Science.gov

Sample records for conserved testicular gene

  1. Conservation and gene banking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant conservation has several objectives the main ones include safeguarding our food supply, preserving crop wild relatives for breeding and selection of new cultivars, providing material for industrial and pharmaceutical uses and preserving the beauty and diversity of our flora for generations to ...

  2. Targeted gene flow for conservation.

    PubMed

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  3. Testicular gene expression of steroidogenesis-related factors in prepubertal, postpubertal, and aging dogs.

    PubMed

    Ogawa, E; Kawate, N; Inaba, T; Tamada, H

    2017-03-01

    Developmental and aging changes in testicular factors related to steroidogenesis are unknown in dogs. Using reverse transcription quantitative real-time PCR, this study examined testicular mRNA levels of CYP11A1 (P450 cholesterol side-chain cleavage enzyme, P450scc), CYP17A1 (P450 17α-hydroxylase/C17-20 lyase, P450c17), HSD3B2 (3β-hydroxysteroid dehydrogenase, 3β-HSD), CYP19A (P450 aromatase, P450arom), STAR (steroidogenic acute regulatory protein, StAR), cyclooxygenase (COX) -1 and COX-2 in prepubertal (4-6 months of age), postpubertal (1 year of age), and aging (2-18 years of age) dogs. Testicular mRNA levels for P450scc, 3β-HSD, StAR, COX-1, and COX-2 did not change from prepubertal to postpubertal stages, whereas that for P450arom markedly and abruptly increased and that for P450c17 gradually decreased. In postpubertal and aging dogs, a negative correlation was found between aging and testicular P450arom mRNA levels. Based on the rapid testicular growth observed during puberty, these results suggested that total testis gene expression for steroidogenesis-related factors, in particular for P450arom, increases during puberty in dogs. In addition, the decline in P450arom gene expression during aging may affect the ability to synthesize steroids in canine testes.

  4. AZF gene expression analysis in peripheral leukocytes and testicular cells from idiopathic infertility.

    PubMed

    Song, Ning-Hong; Yin, Chang-Jun; Zhang, Wei; Zhuo, Zuo-Min; Ding, Guan-Xiong; Zhang, Jing; Hua, Li-Xin; Wu, Hong-Fei

    2007-01-01

    The aim of this study was to assess the frequency of AZF microdeletions in peripheral leukocytes and testicular cells in Chinese men with idiopathic infertility. Expression in testicular cells was also determined. In this study, we screened 62 idiopathic infertile patients, in whom karyotype, sperm count and hormonal parameters were evaluated. Genomic DNA was extracted from the peripheral leukocytes. Molecular analysis was performed by two multiplex polymerase chain reactions (PCR) using a set of eight sequence tagged sites (STS) from 3 different regions of the Y chromosome. Total cellular RNA was extracted from the testicular tissue using a Trizol-method. Reverse Transcription (RT) reactions were performed to synthesize cDNA. Amplification of DFFRY, RBM and DAZ genes was performed to analyze their expression in testicular cells. In this cohort, we found 12 submicroscopic deletions (12/62, 19.4%). Nine patients (9/33, 27.2%) were detected in the azoospermic group and three (3/29, 10.3%) in the severe oligozoospermic group. RT-PCR analysis from testicular cells gave normal amplifications for SRY and DFFRY mRNA in 62 idiopathic patients; two patients were negative for RBM expression; no RBM and DAZ were detected for a case; 12 patients had no expression in the AZFc region involving the DAZ gene. Of 12 cases, three patients with normal PCR analysis of DAZ gene on genomic DNA showed no RT-PCR amplification for DAZ mRNA. The use of RT-PCR of specific spermatid expressed genes in conjunction with examining microdeletions using peripheral leukocytes is suggested to avoid the transmission of the Y chromosomal microdeletions from a father to a son via testicular sperm aspiration (TESE), intracytoplasmic sperm injection (JCSI).

  5. Anchoring Ethinylestradiol Induced Gene Expression Changes with Testicular Morphology and Reproductive Function in the Medaka

    PubMed Central

    Miller, Hilary D.; Clark, Bryan W.; Hinton, David E.; Whitehead, Andrew; Martin, Stan; Kwok, Kevin W.; Kullman, Seth W.

    2012-01-01

    Environmental estrogens are ubiquitous in the environment and can cause detrimental effects on male reproduction. In fish, a multitude of effects from environmental estrogens have been observed including altered courting behavior and fertility, sex reversal, and gonadal histopathology. However, few studies in fish assess the impacts of estrogenic exposure on a physiological endpoint, such as reproduction, as well as the associated morphologic response and underlying global gene expression changes. This study assessed the implications of a 14 day sub-chronic exposure of ethinylestradiol (EE2; 1.0 or 10.0 µg/L EE2) on male medaka fertility, testicular histology and testicular gene expression. The findings demonstrate that a 14 day exposure to EE2 induced impaired male reproductive capacity and time- and dose-dependent alterations in testicular morphology and gene expression. The average fertilization rate/day following the exposure for control, 1.0 and 10.0 µg/L EE2 was 91.3% (±4.4), 62.8% (±8.3) and 28.8% (±5.8), respectively. The testicular morphologic alterations included increased germ cell apoptosis, decreased germinal epithelium and thickening of the interstitium. These changes were highly associated with testicular gene expression changes using a medaka-specific microarray. A pathway analysis of the differentially expressed genes emphasized genes and pathways associated with apoptosis, cell cycle and proliferation, collagen production/extracellular matrix organization, hormone signaling, male reproduction and protein ubiquitination among others. These findings highlight the importance of anchoring global gonadal gene expression changes with morphology and ultimately with tissue/organ function. PMID:23300682

  6. Phospholipid hydroperoxide glutathione peroxidase: expression pattern during testicular development in mouse and evolutionary conservation in spermatozoa.

    PubMed

    Nayernia, Karim; Diaconu, Mihaela; Aumüller, Gerhard; Wennemuth, Gunther; Schwandt, Iris; Kleene, Kenneth; Kuehn, Hartmut; Engel, Wolfgang

    2004-04-01

    Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein belonging to the family of glutathione peroxidases and has been implicated in antioxidative defense and spermatogenesis. PHGPx accounts for almost the entire selenium content of mammalian testis. In an attempt to verify the expression pattern of PHGPx, testes of mouse mutants with arrest at different stages of germ cell development and testes of mice at different ages were subjected to immunostaining with a monoclonal anti-PHGPx antibody. PHGPx was detected in Leydig cells of testes in all developmental stages. In the seminiferous tubuli, the PHGPx staining was first observed in testes of 21-day-old mice which is correlated with the appearance of the first spermatids. This result was confirmed when the testes of mutant mice with defined arrest of germ cell development were used. An immunostaining was observed in the seminiferous tubuli of olt/olt and qk/qk mice which show an arrest at spermatid differentiation. In Western blot analysis of proteins extracted from testes of mutant mice and from developing testes, two signals at 19- and 22-kDa were observed which confirm the existence of two PHGPx forms in testicular cells. In mouse spermatozoa, a subcellular localization of PHGPx and sperm mitochondria-associated cysteine-rich protein (SMCP) was demonstrated, indicating the localization of PHGPx in mitochondria of spermatozoa midpiece. For verifying the midpiece localization of PHGPx in other species, spermatozoa of Drosophila melanogaster, frog, fish, cock, mouse, rat, pig, bull, and human were used in immunostaining using anti-PHGPx antibody. A localization of PHGPx was found in the midpiece of spermatozoa in all species examined. In electronmicroscopical analysis, PHGPx signals were found in the mitochondria of midpiece. These results indicate a conserved crucial role of PHGPx during sperm function and male fertility.

  7. Testicular cancer

    MedlinePlus

    Cancer - testes; Germ cell tumor; Seminoma testicular cancer; Nonseminoma testicular cancer; Testicular neoplasm ... The exact cause of testicular cancer is unknown. Factors that may ... Abnormal testicle development Exposure to certain chemicals ...

  8. Desert hedgehog is a mammal-specific gene expressed during testicular and ovarian development in a marsupial

    PubMed Central

    2011-01-01

    Background Desert hedgehog (DHH) belongs to the hedgehog gene family that act as secreted intercellular signal transducers. DHH is an essential morphogen for normal testicular development and function in both mice and humans but is not present in the avian lineage. Like other hedgehog proteins, DHH signals through the patched (PTCH) receptors 1 and 2. Here we examine the expression and protein distribution of DHH, PTCH1 and PTCH2 in the developing testes of a marsupial mammal (the tammar wallaby) to determine whether DHH signalling is a conserved factor in gonadal development in all therian mammals. Results DHH, PTCH1 and PTCH2 were present in the marsupial genome and highly conserved with their eutherian orthologues. Phylogenetic analyses indicate that DHH has recently evolved and is a mammal-specific hedgehog orthologue. The marsupial PTCH2 receptor had an additional exon (exon 21a) not annotated in eutherian PTCH2 proteins. Interestingly we found evidence of this exon in humans and show that its translation would result in a truncated protein with functions similar to PTCH1. We also show that DHH expression was not restricted to the testes during gonadal development (as in mice), but was also expressed in the developing ovary. Expression of DHH, PTCH1 and PTCH2 in the adult tammar testis and ovary was consistent with findings in the adult mouse. Conclusions These data suggest that there is a highly conserved role for DHH signalling in the differentiation and function of the mammalian testis and that DHH may be necessary for marsupial ovarian development. The receptors PTCH1 and PTCH2 are highly conserved mediators of hedgehog signalling in both the developing and adult marsupial gonads. Together these findings indicate DHH is an essential therian mammal-specific morphogen in gonadal development and gametogenesis. PMID:22132805

  9. Testicular failure

    MedlinePlus

    ... medicines Diseases that affect the testicle, including hemochromatosis , mumps , orchitis , and testicular cancer Injury or trauma to ... PA: Elsevier Saunders; 2013:chap 44. Read More Mumps Scrotum Substance use Testes Testicular cancer Testicular torsion ...

  10. Testicular Exams

    MedlinePlus

    ... happens, surgery almost always repairs the hernia completely. Testicular Cancer Testicular cancer is unusual in teen guys, but it can happen. Testicular cancer is the most common cancer in guys aged ...

  11. DSCR9 gene simultaneous expression in placental, testicular and renal tissues from baboon (papio hamadryas)

    PubMed Central

    2012-01-01

    Background In 2002 Takamatsu and co-workers described the human DSCR9 gene and observed that it was transcriptionally active in human testicular tissue, but no protein was identified as a product of this transcript. Similar results were obtained in chimpanzee tissue. This gene has not been detected in species other than primates, suggesting that DSCR9 is exclusively found in these mammals. Results We report evidence of DSCR9 expression in placenta, testis and kidney of baboon (Papio hamadryas). We used primers specific for DSCR9 to amplify transcripts through reverse transcription (RT) coupled to polymerase chain reaction (PCR). Furthermore, PCR was used to amplify the complete DSCR9 gene from genomic DNA from three baboons. We amplified and sequenced five overlapping segments that were assembled into the 3284 bp baboon DSCR9 gene, including the putative promoter and the entire transcriptional unit (5'-UTR, CDS and 3'-UTR). Conclusions The baboon DSCR9 gene is highly similar to the human counterpart. The isolated transcripts from baboon tissues (placenta, testis and kidney) of three different baboons correspond to the human orthologous gene. PMID:22704171

  12. Highly Conserved Testicular Localization of Claudin-11 in Normal and Impaired Spermatogenesis

    PubMed Central

    Stammler, Angelika; Lüftner, Benjamin Udo; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Middendorff, Ralf; Konrad, Lutz

    2016-01-01

    In this study we tested expression of tight junction proteins in human, mouse and rat and analyzed the localization of claudin-11 in testis of patients with normal and impaired spermatogenesis. Recent concepts generated in mice suggest that the stage-specifically expressed claudin-3 acts as a basal barrier, sealing the seminiferous epithelium during migration of spermatocytes. Corresponding mechanisms have never been demonstrated in humans. Testicular biopsies (n = 103) from five distinct groups were analyzed: normal spermatogenesis (NSP, n = 28), hypospermatogenesis (Hyp, n = 24), maturation arrest at the level of primary spermatocytes (MA, n = 24), Sertoli cell only syndrome (SCO, n = 19), and spermatogonial arrest (SGA, n = 8). Protein expression of claudin-3, -11 and occludin was analyzed. Human, mice and rat testis robustly express claudin-11 protein. Occludin was detected in mouse and rat and claudin-3 was found only in mice. Thus, we selected claudin-11 for further analysis of localization. In NSP, claudin-11 is located at Sertoli-Sertoli junctions and in Sertoli cell contacts towards spermatogonia. Typically, claudin-11 patches do not reach the basal membrane, unless flanked by the Sertoli cell body or patches between two Sertoli cell bodies. The amount of basal claudin-11 patches was found to be increased in impaired spermatogenesis. Only claudin-11 is expressed in all three species examined. The claudin-11 pattern is robust in man with impaired spermatogenesis, but the proportion of localization is altered in SCO and MA. We conclude that claudin-11 might represent the essential component of the BTB in human. PMID:27486954

  13. BRDT gene sequence in human testicular pathologies and the implication of its single nucleotide polymorphism (rs3088232) on fertility.

    PubMed

    Barda, S; Yogev, L; Paz, G; Yavetz, H; Lehavi, O; Hauser, R; Doniger, T; Breitbart, H; Kleiman, S E

    2014-07-01

    Bromodomain testis-specific (BRDT) protein is essential for the normal process of spermatogenesis. Mutant mice that expressed truncated BRDT had impaired testicular histology with severely reduced sperm concentration and abnormal sperm morphology, while a model of knockout Brdt mice with no BRDT protein had complete meiotic arrest. A BRDT single nucleotide polymorphism (SNP) (rs3088232) was reported as being associated with infertility in men. We assessed testicular specimens of 276 azoospermic men who underwent testicular sperm extraction to search for specimens that showed spermatogenic impairments similar to those of mutant BRDT mice. Ten similar specimens were selected for BRDT gene sequencing and they revealed three NCBI-reported SNPs (rs10783071, rs3088232 and rs10747493) variously distributed among them. Bioinformatics analysis predicted that they would not affect protein activity. Further assessment of rs3088232 frequency in a large group of non-obstructive azoospermia men and fertile controls demonstrated no significant difference between them (27.2 and 21.7% respectively; p = 0.122, Fisher's exact test). We conclude that the testicular impairments observed in the 10 specimens were not a consequence of BRDT gene mutation. The association between BRDT rs3088232 and infertility that had been reported in other studies was not supported.

  14. Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility

    PubMed Central

    Litchfield, Kevin; Levy, Max; Dudakia, Darshna; Proszek, Paula; Shipley, Claire; Basten, Sander; Rapley, Elizabeth; Bishop, D. Timothy; Reid, Alison; Huddart, Robert; Broderick, Peter; Castro, David Gonzalez de; O'Connor, Simon; Giles, Rachel H.; Houlston, Richard S.; Turnbull, Clare

    2016-01-01

    Testicular germ cell tumour (TGCT) is the most common cancer in young men. Here we sought to identify risk factors for TGCT by performing whole-exome sequencing on 328 TGCT cases from 153 families, 634 sporadic TGCT cases and 1,644 controls. We search for genes that are recurrently affected by rare variants (minor allele frequency <0.01) with potentially damaging effects and evidence of segregation in families. A total of 8.7% of TGCT families carry rare disruptive mutations in the cilia-microtubule genes (CMG) as compared with 0.5% of controls (P=2.1 × 10−8). The most significantly mutated CMG is DNAAF1 with biallelic inactivation and loss of DNAAF1 expression shown in tumours from carriers. DNAAF1 mutation as a cause of TGCT is supported by a dnaaf1hu255h(+/−) zebrafish model, which has a 94% risk of TGCT. Our data implicate cilia-microtubule inactivation as a cause of TGCT and provide evidence for CMGs as cancer susceptibility genes. PMID:27996046

  15. Regulatory network of microRNAs and genes in testicular cancer

    PubMed Central

    Zhao, Yansong; Xu, Zhiwen; Wang, Ning; Wang, Shang

    2016-01-01

    Testicular cancer (TC) is the most common cancer in men between 20–40 years of age. A large number of studies have focused on identifying the cause of this disease; however, the underlying regulatory mechanisms have not been thoroughly investigated and the specific cause remains unclear. The present study systematically analyzed the regulatory associations between genes, transcription factors (TFs) and microRNAs (miRNAs), aiming to obtain key information regarding the regulatory processes of TC. Three different networks were derived from the analysis: Global, related and differentially-expressed. These networks may be able to identify the primary causes of TC through gene analysis, which determines underlying regulatory pathways and subsequently discloses information regarding TC pathology. The differentially-expressed network is considered to be the most important. If the differentially-expressed elements in this network were to be manipulated back to normal levels via human intervention, this may prevent the onset of TC. This may be described as suppressing TC at the genetic level. If the abnormal expression of these elements was to be corrected, then preventing TC at the source may be a feasible option. Thus, the present study compared and analyzed the global, related and differentially-expressed networks, from which important genetic pathways in TC were highlighted. In addition, self-adaptation associations, host genes and target genes were analyzed. The upstream and downstream elements were identified, and TFs were predicted using the P-match method. When combined, the results of the current study provide the basic materials for further research on important genes in TC, and provide guidance on the pathological curative method. PMID:27900048

  16. Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action

    PubMed Central

    1995-01-01

    Platelet-derived growth factors (PDGFs) are growth-regulatory molecules that stimulate chemotaxis, proliferation and metabolism primarily of cells of mesenchymal origin. In this study, we found high levels of PDGFs and PDGFs receptors (PDGFRs) mRNAs, and specific immunostaining for the corresponding proteins in the rat testis. PDGFs and PDGFRs expression was shown to be developmentally regulated and tissue specific. Expression of PDGFs and PDGFRs genes was observed in whole testis RNA 2 d before birth, increased through postnatal day 5 and fell to low levels in adult. The predominant cell population expressing transcripts of the PDGFs and PDGFRs genes during prenatal and early postnatal periods were Sertoli cells and peritubular myoid cells (PMC) or their precursors, respectively, while in adult animals PDGFs and PDGFRs were confined in Leydig cells. We also found that early postnatal Sertoli cells produce PDGF-like substances and that this production is inhibited dose dependently by follicle-stimulating hormone (FSH). The expression of PDGFRs by PMC and of PDGFs by Sertoli cells corresponds in temporal sequence to the developmental period of PMC proliferation and migration from the interstitium to the peritubulum. Moreover, we observed that all the PDGF isoforms and the medium conditioned by early postnatal Sertoli cells show a strong chemotactic activity for PMC which is inhibited by anti-PDGF antibodies. These data indicate that, through the spatiotemporal pattern of PDGF ligands and receptors expression, PDGF may play a role in testicular development and homeostasis. PMID:7490286

  17. Evolutionarily conserved genes preferentially accumulate introns

    PubMed Central

    Carmel, Liran; Rogozin, Igor B.; Wolf, Yuri I.; Koonin, Eugene V.

    2007-01-01

    Introns that interrupt eukaryotic protein-coding sequences are generally thought to be nonfunctional. However, for reasons still poorly understood, positions of many introns are highly conserved in evolution. Previous reconstructions of intron gain and loss events during eukaryotic evolution used a variety of simplified evolutionary models that yielded contradicting conclusions and are not suited to reveal some of the key underlying processes. We combine a comprehensive probabilistic model and an extended data set, including 391 conserved genes from 19 eukaryotes, to uncover previously unnoticed aspects of intron evolution—in particular, to assign intron gain and loss rates to individual genes. The rates of intron gain and loss in a gene show moderate positive correlation. A gene’s intron gain rate shows a highly significant negative correlation with the coding-sequence evolution rate; intron loss rate also significantly, but positively, correlates with the sequence evolution rate. Correlations of the opposite signs, albeit less significant ones, are observed between intron gain and loss rates and gene expression level. It is proposed that intron evolution includes a neutral component, which is manifest in the positive correlation between the gain and loss rates and a selection-driven component as reflected in the links between intron gain and loss and sequence evolution. The increased intron gain and decreased intron loss in evolutionarily conserved genes indicate that intron insertion often might be adaptive, whereas some of the intron losses might be deleterious. This apparent functional importance of introns is likely to be due, at least in part, to their multiple effects on gene expression. PMID:17495009

  18. Feeding hydroalcoholic extract powder of Lepidium meyenii (maca) enhances testicular gene expression of 3β-hydroxysteroid dehydrogenase in rats.

    PubMed

    Ohta, Y; Kawate, N; Inaba, T; Morii, H; Takahashi, K; Tamada, H

    2017-03-06

    Although feeding diets containing the extract powder of Lepidium meyenii (maca), a plant growing in Peru's Central Andes, increases serum testosterone concentration associated with enhanced ability of testosterone production by Leydig cells in male rats, changes in testicular steroidogenesis-related factors by the maca treatment are not known. This study examined the effects of maca on testicular gene expressions for luteinizing hormone receptor, steroidogenic acute regulatory protein and steroidogenic enzymes. Eight-week-old male rats were given the diets with or without (control) the maca extract powder (2%) for 6 weeks, and mRNA levels were determined by reverse transcription quantitative real-time PCR. The results showed that the testicular mRNA level of HSD3B1 (3β-hydroxysteroid dehydrogenase; 3β-HSD) increased by the treatment, whereas the levels of the other factors examined did not change. These results suggest that increased expression of 3β-HSD gene may be involved in the enhanced steroidogenic ability by the maca treatment in rat testes.

  19. Resveratrol reverses cadmium chloride-induced testicular damage and subfertility by downregulating p53 and Bax and upregulating gonadotropins and Bcl-2 gene expression.

    PubMed

    Eleawa, Samy M; Alkhateeb, Mahmoud A; Alhashem, Fahaid H; Bin-Jaliah, Ismaeel; Sakr, Hussein F; Elrefaey, Hesham M; Elkarib, Abbas O; Alessa, Riyad M; Haidara, Mohammad A; Shatoor, Abdullah S; Khalil, Mohammad A

    2014-04-24

    This study was performed to investigate the protective and therapeutic effects of resveratrol (RES) against CdCl2-induced toxicity in rat testes. Seven experimental groups of adult male rats were formulated as follows: A) controls+NS, B) control+vehicle (saline solution of hydroxypropyl cyclodextrin), C) RES treated, D) CdCl2+NS, E) CdCl2+vehicle, F) RES followed by CdCl2 and M) CdCl2 followed by RES. At the end of the protocol, serum levels of FSH, LH and testosterone were measured in all groups, and testicular levels of TBARS and superoxide dismutase (SOD) activity were measured. Epididymal semen analysis was performed, and testicular expression of Bcl-2, p53 and Bax was assessed by RT-PCR. Also, histopathological changes of the testes were examined microscopically. Administration of RES before or after cadmium chloride in rats improved semen parameters including count, motility, daily sperm production and morphology, increased serum concentrations of gonadotropins and testosterone, decreased testicular lipid peroxidation and increased SOD activity. RES not only attenuated cadmium chloride-induced testicular histopathology but was also able to protect against the onset of cadmium chloride testicular toxicity. Cadmium chloride downregulated the anti-apoptotic gene Bcl2 and upregulated the expression of pro-apoptotic genes p53 and Bax. Resveratrol protected against and partially reversed cadmium chloride testicular toxicity via upregulation of Bcl2 and downregulation of p53 and Bax gene expression. The antioxidant activity of RES protects against cadmium chloride testicular toxicity and partially reverses its effect via upregulation of BCl2 and downregulation of p53 and Bax expression.

  20. Testicular Injuries

    MedlinePlus

    ... Also, the location of the testicles makes them prime targets to be accidentally struck on the playing ... you might also feel nauseated for a short time. If it's a minor testicular injury, the pain ...

  1. Testicular Torsion

    MedlinePlus

    ... Journal of Urology. 2011;185:2469. Hittelman AB. Neonatal testicular torsion. http://www.uptodate.com/home. Accessed ... 16, 2015. Snyder HM, et al. In utero/neonatal torsion: Observation versus prompt exploration. Journal of Urology. ...

  2. Molecular identification of genes involved in testicular steroid synthesis and characterization of the responses to hormones stimulation in testis of Japanese sea bass (Lateolabrax japonicas).

    PubMed

    Chi, Mei L; Wen, Hai S; Ni, Meng; He, Feng; Li, Ji F; Qian, Kun; Zhang, Pei; Chai, Sen H; Ding, Yu X; Yin, Xiang H

    2014-06-01

    Testicular steroids are critical hormones for the regulation of spermatogenesis in male teleosts and their productions have been reported to be regulated by gonadotropins and gonadotropin-releasing hormone. In the Japanese sea bass (Lateolabrax japonicas), the reproductive endocrine, particularly regarding the production and regulation of testicular steroids, are not well understood. For this reason, we first cloned and characterized the response of several key genes regulating the production of testicular steroids and, second, we analyzed the changes of mRNA profiles of these genes during testicular development cycle and in the administration of hCG and GnRHa with corresponding testosterone level in serum, GSI and histological analyses. We succeeded in cloning the full-length cDNAs for the fushi tarazu factor-1 (FTZ-F1) homologues (FTZ-F1a and FTZ-F1b), steroidogenic acute regulatory protein (StAR) and anti-Müllerian hormone (AMH) in Japanese sea bass. Multiple sequence alignment and phylogenetic analysis of these proteins clearly showed that these genes in Japanese sea bass were homologous to those of other piscine species. During the testicular development cycle and hCG/GnRHa administration, quantification of jsbStAR transcripts revealed a trend similar to their serum testosterone levels, while a reciprocal relationship was founded between the serum concentrations of testosterone and jsbAMH and the links between gonadal expression of jsbStAR, jsbAMH and jsbFTZ-F1 were also observed. Our results have identified for the first time several key genes involved in the regulation of steroid production and spermatogenesis in the Japanese sea bass testis and these genes are all detected under gonadotropic hormone and gonadotropin-releasing hormone control.

  3. Testicular self-exam

    MedlinePlus

    Screening - testicular cancer - self-exam; Testicular cancer - screening - self-exam ... A testicular self-exam is done to check for testicular cancer . Testicles have blood vessels and other structures that can make ...

  4. Testicular torsion.

    PubMed

    Ringdahl, Erika; Teague, Lynn

    2006-11-15

    Each year, testicular torsion affects one in 4,000 males younger than 25 years. Early diagnosis and definitive management are the keys to avoid testicular loss. All prepubertal and young adult males with acute scrotal pain should be considered to have testicular torsion until proven otherwise. The finding of an ipsilateral absent cremasteric reflex is the most accurate sign of testicular torsion. Torsion of the appendix testis is more common in children than testicular torsion and may be diagnosed by the "blue dot sign" (i.e., tender nodule with blue discoloration on the upper pole of the testis). Epididymitis/orchitis is much less common in the prepubertal male, and the diagnosis should be made with caution in this age group. Doppler ultrasonography may be needed for definitive diagnosis; radionuclide scintigraphy is an alternative that may be more accurate but should be ordered only if it can be performed without delay. Diagnosis of testicular torsion is based on the finding of decreased or absent blood flow on the ipsilateral side. Treatment involves rapid restoration of blood flow to the affected testis. The optimal time frame is less than six hours after the onset of symptoms. Manual detorsion by external rotation of the testis can be successful, but restoration of blood flow must be confirmed following the maneuver. Surgical exploration provides definitive treatment for the affected testis by orchiopexy and allows for prophylactic orchiopexy of the contralateral testis. Surgical treatment of torsion of the appendix testis is not mandatory but hastens recovery.

  5. Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence

    PubMed Central

    Osada, Naoki; Hida, Munetomo; Kusuda, Jun; Tanuma, Reiko; Hirata, Makoto; Suto, Yumiko; Hirai, Momoki; Terao, Keiji; Sugano, Sumio; Hashimoto, Katsuyuki

    2002-01-01

    Background In order to contribute to the establishment of a complete map of transcribed regions of the human genome, we constructed a testicular cDNA library for the cynomolgus monkey, and attempted to find novel transcripts for identification of their human homologues. Result The full-insert sequences of 512 cDNA clones were determined. Ultimately we found 302 non-redundant cDNAs carrying open reading frames of 300 bp-length or longer. Among them, 89 cDNAs were found not to be annotated previously in the Ensembl human database. After searching against the Ensembl mouse database, we also found 69 putative coding sequences have no homologous cDNAs in the annotated human and mouse genome sequences in Ensembl. We subsequently designed a DNA microarray including 396 non-redundant cDNAs (with and without open reading frames) to examine the expression of the full-sequenced genes. With the testicular probe and a mixture of probes of 10 other tissues, 316 of 332 effective spots showed intense hybridized signals and 75 cDNAs were shown to be expressed very highly in the cynomolgus monkey testis, but not ubiquitously. Conclusions In this report, we determined 302 full-insert sequences of cynomolgus monkey cDNAs with enough length of open reading frames to discover novel transcripts as human homologues. Among 302 cDNA sequences, human homologues of 89 cDNAs have not been predicted in the annotated human genome sequence in the Ensembl. Additionally, we identified 75 dominantly expressed genes in testis among the full-sequenced clones by using a DNA microarray. Our cDNA clones and analytical results will be valuable resources for future functional genomic studies. PMID:12498619

  6. Housekeeping genes tend to show reduced upstream sequence conservation

    PubMed Central

    Farré, Domènec; Bellora, Nicolás; Mularoni, Loris; Messeguer, Xavier; Albà, M Mar

    2007-01-01

    Background Understanding the constraints that operate in mammalian gene promoter sequences is of key importance to understand the evolution of gene regulatory networks. The level of promoter conservation varies greatly across orthologous genes, denoting differences in the strength of the evolutionary constraints. Here we test the hypothesis that the number of tissues in which a gene is expressed is related in a significant manner to the extent of promoter sequence conservation. Results We show that mammalian housekeeping genes, expressed in all or nearly all tissues, show significantly lower promoter sequence conservation, especially upstream of position -500 with respect to the transcription start site, than genes expressed in a subset of tissues. In addition, we evaluate the effect of gene function, CpG island content and protein evolutionary rate on promoter sequence conservation. Finally, we identify a subset of transcription factors that bind to motifs that are specifically over-represented in housekeeping gene promoters. Conclusion This is the first report that shows that the promoters of housekeeping genes show reduced sequence conservation with respect to genes expressed in a more tissue-restricted manner. This is likely to be related to simpler gene expression, requiring a smaller number of functional cis-regulatory motifs. PMID:17626644

  7. How developments in cryobiology, reproductive technologies and conservation genomics could shape gene banking strategies for (farm) animals.

    PubMed

    Woelders, H; Windig, J; Hiemstra, S J

    2012-08-01

    Many local breeds are currently at risk because of replacement by a limited number of specialized commercial breeds. Concurrently, for many breeds, allelic diversity within breeds declines because of inbreeding. Gene banking of germplasm may serve to secure the breeds and the alleles for any future use, for instance to recover a lost breed, to address new breeding goals, to support breeding schemes in small populations to minimize inbreeding, and for conservation genetics and genomics research. Developments in cryobiology and reproductive technology have generated several possibilities for preserving germplasm in farm animals. Furthermore, in some mammalian and bird species, gene banking of material is difficult or impossible, requiring development of new alternative methods or improvement of existing methods. Depending on the species, there are interesting possibilities or research developments in the use of epididymal spermatozoa, oocytes and embryos, ovarian and testicular tissue, primordial germ cells, and somatic cells for the conservation of genetic diversity in farm- and other animal species. Rapid developments in genomics research also provide new opportunities to optimize conservation and sampling strategies and to characterize genome-wide genetic variation. With regard to gene banks for farm animals, collaboration between European countries is being developed through a number of organizations, aimed at sharing knowledge and expertise between national programmes. It would be useful to explore further collaboration between countries, within the framework of a European gene banking strategy that should minimize costs of conservation and maximize opportunities for exploitation and sustainable use of genetic diversity.

  8. A Study of Differential Expression of Testicular Genes in Various Reproductive Phases of Hemidactylus flaviviridis (Wall Lizard) to Derive Their Association with Onset of Spermatogenesis and Its Relevance to Mammals

    PubMed Central

    Sarkar, Hironmoy; Arya, Satyapal; Rai, Umesh; Majumdar, Subeer S.

    2016-01-01

    Testis of Hemidactylus flaviviridis, commonly known as Indian wall lizard, displays a lack of cellular and metabolic activity in regressed phase of testis during non-breeding season of the year. Retracted Sertoli cells (Sc), fibroid myoid cells and pre-meiotic resting spermatogonia are observed in such testis. This situation is akin to certain forms of infertility in men where hormone supplementation fails to generate sperm despite the presence of Sc and germ cells (Gc) in testis. In testis of lizard, spermatogenesis is reinitiated upon increased level of hormones during appropriate season (phase of recrudescence). Study of genes associated with generation of sperm, from regressed adult testis in lizard, may provide valuable information for understanding certain forms of male idiopathic infertility. Subtractive hybridization using testicular RNA obtained from the regressed and active phases of lizard reproductive cycle led to identify eight partial mRNA sequences that showed sequence homology with mice genes. We further evaluated the gene expression prolife by real-time PCR in three different reproductive phases of H. flaviviridis: regressed (pre-meiotic), recrudescent (meiotic) and active (post meiotic), for comparison with the corresponding testicular phases found in testis of 5 days (pre-meiotic), 20 days (meiotic) and 60 days (post-meiotic) old mouse. This is the first report where genes associated with progression of spermatogenesis during active phase, which follows a regressed state of adult testis, were identified in lizard and found to be conserved in mouse. Six important genes, Hk1, Nme5, Akap4, Arih1, Rassf7 and Tubb4b were found to be strictly associated with active spermatogenesis in both mouse and lizard. Factors interfering with the expression of any of these genes may potentially abrogate the process of spermatogenesis leading to infertility. Such information may shed light on unknown causes of idiopathic male infertility. PMID:26963275

  9. A Study of Differential Expression of Testicular Genes in Various Reproductive Phases of Hemidactylus flaviviridis (Wall Lizard) to Derive Their Association with Onset of Spermatogenesis and Its Relevance to Mammals.

    PubMed

    Sarkar, Hironmoy; Arya, Satyapal; Rai, Umesh; Majumdar, Subeer S

    2016-01-01

    Testis of Hemidactylus flaviviridis, commonly known as Indian wall lizard, displays a lack of cellular and metabolic activity in regressed phase of testis during non-breeding season of the year. Retracted Sertoli cells (Sc), fibroid myoid cells and pre-meiotic resting spermatogonia are observed in such testis. This situation is akin to certain forms of infertility in men where hormone supplementation fails to generate sperm despite the presence of Sc and germ cells (Gc) in testis. In testis of lizard, spermatogenesis is reinitiated upon increased level of hormones during appropriate season (phase of recrudescence). Study of genes associated with generation of sperm, from regressed adult testis in lizard, may provide valuable information for understanding certain forms of male idiopathic infertility. Subtractive hybridization using testicular RNA obtained from the regressed and active phases of lizard reproductive cycle led to identify eight partial mRNA sequences that showed sequence homology with mice genes. We further evaluated the gene expression prolife by real-time PCR in three different reproductive phases of H. flaviviridis: regressed (pre-meiotic), recrudescent (meiotic) and active (post meiotic), for comparison with the corresponding testicular phases found in testis of 5 days (pre-meiotic), 20 days (meiotic) and 60 days (post-meiotic) old mouse. This is the first report where genes associated with progression of spermatogenesis during active phase, which follows a regressed state of adult testis, were identified in lizard and found to be conserved in mouse. Six important genes, Hk1, Nme5, Akap4, Arih1, Rassf7 and Tubb4b were found to be strictly associated with active spermatogenesis in both mouse and lizard. Factors interfering with the expression of any of these genes may potentially abrogate the process of spermatogenesis leading to infertility. Such information may shed light on unknown causes of idiopathic male infertility.

  10. Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients.

    PubMed

    Ahmadi Rastegar, Diba; Sharifi Tabar, Mehdi; Alikhani, Mehdi; Parsamatin, Pouria; Sahraneshin Samani, Fazel; Sabbaghian, Marjan; Sadighi Gilani, Mohammad Ali; Mohammad Ahadi, Ali; Mohseni Meybodi, Anahita; Piryaei, Abbas; Ansari-Pour, Naser; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-04

    The human Y chromosome has an inevitable role in male fertility because it contains many genes critical for spermatogenesis and the development of the male gonads. Any genetic variation or epigenetic modification affecting the expression pattern of Y chromosome genes may thus lead to male infertility. In this study, we performed isoform-level gene expression profiling of Y chromosome genes within the azoospermia factor (AZF) regions, their X chromosome counterparts, and few autosomal paralogues in testicular biopsies of 12 men with preserved spermatogenesis and 68 men with nonobstructive azoospermia (NOA) (40 Sertoli-cell-only syndrome (SCOS) and 28 premiotic maturation arrest (MA)). This was undertaken using quantitative real-time PCR (qPCR) at the transcript level and Western blotting (WB) and immunohistochemistry (IHC) at the protein level. We profiled the expression of 41 alternative transcripts encoded by 14 AZFa, AZFb, and AZFc region genes (USP9Y, DDX3Y, XKRY, HSFY1, CYORF15A, CYORF15B, KDM5D, EIF1AY, RPS4Y2, RBMY1A1, PRY, BPY2, DAZ1, and CDY1) as well as their X chromosome homologue transcripts and a few autosomal homologues. Of the 41 transcripts, 18 were significantly down-regulated in men with NOA when compared with those of men with complete spermatogenesis. In contrast, the expression of five transcripts increased significantly in NOA patients. Furthermore, to confirm the qPCR results at the protein level, we performed immunoblotting and IHC experiments (based on 24 commercial and homemade antibodies) that detected 10 AZF-encoded proteins. In addition, their localization in testis cell types and organelles was determined. Interestingly, the two missing proteins, XKRY and CYORF15A, were detected for the first time. Finally, we focused on the expression patterns of the significantly altered genes in 12 MA patients with successful sperm retrieval compared to those of 12 MA patients with failed sperm retrieval to predict the success of sperm retrieval in

  11. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT.

  12. Testicular Adrenal Rest Tumor in Two Brothers with a Novel Mutation in the 3-Beta-Hydroxysteroid Dehydrogenase-2 Gene

    PubMed Central

    Güven, Ayla; Polat, Seher

    2017-01-01

    Testicular adrenal rest tumors (TART) occur frequently in adolescents and adults with 21-hydroxylase deficiency. There have been no reports of TART in children with 3β-hydroxysteroid dehydrogenase deficiency (HSD3β). Biopsy proven TART was diagnosed in a 31/12-year-old male patient and also in his 22-month-old sibling. Hormonal and anthropometric measurements were performed during glucocorticoid and fludrocortisone treatment. The mutational analysis was performed by direct DNA sequencing of the complete coding region of the HSD3β2 gene. Initially, both siblings were treated with high doses of hydrocortisone and fludrocortisone. TART regressed with dexamethasone treatment in both patients. However, growth velocity decreased and weight gain increased in both patients. Dexamethasone was changed to high-dose hydrocortisone (>20 mg/m2/d). Sequencing analyses revealed a novel homozygous p.W355R (c.763 T>C) mutation at exon 4 of the HSD3β2 gene in both siblings. These two patients are, to our knowledge, the first known cases of TARTs with a novel mutation in the HSD3β2 gene detected during childhood. High-dose hydrocortisone treatment is more reliable for TART in children. PMID:27476613

  13. A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration.

    PubMed

    Rosen, Ohad; Manor, Rivka; Weil, Simy; Gafni, Ohad; Linial, Assaf; Aflalo, Eliahu D; Ventura, Tomer; Sagi, Amir

    2010-12-09

    In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated Cq-IAG), was found in this study to be the prominent transcript in an AG cDNA subtractive library. In C. quadricarinatus, sexual plasticity is exhibited by intersex individuals in the form of an active male reproductive system and male secondary sex characters, along with a constantly arrested ovary. This intersexuality was exploited to follow changes caused by single gene silencing, accomplished via dsRNA injection. Cq-IAG silencing induced dramatic sex-related alterations, including male feature feminization, a reduction in sperm production, extensive testicular degeneration, expression of the vitellogenin gene, and accumulation of yolk proteins in the developing oocytes. Upon silencing of the gene, AG cells hypertrophied, possibly to compensate for low hormone levels, as reflected in the poor production of the insulin-like hormone (and revealed by immunohistochemistry). These results demonstrate both the functionality of Cq-IAG as an androgenic hormone-encoding gene and the dependence of male gonad viability on the Cq-IAG product. This study is the first to provide evidence that silencing an insulin-like gene in intersex C. quadricarinatus feminizes male-related phenotypes. These findings, moreover, contribute to the understanding of the regulation of sexual shifts, whether naturally occurring in sequential hermaphrodites or abnormally induced by endocrine disruptors found in the environment, and offer insight into an unusual gender-related link to the evolution of insulins.

  14. Conserved gene structures and expression signals in methanogenic archaebacteria.

    PubMed

    Allmansberger, R; Bokranz, M; Kröckel, L; Schallenberg, J; Klein, A

    1989-01-01

    A comparative analysis of cotranscribed gene clusters comprising the structural genes mcrA, mcrB, mcrC, mcrD, and mcrG was carried out in three species of methanogens. mcrA, mcrB, and mcrG are the structural genes for the three subunits of methyl coenzyme M reductase, while the two other genes encode polypeptides of unknown functions. The degree of conservation of the mcr gene products among different species of methanogens varies. No correlation was found between the conservation of the G+C contents of the homologous genes and of the amino acid sequences of their products among the different bacteria. The comparison of RNA polymerase core subunit genes of Methanobacterium thermoautotrophicum as evolutionary markers with their equivalents in Escherichia coli, Saccharomyces cerevisiae, and Drosophila melanogaster showed that homologous polypeptide domains are encoded by different numbers of genes suggesting gene fusion of adjacent genes in the course of evolution. The archaebacterial subunits exhibit much stronger homology with their eukaryotic than with their eubacterial equivalents on the polypeptide sequence level. All the analyzed genes are preceded by ribosome binding sites of eubacterial type. In addition to known putative promoter sequences, conserved structural elements of the DNA were detected surrounding the transcription initiation sites of the mcr genes.

  15. Testicular Cancer

    MedlinePlus

    ... of skin behind the penis. You can get cancer in one or both testicles. Testicular cancer mainly affects young men between the ages of ... undescended testicle Have a family history of the cancer Symptoms include pain, swelling, or lumps in your ...

  16. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte.

    PubMed

    Sonne, Si Brask; Almstrup, Kristian; Dalgaard, Marlene; Juncker, Agnieszka Sierakowska; Edsgard, Daniel; Ruban, Ludmila; Harrison, Neil J; Schwager, Christian; Abdollahi, Amir; Huber, Peter E; Brunak, Søren; Gjerdrum, Lise Mette; Moore, Harry D; Andrews, Peter W; Skakkebaek, Niels E; Rajpert-De Meyts, Ewa; Leffers, Henrik

    2009-06-15

    Testicular germ cell cancers in young adult men derive from a precursor lesion called carcinoma in situ (CIS) of the testis. CIS cells were suggested to arise from primordial germ cells or gonocytes. However, direct studies on purified samples of CIS cells are lacking. To overcome this problem, we performed laser microdissection of CIS cells. Highly enriched cell populations were obtained and subjected to gene expression analysis. The expression profile of CIS cells was compared with microdissected gonocytes, oogonia, and cultured embryonic stem cells with and without genomic aberrations. Three samples of each tissue type were used for the analyses. Unique expression patterns for these developmentally very related cell types revealed that CIS cells were very similar to gonocytes because only five genes distinguished these two cell types. We did not find indications that CIS was derived from a meiotic cell, and the similarity to embryonic stem cells was modest compared with gonocytes. Thus, we provide new evidence that the molecular phenotype of CIS cells is similar to that of gonocytes. Our data are in line with the idea that CIS cells may be gonocytes that survived in the postnatal testis. We speculate that disturbed development of somatic cells in the fetal testis may play a role in allowing undifferentiated cells to survive in the postnatal testes. The further development of CIS into invasive germ cell tumors may depend on signals from their postpubertal niche of somatic cells, including hormones and growth factors from Leydig and Sertoli cells.

  17. Inferring Functional Relationships from Conservation of Gene Order.

    PubMed

    Moreno-Hagelsieb, Gabriel

    2017-01-01

    Predicting functional associations using the Gene Neighbor Method depends on the simple idea that if genes are conserved next to each other in evolutionarily distant prokaryotes they might belong to a polycistronic transcription unit. The procedure presented in this chapter starts with the organization of the genes within genomes into pairs of adjacent genes. Then, the pairs of adjacent genes in a genome of interest are mapped to their corresponding orthologs in other, informative, genomes. The final step is to verify if the mapped orthologs are also pairs of adjacent genes in the informative genomes.

  18. Patterns of conservation and change in honey bee developmental genes.

    PubMed

    Dearden, Peter K; Wilson, Megan J; Sablan, Lisha; Osborne, Peter W; Havler, Melanie; McNaughton, Euan; Kimura, Kiyoshi; Milshina, Natalia V; Hasselmann, Martin; Gempe, Tanja; Schioett, Morten; Brown, Susan J; Elsik, Christine G; Holland, Peter W H; Kadowaki, Tatsuhiko; Beye, Martin

    2006-11-01

    The current insect genome sequencing projects provide an opportunity to extend studies of the evolution of developmental genes and pathways in insects. In this paper we examine the conservation and divergence of genes and developmental processes between Drosophila and the honey bee; two holometabolous insects whose lineages separated approximately 300 million years ago, by comparing the presence or absence of 308 Drosophila developmental genes in the honey bee. Through examination of the presence or absence of genes involved in conserved pathways (cell signaling, axis formation, segmentation and homeobox transcription factors), we find that the vast majority of genes are conserved. Some genes involved in these processes are, however, missing in the honey bee. We have also examined the orthology of Drosophila genes involved in processes that differ between the honey bee and Drosophila. Many of these genes are preserved in the honey bee despite the process in which they act in Drosophila being different or absent in the honey bee. Many of the missing genes in both situations appear to have arisen recently in the Drosophila lineage, have single known functions in Drosophila, and act early in developmental pathways, while those that are preserved have pleiotropic functions. An evolutionary interpretation of these data is that either genes with multiple functions in a common ancestor are more likely to be preserved in both insect lineages, or genes that are preserved throughout evolution are more likely to co-opt additional functions.

  19. Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters

    SciTech Connect

    Santini, Simona; Boore, Jeffrey L.; Meyer, Axel

    2003-12-31

    Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involved in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.

  20. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes.

    PubMed

    Dávila López, Marcela; Martínez Guerra, Juan José; Samuelsson, Tore

    2010-05-14

    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control.

  1. Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes

    PubMed Central

    Dávila López, Marcela; Martínez Guerra, Juan José; Samuelsson, Tore

    2010-01-01

    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control. PMID:20498846

  2. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters.

    PubMed

    Santini, Simona; Boore, Jeffrey L; Meyer, Axel

    2003-06-01

    Comparisons of DNA sequences among evolutionarily distantly related genomes permit identification of conserved functional regions in noncoding DNA. Hox genes are highly conserved in vertebrates, occur in clusters, and are uninterrupted by other genes. We aligned (PipMaker) the nucleotide sequences of the HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human, and mouse, which are separated by approximately 500 million years of evolution. In support of our approach, several identified putative regulatory elements known to regulate the expression of Hox genes were recovered. The majority of the newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac database). The regulatory intergenic regions located between the genes that are expressed most anteriorly in the embryo are longer and apparently more evolutionarily conserved than those at the other end of Hox clusters. Different presumed regulatory sequences are retained in either the Aalpha or Abeta duplicated Hox clusters in the fish lineages. This suggests that the conserved elements are involved in different gene regulatory networks and supports the duplication-deletion-complementation model of functional divergence of duplicated genes.

  3. [Effect of different transfection reagents and injection methods in mice testicular injection on the expression of exogenous gene].

    PubMed

    Dai, Jianjun; Li, Xiang; Wu, Caifeng; Zhang, Shushan; Zhang, Tingyu; Zhang, Defu

    2014-10-01

    The purpose of this study was to study the effect of three different transfection reagents (Lipofectamine™ LTX & PLUS™, Lipofectamine 2000 and Nano-PAMAM-D) and three different testicular injection methods (rete testicular injection, seminiferous tubules injection and testicular interstitial injection) on the efficiency of production transgenic mice. After the mixtures of plasmid DNA (pEFP-C1) and transfection reagent were injected with different testicular injection methods, the sperm density, vitality, positive sperm rates and PCR positive transgenic mice rate were examined 30 days after injection. The results showed that the damage degree from slight to serious of three transfection reagents was Lipofectamine™ LTX & PLUS™, Lipofectamine 2000, and PAMAM-D. The sperm positive rates with green fluorescence of these three groups were 35.65%±0.69%, 12.86%±0.35% and 10.04%±0.20%, respectively. The PCR positive rates of transgenic newborn mice were 29.17%, 13.70% and 5.88%, respectively. Among the groups of different testicular injection methods, the damage degree from slight to serious was rete testicular injection, seminiferous tubules injection, and testicular interstitial injection, whereas the sperm positive rates with green fluorescence were 35.13%, 15.13%, and 0%, respectively. The PCR positive rates of transgenic newborn mice among different testicular injection groups were 33.3%, 12.5%, and 0.0%. The combination of rete testicular injection and Lipofectamine™ LTX & PLUS™ had the lowest toxicity and highest transgenic efficiency in the production of transgenic mice.

  4. Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death.

    PubMed

    Beyer, U; Krönung, S K; Leha, A; Walter, L; Dobbelstein, M

    2016-01-01

    The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression.

  5. Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death

    PubMed Central

    Beyer, U; Krönung, S K; Leha, A; Walter, L; Dobbelstein, M

    2016-01-01

    The long terminal repeat (LTR) of human endogenous retrovirus type 9 (ERV9) acts as a germline-specific promoter that induces the expression of a proapoptotic isoform of the tumor suppressor homologue p63, GTAp63, in male germline cells. Testicular cancer cells silence this promoter, but inhibitors of histone deacetylases (HDACs) restore GTAp63 expression and give rise to apoptosis. We show here that numerous additional transcripts throughout the genome are driven by related ERV9-LTRs. 3' Rapid amplification of cDNA ends (3'RACE) was combined with next-generation sequencing to establish a large set of such mRNAs. HDAC inhibitors induce these ERV9-LTR-driven genes but not the LTRs from other ERVs. In particular, a transcript encoding the death receptor DR5 originates from an ERV9-LTR inserted upstream of the protein coding regions of the TNFRSF10B gene, and it shows an expression pattern similar to GTAp63. When treating testicular cancer cells with HDAC inhibitors as well as the death ligand TNF-related apoptosis-inducing ligand (TRAIL), rapid cell death was observed, which depended on TNFRSF10B expression. HDAC inhibitors also cooperate with cisplatin (cDDP) to promote apoptosis in testicular cancer cells. ERV9-LTRs not only drive a large set of human transcripts, but a subset of them acts in a proapoptotic manner. We propose that this avoids the survival of damaged germ cells. HDAC inhibition represents a strategy of restoring the expression of a class of ERV9-LTR-mediated genes in testicular cancer cells, thereby re-enabling tumor suppression. PMID:26024393

  6. New insights for male infertility revealed by alterations in spermatic function and differential testicular expression of thyroid-related genes.

    PubMed

    Romano, Renata Marino; Gomes, Samantha Nascimento; Cardoso, Nathalia Carolina Scandolara; Schiessl, Larissa; Romano, Marco Aurelio; Oliveira, Claudio Alvarenga

    2017-02-01

    The impact of thyroid hormone (TH) disorders on male reproductive biology has been a controversial issue for many years. Recently, we reported that hypothyroid male rats have a disruption of the seminiferous epithelium, which may compromise spermatogenesis. To improve the understanding of the reproductive pathogenesis of hypothyroidism and hyperthyroidism, male Wistar rats that developed these dysfunctions in adulthood were used as an experimental model. We evaluated the sperm production, reserves, transit time, morphology, and functionality (acrosome integrity, plasma membrane integrity, and mitochondrial activity), and the testicular expression of the TH receptors (Thra1 and Thra2, Thrb1, and Thrb2), deiodinases (Dio2 and Dio3), and the Mct8 transporter (Slc16a2) were assessed by reverse transcription followed by real-time quantitative PCR (RT-qPCR). The results were evaluated statistically by ANOVA and Tukey HSD test (P < 0.05). Hypothyroidism decreased the total and daily sperm productions and increased the sperm transit time through the epididymis, while the sperm functionality was reduced in both thyroid dysfunctions. Regarding the modulation of gene expression in the testis, hypothyroidism increased the expression of Thra1 and decreased the expression of Dio3, and hyperthyroidism increased the expression of Slc16a2. The observed alterations in spermatic production and function and in the expression of the TH receptor, deiodinase, and the TH transporter are suggestive of TH participation in spermatogenesis in adulthood.

