rigorously conserved. Numerical tests are performed for model systems of up to 40 degrees of freedom.

  5. Thermalization without eigenstate thermalization hypothesis after a quantum quench.

    PubMed

    Mori, Takashi; Shiraishi, Naoto

    2017-08-01

    Nonequilibrium dynamics of a nonintegrable system without the eigenstate thermalization hypothesis is studied. It is shown that, in the thermodynamic limit, this model thermalizes after an arbitrary quantum quench at finite temperature, although it does not satisfy the eigenstate thermalization hypothesis. In contrast, when the system size is finite and the temperature is low enough, the system may not thermalize. In this case, the steady state is well described by the generalized Gibbs ensemble constructed by using highly nonlocal conserved quantities. We also show that this model exhibits prethermalization, in which the prethermalized state is characterized by nonthermal energy eigenstates.

  6. Quantum break-time of de Sitter

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  7. Quantum generalisation of feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.

    2017-09-01

    We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

  8. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  9. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    NASA Astrophysics Data System (ADS)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  11. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  12. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics

    DOE PAGES

    Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...

    2015-06-11

    We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  13. Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Giacomo Guerreschi, Gian; Aspuru-Guzik, Alán

    2016-07-01

    We present an exact quantum algorithm for solving the Exact Satisfiability problem, which belongs to the important NP-complete complexity class. The algorithm is based on an intuitive approach that can be divided into two parts: the first step consists in the identification and efficient characterization of a restricted subspace that contains all the valid assignments of the Exact Satisfiability; while the second part performs a quantum search in such restricted subspace. The quantum algorithm can be used either to find a valid assignment (or to certify that no solution exists) or to count the total number of valid assignments. The query complexities for the worst-case are respectively bounded by O(\\sqrt{{2}n-{M\\prime }}) and O({2}n-{M\\prime }), where n is the number of variables and {M}\\prime the number of linearly independent clauses. Remarkably, the proposed quantum algorithm results to be faster than any known exact classical algorithm to solve dense formulas of Exact Satisfiability. As a concrete application, we provide the worst-case complexity for the Hamiltonian cycle problem obtained after mapping it to a suitable Occupation problem. Specifically, we show that the time complexity for the proposed quantum algorithm is bounded by O({2}n/4) for 3-regular undirected graphs, where n is the number of nodes. The same worst-case complexity holds for (3,3)-regular bipartite graphs. As a reference, the current best classical algorithm has a (worst-case) running time bounded by O({2}31n/96). Finally, when compared to heuristic techniques for Exact Satisfiability problems, the proposed quantum algorithm is faster than the classical WalkSAT and Adiabatic Quantum Optimization for random instances with a density of constraints close to the satisfiability threshold, the regime in which instances are typically the hardest to solve. The proposed quantum algorithm can be straightforwardly extended to the generalized version of the Exact Satisfiability known as Occupation problem. The general version of the algorithm is presented and analyzed.

  14. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.

  15. What is an integrable quench?

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Pozsgay, Balázs; Vernier, Eric

    2017-12-01

    Inspired by classical results in integrable boundary quantum field theory, we propose a definition of integrable initial states for quantum quenches in lattice models. They are defined as the states which are annihilated by all local conserved charges that are odd under space reflection. We show that this class includes the states which can be related to integrable boundary conditions in an appropriate rotated channel, in loose analogy with the picture in quantum field theory. Furthermore, we provide an efficient method to test integrability of given initial states. We revisit the recent literature of global quenches in several models and show that, in all of the cases where closed-form analytical results could be obtained, the initial state is integrable according to our definition. In the prototypical example of the XXZ spin-s chains we show that integrable states include two-site product states but also larger families of matrix product states with arbitrary bond dimension. We argue that our results could be practically useful for the study of quantum quenches in generic integrable models.

  16. Dynamical Causal Modeling from a Quantum Dynamical Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demiralp, Emre; Demiralp, Metin

    Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, thismore » limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.« less

  17. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  18. Programmable quantum random number generator without postprocessing.

    PubMed

    Nguyen, Lac; Rehain, Patrick; Sua, Yong Meng; Huang, Yu-Ping

    2018-02-15

    We demonstrate a viable source of unbiased quantum random numbers whose statistical properties can be arbitrarily programmed without the need for any postprocessing such as randomness distillation or distribution transformation. It is based on measuring the arrival time of single photons in shaped temporal modes that are tailored with an electro-optical modulator. We show that quantum random numbers can be created directly in customized probability distributions and pass all randomness tests of the NIST and Dieharder test suites without any randomness extraction. The min-entropies of such generated random numbers are measured close to the theoretical limits, indicating their near-ideal statistics and ultrahigh purity. Easy to implement and arbitrarily programmable, this technique can find versatile uses in a multitude of data analysis areas.

  19. Source-Device-Independent Ultrafast Quantum Random Number Generation.

    PubMed

    Marangon, Davide G; Vallone, Giuseppe; Villoresi, Paolo

    2017-02-10

    Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit/s.

  20. A quantum rings based on multiple quantum wells for 1.2-2.8 THz detection

    NASA Astrophysics Data System (ADS)

    Mobini, Alireza; Solaimani, M.

    2018-07-01

    In this paper optical properties of a new QR based on MQWs have been investigated for detection in the THz range. The QR composed of a periodic effective quantum sites that each one considered as QW in theta direction. Using Tight binding method, eigen value problem for a QR with circumstance of 100 nm number with different number of wells i.e. 2, 4, 6 and 8 are solved and the absorption spectrum have been calculated. The results show that absorption has maximum value in range of (1.2-2.88 THz) that can be used for THz detection. Finally, it is realized that by increasing the number of wells, the numbers of absorption line also increase.

  1. Two-Way Communication with a Single Quantum Particle.

    PubMed

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-09

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  2. Two-Way Communication with a Single Quantum Particle

    NASA Astrophysics Data System (ADS)

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-01

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  3. The Nonlinear Jaynes-Cummings Model for the Multiphoton Transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Lu, Jing-Bin; Zhang, Si-Qi; Liu, Ji-Ping; Li, Hong; Liang, Yu; Ma, Ji; Weng, Yi-Jiao; Zhang, Qi-Rui; Liu, Han; Zhang, Xiao-Ru; Wu, Xiang-Yao

    2018-01-01

    With the nonlinear Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition in nonlinear medium, and researched the effect of the transition photon number N and the nonlinear coefficient χ on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, we find when the transition photon number N increases, the entanglement degrees oscillation get faster. When the nonlinear coefficient α > 0, the entanglement degrees oscillation get quickly, the nonlinear term is disadvantage of the atom and light field entanglement, and when the nonlinear coefficient α < 0, the entanglement degrees oscillation get slow, the nonlinear term is advantage of the atom and light field entanglement. These results will have been used in the quantum communication and quantum information.

  4. Experimental creation of quantum Zeno subspaces by repeated multi-spin projections in diamond

    NASA Astrophysics Data System (ADS)

    Kalb, N.; Cramer, J.; Twitchen, D. J.; Markham, M.; Hanson, R.; Taminiau, T. H.