  7. The Ter Mutation In The Dead End Gene Causes Germ Cell Loss And Testicular Germ Cell Tumours

    SciTech Connect

    Youngren, Kirsten K.; Coveney, Douglas; Peng, Xiaoning; Bhattacharya, Chitralekha; Schmidt, Laura S.; Nickerson, Michael L.; Lamb, Bruce T.; Deng Jian Min; Behringer, Richard R.; Capel, Blanche; Rubin, Edward M.; Nadeau, Joseph H.; Matin, Angabin

    2005-01-01

    In mice, the Ter mutation causes primordial germ cell (PGC) loss in all genetic backgrounds1. Ter is also a potent modifier of spontaneous testicular germ cell tumour (TGCT) susceptibility in the 129 family of inbred strains, and markedly increases TGCT incidence in 129-Ter/Ter males2 4. In 129-Ter/Ter mice, some of the remaining PGCs transform into undifferentiated pluripotent embryonal carcinoma cells2 6, and after birth differentiate into various cells and tissues that compose TGCTs. Here, we report the positional cloning of Ter, revealing a point mutation that introduces a termination codon in the mouse orthologue (Dnd1) of the zebrafish dead end (dnd) gene. PGC deficiency is corrected both with bacterial artificial chromosomes that contain Dnd1 and with a Dnd1-encoding transgene. Dnd1 is expressed in fetal gonads during the critical period when TGCTs originate. DND1 has an RNA recognition motif and is most similar to the apobec complementation factor, a component of the cytidine t o uridine RNA-editing complex. These results suggest that Ter may adversely affect essential aspects of RNA biology during PGC development. DND1 is the first protein known to have an RNA recognition motif directly implicated as a heritable cause of spontaneous tumorigenesis. TGCT development in the 129-Ter mouse strain models paediatric TGCT in humans. This work will have important implications for our understanding of the genetic control of TGCT pathogenesis and PGC biology.

  8. Intron conservation in the fragile X gene (FMR 1)

    SciTech Connect

    Panther, R.; Ostrowski, R.S.; Stoerker, J.

    1994-09-01

    The intron probe STB12.3 was used to search for conservation of the intron sequence corresponding to the PstI fragment located approximately 450 bp downstream of the end of the first exon of the fragile X (FMR 1) gene. Standard techniques for DNA extraction, isolation, restriction enzyme digestion, blotting and probing were employed. The probe STB12.3 that hybridizes to an intron sequence in the human MR 1 gene is 1.2 bp long. Our results demonstrated that the STB12.3 sequence is conserved across at least two Kindgoms. Specifically, we have observed cross-hybridization between STB12.3 and sequences in Drosophila, Apis and Saccharomyces. Hybridization was not observed in Triticum. Most surprising was our observation of intron hybridization in Drosophila since Annemieke et al. (1991) did not find FMR 1 exon conservation in Drosophila. Intron sequence conservation had been previously reported but only between closely related (same Order) species.

  9. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci

    PubMed Central

    Wei, Shuo

    2015-01-01

    Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species. PMID:26308360

  10. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci.

    PubMed

    Bahudhanapati, Harinath; Bhattacharya, Shashwati; Wei, Shuo

    2015-01-01

    Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species.

  11. The drug target genes show higher evolutionary conservation than non-target genes.

    PubMed

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  12. Investigation of six testicular germ cell tumor susceptibility genes suggests a parent-of-origin effect in SPRY4.

    PubMed

    Karlsson, Robert; Andreassen, Kristine E; Kristiansen, Wenche; Aschim, Elin L; Bremnes, Roy M; Dahl, Olav; Fosså, Sophie D; Klepp, Olbjørn; Langberg, Carl W; Solberg, Arne; Tretli, Steinar; Magnusson, Patrik K E; Adami, Hans-Olov; Haugen, Trine B; Grotmol, Tom; Wiklund, Fredrik

    2013-08-15

    Recent genome-wide association studies have identified single-nucleotide polymorphisms (SNPs) associated with testicular germ cell tumor (TGCT) risk in the genes ATF7IP, BAK1, DMRT1, KITLG, SPRY4 and TERT. In the present study, we validate these associations in a Scandinavian population, and explore effect modification by parental sex and differences in associations between the major histological subtypes seminoma and non-seminoma. A total of 118 SNPs in the six genes were genotyped in a population-based Swedish-Norwegian sample comprising 831 TGCT case-parent triads, 474 dyads, 712 singletons and 3919 population controls. Seven hundred and thirty-four additional SNPs were imputed using reference haplotypes from the 1000 genomes project. SNP-TGCT association was investigated using a likelihood-based association test for nuclear families and unrelated subjects implemented in the software package UNPHASED. Forward stepwise regression within each gene was applied to determine independent association signals. Effect modifications by parent-of-origin and effect differences between histological subtypes were explored. We observed strong association between SNPs in all six genes and TGCT (lowest P-value per gene: ATF7IP 6.2 × 10(-6); BAK1 2.1 × 10(-10); DMRT1 6.7 × 10(-25); KITLG 2.1 × 10(-48); SPRY4 1.4 × 10(-29); TERT 1.8 × 10(-18)). Stepwise regression indicated three independent signals for BAK1 and TERT, two for SPRY4 and one each for DMRT1, ATF7IP and KITLG. A significant parent-of-origin effect was observed for rs10463352 in SPRY4 (maternal odds ratio = 1.72, paternal odds ratio = 0.99, interaction P = 0.0013). No significant effect differences between seminomas and non-seminomas were found. In summary, we validated previously reported genetic associations with TGCT in a Scandinavian population, and observed suggestive evidence of a parent-of-origin effect in SPRY4.

  13. Testicular cancer.

    PubMed

    Peckham, M

    1988-01-01

    Testicular cancer, which predominantly occurs in young men, has become increasingly common; it is presently the most common malignancy in men aged 20-34. Despite a lack of knowledge of aetiology, empirical advances, particularly in the management of patients with advanced disease, have been dramatic. Prior to the development of effective chemotherapy in the 1970s, less than 10% of men with metastatic non-seminomatous germ cell tumours were cured; nowadays approximately 90% of patients are potentially curable. The introduction of effective chemotherapy has led to a reappraisal of surgery and radiotherapy in the management of early stage disease and the introduction of a policy of surveillance in patients without evidence of metastases at the time of removal of the primary tumour. Following chemotherapy, surgery is required in approximately 25% of patients with advanced disease to excise residual masses, which in one-fifth of cases will show evidence of residual malignancy. In a proportion of patients, testicular cancer develops on a background of long-standing infertility, whereas in many men there is temporary oligospermia, despite a previous history of fertility. The majority of patients with prior evidence of spermatogenesis recover this function following chemotherapy and there is no evidence that children fathered by such patients have an increased risk of malformation. Despite physician optimism and excellent prospects for cure, significant psycho-social morbidity is associated with the diagnosis and treatment of testicular cancer. Factors contributing to this are being identified and will lead, hopefully, to the minimisation of such problems by appropriate intervention.

  14. Using intron position conservation for homology-based gene prediction

    PubMed Central

    Keilwagen, Jens; Wenk, Michael; Erickson, Jessica L.; Schattat, Martin H.; Grau, Jan; Hartung, Frank

    2016-01-01

    Annotation of protein-coding genes is very important in bioinformatics and biology and has a decisive influence on many downstream analyses. Homology-based gene prediction programs allow for transferring knowledge about protein-coding genes from an annotated organism to an organism of interest. Here, we present a homology-based gene prediction program called GeMoMa. GeMoMa utilizes the conservation of intron positions within genes to predict related genes in other organisms. We assess the performance of GeMoMa and compare it with state-of-the-art competitors on plant and animal genomes using an extended best reciprocal hit approach. We find that GeMoMa often makes more precise predictions than its competitors yielding a substantially increased number of correct transcripts. Subsequently, we exemplarily validate GeMoMa predictions using Sanger sequencing. Finally, we use RNA-seq data to compare the predictions of homology-based gene prediction programs, and find again that GeMoMa performs well. Hence, we conclude that exploiting intron position conservation improves homology-based gene prediction, and we make GeMoMa freely available as command-line tool and Galaxy integration. PMID:26893356

  15. Conserved Arrangement of Nested Genes at the Drosophila Gart Locus

    PubMed Central

    Henikoff, Steven; Eghtedarzadeh, Mohammad K.

    1987-01-01

    The Drosophila melanogaster Gart gene encodes three enzymatic activities in the pathway for purine de novo synthesis. Alternative processing of the primary transcript leads to the synthesis of two overlapping polypeptides. The coding sequence for both polypeptides is interrupted by an intron that contains a functional cuticle protein gene encoded on the opposite DNA strand. Here we show that this nested organization also exists at the homologous locus of a distantly related species, Drosophila pseudoobscura. In both species, the intronic cuticle gene is expressed in wandering larvae and in prepupae. Remarkably, there are 24 different highly conserved noncoding segments within the intron containing the cuticle gene. These are found upstream of the transcriptional start, at the 3' end, and even within the single intronic gene intron. Other introns in the purine gene, including the intron at which alternative processing occurs, show no such homologies. It seems likely that at least some of the conserved noncoding regions are involved in specifying the high level developmental expression of the cuticle gene. We discuss the possibility that shared cis-acting regulatory sites might enhance transcription of both genes and help explain their nested arrangement. PMID:3123310

  16. [Segmental testicular infarction].

    PubMed

    Ripa Saldías, L; Guarch Troyas, R; Hualde Alfaro, A; de Pablo Cárdenas, A; Ruiz Ramo, M; Pinós Paul, M

    2006-02-01

    We report the case of a 47 years old man previously diagnosed of left hidrocele. After having a recent mild left testicular pain, an ultrasonografic study revealed a solid hipoecoic testicular lesion rounded by a big hidrocele, suggesting a testicular neoplasm. Radical inguinal orchiectomy was made and pathologic study showed segmental testicular infarction. No malignancy was found. We review the literature of the topic.

  17. Evolution of the functionally conserved DCC gene in birds.

    PubMed

    Patthey, Cedric; Tong, Yong Guang; Tait, Christine Mary; Wilson, Sara Ivy

    2017-02-27

    Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes.

  18. Evolution of the functionally conserved DCC gene in birds

    PubMed Central

    Patthey, Cedric; Tong, Yong Guang; Tait, Christine Mary; Wilson, Sara Ivy

    2017-01-01

    Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes. PMID:28240293

  19. [Polymorphisms of KITLG, SPRY4, and BAK1 genes in patients with testicular germ cell tumors and individuals with infertility associated with AZFc deletion of the Y chromosome].

    PubMed

    Nemtsova, M V; Ivkin, E V; Simonova, O A; Rudenko, V V; Chernykh, V B; Mikhaylenko, D S; Loran, O B

    2016-01-01

    Testicular cancer is the most common form of solid cancer in young men. Testicular cancer is represented by testicular germ cell tumors (TGCTs) derived from embryonic stem cells with different degrees of differentiation in about 95% of cases. The development of these tumors is related to the formation of a pool of male germ cells and gametogenesis. Clinical factors that are predisposed to the development of germ-cell tumors include cryptorchidism and testicular microlithiasis, as well as infertility associated with the gr/gr deletion within the AZFс locus. KITLG, SPRY4, and BAK1 genes affect the development of the testes and gametogenesis; mutations and polymorphisms of these genes lead to a significant increase in the risk of the TGCT development. To determine the relationship between gene polymorphisms and the development of TGCTs, we developed a system for detection and studied the allele and genotype frequencies of the KITLG (rs995030, rs1508595), SPRY4 (rs4624820, rs6897876), and BAK1 (rs210138) genes in fertile men, patients with TGCTs, and patients with infertility that have the AZFс deletion. A significant association of rs995030 of the KITLG gene with the development of TGCTs (p = 0.029 for the allele G, p = 0.0124 for the genotype GG) was revealed. Significant differences in the frequencies of the studied polymorphisms in patients with the AZFc deletion and the control group of fertile men were not found. We showed significant differences in the frequencies for the combination of all high-risk polymorphisms in the control group, patients with the AZFc deletion and patients with TGCTs (p (TGCTs-AZF-control) = 0.0207). A fivefold increase in the frequency of the combination of all genotypes in the TGCT group (p = 0.0116; OR = 5.25 [1.44-19.15]) and 3.7-fold increase was identified in patients with the AZFc deletion (p = 0.045; OR = 3.69 [1.11-12.29]) were revealed. The genotyping of patients with infertility caused by the AZFc deletion can be used to

  20. Gene expression ontogeny of spermatogenesis in the marmoset uncovers primate characteristics during testicular development.

    PubMed

    Lin, Zachary Yu-Ching; Hirano, Takamasa; Shibata, Shinsuke; Seki, Naomi M; Kitajima, Ryunosuke; Sedohara, Ayako; Siomi, Mikiko C; Sasaki, Erika; Siomi, Haruhiko; Imamura, Masanori; Okano, Hideyuki

    2015-04-01

    Mammalian spermatogenesis has been investigated extensively in rodents and a strictly controlled developmental process has been defined at cellular and molecular levels. In comparison, primate spermatogenesis has been far less well characterized. However, important differences between primate and rodent spermatogenesis are emerging so it is not always accurate to extrapolate findings in rodents to primate systems. Here, we performed an extensive immunofluorescence study of spermatogenesis in neonatal, juvenile, and adult testes in the common marmoset (Callithrix jacchus) to determine primate-specific patterns of gene expression that underpin primate germ cell development. Initially we characterized adult spermatogonia into two main classes; mitotically active C-KIT(+)Ki67(+) cells and mitotically quiescent SALL4(+)PLZF(+)LIN28(+)DPPA4(+) cells. We then explored the expression of a set of markers, including PIWIL1/MARWI, VASA, DAZL, CLGN, RanBPM, SYCP1 and HAPRIN, during germ cell differentiation from early spermatocytes through round and elongating spermatids, and a clear program of gene expression changes was determined as development proceeded. We then examined the juvenile marmoset testis. Markers of gonocytes demonstrated two populations; one that migrates to the basal membrane where they form the SALL4(+) or C-KIT(+) spermatogonia, and another that remains in the lumen of the seminiferous tubule. This later population, historically identified as pre-spermatogonia, expressed meiotic and apoptotic markers and were eliminated because they appear to have failed to correctly migrate. Our findings provide the first platform of gene expression dynamics in adult and developing germ cells of the common marmoset. Although we have characterized a limited number of genes, these results will facilitate primate spermatogenesis research and understanding of human reproduction.

  1. Simvastatin and Dipentyl Phthalate Lower Ex vivo Testicular Testosterone Production and Exhibit Additive Effects on Testicular Testosterone and Gene Expression Via Distinct Mechanistic Pathways in the Fetal Rat

    EPA Science Inventory

    Sex differentiation of the male reproductive tract in mammals is driven, in part, by fetal androgen production. In utero, some phthalate esters (PEs) alter fetal Leydig cell differentiation, reducing the expression of several genes associated with steroid synthesis/transport, and...

  2. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    PubMed Central

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  3. Can Testicular Cancer Be Found Early?

    MedlinePlus

    ... Testicular Cancer Early Detection, Diagnosis, and Staging Can Testicular Cancer Be Found Early? Most testicular cancers can be ... Ask Your Doctor About Testicular Cancer? More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  4. Evolutionary Conservation of Ceratitis capitata transformer Gene Function

    PubMed Central

    Pane, Attilio; De Simone, Annamaria; Saccone, Giuseppe; Polito, Catello

    2005-01-01

    Transformer functions as a binary switch gene in the sex determination and sexual differentiation of Drosophila melanogaster and Ceratitis capitata, two insect species that separated nearly 100 million years ago. The TRA protein is required for female differentiation of XX individuals, while XY individuals express smaller, presumably nonfunctional TRA peptides and consequently develop into adult males. In both species, tra confers female sexual identity through a well-conserved double-sex gene. However, unlike Drosophila tra, which is regulated by the upstream Sex-lethal gene, Ceratitis tra itself is likely to control a feedback loop that ensures the maintenance of the female sexual state. The putative CcTRA protein shares a very low degree of sequence identity with the TRA proteins from Drosophila species. However, in this study we show that a female-specific Ceratitis Cctra cDNA encoding the putative full-length CcTRA protein is able to support the female somatic and germline sexual differentiation of D. melanogaster XX; tra mutant adults. Although highly divergent, CcTRA can functionally substitute for DmTRA and induce the female-specific expression of both Dmdsx and Dmfru genes. These data demonstrate the unusual plasticity of the TRA protein that retains a conserved function despite the high evolutionary rate. We suggest that transformer plays an important role in providing a molecular basis for the variety of sex-determining systems seen among insects. PMID:15998727

  5. Testicular Torsion (For Parents)

    MedlinePlus

    ... ON THIS TOPIC Hernias Ultrasound: Scrotum Undescended Testicles Male Reproductive System PQ: I have a lump on one of ... How to Perform a Testicular Self-Examination Varicocele Male Reproductive System Testicular Torsion Contact Us Print Resources Send to ...

  6. Testicular Sonogram

    PubMed Central

    Devkota, Jagadishwar; White, Sherry

    1980-01-01

    Precise localization, detection, and recognition of minor changes in testicular lesions are important because teratocarcinoma is notorious for manifesting as secondaries at the time the primary site is obvious to the clinician. In the past, questionable enlargement of the testis due to significant pathology required numerous radiographic invasive special procedures to provide a correct diagnosis. Due to the advent of the sophisticated digital ultrasound imager with high frequency quarter wave transducer, it is possible to detect minor changes in the tissue character of the testis, thus enabling the physician to tackle primary neoplasms prior to distant spread. In our case we were able to detect the abnormality in the testis, but unfortunately a large secondary abnormal mass was present. Even at that stage we were able to map out the extent of the lesion which was beneficial to the surgeon and the patient. Ultrasound studies were utilized in serial follow-up studies. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6 PMID:7401191

  7. Comparing the evolutionary conservation between human essential genes, human orthologs of mouse essential genes and human housekeeping genes.

    PubMed

    Lv, Wenhua; Zheng, Jiajia; Luan, Meiwei; Shi, Miao; Zhu, Hongjie; Zhang, Mingming; Lv, Hongchao; Shang, Zhenwei; Duan, Lian; Zhang, Ruijie; Jiang, Yongshuai

    2015-11-01

    Human housekeeping genes are often confused with essential human genes, and several studies regard both types of genes as having the same level of evolutionary conservation. However, this is not necessarily the case. To clarify this, we compared the differences between human housekeeping genes and essential human genes with respect to four aspects: the evolutionary rate (dN/dS), protein sequence identity, single-nucleotide polymorphism (SNP) density and level of linkage disequilibrium (LD). The results showed that housekeeping genes had lower evolutionary rates, higher sequence identities, lower SNP densities and higher levels of LD compared with essential genes. Together, these findings indicate that housekeeping and essential genes are two distinct types of genes, and that housekeeping genes have a higher level of evolutionary conservation. Therefore, we suggest that researchers should pay careful attention to the distinctions between housekeeping genes and essential genes. Moreover, it is still controversial whether we should substitute human orthologs of mouse essential genes for human essential genes. Therefore, we compared the evolutionary features between human orthologs of mouse essential genes and human housekeeping genes and we got inconsistent results in long-term and short-term evolutionary characteristics implying the irrationality of simply replacing human essential genes with human orthologs of mouse essential genes.

  8. Patterns of intron gain and conservation in eukaryotic genes

    PubMed Central

    Carmel, Liran; Rogozin, Igor B; Wolf, Yuri I; Koonin, Eugene V

    2007-01-01

    Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed sharing of intron positions

  9. Pediatric Testicular Torsion.

    PubMed

    Bowlin, Paul R; Gatti, John M; Murphy, J Patrick

    2017-02-01

    The pediatric patient presenting with acute scrotal pain requires prompt evaluation and management given the likelihood of testicular torsion as the underlying cause. Although other diagnoses can present with acute testicular pain, it is important to recognize the possibility of testicular torsion because the best chance of testicular preservation occurs with expeditious management. When testicular torsion is suspected, prompt surgical exploration is warranted. A delay in surgical management should not occur in an effort to obtain confirmatory imaging. When torsion is discovered, the contralateral testicle should undergo fixation to reduce the risk of asynchronous torsion.

  10. The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes.

    PubMed

    Gautier, Aude; Le Gac, Florence; Lareyre, Jean-Jacques

    2011-02-01

    The gonadal soma-derived factor (GSDF) belongs to the transforming growth factor-β superfamily and is conserved in teleostean fish species. Gsdf is specifically expressed in the gonads, and gene expression is restricted to the granulosa and Sertoli cells in trout and medaka. The gsdf gene expression is correlated to early testis differentiation in medaka and was shown to stimulate primordial germ cell and spermatogonia proliferation in trout. In the present study, we show that the gsdf gene localizes to a syntenic chromosomal fragment conserved among vertebrates although no gsdf-related gene is detected on the corresponding genomic region in tetrapods. We demonstrate using quantitative RT-PCR that most of the genes localized in the synteny are specifically expressed in medaka gonads. Gsdf is the only gene of the synteny with a much higher expression in the testis compared to the ovary. In contrast, gene expression pattern analysis of the gsdf surrounding genes (nup54, aff1, klhl8, sdad1, and ptpn13) indicates that these genes are preferentially expressed in the female gonads. The tissue distribution of these genes is highly similar in medaka and zebrafish, two teleostean species that have diverged more than 110 million years ago. The cellular localization of these genes was determined in medaka gonads using the whole-mount in situ hybridization technique. We confirm that gsdf gene expression is restricted to Sertoli and granulosa cells in contact with the premeiotic and meiotic cells. The nup54 gene is expressed in spermatocytes and previtellogenic oocytes. Transcripts corresponding to the ovary-specific genes (aff1, klhl8, and sdad1) are detected only in previtellogenic oocytes. No expression was detected in the gonocytes in 10 dpf embryos. In conclusion, we show that the gsdf gene localizes to a syntenic chromosomal fragment harboring evolutionary conserved genes in vertebrates. These genes are preferentially expressed in previtelloogenic oocytes, and thus, they

  11. Evolutionary conservation and disease gene association of the human genes composing pseudogenes.

    PubMed

    Sen, Kamalika; Ghosh, Tapash Chandra

    2012-06-15

    Pseudogenes, the 'genomic fossils' present portrayal of evolutionary history of human genome. The human genes configuring pseudogenes are also now coming forth as important resources in the study of human protein evolution. In this communication, we explored evolutionary conservation of the genes forming pseudogenes over the genes lacking any pseudogene and delving deeper, we probed an evolutionary rate difference between the disease genes in the two groups. We illustrated this differential evolutionary pattern by gene expressivity, number of regulatory miRNA targeting per gene, abundance of protein complex forming genes and lesser percentage of protein intrinsic disorderness. Furthermore, pseudogenes are observed to harbor sequence variations, over their entirety, those become degenerative disease-causing mutations though the disease involvement of their progenitors is still unexplored. Here, we unveiled an immense association of disease genes in the genes casting pseudogenes in human. We interpreted the issue by disease associated miRNA targeting, genes containing polymorphisms in miRNA target sites, abundance of genes having disease causing non-synonymous mutations, disease gene specific network properties, presence of genes having repeat regions, affluence of dosage sensitive genes and the presence of intrinsically unstructured protein regions.

  12. The Evolution of Novelty in Conserved Gene Families

    PubMed Central

    Markov, Gabriel V.; Sommer, Ralf J.

    2012-01-01

    One of the major aims of contemporary evolutionary biology is the understanding of the current pattern of biological diversity. This involves, first, the description of character distribution at various nodes of the phylogenetic tree of life and, second, the functional explanation of such changes. The analysis of character distribution is a powerful tool at both the morphological and molecular levels. Recent high-throughput sequencing approaches provide new opportunities to study the genetic architecture of organisms at the genome-wide level. In eukaryotes, one overarching finding is the absence of simple correlations of gene count and biological complexity. Instead, the domain architecture of proteins is becoming a central focus for large-scale evolutionary innovations. Here, we review examples of the evolution of novelty in conserved gene families in insects and nematodes. We highlight how in the absence of whole-genome duplications molecular novelty can arise, how members of gene families have diversified at distinct mechanistic levels, and how gene expression can be maintained in the context of multiple innovations in regulatory mechanisms. PMID:22779028

  13. Regulation of photoreceptor gene transcription via a highly conserved transcriptional regulatory element by vsx gene products

    PubMed Central

    Pan, Yi; Comiskey, Daniel F.; Kelly, Lisa E.; Chandler, Dawn S.

    2016-01-01

    Purpose The photoreceptor conserved element-1 (PCE-1) sequence is found in the transcriptional regulatory regions of many genes expressed in photoreceptors. The retinal homeobox (Rx or Rax) gene product functions by binding to PCE-1 sites. However, other transcriptional regulators have also been reported to bind to PCE-1. One of these, vsx2, is expressed in retinal progenitor and bipolar cells. The purpose of this study is to identify Xenopus laevis vsx gene products and characterize vsx gene product expression and function with respect to the PCE-1 site. Methods X. laevis vsx gene products were amplified with PCR. Expression patterns were determined with in situ hybridization using whole or sectioned X. laevis embryos and digoxigenin- or fluorescein-labeled antisense riboprobes. DNA binding characteristics of the vsx gene products were analyzed with electrophoretic mobility shift assays (EMSAs) using in vitro translated proteins and radiolabeled oligonucleotide probes. Gene transactivation assays were performed using luciferase-based reporters and in vitro transcribed effector gene products, injected into X. laevis embryos. Results We identified one vsx1 and two vsx2 gene products. The two vsx2 gene products are generated by alternate mRNA splicing. We verified that these gene products are expressed in the developing retina and that expression resolves into distinct cell types in the mature retina. Finally, we found that vsx gene products can bind the PCE-1 site in vitro and that the two vsx2 isoforms have different gene transactivation activities. Conclusions vsx gene products are expressed in the developing and mature neural retina. vsx gene products can bind the PCE-1 site in vitro and influence the expression of a rhodopsin promoter-luciferase reporter gene. The two isoforms of vsx have different gene transactivation activities in this reporter gene system. PMID:28003732

  14. A case of Carney complex presenting as acute testicular pain

    PubMed Central

    Alleemudder, Adam; Pillai, Rajiv

    2016-01-01

    We describe the case of a 7-year-old boy who presented with testicular pain but was found to have bilateral testicular lesions later confirmed as Sertoli cell tumors. Genetic testing confirmed a PRKAR1A gene mutation consistent with Carney complex, a rare genetic disorder characterized by skin lesions, myxomas, and multiple endocrine neoplasms. A review of the condition is made highlighting the association with testicular tumors, particularly of Sertoli cell origin. PMID:27453662

  15. Conserved Gene Expression Programs in Developing Roots from Diverse Plants

    PubMed Central

    Huang, Ling; Schiefelbein, John

    2015-01-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants. PMID:26265761

  16. Functional conservation of the Drosophila hybrid incompatibility gene Lhr

    PubMed Central

    2011-01-01

    Background Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. Results Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. Conclusions We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin. PMID:21366928

  17. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    PubMed

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  18. The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation.

    PubMed

    Li, Yunmin; Zheng, Ming; Lau, Yun-Fai Chris

    2014-08-07

    Male sex determination is mediated sequentially by sex-determining region Y (SRY) and related SRY-box 9 (SOX9) transcription factors. To understand the gene regulatory hierarchy for SRY and SOX9, a series of chromatin immunoprecipitation and whole-genome promoter tiling microarray (ChIP-Chip) experiments were conducted with mouse gonadal cells at the time of sex determination. SRY and SOX9 bind to the promoters of many common targets involved in testis differentiation and regulate their expression in Sertoli cells. SRY binds to various ovarian differentiation genes and represses their activation through WNT/β-catenin signaling. Sertoli cell-Sertoli cell junction signaling, important for testis cord formation, is the top canonical pathway among the SRY and SOX9 targets. Hence, SRY determines Sertoli cell fate by repressing ovarian and activating testicular differentiation genes, promotes early Sertoli cells to form testis cord, and then passes on its functions to SOX9, which regulates common targets and activates its own gene regulatory program, beyond SRY actions, in sex determination.

  19. Conserved gene regulation during acute inflammation between zebrafish and mammals.

    PubMed

    Forn-Cuní, G; Varela, M; Pereiro, P; Novoa, B; Figueras, A

    2017-02-03

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.

  20. Do We Know What Causes Testicular Cancer?

    MedlinePlus

    ... Factors, and Prevention Do We Know What Causes Testicular Cancer? The exact cause of most testicular cancers is ... Cancer? Can Testicular Cancer Be Prevented? More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  1. What Happens After Treatment for Testicular Cancer?

    MedlinePlus

    ... Cancer After Treatment What Happens After Treatment for Testicular Cancer? For most people with testicular cancer, treatment removes ... Treatment for Testicular Cancer Stops Working More In Testicular Cancer About Testicular Cancer Causes, Risk Factors, and Prevention ...

  2. Cytochrome b gene for species identification of the conservation animals.

    PubMed

    Hsieh, H M; Chiang, H L; Tsai, L C; Lai, S Y; Huang, N E; Linacre, A; Lee, J C

    2001-10-15

    A partial DNA sequence of cytochrome b gene was used to identify the remains of endangered animals and species endemic to Taiwan. The conservation of animals species included in this study were: the formosan gem-faced civets, leopard cats, tigers, clouded leopards, lion, formosan muntjacs, formosan sika deers, formosan sambars, formosan serows, water buffalo, formosan pangolins and formosan macaques. The control species used included domestic cats, domestic dogs, domestic sheeps, domestic cattles, domestic pigs and humans. Heteroplasmy was detected in the formosan macaque, domestic pig and domestic cats. The frequencies of heteroplasmy in these animals were about 0.25% (1 in 402bp). Sequences were aligned by Pileup program of GCG computer package, and the phylogenetic tree was constructed by the neighbor-joining method. The results of sequence comparison showed that the percentage range of sequence diversity in the same species was from 0.25 to 2.74%, and that between the different species was from 5.97 to 34.83%. The results of phylogenetic analysis showed that the genetic distance between the different species was from 6.33 to 40.59. Animals of the same species, both the endangered animal species and domestic animals, were clustered together in the neighbor-joining tree. Three unknown samples of animal remains were identified by this system. The partial sequence of cytochrome b gene adopted in this study proved to be usable for animal identification.

  3. PHYLOGENOMICS - GUIDED VALIDATION OF FUNCTION FOR CONSERVED UNKNOWN GENES

    SciTech Connect

    V, DE CRECY-LAGARD; D, HANSON A

    2012-01-03

    Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown function, or wrongly or vaguely annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We accordingly set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction is integrative, coupling the extensive post-genomic resources available for plants with comparative genomics based on hundreds of microbial genomes, and functional genomic datasets from model microorganisms. The early phase is computer-assisted; later phases incorporate intellectual input from expert plant and microbial biochemists. The approach thus bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is much more powerful than purely computational approaches to identifying gene-function associations. Among Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) are conserved between plants and prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology .. independent characteristics associated in the SEED database with the prokaryotic members of each family, specifically gene clustering and phyletic spread, as well as availability of functional genomics data, and publications that could link candidate families to general metabolic areas, or to specific functions. In-depth comparative genomic analysis was then performed for about 500 top candidate families, which connected ~55 of them to general areas of metabolism and led to specific functional predictions for a subset of ~25 more. Twenty predicted functions were experimentally tested in at least one prokaryotic organism via reverse

  4. Testicular Dysgenesis Syndrome and Long-Lasting Epigenetic Silencing of Mouse Sperm Genes Involved in the Reproductive System after Prenatal Exposure to DEHP

    PubMed Central

    Escoffier, Jessica; Rahban, Rita; Nef, Serge; Paoloni-Giacobino, Ariane

    2017-01-01

    The endocrine disruptor bis(2-ethylhexyl) phthalate (DEHP) has been shown to exert adverse effects on the male animal reproductive system. However, its mode of action is unclear and a systematic analysis of its molecular targets is needed. In the present study, we investigated the effects of prenatal exposure to 300 mg/kg/day DEHP during a critical period for gonads differentiation to testes on male mice offspring reproductive parameters, including the genome-wide RNA expression and associated promoter methylation status in the sperm of the first filial generation. It was observed that adult male offspring displayed symptoms similar to the human testicular dysgenesis syndrome. A combination of sperm transcriptome and methylome data analysis allowed to detect a long-lasting DEHP-induced and robust promoter methylation-associated silencing of almost the entire cluster of the seminal vesicle secretory proteins and antigen genes, which are known to play a fundamental role in sperm physiology. It also resulted in the detection of a DEHP-induced promoter demethylation associated with an up-regulation of three genes apparently not relevant for sperm physiology and partially related to the immune system. As previously reported, DEHP induced an increase in mir-615 microRNA expression and a genome-wide decrease in microRNA promoter methylation. A functional analysis revealed DEHP-induced enrichments in down-regulated gene transcripts coding for peroxisome proliferator-activated receptors and tumor necrosis factor signaling pathways, and in up-regulated gene transcripts coding for calcium binding and numerous myosin proteins. All these enriched pathways and networks have been described to be associated in some way with the reproductive system. This study identifies a large new array of genes dysregulated by DEHP that may play a role in the complex system controlling the development of the male reproductive system. PMID:28085963

  5. Testicular Dysgenesis Syndrome and Long-Lasting Epigenetic Silencing of Mouse Sperm Genes Involved in the Reproductive System after Prenatal Exposure to DEHP.

    PubMed

    Stenz, Ludwig; Escoffier, Jessica; Rahban, Rita; Nef, Serge; Paoloni-Giacobino, Ariane

    2017-01-01

    The endocrine disruptor bis(2-ethylhexyl) phthalate (DEHP) has been shown to exert adverse effects on the male animal reproductive system. However, its mode of action is unclear and a systematic analysis of its molecular targets is needed. In the present study, we investigated the effects of prenatal exposure to 300 mg/kg/day DEHP during a critical period for gonads differentiation to testes on male mice offspring reproductive parameters, including the genome-wide RNA expression and associated promoter methylation status in the sperm of the first filial generation. It was observed that adult male offspring displayed symptoms similar to the human testicular dysgenesis syndrome. A combination of sperm transcriptome and methylome data analysis allowed to detect a long-lasting DEHP-induced and robust promoter methylation-associated silencing of almost the entire cluster of the seminal vesicle secretory proteins and antigen genes, which are known to play a fundamental role in sperm physiology. It also resulted in the detection of a DEHP-induced promoter demethylation associated with an up-regulation of three genes apparently not relevant for sperm physiology and partially related to the immune system. As previously reported, DEHP induced an increase in mir-615 microRNA expression and a genome-wide decrease in microRNA promoter methylation. A functional analysis revealed DEHP-induced enrichments in down-regulated gene transcripts coding for peroxisome proliferator-activated receptors and tumor necrosis factor signaling pathways, and in up-regulated gene transcripts coding for calcium binding and numerous myosin proteins. All these enriched pathways and networks have been described to be associated in some way with the reproductive system. This study identifies a large new array of genes dysregulated by DEHP that may play a role in the complex system controlling the development of the male reproductive system.

  6. Infertility with Testicular Cancer.

    PubMed

    Ostrowski, Kevin A; Walsh, Thomas J

    2015-08-01

    Testicular germ cell cancer is one of the most curable cancers. Most patients are treated during their reproductive years, making infertility a significant quality of life issue after successful treatment. This focused review evaluates the factors that contribute to infertility and specific fertility risks with the various testicular cancer treatments. Timing of patient discussions and current fertility treatments are reviewed.

  7. Conserved gene regulation during acute inflammation between zebrafish and mammals

    PubMed Central

    Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.

    2017-01-01

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230

  8. Exposure in utero to 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring

    SciTech Connect

    Hsu, P.-C.; Pan, M.-H.; Li, L.-A.; Chen, C.-J.; Tsai, S.-S.; Guo, Y.L. . E-mail: leonguo@ha.mc.ntu.edu.tw

    2007-05-15

    Toxicity of the polychlorinated biphenyls (PCBs) depends on their molecular structure. Mechanisms by prenatal exposure to a non-dioxin-like PCB, 2,2',3,4',5',6-hexachlorobiphenyl (PCB 132) that may act on reproductive pathways in male offspring are relatively unknown. The purpose was to determine whether epididymal sperm function and expression of apoptosis-related genes were induced or inhibited by prenatal exposure to PCB 132. Pregnant rats were treated with a single dose of PCB 132 at 1 or 10 mg/kg on gestational day 15. Male offspring were killed and the epididymal sperm counts, motility, velocity, reactive oxygen species (ROS) generation, sperm-oocyte penetration rate (SOPR), testicular histopathology, apoptosis-related gene expression and caspase activation were assessed on postnatal day 84. Prenatal exposure to PCB 132 with a single dose of 1 or 10 mg/kg decreased cauda epididymal weight, epididymal sperm count and motile epididymal sperm count in adult offspring. The spermatozoa of PCB 132-exposed offspring produced significantly higher levels of ROS than the controls; ROS induction and SOPR reduction were dose-related. In the low-dose PCB 132 group, p53 was significantly induced and caspase-3 was inhibited. In the high-dose group, activation of caspase-3 and -9 was significantly increased, while the expressions of Fas, Bax, bcl-2, and p53 genes were significantly decreased. Gene expression and caspase activation data may provide insight into the mechanisms by which exposure to low-dose or high-dose PCB 132 affects reproduction in male offspring in rats. Because the doses of PCB 132 administered to the dams were approximately 625-fold in low-dose group and 6250-fold higher in high-dose group than the concentration in human tissue levels, the concentrations are not biologically or environmentally relevant. Further studies using environmentally relevant doses are needed for hazard identification.

  9. Isolation of a phylogenetically conserved and testis-specific gene using a monoclonal antibody against the serological H-Y antigen.

    PubMed

    Su, H; Kozak, C A; Veerhuis, R; Lau, Y F; Wiberg, U

    1992-04-01

    Several cDNA clones of a gene termed male-enhanced antigen-2 (Mea-2), have been isolated from a mouse testicular expression cDNA library using a monoclonal histocompatability Y (H-Ys) antibody which detects specific protein(s) present in the mouse testis but not the ovary. The Mea-2 gene is phylogenetically conserved among various mammalian species examined, and is expressed at high levels in adult mouse testis. The expression pattern of Mea-2 is very similar to that of another gene, the male-enhanced antigen-1 (Mea-1), previously isolated using a polyclonal H-Ys antibody. Northern blotting and RT-PCR analyses demonstrated that Mea-2 is also expressed in other adult and fetal mouse organs at low levels. The testis-enhanced expression of this gene is associated with germ cell development at mid- to late-meiotic stages of spermatogenesis. Analysis of an intersubspecies mouse backcross has assigned this gene to chromosome 5, between the loci Gus and Hnf-1.

  10. Dissecting the gene network of dietary restriction to identify evolutionarily conserved pathways and new functional genes.

    PubMed

    Wuttke, Daniel; Connor, Richard; Vora, Chintan; Craig, Thomas; Li, Yang; Wood, Shona; Vasieva, Olga; Shmookler Reis, Robert; Tang, Fusheng; de Magalhães, João Pedro

    2012-01-01

    Dietary restriction (DR), limiting nutrient intake from diet without causing malnutrition, delays the aging process and extends lifespan in multiple organisms. The conserved life-extending effect of DR suggests the involvement of fundamental mechanisms, although these remain a subject of debate. To help decipher the life-extending mechanisms of DR, we first compiled a list of genes that if genetically altered disrupt or prevent the life-extending effects of DR. We called these DR-essential genes and identified more than 100 in model organisms such as yeast, worms, flies, and mice. In order for other researchers to benefit from this first curated list of genes essential for DR, we established an online database called GenDR (http://genomics.senescence.info/diet/). To dissect the interactions of DR-essential genes and discover the underlying lifespan-extending mechanisms, we then used a variety of network and systems biology approaches to analyze the gene network of DR. We show that DR-essential genes are more conserved at the molecular level and have more molecular interactions than expected by chance. Furthermore, we employed a guilt-by-association method to predict novel DR-essential genes. In budding yeast, we predicted nine genes related to vacuolar functions; we show experimentally that mutations deleting eight of those genes prevent the life-extending effects of DR. Three of these mutants (OPT2, FRE6, and RCR2) had extended lifespan under ad libitum, indicating that the lack of further longevity under DR is not caused by a general compromise of fitness. These results demonstrate how network analyses of DR using GenDR can be used to make phenotypically relevant predictions. Moreover, gene-regulatory circuits reveal that the DR-induced transcriptional signature in yeast involves nutrient-sensing, stress responses and meiotic transcription factors. Finally, comparing the influence of gene expression changes during DR on the interactomes of multiple organisms led

  11. Testicular Cancer and Genetics Knowledge Among Familial Testicular Cancer Family Members

    PubMed Central

    Beckjord, Ellen B.; Banda Ryan, Deliya R.; Carr, Ann G.; Vadaparampil, Susan T.; Loud, Jennifer T.; Korde, Larissa; Greene, Mark H.

    2011-01-01

    Purpose It was our aim to determine baseline levels of testicular cancer and genetics knowledge among members of families with Familial Testicular Cancer (FTC). Methods This is a sub-study of an ongoing National Cancer Institute (NCI) multidisciplinary, etiologically-focused, cross-sectional study of FTC. We evaluated 258 male and female participants including testicular cancer (TC) survivors, blood relatives and spouses to assess factors associated with a Genetic Knowledge Scale (GKS) and Testicular Cancer Knowledge Scale (TCKS). Results Knowledge levels were generally low, with genetic knowledge lower than TC knowledge (p<0.01). Men with a personal TC history scored highest on TC knowledge, while gender, age and education differentially influenced knowledge levels, particularly among unaffected relatives. Conclusions Prior to identifying FTC susceptibility genes, we recommend tailoring FTC genetic education to the different informational needs of TC survivors, their spouses and relatives, in preparation for the day when clinical susceptibility testing may be available. PMID:18481162

  12. Fluoride exposure changed the structure and the expressions of reproductive related genes in the hypothalamus-pituitary-testicular axis of male mice.

    PubMed

    Han, Haijun; Sun, Zilong; Luo, Guangying; Wang, Chong; Wei, Ruifen; Wang, Jundong

    2015-09-01

    Numerous studies have shown that fluoride exposure adversely affected the male reproductive function, while the molecular mechanism is not clear. The present study was to investigate the effects of fluoride exposure (60 days) on the expressions of reproductive related genes, serum sex hormone levels and structures of the hypothalamus-pituitary-testicular axis (HPTA), which plays a vital role in regulating the spermatogenesis in male mice. In this study, 48 male mice were administrated with 0, 25, 50, and 100 mg/L NaF through drinking water. Results showed that the malformation ratio of sperm was significantly increased (P<0.05). At transcriptional level, the expression levels of follicle-stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), inhibin alpha (INHα), inhibin beta-B (INHβB), and sex hormone binding globulin (SHBG) mRNA in testis were significantly decreased (P<0.05). Moreover, histological lesions in testis and ultrastructural alterations in hypothalamus, pituitary and testis were obvious. However, the same fluoride exposure did not lead to significant changes of related mRNA expressions in hypothalamus and pituitary (P>0.05). Also, there were no marked changes in serum hormones. Taken together, we conclude that the mechanism of HPTA dysfunction is mainly elucidated through affecting testes, and its effect on hypothalamus and pituitary was secondary at exposure for 60 days.

  13. [Study of testicular cancer gene expression in samples of oral leukoplakia and squamous cell carcinoma of the mouth].

    PubMed

    Skorodumova, L O; Muraev, A A; Zakharova, E S; Shepelev, M V; Korobko, I V; Zaderenko, I A; Ivanov, S Iu; Gnuchev, N V; Georgiev, G P; Larin, S S

    2012-01-01

    Cancer-testis (CT) antigens are normally expressed mostly in human germ cells, there is also an aberrant expression in some tumor cells. This expression profile makes them potential tumor growth biomarkers and a promising target for tumor immunotherapy. Specificity of CT genes expression in oral malignant and potentially malignant diseases, e.g. oral leukoplakia, is not yet studied. Data on CT genes expression profile in leukoplakia would allow developing new diagnostic methods with potential value for immunotherapy and prophylaxis of leukoplakia malignization. In our study we compared CT genes expression in normal oral mucosa, oral leukoplakia and oral squamous cell carcinoma. We are the first to describe CT genes expression in oral leukoplakia without dysplasia. This findings make impossible differential diagnosis of oral leukoplakia and squamous cell carcinoma on the basis of CT genes expression. The prognostic value of CT genes expression is still unclear, therefore the longitudinal studies are necessary.

  14. Conservation.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  15. [Screening of Bacillus thuringiensis strains containing vip3A genes and analysis of gene conservation].

    PubMed

    Chen, Jian-Wu; Tang, Li-Xia; Song, Shao-Yun; Yuan, Mei-Jin; Pang, Yi

    2003-09-01

    Vip3A, a novel insecticidal protein, is secreted by Bacillus thuringiensis (Bt) during vegetative growth. Vip3A protein possesses insecticidal activity against a wild spectrum of lepidopteran insect larvae. Since the first cloning of vip3A gene from Bt, many other vip3A genes have been isolated. To investigate vip3A genes contribution to Bt and reflect the revolution relationships, the strains containing vip3A genes were screened and gene similarity was analyzed. 114 wild-type Bacillus thuringiensis (Bt) strains isolated from different regions and 41 standard Bt strains from the Institute of Pasteur were screened for the vip3A genes using PCR amplification. 39 strains including B. thuringiensis subsp. kurstaki (Btk) HD-1 were found to contain the vip3A genes. Because acrystallerous strain Cry- B derived from Btk HD-1 was proved not to contain vip3A gene, it suppose that the vip3A gene may be located at the plasmids. Vip3A proteins expressed in these strains were detected with polyclonal antibody by Western blot and 4 strains among them were shown not to express the Vip3A proteins. The vip3A genes amplified from wild-type Bacillus thuringiensis strains S101 and 611 with different levels of activity against lepidopteran insect larvae were cloned into pGEM-T Easy vector. Alignment of these 2 putative Vip3A proteins with 6 others (Vip3A (a), Vip3A(b), Vip3A-S, Vip3A-S184, Vip83 and Vip3V) in the GenBank data base and 2 reported Vip3A proteins (Vip14 and Vip15) showed that vip3A genes are highly conservative. The plasmids pOTP-S101 and pOTP-611 were constructed by in- serting 2 vip3A genes (vip3A-S101 and vip3A-611) into the expression vector pQE30 respectively and were transformed into E. coli M15. E. coli M15 cells harboring the pOTP plasmids were induced with 1 mmol/L IPTG to express 89 kDa protein. Experiments showed that the level of soluble proteins of Vip3A-S101 in E. coli M15[pOTP-S101] and Vip3A-611 in E. coli M15 [pOTP-611] were about 48% and 35% respectively

  16. Chemotherapy for Testicular Cancer

    MedlinePlus

    ... main drugs used to treat testicular cancer are: Cisplatin Etoposide (VP-16) Bleomycin Ifosfamide (Ifex ® ) Paclitaxel (Taxol ® ) ... cancer are: BEP (or PEB): bleomycin, etoposide, and cisplatin EP: etoposide and cisplatin (also known as EP) ...

  17. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    PubMed

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  18. Structural Relationships between Highly Conserved Elements and Genes in Vertebrate Genomes

    PubMed Central

    Sun, Hong; Skogerbø, Geir; Wang, Zhen; Liu, Wei; Li, Yixue

    2008-01-01

    Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs) are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes. PMID:19008958

  19. Testicular Microlithiasis: Is It Associated with Testicular Cancer?

    MedlinePlus

    ... cell tumors (FTGCT) — Overview of a multidisciplinary etiologic study. Andrology. 2015;3:47. Pedersen MR, et al. Testicular microlithiasis and testicular cancer: Review of the literature. International Urology and Nephrology. 2016;48:1079. Wang T, ...

  20. PLIN1 deficiency affects testicular gene expression at the meiotic stage in the first wave of spermatogenesis.

    PubMed

    Chen, Min; Wang, Hong; Li, Xiangdong; Li, Ning; Xu, Guoheng; Meng, Qingyong

    2014-06-15

    PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.

  1. Teaching about Testicular Cancer and Testicular Self-examination.

    ERIC Educational Resources Information Center

    Marty, Phillip J.; McDermott, Robert J.

    1983-01-01

    Because testicular cancer is one of the most commonly diagnosed cancers in young men, it is important that they become informed about it. This paper reviews the pathology and epidemiology of testicular cancer, the technique of testicular self-examination, and some suggestions for teaching about this subject. (Authors/JMK)

  2. Sorting out inherent features of head-to-head gene pairs by evolutionary conservation

    PubMed Central

    2010-01-01

    Background A ‘head-to-head’ (h2h) gene pair is defined as a genomic locus in which two adjacent genes are divergently transcribed from opposite strands of DNA. In our previous work, this gene organization was found to be ancient and conserved, which subjects functionally related genes to transcriptional co-regulation. However, some of the biological features of h2h pairs still need further clarification. Results In this work, we assorted human h2h pairs into four sequentially inclusive sets of gradually incremental conservation, and examined whether those previously asserted features were conserved or sharpened in the more conserved h2h pair sets in order to identify the inherent features of the h2h gene organization. The features of TSS distance, expression correlation within h2h pairs and among h2h genes, transcription factor association and functional similarities of h2h genes were examined. Our conservation-based analyses found that the bi-directional promoters of h2h gene pairs are most likely shorter than 100 bp; h2h gene pairs generally have only significant positive expression correlation but not negative correlation, and remarkably high positive expression correlations exist among h2h genes, as well as between h2h pairs observed in our previous study; h2h paired genes tend to share transcription factors. In addition, expression correlation of h2h pairs is positively related with the TF-sharing and functional coordination, while not related with TSS distance. Conclusions Our findings remove the uncertainties of h2h genes about TSS distance, expression correlation and functional coordination, which provide insights into the study on the molecular mechanisms and functional consequences of the transcriptional regulation based on this special gene organization. PMID:21172051

  3. Conserved transcriptional responses to cyanobacterial stressors are mediated by alternate regulation of paralogous genes in Daphnia.

    PubMed

    Asselman, Jana; Pfrender, Michael E; Lopez, Jacqueline A; De Coninck, Dieter I M; Janssen, Colin R; Shaw, Joseph R; De Schamphelaere, Karel A C

    2015-04-01

    Despite a significant increase in genomic data, our knowledge of gene functions and their transcriptional responses to environmental stimuli remains limited. Here, we use the model keystone species Daphnia pulex to study environmental responses of genes in the context of their gene family history to better understand the relationship between genome structure and gene function in response to environmental stimuli. Daphnia were exposed to five different treatments, each consisting of a diet supplemented with one of five cyanobacterial species, and a control treatment consisting of a diet of only green algae. Differential gene expression profiles of Daphnia exposed to each of these five cyanobacterial species showed that genes with known functions are more likely to be shared by different expression profiles, whereas genes specific to the lineage of Daphnia are more likely to be unique to a given expression profile. Furthermore, while only a small number of nonlineage-specific genes were conserved across treatment type, there was a high degree of overlap in expression profiles at the functional level. The conservation of functional responses across the different cyanobacterial treatments can be attributed to the treatment-specific expression of different paralogous genes within the same gene family. Comparison with available gene expression data in the literature suggests differences in nutritional composition in diets with cyanobacterial species compared to diets of green algae as a primary driver for cyanobacterial effects on Daphnia. We conclude that conserved functional responses in Daphnia across different cyanobacterial treatments are mediated through alternate regulation of paralogous gene families.

  4. Evolutionary conservation of the eumetazoan gene regulatory landscape

    PubMed Central

    Schwaiger, Michaela; Schönauer, Anna; Rendeiro, André F.; Pribitzer, Carina; Schauer, Alexandra; Gilles, Anna F.; Schinko, Johannes B.; Renfer, Eduard; Fredman, David; Technau, Ulrich

    2014-01-01

    Despite considerable differences in morphology and complexity of body plans among animals, a great part of the gene set is shared among Bilateria and their basally branching sister group, the Cnidaria. This suggests that the common ancestor of eumetazoans already had a highly complex gene repertoire. At present it is therefore unclear how morphological diversification is encoded in the genome. Here we address the possibility that differences in gene regulation could contribute to the large morphological divergence between cnidarians and bilaterians. To this end, we generated the first genome-wide map of gene regulatory elements in a nonbilaterian animal, the sea anemone Nematostella vectensis. Using chromatin immunoprecipitation followed by deep sequencing of five chromatin modifications and a transcriptional cofactor, we identified over 5000 enhancers in the Nematostella genome and could validate 75% of the tested enhancers in vivo. We found that in Nematostella, but not in yeast, enhancers are characterized by the same combination of histone modifications as in bilaterians, and these enhancers preferentially target developmental regulatory genes. Surprisingly, the distribution and abundance of gene regulatory elements relative to these genes are shared between Nematostella and bilaterian model organisms. Our results suggest that complex gene regulation originated at least 600 million yr ago, predating the common ancestor of eumetazoans. PMID:24642862

  5. An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction.

    PubMed

    Piro, Rosario Michael; Ala, Ugo; Molineris, Ivan; Grassi, Elena; Bracco, Chiara; Perego, Gian Paolo; Provero, Paolo; Di Cunto, Ferdinando

    2011-11-01

    Gene coexpression relationships that are phylogenetically conserved between human and mouse have been shown to provide important clues about gene function that can be efficiently used to identify promising candidate genes for human hereditary disorders. In the past, such approaches have considered mostly generic gene expression profiles that cover multiple tissues and organs. The individual genes of multicellular organisms, however, can participate in different transcriptional programs, operating at scales as different as single-cell types, tissues, organs, body regions or the entire organism. Therefore, systematic analysis of tissue-specific coexpression could be, in principle, a very powerful strategy to dissect those functional relationships among genes that emerge only in particular tissues or organs. In this report, we show that, in fact, conserved coexpression as determined from tissue-specific and condition-specific data sets can predict many functional relationships that are not detected by analyzing heterogeneous microarray data sets. More importantly, we find that, when combined with disease networks, the simultaneous use of both generic (multi-tissue) and tissue-specific conserved coexpression allows a more efficient prediction of human disease genes than the use of generic conserved coexpression alone. Using this strategy, we were able to identify high-probability candidates for 238 orphan disease loci. We provide proof of concept that this combined use of generic and tissue-specific conserved coexpression can be very useful to prioritize the mutational candidates obtained from deep-sequencing projects, even in the case of genetic disorders as heterogeneous as XLMR.