    2016-10-01

    Repeated observations inhibit the coherent evolution of quantum states through the quantum Zeno effect. In multi-qubit systems this effect provides opportunities to control complex quantum states. Here, we experimentally demonstrate that repeatedly projecting joint observables of multiple spins creates quantum Zeno subspaces and simultaneously suppresses the dephasing caused by a quasi-static environment. We encode up to two logical qubits in these subspaces and show that the enhancement of the dephasing time with increasing number of projections follows a scaling law that is independent of the number of spins involved. These results provide experimental insight into the interplay between frequent multi-spin measurements and slowly varying noise and pave the way for tailoring the dynamics of multi-qubit systems through repeated projections.

  5. An Adynamical, Graphical Approach to Quantum Gravity and Unification

    NASA Astrophysics Data System (ADS)

    Stuckey, W. M.; Silberstein, Michael; McDevitt, Timothy

    We use graphical field gradients in an adynamical, background independent fashion to propose a new approach to quantum gravity (QG) and unification. Our proposed reconciliation of general relativity (GR) and quantum field theory (QFT) is based on a modification of their graphical instantiations, i.e. Regge calculus and lattice gauge theory (LGT), respectively, which we assume are fundamental to their continuum counterparts. Accordingly, the fundamental structure is a graphical amalgam of space, time, and sources (in parlance of QFT) called a "space-time source element". These are fundamental elements of space, time, and sources, not source elements in space and time. The transition amplitude for a space-time source element is computed using a path integral with discrete graphical action. The action for a space-time source element is constructed from a difference matrix K and source vector J on the graph, as in lattice gauge theory. K is constructed from graphical field gradients so that it contains a non-trivial null space and J is then restricted to the row space of K, so that it is divergence-free and represents a conserved exchange of energy-momentum. This construct of K and J represents an adynamical global constraint (AGC) between sources, the space-time metric, and the energy-momentum content of the element, rather than a dynamical law for time-evolved entities. In this view, one manifestation of quantum gravity becomes evident when, for example, a single space-time source element spans adjoining simplices of the Regge calculus graph. Thus, energy conservation for the space-time source element includes contributions to the deficit angles between simplices. This idea is used to correct proper distance in the Einstein-de Sitter (EdS) cosmology model yielding a fit of the Union2 Compilation supernova data that matches ΛCDM without having to invoke accelerating expansion or dark energy. A similar modification to LGT results in an adynamical account of quantum interference.

  6. Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

    DTIC Science & Technology

    2007-11-20

    4, 2005. ) 14. M. 0. Scully, "The EPR Paradox Revisted", AMO Physics Seminar, TAMU Jan. 18, 2005. 15. M. S. Zubairy, "Quantum computing: Cavity QED...the EPR dispersion relation and the average photon number. We have shown that atomic coherence is the key to the development of such a laser. In...PRISM-TAMU Symposium on Quantum Material Science, Princeton University, February 21-22, 2005. ) 21. M. 0. Scully, "From EPR to quantum eraser: The Role

  7. Photon-number-resolving detectors and their role in quantifying quantum correlations

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Krivitsky, Leonid A.; Englert, Berthold-Georg

    2016-09-01

    Harnessing entanglement as a resource is the main workhorse of many quantum protocols, and establishing the degree of quantum correlations of quantum states is an important certification process that has to take place prior to any implementations of these quantum protocols. The emergence of photodetectors known as photon-number-resolving detectors (PNRDs) that allow for accounting of photon numbers simultaneously arriving at the detectors has led to the need for modeling accurately and applying them for use in the certification process. Here we study the variance of difference of photocounts (VDP) of two PNRDs, which is one measure of quantum correlations, under the effects of loss and saturation. We found that it would be possible to distinguish between the classical correlation of a two-mode coherent state and the quantum correlation of a twin-beam state within some photo count regime of the detector. We compare the behavior of two such PNRDs. The first for which the photocount statistics follow a binomial distribution accounting for losses, and the second is that of Agarwal, Vogel, and Sperling for which the incident beam is first split and then separately measured by ON/OFF detectors. In our calculations, analytical expressions are derived for the variance of difference where possible. In these cases, Gauss' hypergeometric function appears regularly, giving an insight to the type of quantum statistics the photon counting gives in these PNRDs. The different mechanisms of the two types of PNRDs leads to quantitative differences in their VDP.

  8. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  9. Simulation approach for the evaluation of tracking accuracy in radiotherapy: a preliminary study.

    PubMed

    Tanaka, Rie; Ichikawa, Katsuhiro; Mori, Shinichiro; Sanada, Sigeru

    2013-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). It is important to keep the patient dose as low as possible while maintaining tracking accuracy. A simulation approach would be helpful to optimize the imaging conditions. This study was performed to develop a computer simulation platform based on a noise property of the imaging system for the evaluation of tracking accuracy at any noise level. Flat-field images were obtained using a direct-type dynamic FPD, and noise power spectrum (NPS) analysis was performed. The relationship between incident quantum number and pixel value was addressed, and a conversion function was created. The pixel values were converted into a map of quantum number using the conversion function, and the map was then input into the random number generator to simulate image noise. Simulation images were provided at different noise levels by changing the incident quantum numbers. Subsequently, an implanted marker was tracked automatically and the maximum tracking errors were calculated at different noise levels. The results indicated that the maximum tracking error increased with decreasing incident quantum number in flat-field images with an implanted marker. In addition, the range of errors increased with decreasing incident quantum number. The present method could be used to determine the relationship between image noise and tracking accuracy. The results indicated that the simulation approach would aid in determining exposure dose conditions according to the necessary tracking accuracy.

  10. A programmable two-qubit quantum processor in silicon

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  11. A programmable two-qubit quantum processor in silicon.

    PubMed

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  12. Solutions of the Quantum Yang-Baxter Equations Associated with (1-3/2)-D Representations of SU(sub q) (2)

    NASA Technical Reports Server (NTRS)

    Yijun, Huang; Guochen, Yu; Hong, Sun

    1996-01-01

    The solutions of the spectral independent QYBE associated with (1-3/2)-D representations of SU(sub q) (2) are derived, based on the weight conservation and extended Kauffman diagrammatic technique. It is found that there are nonstandard solutions.

  13. The Colour of the Noble Metals.

    ERIC Educational Resources Information Center

    Poole, R. T.

    1983-01-01

    Examines the physical basis for colors of noble metals (copper, silver, gold) developed from energy conservation/quantum mechanical view of free electron photoabsorption. Describes production of absorption edges produced by change in density of occupied valence electron states in the d-band, which allows stronger absorption in the visible photon…

  14. The Correspondence Principle Revisited.

    ERIC Educational Resources Information Center

    Liboff, Richard L.

    1984-01-01

    Addresses the question of frequency correspondence in the domain of large quantum numbers, with reference to periodic systems. Provides two simple counterexamples (a particle in a cubical box and a rigid rotator) to show that the classical result is not always recovered in the limit of large quantum numbers. (JM)

  15. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice

    NASA Astrophysics Data System (ADS)

    Willatt, Michael J.; Ceriotti, Michele; Althorpe, Stuart C.

    2018-03-01

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  16. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals.