  6. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    PubMed

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  7. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    PubMed Central

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization

  8. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context

    PubMed Central

    Geffroy, Benjamin; Guilbaud, Florian; Amilhat, Elsa; Beaulaton, Laurent; Vignon, Matthias; Huchet, Emmanuel; Rives, Jacques; Bobe, Julien; Fostier, Alexis; Guiguen, Yann; Bardonnet, Agnès

    2016-01-01

    Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels. PMID:27658729

  9. Sexually dimorphic gene expressions in eels: useful markers for early sex assessment in a conservation context

    NASA Astrophysics Data System (ADS)

    Geffroy, Benjamin; Guilbaud, Florian; Amilhat, Elsa; Beaulaton, Laurent; Vignon, Matthias; Huchet, Emmanuel; Rives, Jacques; Bobe, Julien; Fostier, Alexis; Guiguen, Yann; Bardonnet, Agnès

    2016-09-01

    Environmental sex determination (ESD) has been detected in a range of vertebrate reptile and fish species. Eels are characterized by an ESD that occurs relatively late, since sex cannot be histologically determined before individuals reach 28 cm. Because several eel species are at risk of extinction, assessing sex at the earliest stage is a crucial management issue. Based on preliminary results of RNA sequencing, we targeted genes susceptible to be differentially expressed between ovaries and testis at different stages of development. Using qPCR, we detected testis-specific expressions of dmrt1, amh, gsdf and pre-miR202 and ovary-specific expressions were obtained for zar1, zp3 and foxn5. We showed that gene expressions in the gonad of intersexual eels were quite similar to those of males, supporting the idea that intersexual eels represent a transitional stage towards testicular differentiation. To assess whether these genes would be effective early molecular markers, we sampled juvenile eels in two locations with highly skewed sex ratios. The combined expression of six of these genes allowed the discrimination of groups according to their potential future sex and thus this appears to be a useful tool to estimate sex ratios of undifferentiated juvenile eels.

  10. Conservation of Transcription Start Sites within Genes across a Bacterial Genus

    SciTech Connect

    Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.; Romine, Margaret F.; Arkin, Adam P.

    2014-07-01

    Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved. Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function.

  11. Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse

    PubMed Central

    Wood, Emily J.; Chin-Inmanu, Kwanrutai; Jia, Hui; Lipovich, Leonard

    2013-01-01

    Previous efforts to characterize conservation between the human and mouse genomes focused largely on sequence comparisons. These studies are inherently limited because they don't account for gene structure differences, which may exist despite genomic sequence conservation. Recent high-throughput transcriptome studies have revealed widespread and extensive overlaps between genes, and transcripts, encoded on both strands of the genomic sequence. This overlapping gene organization, which produces sense-antisense (SAS) gene pairs, is capable of effecting regulatory cascades through established mechanisms. We present an evolutionary conservation assessment of SAS pairs, on three levels: genomic, transcriptomic, and structural. From a genome-wide dataset of human SAS pairs, we first identified orthologous loci in the mouse genome, then assessed their transcription in the mouse, and finally compared the genomic structures of SAS pairs expressed in both species. We found that approximately half of human SAS loci have single orthologous locations in the mouse genome; however, only half of those orthologous locations have SAS transcriptional activity in the mouse. This suggests that high human-mouse gene conservation overlooks widespread distinctions in SAS pair incidence and expression. We compared gene structures at orthologous SAS loci, finding frequent differences in gene structure between human and orthologous mouse SAS pair members. Our categorization of human SAS pairs with respect to mouse conservation of expression as well as structure points to limitations of mouse models. Gene structure differences, including at SAS loci, may account for some of the phenotypic distinctions between primates and rodents. Genes in non-conserved SAS pairs may contribute to evolutionary lineage-specific regulatory outcomes. PMID:24133500

  12. Conserving plants in gene banks and nature: Investigating complementarity with Trifolium thompsonii Morton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standard conservation strategy for plant genetic resources integrates in situ (on-farm or wild) and ex situ (gene or field bank) approaches. Gene bank managers collect ex situ accessions that represent a comprehensive snap shot of the genetic diversity of in situ populations at a given time and pl...

  13. Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues

    PubMed Central

    2010-01-01

    Background Embryogenesis is the process by which the embryo is formed, develops, and establishes developmental hierarchies of tissues. The recent advance in microarray technology made it possible to investigate the tissue specific patterns of gene expression and their relationship with tissue lineages. This study is focused on how tissue specific functions, tissue lineage, and cell differentiation are correlated, which is essential to understand embryonic development and organism complexity. Results We performed individual gene and gene set based analysis on multiple tissue expression data, in association with the classic topology of mammalian fate maps of embryogenesis. For each sub-group of tissues on the fate map, conservatively, differentially and correlatively expressed genes or gene sets were identified. Tissue distance was found to correlate with gene expression divergence. Tissues of the ectoderm or mesoderm origins from the same segments on the fate map shared more similar expression pattern than those from different origins. Conservatively expressed genes or gene sets define common functions in a tissue group and are related to tissue specific diseases, which is supported by results from Gene Ontology and KEGG pathway analysis. Gene expression divergence is larger in certain human tissues than in the mouse homologous tissues. Conclusion The results from tissue lineage and gene expression analysis indicate that common function features of neighbor tissue groups were defined by the conservatively expressed genes and were related to tissue specific diseases, and differentially expressed genes contribute to the functional divergence of tissues. The difference of gene expression divergence in human and mouse homologous tissues reflected the organism complexity, i.e. distinct neural development levels and different body sizes. PMID:21172044

  14. Spin on perinatal testicular torsion.

    PubMed

    Samnakay, Naeem; Tudehope, David; Walker, Rosslyn

    2006-11-01

    We describe a recent case of perinatal testicular torsion at our institution. The presentation, management and outcome of perinatal testicular torsion are quite different to testicular torsion in the general paediatric population. The literature describes a variety of management options for perinatal testicular torsion and these are briefly reviewed. In cases of unilateral perinatal testicular torsin, there is controversy over whether surgery to fix the contralateral testis is required, and if so, the appropriate timing for the surgery. A good understanding of the issues unique to perinatal torsion will facilitate appropriate counseling of parents of affected neonates.

  15. Conservation of floral homeotic gene function between Arabidopsis and antirrhinum.

    PubMed Central

    Irish, V F; Yamamoto, Y T

    1995-01-01

    Several homeotic genes controlling floral development have been isolated in both Antirrhinum and Arabidopsis. Based on the similarities in sequence and in the phenotypes elicited by mutations in some of these genes, it has been proposed that the regulatory hierarchy controlling floral development is comparable in these two species. We have performed a direct experimental test of this hypothesis by introducing a chimeric Antirrhinum Deficiens (DefA)/Arabidopsis APETALA3 (AP3) gene, under the control of the Arabidopsis AP3 promoter, into Arabidopsis. We demonstrated that this transgene is sufficient to partially complement severe mutations at the AP3 locus. In combination with a weak ap3 mutation, this transgene is capable of completely rescuing the mutant phenotype to a fully functional wild-type flower. These observations indicate that despite differences in DNA sequence and expression, DefA coding sequences can compensate for the loss of AP3 gene function. We discuss the implications of these results for the evolution of homeotic gene function in flowering plants. PMID:7580255

  16. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates

    PubMed Central

    Kikuta, Hiroshi; Laplante, Mary; Navratilova, Pavla; Komisarczuk, Anna Z.; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.; Thisse, Christine; Thisse, Bernard; Foucher, Isabelle; Adolf, Birgit; Geling, Andrea; Lenhard, Boris; Becker, Thomas S.

    2007-01-01

    We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs. PMID:17387144

  17. Conservation of the structure and organization of lupin mitochondrial nad3 and rps12 genes.

    PubMed

    Rurek, M; Oczkowski, M; Augustyniak, H

    1998-01-01

    A high level of the nucleotide sequence conservation of mitochondrial nad3 and rps12 genes was found in four lupin species. The only differences concern three nucleotides in the Lupinus albus rps12 gene and three nucleotides insertion in the L. mutabilis spacer. Northern blot analysis as well as RT-PCR confirmed cotranscription of the L. luteus genes because the transcripts detected were long enough.

  18. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    PubMed

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading.

  19. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation.

    PubMed

    Liu, Yuan; Cui, Shaojie; Wu, Feng; Yan, Shuo; Lin, Xuelei; Du, Xiaoqiu; Chong, Kang; Schilling, Susanne; Theißen, Günter; Meng, Zheng

    2013-04-01

    There are two groups of MADS intervening keratin-like and C-terminal (MIKC)-type MADS box genes, MIKC(C) type and MIKC* type. In seed plants, the MIKC(C) type shows considerable diversity, but the MIKC* type has only two subgroups, P- and S-clade, which show conserved expression in the gametophyte. To examine the functional conservation of MIKC*-type genes, we characterized all three rice (Oryza sativa) MIKC*-type genes. All three genes are specifically expressed late in pollen development. The single knockdown or knockout lines, respectively, of the S-clade MADS62 and MADS63 did not show a mutant phenotype, but lines in which both S-clade genes were affected showed severe defects in pollen maturation and germination, as did knockdown lines of MADS68, the only P-clade gene in rice. The rice MIKC*-type proteins form strong heterodimeric complexes solely with partners from the other subclade; these complexes specifically bind to N10-type C-A-rich-G-boxes in vitro and regulate downstream gene expression by binding to N10-type promoter motifs. The rice MIKC* genes have a much lower degree of functional redundancy than the Arabidopsis thaliana MIKC* genes. Nevertheless, our data indicate that the function of heterodimeric MIKC*-type protein complexes in pollen development has been conserved since the divergence of monocots and eudicots, roughly 150 million years ago.

  20. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence

    PubMed Central

    Takuno, Shohei; Gaut, Brandon S.

    2013-01-01

    DNA methylation is a common feature of eukaryotic genomes and is especially common in noncoding regions of plants. Protein coding regions of plants are often methylated also, but the extent, function, and evolutionary consequences of gene body methylation remain unclear. Here we investigate gene body methylation using an explicit comparative evolutionary approach. We generated bisulfite sequencing data from two tissues of Brachypodium distachyon and compared genic methylation patterns to those of rice (Oryza sativa ssp. japonica). Gene body methylation was strongly conserved between orthologs of the two species and affected a biased subset of long, slowly evolving genes. Because gene body methylation is conserved over evolutionary time, it shapes important features of plant genome evolution, such as the bimodality of G+C content among grass genes. Our results superficially contradict previous observations of high cytosine methylation polymorphism within Arabidopsis thaliana genes, but reanalyses of these data are consistent with conservation of methylation within gene regions. Overall, our results indicate that the methylation level is a long-term property of individual genes and therefore of evolutionary consequence. PMID:23319627

  1. Identification of essential Alphaproteobacterial genes reveals operational variability in conserved developmental and cell cycle systems

    PubMed Central

    Curtis, Patrick D.; Brun, Yves V.

    2014-01-01

    Summary The cell cycle of Caulobacter crescentus is controlled by a complex signaling network that coordinates events. Genome sequencing has revealed many C. crescentus cell cycle genes are conserved in other Alphaproteobacteria, but it is not clear to what extent their function is conserved. As many cell cycle regulatory genes are essential in C. crescentus, the essential genes of two Alphaproteobacteria, Agrobacterium tumefaciens (Rhizobiales) and Brevundimonas subvibrioides (Caulobacterales), were elucidated to identify changes in cell cycle protein function over different phylogenetic distances as demonstrated by changes in essentiality. The results show the majority of conserved essential genes are involved in critical cell cycle processes. Changes in component essentiality reflect major changes in lifestyle, such as divisome components in A. tumefaciens resulting from that organism’s different growth pattern. Larger variability of essentiality was observed in cell cycle regulators, suggesting regulatory mechanisms are more customizable than the processes they regulate. Examples include variability in the essentiality of divJ and divK spatial cell cycle regulators, and non-essentiality of the highly conserved and usually essential DNA methyltransferase CcrM. These results show that while essential cell functions are conserved across varying genetic distance, much of a given organism’s essential gene pool is specific to that organism. PMID:24975755

  2. Characterization of Conserved and Nonconserved Imprinted Genes in Swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic imprinting results in the silencing of a subset of mammalian alleles due to parent-of-origin inheritance. Due to the nature of their expression patterns they play a critical role in placental and early embryonic development. In order to increase our understanding of imprinted genes specifi...

  3. Testicular Cancer Treatments: Surveillance

    MedlinePlus

    ... are TC clean, and your first line of defense are these testing regimens. If you do all the tests, this is not a risky choice. Click on this to go back to the TCRC main page: This page was last updated on Dec 05, 2012 Copyright © 1997 - 2012 The Testicular Cancer Resource Center , All Rights Reserved

  4. Testicular Cancer and Cryptorchidism

    PubMed Central

    Ferguson, Lydia; Agoulnik, Alexander I.

    2013-01-01

    The failure of testicular descent or cryptorchidism is the most common defect in newborn boys. The descent of the testes during development is controlled by insulin-like 3 peptide and steroid hormones produced in testicular Leydig cells, as well as by various genetic and developmental factors. While in some cases the association with genetic abnormalities and environmental causes has been shown, the etiology of cryptorchidism remains uncertain. Cryptorchidism is an established risk factor for infertility and testicular germ cell tumors (TGCT). Experimental animal models suggest a causative role for an abnormal testicular position on the disruption of spermatogenesis however the link between cryptorchidism and TGCT is less clear. The most common type of TGCT in cryptorchid testes is seminoma, believed to be derived from pluripotent prenatal germ cells. Recent studies have shown that seminoma cells and their precursor carcinoma in situ cells express a number of spermatogonial stem cell (SSC) markers suggesting that TGCTs might originate from adult stem cells. We review here the data on changes in the SSC somatic cell niche observed in cryptorchid testes of mouse models and in human patients. We propose that the misregulation of growth factors’ expression may alter the balance between SSC self-renewal and differentiation and shift stem cells toward neoplastic transformation. PMID:23519268

  5. Primary testicular lymphoma.

    PubMed

    Ahmad, S S; Idris, S F; Follows, G A; Williams, M V

    2012-06-01

    Primary testicular non-Hodgkin lymphoma (PTL) comprises around 9% of testicular cancers and 1-2% of all non-Hodgkin lymphomas. Its incidence is increasing and it primarily affects older men, with a median age at presentation of around 67 years. By far the most common histological subtype is diffuse large B-cell lymphoma, accounting for 80-90% of PTLs. Most patients present with a unilateral testicular mass or swelling. Up to 90% of patients have stage I or II disease at diagnosis (60 and 30%, respectively) and bilateral testicular involvement is seen in around 35% of patients. PTL demonstrates a continuous pattern of relapse and propensity for extra-nodal sites such as the central nervous system and contralateral testis. Retrospective data have emphasised the importance of prophylactic radiotherapy in reducing recurrence rates within the contralateral testis. Recent outcome data from the prospective IELSG-10 trial have shown far better progression-free and overall survival than historical outcomes. This supports the use of orchidectomy followed by Rituximab- cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP), central nervous system prophylaxis and prophylactic radiotherapy to the contralateral testis with or without nodal radiotherapy in patients with limited disease. Central nervous system relapse remains a significant issue and future research should focus on identifying the best strategy to reduce its occurrence. Here we discuss the evidence supporting combination chemotherapy and radiotherapy in PTL.

  6. Identification of g.170G>A and g.332G>A mutations in exon 3 of leptin gene (Bcnl and Cail) and their association with semen quality and testicular dimensions in Sanjabi rams.

    PubMed

    Bakhtiar, Roya; Abdolmohammadi, Alireza; Hajarian, Hadi; Nikousefat, Zahra; Kalantar-Neyestanaki, Davood

    2017-04-01

    The purpose of this study was to investigate leptin gene polymorphisms and their relationships with the characteristics of sperm quality and testicular dimensions. Semen samples were collected from 96 Sanjabi rams during autumn and spring seasons over two years. Simultaneously, the dimensions of length, width and scrotal circumference were measured. Blood samples were taken from the jugular vein to extract DNA. PCR was performed to amplify a 463bp fragment including exon 3 of leptin gene. PCR products were digested by Bcnl and Cail restriction enzymes to identify 170G>A and 332G>A mutations in exon 3, respectively. Leptin gene polymorphism in 170G>A locus had an effect on individual motility trait, water test and scrotal circumference (P<0.05) and animals with the AA genotype had the highest individual motility compared with the GG and GA genotypes (P<0.05). The AG genotypes had the highest water test compared with the GG and AA genotypes (P<0.05) but GG genotype had higher scrotal circumference than that of GA and AA genotypes (P<0.05). The results showed that polymorphism in 332G>A locus had a significant effect on viability trait, water test and scrotal circumference as GA genotypes had the highest amounts for these traits compared with GG genotypes (P<0.05). Based on our knowledge, the current study is the first report on the association of leptin gene polymorphisms with sperm fertility and testicular dimensions in sheep, which suggests leptin gene as a potential gene to be used in breeding programs in order to improve fertility in herds.

  7. An Intact Retroviral Gene Conserved in Spiny-Rayed Fishes for over 100 My.

    PubMed

    Henzy, Jamie E; Gifford, Robert J; Kenaley, Christopher P; Johnson, Welkin E

    2016-12-30

    We have identified a retroviral envelope gene with a complete, intact open reading frame (ORF) in 20 species of spiny-rayed fishes (Acanthomorpha). The taxonomic distribution of the gene, "percomORF", indicates insertion into the ancestral lineage >110 Ma, making it the oldest known conserved gene of viral origin in a vertebrate genome. Underscoring its ancient provenence, percomORF exists as an isolated ORF within the intron of a widely conserved host gene, with no discernible proviral sequence nearby. Despite its remarkable age, percomORF retains canonical features of a retroviral glycoprotein, and tests for selection strongly suggest cooption for a host function. Retroviral envelope genes have been coopted for a role in placentogenesis by numerous lineages of mammals, including eutherians and marsupials, representing a variety of placental structures. Therefore percomORF's presence within the group Percomorpha-unique among spiny-finned fishes in having evolved placentation and live birth-is especially intriguing.

  8. A cross-species bi-clustering approach to identifying conserved co-regulated genes

    PubMed Central

    Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo

    2016-01-01

    Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on

  9. Conserved MHC gene orthologs genetically map to the turkey MHC- B.

    PubMed

    Reed, Kent M; Benoit, Benjamin; Wang, Xiong; Greenshields, Molly A; Hughes, Camilla H K; Mendoza, Kristelle M

    2014-01-01

    The avian MHC-associated gene set includes orthologs to genes found throughout the human major histocompatibility complex (MHC), including some loci of the evolutionarily conserved class III region. In the turkey and other Galliformes, genes linked to the MHC have been identified because they are closely associated with class I or class II genes. This study was designed to evaluate additional class III genes for linkage to the avian MHC to further determine conservation of these loci in birds. BLAST searches were used to locate sequences in the turkey genome with similarity to genes shared between the MHC of Xenopus and humans. Primers were designed to target 25 genes, and putative orthologs were amplified by PCR and sequenced. Sequence polymorphisms were identified for 15 genes in turkey reference mapping families, and 8 genes showed significant genetic linkage to the turkey MHC-B locus. These new genetic markers and linkage relationships broaden our understanding of the composition of the avian MHC and expand the gene content for the turkey MHC-B.

  10. Dinoflagellate tandem array gene transcripts are highly conserved and not polycistronic

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Daoust, Philippe; Dagenais-Bellefeuille, Steve; Bertomeu, Thierry; Letourneau, Louis; Lang, B. Franz; Morse, David

    2012-01-01

    Dinoflagellates are an important component of the marine biota, but a large genome with high–copy number (up to 5,000) tandem gene arrays has made genomic sequencing problematic. More importantly, little is known about the expression and conservation of these unusual gene arrays. We assembled de novo a gene catalog of 74,655 contigs for the dinoflagellate Lingulodinium polyedrum from RNA-Seq (Illumina) reads. The catalog contains 93% of a Lingulodinium EST dataset deposited in GenBank and 94% of the enzymes in 16 primary metabolic KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, indicating it is a good representation of the transcriptome. Analysis of the catalog shows a marked underrepresentation of DNA-binding proteins and DNA-binding domains compared with other algae. Despite this, we found no evidence to support the proposal of polycistronic transcription, including a marked underrepresentation of sequences corresponding to the intergenic spacers of two tandem array genes. We also have used RNA-Seq to assess the degree of sequence conservation in tandem array genes and found their transcripts to be highly conserved. Interestingly, some of the sequences in the catalog have only bacterial homologs and are potential candidates for horizontal gene transfer. These presumably were transferred as single-copy genes, and because they are now all GC-rich, any derived from AT-rich contexts must have experienced extensive mutation. Our study not only has provided the most complete dinoflagellate gene catalog known to date, it has also exploited RNA-Seq to address fundamental issues in basic transcription mechanisms and sequence conservation in these algae. PMID:23019363

  11. Eleven ancestral gene families lost in mammals and vertebrates while otherwise universally conserved in animals

    PubMed Central

    Danchin, Etienne GJ; Gouret, Philippe; Pontarotti, Pierre

    2006-01-01

    Background Gene losses played a role which may have been as important as gene and genome duplications and rearrangements, in modelling today species' genomes from a common ancestral set of genes. The set and diversity of protein-coding genes in a species has direct output at the functional level. While gene losses have been reported in all the major lineages of the metazoan tree of life, none have proposed a focus on specific losses in the vertebrates and mammals lineages. In contrast, genes lost in protostomes (i.e. arthropods and nematodes) but still present in vertebrates have been reported and extensively detailed. This probable over-anthropocentric way of comparing genomes does not consider as an important phenomena, gene losses in species that are usually described as "higher". However reporting universally conserved genes throughout evolution that have recently been lost in vertebrates and mammals could reveal interesting features about the evolution of our genome, particularly if these losses can be related to losses of capability. Results We report 11 gene families conserved throughout eukaryotes from yeasts (such as Saccharomyces cerevisiae) to bilaterian animals (such as Drosophila melanogaster or Caenorhabditis elegans). This evolutionarily wide conservation suggests they were present in the last common ancestors of fungi and metazoan animals. None of these 11 gene families are found in human nor mouse genomes, and their absence generally extends to all vertebrates. A total of 8 out of these 11 gene families have orthologs in plants, suggesting they were present in the Last Eukaryotic Common Ancestor (LECA). We investigated known functional information for these 11 gene families. This allowed us to correlate some of the lost gene families to loss of capabilities. Conclusion Mammalian and vertebrate genomes lost evolutionary conserved ancestral genes that are probably otherwise not dispensable in eukaryotes. Hence, the human genome, which is generally

  12. Expression patterns of TEL genes in Poaceae suggest a conserved association with cell differentiation.

    PubMed

    Paquet, Nicolas; Bernadet, Marie; Morin, Halima; Traas, Jan; Dron, Michel; Charon, Celine

    2005-06-01

    Poaceae species present a conserved distichous phyllotaxy (leaf position along the stem) and share common properties with respect to leaf initiation. The goal of this work was to determine if these common traits imply common genes. Therefore, homologues of the maize TERMINAL EAR1 gene in Poaceae were studied. This gene encodes an RNA-binding motif (RRM) protein, that is suggested to regulate leaf initiation. Using degenerate primers, one unique tel (terminal ear1-like) gene from seven Poaceae members, covering almost all the phylogenetic tree of the family, was identified by PCR. These genes present a very high degree of similarity, a much conserved exon-intron structure, and the three RRMs and TEL characteristic motifs. The evolution of tel sequences in Poaceae strongly correlates with the known phylogenetic tree of this family. RT-PCR gene expression analyses show conserved tel expression in the shoot apex in all species, suggesting functional orthology between these genes. In addition, in situ hybridization experiments with specific antisense probes show tel transcript accumulation in all differentiating cells of the leaf, from the recruitment of leaf founder cells to leaf margins cells. Tel expression is not restricted to initiating leaves as it is also found in pro-vascular tissues, root meristems, and immature inflorescences. Therefore, these results suggest that TEL is not only associated with leaf initiation but more generally with cell differentiation in Poaceae.

  13. Syntenic conservation of HSP70 genes in cattle and humans

    SciTech Connect

    Grosz, M.D.; Womack, J.E.; Skow, L.C. )

    1992-12-01

    A phage library of bovine genomic DNA was screened for hybridization with a human HSP70 cDNA probe, and 21 positive plaques were identified and isolated. Restriction mapping and blot hybridization analysis of DNA from the recombinant plaques demonstrated that the cloned DNAs were derived from three different regions of the bovine genome. Ore region contains two tandemly arrayed HSP70 sequences, designated HSP70-1 and HSP70-2, separated by approximately 8 kb of DNA. Single HSP70 sequences, designated HSP70-3 and HSP70-4, were found in two other genomic regions. Locus-specific probes of unique flanking sequences from representative HSP70 clones were hybridized to restriction endonuclease-digested DNA from bovine-hamster and bovine-mouse somatic cell hybrid panels to determine the chromosomal location of the HSP70 sequences. The probe for the tandemly arrayed HSP70-1 and HSP70-2 sequences mapped to bovine chromosome 23, syntenic with glyoxalase 1, 21 steroid hydroxylase, and major histocompatibility class I loci. HSP70-3 sequences mapped to bovine chromosome 10, syntenic with nucleoside phosphorylase and murine osteosarcoma viral oncogene (v-fos), and HSP70-4 mapped to bovine syntenic group U6, syntenic with amylase 1 and phosphoglucomutase 1. On the basis of these data, the authors propose that bovine HSP70-1,2 are homologous to human HSPA1 and HSPA1L on chromosome 6p21.3, bovine HSP70-3 is the homolog of an unnamed human HSP70 gene on chromosome 14q22-q24, and bovine HSP70-4 is homologous to one of the human HSPA-6,-7 genes on chromosome 1. 34 refs., 2 figs., 1 tab.

  14. Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2013-10-01

    The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.

  15. Identification and analysis of a highly conserved chemotaxis gene cluster in Shewanella species.

    SciTech Connect

    Li, J.; Romine, Margaret F.; Ward, M.

    2007-08-01

    A conserved cluster of chemotaxis genes was identified from the genome sequences of fifteen Shewanella species. An in-frame deletion of the cheA-3 gene, which is located in this cluster, was created in S. oneidensis MR-1 and the gene shown to be essential for chemotactic responses to anaerobic electron acceptors. The CheA-3 protein showed strong similarity to Vibrio cholerae CheA-2 and P. aeruginosa CheA-1, two proteins that are also essential for chemotaxis. The genes encoding these proteins were shown to be located in chemotaxis gene clusters closely related to the cheA-3-containing cluster in Shewanella species. The results of this study suggest that a combination of gene neighborhood and homology analyses may be used to predict which cheA genes are essential for chemotaxis in groups of closely related microorganisms.

  16. Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms.

    PubMed

    Zhang, Ning; Zeng, Liping; Shan, Hongyan; Ma, Hong

    2012-09-01

    Organismal phylogeny provides a crucial evolutionary framework for many studies and the angiosperm phylogeny has been greatly improved recently, largely using organellar and rDNA genes. However, low-copy protein-coding nuclear genes have not been widely used on a large scale in spite of the advantages of their biparental inheritance and vast number of choices. Here, we identified 1083 highly conserved low-copy nuclear genes by genome comparison. Furthermore, we demonstrated the use of five nuclear genes in 91 angiosperms representing 46 orders (73% of orders) and three gymnosperms as outgroups for a highly resolved phylogeny. These nuclear genes are easy to clone and align, and more phylogenetically informative than widely used organellar genes. The angiosperm phylogeny reconstructed using these genes was largely congruent with previous ones mainly inferred from organellar genes. Intriguingly, several new placements were uncovered for some groups, including those among the rosids, the asterids, and between the eudicots and several basal angiosperm groups. These conserved universal nuclear genes have several inherent qualities enabling them to be good markers for reconstructing angiosperm phylogeny, even eukaryotic relationships, further providing new insights into the evolutionary history of angiosperms.

  17. Testicular cancer in cryptorchids.

    PubMed

    Batata, M A; Chu, F C; Hilaris, B S; Whitmore, W F; Golbey, R B

    1982-03-01

    One-hundred thirty-seven patients with a history or clinical evidence of cryptorchidism and testicular germinal tumor were treated at our hospital from 1934 to 1976. Cryptorchidism was corrected ipsilaterally or contralaterally in 93 patients with intrascrotal testis cancer when they were from 2 to 42 years old, either spontaneously (24 patients), by orchiopexy (58 patients), or by hormonal therapy (11 patients). Forty-four cryptorchid patients (uncorrected cases) had either ipsilateral inguinal (24 patients), or abdominal (14 patients), or contralateral intrascrotal tumors (six patients). Tumor histologic types on orchiectomy were pure seminoma in 56 patients, embryonal carcinoma in 41, teratocarcinoma in 37, and pure choriocarcinoma in 3. The five-year survival rates were similar in the corrected (61%) and uncorrected (63%) cases, and they were higher in patients with pure seminoma (79%) than in patients with germinal carcinomas (50%). The majority (64 of 80) of five-year survivors received regional lymphatic irradiation in 41 patients with pure seminoma and/or systemic chemotherapy in 23 patients with other germinomas. Since the testicular tumors that developed despite correction of the cryptorchid state were predominantly (72%) germinal carcinomas, unilateral cryptorchidism, which usually is associated with testicular atrophy, should be treated by orchiectomy instead of orchiopexy to prevent ipsilateral carcinogenesis. Cryptorchid patients with testicles that descended late should be observed periodically, especially after the 20-year latent period, for early detection of cancer.

  18. Comprehensive analysis of animal TALE homeobox genes: new conserved motifs and cases of accelerated evolution.

    PubMed

    Mukherjee, Krishanu; Bürglin, Thomas R

    2007-08-01

    TALE homeodomain proteins are an ancient subgroup within the group of homeodomain transcription factors that play important roles in animal, plant, and fungal development. We have extracted the full complement of TALE superclass homeobox genes from the genome projects of seven protostomes, seven deuterostomes, and Nematostella. This was supplemented with TALE homeobox genes from additional species and phylogenetic analyses were carried out with 276 sequences. We found 20 homeobox genes and 4 pseudogenes in humans, 21 genes in mouse, 8 genes in Drosophila, and 5 genes plus one truncated gene in Caenorhabditis elegans. Apart from the previously identified TALE classes MEIS, PBC, IRO, and TGIF, a novel class is identified, termed MOHAWK (MKX). Further, we show that the MEIS class can be divided into two families, PREP and MEIS. Prep genes have previously only been described in vertebrates but are lacking in Drosophila. Here we identify orthologues in other insect taxa as well as in the cnidarian Nematostella. In C. elegans, a divergent Prep protein has lost the homeodomain. Full-length multiple sequence alignment of the protostome and deuterostome sequences allowed us to identify several novel conserved motifs within the MKX, TGIF, and MEIS classes. Phylogenetic analyses revealed fast-evolving PBC class genes; in particular, some X-linked PBC genes in nematodes are subject to rapid evolution. In addition, several instances of gene loss were identified. In conclusion, our comprehensive analysis provides a defining framework for the classification of animal TALE homeobox genes and the understanding of their evolution.

  19. A Collection of Conserved Noncoding Sequences to Study Gene Regulation in Flowering Plants1[OPEN

    PubMed Central

    2016-01-01

    Transcription factors (TFs) regulate gene expression by binding cis-regulatory elements, of which the identification remains an ongoing challenge owing to the prevalence of large numbers of nonfunctional TF binding sites. Powerful comparative genomics methods, such as phylogenetic footprinting, can be used for the detection of conserved noncoding sequences (CNSs), which are functionally constrained and can greatly help in reducing the number of false-positive elements. In this study, we applied a phylogenetic footprinting approach for the identification of CNSs in 10 dicot plants, yielding 1,032,291 CNSs associated with 243,187 genes. To annotate CNSs with TF binding sites, we made use of binding site information for 642 TFs originating from 35 TF families in Arabidopsis (Arabidopsis thaliana). In three species, the identified CNSs were evaluated using TF chromatin immunoprecipitation sequencing data, resulting in significant overlap for the majority of data sets. To identify ultraconserved CNSs, we included genomes of additional plant families and identified 715 binding sites for 501 genes conserved in dicots, monocots, mosses, and green algae. Additionally, we found that genes that are part of conserved mini-regulons have a higher coherence in their expression profile than other divergent gene pairs. All identified CNSs were integrated in the PLAZA 3.0 Dicots comparative genomics platform (http://bioinformatics.psb.ugent.be/plaza/versions/plaza_v3_dicots/) together with new functionalities facilitating the exploration of conserved cis-regulatory elements and their associated genes. The availability of this data set in a user-friendly platform enables the exploration of functional noncoding DNA to study gene regulation in a variety of plant species, including crops. PMID:27261064

  20. Drug repositioning for orphan genetic diseases through Conserved Anticoexpressed Gene Clusters (CAGCs)

    PubMed Central

    2013-01-01

    Background The development of new therapies for orphan genetic diseases represents an extremely important medical and social challenge. Drug repositioning, i.e. finding new indications for approved drugs, could be one of the most cost- and time-effective strategies to cope with this problem, at least in a subset of cases. Therefore, many computational approaches based on the analysis of high throughput gene expression data have so far been proposed to reposition available drugs. However, most of these methods require gene expression profiles directly relevant to the pathologic conditions under study, such as those obtained from patient cells and/or from suitable experimental models. In this work we have developed a new approach for drug repositioning, based on identifying known drug targets showing conserved anti-correlated expression profiles with human disease genes, which is completely independent from the availability of ‘ad hoc’ gene expression data-sets. Results By analyzing available data, we provide evidence that the genes displaying conserved anti-correlation with drug targets are antagonistically modulated in their expression by treatment with the relevant drugs. We then identified clusters of genes associated to similar phenotypes and showing conserved anticorrelation with drug targets. On this basis, we generated a list of potential candidate drug-disease associations. Importantly, we show that some of the proposed associations are already supported by independent experimental evidence. Conclusions Our results support the hypothesis that the identification of gene clusters showing conserved anticorrelation with drug targets can be an effective method for drug repositioning and provide a wide list of new potential drug-disease associations for experimental validation. PMID:24088245

  1. Ultrasonography of Extravaginal Testicular Torsion in Neonates

    PubMed Central

    Bombiński, Przemysław; Warchoł, Stanisław; Brzewski, Michał; Majkowska, Zofia; Dudek-Warchoł, Teresa; Żerańska, Maria; Panek, Małgorzata; Drop, Magdalena

    2016-01-01

    Summary Background Extravaginal testicular torsion (ETT), also called prenatal or perinatal, occurs prenatally and is present at birth or appears within the first month of life. It has different etiology than intravaginal torsion, which appears later in life. Testicular torsion must be taken into consideration in differential diagnosis of acute scrotum and should be confirmed or ruled out at first diagnostic step. Ultrasonography is a basic imaging modality, however diagnostic pitfalls are still possible. There is still wide discussion concerning management of ETT, which varies from immediate orchiectomy to conservative treatment resulting in testicle atrophy. Material/Methods In this article we present ultrasonographic spectrum of ETT in neonates, which were diagnosed and treated in our hospital during the last 8 years (2008–2015), in correlation with clinical and intraoperative findings. Results Thirteen neonates with ETT were enrolled in the study – 11 patients with a single testicle affected and 2 patients with bilateral testicular torsion. Most common signs on clinical examination were: hardened and enlarged testicle and discoloration of the scrotum. Most common ultrasonographic signs were: abnormal size or echostructure of the affected testicle and absence of the blood flow in Doppler ultrasonography. In 3 patients ultrasound elastography was performed, which appeared very useful in testicle structure assessment. Conclusions Testicular torsion may concern boys even in the perinatal period. Ultrasonographic picture of acute scrotum in young boys may be confused. Coexistence of the abnormal size or echostructure of the torsed testicle with absence of the blood flow in Doppler ultrasonography appear as very specific but late ultrasonographic sings. Ultrasound elastography may be a very useful tool for visualisation of a very common clinical sign – hardening of the necrotic testicle. PMID:27757176

  2. Conservation and Diversification of an Ancestral Chordate Gene Regulatory Network for Dorsoventral Patterning

    PubMed Central

    Kozmikova, Iryna; Smolikova, Jana; Vlcek, Cestmir; Kozmik, Zbynek

    2011-01-01

    Formation of a dorsoventral axis is a key event in the early development of most animal embryos. It is well established that bone morphogenetic proteins (Bmps) and Wnts are key mediators of dorsoventral patterning in vertebrates. In the cephalochordate amphioxus, genes encoding Bmps and transcription factors downstream of Bmp signaling such as Vent are expressed in patterns reminiscent of those of their vertebrate orthologues. However, the key question is whether the conservation of expression patterns of network constituents implies conservation of functional network interactions, and if so, how an increased functional complexity can evolve. Using heterologous systems, namely by reporter gene assays in mammalian cell lines and by transgenesis in medaka fish, we have compared the gene regulatory network implicated in dorsoventral patterning of the basal chordate amphioxus and vertebrates. We found that Bmp but not canonical Wnt signaling regulates promoters of genes encoding homeodomain proteins AmphiVent1 and AmphiVent2. Furthermore, AmphiVent1 and AmphiVent2 promoters appear to be correctly regulated in the context of a vertebrate embryo. Finally, we show that AmphiVent1 is able to directly repress promoters of AmphiGoosecoid and AmphiChordin genes. Repression of genes encoding dorsal-specific signaling molecule Chordin and transcription factor Goosecoid by Xenopus and zebrafish Vent genes represents a key regulatory interaction during vertebrate axis formation. Our data indicate high evolutionary conservation of a core Bmp-triggered gene regulatory network for dorsoventral patterning in chordates and suggest that co-option of the canonical Wnt signaling pathway for dorsoventral patterning in vertebrates represents one of the innovations through which an increased morphological complexity of vertebrate embryo is achieved. PMID:21304903

  3. Conservation of Pax gene expression in ectodermal placodes of the lamprey

    NASA Technical Reports Server (NTRS)

    McCauley, David W.; Bronner-Fraser, Marianne

    2002-01-01

    Ectodermal placodes contribute to the cranial ganglia and sense organs of the head and, together with neural crest cells, represent defining features of the vertebrate embryo. The identity of different placodes appears to be specified in part by the expression of different Pax genes, with Pax-3/7 class genes being expressed in the trigeminal placode of mice, chick, frogs and fish, and Pax-2/5/8 class genes expressed in the otic placode. Here, we present the cloning and expression pattern of lamprey Pax-7 and Pax-2, which mark the trigeminal and otic placodes, respectively, as well as other structures characteristic of vertebrate Pax genes. These results suggest conservation of Pax genes and placodal structures in basal and derived vertebrates.

  4. Functional conservation of the human EXT1 tumor suppressor gene and its Drosophila homolog tout velu.

    PubMed

    Dasgupta, Ujjaini; Dixit, Bharat L; Rusch, Melissa; Selleck, Scott; The, Inge

    2007-08-01

    Heparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp). Mutations in members of the exostosin (EXT) gene family lead to hereditary multiple exostosis in humans leading to bone outgrowths and tumors. In this study, we provide genetic and biochemical evidence that the human EXT1 (hEXT1) gene is conserved through species and can functionally complement the ttv mutation in Drosophila. The hEXT1 gene was able to rescue a ttv null mutant to adulthood and restore GAG biosynthesis.

  5. Spearmint induced hypothalamic oxidative stress and testicular anti-androgenicity in male rats - altered levels of gene expression, enzymes and hormones.

    PubMed

    Kumar, Vikas; Kural, Mool Raj; Pereira, B M J; Roy, Partha

    2008-12-01

    Mentha spicata Labiatae, commonly known as spearmint, can be used for various kinds of illnesses in herbal medicines and food industries. One of the prominent functions of this plant extract is its anti-androgenic activity. The present study investigated the probable correlation between oxidative stress in hypothalamic region and anti-androgenic action of this plant's aqueous extract on rats. Decreased activities of enzymes like superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in hypothalamus of treated rats indicated spearmint induced oxidative stress. Further RT-PCR and immunoblot analysis demonstrated the decreased expression of some of the steroidogenic enzymes, cytochrome P450scc, cytochrome P450C17, 3beta-Hydroxysteroid dehydrogenase (3beta-HSD), 17beta-Hydroxysteroid dehydrogenase (17beta-HSD) and other related proteins like, steroidogenic acute regulatory protein, androgen receptor and scavenger receptor class B-1. Further, in vitro enzyme assays demonstrated depressed activities of testicular 3beta-HSD and 17beta-HSD enzymes. Histopathology indicated a decreased sperm density in cauda epididymis and degeneration of ductus deference. Our study suggested that spearmint probably induced oxidative stress in hypothalamus resulting in decreased synthesis of LH and FSH which in turn down-regulated the production of testicular testosterone through the disruption of a number of intermediate cascades.

  6. Fibrinogen {alpha} genes: Conservation of bipartite transcripts and carboxy-terminal-extended {alpha} subunits in vertebrates

    SciTech Connect

    Fu, Y.; Cao, Y.; Hertzberg, K.M.; Grieninger, G.

    1995-11-01

    All three well-studied subunits of the clotting protein fibrinogen ({alpha}, {beta}, {gamma}) share N-terminal structural homologies, but until recently only the {beta} and {gamma} chains were recognized as having similar globular C-termini. With the discovery of an extra exon in the human fibrinogen {alpha} gene (exon VI), a minor form of the {alpha} subunit ({alpha}{sub E}) with an extended {beta}- and {gamma}-like C-terminus has been identified. In the present study, the polymerase chain reaction has been used to identify sequences that encode counterparts to {alpha}{sub E} in chicken, rabbit, rat, and baboon. The basic six-exon structure of the fibrinogen {alpha} genes is shown to be conserved among mammals and birds, as are the intron positions. Bipartite transcripts - still bearing an intron prior to the last exon - are found among the products of the various vertebrate fibrinogen {alpha} genes. The last exon represents the largest conserved segment of the gene and, in each species examined, encodes exactly 236 amino acids. The C-termini of these {alpha}{sub E} chains align without a single gap and are between 76 and 99% identical. Since the exon VI-encoded domain of {alpha}{sub E} is as well conserved as the corresponding regions of the {beta} and {gamma} chains, it follows that it is equally important and that {alpha}{sub E}-fibrinogen plays a vital, if as-yet unrecognized physiological role. 21 refs., 7 figs., 1 tab.

  7. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species.

    PubMed

    Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K

    2014-01-01

    Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species.

  8. Conserved Fungal Genes as Potential Targets for Broad-Spectrum Antifungal Drug Discovery†

    PubMed Central

    Liu, Mengping; Healy, Matthew D.; Dougherty, Brian A.; Esposito, Kim M.; Maurice, Trina C.; Mazzucco, Charles E.; Bruccoleri, Robert E.; Davison, Daniel B.; Frosco, Marybeth; Barrett, John F.; Wang, Ying-Kai

    2006-01-01

    The discovery of novel classes of antifungal drugs depends to a certain extent on the identification of new, unexplored targets that are essential for growth of fungal pathogens. Likewise, the broad-spectrum capacity of future antifungals requires the target gene(s) to be conserved among key fungal pathogens. Using a genome comparison (or concordance) tool, we identified 240 conserved genes as candidates for potential antifungal targets in 10 fungal genomes. To facilitate the identification of essential genes in Candida albicans, we developed a repressible C. albicans MET3 (CaMET3) promoter system capable of evaluating gene essentiality on a genome-wide scale. The CaMET3 promoter was found to be highly amenable to controlled gene expression, a prerequisite for use in target-based whole-cell screening. When the expression of the known antifungal target C. albicans ERG1 was reduced via down-regulation of the CaMET3 promoter, the CaERG1 conditional mutant strain became hypersensitive, specifically to its inhibitor, terbinafine. Furthermore, parallel screening against a small compound library using the CaERG1 conditional mutant under normal and repressed conditions uncovered several hypersensitive compound hits. This work therefore demonstrates a streamlined process for proceeding from selection and validation of candidate antifungal targets to screening for specific inhibitors. PMID:16607011

  9. Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Martin, K. A.; Abdi, F.; Widger, W. R.; Fox, G. E.

    1997-01-01

    Five complete bacterial genome sequences have been released to the scientific community. These include four (eu)Bacteria, Haemophilus influenzae, Mycoplasma genitalium, M. pneumoniae, and Synechocystis PCC 6803, as well as one Archaeon, Methanococcus jannaschii. Features of organization shared by these genomes are likely to have arisen very early in the history of the bacteria and thus can be expected to provide further insight into the nature of early ancestors. Results of a genome comparison of these five organisms confirm earlier observations that gene order is remarkably unpreserved. There are, nevertheless, at least 16 clusters of two or more genes whose order remains the same among the four (eu)Bacteria and these are presumed to reflect conserved elements of coordinated gene expression that require gene proximity. Eight of these gene orders are essentially conserved in the Archaea as well. Many of these clusters are known to be regulated by RNA-level mechanisms in Escherichia coli, which supports the earlier suggestion that this type of regulation of gene expression may have arisen very early. We conclude that although the last common ancestor may have had a DNA genome, it likely was preceded by progenotes with an RNA genome.

  10. Conservation and Purifying Selection of Transcribed Genes Located in a Rice Centromere[W

    PubMed Central

    Fan, Chuanzhu; Walling, Jason G.; Zhang, Jianwei; Hirsch, Cory D.; Jiang, Jiming; Wing, Rod A.

    2011-01-01

    Recombination is strongly suppressed in centromeric regions. In chromosomal regions with suppressed recombination, deleterious mutations can easily accumulate and cause degeneration of genes and genomes. Surprisingly, the centromere of chromosome8 (Cen8) of rice (Oryza sativa) contains several transcribed genes. However, it remains unclear as to what selective forces drive the evolution and existence of transcribed genes in Cen8. Sequencing of orthologous Cen8 regions from two additional Oryza species, Oryza glaberrima and Oryza brachyantha, which diverged from O. sativa 1 and 10 million years ago, respectively, revealed a set of seven transcribed Cen8 genes conserved across all three species. Chromatin immunoprecipitation analysis with the centromere-specific histone CENH3 confirmed that the sequenced orthologous regions are part of the functional centromere. All seven Cen8 genes have undergone purifying selection, representing a striking phenomenon of active gene survival within a recombination-free zone over a long evolutionary time. The coding sequences of the Cen8 genes showed sequence divergence and mutation rates that were significantly reduced from those of genes located on the chromosome arms. This suggests that Oryza has a mechanism to maintain the fidelity and functionality of Cen8 genes, even when embedded in a sea of repetitive sequences and transposable elements. PMID:21856794

  11. Phylogenetic conservation of immunoglobulin heavy chains: direct comparison of hamster and mouse Cmu genes.

    PubMed

    McGuire, K L; Duncan, W R; Tucker, P W

    1985-08-12

    We have analyzed the JH-Cmu locus of the Syrian hamster by DNA cloning and sequencing. The single Cmu gene is highly homologous to that of the mouse. The hamster equivalents of the JH and switch (S) recombination regions are arranged as in the mouse, but surprisingly are not highly conserved. Also unlike its close murine relative, the Smu regions among inbred hamster strains are not polymorphic. The complete nucleotide sequence of hamster and mouse Cmu genes have been compared to partial Cmu sequences of other species. Conservation within a portion of the 3' untranslated region may signify functional requirements for 3' end processing. Mutational frequencies within exons and introns of hamster and mouse do not support the theory that the rate of DNA transitions to transversions decreases with evolutionary distance.

  12. Primary testicular lymphoma.

    PubMed Central

    Vural, Filiz; Cagirgan, Seckin; Saydam, Guray; Hekimgil, Mine; Soyer, Nur Akad; Tombuloglu, Murat

    2007-01-01

    We evaluated clinical features, management and survival of 12 patients with primary testicular non-Hodgkin's lymphoma presented to our hematology unit between January 1992 and July 2006, retrospectively. The median age of patients was 47 years at presentation (range 29-78 years) and > 80% of them were < 50 years old. In the majority of cases, orchidectomy was performed as diagnostic and first-line therapeutic procedures. Dominant histological subtype was diffuse large B-cell non-Hodgkin's lymphoma. Seven patients out of 12 (58%) were Ann Arbor stages I and II, and the remaining five patients (42%) were stages III and IV. All the patients received doxorubicin-based chemotherapy and achieved complete remission. The addition of rituximab and central nervous system prophylaxis with intrathecal combined chemotherapy containing methotrexate, cytarabine and dexametasone were applied to three patients who were recently admitted. The rate of relapse was 8% and progression-free survival (PFS) at 10 years was 88%. Median duration of response was 84 months (range 14-173 months), median 97.5 months of follow-up. All patients are alive and in case remission. Because of the spreading nature and relapse probability at different sites, including central nervous system and contralateral testis, systemic treatment with doxorubicin-based chemotherapy with or without prophylaxis for contralateral testis and the central nervous system seems to improve the outcome of primary testicular lymphoma. PMID:18020104

  13. A Conserved Structural Signature of the Homeobox Coding DNA in HOX genes

    PubMed Central

    Fongang, Bernard; Kong, Fanping; Negi, Surendra; Braun, Werner; Kudlicki, Andrzej

    2016-01-01

    The homeobox encodes a DNA-binding domain found in transcription factors regulating key developmental processes. The most notable examples of homeobox containing genes are the Hox genes, arranged on chromosomes in the same order as their expression domains along the body axis. The mechanisms responsible for the synchronous regulation of Hox genes and the molecular function of their colinearity remain unknown. Here we report the discovery of a conserved structural signature of the 180-base pair DNA fragment comprising the homeobox. We demonstrate that the homeobox DNA has a characteristic 3-base-pair periodicity in the hydroxyl radical cleavage pattern. This periodic pattern is significant in most of the 39 mammalian Hox genes and in other homeobox-containing transcription factors. The signature is present in segmented bilaterian animals as evolutionarily distant as humans and flies. It remains conserved despite the fact that it would be disrupted by synonymous mutations, which raises the possibility of evolutionary selective pressure acting on the structure of the coding DNA. The homeobox coding DNA may therefore have a secondary function, possibly as a regulatory element. The existence of such element may have important consequences for understanding how these genes are regulated. PMID:27739488

  14. Regulation of the segmentation gene fushi tarazu has been functionally conserved in Drosophila.

    PubMed Central

    Maier, D; Preiss, A; Powell, J R

    1990-01-01

    An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila. Images Fig. 2. Fig. 6. PMID:2174353

  15. A Conserved Structural Signature of the Homeobox Coding DNA in HOX genes.

    PubMed

    Fongang, Bernard; Kong, Fanping; Negi, Surendra; Braun, Werner; Kudlicki, Andrzej

    2016-10-14

    The homeobox encodes a DNA-binding domain found in transcription factors regulating key developmental processes. The most notable examples of homeobox containing genes are the Hox genes, arranged on chromosomes in the same order as their expression domains along the body axis. The mechanisms responsible for the synchronous regulation of Hox genes and the molecular function of their colinearity remain unknown. Here we report the discovery of a conserved structural signature of the 180-base pair DNA fragment comprising the homeobox. We demonstrate that the homeobox DNA has a characteristic 3-base-pair periodicity in the hydroxyl radical cleavage pattern. This periodic pattern is significant in most of the 39 mammalian Hox genes and in other homeobox-containing transcription factors. The signature is present in segmented bilaterian animals as evolutionarily distant as humans and flies. It remains conserved despite the fact that it would be disrupted by synonymous mutations, which raises the possibility of evolutionary selective pressure acting on the structure of the coding DNA. The homeobox coding DNA may therefore have a secondary function, possibly as a regulatory element. The existence of such element may have important consequences for understanding how these genes are regulated.

  16. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    PubMed Central

    Fuse, Yuji; Tamaoki, Junya; Akiyama, Shin-ichi; Muratani, Masafumi

    2016-01-01

    The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7) and 2 enzymes involved in glucose metabolism (pgd and fbp1a) were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates. PMID:28116036

  17. Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii)

    PubMed Central

    Smith, Moya M.; Johanson, Zerina; Butts, Thomas; Ericsson, Rolf; Modrell, Melinda; Tulenko, Frank J.; Davis, Marcus C.; Fraser, Gareth J.