    PubMed

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Li, Yan; Shi, Shuai; Wang, Xi-Shi; Shi, Bao-Sen

    2014-08-25

    Light with helical phase structures, carrying quantized orbital angular momentum (OAM), has many applications in both classical and quantum optics, such as high-capacity optical communications and quantum information processing. Frequency conversion is a basic technique to expand the frequency range of the fundamental light. The frequency conversion of OAM-carrying light gives rise to new physics and applications such as up-conversion detection of images and generation of high dimensional OAM entanglements. Quasi-phase matching (QPM) nonlinear crystals are good candidates for frequency conversion, particularly due to their high-valued effective nonlinear coefficients and no walk-off effect. Here we report the first experimental second-harmonic generation (SHG) of an OAM-carried light with a QPM crystal, where a UV light with OAM of 100 ℏ is generated. OAM conservation is verified using a specially designed interferometer. With a pump beam carrying an OAM superposition of opposite sign, we observe interesting interference phenomena in the SHG light; specifically, a photonics gear-like structure is obtained that gives direct evidence of OAM conservation, which will be very useful for ultra-sensitive angular measurements. Besides, we also develop a theory to reveal the underlying physics of the phenomena. The methods and theoretical analysis shown here are also applicable to other frequency conversion processes, such as sum frequency generation and difference-frequency generation, and may also be generalized to the quantum regime for single photons.

  17. Approximating Matsubara dynamics using the planetary model: Tests on liquid water and ice.

    PubMed

    Willatt, Michael J; Ceriotti, Michele; Althorpe, Stuart C

    2018-03-14

    Matsubara dynamics is the quantum-Boltzmann-conserving classical dynamics which remains when real-time coherences are taken out of the exact quantum Liouvillian [T. J. H. Hele et al., J. Chem. Phys. 142, 134103 (2015)]; because of a phase-term, it cannot be used as a practical method without further approximation. Recently, Smith et al. [J. Chem. Phys. 142, 244112 (2015)] developed a "planetary" model dynamics which conserves the Feynman-Kleinert (FK) approximation to the quantum-Boltzmann distribution. Here, we show that for moderately anharmonic potentials, the planetary dynamics gives a good approximation to Matsubara trajectories on the FK potential surface by decoupling the centroid trajectory from the locally harmonic Matsubara fluctuations, which reduce to a single phase-less fluctuation particle (the "planet"). We also show that the FK effective frequency can be approximated by a direct integral over these fluctuations, obviating the need to solve iterative equations. This modification, together with use of thermostatted ring-polymer molecular dynamics, allows us to test the planetary model on water (gas-phase, liquid, and ice) using the q-TIP4P/F potential surface. The "planetary" fluctuations give a poor approximation to the rotational/librational bands in the infrared spectrum, but a good approximation to the bend and stretch bands, where the fluctuation lineshape is found to be motionally narrowed by the vibrations of the centroid.

  18. Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Park, Namkyoo

    2018-03-01

    An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.

  19. Random numbers certified by Bell's theorem.

    PubMed

    Pironio, S; Acín, A; Massar, S; de la Giroday, A Boyer; Matsukevich, D N; Maunz, P; Olmschenk, S; Hayes, D; Luo, L; Manning, T A; Monroe, C

    2010-04-15

    Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on non-locality-based and device-independent quantum information processing, we show that the non-local correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design a cryptographically secure random number generator that does not require any assumption about the internal working of the device. Such a strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately one metre. The observed Bell inequality violation, featuring near perfect detection efficiency, guarantees that 42 new random numbers are generated with 99 per cent confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.

  20. Inhibitory control and visuo-spatial reversibility in Piaget's seminal number conservation task: a high-density ERP study

    PubMed Central

    Borst, Grégoire; Simon, Grégory; Vidal, Julie; Houdé, Olivier

    2013-01-01

    The present high-density event-related potential (ERP) study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition) and then, the tokens in one of the two rows were spread apart (INT condition). Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in adults. PMID:24409135

  1. Precision Muonium Spectroscopy

    NASA Astrophysics Data System (ADS)

    Jungmann, Klaus P.

    2016-09-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s-2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium-antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter.

  2. Entropy perspective on the thermal crossover in a fermionic Hubbard chain

    NASA Astrophysics Data System (ADS)

    Bonnes, Lars; Pichler, Hannes; Läuchli, Andreas M.

    2013-10-01

    We study the Renyi entropy in the finite-temperature crossover regime of a Hubbard chain using quantum Monte Carlo. The ground-state entropy has characteristic features such as a logarithmic divergence with block size and 2kF oscillations that are a hallmark of its Luttinger liquid nature. The interplay between the (extensive) thermal entropy and the ground-state features is studied and we analyze the temperature-induced decay of the amplitude of the oscillations as well as the scaling of the purity. Furthermore, we show how the spin and charge velocities can be extracted from the temperature dependence of the Renyi entropy, bridging our findings to recent experimental proposals on how to implement the measurement of Renyi entropies in the cold atom system. Studying the Renyi mutual information, we also demonstrate how constraints such as particle number conservation can induce persistent correlations visible in the mutual information even at high temperature.

  3. Alternative Z ' bosons in E 6

    NASA Astrophysics Data System (ADS)

    Rojas, Eduardo; Erler, Jens

    2015-10-01

    We classify the quantum numbers of the extra U(1)' symmetries contained in E 6. In particular, we categorize the cases with rational charges and present the full list of models which arise from the chains of the maximal subgroups of E 6. As an application, the classification allows us to determine all embeddings of the Standard Model fermions in all possible decompositions of the fundamental representation of E 6 under its maximal subgroups. From this we find alternative chains of subgroups for Grand Unified Theories. We show how many of the known models including some new ones appear in alternative breaking patterns. We also use low energy constraints coming from parity-violating asymmetry measurements and atomic parity non-conservation to set limits on the E 6 motivated parameter space for a Z ' boson mass of 1.2 TeV. We include projected limits for the present and upcoming QWEAK, MOLLER and SOLID experiments.

  4. Orbital angular momentum modes of high-gain parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Beltran, Lina; Frascella, Gaetano; Perez, Angela M.; Fickler, Robert; Sharapova, Polina R.; Manceau, Mathieu; Tikhonova, Olga V.; Boyd, Robert W.; Leuchs, Gerd; Chekhova, Maria V.

    2017-04-01

    Light beams with orbital angular momentum (OAM) are convenient carriers of quantum information. They can also be used for imparting rotational motion to particles and providing high resolution in imaging. Due to the conservation of OAM in parametric down-conversion (PDC), signal and idler photons generated at low gain have perfectly anti-correlated OAM values. It is interesting to study the OAM properties of high-gain PDC, where the same OAM modes can be populated with large, but correlated, numbers of photons. Here we investigate the OAM spectrum of high-gain PDC and show that the OAM mode content can be controlled by varying the pump power and the configuration of the source. In our experiment, we use a source consisting of two nonlinear crystals separated by an air gap. We discuss the OAM properties of PDC radiation emitted by this source and suggest possible modifications.