    2015-01-01

    Ray-finned fishes (Actinopterygii) are the dominant vertebrate group today (+30 000 species, predominantly teleosts), with great morphological diversity, including their dentitions. How dental morphological variation evolved is best addressed by considering a range of taxa across actinopterygian phylogeny; here we examine the dentition of Polyodon spathula (American paddlefish), assigned to the basal group Acipenseriformes. Although teeth are present and functional in young individuals of Polyodon, they are completely absent in adults. Our current understanding of developmental genes operating in the dentition is primarily restricted to teleosts; we show that shh and bmp4, as highly conserved epithelial and mesenchymal genes for gnathostome tooth development, are similarly expressed at Polyodon tooth loci, thus extending this conserved developmental pattern within the Actinopterygii. These genes map spatio-temporal tooth initiation in Polyodon larvae and provide new data in both oral and pharyngeal tooth sites. Variation in cellular intensity of shh maps timing of tooth morphogenesis, revealing a second odontogenic wave as alternate sites within tooth rows, a dental pattern also present in more derived actinopterygians. Developmental timing for each tooth field in Polyodon follows a gradient, from rostral to caudal and ventral to dorsal, repeated during subsequent loss of teeth. The transitory Polyodon dentition is modified by cessation of tooth addition and loss. As such, Polyodon represents a basal actinopterygian model for the evolution of developmental novelty: initial conservation, followed by tooth loss, accommodating the adult trophic modification to filter-feeding. PMID:25788604

  18. CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation.

    PubMed

    Nikulova, Anna A; Favorov, Alexander V; Sutormin, Roman A; Makeev, Vsevolod J; Mironov, Andrey A

    2012-07-01

    Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory 'grammar', or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be evolutionarily conserved. Here, we present a method CORECLUST (COnservative REgulatory CLUster STructure) that predicts CRMs based on a set of positional weight matrices. Given regulatory regions of orthologous and/or co-regulated genes, CORECLUST constructs a CRM model by revealing the conserved rules that describe the relative location of binding sites. The constructed model may be consequently used for the genome-wide prediction of similar CRMs, and thus detection of co-regulated genes, and for the investigation of the regulatory grammar of the system. Compared with related methods, CORECLUST shows better performance at identification of CRMs conferring muscle-specific gene expression in vertebrates and early-developmental CRMs in Drosophila.

  19. Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods.

    PubMed

    Janssen, Ralf; Budd, Graham E; Damen, Wim G M

    2011-09-01

    Segmentation, i.e. the subdivision of the body into serially homologous units, is one of the hallmarks of the arthropods. Arthropod segmentation is best understood in the fly Drosophila melanogaster. But different from the situation in most arthropods in this species all segments are formed from the early blastoderm (so called long-germ developmental mode). In most other arthropods only the anterior segments are formed in a similar way (so called short-germ developmental mode). Posterior segments are added one at a time or in pairs of two from a posterior segment addition zone. The segmentation mechanisms are not universally conserved among arthropods and only little is known about the genetic patterning of the anterior segments. Here we present the expression patterns of the insect head patterning gene orthologs hunchback (hb), orthodenticle (otd), buttonhead-like (btdl), collier (col), cap-n-collar (cnc) and crocodile (croc), and the trunk gap gene Krüppel (Kr) in the myriapod Glomeris marginata. Conserved expression of these genes in insects and a myriapod suggests that the anterior segmentation system may be conserved in at least these two classes of arthropods. This finding implies that the anterior patterning mechanism already existed in the last common ancestor of insects and myriapods.

  20. rbcS genes in Solanum tuberosum: conservation of transit peptide and exon shuffling during evolution.

    PubMed Central

    Wolter, F P; Fritz, C C; Willmitzer, L; Schell, J; Schreier, P H

    1988-01-01

    Five genes of the rbcS gene family of Solanum tuberosum (potato) were studied. One of these is a cDNA clone; the other four are located on two genomic clones representing two different chromosomal loci containing one (locus 1) and three genes (locus 2), respectively. The intron/exon structure of the three genes in locus 2 is highly conserved with respect to size and position. These genes contain two introns, whereas the gene from locus 1 contains three introns. Although in most cases the amino acid sequences in the transit peptide part of different rbcS genes from the same species varied considerably more than the corresponding mature amino acid sequences, one exception found in tomato and potato indicates that the transit peptide of rbcS could have a special function. A comparison of the rbcS genes of higher plants with those of prokaryotes offers suggestive evidence that introns first served as spacer material in the process of exon shuffling and then were removed stepwise during the evolution of higher plants. PMID:3422467

  1. Comparative mapping of the DiGeorge syndrome region in mouse shows inconsistent gene order and differential degree of gene conservation.

    PubMed

    Botta, A; Lindsay, E A; Jurecic, V; Baldini, A

    1997-12-01

    We have constructed a comparative map in mouse of the critical region of human 22q11 deleted in DiGeorge (DGS) and Velocardiofacial (VCFS) syndromes. The map includes 11 genes potentially haploinsufficient in these deletion syndromes. We have localized all the conserved genes to mouse Chromosome (Chr) 16, bands B1-B3. The determination of gene order shows the presence of two regions (distal and proximal), containing two groups of conserved genes. The gene order in the two regions is not completely conserved; only in the proximal group is the gene order identical to human. In the distal group the gene order is inverted. These two regions are separated by a DNA segment containing at least one gene which, in the human DGS region, is the most proximal of the known deleted genes. In addition, the gene order within the distal group of genes is inverted relative to the human gene order. Furthermore, a clathrin heavy chain-like gene was not found in the mouse genome by DNA hybridization, indicating that there is an inconsistent level of gene conservation in the region. These and other independent data obtained in our laboratory clearly show a complex evolutionary history of the DGS-VCFS region. Our data provide a framework for the development of a mouse model for the 22q11 deletion with chromosome engineering technologies.

  2. DLGP: A database for lineage-conserved and lineage-specific gene pairs in animal and plant genomes.

    PubMed

    Wang, Dapeng

    2016-01-15

    The conservation of gene organization in the genome with lineage-specificity is an invaluable resource to decipher their potential functionality with diverse selective constraints, especially in higher animals and plants. Gene pairs appear to be the minimal structure for such kind of gene clusters that tend to reside in their preferred locations, representing the distinctive genomic characteristics in single species or a given lineage. Despite gene families having been investigated in a widespread manner, the definition of gene pair families in various taxa still lacks adequate attention. To address this issue, we report DLGP (http://lcgbase.big.ac.cn/DLGP/) that stores the pre-calculated lineage-based gene pairs in currently available 134 animal and plant genomes and inspect them under the same analytical framework, bringing out a set of innovational features. First, the taxonomy or lineage has been classified into four levels such as Kingdom, Phylum, Class and Order. It adopts all-to-all comparison strategy to identify the possible conserved gene pairs in all species for each gene pair in certain species and reckon those that are conserved in over a significant proportion of species in a given lineage (e.g. Primates, Diptera or Poales) as the lineage-conserved gene pairs. Furthermore, it predicts the lineage-specific gene pairs by retaining the above-mentioned lineage-conserved gene pairs that are not conserved in any other lineages. Second, it carries out pairwise comparison for the gene pairs between two compared species and creates the table including all the conserved gene pairs and the image elucidating the conservation degree of gene pairs in chromosomal level. Third, it supplies gene order browser to extend gene pairs to gene clusters, allowing users to view the evolution dynamics in the gene context in an intuitive manner. This database will be able to facilitate the particular comparison between animals and plants, between vertebrates and arthropods, and

  3. Transfer RNA gene arrangement and codon usage in vertebrate mitochondrial genomes: a new insight into gene order conservation

    PubMed Central

    2010-01-01

    Background Mitochondrial (mt) gene arrangement has been highly conserved among vertebrates from jawless fishes to mammals for more than 500 million years. It remains unclear, however, whether such long-term persistence is a consequence of some constraints on the gene order. Results Based on the analysis of codon usage and tRNA gene positions, we suggest that tRNA gene order of the typical vertebrate mt-genomes may be important for their translational efficiency. The vertebrate mt-genome encodes 2 rRNA, 22 tRNA, and 13 transmembrane proteins consisting mainly of hydrophobic domains. We found that the tRNA genes specifying the hydrophobic residues were positioned close to the control region (CR), where the transcription efficiency is estimated to be relatively high. Using 47 vertebrate mt-genome sequences representing jawless fishes to mammals, we further found a correlation between codon usage and tRNA gene positions, implying that highly-used tRNA genes are located close to the CR. In addition, an analysis considering the asymmetric nature of mtDNA replication suggested that the tRNA loci that remain in single-strand for a longer time tend to have more guanine and thymine not suffering deamination mutations in their anticodon sites. Conclusions Our analyses imply the existence of translational constraint acting on the vertebrate mt-gene arrangement. Such translational constraint, together with the deamination-related constraint, may have contributed to long-term maintenance of gene order. PMID:20723209

  4. Role of Conserved Non-Coding Regulatory Elements in LMW Glutenin Gene Expression

    PubMed Central

    Juhász, Angéla; Makai, Szabolcs; Sebestyén, Endre; Tamás, László; Balázs, Ervin

    2011-01-01

    Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types. PMID:22242127

  5. Phylogeny of Bacterial and Archaeal Genomes Using Conserved Genes: Supertrees and Supermatrices

    PubMed Central

    Lang, Jenna Morgan; Darling, Aaron E.; Eisen, Jonathan A.

    2013-01-01

    Over 3000 microbial (bacterial and archaeal) genomes have been made publically available to date, providing an unprecedented opportunity to examine evolutionary genomic trends and offering valuable reference data for a variety of other studies such as metagenomics. The utility of these genome sequences is greatly enhanced when we have an understanding of how they are phylogenetically related to each other. Therefore, we here describe our efforts to reconstruct the phylogeny of all available bacterial and archaeal genomes. We identified 24, single-copy, ubiquitous genes suitable for this phylogenetic analysis. We used two approaches to combine the data for the 24 genes. First, we concatenated alignments of all genes into a single alignment from which a Maximum Likelihood (ML) tree was inferred using RAxML. Second, we used a relatively new approach to combining gene data, Bayesian Concordance Analysis (BCA), as implemented in the BUCKy software, in which the results of 24 single-gene phylogenetic analyses are used to generate a “primary concordance” tree. A comparison of the concatenated ML tree and the primary concordance (BUCKy) tree reveals that the two approaches give similar results, relative to a phylogenetic tree inferred from the 16S rRNA gene. After comparing the results and the methods used, we conclude that the current best approach for generating a single phylogenetic tree, suitable for use as a reference phylogeny for comparative analyses, is to perform a maximum likelihood analysis of a concatenated alignment of conserved, single-copy genes. PMID:23638103

  6. A highly conserved SOX6 double binding site mediates SOX6 gene downregulation in erythroid cells

    PubMed Central

    Cantu', Claudio; Grande, Vito; Alborelli, Ilaria; Cassinelli, Letizia; Cantu’, Ileana; Colzani, Maria Teresa; Ierardi, Rossella; Ronzoni, Luisa; Cappellini, Maria Domenica; Ferrari, Giuliana; Ottolenghi, Sergio; Ronchi, Antonella

    2011-01-01

    The Sox6 transcription factor plays critical roles in various cell types, including erythroid cells. Sox6-deficient mice are anemic due to impaired red cell maturation and show inappropriate globin gene expression in definitive erythrocytes. To identify new Sox6 target genes in erythroid cells, we used the known repressive double Sox6 consensus within the εy-globin promoter to perform a bioinformatic genome-wide search for similar, evolutionarily conserved motifs located within genes whose expression changes during erythropoiesis. We found a highly conserved Sox6 consensus within the Sox6 human gene promoter itself. This sequence is bound by Sox6 in vitro and in vivo, and mediates transcriptional repression in transient transfections in human erythroleukemic K562 cells and in primary erythroblasts. The binding of a lentiviral transduced Sox6FLAG protein to the endogenous Sox6 promoter is accompanied, in erythroid cells, by strong downregulation of the endogenous Sox6 transcript and by decreased in vivo chromatin accessibility of this region to the PstI restriction enzyme. These observations suggest that the negative Sox6 autoregulation, mediated by the double Sox6 binding site within its own promoter, may be relevant to control the Sox6 transcriptional downregulation that we observe in human erythroid cultures and in mouse bone marrow cells in late erythroid maturation. PMID:20852263

  7. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes

    PubMed Central

    Zhang, Xingzheng; Zhai, Hong; Wang, Yaying; Tian, Xiaojie; Zhang, Yupeng; Wu, Hongyan; Lü, Shixiang; Yang, Guang; Li, Yuqiu; Wang, Lu; Hu, Bo; Bu, Qingyun; Xia, Zhengjun

    2016-01-01

    Gene regulatory networks involved in flowering time and photoperiodic responses in legumes remain unknown. Although the major maturity gene E1 has been successfully deciphered in soybean, knowledge on the functional conservation of this gene is limited to a certain extent to E1 homologs in legumes. The ectopic expression of Phvul.009G204600 (PvE1L), an E1 homolog from common bean, delayed the onset of flowering in soybean. By contrast, the ectopic expression of Medtr2g058520 (MtE1L) from Medicago truncatula did not affect the flowering of soybean. Characterization of the late-flowering mte1l mutant indicated that MtE1L promoted flowering in Medicago truncatula. Moreover, all transgenic E1, PvE1L and MtE1L soybean lines exhibited phenotypic changes in terms of plant height. Transgenic E1 or PvE1L plants were taller than the wild-type, whereas transgenic MtE1L plants produced dwarf phenotype with few nodes and short internode. Thus, functional conservation and diversification of E1 family genes from legumes in the regulation of flowering and plant growth may be associated with lineage specification and genomic duplication. PMID:27405888

  8. [Treatment of testicular cancer].

    PubMed

    Droz, Jean-Pierre; Boyle, Helen; Culine, Stéphane; Fizazi, Karim; Fléchon, Aude; Massard, Christophe

    2013-12-01

    Germ-cell tumours (GCTs) are the most common type of cancer in young men. Since the late 1970s, disseminated GCT have been a paradigm for curable metastatic cancer and metastatic GCTs are highly curable with cisplatin-based chemotherapy followed by surgical resection of residual masses. Patients' prognosis is currently assessed using the International Germ-Cell Consensus Classification (IGCCC) and used to adapt the burden of chemotherapy. Approximately 20% of patients still do not achieve cure after first-line cisplatin-based chemotherapy, and need salvage chemotherapy (high dose or standard dose chemotherapy). Clinical stage I testicular cancer is the most common presentation and different strategies are proposed: adjuvant therapies, surgery or surveillance. During the last three decades, clinical trials and strong international collaborations lead to the development of a consensus in the management of GCTs.

  9. Evolutionary analysis of multidrug resistance genes in fungi - impact of gene duplication and family conservation.

    PubMed

    Gossani, Cristiani; Bellieny-Rabelo, Daniel; Venancio, Thiago M

    2014-11-01

    Although the emergence of bacterial drug resistance is of great concern to the scientific community, few studies have evaluated this phenomenon systematically in fungi by using genome-wide datasets. In the present study, we assembled a large compendium of Saccharomyces cerevisiae chemical genetic data to study the evolution of multidrug resistance genes (MDRs) in the fungal lineage. We found that MDRs typically emerge in widely conserved families, most of which containing homologs from pathogenic fungi, such as Candida albicans and Coccidioides immitis, which could favor the evolution of drug resistance in those species. By integrating data from chemical genetics with protein family conservation, genetic and protein interactions, we found that gene families rarely have more than one MDR, indicating that paralogs evolve asymmetrically with regard to multidrug resistance roles. Furthermore, MDRs have more genetic and protein interaction partners than non-MDRs, supporting their participation in complex biochemical systems underlying the tolerance to multiple bioactive molecules. MDRs share more chemical genetic interactions with other MDRs than with non-MDRs, regardless of their evolutionary affinity. These results suggest the existence of an intricate system involved in the global drug tolerance phenotypes. Finally, MDRs are more likely to be hit repeatedly by mutations in laboratory evolution experiments, indicating that they have great adaptive potential. The results presented here not only reveal the main genomic features underlying the evolution of MDRs, but also shed light on the gene families from which drug resistance is more likely to emerge in fungi.

  10. Radiation Therapy for Testicular Cancer

    MedlinePlus

    ... Therapy for Testicular Cancer Radiation therapy uses a beam of high-energy rays (such as gamma rays or x-rays) or particles (such as electrons, protons, or neutrons) to destroy cancer cells or ...

  11. General Information about Testicular Cancer

    MedlinePlus

    ... are used to detect testicular cancer: Alpha-fetoprotein (AFP). Beta-human chorionic gonadotropin (β-hCG). Tumor marker ... places in the body, and blood levels of AFP, β-hCG, and LDH). Type of cancer. Size ...

  12. How Is Testicular Cancer Diagnosed?

    MedlinePlus

    ... proteins called tumor markers , such as alpha-fetoprotein (AFP) and human chorionic gonadotropin (HCG). When these tumor ... that there is a testicular tumor. Rises in AFP or HCG can also help doctors tell which ...

  13. What's New in Testicular Cancer Research and Treatment?

    MedlinePlus

    ... and Treatment? Testicular Cancer About Testicular Cancer What’s New in Testicular Cancer Research and Treatment? Important research ... findings may help individualize treatment and help find new drugs to treat testicular cancer that can target ...

  14. Conserved protein domains in a myosin heavy chain gene from Dictyostelium discoideum.

    PubMed Central

    Warrick, H M; De Lozanne, A; Leinwand, L A; Spudich, J A

    1986-01-01

    The 2116-amino acid myosin heavy chain sequence from Dictyostelium discoideum was determined from DNA sequence analysis of the cloned gene. The gene product can be divided into two distinct regions, a globular head region and a long alpha-helical, rod-like tail. In comparisons with nematode and mammalian muscle myosins, specific areas of the head region are highly conserved. These areas presumably reflect conserved functional and structural domains. Certain features that are present in the head region of nematode and mammalian muscle myosins, and that have been assumed to be important for myosin function, are missing in the Dictyostelium myosin sequence. The protein sequence of the Dictyostelium tail region is very poorly conserved with respect to the other myosins but displays the periodicities similar to those of muscle myosins. These periodicities are believed to play a role in filament formation. The 196-residue repeating unit that determines the 14.3-nm repeat seen in muscle thick filaments, the 28-residue charge repeating unit, and the 1,4 hydrophobic repeat previously described for the nematode myosin are all present in the Dictyostelium myosin rod sequence, suggesting that the filament structures of muscle and Dictyostelium myosins must be similar. PMID:3540939

  15. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians

    PubMed Central

    Stolfi, Alberto; Lowe, Elijah K; Racioppi, Claudia; Ristoratore, Filomena; Brown, C Titus; Swalla, Billie J; Christiaen, Lionel

    2014-01-01

    Ascidians present a striking dichotomy between conserved phenotypes and divergent genomes: embryonic cell lineages and gene expression patterns are conserved between distantly related species. Much research has focused on Ciona or Halocynthia spp. but development in other ascidians remains poorly characterized. In this study, we surveyed the multipotent myogenic B7.5 lineage in Molgula spp. Comparisons to the homologous lineage in Ciona revealed identical cell division and fate specification events that result in segregation of larval, cardiac, and pharyngeal muscle progenitors. Moreover, the expression patterns of key regulators are conserved, but cross-species transgenic assays uncovered incompatibility, or ‘unintelligibility’, of orthologous cis-regulatory sequences between Molgula and Ciona. These sequences drive identical expression patterns that are not recapitulated in cross-species assays. We show that this unintelligibility is likely due to changes in both cis- and trans-acting elements, hinting at widespread and frequent turnover of regulatory mechanisms underlying otherwise conserved aspects of ascidian embryogenesis. DOI: http://dx.doi.org/10.7554/eLife.03728.001 PMID:25209999

  16. Composition and Expression of Conserved MicroRNA Genes in Diploid Cotton (Gossypium) Species

    PubMed Central

    Gong, Lei; Kakrana, Atul; Arikit, Siwaret; Meyers, Blake C.; Wendel, Jonathan F.

    2013-01-01

    MicroRNAs are ubiquitous in plant genomes but vary greatly in their abundance within and conservation among plant lineages. To gain insight into the evolutionary birth/death dynamics of microRNA families, we sequenced small RNA and 5′-end PARE libraries generated from two closely related species of Gossypium. Here, we demonstrate that 33 microRNA families, with similar copy numbers and average evolutionary rates, are conserved in the two congeneric cottons. Analysis of the presence/absence of these microRNA families in other land plants sheds light on their depth of phylogenetic origin and lineage-specific loss/gain. Conserved microRNA families in Gossypium exhibit a striking interspecific asymmetry in expression, potentially connected to relative proximity to neighboring transposable elements. A complex correlated expression pattern of microRNA target genes with their controlling microRNAs indicates that possible functional divergence of conserved microRNA families can also exist even within a single plant genus. PMID:24281048

  17. The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif

    PubMed Central

    Pujari, Venugopal; Radebaugh, Catherine A.; Chodaparambil, Jayanth V.; Muthurajan, Uma M.; Almeida, Adam R.; Fischbeck, Julie A.; Luger, Karolin; Stargell, Laurie A.

    2010-01-01

    Spn1 plays essential roles in the regulation of gene expression by RNA Polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP, TFIIS and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here we report the high-resolution (1.85Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is comprised of eight alpha-helices in a right handed super helical arrangement, and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity. PMID:20875428

  18. The transcription factor Spn1 regulates gene expression via a highly conserved novel structural motif.

    PubMed

    Pujari, Venugopal; Radebaugh, Catherine A; Chodaparambil, Jayanth V; Muthurajan, Uma M; Almeida, Adam R; Fischbeck, Julie A; Luger, Karolin; Stargell, Laurie A

    2010-11-19

    Spn1/Iws1 plays essential roles in the regulation of gene expression by RNA polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP (TATA-binding protein), TFIIS (transcription factor IIS), and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here, we report the high-resolution (1.85 Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is composed of eight α-helices in a right-handed superhelical arrangement and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity.

  19. Cancer in first-degree relatives and risk of testicular cancer in Denmark.

    PubMed

    Nordsborg, Rikke Baastrup; Meliker, Jaymie R; Wohlfahrt, Jan; Melbye, Mads; Raaschou-Nielsen, Ole

    2011-11-15

    Familial aggregation of testicular cancer has been reported consistently, but it is less clear if there is any association between risk of testicular cancer and other cancers in the family. We conducted a population-based case-control study to examine the relationship between risk of testicular cancer and 22 different cancers in first-degree relatives. We included 3,297 cases of testicular cancer notified to the Danish Cancer Registry between 1991 and 2003. A total of 6,594 matched controls were selected from the Danish Civil Registration System, which also provided the identity of 40,104 first-degree relatives of case and controls. Familial cancer was identified by linkage to the Danish Cancer Registry, and we used conditional logistic regression to analyze whether cancer among first-degree relatives was associated with higher risk of testicular cancer. Rate ratio for testicular cancer was 4.63 (95% CI: 2.41-8.87) when a father, 8.30 (95% CI: 3.81-18.10) when a brother and 5.23 (95% CI: 1.35-20.26) when a son had testicular cancer compared to no familial testicular cancer. Results were similar when analyses were stratified by histologic subtypes of testicular cancer. Familial non-Hodgkin lymphoma and esophageal cancer were associated with testicular cancer; however, these may be chance findings. The familial aggregation of testicular and possibly other cancers may be explained by shared genes and/or shared environmental factors, but the mutual importance of each of these is difficult to determine.

  20. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks

    PubMed Central

    2013-01-01

    Background A co-ordinated tissue-independent gene expression profile associated with growth is present in rodent models and this is hypothesised to extend to all mammals. Growth in humans has similarities to other mammals but the return to active long bone growth in the pubertal growth spurt is a distinctly human growth event. The aim of this study was to describe gene expression and biological pathways associated with stages of growth in children and to assess tissue-independent expression patterns in relation to human growth. Results We conducted gene expression analysis on a library of datasets from normal children with age annotation, collated from the NCBI Gene Expression Omnibus (GEO) and EBI Arrayexpress databases. A primary data set was generated using cells of lymphoid origin from normal children; the expression of 688 genes (ANOVA false discovery rate modified p-value, q < 0.1) was associated with age, and subsets of these genes formed clusters that correlated with the phases of growth – infancy, childhood, puberty and final height. Network analysis on these clusters identified evolutionarily conserved growth pathways (NOTCH, VEGF, TGFB, WNT and glucocorticoid receptor – Hyper-geometric test, q < 0.05). The greatest degree of network ‘connectivity’ and hence functional significance was present in infancy (Wilcoxon test, p < 0.05), which then decreased through to adulthood. These observations were confirmed in a separate validation data set from lymphoid tissue. Similar biological pathways were observed to be associated with development-related gene expression in other tissues (conjunctival epithelia, temporal lobe brain tissue and bone marrow) suggesting the existence of a tissue-independent genetic program for human growth and maturation. Conclusions Similar evolutionarily conserved pathways have been associated with gene expression and child growth in multiple tissues. These expression profiles associate with the developmental phases

  1. Mammalian ets-1 and ets-2 genes encode highly conserved proteins.

    PubMed Central

    Watson, D K; McWilliams, M J; Lapis, P; Lautenberger, J A; Schweinfest, C W; Papas, T S

    1988-01-01

    Cellular ets sequences homologous to v-ets of the avian leukemia virus E26 are highly conserved. In mammals the ets sequences are dispersed on two separate chromosomal loci, called ets-1 and ets-2. To determine the structure of these two genes and identify the open reading frames that code for the putative proteins, we have sequenced human ets-1 cDNAs and ets-2 cDNA clones obtained from both human and mouse. The human ETS1 gene is capable of encoding a protein of 441 amino acids. This protein is greater than 95% identical to the chicken c-ets-1 gene product. Thus, the human ETS1 gene is homologous to the chicken c-ets-1 gene, the protooncogene that the E26 virus transduced. Human and mouse ets-2 cDNA clones are closely related and contain open reading frames capable of encoding proteins of 469 and 468 residues, respectively. Direct comparison of these data with previously published findings indicates that ets is a family of genes whose members share distinct domains. PMID:2847145

  2. HEX: a novel homeobox gene expressed during haematopoiesis and conserved between mouse and human.

    PubMed Central

    Bedford, F K; Ashworth, A; Enver, T; Wiedemann, L M

    1993-01-01

    We describe the cloning of a novel homeodomain-containing gene, which is highly conserved between mouse and human. The human cDNA was initially isolated from human haematopoietic tissue and denoted HEX (haematopoietically expressed homeobox). Sequence analysis of the coding sequences from mouse and the partial cDNA from human shows that the homeodomain is most closely related to those of the HIx and HOX11 proteins. The HEX gene is present as a single copy in the human genome. Analysis of murine genomic DNA shows, in addition to an intron-containing gene homologous to HEX, the presence of a processed copy of the gene which has arisen within the last few million years. Analysis of human and murine haematopoietic cells and cell lines, revealed expression of the HEX gene in multipotential progenitors, as well as cells of the B-lymphocyte and myeloid lineages. However HEX was not expressed in T-lymphocytes or erythroid cells. This pattern of HEX gene expression suggests that it may play a role in haematopoietic differentiation. Images PMID:8096636

  3. Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets.

    PubMed

    Abergel, Chantal; Coutard, Bruno; Byrne, Deborah; Chenivesse, Sabine; Claude, Jean-Baptiste; Deregnaucourt, Céline; Fricaux, Thierry; Gianesini-Boutreux, Celine; Jeudy, Sandra; Lebrun, Régine; Maza, Caroline; Notredame, Cédric; Poirot, Olivier; Suhre, Karsten; Varagnol, Majorie; Claverie, Jean-Michel

    2003-01-01

    With more than 100 antibacterial drugs at our disposal in the 1980's, the problem of bacterial infection was considered solved. Today, however, most hospital infections are insensitive to several classes of antibacterial drugs, and deadly strains of Staphylococcus aureus resistant to vancomycin--the last resort antibiotic--have recently begin to appear. Other life-threatening microbes, such as Enterococcus faecalis and Mycobacterium tuberculosis are already able to resist every available antibiotic. There is thus an urgent, and continuous need for new, preferably large-spectrum, antibacterial molecules, ideally targeting new biochemical pathways. Here we report on the progress of our structural genomics program aiming at the discovery of new antibacterial gene targets among evolutionary conserved genes of uncharacterized function. A series of bioinformatic and comparative genomics analyses were used to identify a set of 221 candidate genes common to Gram-positive and Gram-negative bacteria. These genes were split between two laboratories. They are now submitted to a systematic 3-D structure determination protocol including cloning, protein expression and purification, crystallization, X-ray diffraction, structure interpretation, and function prediction. We describe here our strategies for the 111 genes processed in our laboratory. Bioinformatics is used at most stages of the production process and out of 111 genes processed--and 17 months into the project--108 have been successfully cloned, 103 have exhibited detectable expression, 84 have led to the production of soluble protein, 46 have been purified, 12 have led to usable crystals, and 7 structures have been determined.

  4. Conserved Overlapping Gene Arrangement, Restricted Expression, and Biochemical Activities of DNA Polymerase ν (POLN)*

    PubMed Central

    Takata, Kei-ichi; Tomida, Junya; Reh, Shelley; Swanhart, Lisa M.; Takata, Minoru; Hukriede, Neil A.; Wood, Richard D.

    2015-01-01

    DNA polymerase ν (POLN) is one of 16 DNA polymerases encoded in vertebrate genomes. It is important to determine its gene expression patterns, biological roles, and biochemical activities. By quantitative analysis of mRNA expression, we found that POLN from the zebrafish Danio rerio is expressed predominantly in testis. POLN is not detectably expressed in zebrafish embryos or in mouse embryonic stem cells. Consistent with this, injection of POLN-specific morpholino antisense oligonucleotides did not interfere with zebrafish embryonic development. Analysis of transcripts revealed that vertebrate POLN has an unusual gene expression arrangement, sharing a first exon with HAUS3, the gene encoding augmin-like complex subunit 3. HAUS3 is broadly expressed in embryonic and adult tissues, in contrast to POLN. Differential expression of POLN and HAUS3 appears to arise by alternate splicing of transcripts in mammalian cells and zebrafish. When POLN was ectopically overexpressed in human cells, it specifically coimmunoprecipitated with the homologous recombination factors BRCA1 and FANCJ, but not with previously suggested interaction partners (HELQ and members of the Fanconi anemia core complex). Purified zebrafish POLN protein is capable of thymine glycol bypass and strand displacement, with activity dependent on a basic amino acid residue known to stabilize the primer-template. These properties are conserved with the human enzyme. Although the physiological function of pol ν remains to be clarified, this study uncovers distinctive aspects of its expression control and evolutionarily conserved properties of this DNA polymerase. PMID:26269593

  5. Conserved and diversified gene families of monovalent cation/h(+) antiporters from algae to flowering plants.

    PubMed

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K(+)-efflux antiporter (KEA) and cation/H(+) exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na(+)-H(+) exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1-4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K(+) transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1-4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants.

  6. Conserved and Diversified Gene Families of Monovalent Cation/H+ Antiporters from Algae to Flowering Plants

    PubMed Central

    Chanroj, Salil; Wang, Guoying; Venema, Kees; Zhang, Muren Warren; Delwiche, Charles F.; Sze, Heven

    2012-01-01

    All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation–proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant CPA2 genes encoding K+-efflux antiporter (KEA) and cation/H+ exchanger (CHX) families are largely unknown. Phylogenetic analysis showed that three clades of the CPA1 Na+–H+ exchanger (NHX) family have been conserved from single-celled algae to Arabidopsis. These are (i) plasma membrane-bound SOS1/AtNHX7 that share ancestry with prokaryote NhaP, (ii) endosomal AtNHX5/6 that is part of the eukaryote Intracellular-NHE clade, and (iii) a vacuolar NHX clade (AtNHX1–4) specific to plants. Early diversification of KEA genes possibly from an ancestral cyanobacterium gene is suggested by three types seen in all plants. Intriguingly, CHX genes diversified from three to four members in one subclade of early land plants to 28 genes in eight subclades of Arabidopsis. Homologs from Spirogyra or Physcomitrella share high similarity with AtCHX20, suggesting that guard cell-specific AtCHX20 and its closest relatives are founders of the family, and pollen-expressed CHX genes appeared later in monocots and early eudicots. AtCHX proteins mediate K+ transport and pH homeostasis, and have been localized to intracellular and plasma membrane. Thus KEA genes are conserved from green algae to angiosperms, and their presence in red algae and secondary endosymbionts suggest a role in plastids. In contrast, AtNHX1–4 subtype evolved in plant cells to handle ion homeostasis of vacuoles. The great diversity of CHX genes in land plants compared to metazoa, fungi, or algae would imply a significant role of ion and pH homeostasis at dynamic endomembranes in the vegetative and reproductive success of flowering plants. PMID:22639643

  7. Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep.

    PubMed

    Hediger, R; Ansari, H A; Stranzinger, G F

    1991-01-01

    By using three gene probes, one derived from the porcine major histocompatibility complex (MHC) and two from bovine cytokeratin genes, type I (KRTA) and type II (KRTB), the hypothesis of conservation of genome structure in two members of the family Bovidae was examined. Gene mapping data revealed the MHC to be in chromosome region 23q15----q23 in cattle (BOLA) and 20q15----q23 in sheep (OLA). KRTA was localized to chromosome region 19q25----q29 in cattle and 11q25----q29 in sheep and KRTB to 5q14----q22 in cattle and 3q14----q22 in sheep. The banding patterns of the chromosome arms to which the loci were assigned were identical in both species. Moreover, the resemblances of GTG- or QFQ-banding patterns between the cattle and sheep karyotypes illustrated further chromosome homologies. These studies, based on gene mapping comparisons and comparative cytogenetics, document that within bovid chromosomes, homology of banding patterns corresponds to a homologous genetic structure. Hence, we propose that gene assignments on identified chromosomal segments in one species of the Bovidae can be extrapolated, in general, to other bovid species based on the banding homologies presented here.

  8. Testicular cancer and antecedent diseases.

    PubMed

    Swerdlow, A J; Huttly, S R; Smith, P G

    1987-01-01

    A case-control study of the aetiology of testicular cancer was conducted using information obtained by interview and from case-notes of 259 cases with testicular cancer and two sets of control patients -238 men with diagnoses other than testicular cancer attending the same radiotherapy centres as those attended by the cases, and 251 hospital in-patients not attending radiotherapy departments. Logistic regression analyses were performed, after stratifying by age and region of residence, to estimate the relative risks (RRs) associated with various aspects of prior medical history. The risk of testicular cancer was found to be raised for men with a history of cryptorchidism (RR based on comparison with all controls = 6.3; P less than 0.001), inguinal hernia (RR = 1.6; P = 0.14), mumps orchitis (RR = 12.7; P = 0.006), atopy (RR = 1.8; P = 0.03), and meningitis (RR = 3.0; P = 0.21). Inguinal herniorrhaphy before the age of 15 years was particularly a risk factor for seminoma, whereas the relative risks were similar for seminoma and teratoma for the other factors. The results add to the growing evidence that congenital abnormalities involving the process of testicular descent and closure of the processus vaginalis are risk factors for testicular cancer, and that some types of testicular damage later in life may also be important. The findings of associations with previous atopy and certain infections suggest a possible second aetiological mechanism - that immunological abnormalities may be associated with an increased risk of testis cancer.

  9. Phylogenetic conservation and physical mapping of members of the H6 homeobox gene family.

    PubMed

    Stadler, H S; Murray, J C; Leysens, N J; Goodfellow, P J; Solursh, M

    1995-06-01

    Homeobox genes represent a class of transcription factors that play key roles in the regulation of embryogenesis and development. Here we report the identification of a homeobox-containing gene family that is highly conserved at both the nucleotide and amino acid levels in a diverse number of species. These species encompass both vertebrate and invertebrate phylogenies, ranging from Homo sapiens to Drosophila melanogaster. In humans, at least two homeobox sequences from this family were identified representing a previously reported member of this family as well as a novel homeobox sequence that we physically mapped to the 10q25.2-q26.3 region of human Chromosome (Chr) 10. Multiple members of this family were also detected in three additional vertebrate species including Equus caballus (horse), Gallus gallus (Chicken), and Mus musculus (mouse), whereas only single members were detected in Tripneustes gratilla (sea urchin), Petromyzon marinus (lamprey), Salmo salar (salmon), Ovis aries (sheep), and D. melanogaster (fruit fly).

  10. Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris.

    PubMed

    Abou-Elwafa, Salah F; Büttner, Bianca; Chia, Tansy; Schulze-Buxloh, Gretel; Hohmann, Uwe; Mutasa-Göttgens, Effie; Jung, Christian; Müller, Andreas E

    2011-06-01

    The transition from vegetative growth to reproductive development is a complex process that requires an integrated response to multiple environmental cues and endogenous signals. In Arabidopsis thaliana, which has a facultative requirement for vernalization and long days, the genes of the autonomous pathway function as floral promoters by repressing the central repressor and vernalization-regulatory gene FLC. Environmental regulation by seasonal changes in daylength is under control of the photoperiod pathway and its key gene CO. The root and leaf crop species Beta vulgaris in the caryophyllid clade of core eudicots, which is only very distantly related to Arabidopsis, is an obligate long-day plant and includes forms with or without vernalization requirement. FLC and CO homologues with related functions in beet have been identified, but the presence of autonomous pathway genes which function in parallel to the vernalization and photoperiod pathways has not yet been reported. Here, this begins to be addressed by the identification and genetic mapping of full-length homologues of the RNA-regulatory gene FLK and the chromatin-regulatory genes FVE, LD, and LDL1. When overexpressed in A. thaliana, BvFLK accelerates bolting in the Col-0 background and fully complements the late-bolting phenotype of an flk mutant through repression of FLC. In contrast, complementation analysis of BvFVE1 and the presence of a putative paralogue in beet suggest evolutionary divergence of FVE homologues. It is further shown that BvFVE1, unlike FVE in Arabidopsis, is under circadian clock control. Together, the data provide first evidence for evolutionary conservation of components of the autonomous pathway in B. vulgaris, while also suggesting divergence or subfunctionalization of one gene. The results are likely to be of broader relevance because B. vulgaris expands the spectrum of evolutionarily diverse species which are subject to differential developmental and/or environmental regulation

  11. Conservation and diversity of gene families explored using the CODEHOP strategy in higher plants

    PubMed Central

    Morant, Marc; Hehn, Alain; Werck-Reichhart, Danièle

    2002-01-01

    Background Availability of genomewide information on an increasing but still limited number of plants offers the possibility of identifying orthologues, or related genes, in species with major economical impact and complex genomes. In this paper we exploit the recently described CODEHOP primer design and PCR strategy for targeted isolation of homologues in large gene families. Results The method was tested with two different objectives. The first was to analyze the evolution of the CYP98 family of cytochrome P450 genes involved in 3-hydroxylation of phenolic compounds and lignification in a broad range of plant species. The second was to isolate an orthologue of the sorghum glucosyl transferase UGT85B1 and to determine the complexity of the UGT85 family in wheat. P450s of the CYP98 family or closely related sequences were found in all vascular plants. No related sequence was found in moss. Neither extensive duplication of the CYP98 genes nor an orthologue of UGT85B1 were found in wheat. The UGT85A subfamily was however found to be highly variable in wheat. Conclusions Our data are in agreement with the implication of CYP98s in lignification and the evolution of 3-hydroxylation of lignin precursors with vascular plants. High conservation of the CYP98 family strongly argues in favour of an essential function in plant development. Conversely, high duplication and diversification of the UGT85A gene family in wheat suggests its involvement in adaptative response and provides a valuable pool of genes for biotechnological applications. This work demonstrates the high potential of the CODEHOP strategy for the exploration of large gene families in plants. PMID:12153706

  12. Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species.

    PubMed

    Waters, Amanda J; Bilinski, Paul; Eichten, Steven R; Vaughn, Matthew W; Ross-Ibarra, Jeffrey; Gehring, Mary; Springer, Nathan M

    2013-11-26

    In plants, a subset of genes exhibit imprinting in endosperm tissue such that expression is primarily from the maternal or paternal allele. Imprinting may arise as a consequence of mechanisms for silencing of transposons during reproduction, and in some cases imprinted expression of particular genes may provide a selective advantage such that it is conserved across species. Separate mechanisms for the origin of imprinted expression patterns and maintenance of these patterns may result in substantial variation in the targets of imprinting in different species. Here we present deep sequencing of RNAs isolated from reciprocal crosses of four diverse maize genotypes, providing a comprehensive analysis that allows evaluation of imprinting at more than 95% of endosperm-expressed genes. We find that over 500 genes exhibit statistically significant parent-of-origin effects in maize endosperm tissue, but focused our analyses on a subset of these genes that had >90% expression from the maternal allele (69 genes) or from the paternal allele (108 genes) in at least one reciprocal cross. Over 10% of imprinted genes show evidence of allelic variation for imprinting. A comparison of imprinting in maize and rice reveals that 13% of genes with syntenic orthologs in both species exhibit conserved imprinting. Genes that exhibit conserved imprinting between maize and rice have elevated nonsynonymous to synonymous substitution ratios compared with other imprinted genes, suggesting a history of more rapid evolution. Together, these data suggest that imprinting only has functional relevance at a subset of loci that currently exhibit imprinting in maize.

  13. Testicular Cancer - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Testicular Cancer URL of this page: https://medlineplus.gov/languages/ ... V W XYZ List of All Topics All Testicular Cancer - Multiple Languages To use the sharing features on ...

  14. The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences.

    PubMed Central

    Fierro, F; Barredo, J L; Díez, B; Gutierrez, S; Fernández, F J; Martín, J F

    1995-01-01

    The penicillin biosynthetic genes (pcbAB, pcbC, penDE) of Penicillium chrysogenum AS-P-78 were located in a 106.5-kb DNA region that is amplified in tandem repeats (five or six copies) linked by conserved TTTACA sequences. The wild-type strains P. chrysogenum NRRL 1951 and Penicillium notatum ATCC 9478 (Fleming's isolate) contain a single copy of the 106.5-kb region. This region was bordered by the same TTTACA hexanucleotide found between tandem repeats in strain AS-P-78. A penicillin overproducer strain, P. chrysogenum E1, contains a large number of copies in tandem of a 57.9-kb DNA fragment, linked by the same hexanucleotide or its reverse complementary TGTAAA sequence. The deletion mutant P. chrysogenum npe10 showed a deletion of 57.9 kb that corresponds exactly to the DNA fragment that is amplified in E1. The conserved hexanucleotide sequence was reconstituted at the deletion site. The amplification has occurred within a single chromosome (chromosome I). The tandem reiteration and deletion appear to arise by mutation-induced site-specific recombination at the conserved hexanucleotide sequences. Images Fig. 3 PMID:7597101

  15. Cryptorchidism and testicular cancer.

    PubMed

    Batata, M A; Whitmore, W F; Chu, F C; Hilaris, B S; Loh, J; Grabstald, H; Golbey, R

    1980-09-01

    An analysis of 125 patients with a history or clinical evidence of cryptorchidism and testicular germinal tumor treated at our hospital from 1934 to 1975 is presented. Cryptorchidism was corrected ipsilaterally or contralaterally in 83 patients with intrascrotal testis cancer when they were from 4 to 42 years old, either spontaneously (21 patients), by orchiopexy (51 patients) or by hormonal therapy (11 patients). Forty-two cryptorchid patients (uncorrected cases) presented with either ipsilateral inguinal (24 patients), abdominal (14 patients) or contralateral intrascrotal tumors (4 patients). Tumor histologic types on orchiectomy were pure seminoma in 54 patients, embryonal carcinoma in 35, teratocarcinoma in 33 and pure choriocarcinoma in 3. The 5-year survival rates were 60 per cent for the corrected cases and 63 per cent for the uncorrected cases according to cryptorchid state, and they were 78 per cent in patients with pure seminoma and 48 per cent in patients with other germinomas according to histologic type. The majority (58 of 73) of 5-year survivors received regional lymphatic irradiation, in 39 patients with pure seminoma, and/or systemic chemotherapy, in 19 patients with germinal carcinomas, with or without regional lymphadenectomy.

  16. The human archain gene, ARCN1, has highly conserved homologs in rice and drosophila

    SciTech Connect

    Radice, P.; Jones, C.; Perry, H.

    1995-03-01

    A novel human gene, ARCN1, has been identified in chromosome band 11q23.3. It maps approximately 50 kb telomeric to MLL, a gene that is disrupted in a number of leukemia-associated translocation chromosomes. cDNA clones representing ARCN1 hybridize to 4-kb mRNA species present in all tissues tested. Sequencing of cDNAs suggests that at least two forms of mRNA with alternative 5 {prime} ends are present within the cell. The mRNA with the longest open reading frame gives rise to a protein of 57 kDa. Although the sequence reported is novel, remarkable similarity is observed with two predicted protein sequences from partial DNA sequences generated by rice (Oryza sativa) and fruit fly (Drosophila melanogaster) genome projects. The degree of sequence conservation is comparable to that observed for highly conserved structural proteins, such as heat shock protein HSP70, and is greater than that of {gamma}-gubulin and heat shock protein HSP60. A more distant relationship to the group of clathrin-associated proteins suggests a possible role in vesicle structure or trafficking. In view of its ancient pedigree and a potential involvement in cellular architecture, the authors propose that the ARCN1 protein be named archain. 20 refs., 5 figs.

  17. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets.

    PubMed

    Duffield, Melanie; Cooper, Ian; McAlister, Erin; Bayliss, Marc; Ford, Donna; Oyston, Petra

    2010-12-01

    Many genes have been listed as putatively essential for bacterial viability in the Database of Essential Genomes (DEG), although few have been experimentally validated. By prioritising targets according to the criteria suggested by the Research and Training in Tropical Diseases (TDR) Targets database, we have developed a modified down-selection tool to identify essential genes conserved across diverse genera. Using this approach we identified 52 proteins conserved to 7 or more of the 14 genomes in DEG. We confirmed the validity of the down-selection by attempting to make mutants of 8 of these targets in a model organism, Yersinia pseudotuberculosis, which is not closely related to any of the bacteria in DEG. Mutants were recovered for only one of the 8 targets, suggesting that the other 7 were essential in Y. pseudotuberculosis, an impressive success rate compared to other approaches of identification for such targets. Identification of essential proteins common in diverse bacterial genera can then be used to facilitate the selection of effective targets for novel broad-spectrum antibiotics.

  18. Polymerase Chain Reaction (PCR)-based methods for detection and identification of mycotoxigenic Penicillium species using conserved genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...

  19. Conserved regulation of the Caenorhabditis elegans labial/Hox1 gene ceh-13.

    PubMed

    Streit, Adrian; Kohler, Reto; Marty, Thomas; Belfiore, Marco; Takacs-Vellai, Krisztina; Vigano, Maria-Alessandra; Schnabel, Ralf; Affolter, Markus; Müller, Fritz

    2002-02-15

    Caenorhabditis elegans contains a set of six cluster-type homeobox (Hox) genes that are required during larval development. Some of them, but unlike in flies not all of them, are also required during embryogenesis. It has been suggested that the control of the embryonic expression of the worm Hox genes might differ from that of other species by being regulated in a lineal rather than a regional mode. Here, we present a trans-species analysis of the cis-regulatory region of ceh-13, the worm ortholog of the Drosophila labial and the vertebrate Hox1 genes, and find that the molecular mechanisms that regulate its expression may be similar to what has been found in species that follow a regulative, non-cell-autonomous mode of development. We have identified two enhancer fragments that are involved in different aspects of the embryonic ceh-13 expression pattern. We show that important features of comma-stage expression depend on an autoregulatory input that requires ceh-13 and ceh-20 functions. Our data show that the molecular nature of Hox1 class gene autoregulation has been conserved between worms, flies, and vertebrates. The second regulatory sequence is sufficient to drive correct early embryonic expression of ceh-13. Interestingly, this enhancer fragment acts as a response element of the Wnt/WG signaling pathway in Drosophila embryos.

  20. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

    PubMed

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A; Holland, Peter W H

    2016-02-09

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.

  1. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior

    PubMed Central

    Schrader, Lukas; Simola, Daniel F.; Heinze, Jürgen; Oettler, Jan

    2015-01-01

    Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging. PMID:25725431

  2. Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years.

    PubMed

    Delgado, Claudia Leticia Rodríguez; Waters, Paul D; Gilbert, Clément; Robinson, Terence J; Graves, Jennifer A Marshall

    2009-01-01

    All therian mammals (eutherians and marsupials) have an XX female/XY male sex chromosome system or some variant of it. The X and Y evolved from a homologous pair of autosomes over the 166 million years since therian mammals diverged from monotremes. Comparing the sex chromosomes of eutherians and marsupials defined an ancient X conserved region that is shared between species of these mammalian clades. However, the eutherian X (and the Y) was augmented by a recent addition (XAR) that is autosomal in marsupials. XAR is part of the X in primates, rodents, and artiodactyls (which belong to the eutherian clade Boreoeutheria), but it is uncertain whether XAR is part of the X chromosome in more distantly related eutherian mammals. Here we report on the gene content and order on the X of the elephant (Loxodonta africana)-a representative of Afrotheria, a basal endemic clade of African mammals-and compare these findings to those of other documented eutherian species. A total of 17 genes were mapped to the elephant X chromosome. Our results support the hypothesis that the eutherian X and Y chromosomes were augmented by the addition of autosomal material prior to eutherian radiation. Not only does the elephant X bear the same suite of genes as other eutherian X chromosomes, but gene order appears to have been maintained across 105 million years of evolution, perhaps reflecting strong constraints posed by the eutherian X inactivation system.

  3. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution

    PubMed Central

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A.; Holland, Peter W.H.

    2016-01-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  4. Conservation of Arabidopsis thaliana photoperiodic flowering time genes in onion (Allium cepa L.).

    PubMed

    Taylor, Andrew; Massiah, Andrea Juliet; Thomas, Brian

    2010-10-01

    The genetics underlying onion development are poorly understood. Here the characterization of onion homologs of Arabidopsis photoperiodic flowering pathway genes is reported with the end goal of accelerating onion breeding programs by understanding the genetic basis of adaptation to different latitudes. The expression of onion GI, FKF1 and ZTL homologs under short day (SD) and long day (LD) conditions was examined using quantitative reverse transcription-PCR (qRT-PCR). The expression of AcGI and AcFKF1 was examined in onion varieties which exhibit different daylength responses. Phylogenetic trees were constructed to confirm the identity of the homologs. AcGI and AcFKF1 showed diurnal expression patterns similar to their Arabidopsis counterparts, while AcZTL was found to be constitutively expressed. AcGI showed similar expression patterns in varieties which exhibit different daylength responses, whereas AcFKF1 showed differences. It is proposed that these differences could contribute to the different daylength responses in these varieties. Phylogenetic analyses showed that all the genes isolated are very closely related to their proposed homologs. The results presented here show that key genes controlling photoperiodic flowering in Arabidopsis are conserved in onion, and a role for these genes in the photoperiodic control of bulb initiation is predicted. This theory is supported by expression and phylogenetic data.

  5. SHOX gene and conserved noncoding element deletions/duplications in Colombian patients with idiopathic short stature

    PubMed Central

    Sandoval, Gloria Tatiana Vinasco; Jaimes, Giovanna Carola; Barrios, Mauricio Coll; Cespedes, Camila; Velasco, Harvy Mauricio

    2014-01-01

    SHOX gene mutations or haploinsufficiency cause a wide range of phenotypes such as Leri Weill dyschondrosteosis (LWD), Turner syndrome, and disproportionate short stature (DSS). However, this gene has also been found to be mutated in cases of idiopathic short stature (ISS) with a 3–15% frequency. In this study, the multiplex ligation-dependent probe amplification (MLPA) technique was employed to determine the frequency of SHOX gene mutations and their conserved noncoding elements (CNE) in Colombian patients with ISS. Patients were referred from different centers around the county. From a sample of 62 patients, 8.1% deletions and insertions in the intragenic regions and in the CNE were found. This result is similar to others published in other countries. Moreover, an isolated case of CNE 9 duplication and a new intron 6b deletion in another patient, associated with ISS, are described. This is one of the first studies of a Latin American population in which deletions/duplications of the SHOX gene and its CNE are examined in patients with ISS. PMID:24689071

  6. Structural but not functional conservation of an immune molecule: a tachylectin-like gene in Hydractinia.

    PubMed

    Mali, Brahim; Soza-Ried, Jorge; Frohme, Marcus; Frank, Uri

    2006-01-01

    Tachylectin-related proteins are a recently characterized group of pattern recognition molecules, functioning in the innate immunity of various animals, from the ancient sponges to vertebrates. Tachylectins are characterized by six internal tandem repeats forming beta-propeller domains. We have identified and characterized a tachylectin-related gene in the colonial marine hydroid, Hydractinia echinata. The predicted gene product, termed CTRN, contained an N-terminal signal peptide and had a well-conserved tachylectin-like structure. RT-PCR analyses revealed only post-metamorphic expression while no mRNA was detected during embryonic development or in planula larvae. Exposure of colonies to LPS under conditions known to activate an immune response in Hydractinia did not result in upregulation of the gene. In situ hybridization analysis of metamorphosed animals detected CTRN transcripts only in a small subpopulation of neurons and their precursor cells, localized in a ring-like structure around the mouth of polyps. The same ring-like structure of CTRN expressing neurons was also observed in young polyp buds, predicting the position of the future mouth. This type of expression pattern can hardly be attributed to an immune-relevant gene. Thus, despite high structural similarity to tachylectins, this cnidarian member of this group seems to be an exception to all other tachylectins identified so far as it seems to have no function in cnidarian innate immunity.

  7. [Bioinformatic prediction of conserved microRNAs and their target genes in eggplant (Solanum melongena L.)].

    PubMed

    Zhang, Lei; Chao, Jiang-Tao; Cui, Meng-Meng; Chen, Ya-Qiong; Zong, Peng; Sun, Yu-He

    2011-07-01

    MicroRNAs (miRNAs), a recently discovered class of small (-21nt), non-coding, endogenous, single-stranded RNAs in eukaryotes, regulate gene expression negatively at the post-transcriptional levels depending on the extent of complementation between miRNA and mRNA. To date, a large number of miRNAs have been reported in many species, but none for eggplant (Solanum melongena L.). In this paper, a computational homology search approach based on the conservation of miRNA sequences and the stem-loop hairpin secondary structures of miRNAs was adopted. The search was started with the known plant miRNAs compared to eggplant expressed sequence tags (EST) databases to find potential miRNAs. Following a range of filtering criteria, a total of 16 potential miRNAs belonging to 12 families were identified. Three pairs of sense and antisense strand eggplant miRNAs belonging to three different miRNA families were also found. Furthermore, miR390 and miR399 sense/antisense pairs are identified for the first time in plants. Using online software psRNATarget, we further predicted the target genes of these 16 miRNAs and got 71 potential targets genes on base of 15 eggplant miRNAs. Most of these target genes were predicted to encode proteins that play key role in eggplant growth, development, metabolism, and stress responses.

  8. Structural complexity and evolutionary conservation of the Drosophila homeotic gene proboscipedia.

    PubMed Central

    Cribbs, D L; Pultz, M A; Johnson, D; Mazzulla, M; Kaufman, T C

    1992-01-01

    Mutations of the homeotic gene proboscipedia (pb) of Drosophila cause striking transformations of the adult mouthparts, to legs or antennae. We report here an analysis of the gene structure of pb. Coding sequences across a 34 kb interval yield, by alternative splicing, four identified mRNA forms which differ immediately upstream of the homeobox. As a consequence, the homeodomain is expected to reside in four different contexts in the predicted protein isoforms. Mammalian homologs of pb, human HOX-2H and murine Hox-2.8, were identified based on the similarities of their homeodomains (95% identity) and several other conserved motifs. Examination of a collection of pb mutant alleles with antisera directed against the N-terminal region, the center or the C-terminal region of the protein showed that, surprisingly, several partial loss-of-function pb alleles appear to generate partially functional proteins truncated at their C-termini. This suggests that a significant portion of the protein contributes quantitatively to pb function, but is partially dispensable. Finally, evolutionary considerations suggest that pb may be one of several ancient genes which preceded the process yielding the modern homeotic gene complexes. Images PMID:1348688

  9. Conservation of gene order between horse and human X chromosomes as evidenced through radiation hybrid mapping.

    PubMed

    Raudsepp, Terje; Kata, Srinivas R; Piumi, François; Swinburne, June; Womack, James E; Skow, Loren C; Chowdhary, Bhanu P

    2002-03-01

    A radiation hybrid (RH) map of the equine X chromosome (ECAX) was obtained using the recently produced 5000(rad) horse x hamster hybrid panel. The map comprises 34 markers (16 genes and 18 microsatellites) and spans a total of 676 cR(5000), covering almost the entire length of ECAX. Cytogenetic alignment of the RH map was improved by fluorescent in situ hybridization mapping of six of the markers. The map integrates and refines the currently available genetic linkage, syntenic, and cytogenetic maps, and adds new loci. Comparison of the physical location of the 16 genes mapped in this study with the human genome reveals similarity in the order of the genes along the entire length of the two X chromosomes. This degree of gene order conservation across evolutionarily distantly related species has up to now been reported only between human and cat. The ECAX RH map provides a framework for the generation of a high-density map for this chromosome. The map will serve as an important tool for positional cloning of X-linked diseases/conditions in the horse.

  10. 21 CFR 876.3750 - Testicular prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Testicular prosthesis. 876.3750 Section 876.3750...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3750 Testicular prosthesis. (a) Identification. A testicular prosthesis is an implanted device that consists of a solid or gel-filled...

  11. 21 CFR 876.3750 - Testicular prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Testicular prosthesis. 876.3750 Section 876.3750...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3750 Testicular prosthesis. (a) Identification. A testicular prosthesis is an implanted device that consists of a solid or gel-filled...

  12. 21 CFR 876.3750 - Testicular prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Testicular prosthesis. 876.3750 Section 876.3750...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Prosthetic Devices § 876.3750 Testicular prosthesis. (a) Identification. A testicular prosthesis is an implanted device that consists of a solid or gel-filled...

  13. Downregulation of miR-320a/383-sponge-like long non-coding RNA NLC1-C (narcolepsy candidate-region 1 genes) is associated with male infertility and promotes testicular embryonal carcinoma cell proliferation

    PubMed Central

    Lü, M; Tian, H; Cao, Y-x; He, X; Chen, L; Song, X; Ping, P; Huang, H; Sun, F

    2015-01-01

    Long non-coding RNAs (lncRNAs), which are extensively transcribed from the genome, have been proposed to be key regulators of diverse biological processes. However, little is known about the role of lncRNAs in regulating spermatogenesis in human males. Here, using microarray technology, we show altered expression of lncRNAs in the testes of infertile men with maturation arrest (MA) or hypospermatogenesis (Hypo), with 757 and 2370 differentially down-regulated and 475 and 163 up-regulated lncRNAs in MA and Hypo, respectively. These findings were confirmed by quantitative real-time PCR (qRT-PCR) assays on select lncRNAs, including HOTTIP, imsrna320, imsrna292 and NLC1-C (narcolepsy candidate-region 1 genes). Interestingly, NLC1-C, also known as long intergenic non-protein-coding RNA162 (LINC00162), was down-regulated in the cytoplasm and accumulated in the nucleus of spermatogonia and primary spermatocytes in the testes of infertile men with mixed patterns of MA compared with normal control. The accumulation of NLC1-C in the nucleus repressed miR-320a and miR-383 transcript and promoted testicular embryonal carcinoma cell proliferation by binding to Nucleolin. Here, we define a novel mechanism by which lncRNAs modulate miRNA expression at the transcriptional level by binding to RNA-binding proteins to regulate human spermatogenesis. PMID:26539909

  14. Contribution of IL-12/IL-35 Common Subunit p35 to Maintaining the Testicular Immune Privilege

    PubMed Central

    Terayama, Hayato; Yoshimoto, Takayuki; Hirai, Shuichi; Naito, Munekazu; Qu, Ning; Hatayama, Naoyuki; Hayashi, Shogo; Mitobe, Kana; Furusawa, Jun-ichi; Mizoguchi, Izuru; Kezuka, Takeshi; Goto, Hiroshi; Suyama, Kaori; Moriyama, Hiroshi; Sakabe, Kou; Itoh, Masahiro

    2014-01-01

    The testis is an organ with immune privilege. The comprehensive blood–testis barrier formed by Sertoli cells protects autoimmunogenic spermatozoa and spermatids from attack by the body’s immune system. The interleukin (IL)-6/IL-12 family cytokines IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Epstein-Barr virus−induced gene 3 [EBI3]), and IL-35 (p35/EBI3) play critical roles in the regulation of various immune responses, but their roles in testicular immune privilege are not well understood. In the present study, we investigated whether these cytokines are expressed in the testes and whether they function in the testicular immune privilege by using mice deficient in their subunits. Expression of EBI3 was markedly increased at both mRNA and protein levels in the testes of 10- or 12-week-old wild-type mice as compared with levels in 2-week-old mice, whereas the mRNA expression of p40 was markedly decreased and that of p35 was conserved between these two groups. Lack of EBI3, p35, and IL-12 receptor β2 caused enhanced infiltration of lymphocytes into the testicular interstitium, with increased interferon-γ expression in the testes and autoantibody production against mainly acrosomal regions of spermatids. Spermatogenic disturbance was more frequently observed in the seminiferous tubules, especially when surrounded by infiltrating lymphocytes, of these deficient mice than in those of wild-type mice. In particular, p35-deficient mice showed the most severe spermatogenic disturbance. Immunohistochemical analyses revealed that endothelial cells and peritubular cells in the interstitium were highly positive for p35 at both ages, and CD163+ resident macrophages positive for p35 and EBI3, possibly producing IL-35, were also detected in the interstitium of 12-week-old mice but not those of 2-week-old mice. These results suggest that p35 helps in maintaining the testicular immune privilege, in part in an IL-35-dependent manner. PMID:24760014

  15. Gene expression suggests conserved aspects of Hox gene regulation in arthropods and provides additional support for monophyletic Myriapoda.

    PubMed

    Janssen, Ralf; Budd, Graham E

    2010-07-05

    Antisense transcripts of Ultrabithorax (aUbx) in the millipede Glomeris and the centipede Lithobius are expressed in patterns complementary to that of the Ubx sense transcripts. A similar complementary expression pattern has been described for non-coding RNAs (ncRNAs) of the bithoraxoid (bxd) locus in Drosophila, in which the transcription of bxd ncRNAs represses Ubx via transcriptional interference. We discuss our findings in the context of possibly conserved mechanisms of Ubx regulation in myriapods and the fly.Bicistronic transcription of Ubx and Antennapedia (Antp) has been reported previously for a myriapod and a number of crustaceans. In this paper, we show that Ubx/Antp bicistronic transcripts also occur in Glomeris and an onychophoran, suggesting further conserved mechanisms of Hox gene regulation in arthropods.Myriapod monophyly is supported by the expression of aUbx in all investigated myriapods, whereas in other arthropod classes, including the Onychophora, aUbx is not expressed. Of the two splice variants of Ubx/Antp only one could be isolated from myriapods, representing a possible further synapomorphy of the Myriapoda.

  16. A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family.

    PubMed Central

    Braun, E L; Fuge, E K; Padilla, P A; Werner-Washburne, M

    1996-01-01

    The regulation of cellular growth and proliferation in response to environmental cues is critical for development and the maintenance of viability in all organisms. In unicellular organisms, such as the budding yeast Saccharomyces cerevisiae, growth and proliferation are regulated by nutrient availability. We have described changes in the pattern of protein synthesis during the growth of S. cerevisiae cells to stationary phase (E. K. Fuge, E. L. Braun, and M. Werner-Washburne, J. Bacteriol. 176:5802-5813, 1994) and noted a protein, which we designated Snz1p (p35), that shows increased synthesis after entry into stationary phase. We report here the identification of the SNZ1 gene, which encodes this protein. We detected increased SNZ1 mRNA accumulation almost 2 days after glucose exhaustion, significantly later than that of mRNAs encoded by other postexponential genes. SNZ1-related sequences were detected in phylogenetically diverse organisms by sequence comparisons and low-stringency hybridization. Multiple SNZ1-related sequences were detected in some organisms, including S. cerevisiae. Snz1p was found to be among the most evolutionarily conserved proteins currently identified, indicating that we have identified a novel, highly conserved protein involved in growth arrest in S. cerevisiae. The broad phylogenetic distribution, the regulation of the SNZ1 mRNA and protein in S. cerevisiae, and identification of a Snz protein modified during sporulation in the gram-positive bacterium Bacillus subtilis support the hypothesis that Snz proteins are part of an ancient response that occurs during nutrient limitation and growth arrest. PMID:8955308

  17. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    PubMed

    Hayashi, Kazuhiro; Ogiyama, Yuki; Yokomi, Kazumasa; Nakagawa, Tsuyoshi; Kaino, Tomohiro; Kawamukai, Makoto

    2014-01-01

    Coenzyme Q (CoQ) is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9) that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana) to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  18. Remarkable intron and exon sequence conservation in human and mouse homeobox Hox 1. 3 genes

    SciTech Connect

    Tournier-Lasserve, E.; Odenwald, W.F.; Garbern, J.; Trojanowski, J.; Lazzarini, R.A.

    1989-05-01

    A high degree of conservation exists between the Hox 1.3 homeobox genes of mice and humans. The two genes occupy the same relative positions in their respective Hox 1 gene clusters, they show extensive sequence similarities in their coding and noncoding portions, and both are transcribed into multiple transcripts of similar sizes. The predicted human Hox 1.3 protein differs from its murine counterpart in only 7 of 270 amino acids. The sequence similarity in the 250 base pairs upstream of the initiation codon is 98%, the similarity between the two introns, both 960 base pairs long, is 72%, and the similarity in the 3' noncoding region from termination codon to polyadenylation signal is 90%. Both mouse and human Hox 1.3 introns contain a sequence with homology to a mating-type-controlled cis element of the yeast Ty1 transposon. DNA-binding studies with a recombinant mouse Hox 1.3 protein identified two binding sites in the intron, both of which were within the region of shared homology with this Ty1 cis element.

  19. Evolutionary analysis of two complement C4 genes: Ancient duplication and conservation during jawed vertebrate evolution.

    PubMed

    Nonaka, Mayumi I; Terado, Tokio; Kimura, Hiroshi; Nonaka, Masaru

    2017-03-01

    The complement C4 is a thioester-containing protein, and a histidine (H) residue catalyzes the cleavage of the thioester to allow covalent binding to carbohydrates on target cells. Some mammalian and teleost species possess an additional isotype where the catalytic H is replaced by an aspartic acid (D), which binds preferentially to proteins. We found the two C4 isotypes in many other jawed vertebrates, including sharks and birds/reptiles. Phylogenetic analysis suggested that C4 gene duplication occurred in the early days of the jawed vertebrate evolution. The D-type C4 of bony fish except for mammals formed a cluster, termed D-lineage. The D-lineage genes were located in a syntenic region outside MHC, and evolved conservatively. Mammals lost the D-lineage before speciation, but D-type C4 was regenerated by recent gene duplication in some mammalian species or groups. Dual C4 molecules with different substrate specificities would have contributed to development of the antibody-dependent classical pathway.

  20. Cloning and expression study of the lobster (Homarus americanus) vitellogenin: Conservation in gene structure among decapods.

    PubMed

    Tiu, Shirley Hiu Kwan; Hui, Ho-Lam; Tsukimura, Brian; Tobe, Stephen S; He, Jian-Guo; Chan, Siu-Ming

    2009-01-01

    This study reports the molecular characterization of the vitellogenin (Vg) of the lobster, Homarus americanus. Based on the annual collection of female lobsters, vitellogenesis commences in early March and continues through to September of each year. Using an antibody to vitellin of the lobster, H. americanus, several immunoreactive ovarian proteins were initially identified by Western blot analysis. The 80kDa protein contained the amino acid sequence APWGGNTPRC, identified subsequently by cDNA cloning to be identical to the lobster Vg. In common with the shrimp Metapenaeus ensis and crab Charybdis feriatus, the lobster HaVg1 gene comprises 14 introns and 15 exons. The deduced HaVg1 precursor is most similar to the Vg of the crayfish Cherax quadricarinatus (57%), followed by M. ensis (40-43% identity) and C. feriatus (38%). The results from genomic and RT-PCR cloning also confirmed the presence of multiple Vg genes in lobster. At early reproductive stages, the hepatopancreas HaVg1 transcript levels are low but increased to a maximum in animals with mature oocytes. The ovary, however, also expressed low levels of HaVg1. Using in vitro explant culture, treatment of hepatopancreas fragments with farnesoic acid or 20-hydroxyecdysone resulted in a significant stimulation in HaVg1 expression. From this study, it appears that Vg gene organization and expression pattern in decapods is highly conserved. Similar endocrine mechanisms may govern the process of vitellogenesis across the decapods.

  1. A case of testicular infarction from the complications of Klebsiella oxytoca induced acute epididymitis.

    PubMed

    Lee, Wonae; Park, Heeyoon; Lee, Gilho

    2016-04-01

    Herein, we reported a case of testicular infarction in a patient with Klebsiella oxytoca induced acute epididymitis. Acute left epididymitis progressed into testicular infarction requiring orchiectomy in spite of antibiotics treatment. Ordinary urine cultures did not reveal any specific organism, suggesting viable but noncultureable state. We amplified a bacterial 16S ribosomal subunit gene from the urine and orchiectomized samples, and we found K. oxytoca infections from both of them.

  2. Identification, characterization and phylogenic analysis of conserved genes within the p74 gene region of Choristoneura fumiferana granulovirus genome.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Giannopoulos, Paresa N; Mauffette, Yves; Guertin, Claude

    2004-11-30

    The genes located within the p74 gene region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing an 8.9 kb BamHI restriction fragment on the ChfuGV genome. The global guanine-cytosine (GC) content of this region of the genome was 33.02%. This paper presents the ORFs within the p74 gene region along with their transcriptional orientations. This region contains a total of 15 open reading frames (ORFs). Among those, 8 ORFs were found to be homologues to the baculoviral ORFs: Cf-i-p , Cf-vi, Cf-vii, Cf-viii (ubiquitin), Cf-xi (pp31), Cf-xii (lef-11), Cf-xiii (sod) and Cf-xv-p (p74). To date, no specific function has been assigned to the ORFs: Cf-i, Cf-ii, Cf-iii, Cf-iv, Cf-v, Cf-vi, Cf-vii, Cf-ix and Cf-x. The most noticeable ORFs located in this region of the ChfuGV genome were ubiquitin, lef-11, sod, fibrillin and p74. The phylogenetic trees (constructed using conceptual products of major conserved ORFs) and gene arrangement in this region were used to further examine the classification of the members of the granulovirus genus. Comparative studies demonstrated that ChfuGV along with the Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), Adoxophyes orana granulovirus (AoGV) and Cryptophlebia leucotreta granulovirus (ClGV) share a high degree of amino acids sequence and gene arrangement preservation within the studied region. These results support a previous report, which classified a granuloviruses into 2 distinct groups: Group I: ChfuGV, CpGV, PhopGV and AoGV and Group II: Xestia c-nigrum granulovirus (XcGV) and Plutella xylostella granulovirus (PxGV). The phylogenetic and gene arrangement studies also placed ClGV as a novel member of the Group I granuloviruses.

  3. Mutation of domain III and domain VI in L gene conserved domain of Nipah virus

    NASA Astrophysics Data System (ADS)

    Jalani, Siti Aishah; Ibrahim, Nazlina

    2016-11-01

    Nipah virus (NiV) is the etiologic agent responsible for the respiratory illness and causes fatal encephalitis in human. NiV L protein subunit is thought to be responsible for the majority of enzymatic activities involved in viral transcription and replication. The L protein which is the viral RNA dependent RNA polymerase has high sequence homology among negative sense RNA viruses. In negative stranded RNA viruses, based on sequence alignment six conserved domain (domain I-IV) have been determined. Each domain is separated on variable regions that suggest the structure to consist concatenated functional domain. To directly address the roles of domains III and VI, site-directed mutations were constructed by the substitution of bases at sequences 2497, 2500, 5528 and 5532. Each mutated L gene can be used in future studies to test the ability for expression on in vitro translation.

  4. Structural levansucrase gene (lsdA) constitutes a functional locus conserved in the species Gluconacetobacter diazotrophicus.

    PubMed

    Hernández, L; Sotolongo, M; Rosabal, Y; Menéndez, C; Ramírez, R; Caballero-Mellado, J; Arrieta, J

    2000-01-01

    Levansucrase (EC 2.4.1.10) was identified as a constitutive exoenzyme in 14 Gluconacetobacter diazotrophicus strains recovered from different host plants in diverse geographical regions. The enzyme, consisting of a single 60-kDa polypeptide, hydrolysed sucrose to synthesise oligofructans and levan. Sugar-cane-associated strains of the most abundant genotype (electrophoretic type 1) showed maximal values of levansucrase production. These values were three-fold higher than those of the isolates recovered from coffee plants. Restriction fragment length polymorphism analysis revealed a high degree of conservation of the levansucrase locus (IsdA) among the 14 strains under study, which represented 11 different G. diazotrophicus genotypes. Targeted disruption of the lsdA gene in four representative strains abolished their ability to grow on sucrose, indicating that the endophytic species G. diazotrophicus utilises plant sucrose via levansucrase.

  5. Testicular Cancer Risk Prediction Models

    Cancer.gov

    Developing statistical models that estimate the probability of testicular cervical cancer over a defined period of time will help clinicians identify individuals at higher risk of specific cancers, allowing for earlier or more frequent screening and counseling of behavioral changes to decrease risk.

  6. Drugs Approved for Testicular Cancer

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for testicular cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters. The drug names link to NCI's Cancer Drug Information summaries.

  7. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica

    PubMed Central

    Paape, Timothy; Hatakeyama, Masaomi; Shimizu-Inatsugi, Rie; Cereghetti, Teo; Onda, Yoshihiko; Kenta, Tanaka; Sese, Jun; Shimizu, Kentaro K.

    2016-01-01

    Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata. We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata. Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica. Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids. PMID:27413047

  8. Conserved but Attenuated Parental Gene Expression in Allopolyploids: Constitutive Zinc Hyperaccumulation in the Allotetraploid Arabidopsis kamchatica.

    PubMed

    Paape, Timothy; Hatakeyama, Masaomi; Shimizu-Inatsugi, Rie; Cereghetti, Teo; Onda, Yoshihiko; Kenta, Tanaka; Sese, Jun; Shimizu, Kentaro K

    2016-11-01

    Allopolyploidization combines parental genomes and often confers broader species distribution. However, little is known about parentally transmitted gene expression underlying quantitative traits following allopolyploidization because of the complexity of polyploid genomes. The allopolyploid species Arabidopsis kamchatica is a natural hybrid of the zinc hyperaccumulator Arabidopsis halleri and of the nonaccumulator Arabidopsis lyrata We found that A. kamchatica retained the ability to hyperaccumulate zinc from A. halleri and grows in soils with both low and high metal content. Hyperaccumulation of zinc by A. kamchatica was reduced to about half of A. halleri, but is 10-fold greater than A. lyrata Homeologs derived from A. halleri had significantly higher levels of expression of genes such as HEAVY METAL ATPASE4 (HMA4), METAL TRANSPORTER PROTEIN1 and other metal ion transporters than those derived from A. lyrata, which suggests cis-regulatory differences. A. kamchatica has on average about half the expression of these genes compared with A. halleri due to fixed heterozygosity inherent in allopolyploids. Zinc treatment significantly changed the ratios of expression of 1% of homeologous pairs, including genes putatively involved in metal homeostasis. Resequencing data showed a significant reduction in genetic diversity over a large genomic region (290 kb) surrounding the HMA4 locus derived from the A. halleri parent compared with the syntenic A. lyrata-derived region, which suggests different evolutionary histories. We also estimated that three A. halleri-derived HMA4 copies are present in A. kamchatica Our findings support a transcriptomic model in which environment-related transcriptional patterns of both parents are conserved but attenuated in the allopolyploids.

  9. Members of the zinc finger protein gene family sharing a conserved N-terminal module.

    PubMed Central

    Rosati, M; Marino, M; Franzè, A; Tramontano, A; Grimaldi, G

    1991-01-01

    We report the isolation of human members of a sub-family of structurally related finger protein genes. These potentially encode polypeptides containing finger motifs of the Krüppel type at the C-terminus, and a conserved amino acid module at the N-terminus; because of its invariant location the latter is referred to as finger preceding box (FPB). The FPB, detected also in previously described finger proteins from human, mouse and Xenopus, extends over approximately 65 amino acids and appears to be composed of two contiguous modules: FPB-A (residues 1-42) and FPB-B (residues 43-65). The latter is absent in some of the members analyzed. Elements A and B and the zinc finger domain are encoded by separate exons in the ZNF2 gene, a human member of this sub-family. The positioning of introns within this gene is remarkable. One intron flanks and a second interrupts the first codon of the FPB-A and FPB-B modules, respectively. A third intron occurs a few nucleotides downstream of FPB-B marking its separation from the remainder of the coding sequences. This organization, together with the absence of FPB-B in some cDNAs, supports the hypothesis that mRNAs encoding polypeptides that include one, both or none of the FPB-A and FPB-B modules may be assembled through alternative splicing pathways. Northern analyses showed that members of this sub-family are expressed as multiple transcripts in several cell lines. The sequences of distinct cDNAs homologous to the ZNF2 gene indicate that alternative splicing events adjoin either coding or non coding exons to the FPB sequences. Images PMID:1945843

  10. Cancer testis antigen expression in testicular germ cell tumorigenesis.

    PubMed

    Bode, Peter K; Thielken, Andrea; Brandt, Simone; Barghorn, André; Lohe, Bernd; Knuth, Alexander; Moch, Holger

    2014-06-01

    Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.

  11. A WDR Gene Is a Conserved Member of a Chitin Synthase Gene Cluster and Influences the Cell Wall in Aspergillus nidulans

    PubMed Central

    Guerriero, Gea; Silvestrini, Lucia; Obersriebnig, Michael; Hausman, Jean-Francois; Strauss, Joseph; Ezcurra, Inés

    2016-01-01

    WD40 repeat (WDR) proteins are pleiotropic molecular hubs. We identify a WDR gene that is a conserved genomic neighbor of a chitin synthase gene in Ascomycetes. The WDR gene is unique to fungi and plants, and was called Fungal Plant WD (FPWD). FPWD is within a cell wall metabolism gene cluster in the Ascomycetes (Pezizomycotina) comprising chsD, a Chs activator and a GH17 glucanase. The FPWD, AN1556.2 locus was deleted in Aspergillus nidulans strain SAA.111 by gene replacement and only heterokaryon transformants were obtained. The re-annotation of Aspergilli genomes shows that AN1556.2 consists of two tightly linked separate genes, i.e., the WDR gene and a putative beta-flanking gene of unknown function. The WDR and the beta-flanking genes are conserved genomic neighbors localized within a recently identified metabolic cell wall gene cluster in genomes of Aspergilli. The heterokaryons displayed increased susceptibility to drugs affecting the cell wall, and their phenotypes, observed by optical, confocal, scanning electron and atomic force microscopy, suggest cell wall alterations. Quantitative real-time PCR shows altered expression of some cell wall-related genes. The possible implications on cell wall biosynthesis are discussed. PMID:27367684

  12. CisMols Analyzer: identification of compositionally similar cis-element clusters in ortholog conserved regions of coordinately expressed genes

    PubMed Central

    Jegga, Anil G.; Gupta, Ashima; Gowrisankar, Sivakumar; Deshmukh, Mrunal A.; Connolly, Steven; Finley, Kevin; Aronow, Bruce J.

    2005-01-01

    Combinatorial interactions of sequence-specific trans-acting factors with localized genomic cis-element clusters are the principal mechanism for regulating tissue-specific and developmental gene expression. With the emergence of expanding numbers of genome-wide expression analyses, the identification of the cis-elements responsible for specific patterns of transcriptional regulation represents a critical area of investigation. Computational methods for the identification of functional cis-regulatory modules are difficult to devise, principally because of the short length and degenerate nature of individual cis-element binding sites and the inherent complexity that is generated by combinatorial interactions within cis-clusters. Filtering candidate cis-element clusters based on phylogenetic conservation is helpful for an individual ortholog gene pair, but combining data from cis-conservation and coordinate expression across multiple genes is a more difficult problem. To approach this, we have extended an ortholog gene-pair database with additional analytical architecture to allow for the analysis and identification of maximal numbers of compositionally similar and phylogenetically conserved cis-regulatory element clusters from a list of user-selected genes. The system has been successfully tested with a series of functionally related and microarray profile-based co-expressed ortholog pairs of promoters and genes using known regulatory regions as training sets and co-expressed genes in the olfactory and immunohematologic systems as test sets. CisMols Analyzer is accessible via a Web interface at . PMID:15980500

  13. Conservation analysis predicts in vivo occupancy of glucocorticoid receptor-binding sequences at glucocorticoid-induced genes.

    PubMed

    So, Alex Yick-Lun; Cooper, Samantha B; Feldman, Brian J; Manuchehri, Mitra; Yamamoto, Keith R

    2008-04-15

    The glucocorticoid receptor (GR) interacts with specific GR-binding sequences (GBSs) at glucocorticoid response elements (GREs) to orchestrate transcriptional networks. Although the sequences of the GBSs are highly variable among different GREs, the precise sequence within an individual GRE is highly conserved. In this study, we examined whether sequence conservation of sites resembling GBSs is sufficient to predict GR occupancy of GREs at genes responsive to glucocorticoids. Indeed, we found that the level of conservation of these sites at genes up-regulated by glucocorticoids in mouse C3H10T1/2 mesenchymal stem-like cells correlated directly with the extent of occupancy by GR. In striking contrast, we failed to observe GR occupancy of GBSs at genes repressed by glucocorticoids, despite the occurrence of these sites at a frequency similar to that of the induced genes. Thus, GR occupancy of the GBS motif correlates with induction but not repression, and GBS conservation alone is sufficient to predict GR occupancy and GRE function at induced genes.

  14. The current source of human Alu retroposons is a conserved gene shared with Old World monkey

    SciTech Connect

    Britten, R.J.; Stout, D.B.; Davidson, E.H. )

    1989-05-01

    A significant fraction of human Alu repeated sequences are members of the precise, recently inserted class. A cloned member of this class has been used as a probe for interspecies hybridization and thermal stability determination. The probe was reassociated with human, mandrill, and spider monkey DNA under conditions such that only almost perfectly matching duplexes could form. Equally precise hybrids were formed with human and mandrill DNA (Old World monkey) but not with spider monkey DNA (New World). These measurements as well as reassociation kinetics show the presence in mandrill DNA of many precise class Alu sequences that are very similar or identical in quantity and sequence to those in human DNA. Human and mandrill are moderately distant species with a single-copy DNA divergence of about 6%. Nevertheless, their recently inserted Alu sequences arise by retroposition of transcripts of source genes with nearly identical sequences. Apparently a gene present in our common ancestor at the time of branching was inherited and highly conserved in sequence in both the lineage of Old World monkeys and the lineage of apes and man.

  15. Conservation, Spillover and Gene Flow within a Network of Northern European Marine Protected Areas

    PubMed Central

    Huserbråten, Mats Brockstedt Olsen; Moland, Even; Knutsen, Halvor; Olsen, Esben Moland; André, Carl; Stenseth, Nils Chr.

    2013-01-01

    To ensure that marine protected areas (MPAs) benefit conservation and fisheries, the effectiveness of MPA designs has to be evaluated in field studies. Using an interdisciplinary approach, we empirically assessed the design of a network of northern MPAs where fishing for European lobster (Homarusgammarus) is prohibited. First, we demonstrate a high level of residency and survival (50%) for almost a year (363 days) within MPAs, despite small MPA sizes (0.5-1 km2). Second, we demonstrate limited export (4.7%) of lobsters tagged within MPAs (N = 1810) to neighbouring fished areas, over a median distance of 1.6 km out to maximum 21 km away from MPA centres. In comparison, median movement distance of lobsters recaptured within MPAs was 164 m, and recapture rate was high (40%). Third, we demonstrate a high level of gene flow within the study region, with an estimated FST of less than 0.0001 over a ≈ 400 km coastline. Thus, the restricted movement of older life stages, combined with a high level of gene flow suggests that connectivity is primarily driven by larval drift. Larval export from the MPAs can most likely affect areas far beyond their borders. Our findings are of high importance for the design of MPA networks for sedentary species with pelagic early life stages. PMID:24039927

  16. SOR1, a gene required for photosensitizer and singlet oxygen resistance in Cercospora fungi, is highly conserved in divergent organisms.

    PubMed

    Ehrenshaft, M; Jenns, A E; Chung, K R; Daub, M E

    1998-03-01

    Filamentous Cercospora fungi are resistant to photosensitizing compounds that generate singlet oxygen. C. nicotianae photosensitizer-sensitive mutants were restored to full resistance by transformation with SOR1 (Singlet Oxygen Resistance 1), a gene recovered from a wild-type genomic library. SOR1 null mutants generated via targeted gene replacement confirmed the requirement for SOR1 in photosensitizer resistance. SOR1 RNA is present throughout the growth cycle. Although resistance to singlet oxygen is rare in biological systems, SOR1, a gene with demonstrated activity against singlet-oxygen-generating photosensitizers, is highly conserved in organisms from widely diverse taxa. The characterization of SOR1 provides an additional phenotype to this large group of evolutionarily conserved genes.

  17. Conservation of the Exon-Intron Structure of Long Intergenic Non-Coding RNA Genes in Eutherian Mammals

    PubMed Central

    Chernikova, Diana; Managadze, David; Glazko, Galina V.; Makalowski, Wojciech; Rogozin, Igor B.

    2016-01-01

    The abundance of mammalian long intergenic non-coding RNA (lincRNA) genes is high, yet their functions remain largely unknown. One possible way to study this important question is to use large-scale comparisons of various characteristics of lincRNA with those of protein-coding genes for which a large body of functional information is available. A prominent feature of mammalian protein-coding genes is the high evolutionary conservation of the exon-intron structure. Comparative analysis of putative intron positions in lincRNA genes from various mammalian genomes suggests that some lincRNA introns have been conserved for over 100 million years, thus the primary and/or secondary structure of these molecules is likely to be functionally important. PMID:27429005

  18. The importance of immune gene variability (MHC) in evolutionary ecology and conservation

    PubMed Central

    Sommer, Simone

    2005-01-01

    Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of

  19. Evolutionary conservation of an atypical glucocorticoid-responsive element in the human tyrosine hydroxylase gene.

    PubMed

    Sheela Rani, C S; Soto-Pina, Alexandra; Iacovitti, Lorraine; Strong, Randy

    2013-07-01

    The human tyrosine hydroxylase (hTH) gene has a 42 bp evolutionarily conserved region designated (CR) II at -7.24 kb, which bears 93% homology to the region we earlier identified as containing the glucocorticoid response element, a 7 bp activator protein-1 (AP-1)-like motif in the rat TH gene. We cloned this hTH-CRII region upstream of minimal basal hTH promoter in luciferase (Luc) reporter vector, and tested glucocorticoid responsiveness in human cell lines. Dexamethasone (Dex) stimulated Luc activity of hTH-CRII in HeLa cells, while mifepristone, a glucocorticoid receptor (GR) antagonist, prevented Dex stimulation. Deletion of the 7 bp 5'-TGACTAA at -7243 bp completely abolished the Dex-stimulated Luc activity of hTH-CRII construct. The AP-1 agonist, tetradeconoyl-12,13-phorbol acetate (TPA), also stimulated hTH promoter activity, and Dex and TPA together further accentuated this response. Chromatin immunoprecipitation assays revealed the presence of both GR and AP-1 proteins, especially Jun family members, at this hTH promoter site. Dex did not stimulate hTH promoter activity in a catecholaminergic cell line, which had low endogenous GR levels, but did activate the response when GR was expressed exogenously. Thus, our studies have clearly identified a glucocorticoid-responsive element in a 7 bp AP-1-like motif in the promoter region at -7.24 kb of the human TH gene.

  20. Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR.

    PubMed Central

    Karkhoff-Schweizer, R R; Huber, D P; Voordouw, G

    1995-01-01

    The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment. PMID:7887608

  1. Structure and sequence conservation of hao cluster genes of autotrophic ammonia-oxidizing bacteria: evidence for their evolutionary history.

    PubMed

    Bergmann, David J; Hooper, Alan B; Klotz, Martin G

    2005-09-01

    Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c(554); and cycB, cytochrome c(m)(552). The deduced protein sequences of HAO, c(554), and c(m)(552) were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes c(m)(552), NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c(554) gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c(554) gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB.

  2. Structure and Sequence Conservation of hao Cluster Genes of Autotrophic Ammonia-Oxidizing Bacteria: Evidence for Their Evolutionary History

    PubMed Central

    Bergmann, David J.; Hooper, Alan B.; Klotz, Martin G.

    2005-01-01

    Comparison of the organization and sequence of the hao (hydroxylamine oxidoreductase) gene clusters from the gammaproteobacterial autotrophic ammonia-oxidizing bacterium (aAOB) Nitrosococcus oceani and the betaproteobacterial aAOB Nitrosospira multiformis and Nitrosomonas europaea revealed a highly conserved gene cluster encoding the following proteins: hao, hydroxylamine oxidoreductase; orf2, a putative protein; cycA, cytochrome c554; and cycB, cytochrome cm552. The deduced protein sequences of HAO, c554, and cm552 were highly similar in all aAOB despite their differences in species evolution and codon usage. Phylogenetic inference revealed a broad family of multi-c-heme proteins, including HAO, the pentaheme nitrite reductase, and tetrathionate reductase. The c-hemes of this group also have a nearly identical geometry of heme orientation, which has remained conserved during divergent evolution of function. High sequence similarity is also seen within a protein family, including cytochromes cm552, NrfH/B, and NapC/NirT. It is proposed that the hydroxylamine oxidation pathway evolved from a nitrite reduction pathway involved in anaerobic respiration (denitrification) during the radiation of the Proteobacteria. Conservation of the hydroxylamine oxidation module was maintained by functional pressure, and the module expanded into two separate narrow taxa after a lateral gene transfer event between gamma- and betaproteobacterial ancestors of extant aAOB. HAO-encoding genes were also found in six non-aAOB, either singly or tandemly arranged with an orf2 gene, whereas a c554 gene was lacking. The conservation of the hao gene cluster in general and the uniqueness of the c554 gene in particular make it a suitable target for the design of primers and probes useful for molecular ecology approaches to detect aAOB. PMID:16151127

  3. Conserved pattern of antisense overlapping transcription in the homologous human ERCC-1 and yeast RAD10 DNA repair gene regions.

    PubMed Central

    van Duin, M; van Den Tol, J; Hoeijmakers, J H; Bootsma, D; Rupp, I P; Reynolds, P; Prakash, L; Prakash, S

    1989-01-01

    We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature. Images PMID:2471070

  4. The expression pattern of genes involved in early neurogenesis suggests distinct and conserved functions in the diplopod Glomeris marginata.

    PubMed

    Pioro, Hilary L; Stollewerk, Angelika

    2006-01-01

    We have shown recently that the expression and function of proneural genes is conserved in chelicerates and myriapods, although groups of neural precursors are specified in the ventral neuroectoderm of these arthropod groups, rather than single cells as in insects and crustaceans. We present additional evidence that the pattern of neurogenesis seen in chelicerates and in previously analyzed myriapod species is representative of both arthropod groups, by analysing the formation of neural precursors in the diplopod Archispirostreptus sp. This raises the question as to what extent the genetic network has been modified to result in different modes of neurogenesis in the arthropod group. To find out which components of the neural genetic network might account for the different mode of neural precursor formation in chelicerates and myriapods, we identified genes in the diplopod Glomeris marginata that are known to be involved in early neurogenesis in Drosophila and studied their expression pattern. In Drosophila, early neurogenesis is controlled by proneural genes that encode HLH transcription factors. These genes belong to two major subfamilies, the achaete-scute group and the atonal group. Different proneural proteins activate both a common neural programme and distinct neuronal subtype-specific target genes. We show that the expression pattern of homologs of the Drosophila proneural genes daughterless, atonal, and Sox B1 are partially conserved in Glomeris mariginata. While the expression of the pan-neural gene snail is conserved in the ventral neuroectoderm of G. marginata, we found an additional expression domain in the ventral midline. We conclude that, although the components of the genetic network involved in specification of neural precursors seem to be conserved in chelicerates, myriapods, and Drosophila, the function of some of the genes might have changed during evolution.

  5. Two males with SRY-positive 46,XX testicular disorder of sex development.

    PubMed

    Gunes, Sezgin; Asci, Ramazan; Okten, Gülsen; Atac, Fatih; Onat, Onur E; Ogur, Gonul; Aydin, Oguz; Ozcelik, Tayfun; Bagci, Hasan

    2013-02-01

    The 46,XX testicular disorder of sex development (46,XX testicular DSD) is a rare phenotype associated with disorder of the sex chromosomes. We describe the clinical, molecular, and cytogenetic findings of a 16- and a 30-year-old male patient with sex-determining region Y (SRY)-positive 46,XX testicular DSD. Chromosomal analysis revealed 46,XX karyotype. Fluorescence in situ hybridization (FISH) showed the SRY region translocated to the short arm of the X chromosome. The presence of the SRY gene was also confirmed by polymerase chain reaction (PCR). The X chromosome inactivation (XCI) assay showed that both patients have a random pattern of X chromosome inactivation. This report compares the symptoms and features of the SRY-positive 46,XX testicular DSD patients.

  6. Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2

    PubMed Central

    Wang, Yonggang; Xin, Ying; Tan, Yi

    2017-01-01

    Although angiotensin II (Ang II) was reported to facilitate sperm motility and intratesticular sperm transport, recent findings shed light on the efficacy of Ang II in stimulating inflammatory events in testicular peritubular cells, effect of which may play a role in male infertility. It is still unknown whether Ang II can induce testicular apoptotic cell death, which may be a more direct action of Ang II in male infertility. Therefore, the present study aims to determine whether Ang II can induce testicular apoptotic cell death and whether this action can be prevented by sulforaphane (SFN) via activating nuclear factor (erythroid-derived 2)-like 2 (NRF2), the governor of antioxidant-redox signalling. Eight-week-old male C57BL/6J wild type (WT) and Nrf2 gene knockout mice were treated with Ang II, in the presence or absence of SFN. In WT mice, SFN activated testicular NRF2 expression and function, along with a marked attenuation in Ang II-induced testicular oxidative stress, inflammation, endoplasmic reticulum stress, and apoptotic cell death. Deletion of the Nrf2 gene led to a complete abolishment of these efficacies of SFN. The present study indicated that Ang II may result in testicular apoptotic cell death, which can be prevented by SFN via the activation of NRF2. PMID:28191275

  7. The Bacterial iprA Gene Is Conserved across Enterobacteriaceae, Is Involved in Oxidative Stress Resistance, and Influences Gene Expression in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Herman, Allison; Serfecz, Jacquelyn; Kinnally, Alexandra; Crosby, Kathleen; Youngman, Matthew; Wykoff, Dennis

    2016-01-01

    ABSTRACT The iprA gene (formerly known as yaiV or STM0374) is located in a two-gene operon in the Salmonella enterica serovar Typhimurium genome and is associated with altered expression during spaceflight and rotating-wall-vessel culture conditions that increase virulence. However, iprA is uncharacterized in the literature. In this report, we present the first targeted characterization of this gene, which revealed that iprA is highly conserved across Enterobacteriaceae. We found that S. Typhimurium, Escherichia coli, and Enterobacter cloacae ΔiprA mutant strains display a multi-log-fold increase in oxidative stress resistance that is complemented using a plasmid-borne wild-type (WT) copy of the S. Typhimurium iprA gene. This observation was also associated with increased catalase activity, increased S. Typhimurium survival in macrophages, and partial dependence on the katE gene and full dependence on the rpoS gene. Our results indicate that IprA protein activity is sensitive to deletion of the N- and C-terminal 10 amino acids, while a region that includes amino acids 56 to 80 is dispensable for activity. RNA sequencing (RNA-Seq) analysis revealed several genes altered in expression in the S. Typhimurium ΔiprA mutant strain compared to the WT, including those involved in fimbria formation, spvABCD-mediated virulence, ethanolamine utilization, the phosphotransferase system (PTS) transport, and flagellin phase switching from FlgB to FliC (likely a stochastic event) and several genes of hypothetical or putative function. IMPORTANCE Overall, this work reveals that the conserved iprA gene measurably influences bacterial biology and highlights the pool of currently uncharacterized genes that are conserved across bacterial genomes. These genes represent potentially useful targets for bacterial engineering, vaccine design, and other possible applications. PMID:27246569

  8. A conserved splicing mechanism of the LMNA gene controls premature aging.

    PubMed

    Lopez-Mejia, Isabel C; Vautrot, Valentin; De Toledo, Marion; Behm-Ansmant, Isabelle; Bourgeois, Cyril F; Navarro, Claire L; Osorio, Fernando G; Freije, José M P; Stévenin, James; De Sandre-Giovannoli, Annachiara; Lopez-Otin, Carlos; Lévy, Nicolas; Branlant, Christiane; Tazi, Jamal

    2011-12-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder phenotypically characterized by many features of premature aging. Most cases of HGPS are due to a heterozygous silent mutation (c.1824C>T; p.Gly608Gly) that enhances the use of an internal 5' splice site (5'SS) in exon 11 of the LMNA pre-mRNA and leads to the production of a truncated protein (progerin) with a dominant negative effect. Here we show that HGPS mutation changes the accessibility of the 5'SS of LMNA exon 11 which is sequestered in a conserved RNA structure. Our results also reveal a regulatory role of a subset of serine-arginine (SR)-rich proteins, including serine-arginine rich splicing factor 1 (SRSF1) and SRSF6, on utilization of the 5'SS leading to lamin A or progerin production and a modulation of this regulation in the presence of the c.1824C>T mutation is shown directly on HGPS patient cells. Mutant mice carrying the equivalent mutation in the LMNA gene (c.1827C>T) also accumulate progerin and phenocopy the main cellular alterations and clinical defects of HGPS patients. RNAi-induced depletion of SRSF1 in the HGPS-like mouse embryonic fibroblasts (MEFs) allowed progerin reduction and dysmorphic nuclei phenotype correction, whereas SRSF6 depletion aggravated the HGPS-like MEF's phenotype. We demonstrate that changes in the splicing ratio between lamin A and progerin are key factors for lifespan since heterozygous mice harboring the mutation lived longer than homozygous littermates but less than the wild-type. Genetic and biochemical data together favor the view that physiological progerin production is under tight control of a conserved splicing mechanism to avoid precocious aging.

  9. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity

    PubMed Central

    Okuwa, Sumie; Maciejewski, Abigail; Brandt, Alicia T.; Reinhold, Dominik; Jones, Corbin D.; Volkan, Pelin Cayirlioglu

    2016-01-01

    Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1–4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity. PMID:26765103

  10. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation

    PubMed Central

    Wang, Jianbo; Hamblet, Natasha S.; Mark, Sharayne; Dickinson, Mary E.; Brinkman, Brendan C.; Segil, Neil; Fraser, Scott E.; Chen, Ping; Wallingford, John B.; Wynshaw-Boris, Anthony

    2014-01-01

    The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension. PMID:16571627

  11. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity.

    PubMed

    Li, Qingyun; Barish, Scott; Okuwa, Sumie; Maciejewski, Abigail; Brandt, Alicia T; Reinhold, Dominik; Jones, Corbin D; Volkan, Pelin Cayirlioglu

    2016-01-01

    Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.

  12. The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development.

    PubMed Central

    Scanlon, M J; Chen, K D; McKnight CC, I V

    2000-01-01

    The narrow sheath mutant of maize displays a leaf and plant stature phenotype controlled by the duplicate factor mutations narrow sheath1 and narrow sheath2. Mutant leaves fail to develop a lateral domain that includes the leaf margins. Genetic data are presented to show that the narrow sheath mutations map to duplicated chromosomal regions, reflecting an ancestral duplication of the maize genome. Genetic and cytogenetic evidence indicates that the original mutation at narrow sheath2 is associated with a chromosomal inversion on the long arm of chromosome 4. Meristematic sectors of dual aneuploidy were generated, producing plants genetically mosaic for NARROW SHEATH function. These mosaic plants exhibited characteristic half-plant phenotypes, in which leaves from one side of the plant were of nonmutant morphology and leaves from the opposite side were of narrow sheath mutant phenotype. The data suggest that the narrow sheath duplicate genes may perform ancestrally conserved, redundant functions in the development of a lateral domain in the maize leaf. PMID:10880496

  13. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    PubMed

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes.

  14. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  15. What Are the Key Statistics about Testicular Cancer?

    MedlinePlus

    ... Cancer About Testicular Cancer What Are the Key Statistics About Testicular Cancer? The American Cancer Society’s estimates ... you would like to know more about survival statistics, see Testicular cancer survival rates . Visit the American ...

  16. How to Perform a Testicular Self-Examination

    MedlinePlus

    ... bumps — which can be the first sign of testicular cancer . Although testicular cancer is rare in teenage guys, overall it is ... checked by your doctor as soon as possible. Testicular cancer is almost always curable if it is caught ...

  17. Candidate genes associated with testicular development, sperm quality, and hormone levels of inhibin, luteinizing hormone, and insulin-like growth factor 1 in Brahman bulls.

    PubMed

    Fortes, Marina R S; Reverter, Antonio; Hawken, Rachel J; Bolormaa, Sunduimijid; Lehnert, Sigrid A

    2012-09-01

    Bull fertility is an important target for genetic improvement, and early prediction using genetic markers is therefore a goal for livestock breeding. We performed genome-wide association studies to identify genes associated with fertility traits measured in young bulls. Data from 1118 Brahman bulls were collected for six traits: blood hormone levels of inhibin (IN) at 4 mo, luteinizing hormone (LH) following a gonadotropin-releasing hormone challenge at 4 mo, and insulin-like growth factor 1 (IGF1) at 6 mo, scrotal circumference (SC) at 12 mo, ability to produce sperm (Sperm) at 18 mo, and percentage of normal sperm (PNS) at 24 mo. All the bulls were genotyped with the BovineSNP50 chip. Sires and dams of the bull population (n = 304) were genotyped with the high-density chip (∼800 000 polymorphisms) to allow for imputation, thereby contributing detail on genome regions of interest. Polymorphism associations were discovered for all traits, except for Sperm. Chromosome 2 harbored polymorphisms associated with IN. For LH, associated polymorphisms were located in five different chromosomes. A region of chromosome 14 contained polymorphisms associated with IGF1 and SC. Regions of the X chromosome showed associations with SC and PNS. Associated polymorphisms yielded candidate genes in chromosomes 2, 14, and X. These findings will contribute to the development of genetic markers to help select cattle with improved fertility and will lead to better annotation of gene function in the context of reproductive biology.

  18. Patterns of evolutionary conservation of ascorbic acid-related genes following whole-genome triplication in Brassica rapa.

    PubMed

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Du, Jianchang; Li, Ying

    2014-12-31

    Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase-ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12-18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa.

  19. Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa

    PubMed Central

    Duan, Weike; Song, Xiaoming; Liu, Tongkun; Huang, Zhinan; Ren, Jun; Hou, Xilin; Du, Jianchang; Li, Ying

    2015-01-01

    Ascorbic acid (AsA) is an important antioxidant in plants and an essential vitamin for humans. Extending the study of AsA-related genes from Arabidopsis thaliana to Brassica rapa could shed light on the evolution of AsA in plants and inform crop breeding. In this study, we conducted whole-genome annotation, molecular-evolution and gene-expression analyses of all known AsA-related genes in B. rapa. The nucleobase–ascorbate transporter (NAT) gene family and AsA l-galactose pathway genes were also compared among plant species. Four important insights gained are that: 1) 102 AsA-related gene were identified in B. rapa and they mainly diverged 12–18 Ma accompanied by the Brassica-specific genome triplication event; 2) during their evolution, these AsA-related genes were preferentially retained, consistent with the gene dosage hypothesis; 3) the putative proteins were highly conserved, but their expression patterns varied; and 4) although the number of AsA-related genes is higher in B. rapa than in A. thaliana, the AsA contents and the numbers of expressed genes in leaves of both species are similar, the genes that are not generally expressed may serve as substitutes during emergencies. In summary, this study provides genome-wide insights into evolutionary history and mechanisms of AsA-related genes following whole-genome triplication in B. rapa. PMID:25552535

  20. Comparative analysis of a conserved zinc finger gene cluster on human chromosome 19q and mouse chromosome 7.

    PubMed

    Shannon, M; Ashworth, L K; Mucenski, M L; Lamerdin, J E; Branscomb, E; Stubbs, L

    1996-04-01

    Several lines of evidence now suggest that many of the zinc-finger-containing (ZNF) genes in the human genome are arranged in clusters. However, little is known about the structure or function of the clusters or about their conservation throughout evolution. Here, we report the analysis of a conserved ZNF gene cluster located in human chromosome 19q13.2 and mouse chromosome 7. Our results indicate that the human cluster consists of at least 10 related Kruppel-associated box (KRAB)-containing ZNF genes organized in tandem over a distance of 350-450 kb. Two cDNA clones representing genes in the murine cluster have been studied in detail. The KRAB A domains of these genes are nearly identical and are highly similar to human 19q13.2-derived KRAB sequences, but DNA-binding ZNF domains and other portions of the genes differ considerably. The two murine genes display distinct expression patterns, but are coexpressed in some adult tissues. These studies pave the way for a systematic analysis of the evolution of structure and function of genes within the numerous clustered ZNF families located on human chromosome 19 and elsewhere in the human and mouse genomes.

  1. Male-enhanced expression and genetic conservation of a gene isolated with an anti-H-Y antibody.

    PubMed

    Lau, Y F; Chan, K M; Kan, Y W; Goldberg, E

    1987-01-01

    The hypothesis of the serological H-Y antigen as the inducer molecule for mammalian male sex differentiation has been considered an important working model in developmental biology. However, because of the difficulties involved in its detection, supporting evidence in molecular terms is lacking for this hypothesis. The isolation of the gene for the serological H-Y antigen is essential to the acertainment of its proposed functions. Using recombinant DNA technology and specific anti-H-Y sera we have isolated a candidate gene, the MEA gene, for the serological H-Y antigen. Molecular characterization of the MEA gene shows male-enhanced expression and genetic conservation patterns similar to those attributed to the serological H-Y antigen. The isolation of this candidate gene for the serological H-Y antigen. The isolation of this candidate gene for the serological H-Y antigen would allow further investigations to identify the functions for this molecule in molecular terms.

  2. Timely diagnosis of testicular cancer.

    PubMed

    Moul, Judd W

    2007-05-01

    Early detection of testicular tumors has been touted as beneficial for more than 100 years. In earlier eras, early detection was virtually the only way to improve outcomes. According to statistics that have been tracked in the literature, however, the delay from initial symptoms to definitive diagnosis by radical orchiectomy has averaged 4 to 5 months. In the modern era of effective chemotherapy, the effects of a delayed diagnosis on survival can be overcome but at the cost of a more morbid treatment regimen. Although screening on a population basis is not currently recommended by the National Cancer Institute, teaching testicular self examination to young men, particularly those who have risk factors, is reasonable.