  5. Manipulating Topological Edge Spins in One-Dimensional Optical Lattice

    NASA Astrophysics Data System (ADS)

    Liu, Xiong-Jun; Liu, Zheng-Xin; Cheng, Meng

    2013-03-01

    We propose to observe and manipulate topological edge spins in 1D optical lattice based on currently available experimental platforms. Coupling the atomic spin states to a laser-induced periodic Zeeman field, the lattice system can be driven into a symmetry protected topological (SPT) phase, which belongs to the chiral unitary (AIII) class protected by particle number conservation and chiral symmetries. In free-fermion case the SPT phase is classified by a Z invariant which reduces to Z4 with interactions. The zero edge modes of the SPT phase are spin-polarized, with left and right edge spins polarized to opposite directions and forming a topological spin-qubit (TSQ). We demonstrate a novel scheme to manipulate the zero modes and realize single spin control in optical lattice. The manipulation of TSQs has potential applications to quantum computation. We acknowledge the support from JQI-NSF-PFC, Microsoft-Q, and DARPA- QuEST.

  6. Current conserving theory at the operator level

    NASA Astrophysics Data System (ADS)

    Yuan, Jiangtao; Wang, Yin; Wang, Jian

    The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.

  7. Generalized Maxwell equations and charge conservation censorship

    NASA Astrophysics Data System (ADS)

    Modanese, G.

    2017-02-01

    The Aharonov-Bohm electrodynamics is a generalization of Maxwell theory with reduced gauge invariance. It allows to couple the electromagnetic field to a charge which is not locally conserved, and has an additional degree of freedom, the scalar field S = ∂αAα, usually interpreted as a longitudinal wave component. By reformulating the theory in a compact Lagrangian formalism, we are able to eliminate S explicitly from the dynamics and we obtain generalized Maxwell equation with interesting properties: they give ∂μFμν as the (conserved) sum of the (possibly non-conserved) physical current density jν, and a “secondary” current density iν which is a nonlocal function of jν. This implies that any non-conservation of jν is effectively “censored” by the observable field Fμν, and yet it may have real physical consequences. We give examples of stationary solutions which display these properties. Possible applications are to systems where local charge conservation is violated due to anomalies of the Adler-Bell-Jackiw (ABJ) kind or to macroscopic quantum tunnelling with currents which do not satisfy a local continuity equation.

  8. USAF Hearing Conservation Program, DOEHRS-HC Data Repository Annual Report: CY15

    DTIC Science & Technology

    2017-05-31

    AFRL-SA-WP-SR-2017-0014 USAF Hearing Conservation Program, DOEHRS-HC Data Repository Annual Report: CY15 Daniel A. Williams...Conservation Program, DOEHRS-HC Data Repository Annual Report: CY15 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...Health Readiness System-Hearing Conservation Data Repository (DOEHRS-HC DR). Major command- and installation-level reports are available quarterly

  9. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  10. Transverse fields to tune an Ising-nematic quantum phase transition [Transverse fields to tune an Ising-nematic quantum critical transition

    DOE PAGES

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; ...

    2017-12-05

    Here, the paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated withmore » spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.« less

  11. Hawking radiation as tunneling in Schwarzschild anti-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Sefiedgar, A. S.; Ashrafinejad, A.

    2017-08-01

    The Hawking radiation from a (d+1) -dimensional Schwarzschild Anti-de Sitter (SAdS) black hole is investigated within rainbow gravity. Based on the method proposed by Kraus, Parikh and Wilczek, the Hawking radiation is considered as a tunneling process across the horizon. The emission rate of massless particles which are tunneling across the quantum-corrected horizon is calculated. Enforcing the energy conservation law leads to a dynamical geometry. Both the dynamical geometry and the quantum effects of space-time yield some corrections to the emission rate. The corrected radiation spectrum is not purely thermal. The emission rate is related to the changes of modified entropy in rainbow gravity and the corrected thermal spectrum may be consistent with an underlying unitary quantum theory. The correlations between emitted particles are also investigated in order to address the recovery of information.

  12. Non-additive dissipation in open quantum networks out of equilibrium

    NASA Astrophysics Data System (ADS)

    Mitchison, Mark T.; Plenio, Martin B.

    2018-03-01

    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curchod, Basile F. E.; Agostini, Federica, E-mail: agostini@mpi-halle.mpg.de; Gross, E. K. U.

    Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrastmore » to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.« less

  14. Separability and dynamical symmetry of Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, P.-M., E-mail: zhpm@impcas.ac.cn; Zou, L.-P., E-mail: zoulp@impcas.ac.cn; Horvathy, P.A., E-mail: horvathy@lmpt.univ-tours.fr

    2014-02-15

    The separability and Runge–Lenz-type dynamical symmetry of the internal dynamics of certain two-electron Quantum Dots, found by Simonović et al. (2003), are traced back to that of the perturbed Kepler problem. A large class of axially symmetric perturbing potentials which allow for separation in parabolic coordinates can easily be found. Apart from the 2:1 anisotropic harmonic trapping potential considered in Simonović and Nazmitdinov (2013), they include a constant electric field parallel to the magnetic field (Stark effect), the ring-shaped Hartmann potential, etc. The harmonic case is studied in detail. -- Highlights: • The separability of Quantum Dots is derived frommore » that of the perturbed Kepler problem. • Harmonic perturbation with 2:1 anisotropy is separable in parabolic coordinates. • The system has a conserved Runge–Lenz type quantity.« less

  15. Quantum Quench Dynamics

    NASA Astrophysics Data System (ADS)

    Mitra, Aditi

    2018-03-01

    Quench dynamics is an active area of study encompassing condensed matter physics and quantum information, with applications to cold-atomic gases and pump-probe spectroscopy of materials. Recent theoretical progress in studying quantum quenches is reviewed. Quenches in interacting one-dimensional systems as well as systems in higher spatial dimensions are covered. The appearance of nontrivial steady states following a quench in exactly solvable models is discussed, and the stability of these states to perturbations is described. Proper conserving approximations needed to capture the onset of thermalization at long times are outlined. The appearance of universal scaling for quenches near critical points and the role of the renormalization group in capturing the transient regime are reviewed. Finally, the effect of quenches near critical points on the dynamics of entanglement entropy and entanglement statistics is discussed. The extraction of critical exponents from the entanglement statistics is outlined.

  16. Quantum-classical correspondence in the vicinity of periodic orbits

    NASA Astrophysics Data System (ADS)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  17. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  18. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    NASA Astrophysics Data System (ADS)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.

  19. Implementation of a quantum random number generator based on the optimal clustering of photocounts

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Zaitsev, V. I.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2017-10-01

    To implement quantum random number generators, it is fundamentally important to have a mathematically provable and experimentally testable process of measurements of a system from which an initial random sequence is generated. This makes sure that randomness indeed has a quantum nature. A quantum random number generator has been implemented with the use of the detection of quasi-single-photon radiation by a silicon photomultiplier (SiPM) matrix, which makes it possible to reliably reach the Poisson statistics of photocounts. The choice and use of the optimal clustering of photocounts for the initial sequence of photodetection events and a method of extraction of a random sequence of 0's and 1's, which is polynomial in the length of the sequence, have made it possible to reach a yield rate of 64 Mbit/s of the output certainly random sequence.