  3. Comparative Analysis of Pistil Transcriptomes Reveals Conserved and Novel Genes Expressed in Dry, Wet, and Semidry Stigmas1[W

    PubMed Central

    Allen, Alexandra M.; Lexer, Christian; Hiscock, Simon J.

    2010-01-01

    Fertilization in angiosperms depends on a complex cellular “courtship” between haploid pollen and diploid pistil. These pollen-pistil interactions are regulated by a diversity of molecules, many of which remain to be identified and characterized. Thus, it is unclear to what extent these processes are conserved among angiosperms, a fact confounded by limited sampling across taxa. Here, we report the analysis of pistil-expressed genes in Senecio squalidus (Asteraceae), a species from euasterid II, a major clade for which there are currently no data on pistil-expressed genes. Species from the Asteraceae characteristically have a “semidry stigma,” intermediate between the “wet” and “dry” stigmas typical of the majority of angiosperms. Construction of pistil-enriched cDNA libraries for S. squalidus allowed us to address two hypotheses: (1) stigmas of S. squalidus will express genes common to wet and dry stigmas and genes specific to the semidry stigma characteristic of the Asteraceae; and (2) genes potentially essential for pistil function will be conserved between diverse angiosperm groups and therefore common to all currently available pistil transcriptome data sets, including S. squalidus. Our data support both these hypotheses. The S. squalidus pistil transcriptome contains novel genes and genes previously identified in pistils of species with dry stigmas and wet stigmas. Comparative analysis of the five pistil transcriptomes currently available (Oryza sativa, Crocus sativus, Arabidopsis thaliana, Nicotiana tabacum, and S. squalidus), representing four major angiosperm clades and the three stigma states, identified novel genes and conserved genes potentially regulating pollen-pistil interaction pathways common to monocots and eudicots. PMID:20813907

  4. Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes.

    PubMed

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  5. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  6. Refining the regulatory region upstream of SOX9 associated with 46,XX testicular disorders of Sex Development (DSD).

    PubMed

    Hyon, Capucine; Chantot-Bastaraud, Sandra; Harbuz, Radu; Bhouri, Rakia; Perrot, Nicolas; Peycelon, Matthieu; Sibony, Mathilde; Rojo, Sandra; Piguel, Xavier; Bilan, Frederic; Gilbert-Dussardier, Brigitte; Kitzis, Alain; McElreavey, Ken; Siffroi, Jean-Pierre; Bashamboo, Anu

    2015-08-01

    Disorders of Sex Development (DSD) are a heterogeneous group of disorders affecting gonad and/or genito-urinary tract development and usually the endocrine-reproductive system. A genetic diagnosis is made in only around 20% of these cases. The genetic causes of 46,XX-SRY negative testicular DSD as well as ovotesticular DSD are poorly defined. Duplications involving a region located ∼600 kb upstream of SOX9, a key gene in testis development, were reported in several cases of 46,XX DSD. Recent studies have narrowed this region down to a 78 kb interval that is duplicated or deleted respectively in 46,XX or 46,XY DSD. We identified three phenotypically normal patients presenting with azoospermia and 46,XX testicular DSD. Two brothers carried a 83.8 kb duplication located ∼600 kb upstream of SOX9 that overlapped with the previously reported rearrangements. This duplication refines the minimal region associated with 46,XX-SRY negative DSD to a 40.7-41.9 kb element located ∼600 kb upstream of SOX9. Predicted enhancer elements and evolutionary-conserved binding sites for proteins known to be involved in testis determination are located within this region.

  7. Conserved 5' flank homologies in dipteran 5S RNA genes that would function on 'A' form DNA.

    PubMed Central

    Rubacha, A; Sumner, W; Richter, L; Beckingham, K

    1984-01-01

    We have sequenced the 480 base pair (bp) repeating unit of the 5S RNA genes of the Dipteran fly Calliphora erythrocephala and compared this sequence to the three known 5S RNA gene sequences from the Dipteran Genus Drosophila (1,2). A striking series of five perfectly conserved homologies identically positioned within the 5' flanks of all four Dipteran 5S RNA coding regions has thus been identified. The spacing (12-13 bp) between all of these homologies is typical of A form rather than B form DNA. Given that the eukaryotic 5S RNA gene specific initiation factor TFIIIA (3) is a DNA unwinding protein (4), a role for these Dipteran 5' flank homologies in initiation site selection on 5S RNA genes transiently unwound for transcription is suggested. One of the Dipteran homology blocks is highly conserved in sequence and position in all but one of the eukaryotic 5S RNA gene sequences known to date (17/18 genes). Its sequence (consensus: TATAAG) and position (average center: -26 bp) are highly reminiscent of the polymerase II gene 'TATA' box (5). PMID:6209610

  8. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice.

    PubMed

    Miyata, Haruhiko; Castaneda, Julio M; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M

    2016-07-12

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others.

  9. Testicular shielding in penile brachytherapy

    PubMed Central

    Bindal, Arpita; Tambe, Chandrashekhar M.; Ghadi, Yogesh; Murthy, Vedang; Shrivastava, Shyam Kishore

    2015-01-01

    Purpose Penile cancer, although rare, is one of the common genitourinary cancers in India affecting mostly aged uncircumcised males. For patients presenting with small superficial lesions < 3 cm restricted to glans, surgery, radical external radiation or brachytherapy may be offered, the latter being preferred as it allows organ and function preservation. In patients receiving brachytherapy, testicular morbidity is not commonly addressed. With an aim to minimize and document the doses to testis after adequate shielding during radical interstitial brachytherapy for penile cancers, we undertook this study in 2 patients undergoing brachytherapy and forms the basis of this report. Material and methods Two patients with early stage penile cancer limited to the glans were treated with radical high-dose-rate (HDR) brachytherapy using interstitial implant. A total of 7-8 tubes were implanted in two planes, parallel to the penile shaft. A total dose of 44-48 Gy (55-60 Gy EQD2 doses with α/β = 10) was delivered in 11-12 fractions of 4 Gy each delivered twice daily. Lead sheets adding to 11 mm (4-5 half value layer) were interposed between the penile shaft and scrotum. The testicular dose was measured using thermoluminescent dosimeters. For each patient, dosimetry was done for 3 fractions and mean calculated. Results The cumulative testicular dose to left and right testis was 31.68 cGy and 42.79 cGy for patient A, and 21.96 cGy and 23.28 cGy for patient B. For the same patients, the mean cumulative dose measured at the posterior aspect of penile shaft was 722.15 cGy and 807.72 cGy, amounting to 16.4% and 16.8% of the prescribed dose. Hence, the application of lead shield 11 mm thick reduced testicular dose from 722-808 cGy to 21.96-42.57 cGy, an “absolute reduction” of 95.99 ± 1.5%. Conclusions With the use of a simple lead shield as described, we were able to effectively reduce testicular dose from “spermicidal” range to “oligospermic” range with possible

  10. Bacterial intra-species gene loss occurs in a largely clocklike manner mostly within a pool of less conserved and constrained genes

    PubMed Central

    Bolotin, Evgeni; Hershberg, Ruth

    2016-01-01

    Gene loss is a major contributor to the evolution of bacterial gene content. Gene loss may occur as a result of shifts in environment leading to changes in the intensity and/or directionality of selection applied for the maintenance of specific genes. Gene loss may also occur in a more neutral manner, when gene functions are lost that were not subject to strong selection to be maintained, irrespective of changes to environment. Here, we used a pangenome-based approach to investigate patterns of gene loss across 15 bacterial species. We demonstrate that gene loss tends to occur mostly within a pool of genes that are less constrained within species, even in those strains from which they are not lost, and less conserved across bacterial species. Our results indicate that shifts in selection, resulting from shifts in environment are not required to explain the majority of gene loss events occurring within a diverse collection of bacterial species. Caution should therefore be taken when attributing differences in gene content to differences in environment. PMID:27734920

  11. Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae): evidence for conserved gene order in annelida.

    PubMed

    Jennings, Robert M; Halanych, Kenneth M

    2005-02-01

    Mitochondrial genomes are useful tools for inferring evolutionary history. However, many taxa are poorly represented by available data. Thus, to further understand the phylogenetic potential of complete mitochondrial genome sequence data in Annelida (segmented worms), we examined the complete mitochondrial sequence for Clymenella torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila (Siboglinidae). These genomes have remarkably similar gene orders to previously published annelid genomes, suggesting that gene order is conserved across annelids. This result is interesting, given the high variation seen in the closely related Mollusca and Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence, and gene order all support the recent hypothesis that Sipuncula and Annelida are closely related. Our findings suggest that gene order data is of limited utility in annelids but that sequence data holds promise. Additionally, these genomes show AT bias (approximately 66%) and codon usage biases but have a typical gene complement for bilaterian mitochondrial genomes.

  12. Inheritance and testicular cancer.

    PubMed Central

    Nicholson, P. W.; Harland, S. J.

    1995-01-01

    Statistical analysis of published data on the age of onset of germ cell tumours of the testis and of the prevalence of bilateral disease in familial and general cases suggest the following: 1. Patients with bilateral disease carry the same genetic predisposition as familial cases. 2. Males with the hereditary predisposition develop none, unilateral or bilateral tumours in the proportions 55%, 38% and 7% respectively. 3. One-third of all testis cancer patients are genetically predisposed to the disease. 4. The 2.2% risk to brothers of cases as reported elsewhere can be accounted for by the homozygous (recessive) inheritance of a single predisposing gene. PMID:7841065

  13. CPU86017-RS attenuate hypoxia-induced testicular dysfunction in mice by normalizing androgen biosynthesis genes and pro-inflammatory cytokines

    PubMed Central

    Zhang, Guo-lin; Yu, Feng; Dai, De-zai; Cheng, Yu-si; Zhang, Can; Dai, Yin

    2012-01-01

    Aim: Downregulation of androgen biosynthesis genes StAR (steroidogenic acute regulatory) and 3β-HSD (3β-hydroxysteroid dehydrogenase) contributes to low testosterone levels in hypoxic mice and is possibly related to increased expression of pro-inflammatory cytokines in the testis. The aim of this study is to investigate the effects of CPU86017-RS that block Ca2+ influx on hypoxia-induced testis insult in mice. Methods: Male ICR mice were divided into 5 groups: control group, hypoxia group, hypoxia group treated with nifedipine (10 mg/kg), hypoxia groups treated with CPU86017-RS (60 or 80 mg/kg). Hypoxia was induced by placing the mice in a chamber under 10%±0.5% O2 for 28 d (8 h per day). The mice were orally administered with drug in the last 14 d. At the end of experiment the testes of the mice were harvested. The mRNA and protein levels of StAR, 3β-HSD, connexin 43 (Cx43), matrix metalloprotease 9 (MMP9), endothelin receptor A (ETAR) and leptin receptor (OBRb) were analyzed using RT-PCR and Western blotting, respectively. The malondialdehyde (MDA), lactate dehydrogenase (LDH), succinate dehydrogenase (SDH) and acid phosphatase (ACP) levels were measured using biochemical kits. Serum testosterone concentration was measured with radioimmunoassay. Results: Hypoxia significantly increased the MDA level, and decreased the LDH, ACP and SDH activities in testes. Meanwhile, hypoxia induced significant downregulation of StAR and 3β-HSD in testes responsible for reduced testosterone biosynthesis. It decreased the expression of Cx43, and increased the expression of MMP9, ETAR and OBRb, leading to abnormal testis function and structure. These changes were effectively diminished by CPU86017-RS (80 mg/kg) or nifedipine (10 mg/kg). Conclusion: Low plasma testosterone level caused by hypoxia was due to downregulation of StAR and 3β-HSD genes, in association with an increased expression of pro-inflammatory cytokines. These changes can be alleviated by CPU86017-RS or

  14. Genome-Wide Gene Expression Profiling Reveals Conserved and Novel Molecular Functions of the Stigma in Rice1[W

    PubMed Central

    Li, Meina; Xu, Wenying; Yang, Wenqiang; Kong, Zhaosheng; Xue, Yongbiao

    2007-01-01

    In angiosperms, the stigma provides initial nutrients and guidance cues for pollen grain germination and tube growth. However, little is known about the genes that regulate these processes in rice (Oryza sativa). Here, we generate rice stigma-specific or -preferential gene expression profiles through comparing genome-wide expression patterns of hand-dissected, unpollinated stigma at anthesis with seven tissues, including seedling shoot, seedling root, mature anther, ovary at anthesis, seeds 5 d after pollination, 10-d-old embryo, 10-d-old endosperm, and suspension-cultured cells by using both 57 K Affymetrix rice whole-genome array and 10 K rice cDNA microarray. A high reproducibility of the microarray results was detected between the two different technology platforms. In total, we identified 548 genes to be expressed specifically or predominantly in the stigma papillar cells of rice. Real-time quantitative reverse transcription-polymerase chain reaction analysis of 34 selected genes all confirmed their stigma-specific expression. The expression of five selected genes was further validated by RNA in situ hybridization. Gene Ontology analysis shows that several auxin-signaling components, transcription, and stress-related genes are significantly overrepresented in the rice stigma gene set. Interestingly, most of them also share several cis-regulatory elements with known stress-responsive genes, supporting the notion of an overlap of genetic programs regulating pollination and stress/defense responses. We also found that genes involved in cell wall metabolism and cellular communication appear to be conserved in the stigma between rice and Arabidopsis (Arabidopsis thaliana). Our results indicate that the stigmas appear to have conserved and novel molecular functions between rice and Arabidopsis. PMID:17556504

  15. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    PubMed Central

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  16. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    PubMed

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-11-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  17. Subfertility and Risk of Testicular Cancer in the EPSAM Case-Control Study

    PubMed Central

    Zugna, Daniela; Fiano, Valentina; Robles Rodriguez, Nena; Maule, Milena; Gillio-Tos, Anna; Ciuffreda, Libero; Lista, Patrizia; Segnan, Nereo; Merletti, Franco; Richiardi, Lorenzo

    2016-01-01

    Background/objectives It has been suggested that subfertility and testicular cancer share genetic and environmental risk factors. We studied both subfertility and the strongest known testicular cancer susceptibility gene, the c-KIT ligand (KITLG), whose pathway is involved in spermatogenesis. Methods The EPSAM case-control study is comprised of testicular cancer patients from the Province of Turin, Italy, diagnosed between 1997 and 2008. The present analysis included 245 cases and 436 controls from EPSAM, who were aged 20 years or older at diagnosis/recruitment. The EPSAM questionnaire collected information on factors such as number of children, age at first attempt to conceive, duration of attempt to conceive, use of assisted reproduction techniques, physician-assigned diagnosis of infertility, number of siblings, and self-reported cryptorchidism. Genotyping of the KITLG single nucleotide polymorphism (SNP) rs995030 was performed on the saliva samples of 202 cases and 329 controls. Results Testicular cancer was associated with the number of children fathered 5 years before diagnosis (odds ratio (OR) per additional child: 0.78, 95% confidence interval (CI): 0.58–1.04) and sibship size (OR per additional sibling: 0.76, 95% CI: 0.66–0.88). When considering the reproductive history until 1 year before diagnosis, attempting to conceive for at least 12 months or fathering a child using assisted reproduction techniques was not associated with the risk of testicular cancer, nor was age at first attempt to conceive or physician-assigned diagnosis of infertility. The SNP rs995030 was strongly associated with risk of testicular cancer (per allele OR: 1.83; 95%CI: 1.26–2.64), but it did not modify the association between number of children and the risk of testicular cancer. Conclusion This study supports the repeatedly reported inverse association between number of children and risk of testicular cancer, but it does not find evidence of an association for other

  18. Suppression subtractive hybridization (SSH) for isolation and characterization of genes related to testicular development in the giant tiger shrimp Penaeus monodon.

    PubMed

    Leelatanawit, Rungnapa; Klinbunga, Sirawut; Aoki, Takashi; Hirono, Ikuo; Valyasevi, Rudd; Menasveta, Piamsak

    2008-11-30

    Suppression subtractive hybridization (SSH) cDNA libraries of the giant tiger shrimp, Penaeus monodon, were constructed. In total, 178 and 187 clones from the forward and reverse SSH libraries, respectively, of P. monodon were unidirectionally sequenced. From these, 37.1% and 53.5% Expressed Sequence Tags (ESTs) significantly matched known genes (E-value < 1e-04). Three isoforms of P. monodon progestin membrane receptor component 1: PM-PGMRC1-s (1980 bp), PM-PGMRC1-m (2848 bp), and PM-PGMRC1-l (2971 bp), with an identical ORF of 573 bp corresponding to a deduced polypeptide of 190 amino acids, were successfully identified by RACE-PCR. Interestingly, PMPGMRC1 showed a greater expression level in testes of juvenile than broodstock P. monodon (P < 0.05). Dopamine administration (10(-6) mol/shrimp) resulted in up-regulation of PMPGMRC1 in testes of juveniles at 3 hrs post treatment (P < 0.05), but had no effect on PM-Dmc1 (P > 0.05).

  19. Circadian expression of the maize catalase Cat3 gene is highly conserved among diverse maize genotypes with structurally different promoters.

    PubMed Central

    Polidoros, A N; Scandalios, J G

    1998-01-01

    The Cat3 gene of maize exhibits a transcriptionally regulated circadian rhythm. In the present study we examined the following: (1) the extent of the circadian Cat3 expression between maize genotypes of diverse origin; (2) the functional significance of a Tourist transposable element located in the Cat3 promoter of the inbred line W64A, which harbors putative regulatory elements (GATA repeat, CCAAT boxes) shown to be involved in the light induction and circadian regulation of the Arabidopsis CAB2, as well as other plant genes; and (3) aspects of the physiological role of CAT-3 in maize metabolism. Results confirm that the circadian Cat3 expression is a general phenomenon in maize. Regulation of Cat3 gene expression is not dependent on the presence of the Tourist element in the promoter of the gene nor on the presence of motifs similar to those found significant in the circadian expression of the Arabidopsis CAB2 gene. Structural diversity was revealed in the Cat3 promoters of maize genotypes of diverse origins. However, highly conserved regions with putative regulatory motifs were identified. Relevance of the conserved regions to the circadian regulation of the gene is discussed. Possible physiological roles of CAT-3 are suggested. PMID:9584112

  20. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    Spermatogenesis, a study of germ cell development, is a long, orderly, and well-defined process occurring in seminiferous tubules of the testis. It is a temporal event whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa over a period of several weeks. Spermatogenesis is characterized by three specific functional phases: proliferation, meiosis, and differentiation, and it involves spermatogonia, spermatocytes, and spermatids. Germ cells at steps of development form various cellular associations or stages, with 6, 12, and 14 specific stages being identified in human, mouse, and rat, respectively. The stages evolve over time in a given area of the seminiferous tubule forming a cycle of the seminiferous epithelium that has a well-defined duration for a given species. In this part, we discuss the proliferation and meiotic phase whereby spermatogonia undergo several mitotic divisions to form spermatocytes that undergo two meiotic divisions to form haploid spermatids. In the rat, spermatogonia can be subdivided into several classes: stem cells (A(s)), proliferating cells (A(pr), A(al)), and differentiating cells (A(1)-A(4), In, B). They are dependent on a specific microenvironment (niche) contributed by Sertoli, myoid, and Leydig cells for proper development. Spermatogonia possess several surface markers whereby they can be identified from each other. During meiosis, spermatocytes undergo chromosomal pairing, synapsis, and genetic exchange as well as transforming into haploid cells following meiosis. The meiotic cells form specific structural entities such as the synaptonemal complex and sex body. Many genes involved in spermatogonial renewal and the meiotic process have been identified and shown to be essential for this event.

  1. Testicular Cancer Education in the Classroom.

    ERIC Educational Resources Information Center

    Wohl, Royal E.

    1998-01-01

    Testicular cancer (TC) education is not widespread, though TC is the most common cancer in men ages 15-34 years. Teachers can positively influence young men by providing TC and testicular self-examination (TSE) education in school. The paper describes TC and TSE, discussing strategies for and barriers to implementation of TC/TSE instruction in the…

  2. 21 CFR 876.3750 - Testicular prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Testicular prosthesis. 876.3750 Section 876.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Drug Administration on or before July 5, 1995, for any testicular prosthesis that was in...

  3. Promoter analysis of intestinal genes induced during iron-deprivation reveals enrichment of conserved SP1-like binding sites

    PubMed Central

    Collins, James F; Hu, Zihua

    2007-01-01

    Background Iron-deficiency leads to the induction of genes related to intestinal iron absorption and homeostasis. By analyzing a large GeneChip® dataset from the rat intestine, we identified a large cluster of 228 genes that was induced by iron-deprivation. Only 2 of these genes contained 3' iron-response elements, suggesting that other regulation including transcriptional may be involved. We therefore utilized computational methods to test the hypothesis that some of the genes within this large up-regulated cluster are co-ordinately regulated by common transcriptional mechanisms. We thus identified promoters from the up-regulated gene cluster from rat, mouse and human, and performed enrichment analyses with the Clover program and the TRANSFAC database. Results Surprisingly, we found a strong statistical enrichment for SP1 binding sites in our experimental promoters as compared to background sequences. As the TRANSFAC database cannot distinguish among SP/KLF family members, many of which bind similar GC-rich DNA sequences, we surmise that SP1 or an SP1-like factor could be involved in this response. In fact, we detected induction of SP6/KLF14 in the GeneChip® studies, and confirmed it by real-time PCR. Additional computational analyses suggested that an SP1-like factor may function synergistically with a FOX TF to regulate a subset of these genes. Furthermore, analysis of promoter sequences identified many genes with multiple, conserved SP1 and FOX binding sites, the relative location of which within orthologous promoters was highly conserved. Conclusion SP1 or a closely related factor may play a primary role in the genetic response to iron-deficiency in the mammalian intestine. PMID:18005439

  4. An evolutionary conserved region (ECR) in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    PubMed Central

    2011-01-01

    Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs), in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1) supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a) a strong enhancer that functions in neurons and b) a transcription factor that may modulate the function of that enhancer. PMID:21599953

  5. Computational Prediction of Phylogenetically Conserved Sequence Motifs for Five Different Candidate Genes in Type II Diabetic Nephropathy

    PubMed Central

    Sindhu, T; Rajamanikandan, S; Srinivasan, P

    2012-01-01

    Background: Computational identification of phylogenetic motifs helps to understand the knowledge about known functional features that includes catalytic site, substrate binding epitopes, and protein-protein interfaces. Furthermore, they are strongly conserved among orthologs, indicating their evolutionary importance. The study aimed to analyze five candidate genes involved in type II diabetic nephropathy and to predict phylogenetic motifs from their corresponding orthologous protein sequences. Methods: AKR1B1, APOE, ENPP1, ELMO1 and IGFBP1 are the genes that have been identified as an important target for type II diabetic nephropathy through experimental studies. Their corresponding protein sequences, structures, orthologous sequences were retrieved from UniprotKB, PDB, and PHOG database respectively. Multiple sequence alignments were constructed using ClustalW and phylogenetic motifs were identified using MINER. The occurrence of amino acids in the obtained phylogenetic motifs was generated using WebLogo and false positive expectations were calculated against phylogenetic similarity. Results: In total, 17 phylogenetic motifs were identified from the five proteins and the residues such as glycine, leucine, tryptophan, aspartic acid were found in appreciable frequency whereas arginine identified in all the predicted PMs. The result implies that these residues can be important to the functional and structural role of the proteins and calculated false positive expectations implies that they were generally conserved in traditional sense. Conclusion: The prediction of phylogenetic motifs is an accurate method for detecting functionally important conserved residues. The conserved motifs can be used as a potential drug target for type II diabetic nephropathy. PMID:23113206

  6. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance

    PubMed Central

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimarães

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  7. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces

    PubMed Central

    2014-01-01

    Background Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal. Results In this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily. Conclusions This study revealed high genetic diversity at conserved domains of six BLB

  8. Neonatal testicular torsion: a systematic literature review.

    PubMed

    Nandi, Biplab; Murphy, Feilim Liam

    2011-10-01

    Neonatal testicular torsion (NTT) is rare and reported salvage rates vary widely both in their cited frequency and plausibility. The timing and necessity of surgery is controversial with different centers arguing for the conservative management of all cases while others argue for prompt exploration for all. Confusion also reigns over the need to fix the contralateral testis. In order to clarify the issue the authors reviewed the literature and found 18 case series of NTT, containing 268 operated cases suitable for analysis. This paper reviews the literature on NTT specifically regarding salvage rates and timing/necessity of surgery. Its primary aim is to produce an overall salvage rate in the operated group. Overall salvage rate was 8.96%, 24 testes. When operation is specified as an emergency, salvage may be as high as 21.7%. While salvage of a testis torted at birth is rare, it is reported. Early asynchronous torsion is also rare but reported. Worryingly, bilateral torsion can present with unilateral signs.Given these findings, we would suggest early surgery with fixation of the contralateral side.

  9. Interferon-Induced Genes of the Expanded IFIT Family Show Conserved Antiviral Activities in Non-Mammalian Species

    PubMed Central

    Pereiro, Patricia; Forn-Cuní, Gabriel; Costa, Maria M.; Dios, Sonia; Romero, Alejandro; Figueras, Antonio; Novoa, Beatriz

    2014-01-01

    Interferon-induced proteins with tetratricopeptide repeats (IFITs) are involved in the protective response to viral infection, although the precise mechanism of IFITs for reducing viral proliferation is currently unknown. The interaction with the translation initiation factor eIF-3 or viral proteins and the sequestering of viral RNA have been proposed as potential antiviral functions for these proteins. In humans, four members of this family have been characterized. Nevertheless, information about these proteins in fish is almost non-existent. Exploiting the conservation of synteny between human and zebrafish genomes, we have identified ten members of the IFIT family located on four different chromosomes. The induction of these genes was examined both in vitro and in vivo after interferon (IFN) administration and rhabdovirus challenge. Whereas an induction of IFIT genes was observed after interferon treatments (IFNΦ1, IFNΦ2 and IFNΦ3), the viral infection did not affect these IFN-induced genes in vitro, and even reduced the IFN-induced expression of these genes. The response was largely different in vivo, with a broad up-regulation of IFIT genes after viral challenge. In addition, three selected IFITs were cloned in an expression vector and microinjected into zebrafish larvae to examine the protective effect of IFITs upon viral infection. Reduction in the mortality rate was observed confirming a conserved antiviral function in non-mammalian species. PMID:24950240

  10. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter

    PubMed Central

    Wang, Meng; Banerjee, Kasturi; Baker, Harriet; Cave, John W.

    2015-01-01

    Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis and its gene proximal promoter ( < 1 kb upstream from the transcription start site) is essential for regulating transcription in both the developing and adult nervous systems. Several putative regulatory elements within the TH proximal promoter have been reported, but evolutionary conservation of these elements has not been thoroughly investigated. Since many vertebrate species are used to model development, function and disorders of human catecholaminergic neurons, identifying evolutionarily conserved transcription regulatory mechanisms is a high priority. In this study, we align TH proximal promoter nucleotide sequences from several vertebrate species to identify evolutionarily conserved motifs. This analysis identified three elements (a TATA box, cyclic AMP response element (CRE) and a 5′-GGTGG-3′ site) that constitute the core of an ancient vertebrate TH promoter. Focusing on only eutherian mammals, two regions of high conservation within the proximal promoter were identified: a ∼250 bp region adjacent to the transcription start site and a ∼85 bp region located approximately 350 bp further upstream. Within both regions, conservation of previously reported cis-regulatory motifs and human single nucleotide variants was evaluated. Transcription reporter assays in a TH -expressing cell line demonstrated the functionality of highly conserved motifs in the proximal promoter regions and electromobility shift assays showed that brain-region specific complexes assemble on these motifs. These studies also identified a non-canonical CRE binding (CREB) protein recognition element in the proximal promoter. Together, these studies provide a detailed analysis of evolutionary conservation within the TH promoter and identify potential cis-regulatory motifs that underlie a core set of regulatory mechanisms in mammals. PMID:25774193

  11. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits

    PubMed Central

    Ravel, Catherine; Fiquet, Samuel; Boudet, Julie; Dardevet, Mireille; Vincent, Jonathan; Merlino, Marielle; Michard, Robin; Martre, Pierre

    2014-01-01

    The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression. PMID:25429295

  12. Comparative Mitogenomics of the Genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) Revealed Conserved Gene Rearrangement and High Sequence Variations

    PubMed Central

    Ma, Zhihong; Yang, Xuefen; Bercsenyi, Miklos; Wu, Junjie; Yu, Yongyao; Wei, Kaijian; Fan, Qixue; Yang, Ruibin

    2015-01-01

    To understand the molecular evolution of mitochondrial genomes (mitogenomes) in the genus Odontobutis, the mitogenome of Odontobutis yaluensis was sequenced and compared with those of another four Odontobutis species. Our results displayed similar mitogenome features among species in genome organization, base composition, codon usage, and gene rearrangement. The identical gene rearrangement of trnS-trnL-trnH tRNA cluster observed in mitogenomes of these five closely related freshwater sleepers suggests that this unique gene order is conserved within Odontobutis. Additionally, the present gene order and the positions of associated intergenic spacers of these Odontobutis mitogenomes indicate that this unusual gene rearrangement results from tandem duplication and random loss of large-scale gene regions. Moreover, these mitogenomes exhibit a high level of sequence variation, mainly due to the differences of corresponding intergenic sequences in gene rearrangement regions and the heterogeneity of tandem repeats in the control regions. Phylogenetic analyses support Odontobutis species with shared gene rearrangement forming a monophyletic group, and the interspecific phylogenetic relationships are associated with structural differences among their mitogenomes. The present study contributes to understanding the evolutionary patterns of Odontobutidae species. PMID:26492246

  13. Comparative Mitogenomics of the Genus Odontobutis (Perciformes: Gobioidei: Odontobutidae) Revealed Conserved Gene Rearrangement and High Sequence Variations.

    PubMed

    Ma, Zhihong; Yang, Xuefen; Bercsenyi, Miklos; Wu, Junjie; Yu, Yongyao; Wei, Kaijian; Fan, Qixue; Yang, Ruibin

    2015-10-20

    To understand the molecular evolution of mitochondrial genomes (mitogenomes) in the genus Odontobutis, the mitogenome of Odontobutis yaluensis was sequenced and compared with those of another four Odontobutis species. Our results displayed similar mitogenome features among species in genome organization, base composition, codon usage, and gene rearrangement. The identical gene rearrangement of trnS-trnL-trnH tRNA cluster observed in mitogenomes of these five closely related freshwater sleepers suggests that this unique gene order is conserved within Odontobutis. Additionally, the present gene order and the positions of associated intergenic spacers of these Odontobutis mitogenomes indicate that this unusual gene rearrangement results from tandem duplication and random loss of large-scale gene regions. Moreover, these mitogenomes exhibit a high level of sequence variation, mainly due to the differences of corresponding intergenic sequences in gene rearrangement regions and the heterogeneity of tandem repeats in the control regions. Phylogenetic analyses support Odontobutis species with shared gene rearrangement forming a monophyletic group, and the interspecific phylogenetic relationships are associated with structural differences among their mitogenomes. The present study contributes to understanding the evolutionary patterns of Odontobutidae species.

  14. [Fertility in testicular cancer patients].

    PubMed

    Shin, Takeshi; Miyata, Akane; Arai, Gaku; Okada, Hiroshi

    2015-03-01

    Testicular cancer(TC)is the most common and curable cancer affecting men of reproductive age. Successful treatment approaches have resulted in longer life expectancy in TC survivors. The most frequently used treatment for TC is a combination of inguinal orchiectomy, and either radiotherapy or cisplatin-based chemotherapy. In many TC patients, sperm quality is already abnormal and there may even be a lack of viable spermatozoa at the time of diagnosis. Therefore, the effect of cancer treatment on fertility is a potentially significant issue. Fertility preservation in these men has become essential and needs to be discussed prior to the start of cancer treatment. The only currently established fertility preservation method is the cryopreservation of sperm before therapy. For most patients seeking cryopreservation, the semen sample is collected via masturbation. If the patient is unable to ejaculate for any reason, other techniques such as vibratory stimulation and electroejaculation can be performed. In azoospermic or severely oligozoospermic patients, testicular sperm extraction at the time of the inguinal orchiectomy is a useful technique for obtaining spermatozoa before cytotoxic therapy. We herein present an overview of the current topics on fertility in TC patients, including the effects of surgery, chemotherapy, and radiation therapy. We also describe the strategy for fertility preservation in these patients.

  15. [Verification of testicular cancer guidelines].

    PubMed

    Nonomura, Norio; Azuma, Haruhito

    2012-12-01

    Testicular cancer is a rare disease that affects 1-2 in 100,000 people in Japan ; however, it is a very significant disease in that it has a high prevalence amongst young adults aged in their 20s and 30s and it brings about metastasis from a relatively early stage. The 2009 edition of the Testicular Cancer Clinical Practice Guidelines sets out a detailed summary of 32 clinical questions (CQ) considered necessary in routine clinical practice across the fields of epidemiology, diagnosis, treatment, etc, in the form of recommendations and commentary. These CQs are considered extremely important in understanding the foundation of future testicular cancer treatment guidelines. In this symposium, five doctors gave lectures consisting of the following contents in which they validated the guidelines and gave concrete clinical practice examples through cases they had experienced themselves with regards to the treatment strategies for (1) stage I patients, (2) patients with advanced cancer and (3) patients with extragonadal germ cell tumors. (1) Stage I patients : In seminoma cases, the doctors focused on the relapse prevention effect provided by single-agent carboplatin adjuvant chemotherapy. In non-seminoma cases, treatment options were considered according to risk based on the presence or absence of vascular invasion, a prognostic factor. (2) Patients with advanced cancer : 30% of testicular cancers are metastatic and progress to advanced cancer. In refractory cases resistant to bleomycin, etoposide and cisplatin therapy, etoposide ifosfamide, and cisplatin therapy and vinblastine, ifosfamide and cisplatin therapy have been used, but without satisfactory results and the development of new salvage chemotherapy is an important issue. The therapeutic strategies against advanced testicular cancer were narrowed down to (2) -1) therapeutic effects from ultra-high-dose chemotherapy, (2) -2) salvage chemotherapy in cases where residual tumors are observed in induction

  16. Testicular Schistosomiasis Mimicking Malignancy in a Child: A Case Report.

    PubMed

    Ekenze, Sebastian O; Modekwe, Victor O; Nzegwu, Martin A; Ekpemo, Samuel C; Ezomike, Uchechukwu O

    2015-08-01

    Schistosomiasis is an important communicable disease in the developing world. However, testicular schistosomiasis is an extremely rare condition. We report a case of testicular schistosomiasis mimicking testicular tumour in a 13 year old who presented with huge unilateral testicular mass. The dilemma encountered in the diagnosis and treatment of this child is presented to highlight the need for high index of suspicion of this pathology in children with testicular mass presenting from schistosomiasis-endemic areas.

  17. Testicular conditions in athletes: torsion, tumors, and epididymitis.

    PubMed

    Sandella, Bradley; Hartmann, Brett; Berkson, David; Hong, Eugene

    2012-01-01

    Individuals involved in sports are at risk for sustaining various injuries. In addition to musculoskeletal complaints, male athletes are at risk of incurring testicular injuries. These issues can range from an acute emergency such as testicular torsion to indolent testicular tumors. In contrast, epididymitis can present in stages. Presentation and management of testicular complaints can vary depending on the condition. Physicians who provide medical care to athletes need to be competent in diagnosing and managing testicular injuries.

  18. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping.

    PubMed

    Raudsepp, Terje; Lee, Eun-Joon; Kata, Srinivas R; Brinkmeyer, Candice; Mickelson, James R; Skow, Loren C; Womack, James E; Chowdhary, Bhanu P

    2004-02-24

    Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.

  19. Fibroblast growth factor-9 in marsupial testicular development.

    PubMed

    Chung, J W; Pask, A J; Yu, H; Renfree, M B

    2011-01-01

    FGF9 is a member of the fibroblast growth factor (FGF) family and is critical for early testicular development and germ cell survival in the mouse. Fgf9 reinforces the testis determinant Sox9 and antagonizes Wnt4, an ovarian factor. To determine whether FGF9 has a conserved role in the mammalian gonad, we examined its expression in the gonads of a marsupial, the tammar wallaby Macropus eugenii, and compared it to WNT4 expression. Marsupial FGF9 is highly conserved with orthologues from eutherian mammals, including humans. FGF9 protein was detected in both the testis and ovary before sexual differentiation, but it subsequently became sexually dimorphic during the period of testicular differentiation. The protein was specifically enriched in the seminiferous cords of the developing testis in the Sertoli and germ cells. FGF9 mRNA expression was upregulated in the tammar testis at the time of seminiferous cord formation and downregulated in the developing ovary in an opposite profile to that of marsupial WNT4. These observations suggest that FGF9 promotes male fate in the early gonad of marsupials through an antagonistic relationship with WNT4 as it does in eutherian mammals.

  20. Stable Binding of the Conserved Transcription Factor Grainy Head to its Target Genes Throughout Drosophila melanogaster Development.

    PubMed

    Nevil, Markus; Bondra, Eliana R; Schulz, Katharine N; Kaplan, Tommy; Harrison, Melissa M

    2017-02-01

    It has been suggested that transcription factor binding is temporally dynamic, and that changes in binding determine transcriptional output. Nonetheless, this model is based on relatively few examples in which transcription factor binding has been assayed at multiple developmental stages. The essential transcription factor Grainy head (Grh) is conserved from fungi to humans, and controls epithelial development and barrier formation in numerous tissues. Drosophila melanogaster, which possess a single grainy head (grh) gene, provide an excellent system to study this conserved factor. To determine whether temporally distinct binding events allow Grh to control cell fate specification in different tissue types, we used a combination of ChIP-seq and RNA-seq to elucidate the gene regulatory network controlled by Grh during four stages of embryonic development (spanning stages 5-17) and in larval tissue. Contrary to expectations, we discovered that Grh remains bound to at least 1146 genomic loci over days of development. In contrast to this stable DNA occupancy, the subset of genes whose expression is regulated by Grh varies. Grh transitions from functioning primarily as a transcriptional repressor early in development to functioning predominantly as an activator later. Our data reveal that Grh binds to target genes well before the Grh-dependent transcriptional program commences, suggesting it sets the stage for subsequent recruitment of additional factors that execute stage-specific Grh functions.

  1. Suppression subtractive hybridization analysis reveals expression of conserved and novel genes in male accessory glands of the ant Leptothorax gredleri

    PubMed Central

    2010-01-01

    genes, in addition to conserved ones for which functions can be predicted. Identifying differentially expressed genes might help to better understand molecular mechanisms involved in reproductive processes in eusocial Hymenoptera. While the novel genes could account for rapidly evolving ones driven by intra-sexual conflict between males, conserved genes imply that rather beneficial traits might get fixed by a process described as inter-sexual cooperation between males and females. PMID:20825642

  2. Morphologic manifestations of testicular and epididymal toxicity

    PubMed Central

    Vidal, Justin D; Whitney, Katharine M

    2014-01-01

    Histopathologic examination of the testis is the most sensitive means to detect effects on spermatogenesis; however, the complexity of testicular histology, interrelatedness of cell types within the testis, and long duration of spermatogenesis can make assessment of a testicular toxicant challenging. A thorough understanding of the histology and morphologic manifestations of response to injury is critical to successfully identify a testicular effect and to begin to understand the underlying mechanism of action. The basic patterns of response to xenobiotic-induced injury to the testis and epididymis are detailed and discussed. PMID:26413388

  3. [Segmental testicular infarction in sickle cell anemia].

    PubMed

    Mueller, F E

    2014-05-01

    Vascular occlusions are the clinical indicators of sickle cell disease and in urology they can lead to papillary necrosis, renal infarction or priapism. Segmental testicular infarction in patients with sickle cell disease is a rare event and only a few cases have been reported. We present a 25-year-old man with right testicular pain increasing over 3 days and sickle cell disease. Ultrasound of the right scrotum presented an inhomogeneous, mainly hypoechegenic mass with a hyperechogenic margin and no sign of blood flow. A partial orchiectomy was performed with total enucleation of the lesion, which was histologically diagnosed as benign hemorrhagic necrotic testicular tissue.

  4. Transcriptome profiling in conifers and the PiceaGenExpress database show patterns of diversification within gene families and interspecific conservation in vascular gene expression

    PubMed Central

    2012-01-01

    Background Conifers have very large genomes (13 to 30 Gigabases) that are mostly uncharacterized although extensive cDNA resources have recently become available. This report presents a global overview of transcriptome variation in a conifer tree and documents conservation and diversity of gene expression patterns among major vegetative tissues. Results An oligonucleotide microarray was developed from Picea glauca and P. sitchensis cDNA datasets. It represents 23,853 unique genes and was shown to be suitable for transcriptome profiling in several species. A comparison of secondary xylem and phelloderm tissues showed that preferential expression in these vascular tissues was highly conserved among Picea spp. RNA-Sequencing strongly confirmed tissue preferential expression and provided a robust validation of the microarray design. A small database of transcription profiles called PiceaGenExpress was developed from over 150 hybridizations spanning eight major tissue types. In total, transcripts were detected for 92% of the genes on the microarray, in at least one tissue. Non-annotated genes were predominantly expressed at low levels in fewer tissues than genes of known or predicted function. Diversity of expression within gene families may be rapidly assessed from PiceaGenExpress. In conifer trees, dehydrins and late embryogenesis abundant (LEA) osmotic regulation proteins occur in large gene families compared to angiosperms. Strong contrasts and low diversity was observed in the dehydrin family, while diverse patterns suggested a greater degree of diversification among LEAs. Conclusion Together, the oligonucleotide microarray and the PiceaGenExpress database represent the first resource of this kind for gymnosperm plants. The spruce transcriptome analysis reported here is expected to accelerate genetic studies in the large and important group comprised of conifer trees. PMID:22931377

  5. The gp63 Gene Cluster Is Highly Polymorphic in Natural Leishmania (Viannia) braziliensis Populations, but Functional Sites Are Conserved

    PubMed Central

    Medina, Lilian S.; Souza, Bruno Araújo; Queiroz, Adriano; Guimarães, Luiz Henrique; Lima Machado, Paulo Roberto; M Carvalho, Edgar; Wilson, Mary Edythe; Schriefer, Albert

    2016-01-01

    GP63 or leishmanolysin is the major surface protease of Leishmania spp. involved in parasite virulence and host cell interaction. As such, GP63 is a potential target of eventual vaccines against these protozoa. In the current study we evaluate the polymorphism of gp63 in Leishmania (Viannia) braziliensis isolated from two sets of American tegumentary leishmaniasis (ATL) cases from Corte de Pedra, Brazil, including 35 cases diagnosed between 1994 and 2001 and 6 cases diagnosed between 2008 and 2011. Parasites were obtained from lesions by needle aspiration and cultivation. Genomic DNA was extracted, and 405 bp fragments, including sequences encoding the putative macrophage interacting sites, were amplified from gp63 genes of all isolates. DNA amplicons were cloned into plasmid vectors and ten clones per L. (V.) braziliensis isolate were sequenced. Alignment of cloned sequences showed extensive polymorphism among gp63 genes within, and between parasite isolates. Overall, 45 different polymorphic alleles were detected in all samples, which could be segregated into two clusters. Cluster one included 25, and cluster two included 20 such genotypes. The predicted peptides showed overall conservation below 50%. In marked contrast, the conservation at segments with putative functional domains approached 90% (Fisher’s exact test p<0.0001). These findings show that gp63 is very polymorphic even among parasites from a same endemic focus, but the functional domains interacting with the mammalian host environment are conserved. PMID:27648939

  6. Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes.

    PubMed Central

    Quattrocchio, F; Wing, JF; Leppen, H; Mol, J; Koes, RE

    1993-01-01

    In this study, we demonstrate that in petunia at least four regulatory genes (anthocyanin-1 [an1], an2, an4, and an11) control transcription of a subset of structural genes from the anthocyanin pathway by using a combination of RNA gel blot analysis, transcription run-on assays, and transient expression assays. an2- and an11- mutants could be transiently complemented by the maize regulatory genes Leaf color (Lc) or Colorless-1 (C1), respectively, whereas an1- mutants only by Lc and C1 together. In addition, the combination of Lc and C1 induces pigment accumulation in young leaves. This indicates that Lc and C1 are both necessary and sufficient to produce pigmentation in leaf cells. Regulatory pigmentation genes in maize and petunia control different sets of structural genes. The maize Lc and C1 genes expressed in petunia differentially activate the promoters of the chalcone synthase genes chsA and chsJ in the same way that the homologous petunia genes do. This suggests that the regulatory proteins in both species are functionally similar and that the choice of target genes is determined by their promoter sequences. We present an evolutionary model that explains the differences in regulation of pigmentation pathways of maize, petunia, and snapdragon. PMID:12271045

  7. Educating young men about testicular cancer: support for a comprehensive testicular cancer campaign.

    PubMed

    Wanzer, Melissa Bekelja; Foster, S Catherine; Servoss, Timothy; LaBelle, Sara

    2014-01-01

    Despite the prevalence of testicular cancer among men 15-39 years of age, little has been done to increase awareness of this disease or educate males about its prevention. To fill this gap, the Standard Model of Health Communication was incorporated to design and implement a comprehensive testicular cancer campaign among male college students. To test the effectiveness of these messages, college students (N = 220) completed measures before and after the campaign. In addition, the authors obtained a control group of male college students (N = 52) who were not exposed to the messages. Survey items assessed awareness of testicular cancer and behaviors related to testicular cancer. Participants' knowledge of testicular cancer and likelihood of conducting a testicular self-exam increased significantly after being exposed to the campaign information. Men who were exposed to testicular cancer messages were more knowledgeable about testicular cancer and were more likely to conduct testicular self-examinations than were men in the control group.

  8. Localization of a highly conserved human potassium channel gene (NGK2-KV4-KCNC1) to chromosome 11p15

    SciTech Connect

    Ried, T.; Ward, D.C. ); Rudy, B.; Miera, V.S. de; Lau, D.; Sen, K. )

    1993-02-01

    Several genes (the Shaker or Sh gene family) encoding components of voltage-gated K[sub +] channels have been identified in various species. Based on sequence similarities Sh genes are classified into four groups or subfamilies. Mammalian genes of each one of these subfamilies also show high levels of sequence similarity to one of four related Drosophila genes: Shaker, Shab, Shaw, and Shal. Here we report the isolation of human cDNAs for a Shaw-related product (NGK2,KV2.1a) previously identified in rat and mice. A comparison of the nucleotide and deduced amino acid sequence of NGK2 in rodents and humans shows that this product is highly conserved in mammals; the human NGK2 protein shows over 99% amino acid sequence identity to its rodent homologue. The gene (NGK2-KV4; KCNC1) encoding NGK2 was mapped to human chromosome 11p15 by fluorescence in situ hybridization with the human NGK2 cDNAs. 65 refs., 2 figs., 1 tab.

  9. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes.

    PubMed Central

    Smith, D J; Burnham, M K; Bull, J H; Hodgson, J E; Ward, J M; Browne, P; Brown, J; Barton, B; Earl, A J; Turner, G

    1990-01-01

    A cosmid clone containing closely linked beta-lactam antibiotic biosynthetic genes was isolated from a gene library of Flavobacterium sp. SC 12,154. The location within the cluster of the DNA thought to contain the gene for delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS), the first step in the beta-lactam antibiotic biosynthetic pathway, was identified by a novel method. This DNA facilitated the isolation, by cross-hybridization, of the corresponding DNA from Streptomyces clavuligerus ATCC 27064, Penicillium chrysogenum Oli13 and Aspergillus nidulans R153. Evidence was obtained which confirmed that the cross-hybridizing sequences contained the ACVS gene. In each case the ACVS gene was found to be closely linked to other beta-lactam biosynthetic genes and constituted part of a gene cluster. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2107074

  10. Testicular myeloid sarcoma: case report

    PubMed Central

    Zago, Luzia Beatriz Ribeiro; Ladeia, Antônio Alexandre Lisbôa; Etchebehere, Renata Margarida; de Oliveira, Leonardo Rodrigues

    2013-01-01

    Myeloid sarcomas are extramedullary solid tumors composed of immature granulocytic precursor cells. In association with acute myeloid leukemia and other myeloproliferative disorders, they may arise concurrently with compromised bone marrow related to acute myeloid leukemia, as a relapsed presentation, or occur as the first manifestation. The testicles are considered to be an uncommon site for myeloid sarcomas. No therapeutic strategy has been defined as best but may include chemotherapy, radiotherapy and/or hematopoietic stem cell transplantation. This study reports the evolution of a patient with testicular myeloid sarcoma as the first manifestation of acute myeloid leukemia. The patient initially refused medical treatment and died five months after the clinical condition started. PMID:23580888

  11. Conservation of a vitellogenin gene cluster in oviparous vertebrates and identification of its traces in the platypus genome.

    PubMed

    Babin, Patrick J

    2008-04-30

    Vitellogenin (Vtg) derivatives are the main egg-yolk proteins in most oviparous animal species, and are, therefore, key players in reproduction and embryo development. Conserved synteny and phylogeny were used to identify a Vtg gene cluster (VGC) that had been evolutionarily conserved in most oviparous vertebrates, encompassing the three linked Vtgs on chicken (Gallus gallus) chromosome 8. Tandem arranged homologs to chicken VtgII and VtgIII were retrieved in similar locations in Xenopus (Xenopus tropicalis) and homologous transcribed inverted genes were found in medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), pufferfish (Takifugu rubripes), and Tetrahodon (Tetraodon nigroviridis), while zebrafish (Danio rerio) Vtg3 may represent a residual trace of VGC in this genome. Vtgs were not conserved in the paralogous chromosomal segment attributed to a whole-genome duplication event in the ancestor of teleosts, while tandem duplicated forms have survived the recent African clawed frog (Xenopus laevis) tetraploidization. Orthologs to chicken VtgI were found in similar locations in teleost fish, as well as in the platypus (Ornithorhynchus anatinus). Additional Vtg fragments found suggested that VGC had been conserved in this egg-laying mammal. A low ratio of nonsynonymous-to-synonymous substitution values and the paucity of pseudogene features suggest functional platypus Vtg products. Genomic identification of Vtgs, Apob, and Mtp in this genome, together with maximum likelihood and Bayesian inference phylogenetic analyses, support the existence of these three large lipid transfer protein superfamily members at the base of the mammalian lineage. In conclusion, the establishment of a VGC in the vertebrate lineage predates the divergence of ray-finned fish and tetrapods and the shift in reproductive and developmental strategy observed between prototherians and therians may be associated with its loss, as shown by its absence from the genomic resources currently

  12. 21 CFR 876.3750 - Testicular prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A testicular prosthesis is an implanted device that consists of a solid or gel-filled silicone rubber prosthesis that is implanted surgically to resemble a testicle. (b) Classification. Class...

  13. Testicular lesions of streptozotocin diabetic rats.

    PubMed

    Oksanen, A

    1975-01-01

    Diabetes was induced in adult male albino rats by a single intravenous injection of streptozotocin (75 mg/kg body weight). The diabetes was allowed to stabilize for at least 15 days, whereafter the testicular and seminal vesicle histology was studied at various time intervals. Reduction in testis weights and tubule diameters was significant after 2 weeks of diabetes. The changes in seminiferous tubules ranged from premature sloughing of epithelium to total cessation of spermatogenesis. The testicular histology of diabetic animals frequently greatly simulated the situation described following hypophysectomy. By subjective visual assessment the number of Leydig cells was found to be normal or reduced in all of the diabetic animals. Diabetes was also demonstrated to induce seminal vesicle atrophy, which did not show any correlation with the degree of testicular lesions. The possible etiology of testicular damage in diabetic animals is discussed.

  14. Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: genetic mapping and linkage to the downy mildew resistance gene Pl1.

    PubMed

    Gedil, M A; Slabaugh, M B; Berry, S; Johnson, R; Michelmore, R; Miller, J; Gulya, T; Knapp, S J

    2001-04-01

    Disease resistance gene candidates (RGCs) belonging to the nucleotide-binding site (NBS) superfamily have been cloned from numerous crop plants using highly conserved DNA sequence motifs. The aims of this research were to (i) isolate genomic DNA clones for RGCs in cultivated sunflower (Helianthus annuus L.) and (ii) map RGC markers and Pl1, a gene for resistance to downy mildew (Plasmopara halstedii (Farl.) Berl. & de Toni) race 1. Degenerate oligonucleotide primers targeted to conserved NBS DNA sequence motifs were used to amplify RGC fragments from sunflower genomic DNA. PCR products were cloned, sequenced, and assigned to 11 groups. RFLP analyses mapped six RGC loci to three linkage groups. One of the RGCs (Ha-4W2) was linked to Pl1, a downy mildew resistance gene. A cleaved amplified polymorphic sequence (CAPS) marker was developed for Ha-4W2 using gene-specific oligonucleotide primers. Downy mildew susceptible lines (HA89 and HA372) lacked a 276-bp Tsp5091 restriction fragment that was present in downy mildew resistant lines (HA370, 335, 336, 337, 338, and 339). HA370 x HA372 F2 progeny were genotyped for the Ha-4W2 CAPS marker and phenotyped for resistance to downy mildew race 1. The CAPS marker was linked to but did not completely cosegregate with Pl1 on linkage group 8. Ha-4W2 was found to comprise a gene family with at least five members. Although genetic markers for Ha-4W2 have utility for marker-assisted selection, the RGC detected by the CAPS marker has been ruled out as a candidate gene for Pl1. Three of the RGC probes were monomorphic between HA370 and HA372 and still need to be mapped and screened for linkage to disease resistance loci.