  20. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  1. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  2. Secure uniform random-number extraction via incoherent strategies

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Zhu, Huangjun

    2018-01-01

    To guarantee the security of uniform random numbers generated by a quantum random-number generator, we study secure extraction of uniform random numbers when the environment of a given quantum state is controlled by the third party, the eavesdropper. Here we restrict our operations to incoherent strategies that are composed of the measurement on the computational basis and incoherent operations (or incoherence-preserving operations). We show that the maximum secure extraction rate is equal to the relative entropy of coherence. By contrast, the coherence of formation gives the extraction rate when a certain constraint is imposed on the eavesdropper's operations. The condition under which the two extraction rates coincide is then determined. Furthermore, we find that the exponential decreasing rate of the leaked information is characterized by Rényi relative entropies of coherence. These results clarify the power of incoherent strategies in random-number generation, and can be applied to guarantee the quality of random numbers generated by a quantum random-number generator.

  3. Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Prabhu, R.; Sen, Aditi

    2014-09-15

    Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and formore » an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.« less

  4. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    NASA Technical Reports Server (NTRS)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  5. Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices

    NASA Astrophysics Data System (ADS)

    Al-Taie, H.; Smith, L. W.; Xu, B.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2013-06-01

    We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.

  6. Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jamil, M.; Rasheed, A.

    2015-07-15

    The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less

  7. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  8. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    PubMed Central

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  9. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  10. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; Drummond, P. D.

    2013-04-01

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.

  11. Horizon quantum fuzziness for non-singular black holes

    NASA Astrophysics Data System (ADS)

    Giugno, Andrea; Giusti, Andrea; Helou, Alexis

    2018-03-01

    We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.

  12. Transition energies and polarizabilities of hydrogen like ions in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Madhusmita

    2012-09-15

    Effect of plasma screening on various properties like transition energy, polarizability (dipole and quadrupole), etc. of hydrogen like ions is studied. The bound and free state wave functions and transition matrix elements are obtained by numerically integrating the radial Schrodinger equation for appropriate plasma potential. We have used adaptive step size controlled Runge-Kutta method to perform the numerical integration. Debye-Huckel potential is used to investigate the variation in transition lines and polarizabilities (dipole and quadrupole) with increasing plasma screening. For a strongly coupled plasma, ion sphere potential is used to show the variation in excitation energy with decreasing ion spheremore » radius. It is observed that plasma screening sets in phenomena like continuum lowering and pressure ionization, which are unique to ions in plasma. Of particular interest is the blue (red) shift in transitions conserving (non-conserving) principal quantum number. The plasma environment also affects the dipole and quadrupole polarizability of ions in a significant manner. The bound state contribution to polarizabilities decreases with increase in plasma density whereas the continuum contribution is significantly enhanced. This is a result of variation in the behavior of bound and continuum state wave functions in the presence of plasma. We have compared the results with existing theoretical and experimental data wherever present.« less

  13. Constructing local integrals of motion in the many-body localized phase

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Kim, Isaac H.; Vidal, Guifre; Abanin, Dmitry A.

    2015-02-01

    Many-body localization provides a generic mechanism of ergodicity breaking in quantum systems. In contrast to conventional ergodic systems, many-body-localized (MBL) systems are characterized by extensively many local integrals of motion (LIOM), which underlie the absence of transport and thermalization in these systems. Here we report a physically motivated construction of local integrals of motion in the MBL phase. We show that any local operator (e.g., a local particle number or a spin-flip operator), evolved with the system's Hamiltonian and averaged over time, becomes a LIOM in the MBL phase. Such operators have a clear physical meaning, describing the response of the MBL system to a local perturbation. In particular, when a local operator represents a density of some globally conserved quantity, the corresponding LIOM describes how this conserved quantity propagates through the MBL phase. Being uniquely defined and experimentally measurable, these LIOMs provide a natural tool for characterizing the properties of the MBL phase, in both experiments and numerical simulations. We demonstrate the latter by numerically constructing an extensive set of LIOMs in the MBL phase of a disordered spin-chain model. We show that the resulting LIOMs are quasilocal and use their decay to extract the localization length and establish the location of the transition between the MBL and ergodic phases.

  14. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    PubMed

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  15. What can we learn from the dynamics of entanglement and quantum discord in the Tavis-Cummings model?

    NASA Astrophysics Data System (ADS)

    Restrepo, Juliana; Rodriguez, Boris A.

    We revisit the problem of the dynamics of quantum correlations in the exact Tavis-Cummings model. We show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the well known non-linearities in the model and to the choice of initial conditions. Through a comprehensive analysis, supported by explicit analytical calculations, we find that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. In this context, we find states that are indistinguishable from the point of view of entanglement and distinguishable from the point of view of quantum discord, states where the two quantifiers give opposite information and states where they give roughly the same information about correlations at a certain time. Depending on the initial conditions, this model exhibits a fascinating range of phenomena that can be used for experimental purposes such as: Robust states against change of manifold or dissipation, tunable entanglement states and states with a counterintuitive sudden birth as the number of photons increase. We furthermore propose an experiment called quantum discord gates where discord is zero or non-zero depending on the number of photons. This work was supported by the Vicerrectoria de Investigacion of the Universidad Antonio Narino, Colombia under Project Number 20141031 and by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) of Colombia under Grant Number.

  16. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  17. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo

    2018-02-01

    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  18. Extreme Quantum Memory Advantage for Rare-Event Sampling

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Loomis, Samuel P.; Mahoney, John R.; Crutchfield, James P.

    2018-02-01

    We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r , for any large real number r . Then, for a sequence of processes each labeled by an integer size N , we compare how the classical and quantum required memories scale with N . In this setting, since both memories can diverge as N →∞ , the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞ , but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.

  19. Automated Search for new Quantum Experiments.

    PubMed

    Krenn, Mario; Malik, Mehul; Fickler, Robert; Lapkiewicz, Radek; Zeilinger, Anton

    2016-03-04

    Quantum mechanics predicts a number of, at first sight, counterintuitive phenomena. It therefore remains a question whether our intuition is the best way to find new experiments. Here, we report the development of the computer algorithm Melvin which is able to find new experimental implementations for the creation and manipulation of complex quantum states. Indeed, the discovered experiments extensively use unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger state, to a vast variety of experiments for asymmetrically entangled quantum states-a feature that can only exist when both the number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional transformations are found that perform cyclic operations. Melvin autonomously learns from solutions for simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability to automate the design of a quantum experiment can be applied to many quantum systems and allows the physical realization of quantum states previously thought of only on paper.

  20. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  1. Quantum Mechanics for Everybody: An autonomous MOOC on EdX for nonscientists

    NASA Astrophysics Data System (ADS)

    Freericks, James; Cutler, Dylan; Vieira-Barbosa, Lucas

    2017-01-01

    We have launched a MOOC for nonscientists that teaches quantum mechanics using the Feynman methodology as outlined in his QED book and in a similar book by Daniel Styer. Using a combination of videos, voice-over powerpoint animations, computer simulations and interactive tutorials, we teach the fundamentals of quantum mechanics employing a minimum of math (high school algebra, square roots, and a little trigonometry) but going into detail on a number of complex quantum ideas. We begin with the Stern-Gerlach experiment, including delayed choice and Bell's inequality variants. Then we focus on light developing the quantum theory for partial reflection and diffraction. At this point we demonstrate the complexity of quantum physics by showing how watched and unwatched two-slit experiments behave differently and how quantum particles interfere. The four week course ends with advanced topics in light where we cover the idea of an interaction free measurement, the quantum Zeno effect and indistinguishable particles via the Hong-Ou-Mandel experiment. We hope this MOOC will reach thousands of students interesting in learning quantum mechanics without any dumbing down or the need to learn complex math. It can also be used with undergraduates to help with conceptual understanding. Funded by the National Science Foundation under grants numbered PHY-1620555 and PHY-1314295 and by Georgetown University.