  15. Conservation of the Low-shear Modeled Microgravity Response in Enterobacteriaceae and Analysis of the trp Genes in this Response.

    PubMed

    Soni, Anjali; O'Sullivan, Laura; Quick, Laura N; Ott, C Mark; Nickerson, Cheryl A; Wilson, James W

    2014-01-01

    Low fluid shear force, including that encountered in microgravity models, induces bacterial responses, but the range of bacteria capable of responding to this signal remains poorly characterized. We systematically analyzed a range of Gram negative Enterobacteriaceae for conservation of the low-shear modeled microgravity (LSMMG) response using phenotypic assays, qPCR, and targeted mutations. Our results indicate LSMMG response conservation across Enterobacteriacae with potential variance in up- or down-regulation of a given response depending on genus. Based on the data, we analyzed the role of the trp operon genes and the TrpR regulator in the LSMMG response using targeted mutations in these genes in S. Typhimurium and E. coli. We found no alteration of the LSMMG response compared to WT in these mutant strains under the conditions tested here. To our knowledge, this study is first-of-kind for Citrobacter, Enterobacter, and Serratia, presents novel data for Escherichia, and provides the first analysis of trp genes in LSMMG responses. This impacts our understanding of how LSMMG affects bacteria and our ability to modify bacteria with this condition in the future.

  16. Conservation of the Low-shear Modeled Microgravity Response in Enterobacteriaceae and Analysis of the trp Genes in this Response

    PubMed Central

    Soni, Anjali; O’Sullivan, Laura; Quick, Laura N; Ott, C. Mark; Nickerson, Cheryl A; Wilson, James W

    2014-01-01

    Low fluid shear force, including that encountered in microgravity models, induces bacterial responses, but the range of bacteria capable of responding to this signal remains poorly characterized. We systematically analyzed a range of Gram negative Enterobacteriaceae for conservation of the low-shear modeled microgravity (LSMMG) response using phenotypic assays, qPCR, and targeted mutations. Our results indicate LSMMG response conservation across Enterobacteriacae with potential variance in up- or down-regulation of a given response depending on genus. Based on the data, we analyzed the role of the trp operon genes and the TrpR regulator in the LSMMG response using targeted mutations in these genes in S. Typhimurium and E. coli. We found no alteration of the LSMMG response compared to WT in these mutant strains under the conditions tested here. To our knowledge, this study is first-of-kind for Citrobacter, Enterobacter, and Serratia, presents novel data for Escherichia, and provides the first analysis of trp genes in LSMMG responses. This impacts our understanding of how LSMMG affects bacteria and our ability to modify bacteria with this condition in the future. PMID:25006354

  17. Cadmium-induced testicular injury

    SciTech Connect

    Siu, Erica R.; Mruk, Dolores D.; Porto, Catarina S.; Cheng, C. Yan

    2009-08-01

    Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans and rodents. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer and/or regulate the testis sensitivity to Cd, such as Cd transporters and metallothioneins, the impact of Cd on the testis as an endocrine disruptor and oxidative stress inducer, and how it may disrupt the Zn{sup 2+} and/or Ca{sup 2+} mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity emerges, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men.

  18. Cadmium-induced Testicular Injury*

    PubMed Central

    Siu, Erica R.; Mruk, Dolores D.; Porto, Catarina S.; Cheng, C. Yan

    2009-01-01

    Cadmium (Cd) is an environmental toxicant and an endocrine disruptor in humans. Several organs (e.g., kidney, liver) are affected by Cd and recent studies have illustrated that the testis is exceedingly sensitive to Cd toxicity. More important, Cd and other toxicants, such as heavy metals (e.g., lead, mercury) and estrogenic-based compounds (e.g., bisphenols) may account for the recent declining fertility in men among developed countries by reducing sperm count and testis function. In this review, we critically discuss recent data in the field that have demonstrated the Cd-induced toxicity to the testis is probably the result of interactions of a complex network of causes. This is likely to involve the disruption of the blood-testis barrier (BTB) via specific signal transduction pathways and signaling molecules, such as p38 mitogen-activated protein kinase (MAPK). We also summarize current studies on factors that confer the testis sensitivity to Cd, such as Cd transporters and metallothioneins, and the impact of Cd on the testis as an endocrine disruptor, oxidative stress inducer and how it may disrupt the Zn+2 and/or Ca+2 mediated cellular events. While much work is needed before a unified mechanistic pathway of Cd-induced testicular toxicity is emerged, recent studies have helped to identify some of the likely mechanisms and/or events that take place during Cd-induced testis injury. Furthermore, some of the recent studies have shed lights on potential therapeutic or preventive approaches that can be developed in future studies by blocking or minimizing the destructive effects of Cd to testicular function in men. PMID:19236889

  19. Phylogenetic Footprinting Reveals Evolutionarily Conserved Regions of the Gonadotropin-Releasing Hormone Gene that Enhance Cell-Specific Expression

    PubMed Central

    GIVENS, MARJORY L.; KUROTANI, REIKO; RAVE-HAREL, NAAMA; MILLER, NICHOL L. G.; MELLON, PAMELA L.

    2010-01-01

    Reproductive function is controlled by the hypothalamic neuropeptide, GnRH, which serves as the central regulator of the hypothalamic-pituitary-gonadal axis. GnRH expression is limited to a small population of neurons in the hypothalamus. Targeting this minute population of neurons (as few as 800 in the mouse) requires regulatory elements upstream of the GnRH gene that remain to be fully characterized. Previously, we have identified an evolutionarily conserved promoter region (−173 to −1) and an enhancer (−1863 to −1571) in the rat gene that targets a subset of the GnRH neurons in vivo. In the present study, we used phylogenetic sequence comparison between human and rodents and analysis of the transcription factor clusters within conserved regions in an attempt to identify additional upstream regulatory elements. This approach led to the characterization of a new upstream enhancer that regulates expression of GnRH in a cell-specific manner. Within this upstream enhancer are nine binding sites for Octamer-binding transcription factor 1 (OCT1), known to be an important transcriptional regulator of GnRH gene expression. In addition, we have identified nuclear factor I (NF1) binding to multiple elements in the GnRH-regulatory regions, each in close proximity to OCT1. We show that OCT1 and NF1 physically and functionally interact. Moreover, the OCT1 and NF1 binding sites in the regulatory regions appear to be essential for appropriate GnRH gene expression. These findings indicate a role for this upstream enhancer and novel OCT1/NF1 complexes in neuron-restricted expression of the GnRH gene. PMID:15319450

  20. Lifetime growth and risk of testicular cancer.

    PubMed

    Richiardi, Lorenzo; Vizzini, Loredana; Pastore, Guido; Segnan, Nereo; Gillio-Tos, Anna; Fiano, Valentina; Grasso, Chiara; Ciuffreda, Libero; Lista, Patrizia; Pearce, Neil; Merletti, Franco

    2014-08-01

    Adult height is associated with testicular cancer risk. We studied to what extent this association is explained by parental height, childhood height and age at puberty. We conducted a case-control study on germ-cell testicular cancer patients diagnosed in 1997-2008 and resident in the Province of Turin. Information was collected using mailed questionnaires in 2008-2011. Specifically, we asked for adult height (in cm), height at age 9 and 13 (compared to peers) and age at puberty (compared to peers). We also asked for paternal and maternal height (in cm) as indicators of genetic components of adult height. The analysis included 255 cases and 459 controls. Odds ratios (ORs) of testicular cancer were estimated for the different anthropometric variables. Adult height was associated with testicular cancer risk [OR: 1.16, 95% confidence interval (CI): 1.03-1.31 per 5-cm increase]. The risk of testicular cancer was only slightly increased for being taller vs. shorter than peers at age 9 (OR: 1.55, 95% CI: 0.91-2.64) or age 13 (OR: 1.26, 95% CI: 0.78-2.01), and parental height was not associated with testicular cancer risk. The OR for adult height was 1.32 (95% CI: 1.12-1.56) after adjustment for parental height. Among participants with small average parental height (<167 cm or less), the OR of testicular cancer for tall (>180 cm) vs. short (<174 cm) subjects was 3.47 (95% CI: 1.60-7.51). These results suggest that the association between height and testicular cancer is likely to be explained by environmental factors affecting growth in early life, childhood and adolescence.

  1. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.

    PubMed

    Landgrebe, Jobst; Dierks, Thomas; Schmidt, Bernhard; von Figura, Kurt

    2003-10-16

    Recently, the human C(alpha)-formylglycine (FGly)-generating enzyme (FGE), whose deficiency causes the autosomal-recessively transmitted lysosomal storage disease multiple sulfatase deficiency (MSD), has been identified. In sulfatases, FGE posttranslationally converts a cysteine residue to FGly, which is part of the catalytic site and is essential for sulfatase activity. FGE is encoded by the sulfatase modifying factor 1 (SUMF1) gene, which defines a new gene family comprising orthologs from prokaryotes to higher eukaryotes. The genomes of E. coli, S. cerevisiae and C. elegans lack SUMF1, indicating a phylogenetic gap and the existence of an alternative FGly-generating system. The genomes of vertebrates including mouse, man and pufferfish contain a sulfatase modifying factor 2 (SUMF2) gene encoding an FGE paralog of unknown function. SUMF2 evolved from a single exon SUMF1 gene as found in diptera prior to divergent intron acquisition. In several prokaryotic genomes, the SUMF1 gene is cotranscribed with genes encoding sulfatases which require FGly modification. The FGE protein contains a single domain that is made up of three highly conserved subdomains spaced by nonconserved sequences of variable lengths. The similarity among the eukaryotic FGE orthologs varies between 72% and 100% for the three subdomains and is highest for the C-terminal subdomain, which is a hotspot for mutations in MSD patients.

  2. The protective effect of dexpanthenol on testicular atrophy at 60th day following experimental testicular torsion.

    PubMed

    Etensel, Barlas; Ozkisacik, Sezen; Ozkara, Esra; Serbest, Yeşim Aksu; Oztan, Onur; Yazici, Mesut; Gürsoy, Harun

    2007-03-01

    Despite the prompt diagnosis and treatment of testicular torsion (TT), there are problems with fertility and atrophy after testicular salvage. Dexpanthenol (Dxp) is the biologically active alcohol of pantothenic acid (PA). Dxp is converted to PA in tissues. PA increases the content of reduced glutathione (GSH), Coenzyme A and ATP synthesis in cells. GSH and glutathione-dependent peroxidases (GPX) are the major defense systems against oxidative stress. GPX-4 is the major antioxidant in testicular tissue. However, the activity of GPX-4 appeared and increased only after puberty. We investigated the effect of Dxp on testicular atrophy after TT at the 60th day. Rats were separated randomly into four groups. Group C: control group, group Td: torsion + detorsion, group Sal: torsion + saline + detorsion, group Dxp: torsion + Dxp + detorsion. The left testis was rotated 720 degrees for 2 h. In group Sal, normal saline and in group Dxp, Dexpanthenol were injected intraperitonally, 30 min before detorsion. After 60 days, the testicular weights and volumes were measured. Histopathology of the left testis was evaluated with mean seminiferous tubular diameter (MSTD) and mean testicular biopsy score (MTBS). The left (torsed) testicular weight and volume of groups Td and Sal were significantly lower compared to group Dxp. The MSTD and MTBS of group Td and Sal were significantly lower than group Dxp. Contralateral testicular weight and volume of groups Td, Sal and Dxp had no significant difference compared to the control group. Dxp significantly prevented testicular atrophy after 60 days of TT. Dxp has FDA approval, is safe, cost effective and readily available. Its relevance for clinical trials may especially be for the problem of testicular atrophy catastrophe, seen very frequently following testicular salvage.

  3. Differential Responses to Wnt and PCP Disruption Predict Expression and Developmental Function of Conserved and Novel Genes in a Cnidarian

    PubMed Central

    Lapébie, Pascal; Ruggiero, Antonella; Barreau, Carine; Chevalier, Sandra; Chang, Patrick; Dru, Philippe; Houliston, Evelyn; Momose, Tsuyoshi

    2014-01-01

    We have used Digital Gene Expression analysis to identify, without bilaterian bias, regulators of cnidarian embryonic patterning. Transcriptome comparison between un-manipulated Clytia early gastrula embryos and ones in which the key polarity regulator Wnt3 was inhibited using morpholino antisense oligonucleotides (Wnt3-MO) identified a set of significantly over and under-expressed transcripts. These code for candidate Wnt signaling modulators, orthologs of other transcription factors, secreted and transmembrane proteins known as developmental regulators in bilaterian models or previously uncharacterized, and also many cnidarian-restricted proteins. Comparisons between embryos injected with morpholinos targeting Wnt3 and its receptor Fz1 defined four transcript classes showing remarkable correlation with spatiotemporal expression profiles. Class 1 and 3 transcripts tended to show sustained expression at “oral” and “aboral” poles respectively of the developing planula larva, class 2 transcripts in cells ingressing into the endodermal region during gastrulation, while class 4 gene expression was repressed at the early gastrula stage. The preferential effect of Fz1-MO on expression of class 2 and 4 transcripts can be attributed to Planar Cell Polarity (PCP) disruption, since it was closely matched by morpholino knockdown of the specific PCP protein Strabismus. We conclude that endoderm and post gastrula-specific gene expression is particularly sensitive to PCP disruption while Wnt-/β-catenin signaling dominates gene regulation along the oral-aboral axis. Phenotype analysis using morpholinos targeting a subset of transcripts indicated developmental roles consistent with expression profiles for both conserved and cnidarian-restricted genes. Overall our unbiased screen allowed systematic identification of regionally expressed genes and provided functional support for a shared eumetazoan developmental regulatory gene set with both predicted and previously

  4. The trehalose pathway in maize: conservation and gene regulation in response to the diurnal cycle and extended darkness

    PubMed Central

    Henry, Clémence; Bledsoe, Samuel W.; Siekman, Allison; Kollman, Alec; Waters, Brian M.; Feil, Regina; Stitt, Mark; Lagrimini, L. Mark

    2014-01-01

    Energy resources in plants are managed in continuously changing environments, such as changes occurring during the day/night cycle. Shading is an environmental disruption that decreases photosynthesis, compromises energy status, and impacts on crop productivity. The trehalose pathway plays a central but not well-defined role in maintaining energy balance. Here, we characterized the maize trehalose pathway genes and deciphered the impacts of the diurnal cycle and disruption of the day/night cycle on trehalose pathway gene expression and sugar metabolism. The maize genome encodes 14 trehalose-6-phosphate synthase (TPS) genes, 11 trehalose-6-phosphate phosphatase (TPP) genes, and one trehalase gene. Transcript abundance of most of these genes was impacted by the day/night cycle and extended dark stress, as were sucrose, hexose sugars, starch, and trehalose-6-phosphate (T6P) levels. After extended darkness, T6P levels inversely followed class II TPS and sucrose non-fermenting-related protein kinase 1 (SnRK1) target gene expression. Most significantly, T6P no longer tracked sucrose levels after extended darkness. These results showed: (i) conservation of the trehalose pathway in maize; (ii) that sucrose, hexose, starch, T6P, and TPS/TPP transcripts respond to the diurnal cycle; and(iii) that extended darkness disrupts the correlation between T6P and sucrose/hexose pools and affects SnRK1 target gene expression. A model for the role of the trehalose pathway in sensing of sucrose and energy status in maize seedlings is proposed. PMID:25271261

  5. Involvement of Fibroblast Growth Factors and Their Receptors in Epididymo-Testicular Descent and Maldescent

    PubMed Central

    Hadziselimovic, Faruk

    2016-01-01

    Maldescent of the epididymo-testicular unit can occur as an isolated event or as a component of various syndromes. When part of a syndrome, crypto-epididymis is usually accompanied by other genital and/or extragenital features. Epididymis development is primarily regulated by androgens, and successful epididymo-testicular unit development and descent requires an intact hypothalamic-pituitary-gonadal axis. The developing gonadotropin-releasing hormone system is essential for epididymo-testicular descent and is highly sensitive to reduced fibroblast growth factor (FGF) signaling. Our understanding of the impact of FGFR1 in the process of epididymo-testicular descent has recently improved. At later stages of embryonic development, the undifferentiated epididymal mesenchyme is a specific domain for FGFR1 expression. The majority of individuals with syndromic crypto-epididymis, as well as individuals with isolated maldescent of the epididymo-testicular unit, exhibit some disturbance of FGF, FGFR1 and/or genes involved in hypothalamic-pituitary-gonadal axis regulation. However, the mechanisms underlying FGF dysregulation may differ between various syndromes. PMID:27022326

  6. Polyorchidism with presumed contralateral intrauterine testicular torsion

    PubMed Central

    Leodoro, B.M.; Beasley, S.W.; Stringer, M.D.

    2014-01-01

    INTRODUCTION Polyorchidism was first described by Blasius in 16701 during a routine autopsy. We report a child with unilateral polyorchidism and a contralateral absent testis, a combination not reported previously. PRESENTATION OF CASE A 2-year-old boy was referred to the outpatient clinic with an impalpable left testis. At laparoscopy, the left vas deferens and testicular vessels ended blindly proximal to a closed internal ring. No gonadal tissue was identified. On the right side, a single vas deferens and testicular vessels were seen entering the internal ring as normal. The right side of the scrotum was explored and two testes were identified within a single tunica vaginalis. DISCUSSION Polyorchidism is rare with a literature search identifying approximately 230 reported cases. Whilst prenatal testicular torsion is increasing being recognized and treated as a surgical emergency,9 prenatal testicular torsion in association with polyorchidism has not been previously reported. CONCLUSION We describe a unique case of a 2-year-old boy with right-sided polyorchidism and an absent left testis associated with a blind ending vas deferens and testicular vessels, presumed secondary to intrauterine testicular torsion. PMID:25462053

  7. Cetuximab intensifies cisplatin-induced testicular toxicity.

    PubMed

    Levi, Mattan; Popovtzer, Aron; Tzabari, Moran; Mizrachi, Aviram; Savion, Naphtali; Stemmer, Salomon M; Shalgi, Ruth; Ben-Aharon, Irit

    2016-07-01

    Epidermal growth factor receptor (EGFR) has proliferative properties in the testis. Cetuximab, an anti-EGFR, is administered together with chemotherapy to patients with various types of cancer. This studies aim was to investigate the effect of cetuximab on testicular function. Adult male mice were injected with cetuximab (10 mg/kg), cisplatin (8 mg/kg) or a combination of both, and killed one week or one month later. The doses were chosen by human equivalent dose calculation. Testicular function was evaluated by epididymal-spermatozoa total motile count and sperm motility, weights of testes and epididymides, and the level of anti-Müllerian hormone (AMH) in the serum. Immunohistochemistry was performed to examine germ cell proliferation (Ki-67), apoptosis (Terminal transferase-mediated deoxyuridine 5-triphosphate nick-end labelling), reserve (DAZL-Deleted in azoospermia-like, Promyelocytic leukaemia zinc-finger), blood vessels (CD34) and Sertoli cells (GATA-4). Administration of cetuximab alone increased testicular apoptosis and decreased epididymal-spermatozoa total motile count over time. When added to cisplatin, cetuximab exacerbated most of the recorded testicular parameters, compared with the effect of cisplatin alone, including testis and epididymis weights, epididymal-spermatozoa total motile count, AMH concentration, meiosis and apoptosis. In conclusion, cetuximab has only a mild effect on testicular reserve, but when added to cisplatin, it exacerbates cisplatin-induced testicular toxicity.

  8. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer

    PubMed Central

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B.; Kim, Jung-Hyun; Ang, J. Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P.; Andrews, Brenda; Boerkoel, Cornelius F.; Hieter, Philip

    2016-01-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1. Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  9. Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish

    PubMed Central

    Suzuki, Takafumi; Takagi, Yaeko; Osanai, Hitoshi; Li, Li; Takeuchi, Miki; Katoh, Yasutake; Kobayashi, Makoto; Yamamoto, Masayuki

    2005-01-01

    Pi class GSTs (glutathione S-transferases) are a member of the vertebrate GST family of proteins that catalyse the conjugation of GSH to electrophilic compounds. The expression of Pi class GST genes can be induced by exposure to electrophiles. We demonstrated previously that the transcription factor Nrf 2 (NF-E2 p45-related factor 2) mediates this induction, not only in mammals, but also in fish. In the present study, we have isolated the genomic region of zebrafish containing the genes gstp1 and gstp2. The regulatory regions of zebrafish gstp1 and gstp2 have been examined by GFP (green fluorescent protein)-reporter gene analyses using microinjection into zebrafish embryos. Deletion and point-mutation analyses of the gstp1 promoter showed that an ARE (antioxidant-responsive element)-like sequence is located 50 bp upstream of the transcription initiation site which is essential for Nrf 2 transactivation. Using EMSA (electrophoretic mobility-shift assay) analysis we showed that zebrafish Nrf 2–MafK heterodimer specifically bound to this sequence. All the vertebrate Pi class GST genes harbour a similar ARE-like sequence in their promoter regions. We propose that this sequence is a conserved target site for Nrf 2 in the Pi class GST genes. PMID:15654768

  10. A novel, evolutionarily conserved gene family with putative sequence-specific single-stranded DNA-binding activity.

    PubMed

    Castro, Patricia; Liang, Hong; Liang, Jan C; Nagarajan, Lalitha

    2002-07-01

    Complete and partial deletions of chromosome 5q are recurrent cytogenetic anomalies associated with aggressive myeloid malignancies. Earlier, we identified an approximately 1.5-Mb region of loss at 5q13.3 between the loci D5S672 and D5S620 in primary leukemic blasts. A leukemic cell line, ML3, is diploid for all of chromosome 5, except for an inversion-coupled translocation within the D5S672-D5S620 interval. Here, we report the development of a bacterial artificial chromosome (BAC) contig to define the breakpoint and the identification of a novel gene SSBP2, the target of disruption in ML3 cells. A preliminary evaluation of SSBP2 as a tumor suppressor gene in primary leukemic blasts and cell lines suggests that the remaining allele does not undergo intragenic mutations. SSBP2 is one of three members of a closely related, evolutionarily conserved, and ubiquitously expressed gene family. SSBP3 is the human ortholog of a chicken gene, CSDP, that encodes a sequence-specific single-stranded DNA-binding protein. SSBP3 localizes to chromosome 1p31.3, and the third member, SSBP4, maps to chromosome 19p13.1. Chromosomal localization and the putative single-stranded DNA-binding activity suggest that all three members of this family are capable of potential tumor suppressor activity by gene dosage or other epigenetic mechanisms.

  11. Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy.

    PubMed

    Davis, Gregory K; D'Alessio, Joseph A; Patel, Nipam H

    2005-09-01

    Several features of Pax3/7 gene expression are shared among distantly related insects, including pair-rule, segment polarity, and neural patterns. Recent data from arachnids imply that roles in segmentation and neurogenesis are likely to be played by Pax3/7 genes in all arthropods. To further investigate Pax3/7 genes in non-insect arthropods, we isolated two monoclonal antibodies that recognize the products of Pax3/7 genes in a wide range of taxa, allowing us to quickly survey Pax3/7 expression in all four major arthropod groups. Epitope analysis reveals that these antibodies react to a small subset of Paired-class homeodomains, which includes the products of all known Pax3/7 genes. Using these antibodies, we find that Pax3/7 genes in crustaceans are expressed in an early broad and, in one case, dynamic domain followed by segmental stripes, while myriapods and chelicerates exhibit segmental stripes that form early in the posterior-most part of the germ band. This suggests that Pax3/7 genes acquired their role in segmentation deep within, or perhaps prior to, the arthropod lineage. However, we do not detect evidence of pair-rule patterning in either myriapods or chelicerates, suggesting that the early pair-rule expression pattern of Pax3/7 genes in insects may have been acquired within the crustacean-hexapod lineage.

  12. Deletion of conserved sequences in IG-DMR at Dlk1-Gtl2 locus suggests their involvement in expression of paternally expressed genes in mice

    PubMed Central

    SAITO, Takeshi; HARA, Satoshi; TAMANO, Moe; ASAHARA, Hiroshi; TAKADA, Shuji

    2016-01-01

    Expression regulation of the Dlk1-Dio3 imprinted domain by the intergenic differentially methylated region (IG-DMR) is essential for normal embryonic development in mammals. In this study, we investigated conserved IG-DMR genomic sequences in eutherians to elucidate their role in genomic imprinting of the Dlk1-Dio3 domain. Using a comparative genomics approach, we identified three highly conserved sequences in IG-DMR. To elucidate the functions of these sequences in vivo, we generated mutant mice lacking each of the identified highly conserved sequences using the CRISPR/Cas9 system. Although mutant mice did not exhibit the gross phenotype, deletions of the conserved sequences altered the expression levels of paternally expressed imprinted genes in the mutant embryos without skewing imprinting status. These results suggest that the conserved sequences in IG-DMR are involved in the expression regulation of some of the imprinted genes in the Dlk1-Dio3 domain. PMID:27904015

  13. Deletion of conserved sequences in IG-DMR at Dlk1-Gtl2 locus suggests their involvement in expression of paternally expressed genes in mice.

    PubMed

    Saito, Takeshi; Hara, Satoshi; Tamano, Moe; Asahara, Hiroshi; Takada, Shuji

    2017-02-16

    Expression regulation of the Dlk1-Dio3 imprinted domain by the intergenic differentially methylated region (IG-DMR) is essential for normal embryonic development in mammals. In this study, we investigated conserved IG-DMR genomic sequences in eutherians to elucidate their role in genomic imprinting of the Dlk1-Dio3 domain. Using a comparative genomics approach, we identified three highly conserved sequences in IG-DMR. To elucidate the functions of these sequences in vivo, we generated mutant mice lacking each of the identified highly conserved sequences using the CRISPR/Cas9 system. Although mutant mice did not exhibit the gross phenotype, deletions of the conserved sequences altered the expression levels of paternally expressed imprinted genes in the mutant embryos without skewing imprinting status. These results suggest that the conserved sequences in IG-DMR are involved in the expression regulation of some of the imprinted genes in the Dlk1-Dio3 domain.

  14. Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots.

    PubMed

    Ambrose, B A; Lerner, D R; Ciceri, P; Padilla, C M; Yanofsky, M F; Schmidt, R J

    2000-03-01

    The degree to which the eudicot-based ABC model of flower organ identity applies to the other major subclass of angrosperms, the monocots, has yet to be fully explored. We cloned silky1 (si1), a male sterile mutant of Zea mays that has homeotic conversions of stamens into carpels and lodicules into palea/lemma-like structures. Our studies indicate that si1 is a monocot B function MADS box gene. Moreover, the si1 zag1 double mutant produces a striking spikelet phenotype where normal glumes enclose reiterated palea/lemma-like organs. These studies indicate that B function gene activity is conserved among monocots as well as eudicots. In addition, they provide compelling developmental evidence for recognizing lodicules as modified petals and, possibly, palea and lemma as modified sepals.

  15. Identification of a conserved gene signature associated with an exacerbated inflammatory environment in the hippocampus of aging rats.

    PubMed

    Pardo, Joaquín; Abba, Martin C; Lacunza, Ezequiel; Francelle, Laetitia; Morel, Gustavo R; Outeiro, Tiago F; Goya, Rodolfo G

    2017-04-01

    There have been a few descriptive studies in aged rodents about transcriptome changes in the hippocampus, most of them in males. Here, we assessed the age changes in spatial memory performance and hippocampal morphology in female rats and compared those changes with changes in the hippocampal transcriptome. Old rats displayed significant deficits in spatial memory. In both age groups, hole exploration frequency showed a clear peak at hole 0 (escape hole), but the amplitude of the peak was significantly higher in the young than in the old animals. In the hippocampus, there was a dramatic reduction in neurogenesis, whereas reactive microglial infiltrates revealed an inflammatory hippocampal state in the senile rats. Hippocampal RNA-sequencing showed that 210 genes are differentially expressed in the senile rats, most of them being downregulated. Our RNA-Seq data showed that various genes involved in the immune response, including TYROBP, CD11b, C3, CD18, CD4, and CD74, are overexpressed in the hippocampus of aged female rats. Enrichment analysis showed that the pathways overrepresented in the senile rats matched those of an exacerbated inflammatory environment, reinforcing our morphologic findings. After correlating our results with public data of human and mouse hippocampal gene expression, we found an 11-gene signature of overexpressed genes related to inflammatory processes that was conserved across species. We conclude that age-related hippocampal deficits in female rats share commonalities between human and rodents. Interestingly, the 11-gene signature that we identified may represent a cluster of immune and regulatory genes that are deregulated in the hippocampus and possibly other brain regions during aging as well as in some neurodegenerative diseases and low-grade brain tumors. Our study further supports neuroinflammation as a promising target to treat cognitive dysfunction in old individuals and some brain tumors. © 2017 Wiley Periodicals, Inc.

  16. Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato

    PubMed Central

    Shahnejat-Bushehri, Sara; Allu, Annapurna D.; Mehterov, Nikolay; Thirumalaikumar, Venkatesh P.; Alseekh, Saleh; Fernie, Alisdair R.; Mueller-Roeber, Bernd; Balazadeh, Salma

    2017-01-01

    The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripening-related genes, and leads to an increase in the levels of various amino acids (mostly proline, β-alanine, and phenylalanine), γ-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species. PMID:28326087

  17. SSDP1 gene encodes a protein with a conserved N-terminal FORWARD domain.

    PubMed

    Bayarsaihan, Dashzeveg

    2002-09-23

    I describe the characterization of mouse, human and chicken SSDP1 orthologs that encode a highly conserved protein with over 90% identity at the amino acid level. Structurally, the protein consists of a well-preserved FWD (FORWARD)-domain at the N-terminal end and a proline-, glycine-, methionine- and serine-rich sequence in the central and C-terminal regions. The FORWARD domain, comprised of three alpha-helices, is characterized by the presence of a FWD-box of unknown function conserved not only in vertebrates, but also in nematode, plants, fly and yeast. Human SSDP1 spans about 200 kb on the chromosome 1p31-p32 region and consists of 17 exons. The SSDP1 mRNA transcripts are distributed ubiquitously in adult human and mouse tissues.

  18. Reproductive biotechnology and gene mapping: tools for conserving rare breeds of livestock.

    PubMed

    Long, J A

    2008-07-01

    Today's livestock diversity originated from the wild ancestor species and was subsequently shaped through the processes of mutation, genetic drift, and natural and human selection. Only a subset of the diversity present in the ancestral species survives in the domestic counterparts. A 2007 report released by UN Food and Agriculture Organization 'The State of the World's Animal Genetic Resources', compiled from surveys conducted in 169 countries, found that nearly 70% of the world's remaining livestock breeds live in developing countries. The UN report was presented to more than 300 policy makers, scientists, breeders, and livestock keepers at the First International Technical Conference on Animal Genetic Resources, held in September 2007 in Interlaken, Switzerland. The conference aims were to adopt a global plan of action for conserving animal genetic resources as its main outcome. In this paper, the current and potential contributions of reproductive and molecular biotechnology are considered as tools of conserving rare breeds of livestock.

  19. Structural analysis of the regulatory elements of the type-II procollagen gene. Conservation of promoter and first intron sequences between human and mouse.

    PubMed Central

    Vikkula, M; Metsäranta, M; Syvänen, A C; Ala-Kokko, L; Vuorio, E; Peltonen, L

    1992-01-01

    Transcription of the type-II procollagen gene (COL2A1) is very specifically restricted to a limited number of tissues, particularly cartilages. In order to identify transcription-control motifs we have sequenced the promoter region and the first intron of the human and mouse COL2A1 genes. With the assumption that these motifs should be well conserved during evolution, we have searched for potential elements important for the tissue-specific transcription of the COL2A1 gene by aligning the two sequences with each other and with the available rat type-II procollagen sequence for the promoter. With this approach we could identify specific evolutionarily well-conserved motifs in the promoter area. On the other hand, several suggested regulatory elements in the promoter region did not show evolutionary conservation. In the middle of the first intron we found a cluster of well-conserved transcription-control elements and we conclude that these conserved motifs most probably possess a significant function in the control of the tissue-specific transcription of the COL2A1 gene. We also describe locations of additional, highly conserved nucleotide stretches, which are good candidate regions in the search for binding sites of yet-uncharacterized cartilage-specific transcription regulators of the COL2A1 gene. PMID:1637314

  20. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria.

    PubMed

    Freiberg, C; Wieland, B; Spaltmann, F; Ehlert, K; Brötz, H; Labischinski, H

    2001-07-01

    We deleted a subset of 27 open reading frames (ORFs) from Escherichia coli which encode previously uncharacterized, probably soluble gene products homologous to proteins from a broad spectrum of bacterial pathogens such as Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae and Enterococcus faecalis and only distantly related to eukaryotic proteins. Six novel bacteria-specific genes essential for growth in complex medium could be identified through a combination of bioinformatics-based and experimental approaches. We also compared our data to published results of gene inactivation projects with Mycoplasma genitalium and Bacillus subtilis and looked for homologs in all known prokaryotic genomes. Such analyses highlight the enormous metabolic flexibility of prokaryotes. Six of 27 studied genes have been functionally characterized up to now, amongst these four of the essential genes. The gene products YgbP, YgbB and YchB are involved in the non-mevalonate pathway of isoprenoid biosynthesis. KdtB is characterized as the posphopantetheine adenylyltransferase CoaD. There are indications that the other two essential gene products YjeE and YqgF, which we have identified, also possess enzymatic functions. These findings demonstrate the potential of such proteins to be used in screening of large chemical libraries for inhibitors which could be further developed to novel broad-spectrum antibiotics.

  1. The Drosophila wings apart Gene Anchors a Novel, Evolutionarily Conserved Pathway of Neuromuscular Development

    PubMed Central

    Morriss, Ginny R.; Jaramillo, Carmelita T.; Mikolajczak, Crystal M.; Duong, Sandy; Jaramillo, MaryAnn S.; Cripps, Richard M.

    2013-01-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes. PMID:24026097

  2. Cimetidine disrupts the renewal of testicular cells and the steroidogenesis in a hermaphrodite fish.

    PubMed

    García-García, María; Liarte, Sergio; Gómez-González, Nuria E; García-Alcázar, Alicia; Pérez-Sánchez, Jaume; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa; Chaves-Pozo, Elena

    2016-11-01

    The importance of histamine in the physiology of the testis in mammals and reptiles has been recently shown. Histamine receptors (Hrs) are well conserved in fish and are functional in several fish species. We report here for the first time that histamine and the mRNA of Hrh1, Hrh2 and Hrh3 are all present in the gonad of the hermaphrodite teleost fish gilthead seabream. Moreover, cimetidine, which acts in vitro as an agonist of Hrh1 and Hrh2 on this species, was intraperitoneally injected in one and two years old gilthead seabream males. After three and five days of cimetidine injection, we found that this compound differently modified the gonadal hrs transcript levels and affects the testicular cell renewal and the gene expression of steroidogenesis-related molecules as well as the serum steroid levels. Our data point to cimetidine as a reproductive disruptor and elucidate a role for histamine in the gonad of this hermaphrodite fish species through Hr signalling.

  3. Two distinct nuclear factors bind the conserved regulatory sequences of a rabbit major histocompatibility complex class II gene.

    PubMed Central

    Sittisombut, N

    1988-01-01

    The constitutive coexpression of the major histocompatibility complex (MHC) class II genes in B lymphocytes requires positive, trans-acting transcriptional factors. The need for these trans-acting factors has been suggested by the reversion of the MHC class II-negative phenotype of rare B-lymphocyte mutants through somatic cell fusion with B cells or T-cell lines. The mechanism by which the trans-acting factors exert their effect on gene transcription is unknown. The possibility that two highly conserved DNA sequences, located 90 to 100 base pairs (bp) (the A sequence) and 60 to 70 bp (the B sequence) upstream of the transcription start site of the class II genes, are recognized by the trans-acting factors was investigated in this study. By using the gel electrophoresis retardation assay, a minimum of two proteins which specifically bound the conserved A or B sequence of a rabbit DP beta gene were identified in murine nuclear extracts of a B-lymphoma cell line, A20-2J. Fractionation of nuclear extract through a heparin-agarose column allowed the identification of one protein, designated NF-MHCIIB, which bound an oligonucleotide containing the B sequence and protected the entire B sequence in the DNase I protection analysis. Another protein, designated NF-MHCIIA, which bound an oligonucleotide containing the A sequence and partially protected the 3' half of this sequence, was also identified. NF-MHCIIB did not protect a CCAAT sequence located 17 bp downstream of the B sequence. The possible relationship between these DNA-binding factors and the trans-acting factors identified in the cell fusion experiments is discussed. Images PMID:3133552

  4. Conserved synteny at the protein family level reveals genes underlying Shewanella species cold tolerance and predicts their novel phenotypes

    SciTech Connect

    Karpinets, Tatiana V.; Obraztsova, Anna; Wang, Yanbing; Schmoyer, Denise D.; Kora, Guruprasad; Park, Byung H.; Serres, Margrethe H.; Romine, Margaret F.; Land, Miriam L.; Kothe, Terence B.; Fredrickson, Jim K.; Nealson, Kenneth H.; Uberbacher, Edward

    2010-03-01

    Bacteria of the genus Shewanella can thrive in different environments and demonstrate significant variability in their metabolic and ecophysiological capabilities including cold and salt tolerance. Genomic characteristics underlying this variability across species are largely unknown. In this study we address the problem by a comparison of the physiological, metabolic and genomic characteristics of 19 sequenced Shewanella species. We have employed two novel approaches based on association of a phenotypic trait with the number of the trait-specific protein families (Pfam domains) and on the conservation of synteny (order in the genome) of the trait-related genes. Our first approach is top-down and involves experimental evaluation and quantification of the species’ cold tolerance followed by identification of the correlated Pfam domains and genes with a conserved synteny. The second, a bottom-up approach, predicts novel phenotypes of the species by calculating profiles of each Pfam domain among their genomes and following pair-wise correlation of the profiles and their network clustering. Using the first approach we find a link between cold and salt tolerance of the species and the presence in the genome of a Na+/H+ antiporter gene cluster. Other cold tolerance related genes includes peptidases, chemotaxis sensory transducer proteins, a cysteine exporter, and helicases. Using the bottom-up approach we found several novel phenotypes in the newly sequenced Shewanella species, including degradation of aromatic compounds by an aerobic hybrid pathway in S. woodyi, degradation of ethanolamine by S. benthica, and propanediol degradation by S. putrefaciens CN32 and S. sp. W3-18-1.

  5. Conserved Gene Regulatory Function of the Carboxy-Terminal Domain of Dictyostelid C-Module-Binding Factor

    PubMed Central

    Schmith, Anika; Groth, Marco; Ratka, Josephine; Gatz, Sara; Spaller, Thomas; Siol, Oliver; Glöckner, Gernot

    2013-01-01

    C-module-binding factor A (CbfA) is a jumonji-type transcription regulator that is important for maintaining the expression and mobility of the retrotransposable element TRE5-A in the social amoeba Dictyostelium discoideum. CbfA-deficient cells have lost TRE5-A retrotransposition, are impaired in the ability to feed on bacteria, and do not enter multicellular development because of a block in cell aggregation. In this study, we performed Illumina RNA-seq of growing CbfA mutant cells to obtain a list of CbfA-regulated genes. We demonstrate that the carboxy-terminal domain of CbfA alone is sufficient to mediate most CbfA-dependent gene expression. The carboxy-terminal domain of CbfA from the distantly related social amoeba Polysphondylium pallidum restored the expression of CbfA-dependent genes in the D. discoideum CbfA mutant, indicating a deep conservation in the gene regulatory function of this domain in the dictyostelid clade. The CbfA-like protein CbfB displays ∼25% sequence identity with CbfA in the amino-terminal region, which contains a JmjC domain and two zinc finger regions and is thought to mediate chromatin-remodeling activity. In contrast to CbfA proteins, where the carboxy-terminal domains are strictly conserved in all dictyostelids, CbfB proteins have completely unrelated carboxy-terminal domains. Outside the dictyostelid clade, CbfA-like proteins with the CbfA-archetypical JmjC/zinc finger arrangement and individual carboxy-terminal domains are prominent in filamentous fungi but are not found in yeasts, plants, and metazoans. Our data suggest that two functional regions of the CbfA-like proteins evolved at different rates to allow the occurrence of species-specific adaptation processes during genome evolution. PMID:23355006

  6. Stress Responses of Small Heat Shock Protein Genes in Lepidoptera Point to Limited Conservation of Function across Phylogeny

    PubMed Central

    Zhang, Bo; Zheng, Jincheng; Peng, Yu; Liu, Xiaoxia; Hoffmann, Ary A.; Ma, Chun-Sen

    2015-01-01

    The small heat shock protein (sHsp) family is thought to play an important role in protein refolding and signal transduction, and thereby protect organisms from stress. However little is known about sHsp function and conservation across phylogenies. In the current study, we provide a comprehensive assessment of small Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta. Fourteen small heat shock proteins of OFM clustered with related Hsps in other Lepidoptera despite a high level of variability among them, and in contrast to the highly conserved Hsp11.1. The only known lepidopteran sHsp ortholog (Hsp21.3) was consistently unaffected under thermal stress in Lepidoptera where it has been characterized. However the phylogenetic position of the sHsps within the Lepidoptera was not associated with conservation of induction patterns under thermal extremes or diapause. These findings suggest that the sHsps have evolved rapidly to develop new functions within the Lepidoptera. PMID:26196395

  7. Public awareness of testicular cancer and testicular self-examination in academic environments: a lost opportunity

    PubMed Central

    Ugboma, Henry A A; Aburoma, H L S

    2011-01-01

    BACKGROUND: Although testicular cancer is the most common cancer among 18- to 50-year-old males, healthcare providers seldom teach testicular self-examination techniques to clients, thus potentially missing opportunities for early detection. This form of cancer is easily diagnosable by testicular self-examination and is 96% curable if detected early. Periodic self-examination must be performed for early detection. Knowledge deficits and sociocultural norms contribute to low levels of health-related knowledge in most patients, resulting in undue delays before seeking medical advice. OBJECTIVE: Our aim is to assess the level of awareness of testicular cancer and the prevalence of the practice of testicular self-examination in academic environments to enable appropriate interventions. METHOD: A cross-sectional survey was administered to 750 consecutive males aged 18–50 years in three tertiary institutions in Port Harcourt from October 2008 to April 2009. RESULT: Knowledge or awareness of testicular cancer was poor. Almost all of the respondents were unaware that testicular lumps may be signs of cancer. A lump was typically construed as a benign carbuncle or something that could resolve spontaneously. The main factor contributing to respondents' lack of knowledge of testicular cancer was that few reported that they were “ever taught about testicular self-examination.” CONCLUSION: Young adult men are unaware of their risk for testicular cancer, which is the most common neoplasm in this age group. Healthcare providers are not informing them of this risk, nor are they teaching them the simple early detection technique of self-examination of the testes. PMID:21876962

  8. Different Sets of Post-Embryonic Development Genes Are Conserved or Lost in Two Caryophyllales Species (Reaumuria soongorica and Agriophyllum squarrosum).

    PubMed

    Zhao, Pengshan; Zhang, Jiwei; Zhao, Xin; Chen, Guoxiong; Ma, Xiao-Fei

    2016-01-01

    Reaumuria soongorica and sand rice (Agriophyllum squarrosum) belong to the clade of Caryophyllales and are widely distributed in the desert regions of north China. Both plants have evolved many specific traits and adaptation strategies to cope with recurring environmental threats. However, the genetic basis that underpins their unique traits and adaptation remains unknown. In this study, the transcriptome data of R. soongorica and sand rice were compared with three other species with previously sequenced genomes (Arabidopsis thaliana, Oryza sativa, and Beta vulgaris). Four different gene sets were identified, namely, the genes conserved in both species, those lost in both species, those conserved in R. soongorica only, and those conserved in sand rice only. Gene ontology showed that post-embryonic development genes (PEDGs) were enriched in all gene sets, and different sets of PEDGs were conserved or lost in both the R. soongorica and sand rice genomes. Expression profiles of Arabidopsis orthologs further provided some clues to the function of the species-specific conserved PEDGs. Such orthologs included LEAFY PETIOLE, which could be a candidate gene involved in the development of branch priority in sand rice.

  9. Regulation of carotenoid and bacteriochlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation.

    PubMed

    Armstrong, G A; Cook, D N; Ma, D; Alberti, M; Burke, D H; Hearst, J E

    1993-05-01

    The temporal expression of ten clustered genes required for carotenoid (crt) and bacteriochlorophyll (bch) biosynthesis was examined during the transition from aerobic respiration to anaerobiosis requisite for the development of the photosynthetic membrane in the bacterium Rhodobacter capsulatus. Accumulation of crtA, crtC, crtD, crtE, crtF, crtK, bchC and bchD mRNAs increased transiently and coordinately, up to 12-fold following removal of oxygen from the growth medium, paralleling increases in mRNAs encoding pigment-binding polypeptides of the photosynthetic apparatus. The crtB and crtI genes, in contrast, were expressed similarly in the presence or absence of oxygen. The regulation patterns of promoters for the crtA and crtI genes and the bchCXYZ operon were characterized using lacZ transcriptional fusion and qualitatively reflected the corresponding mRNA accumulation patterns. We also report that the bchI gene product, encoded by a DNA sequence previously considered to be a portion of crtA, shares 49% sequence identity with the nuclear-encoded Arabidopsis thaliana Cs chloroplast protein required for normal pigmentation in plants.

  10. Computational identification and characterization of conserved miRNAs and their target genes in beet (Beta vulgaris).

    PubMed

    Li, J L; Cui, J; Cheng, D Y

    2015-08-07

    Highly conserved endogenous non-coding microRNAs (miRNAs) play important roles in plants and animals by silencing genes via destruction or blocking of translation of homologous mRNA. Sugar beet, Beta vulgaris, is one of the most important sugar crops in China, with properties that include wide adaptability and strong tolerance to salinity and impoverished soils. Seedlings of B. vulgaris can grow in soils containing up to 0.6% salt; it is important to understand the molecular mechanisms of salt tolerance to enrich genetic resources for breeding salt-tolerant sugar beets. Here, we report 13 mature miRNAs from 12 families, predicted using an in silico approach from 29,857 expressed sequence tags and 279,223 genome survey sequences. The psRNATarget server predicted 25 target genes for the 13 miRNAs. Most of the target genes appeared to encode transcription factors or were involved in metabolism, signal transduction, stress response, growth, and development. These results improve our understanding of the molecular mechanisms of miRNA in beet and may aid in the development of novel and precise techniques for understanding post-transcriptional gene-silencing mechanisms in response to stress tolerance.

  11. Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway.

    PubMed

    Lavore, A; Pascual, A; Salinas, F M; Esponda-Behrens, N; Martinez-Barnetche, J; Rodriguez, M; Rivera-Pomar, R

    2015-09-01

    Most of the in-depth studies on insect developmental genetic have been carried out in the fruit fly Drosophila melanogaster, an holometabolous insect, so much more still remains to be studied in hemimetabolous insects. Having Rhodnius prolixus sequenced genome available, we search for orthologue genes of zygotic signaling pathways, segmentation, and tracheogenesis in the R. prolixus genome and in three species of Triatoma genus transcriptomes, concluding that there is a high level of gene conservation. We also study the function of two genes required for tracheal system development in D. melanogaster - R. prolixus orthologues: trachealess (Rp-trh) and empty spiracles (Rp-ems). From that we see that Rp-trh is required for early tracheal development since Rp-trh RNAi shows that the primary tracheal branches fail to form. On the other hand, Rp-ems is implied in the proper formation of the posterior tracheal branches, in a similar way to D. melanogaster. These results represent the initial characterization of the genes involved in the tracheal development of an hemimetabolous insect building a bridge between the current genomic era and V. Wigglesworth's classical studies on insects' respiratory system physiology.

  12. cDNA sequence, genomic organization, and evolutionary conservation of a novel gene from the WAGR region

    SciTech Connect

    Schwartz, F.; Eisenman, R.; Knoll, J.; Bruns, G.

    1995-09-20

    A new gene (239FB) with predominant and differential expression in fetal brain has recently been isolated from a chromosome 11p13-p14 boundary area near FSHB. The corresponding mRNA has an open reading frame of 294 amino acids, a 3` untranslated region of 1247 nucleotides, and a highly GC-rich 5` untranslated region. The coding and 3` UT sequence is specified by 6 exons within nearly 87 kb of isolated genomic locus. The 5` end region of the transcript maps adjacent to the only genomically defined CpG island in a chromosomal subregion that may be associated with part of the mental retardation of some WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome patients. In addition to nucleotide and amino acid similarity to an EST from a normalized infant brain cDNA library, the predicted protein has extensive similarity to Caenorhbditis elegans polypeptides of, as yet, unknown function. The 239FB locus is, therefore, likely part of a family of genes with two members expressed in human brain. The extensive conservation of the predicted protein suggests a fundamental function of the gene product and will enable evaluation of the role of the 239FB gene in neurogenesis in model organisms. 48 refs., 4 figs., 1 tab.

  13. Amphibian interorder nuclear transfer embryos reveal conserved embryonic gene transcription, but deficient DNA replication or chromosome segregation.

    PubMed

    Narbonne, Patrick; Gurdon, John B

    2012-01-01

    Early interspecies nuclear transfer (iNT) experiments suggested that a foreign nucleus may become permanently damaged after a few rounds of cell division in the cytoplasm of another species. That is, in some distant species combinations, nucleocytoplasmic hybrid (cybrid) blastula nuclei can no longer support development, even if they are back-transferred into their own kind of egg cytoplasm. We monitored foreign DNA amplification and RNA production by quantitative PCR (qPCR) and RT-qPCR in interorder amphibian hybrids and cybrids formed by the transfer of newt (Pleurodeles waltl) embryonic nuclei into intact and enucleated frog (Xenopus laevis) eggs. We found a dramatic reduction in the expansion of foreign DNA and cell numbers in developing cybrid embryos that correlated with reduced gene transcription. Interestingly, expansion in cell numbers was rescued by the recipient species (Xenopus) maternal genome in iNT hybrids, but it did not improve P. waltl DNA expansion or gene transcription. Also, foreign gene transcripts, normalized to DNA copy numbers, were mostly normal in both iNT hybrids and cybrids. Thus, incomplete foreign DNA replication and/or chromosome segregation during cell division may be the major form of nuclear damage occurring as a result of nuclear replication in a foreign cytoplasmic environment. It also shows that the mechanisms of embryonic gene transcription are highly conserved across amphibians and may not be a major cause of cybrid lethality.

  14. env Gene of Chicken RNA Tumor Viruses: Extent of Conservation in Cellular and Viral Genomes

    PubMed Central

    Fujita, Donald J.; Tal, Jacov; Varmus, Harold E.; Bishop, J. Michael

    1978-01-01

    The env gene of avian sarcoma-leukosis viruses codes for envelope glycoproteins that determine viral host range, antigenic specificity, and interference patterns. We used molecular hybridization to analyze the natural distribution and possible origins of the nucleotide sequences that encode env; our work exploited the availability of radioactive DNA (cDNAgp) complementary to most or all of env. env sequences were detectable in the DNAs of chickens which synthesized an env gene product (chick helper factor positive) encoded by an endogenous viral gene and also in the DNAs of chickens which synthesized little or no env gene product (chick helper factor negative). env sequences were not detectable in DNAs from Japanese quail, ring-necked pheasant, golden pheasant, duck, squab, salmon sperm, or calf thymus. The detection of sequences closely related to viral env only in chicken DNA contrasts sharply with the demonstration that the transforming gene (src) of avian sarcoma viruses has readily detectable homologues in the DNAs of all avian species tested [D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, Nature (London) 260: 170-173, 1976] and in the DNAs of other vertebrates (D. Spector, personal communication). Thermal denaturation studies on duplexes formed between cDNAgp and chicken DNA and also between cDNAgp and RNAs of subgroup A to E viruses derived from chickens indicated that these duplexes were well matched. In contrast, cDNAgp did not form stable hybrids with RNAs of viruses which were isolated from ring-necked and golden pheasants. We conclude that substantial portions of nucleotide sequences within the env genes of viruses of subgroups A to E are closely related and that these genes probably have a common, perhaps cellular, evolutionary origin. PMID:212576

  15. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda

    PubMed Central

    2013-01-01

    Background Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Results Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. Conclusions The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling

  16. Genetics Home Reference: 46,XX testicular disorder of sex development

    MedlinePlus

    ... of sex development 46,XX testicular disorder of sex development Enable Javascript to view the expand/collapse ... Close All Description 46,XX testicular disorder of sex development is a condition in which individuals with ...