  2. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  3. Source-Independent Quantum Random Number Generation

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  4. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.

  5. Quantum chaos in nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu

    A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  6. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  7. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  8. Benchmarking gate-based quantum computers

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  9. An efficient quantum circuit analyser on qubits and qudits

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2011-10-01

    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.

  10. Transverse fields to tune an Ising-nematic quantum phase transition

    NASA Astrophysics Data System (ADS)

    Maharaj, Akash V.; Rosenberg, Elliott W.; Hristov, Alexander T.; Berg, Erez; Fernandes, Rafael M.; Fisher, Ian R.; Kivelson, Steven A.

    2017-12-01

    The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved, and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudospins can represent the order parameter of any system with a twofold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their nontrivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwine the different order parameters.

  11. Quantum Game of Life

    NASA Astrophysics Data System (ADS)

    Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone

    2014-03-01

    In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF

  12. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  13. Unbounded number of channel uses may be required to detect quantum capacity.

    PubMed

    Cubitt, Toby; Elkouss, David; Matthews, William; Ozols, Maris; Pérez-García, David; Strelchuk, Sergii

    2015-03-31

    Transmitting data reliably over noisy communication channels is one of the most important applications of information theory, and is well understood for channels modelled by classical physics. However, when quantum effects are involved, we do not know how to compute channel capacities. This is because the formula for the quantum capacity involves maximizing the coherent information over an unbounded number of channel uses. In fact, entanglement across channel uses can even increase the coherent information from zero to non-zero. Here we study the number of channel uses necessary to detect positive coherent information. In all previous known examples, two channel uses already sufficed. It might be that only a finite number of channel uses is always sufficient. We show that this is not the case: for any number of uses, there are channels for which the coherent information is zero, but which nonetheless have capacity.

  14. Exclusivity structures and graph representatives of local complementation orbits

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone

    2013-07-01

    We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.

  15. Boosting quantum annealer performance via sample persistence

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili

    2017-07-01

    We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

  16. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  17. Some Properties and Uses of Torsional Overlap Integrals

    NASA Astrophysics Data System (ADS)

    Mekhtiev, Mirza A.; Hougen, Jon T.

    1998-01-01

    The first diagonalization step in a rho-axis-method treatment of methyl-top internal rotation problems involves finding eigenvalues and eigenvectors of a torsional Hamiltonian, which depends on the rotational projection quantum numberKas a parameter. Traditionally the torsional quantum numbervt= 0, 1, 2···is assigned to eigenfunctions of givenKin order of increasing energy. In this paper we propose an alternative labeling scheme, using the torsional quantum numbervT, which is based on properties of theK-dependent torsional overlap integrals . In particular, the quantum numbervTis assigned in such a way that torsional wavefunctions |vT,K> vary as slowly as possible whenKchanges by unity. Roughly speaking,vT=vtfor torsional levels below the barrier, whereasvTis more closely related to the free-rotor quantum number for levels above the barrier. Because of the latter fact, we believevTwill in general be a physically more meaningful torsional quantum number for levels above the barrier. The usefulness of overlap integrals for qualitative prediction of torsion-rotation band intensities and for rationalizing the magnitudes of perturbations involving some excitation of the small-amplitude vibrations in an internal rotor problem is also discussed.

  18. The Lifshitz-Kosevich-Shoenberg theory of relativistic electronic gas in neutron stars

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua

    2014-10-01

    Similar to the de Haas-van Alphen magnetic oscillatory in some normal metals when the Landau quantization is predominant, the magnetic oscillation can also occur in highly degenerate and relativistic electron gas in neutron stars. At large Landau quantum number (Landau quantum number r≥2), we generalize the Lifshitz-Kosevich-Shoenberg theory in non-relativistic electron gas to relativistic gas. At small Landau quantum number ( r<2), we expand the grand potential into Fourier series and get similar harmonic oscillatory formula of magnetization. These results indicate that magnetic phase transition similar as Condon transition observed in metals can appear in neutron stars when the differential susceptibility exceeds 1/4 π.

  19. Negative values of quasidistributions and quantum wave and number statistics

    NASA Astrophysics Data System (ADS)

    Peřina, J.; Křepelka, J.

    2018-04-01

    We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.

  20. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  1. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  2. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  3. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  4. New excitations in the Thirring model

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.; Gamboa, J.; Schmidt, I.; Zanelli, J.

    1998-12-01

    The quantization of the massless Thirring model in the light-cone using functional methods is considered. The need to compactify the coordinate x- in the light-cone spacetime implies that the quantum effective action for left-handed fermions contains excitations similar to abelian instantons produced by composite of left-handed fermions. Right-handed fermions don't have a similar effective action. Thus, quantum mechanically, chiral symmetry must be broken as a result of the topological excitations. The conserved charge associated to the topological states is quantized. Different cases with only fermionic excitations or bosonic excitations or both can occur depending on the boundary conditions and the value of the coupling.

  5. Asymptotic charges cannot be measured in finite time

    DOE PAGES

    Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.; ...

    2018-02-28

    To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less

  6. On the treatment of ℓ-changing proton-hydrogen Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R.

    2017-11-01

    Energy-conserving, angular momentum changing collisions between protons and highly excited Rydberg hydrogen atoms are important for precise understanding of atomic recombination at the photon decoupling era and the elemental abundance after primordial nucleosynthesis. Early approaches to ℓ-changing collisions used perturbation theory only for dipole-allowed (Δℓ = ±1) transitions. An exact non-perturbative quantum mechanical treatment is possible, but it comes at a computational cost for highly excited Rydberg states. In this paper, we show how to obtain a semiclassical limit that is accurate and simple, and develop further physical insights afforded by the non-perturbative quantum mechanical treatment.

  7. Asymptotic charges cannot be measured in finite time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bousso, Raphael; Chandrasekaran, Venkatesa; Halpern, Illan F.

    To study quantum gravity in asymptotically flat spacetimes, one would like to understand the algebra of observables at null infinity. Here we show that the Bondi mass cannot be observed in finite retarded time, and so is not contained in the algebra on any finite portion of I +. This follows immediately from recently discovered asymptotic entropy bounds. We verify this explicitly, and we find that attempts to measure a conserved charge at arbitrarily large radius in fixed retarded time are thwarted by quantum fluctuations. We comment on the implications of our results to flat space holography and the BMSmore » charges at I +.« less

  8. Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Xue, Peng; Shikano, Yutaka; Müstecaplıoğlu, Özgür E.; Sanders, Barry C.

    2013-08-01

    We propose a quantum-electrodynamics scheme for implementing the discrete-time, coined quantum walk with the walker corresponding to the phase degree of freedom for a quasimagnon field realized in an ensemble of nitrogen-vacancy centers in diamond. The coin is realized as a superconducting flux qubit. Our scheme improves on an existing proposal for implementing quantum walks in cavity quantum electrodynamics by removing the cumbersome requirement of varying drive-pulse durations according to mean quasiparticle number. Our improvement is relevant to all indirect-coin-flip cavity quantum-electrodynamics realizations of quantum walks. Our numerical analysis shows that this scheme can realize a discrete quantum walk under realistic conditions.

  9. Noncommutative complex structures on quantum homogeneous spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2016-01-01

    A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.

  10. True random numbers from amplified quantum vacuum.

    PubMed

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  11. Effects of temperature on the ground state of a strongly-coupling magnetic polaron and mean phonon number in RbCl quantum pseudodot

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    2016-07-01

    On the condition of strong electron-LO phonon coupling in a RbCl quantum pseudodot (QPD), the ground state energy and the mean number of phonons are calculated by using the Pekar variational method and quantum statistical theory. The variations of the ground state energy and the mean number with respect to the temperature and the cyclotron frequency of the magnetic field are studied in detail. We find that the absolute value of the ground state energy increases (decreases) with increasing temperature when the temperature is in the lower (higher) temperature region, and that the mean number increases with increasing temperature. The absolute value of the ground state energy is a decreasing function of the cyclotron frequency of the magnetic field whereas the mean number is an increasing function of it. We find two ways to tune the ground state energy and the mean number: controlling the temperature and controlling the cyclotron frequency of the magnetic field.

  12. Topics in Non-Equilibrium Dynamics and the Emergence of Spacetime

    NASA Astrophysics Data System (ADS)

    Engelhardt, Dalit

    The Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence that arises in string theory has had implications for the study of phenomena across a range of subfields in physics, from spacetime geometry to the behavior of condensed matter systems. Two major themes that have featured prominently in these investigations have been the behavior of systems out of equilibrium, and the emergence of spacetime. In this thesis, aspects of these themes are considered and analyzed. The question of equilibration and thermalization in 2D conformal field theories is addressed and refined via a number of observations about local versus global thermalization in such systems, the validity of particular diagnostics of thermalization, the dependence of the equilibration behavior of a conformal field theory on its operator spectrum, and the holographic dual of the generalized Gibbs ensemble that is of interest in studies of equilibration in systems with a large number of conserved quantities. A formalism for analyzing the non-equilibrium dynamics of 1+1-dimensional conformal field theories is discussed, and its physical relevance is motivated with an example connecting such a system to an experimental system that exhibited unusual equilibration behavior. Qualitative agreement is demonstrated between the CFT picture and the experimental observations. The emergence of spacetime geometry from quantum entanglement, while largely a byproduct of considerations from holographic dualities, has also been proposed to have a direct, non-holographic manifestation. Here a particular realization of such a direct emergence is presented through a demonstration that, in the presence of quantum entanglement alone, certain observations of electric fields in the entangled system appear qualitatively the same as the corresponding observations in a physically-connected geometric spacetime, so that the entanglement effectively mimics particular features associated with geometric connectivity.

  13. Gossip algorithms in quantum networks

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  14. Quantum State Tomography of a Fiber-Based Source of Polarization-Entangled Photon Pairs

    DTIC Science & Technology

    2007-12-20

    Processing 175−179 (IEEE, Bangalore, 1984). 4. A. K. Ekert, “ Quantum cryptography based on Bell’s theorem ,” Phys. Rev. Lett. 67, 661–663 (1991). 5...NUMBERS Quantum State Tomography of a Fiber- Based Source of MURI Center for Photonic Quantum Information Systems: AROIARDA Program Polarization...Computer Society Press, Los Alamitos, 1996). 7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography ,” Rev. Mod. Phys. 74, 145

  15. Threshold quantum cryptography

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  16. Global patterns of conservation research importance in different countries of the world.

    PubMed

    Doi, Hideyuki; Takahara, Teruhiko

    2016-01-01

    Conservation research is essential to help inform the science-based management of environments that support threatened and endangered wildlife; however, research effort is not necessarily uniform across countries globally. Here, we assessed how the research importance of conservation is distributed globally across different countries and what drives this variation. Specifically, we compared the number of conservation/ecological articles versus all scientific articles published for each country in relation to the number of endangered species, the protection status and number of ecosystems, and the economic status of each country (gross domestic product (GDP) per capita). We observed a significant and positive relationship between the proportion of conservation and ecology articles to all scientific articles with respect to the number of endangered species and the proportion of endangered species that are protected in a country, as well as GDP per capita. In conclusion, knowledge about the conservation and economic status of countries should be accounted for when predicting the research importance of conservation and ecology.

  17. Quantum break-time of de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. Themore » mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.« less

  18. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opanchuk, B.; Drummond, P. D.

    2013-04-15

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such asmore » quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.« less

  19. Quantum annealing for the number-partitioning problem using a tunable spin glass of ions

    PubMed Central

    Graß, Tobias; Raventós, David; Juliá-Díaz, Bruno; Gogolin, Christian; Lewenstein, Maciej

    2016-01-01

    Exploiting quantum properties to outperform classical ways of information processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controllable quantum systems. Here we demonstrate that in a trapped ion setup, with present day technology, it is possible to realize a spin model of the Mattis-type that exhibits spin glass phases. Our method produces the glassy behaviour without the need for any disorder potential, just by controlling the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used to benchmark quantum annealing strategies which aim at reaching the ground state of the spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the problem maps onto number partitioning, and instances which are difficult to address classically can be implemented. PMID:27230802

  20. Devil's staircases, quantum dimer models, and stripe formation in strong coupling models of quantum frustration.

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Papanikolaou, Stefanos; Fradkin, Eduardo

    2007-03-01

    We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries, and is generic in that it does not involve the fine tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries. Please see cond-mat/0611390 for more details.

  1. Quantum Space Charge Waves in a Waveguide Filled with Fermi-Dirac Plasmas Including Relativistic Wake Field and Quantum Statistical Pressure Effects

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2018-03-01

    The effects of quantum statistical degeneracy pressure on the propagation of the quantum space charge wave are investigated in a cylindrically bounded plasma waveguide filled with relativistically degenerate quantum Fermi-Dirac plasmas and the relativistic ion wake field. The results show that the domain of the degenerate parameter for the resonant beam instability significantly increases with an increase of the scaled beam velocity. It is found that the instability domain of the wave number increases with an increase of the degenerate parameter. It is also found that the growth rate for the resonant beam instability decreases with an increase of the degenerate parameter. In addition, it is shown that the lowest harmonic mode provides the maximum value of the growth rates. Moreover, it is shown that the instability domain of the wave number decreases with an increase of the beam velocity.

  2. Dynamical quantum phase transitions in extended transverse Ising models

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  3. Quantum Metric of Classic Physics

    NASA Astrophysics Data System (ADS)

    Machusky, Eugene

    2017-09-01

    By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.

  4. Finite key analysis for symmetric attacks in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tim; Kampermann, Hermann; Kleinmann, Matthias

    2006-10-15

    We introduce a constructive method to calculate the achievable secret key rate for a generic class of quantum key distribution protocols, when only a finite number n of signals is given. Our approach is applicable to all scenarios in which the quantum state shared by Alice and Bob is known. In particular, we consider the six state protocol with symmetric eavesdropping attacks, and show that for a small number of signals, i.e., below n{approx}10{sup 4}, the finite key rate differs significantly from the asymptotic value for n{yields}{infinity}. However, for larger n, a good approximation of the asymptotic value is found.more » We also study secret key rates for protocols using higher-dimensional quantum systems.« less

  5. Engineered Potentials and Dynamics of Ultracold Quantum Gases Under the Microscope

    DTIC Science & Technology

    2014-05-09

    CONTRACT OR GRANT NUMBER: DESCRIPTION OF MATERIAL INSTITUTION: PRINCIPAL INVESTIGATOR: Paola Cappellaro TYPE REPORT: Ph.D. Dissertation PERIOD...CONTRACT NUMBER Engineered potentials and dynamics of ulu·acold quantum gases W911NF-11-1-0400 under the microscope Sb. GRANT NUMBER Sc. PROGRAM...Schnorrberger, M. Moreno- Cardoner , S. Fölling, and I. Bloch, “Counting atoms using interaction blockade in an optical superlat- tice,” Phys. Rev. Lett

  6. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  7. Single-ion quantum lock-in amplifier.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  8. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  9. On the role of self-adjointness in the continuum formulation of topological quantum phases

    NASA Astrophysics Data System (ADS)

    Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak

    2016-11-01

    Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.

  10. Maxwell’s demon in the quantum-Zeno regime and beyond

    NASA Astrophysics Data System (ADS)

    Engelhardt, G.; Schaller, G.

    2018-02-01

    The long-standing paradigm of Maxwell’s demon is till nowadays a frequently investigated issue, which still provides interesting insights into basic physical questions. Considering a single-electron transistor, where we implement a Maxwell demon by a piecewise-constant feedback protocol, we investigate quantum implications of the Maxwell demon. To this end, we harness a dynamical coarse-graining method, which provides a convenient and accurate description of the system dynamics even for high measurement rates. In doing so, we are able to investigate the Maxwell demon in a quantum-Zeno regime leading to transport blockade. We argue that there is a measurement rate providing an optimal performance. Moreover, we find that besides building up a chemical gradient, there can be also a regime where the feedback loop additionally extracts energy, which results from the energy non-conserving character of the projective measurement.

  11. Nonlocality versus complementarity: a conservative approach to the information problem

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2011-01-01

    A proposal for resolution of the information paradox is that 'nice slice' states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information problem, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.

  12. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  13. The open gate of the K(V)1.2 channel: quantum calculations show the key role of hydration.

    PubMed

    Kariev, Alisher M; Njau, Philipa; Green, Michael E

    2014-02-04

    The open gate of the Kv1.2 voltage-gated potassium channel can just hold a hydrated K(+) ion. Quantum calculations starting from the x-ray coordinates of the channel confirm this, showing little change from the x-ray coordinates for the protein. Water molecules not in the x-ray coordinates, and the ion itself, are placed by the calculation. The water molecules, including their orientation and hydrogen bonding, with and without an ion, are critical for the path of the ion, from the solution to the gate. A sequence of steps is postulated in which the potential experienced by the ion in the pore is influenced by the position of the ion. The gate structure, with and without the ion, has been optimized. The charges on the atoms and bond lengths have been calculated using natural bond orbital calculations, giving K(+) ~0.77 charges, rather than 1.0. The PVPV hinge sequence has been mutated in silico to PVVV (P407V in the 2A79 numbering). The water structure around the ion becomes discontinuous, separated into two sections, above and below the ion. PVPV conservation closely relates to maintaining the water structure. Finally, these results have implications concerning gating. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Production of Biogas from wastes Blended with CowDung for Electricity generation-A Case study

    NASA Astrophysics Data System (ADS)

    Muthu, D.; Venkatasubramanian, C.; Ramakrishnan, K.; Sasidhar, Jaladanki

    2017-07-01

    The country’s production of solid waste generation is piling up year after year and the generation of Bio-Gas finds a fruitful solution to overcome this problem. This technology can contribute to energy conservation if the economic viability and social acceptance of this technology are favorable. Our campus has a number of hostel buildings which generates large quantum of kitchen waste and sewage per day. This research will have process ofcarrying out survey, characterization of kitchen waste from several kitchens & Canteens and knowing the potential for biogas production. The waste generated from kitchen and sewage from the hostels is given as feedstock to produce 600 m3 of biogas per day with cow dung as byproduct. The methane gas generated from Biogas is purified and this is used for power generation. Two biogas engine generators of 30 kVA and 50 kVA were installed. This power is used for backup power for girl’s hostel lighting load. From this study it is concluded that the generation of Biogas production and its usage for power production is the best option to handle these large quantum of sewage, kitchen waste generated from various buildings and also treated effluent from biogas plant and the biomass generated is a wealth for doing agriculture for any community ultimately it protects the environment.

  15. Twisting Neutron Waves

    NASA Astrophysics Data System (ADS)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  16. Private quantum computation: an introduction to blind quantum computing and related protocols

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

  17. Concurrent remote entanglement with quantum error correction against photon losses

    NASA Astrophysics Data System (ADS)

    Roy, Ananda; Stone, A. Douglas; Jiang, Liang

    2016-09-01

    Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.

  18. Resource-aware system architecture model for implementation of quantum aided Byzantine agreement on quantum repeater networks

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mohammand Amin; Navi, Keivan; Van Meter, Rodney

    2018-01-01

    Quantum aided Byzantine agreement is an important distributed quantum algorithm with unique features in comparison to classical deterministic and randomized algorithms, requiring only a constant expected number of rounds in addition to giving a higher level of security. In this paper, we analyze details of the high level multi-party algorithm, and propose elements of the design for the quantum architecture and circuits required at each node to run the algorithm on a quantum repeater network (QRN). Our optimization techniques have reduced the quantum circuit depth by 44% and the number of qubits in each node by 20% for a minimum five-node setup compared to the design based on the standard arithmetic circuits. These improvements lead to a quantum system architecture with 160 qubits per node, space-time product (an estimate of the required fidelity) {KQ}≈ 1.3× {10}5 per node and error threshold 1.1× {10}-6 for the total nodes in the network. The evaluation of the designed architecture shows that to execute the algorithm once on the minimum setup, we need to successfully distribute a total of 648 Bell pairs across the network, spread evenly between all pairs of nodes. This framework can be considered a starting point for establishing a road-map for light-weight demonstration of a distributed quantum application on QRNs.

  19. Introduction to Quantum Information/Computing

    DTIC Science & Technology

    2005-06-01

    SUBTITLE INTRODUCTION TO QUANTUM INFORMATION/COMPUTING 6. AUTHOR( S ) Peter J. Costianes 5. FUNDING NUMBERS C - N/A PE - 62702F PR...concept is an important concept in Quantum Mechanics and will be further applied later in this report. 2.8 Discrete Orthonormal Bases in F. 2.8.1...index i in defining the coordinates of the wavevector. Many quantum systems may be represented by both a continuous and discrete set of bases

  20. Designing, programming, and optimizing a (small) quantum computer

    NASA Astrophysics Data System (ADS)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

Top