  17. Inter-specific sequence conservation and intra-individual sequence variation in a spider silk gene.

    PubMed

    Tai, Pei-Ling; Hwang, Guang-Yuh; Tso, I-Min

    2004-10-01

    Currently, studies on major ampullate spidroin 1 (MaSp1) genes of non-orb weaving spiders are few, and it is not clear whether genes of these organisms exhibit the same characteristics as those of orb-weavers. In addition, many studies have proposed that MaSp1 might be a single gene with allelic variants, but supporting evidence is still lacking. In this study, we compared partial DNA and amino acid sequences of MaSp1 cloned from different spider guilds. We also cloned partial MaSp1 sequences from genomic DNA and cDNA of the same individuals of spiders using the same primer combination to see if different molecular forms existed. In the repetitive region of partial MaSp1 sequences obtained, GGX, GA and poly-A motifs were present in all Araneomorphae and Mygalomorpae species examined. An extreme similarity in MaSp1 non-repetitive portions was found in sequences of ecribellate, cribellate and Mygalomorphae web-builders and such a result suggested that this sequence might exhibit an important function. A comparison of sequences amplified from the same individual showed that substitutions in amino acids occurred in both repetitive and non-repetitive regions, with a much higher variation in the former. These results suggest that the MaSp1 of Araneomorphae spiders exhibits several forms in an individual spider and it might be either a multiple gene or a single gene with a multiple exon/intron organization.

  18. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis.

    PubMed

    Burton, Patrick M; Finnerty, John R

    2009-02-01

    Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.

  19. Zika virus causes testicular atrophy

    PubMed Central

    Uraki, Ryuta; Hwang, Jesse; Jurado, Kellie Ann; Householder, Sarah; Yockey, Laura J.; Hastings, Andrew K.; Homer, Robert J.; Iwasaki, Akiko; Fikrig, Erol

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has recently been found to cause fetal infection and neonatal abnormalities, including microcephaly and neurological dysfunction. ZIKV persists in the semen months after the acute viremic phase in humans. To further understand the consequences of ZIKV persistence in males, we infected Ifnar1−/− mice via subcutaneous injection of a pathogenic but nonlethal ZIKV strain. ZIKV replication persists within the testes even after clearance from the blood, with interstitial, testosterone-producing Leydig cells supporting virus replication. We found high levels of viral RNA and antigen within the epididymal lumen, where sperm is stored, and within surrounding epithelial cells. Unexpectedly, at 21 days post-infection, the testes of the ZIKV-infected mice were significantly smaller compared to those of mock-infected mice, indicating progressive testicular atrophy. ZIKV infection caused a reduction in serum testosterone, suggesting that male fertility can be affected. Our findings have important implications for nonvector-borne vertical transmission, as well as long-term potential reproductive deficiencies, in ZIKV-infected males. PMID:28261663

  20. Zika virus causes testicular atrophy.

    PubMed

    Uraki, Ryuta; Hwang, Jesse; Jurado, Kellie Ann; Householder, Sarah; Yockey, Laura J; Hastings, Andrew K; Homer, Robert J; Iwasaki, Akiko; Fikrig, Erol

    2017-02-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has recently been found to cause fetal infection and neonatal abnormalities, including microcephaly and neurological dysfunction. ZIKV persists in the semen months after the acute viremic phase in humans. To further understand the consequences of ZIKV persistence in males, we infected Ifnar1(-/-) mice via subcutaneous injection of a pathogenic but nonlethal ZIKV strain. ZIKV replication persists within the testes even after clearance from the blood, with interstitial, testosterone-producing Leydig cells supporting virus replication. We found high levels of viral RNA and antigen within the epididymal lumen, where sperm is stored, and within surrounding epithelial cells. Unexpectedly, at 21 days post-infection, the testes of the ZIKV-infected mice were significantly smaller compared to those of mock-infected mice, indicating progressive testicular atrophy. ZIKV infection caused a reduction in serum testosterone, suggesting that male fertility can be affected. Our findings have important implications for nonvector-borne vertical transmission, as well as long-term potential reproductive deficiencies, in ZIKV-infected males.

  1. Conservative inheritance of newly synthesized DNA in double-strand break-induced gene conversion.

    PubMed

    Ira, Grzegorz; Satory, Dominik; Haber, James E

    2006-12-01

    To distinguish among possible mechanisms of repair of a double-strand break (DSB) by gene conversion in budding yeast, Saccharomyces cerevisiae, we employed isotope density transfer to analyze budding yeast mating type (MAT) gene switching in G2/M-arrested cells. Both of the newly synthesized DNA strands created during gene conversion are found at the repaired locus, leaving the donor unchanged. These results support suggestions that mitotic DSBs are primarily repaired by a synthesis-dependent strand-annealing mechanism. We also show that the proportion of crossing-over associated with DSB-induced ectopic recombination is not affected by the presence of nonhomologous sequences at one or both ends of the DSB or the presence of additional sequences that must be copied from the donor.

  2. A survey of well conserved families of C2H2 zinc-finger genes in Daphnia

    PubMed Central

    2010-01-01

    Background A recent comparative genomic analysis tentatively identified roughly 40 orthologous groups of C2H2 Zinc-finger proteins that are well conserved in "bilaterians" (i.e. worms, flies, and humans). Here we extend that analysis to include a second arthropod genome from the crustacean, Daphnia pulex. Results Most of the 40 orthologous groups of C2H2 zinc-finger proteins are represented by just one or two proteins within each of the previously surveyed species. Likewise, Daphnia were found to possess a similar number of orthologs for all of these small orthology groups. In contrast, the number of Sp/KLF homologs tends to be greater and to vary between species. Like the corresponding mammalian Sp/KLF proteins, most of the Drosophila and Daphnia homologs can be placed into one of three sub-groups: Class I-III. Daphnia were found to have three Class I proteins that roughly correspond to their Drosophila counterparts, dSP1, btd, CG5669, and three Class II proteins that roughly correspond to Luna, CG12029, CG9895. However, Daphnia have four additional KLF-Class II proteins that are most similar to the vertebrate KLF1/2/4 proteins, a subset not found in Drosophila. Two of these four proteins are encoded by genes linked in tandem. Daphnia also have three KLF-Class III members, one more than Drosophila. One of these is a likely Bteb2 homolog, while the other two correspond to Cabot and KLF13, a vertebrate homolog of Cabot. Conclusion Consistent with their likely roles as fundamental determinants of bilaterian form and function, most of the 40 groups of C2H2 zinc-finger proteins are conserved in kind and number in Daphnia. However, the KLF family includes several additional genes that are most similar to genes present in vertebrates but missing in Drosophila. PMID:20433734

  3. Multiple Herbicide Resistance in Lolium multiflorum and Identification of Conserved Regulatory Elements of Herbicide Resistance Genes

    PubMed Central

    Mahmood, Khalid; Mathiassen, Solvejg K.; Kristensen, Michael; Kudsk, Per

    2016-01-01

    Herbicide resistance is a ubiquitous challenge to herbicide sustainability and a looming threat to control weeds in crops. Recently four genes were found constituently over-expressed in herbicide resistant individuals of Lolium rigidum, a close relative of Lolium multiflorum. These include two cytochrome P450s, one nitronate monooxygenase and one glycosyl-transferase. Higher expressions of these four herbicide metabolism related (HMR) genes were also observed after herbicides exposure in the gene expression databases, indicating them as reliable markers. In order to get an overview of herbicidal resistance status of L. multiflorum L, 19 field populations were collected. Among these populations, four populations were found to be resistant to acetolactate synthase (ALS) inhibitors while three exhibited resistance to acetyl-CoA carboxylase (ACCase) inhibitors in our initial screening and dose response study. The genotyping showed the presence of mutations Trp-574-Leu and Ile-2041-Asn in ALS and ACCase, respectively, and qPCR experiments revealed the enhanced expression of HMR genes in individuals of certain resistant populations. Moreover, co-expression networks and promoter analyses of HMR genes in O. sativa and A. thaliana resulted in the identification of a cis-regulatory motif and zinc finger transcription factors. The identified transcription factors were highly expressed similar to HMR genes in response to xenobiotics whereas the identified motif is known to play a vital role in coping with environmental stresses and maintaining genome stability. Overall, our findings provide an important step forward toward a better understanding of metabolism-based herbicide resistance that can be utilized to devise novel strategies of weed management. PMID:27547209

  4. Conservation of the Duchenne muscular dystrophy gene in mice and humans

    SciTech Connect

    Hoffman, E.P.; Monaco, A.P.; Feener, C.C.; Kunkel, L.M.

    1987-10-16

    A portion of the Duchenne muscular dystrophy (DMD) gene transcript from human fetal skeletal muscle and mouse adult heart was sequence, representing approximately 25 percent of the total, 14-kb DMD transcript. The nucleic acid and predicted amino acid sequences from the two species are nearly 90 percent homologous. The amino acid sequence that is predicted from this portion of the DMD gene indicates that the protein product might serve a structural role in muscle, but the abundance and tissue distribution of the messenger RNA suggest that the DMD protein is not nebulin.

  5. Divergent Expression Regulation of Gonad Development Genes in Medaka Shows Incomplete Conservation of the Downstream Regulatory Network of Vertebrate Sex Determination

    PubMed Central

    Herpin, Amaury; Adolfi, Mateus C.; Nicol, Barbara; Hinzmann, Maria; Schmidt, Cornelia; Klughammer, Johanna; Engel, Mareen; Tanaka, Minoru; Guiguen, Yann; Schartl, Manfred

    2013-01-01

    Genetic control of male or female gonad development displays between different groups of organisms a remarkable diversity of “master sex-determining genes” at the top of the genetic hierarchies, whereas downstream components surprisingly appear to be evolutionarily more conserved. Without much further studies, conservation of sequence has been equalized to conservation of function. We have used the medaka fish to investigate the generality of this paradigm. In medaka, the master male sex-determining gene is dmrt1bY, a highly conserved downstream regulator of sex determination in vertebrates. To understand its function in orchestrating the complex gene regulatory network, we have identified targets genes and regulated pathways of Dmrt1bY. Monitoring gene expression and interactions by transgenic fluorescent reporter fish lines, in vivo tissue-chromatin immunoprecipitation and in vitro gene regulation assays revealed concordance but also major discrepancies between mammals and medaka, notably amongst spatial, temporal expression patterns and regulations of the canonical Hedgehog and R-spondin/Wnt/Follistatin signaling pathways. Examination of Foxl2 protein distribution in the medaka ovary defined a new subpopulation of theca cells, where ovarian-type aromatase transcriptional regulation appears to be independent of Foxl2. In summary, these data show that the regulation of the downstream regulatory network of sex determination is less conserved than previously thought. PMID:23883523

  6. Morgan’s Legacy: Fruit Flies and the Functional Annotation of Conserved Genes

    PubMed Central

    Bellen, Hugo J.; Yamamoto, Shinya

    2016-01-01

    In 1915, “The Mechanism of Mendelian Heredity” was published by four prominent Drosophila geneticists. They discovered that genes form linkage groups on chromosomes inherited in a Mendelian fashion and laid the genetic foundation that promoted Drosophila as a model organism. Flies continue to offer great opportunities, including studies in the field of functional genomics. PMID:26406362

  7. Transcriptional regulation of the human, porcine and bovine OCTN2 gene by PPARα via a conserved PPRE located in intron 1

    PubMed Central

    2014-01-01

    Background The novel organic cation transporter 2 (OCTN2) is the physiologically most important carnitine transporter in tissues and is responsible for carnitine absorption in the intestine, carnitine reabsorption in the kidney and distribution of carnitine between tissues. Genetic studies clearly demonstrated that the mouse OCTN2 gene is directly regulated by peroxisome proliferator-activated receptor α (PPARα). Despite its well conserved role as an important regulator of lipid catabolism in general, the specific genes under control of PPARα within each lipid metabolic pathway were shown to differ between species and it is currently unknown whether the OCTN2 gene is also a PPARα target gene in pig, cattle, and human. In the present study we examined the hypothesis that the porcine, bovine, and human OCTN2 gene are also PPARα target genes. Results Using positional cloning and reporter gene assays we identified a functional PPRE, each in the intron 1 of the porcine, bovine, and human OCTN2 gene. Gel shift assay confirmed binding of PPARα to this PPRE in the porcine, bovine, and the human OCTN2 gene. Conclusions The results of the present study show that the porcine, bovine, and human OCTN2 gene, like the mouse OCTN2 gene, is directly regulated by PPARα. This suggests that regulation of genes involved in carnitine uptake by PPARα is highly conserved across species. PMID:25299939

  8. Tissue Engineered Testicular Prostheses With Prolonged Testosterone Release

    DTIC Science & Technology

    2008-12-01

    and Hospital Infantil de Mexico “Federico Gomez”, Mexico City, Mexico* ABSTRACT Young soldiers with testicular tissue injury may require...Rustin, 2001: Testicular implants and patient satisfaction: a questionnaire-based study of men after orchidectomy for testicular cancer .[see comment

  9. Conservation of gene organization in the lymphotropic herpesviruses herpesvirus Saimiri and Epstein-Barr virus.

    PubMed Central

    Gompels, U A; Craxton, M A; Honess, R W

    1988-01-01

    By analyses of short DNA sequences, we have deduced the overall arrangement of genes in the (A + T)-rich coding sequences of herpesvirus saimiri (HVS) relative to the arrangements of homologous genes in the (G + C)-rich coding sequences of the Epstein-Barr virus (EBV) genome and the (A + T)-rich sequences of the varicella-zoster virus (VZV) genome. Fragments of HVS DNA from 13 separate sites within the 111 kilobase pairs of the light DNA coding sequences of the genome were subcloned into M13 vectors, and sequences of up to 350 bases were determined from each of these sites. Amino acid sequences predicted for fragments of open reading frames defined by these sequences were compared with a library of the protein sequences of major open reading frames predicted from the complete DNA sequences of VZV and EBV. Of the 13 short amino acid sequences obtained from HVS, only 3 were recognizably homologous to proteins encoded by VZV, but all 13 HVS sequences were unambiguously homologous to gene products encoded by EBV. The HVS reading frames identified by this method included homologs of the major capsid polypeptides, glycoprotein H, the major nonstructural DNA-binding protein, thymidine kinase, and the homolog of the regulatory gene product of the BMLF1 reading frame of EBV. Locally as well as globally, the order and relative orientation of these genes resembled that of their homologs on the EBV genome. Despite the major differences in their nucleotide compositions and in the nature and arrangements of reiterated DNA sequences, the genomes of the lymphotropic herpesviruses HVS and EBV encode closely related proteins, and they share a common organization of these coding sequences which differs from that of the neurotropic herpesviruses, VZV and herpes simplex virus. PMID:2828671

  10. Structural and mutational analysis of a conserved gene (DGSI) from the minimal DiGeorge syndrome critical region.

    PubMed

    Gong, W; Emanuel, B S; Galili, N; Kim, D H; Roe, B; Driscoll, D A; Budarf, M L

    1997-02-01

    The majority of patients with DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), conotruncal anomaly face syndrome (CTAFS) and some individuals with familial or sporadic conotruncal cardiac defects have hemizygous deletions of chromosome 22. Most patients with these disorders share a common large deletion, spanning > 1.5 Mb within 22q11.21-q11.23. Recently, the smallest region of deletion overlap has been narrowed to a 250 kb area, the minimal DGS critical region (MDGCR), which includes the locus D22S75 (N25). We have isolated and characterized a novel, highly conserved gene, DGSI, within the MDGCR. DGSI has 10 exons and nine introns encompassing 1702 bp of cDNA sequence and 11 kb of genomic DNA. The encoded protein has 476 amino acids with a predicted mol. wt of 52.6 kDa. The intron-exon boundaries have been analyzed and conform to the consensus GT/AG motif. The corresponding murine Dgsi has been isolated and localized to proximal mouse chromosome 16. The mouse gene contains the same number of exons and introns, and the predicted protein has 479 amino acids with 93.2% identity to that of the human DGSI gene. By database searching, both genes have significant homology to a Caenorhabditis elegans hypothetical protein, F42H10.7. Further, mutation analysis has been performed in 16 patients, who have no detectable 22q11.2 deletion and some of the characteristic clinical features of DGS/VCFS. We have detected eight sequence variants in DGSI. These occurred in the 5'-untranslated region, the coding region and the intronic regions adjacent to the intron-exon boundaries of the gene. Seven of the eight variants were also present in normal controls or unaffected family members, suggesting they may not be of etiologic significance.

  11. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains

    SciTech Connect

    Lan, Yemin; Rosen, Gail; Hershberg, Ruth

    2016-05-03

    The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to separate between prokaryotes at finer taxonomic levels. In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that the percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally, we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are always those that are least conserved in their sequences within each lineage. In conclusion, our results show that by choosing markers that are less conserved in their sequences within a lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created (POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation within different prokaryotic lineages.

  12. Marker genes that are less conserved in their sequences are useful for predicting genome-wide similarity levels between closely related prokaryotic strains

    DOE PAGES

    Lan, Yemin; Rosen, Gail; Hershberg, Ruth

    2016-05-03

    The 16s rRNA gene is so far the most widely used marker for taxonomical classification and separation of prokaryotes. Since it is universally conserved among prokaryotes, it is possible to use this gene to classify a broad range of prokaryotic organisms. At the same time, it has often been noted that the 16s rRNA gene is too conserved to separate between prokaryotes at finer taxonomic levels. In this paper, we examine how well levels of similarity of 16s rRNA and 73 additional universal or nearly universal marker genes correlate with genome-wide levels of gene sequence similarity. We demonstrate that themore » percent identity of 16s rRNA predicts genome-wide levels of similarity very well for distantly related prokaryotes, but not for closely related ones. In closely related prokaryotes, we find that there are many other marker genes for which levels of similarity are much more predictive of genome-wide levels of gene sequence similarity. Finally, we show that the identities of the markers that are most useful for predicting genome-wide levels of similarity within closely related prokaryotic lineages vary greatly between lineages. However, the most useful markers are always those that are least conserved in their sequences within each lineage. In conclusion, our results show that by choosing markers that are less conserved in their sequences within a lineage of interest, it is possible to better predict genome-wide gene sequence similarity between closely related prokaryotes than is possible using the 16s rRNA gene. We point readers towards a database we have created (POGO-DB) that can be used to easily establish which markers show lowest levels of sequence conservation within different prokaryotic lineages.« less

  13. Methylene blue increases contralateral testicular ischaemia-reperfusion injury after unilateral testicular torsion.

    PubMed

    Inan, Mustafa; Basaran, Umit N; Dokmeci, Dikmen; Yalcin, Omer; Aydogdu, Nurettin; Turan, Nesrin

    2008-01-01

    1. Testicular ischaemia-reperfusion injury is commonly seen in childhood. Infertility occurs in 25% of patients after unilateral testicular ischaemia. It is has been reported that methylene blue has a positive effect in the reparation of ischaemia-reperfusion injury in different tissues. Therefore, we hypothesized that methylene blue may prevent the hazardous effects of ischaemia-reperfusion injury in testicular tissue after unilateral testicular torsion. 2. Thirty-two prepubertal Wistar-albino rats were divided into four groups. Testicular torsion was created by rotating the right testis 720 degrees in a clockwise direction for 5 h in all groups except for Group C, which was the sham control group. In Group T, bilateral orchiectomy was performed following the torsion period. In Group TD, both testes were removed 5 days after the torsion period. In Group MB, methylene blue (1 mg/kg, i.p.) was administered 40 min before detorsion and once daily over 5 days; then, both testes were harvested. Tissue levels of malondialdehyde (MDA), serum levels of creatine kinase (CK), mean testicular biopsy score (MTBS) and mean seminifer tubule diameter (MSTD) were determined. 3. There was a significant difference in MTBS between Groups T and TD (P < 0.05) in both ipsilateral and contralateral testes. In the contralateral testis, treatment with methylene blue decreased MTBS and MSTD (P < 0.05) and increased MDA levels (P < 0.05). In Group T, mean serum CK concentrations were higher than in any of the other groups (P < 0.05). 4. After 5 h of unilateral testicular torsion and a 5 day reperfusion period, serious tissue damage occurred on both the ipsilateral and contralateral sides. Serum CK concentrations may be an indicator for ischaemia, but not for ischaemia-reperfusion injury. Contrary to our hypothesis, methylene blue increased contralateral testicular damage after unilateral testicular torsion and exacerbated oxidative events.

  14. Distorting Gene Pools by Conservation: Assessing the Case of Doomed Turtle Eggs

    NASA Astrophysics Data System (ADS)

    Mrosovsky, N.

    2006-10-01

    Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.

  15. Structure Conservation and Differential Expression of Farnesyl Diphosphate Synthase Genes in Euphorbiaceous Plants

    PubMed Central

    Guo, Dong; Li, Hui-Liang; Peng, Shi-Qing

    2015-01-01

    Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development. PMID:26389894

  16. Distorting gene pools by conservation: Assessing the case of doomed turtle eggs.

    PubMed

    Mrosovsky, N

    2006-10-01

    Sea turtles have a high reproductive output and high mortality at early stages of the life cycle. In particular, many nests are laid below or close to high tide lines, and subsequently large numbers of eggs may be inundated and destroyed. A common conservation procedure is to relocate such doomed eggs to higher ground. This article examines this practice in the light of recent data revealing that some individual turtles tend to nest relatively near the water and others relatively higher up the beach. Discussion is focused on the question of why apparently poor placement of nests has not been selected against. Comparison between the ecology of leatherback and hawksbill turtle nesting beaches suggests that predictability of environmental conditions on the nesting beaches has an important influence on patterns of nest-site selection. Options are outlined for the management of nesting beaches where a high proportion of turtle eggs is subject to destruction by flooding.

  17. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation

    PubMed Central

    Liu, Hongxia; Kolter, Roberto; Losick, Richard; Guo, Jian-hua

    2014-01-01

    Summary Bacillus subtilis and other Bacilli have long been used as biological control agents against plant bacterial diseases but the mechanisms by which the bacteria confer protection are not well understood. Our goal in this study was to isolate strains of B. subtilis that exhibit high levels of biocontrol efficacy from natural environments and to investigate the mechanisms by which these strains confer plant protection. We screened a total of sixty isolates collected from various locations across China and obtained six strains that exhibited above 50% biocontrol efficacy on tomato plants against the plant pathogen Ralstonia solanacearum under greenhouse conditions. These wild strains were able to form robust biofilms both in defined medium and on tomato plant roots and exhibited strong antagonistic activities against various plant pathogens in plate assays. We show that plant protection by those strains depended on widely conserved genes required for biofilm formation, including regulatory genes and genes for matrix production. We provide evidence suggesting that matrix production is critical for bacterial colonization on plant root surfaces. Finally, we have established a model system for studies of B. subtilis-tomato plant interactions in protection against a plant pathogen. PMID:22934631

  18. The clot gene of Drosophila melanogaster encodes a conserved member of the thioredoxin-like protein superfamily.

    PubMed

    Giordano, E; Peluso, I; Rendina, R; Digilio, A; Furia, M

    2003-02-01

    The conversion of pyruvoyl-H(4)-pterin to pyrimidodiazepine (PDA), which is an essential step in the biosynthesis of the red components of Drosophila eye pigments known as drosopterins, requires the products of the genes sepia and clot. While the product of sepia has been shown to correspond to the enzyme PDA-synthase, the role of clot remains unknown, although the clot(1) allele was one of the first eye-color mutants to be isolated in Drosophila melanogaster,and much genetic and biochemical data has become available since. Here we report the cloning of the clot gene, describe its molecular organization and characterize the sequence alterations associated with the alleles cl(1) and cl(2). The coding properties of the gene show that it encodes a protein related to the Glutaredoxin class of the Thioredoxin-like enzyme superfamily, conserved members of which are found in human, mouse and plants. We suggest that the Clot protein is an essential component of a glutathione redox system required for the final step in the biosynthetic pathway for drosopterins.

  19. H3K36ac Is an Evolutionary Conserved Plant Histone Modification That Marks Active Genes1[OPEN

    PubMed Central

    Arellano, Minerva Susana Trejo; Shu, Huan; Gruissem, Wilhelm

    2016-01-01

    In eukaryotic cells, histones are subject to a large number of posttranslational modifications whose sequential or combinatorial action affects chromatin structure and genome function. We identified acetylation at Lys-36 in histone H3 (H3K36ac) as a new chromatin modification in plants. The H3K36ac modification is evolutionary conserved in seed plants, including the gymnosperm Norway spruce (Picea abies) and the angiosperms rice (Oryza sativa), tobacco (Nicotiana tabacum), and Arabidopsis (Arabidopsis thaliana). In Arabidopsis, H3K36ac is highly enriched in euchromatin but not in heterochromatin. Genome-wide chromatin immunoprecipitation sequencing experiments revealed that H3K36ac peaks at the 5′ end of genes, mainly on the two nucleosomes immediately distal to the transcription start site, independently of gene length. H3K36ac overlaps with H3K4me3 and the H2A.Z histone variant. The histone acetyl transferase GCN5 and the histone deacetylase HDA19 are required for H3K36ac homeostasis. H3K36ac and H3K36me3 show negative crosstalk, which is mediated by GCN5 and the histone methyl transferase SDG8. Although H3K36ac is associated with gene activity, we did not find a linear relationship between H3K36ac and transcript levels, suggesting that H3K36ac is a binary indicator of transcription. PMID:26764380

  20. Identification, characterization and phylogenic analysis of conserved genes within the odvp-6e/odv-e56 gene region of Choristoneura fumiferana granulovirus.

    PubMed

    Rashidan, Kianoush Khajeh; Nassoury, Nasha; Giannopoulos, Paresa N; Mauffette, Yves; Guertin, Claude

    2004-03-31

    The genes that are located within the odvp-6e/odv-e56 region of the Choristoneura fumiferana granulovirus (ChfuGV) were identified by sequencing the 11 kb BamHI restriction fragment on the ChfuGV genome. The global GC content that was calculated from the data obtained from this genomic region was 34.96%. The open-reading frames (ORFs), located within the odvp-6e/odv-e56 region, are presented and compared to the equivalent ORFs that are located at the same region in other GVs. This region is composed of 14 ORFs, including three ORFs that are unique to ChfuGV with no obvious homologues in other baculoviruses as well as eleven ORFs with homologues to granuloviral ORFs, such as granulin, CfORF2, pk-1, ie-1, odv-e18, p49, and odvp-6e/odv-e56. In this study, the conceptual products of seven major conserved ORFs (granulin, CfORF2, IE-1, ODV-E18, p49 and ODVP-6E/ODV-E56) were used in order to construct phylogenetic trees. Our results show that granuloviruses can be grouped in 2 distinct groups as follows: Group I; Choristoneura fumiferana granulovirus (ChfuGV), Cydia pomonella granulovirus (CpGV), Phthorimaea operculella granulovirus (PhopGV), and Adoxophyes orana granulovirus (AoGV). Group II; Xestia c-nigrum granulovirus (XcGV), Plutella xylostella granulovirus (PxGV), and Trichoplusia ni granulovirus (TnGV). The ChfuGV conserved proteins are most closely related to those of CpGV, PhopGV, and AoGV. Comparative studies, performed on gene arrangements within this region of genomes, demonstrated that three GVs from group I maintain similar gene arrangements.

  1. Testicular atrophy as a risk inguinal hernioplasty.

    PubMed

    Wantz, G E

    1982-04-01

    In my experience, the complication of testicular atrophy after primary hernioplasty occurred only in patients in whom a complete indirect inguinal hernia sac was dissected from the spermatic cord. Avoiding this dissection by leaving the distal part of the sac in place reduces the incidence of the complication. All patients with scrotal inguinal hernias and all patients with recurrent inguinal hernias should have the complications of ischemic orchitis and testicular atrophy explained to them in depth because of the litigious nature of some of the men in whom this condition occurs. Patients who had undergone two or more operations for inguinal hernia should give prior written permission for orchiectomy even though this procedure is rarely necessary. In these patients, the performance of preperitoneal inguinal hernioplasty will permit the surgeon to avoid dissecting previously mobilized spermatic cords and should reduce the incidence of testicular atrophy in men fearful of this complication.

  2. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times

    PubMed Central

    Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong

    2014-01-01

    Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation. PMID:25249442

  3. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times.

    PubMed

    Zeng, Liping; Zhang, Qiang; Sun, Renran; Kong, Hongzhi; Zhang, Ning; Ma, Hong

    2014-09-24

    Angiosperms are the most successful plants and support human livelihood and ecosystems. Angiosperm phylogeny is the foundation of studies of gene function and phenotypic evolution, divergence time estimation and biogeography. The relationship of the five divergent groups of the Mesangiospermae (~99.95% of extant angiosperms) remains uncertain, with multiple hypotheses reported in the literature. Here transcriptome data sets are obtained from 26 species lacking sequenced genomes, representing each of the five groups: eudicots, monocots, magnoliids, Chloranthaceae and Ceratophyllaceae. Phylogenetic analyses using 59 carefully selected low-copy nuclear genes resulted in highly supported relationships: sisterhood of eudicots and a clade containing Chloranthaceae and Ceratophyllaceae, with magnoliids being the next sister group, followed by monocots. Our topology allows a re-examination of the evolutionary patterns of 110 morphological characters. The molecular clock estimates of Mesangiospermae diversification during the late to middle Jurassic correspond well to the origins of some insects, which may have been a factor facilitating early angiosperm radiation.

  4. Functional conservation and diversification of APETALA1/FRUITFULL genes in Brachypodium distachyon.

    PubMed

    Li, Qi; Wang, Ye; Wang, Fuxiang; Guo, Yuyu; Duan, Xueqing; Sun, Jinhao; An, Hailong

    2016-08-01

    The duplicated grass APETALA1/FRUITFULL (AP1/FUL) genes have distinct but overlapping patterns of expression, suggesting their discrete roles in transition to flowering, specification of spikelet meristem identity and specification of floral organ identity. In this study, we analyzed the expression patterns and functions of four AP1/FUL paralogs (BdVRN1, BdFUL2, BdFUL3 and BdFUL4) in Brachypodium distachyon, a model plant for the temperate cereals and related grasses. Among the four genes tested, only BdVRN1 could remember the prolonged cold treatment. The recently duplicated BdVRN1 and BdFUL2 genes were expressed in a highly consistent manner and ectopic expressions of them caused similar phenotypes such as extremely early flowering and severe morphological alterations of floral organs, indicating their redundant roles in floral transition, inflorescence development and floral organ identity. In comparison, ectopic expressions of BdFUL3 and BdFUL4 only caused a moderate early flowering phenotype, suggesting their divergent function. In yeast two-hybrid assay, both BdVRN1 and BdFUL2 physically interact with SEP proteins but only BdFUL2 is able to form a homodimer. BdVRN1 also interacts weakly with BdFUL2. Our results indicate that, since the separation of AP1/FUL genes in grasses, the process of sub- or neo-functionalization has occurred and paralogs function redundantly and/or separately in flowering competence and inflorescence development.

  5. Identification and characterization of flowering genes in kiwifruit: sequence conservation and role in kiwifruit flower development

    PubMed Central

    2011-01-01

    Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development. PMID:21521532

  6. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis

    PubMed Central

    Gabarrini, Giorgio; de Smit, Menke; Westra, Johanna; Brouwer, Elisabeth; Vissink, Arjan; Zhou, Kai; A. Rossen, John W.; Stobernack, Tim; van Dijl, Jan Maarten; Jan van Winkelhoff, Arie

    2015-01-01

    Periodontitis is an infective process that ultimately leads to destruction of the soft and hard tissues that support the teeth (the periodontium). Periodontitis has been proposed as a candidate risk factor for development of the autoimmune disease rheumatoid arthritis (RA). Porphyromonas gingivalis, a major periodontal pathogen, is the only known prokaryote expressing a peptidyl arginine deiminase (PAD) enzyme necessary for protein citrullination. Antibodies to citrullinated proteins (anti-citrullinated protein antibodies, ACPA) are highly specific for RA and precede disease onset. Objective of this study was to assess P. gingivalis PAD (PPAD) gene expression and citrullination patterns in representative samples of P. gingivalis clinical isolates derived from periodontitis patients with and without RA and in related microbes of the Porphyromonas genus. Our findings indicate that PPAD is omnipresent in P. gingivalis, but absent in related species. No significant differences were found in the composition and expression of the PPAD gene of P. gingivalis regardless of the presence of RA or periodontal disease phenotypes. From this study it can be concluded that if P. gingivalis plays a role in RA, it is unlikely to originate from a variation in PPAD gene expression. PMID:26403779

  7. VSG 117 gene is conservatively present and early expressed in Trypanosma evansi YNB stock.

    PubMed

    Jia, Yonggen; Guo, Liang; Zhao, Xinxin; Suo, Xun

    2012-05-01

    African trypanosomes, including Trypanosoma brucei and the closely related species Trypanosoma evansi, are flagellated unicellular parasites that proliferate extracellularly in the mammalian bloodstream and tissue spaces. They evade host immune system by periodically switching their variant surface glycoprotein (VSG) coat. Each trypanosome possesses a vast archive of VSGs with distinct sequence identity and different strains contain different archive of VSGs. VSG 117 was reported as a widespread VSG detected in the genomes of all the T. brucei strains. In this study, the presence and expression of VSG 117 gene was observed in T. evansi YNB stock by RT-PCR with VSG-specific primers. We further confirmed that this VSG tends to be expressed in the early stage of T. evansi infections (on day 12-15) by immuno-screening the previously isolated infected blood samples. It is possible that the VSG 117 gene evolved and spread through the African trypanosome population via genetic exchange, before T. evansi lost its ability to infect tsetse fly. Our finding provided an evidence of the close evolutionary relationship between T. evansi and T. brucei, in the terms of VSG genes.

  8. Testicular Cancer Survivorship: Research Strategies and Recommendations

    PubMed Central

    Beard, Clair; Allan, James M.; Dahl, Alv A.; Feldman, Darren R.; Oldenburg, Jan; Daugaard, Gedske; Kelly, Jennifer L.; Dolan, M. Eileen; Hannigan, Robyn; Constine, Louis S.; Oeffinger, Kevin C.; Okunieff, Paul; Armstrong, Greg; Wiljer, David; Miller, Robert C.; Gietema, Jourik A.; van Leeuwen, Flora E.; Williams, Jacqueline P.; Nichols, Craig R.; Einhorn, Lawrence H.; Fossa, Sophie D.

    2010-01-01

    Testicular cancer represents the most curable solid tumor, with a 10-year survival rate of more than 95%. Given the young average age at diagnosis, it is estimated that effective treatment approaches, in particular, platinum-based chemotherapy, have resulted in an average gain of several decades of life. This success, however, is offset by the emergence of considerable long-term morbidity, including second malignant neoplasms, cardiovascular disease, neurotoxicity, nephrotoxicity, pulmonary toxicity, hypogonadism, decreased fertility, and psychosocial problems. Data on underlying genetic or molecular factors that might identify those patients at highest risk for late sequelae are sparse. Genome-wide association studies and other translational molecular approaches now provide opportunities to identify testicular cancer survivors at greatest risk for therapy-related complications to develop evidence-based long-term follow-up guidelines and interventional strategies. We review research priorities identified during an international workshop devoted to testicular cancer survivors. Recommendations include 1) institution of lifelong follow-up of testicular cancer survivors within a large cohort setting to ascertain risks of emerging toxicities and the evolution of known late sequelae, 2) development of comprehensive risk prediction models that include treatment factors and genetic modifiers of late sequelae, 3) elucidation of the effect(s) of decades-long exposure to low serum levels of platinum, 4) assessment of the overall burden of medical and psychosocial morbidity, and 5) the eventual formulation of evidence-based long-term follow-up guidelines and interventions. Just as testicular cancer once served as the paradigm of a curable malignancy, comprehensive follow-up studies of testicular cancer survivors can pioneer new methodologies in survivorship research for all adult-onset cancer. PMID:20585105

  9. Testicular cancer at Kenyatta National Hospital, Nairobi.

    PubMed

    Opot, E N; Magoha, G A

    2000-02-01

    This retrospective study was undertaken to determine the prevalence, clinical characteristics, management methods and prognosis of testicular cancer at Kenyatta National Hospital, Nairobi. All histologically confirmed testicular cancer patients recorded at the Histopathology Department between 1993 and 1997 were analyzed. The mean age was 34.8 years with a peak incidence in the 30-44 year age group. About 10.26% of patients had history of cryptochirdism. The clinical symptoms presented were painless testicular swelling (n = 31, 79.49%), testicular pain (n = 11, 28.08%), scrotal heaviness (n = 9, 23.08%), abdominal swelling (n = 6, 15.38%), gynecomastia (n = 1, 2.56%), and eye swelling (n = 1, 2.56%). On examination, 32 patients (82.05%) had testicular masses, 10 (25.64%) had abdominal masses, 7 (17.91%) had supraclavicular and cervical lymphadenopathy, 1 had gynecomastia, and 1 had an orbital mass. More than 89% of patients had germ cell cancers with seminoma accounting for 67.35%, teratoma for 12.24%, embryonal carcinoma for 8.16%, rhabdomyosarcoma for 6.12%, and malignant germ cell tumor, orchioblastoma, and dysgerminoma each accounting for 2.04%. The various methods of treatment include orchidectomy and radiotherapy and chemotherapy in 3 patients (7.7%), orchidectomy and radiotherapy in 16 patients (41.03%), orchidectomy and chemotherapy in 6 patients (15.38%), and radiotherapy and chemotherapy in 10 patients (25.64%). No cisplatin-based chemotherapy was used. 18 patients were followed up, of whom 7 were alive after 5 years. Prognosis with current regimens was poor, with a 38.89% survival ratio in 5 years. Hence, cisplatin-based chemotherapy with up to 90% cure rates should be included in the testicular cancer management in this hospital.

  10. Malignant testicular tumour incidence and mortality trends

    PubMed Central

    Wojtyła-Buciora, Paulina; Więckowska, Barbara; Krzywinska-Wiewiorowska, Małgorzata; Gromadecka-Sutkiewicz, Małgorzata

    2016-01-01

    Aim of the study In Poland testicular tumours are the most frequent cancer among men aged 20–44 years. Testicular tumour incidence since the 1980s and 1990s has been diversified geographically, with an increased risk of mortality in Wielkopolska Province, which was highlighted at the turn of the 1980s and 1990s. The aim of the study was the comparative analysis of the tendencies in incidence and death rates due to malignant testicular tumours observed among men in Poland and in Wielkopolska Province. Material and methods Data from the National Cancer Registry were used for calculations. The incidence/mortality rates among men due to malignant testicular cancer as well as the tendencies in incidence/death ratio observed in Poland and Wielkopolska were established based on regression equation. The analysis was deepened by adopting the multiple linear regression model. A p-value < 0.05 was arbitrarily adopted as the criterion of statistical significance, and for multiple comparisons it was modified according to the Bonferroni adjustment to a value of p < 0.0028. Calculations were performed with the use of PQStat v1.4.8 package. Results The incidence of malignant testicular neoplasms observed among men in Poland and in Wielkopolska Province indicated a significant rising tendency. The multiple linear regression model confirmed that the year variable is a strong incidence forecast factor only within the territory of Poland. A corresponding analysis of mortality rates among men in Poland and in Wielkopolska Province did not show any statistically significant correlations. Conclusions Late diagnosis of Polish patients calls for undertaking appropriate educational activities that would facilitate earlier reporting of the patients, thus increasing their chances for recovery. Introducing preventive examinations in the regions of increased risk of testicular tumour may allow earlier diagnosis. PMID:27095941

  11. Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins.

    PubMed Central

    Gregory, S L; Kortschak, R D; Kalionis, B; Saint, R

    1996-01-01

    We reported the identification of a new family of DNA-binding proteins from our characterization of the dead ringer (dri) gene of Drosophila melanogaster. We show that dri encodes a nuclear protein that contains a sequence-specific DNA-binding domain that bears no similarity to known DNA-binding domains. A number of proteins were found to contain sequences homologous to this domain. Other proteins containing the conserved motif include yeast SWI1, two human retinoblastoma binding proteins, and other mammalian regulatory proteins. A mouse B-cell-specific regulator exhibits 75% identity with DRI over the 137-amino-acid DNA-binding domains of these proteins, indicating a high degree of conservation of this domain. Gel retardation and optimal binding site screens revealed that the in vitro sequence specificity of DRI is strikingly similar to that of many homeodomain proteins, although the sequence and predicted secondary structure do not resemble a homeodomain. The early general expression of dri and the similarity of DRI and homeodomain in vitro DNA-binding specificity compound the problem of understanding the in vivo specificity of action of these proteins. Maternally derived dri product is found throughout the embryo until germ band extension, when dri is expressed in a developmentally regulated set of tissues, including salivary gland ducts, parts of the gut, and a subset of neural cells. The discovery of this new, conserved DNA-binding domain offers an explanation for the regulatory activity of several important members of this class and predicts significant regulatory roles for the others. PMID:8622680

  12. Comprehensive Sequence Analysis of the Human IL23A Gene Defines New Variation Content and High Rate of Evolutionary Conservation

    PubMed Central

    Tindall, Elizabeth A.; Hayes, Vanessa M.

    2010-01-01

    A newly described heterodimeric cytokine, interleukin-23 (IL-23) is emerging as a key player in both the innate and the adaptive T helper (Th)17 driven immune response as well as an initiator of several autoimmune diseases. The rate-limiting element of IL-23 production is believed to be driven by expression of the unique p19 subunit encoded by IL23A. We set out to perform comprehensive DNA sequencing of this previously under-studied gene in 96 individuals from two evolutionary distinct human population groups, Southern African Bantu and European. We observed a total of 33 different DNA variants within these two groups, 22 (67%) of which are currently not reported in any available database. We further demonstrate both inter-population and intra-species sequence conservation within the coding and known regulatory regions of IL23A, supporting a critical physiological role for IL-23. We conclude that IL23A may have undergone positive selection pressure directed towards conservation, suggesting that functional genetic variants within IL23A will have a significant impact on the host immune response. PMID:20154336

  13. The functions of the multiproduct and rapidly evolving dec-1 eggshell gene are conserved between evolutionarily distant species of Drosophila.

    PubMed Central

    Badciong, J C; Otto, J M; Waring, G L

    2001-01-01

    The Drosophila dec-1 gene encodes multiple proteins that are required for female fertility and proper eggshell morphogenesis. Genetic and immunolocalization data suggest that the different DEC-1 proteins are functionally distinct. To identify regions within the proteins with potential biological significance, we cloned and sequenced the D. yakuba and D. virilis dec-1 homologs. Interspecies comparisons of the predicted translation products revealed rapidly evolving sequences punctuated by blocks of conserved amino acids. Despite extensive amino acid variability, the proteins produced by the different dec-1 homologs were functionally interchangeable. The introduction of transgenes containing either the D. yakuba or the D. virilis dec-1 open reading frames into a D. melanogaster DEC-1 protein null mutant was sufficient to restore female fertility and wild-type eggshell morphology. Normal expression and extracellular processing of the DEC-1 proteins was correlated with the phenotypic rescue. The nature of the conserved features highlighted by the evolutionary comparison and the molecular resemblance of some of these features to those found in other extracellular proteins suggests functional correlates for some of the multiple DEC-1 derivatives. PMID:11729155

  14. Antidepressants and testicular cancer: cause versus association.

    PubMed

    Andrade, Chittaranjan

    2014-03-01

    A data mining study that examined associations between 105 drugs and 55 cancer sites found significant associations between 2 selective serotonin reuptake inhibitors (fluoxetine and paroxetine) and testicular cancer. The study suggested several reasons why these associations merited further investigation. A later study tested specific relationships between 12 antidepressant drugs and testicular cancer and subtypes thereof; whereas significant relationships were again found, these disappeared after adjusting for confounding variables. These 2 studies are educative because they illustrate how false-positive results can easily arise in exploratory research and how confounding may be responsible for statistically significant relationships in study designs that are not randomized controlled trials.

  15. Colon cancer presenting as a testicular metastasis

    PubMed Central

    Mohiuddin, Majid; Sharif, Asma

    2016-01-01

    We report a case of a 43-year-old male who initially presented with intermittent testicular pain as the first sign of metastatic stage IV colon cancer. Physical examination revealed a normal penis, scrotum and testes. Magnetic resonance imaging (MRI) of pelvis showed an irregular 3 cm mass of the spermatic cord and right radical inguinal orchiectomy was performed. The pathological diagnosis was metastatic adenocarcinoma. In conclusion, even though metastases to the testes are rare, they should be considered in clinical practice especially in older men who present with a testicular mass or discomfort. PMID:28138654

  16. Etiologic factors in testicular germ cell tumors

    PubMed Central

    McGlynn, Katherine A.; Cook, Michael B.

    2010-01-01

    Globally, testicular cancer incidence is highest among men of northern European ancestry and lowest among men of Asian and African descent. Incidence rates have been increasing around the world for at least 50 years, but mortality rates, at least in developed countries, have been declining. While reasons for the decreases in mortality are related to improvements in therapeutic regimes introduced in the late 1970s, reasons for the increase in incidence are less well understood. An accumulating body of evidence suggests, however, that testicular cancer arises in fetal life. Perinatal factors, including exposure to endocrine disrupting chemicals, have been suggested to be related to risk. PMID:19903067

  17. Evolutionary variations in the expression of dorso-ventral patterning genes and the conservation of pioneer neurons in Tribolium castaneum.

    PubMed

    Biffar, Lucia; Stollewerk, Angelika

    2015-04-01

    Insects are ideally suited for gaining insight into the evolutionary developmental mechanisms that have led to adaptive changes of the nervous system since the specific structure of the nervous system can be directly linked to the neural stem cell (neuroblast) lineages, which in turn can be traced back to the last common ancestor of insects. The recent comparative analysis of the Drosophila melanogaster and Tribolium castaneum neuroblast maps revealed substantial differences in the expression profiles of neuroblasts. Here we show that despite the overall conservation of the dorso-ventral expression domains of muscle segment homeobox, intermediate neuroblasts defective and ventral nervous system defective, the expression of these genes relative to the neuroblasts in the respective domains has changed considerably during insect evolution. Furthermore, functional studies show evolutionary changes in the requirement of ventral nervous system defective in the formation of neuroblast 1-1 and the correct differentiation of its presumptive progeny, the pioneer neurons aCC and pCC. The inclusion of the expression data of the dorso-ventral genes into the recently established T. castaneum neuroblast map further increases the differences in the neuroblast expression profiles between D. melanogaster and T. castaneum. Despite these molecular variations, the Even-skipped positive pioneer neurons show an invariant arrangement, except for an additional Even-skipped positive cluster that we discovered in T. castaneum. Given the importance of these pioneer neurons in establishing the intersegmental nerves and the longitudinal tracts, which are part of the conserved axonal scaffold of arthropods, we discuss internal buffering mechanisms that might ensure that neuroblast lineages invariantly generate pioneer neurons over a wide range of molecular variations.

  18. Segment polarity gene expression in a myriapod reveals conserved and diverged aspects of early head patterning in arthropods.

    PubMed

    Janssen, Ralf

    2012-09-01

    Arthropods show two kinds of developmental mode. In the so-called long germ developmental mode (as exemplified by the fly Drosophila), all segments are formed almost simultaneously from a preexisting field of cells. In contrast, in the so-called short germ developmental mode (as exemplified by the vast majority of arthropods), only the anterior segments are patterned similarly as in Drosophila, and posterior segments are added in a single or double segmental periodicity from a posterior segment addition zone (SAZ). The addition of segments from the SAZ is controlled by dynamic waves of gene activity. Recent studies on a spider have revealed that a similar dynamic process, involving expression of the segment polarity gene (SPG) hedgehog (hh), is involved in the formation of the anterior head segments. The present study shows that in the myriapod Glomeris marginata the early expression of hh is also in a broad anterior domain, but this domain corresponds only to the ocular and antennal segment. It does not, like in spiders, represent expression in the posterior adjacent segment. In contrast, the anterior hh pattern is conserved in Glomeris and insects. All investigated myriapod SPGs and associated factors are expressed with delay in the premandibular (tritocerebral) segment. This delay is exclusively found in insects and myriapods, but not in chelicerates, crustaceans and onychophorans. Therefore, it may represent a synapomorphy uniting insects and myriapods (Atelocerata hypothesis), contradicting the leading opinion that suggests a sister relationship of crustaceans and insects (Pancrustacea hypothesis). In Glomeris embryos, the SPG engrailed is first expressed in the mandibular segment. This feature is conserved in representatives of all arthropod classes suggesting that the mandibular segment may have a special function in anterior patterning.

  19. A remote and highly conserved enhancer supports amygdala specific expression of the gene encoding the anxiogenic neuropeptide substance-P.

    PubMed

    Davidson, S; Miller, K A; Dowell, A; Gildea, A; Mackenzie, A

    2006-04-01

    The neuropeptide substance P (SP), encoded by the preprotachykinin-A (PPTA) gene, is expressed in the central and medial amygdaloid nucleus, where it plays a critical role in modulating fear and anxiety related behaviour. Determining the regulatory systems that support PPTA expression in the amygdala may provide important insights into the causes of depression and anxiety related disorders and will provide avenues for the development of novel therapies. In order to identify the tissue specific regulatory element responsible for supporting expression of the PPTA gene in the amygdala, we used long-range comparative genomics in combination with transgenic analysis and immunohistochemistry. By comparing human and chicken genomes, it was possible to detect and characterise a highly conserved long-range enhancer that supported tissue specific expression in SP expressing cells of the medial and central amygdaloid bodies (ECR1; 158.5 kb 5' of human PPTA ORF). Further bioinformatic analysis using the TRANSFAC database indicated that the ECR1 element contained multiple and highly conserved consensus binding sequences of transcription factors (TFs) such as MEIS1. The results of immunohistochemical analysis of transgenic lines were consistent with the hypothesis that the MEIS1 TF interacts with and maintains ECR1 activity in the central amygdala in vivo. The discovery of ECR1 and the in vivo functional relationship with MEIS1 inferred by our studies suggests a mechanism to the regulatory systems that control PPTA expression in the amygdala. Uncovering these mechanisms may play an important role in the future development of tissue specific therapies for the treatment of anxiety and depression.

  20. The first gene-based map of Lupinus angustifolius L.-location of domestication genes and conserved synteny with Medicago truncatula.

    PubMed

    Nelson, Matthew N; Phan, Huyen T T; Ellwood, Simon R; Moolhuijzen, Paula M; Hane, James; Williams, Angela; O'Lone, Clare E; Fosu-Nyarko, John; Scobie, Marie; Cakir, Mehmet; Jones, Michael G K; Bellgard, Matthew; Ksiazkiewicz, Michał; Wolko, Bogdan; Barker, Susan J; Oliver, Richard P; Cowling, Wallace A

    2006-07-01

    We report the first gene-based linkage map of Lupinus angustifolius (narrow-leafed lupin) and its comparison to the partially sequenced genome of Medicago truncatula. The map comprises 382 loci in 20 major linkage groups, two triplets, three pairs and 11 unlinked loci and is 1,846 cM in length. The map was generated from the segregation of 163 RFLP markers, 135 gene-based PCR markers, 75 AFLP and 4 AFLP-derived SCAR markers in a mapping population of 93 recombinant inbred lines, derived from a cross between domesticated and wild-type parents. This enabled the mapping of five major genes controlling key domestication traits in L. angustifolius. Using marker sequence data, the L. angustifolius genetic map was compared to the partially completed M. truncatula genome sequence. We found evidence of conserved synteny in some regions of the genome despite the wide evolutionary distance between these legume species. We also found new evidence of widespread duplication within the L. angustifolius genome.

  1. The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development.

    PubMed

    Miskolczi-McCallum, Cindy M; Scavetta, Rick J; Svendsen, Pia C; Soanes, Kelly H; Brook, William J

    2005-02-15

    The Drosophila melanogaster genes midline and H15 encode predicted T-box transcription factors homologous to vertebrate Tbx20 genes. All identified vertebrate Tbx20 genes are expressed in the embryonic heart and we find that both midline and H15 are expressed in the cardioblasts of the dorsal vessel, the insect organ equivalent to the vertebrate heart. The midline mRNA is first detected in dorsal mesoderm at embryonic stage 12 in the two progenitors per hemisegment that will divide to give rise to all six cardioblasts. Expression of H15 mRNA in the dorsal mesoderm is detected first in four to six cells per hemisegment at stage 13. The expression of midline and H15 in the dorsal vessel is dependent on Wingless signaling and the transcription factors tinman and pannier. We find that the selection of two midline-expressing cells from a pool of competent progenitors is dependent on Notch signaling. Embryos deleted for both midline and H15 have defects in the alignment of the cardioblasts and associated pericardial cells. Embryos null for midline have weaker and less penetrant phenotypes while embryos deficient for H15 have morphologically normal hearts, suggesting that the two genes are partially redundant in heart development. Despite the dorsal vessel defects, embryos mutant for both midline and H15 have normal numbers of cardioblasts, suggesting that cardiac cell fate specification is not disrupted. However, ectopic expression of midline in the dorsal mesoderm can lead to dramatic increases in the expression of cardiac markers, suggesting that midline and H15 participate in cardiac fate specification and may normally act redundantly with other cardiogenic factors. Conservation of Tbx20 expression and function in cardiac development lends further support for a common ancestral origin of the insect dorsal vessel and the vertebrate heart.

  2. The "eyes absent" (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network.

    PubMed

    Graziussi, Daria Federica; Suga, Hiroshi; Schmid, Volker; Gehring, Walter Jakob

    2012-06-01

    Eyes absent (Eya) is a member of the Retinal Determination Gene Network (RDGN), a set of genes responsible for eye specification in Drosophila. Eya is a dual function protein, working as a transcription factor in the nucleus and as a tyrosine phosphatase in the cytoplasm. It had been shown that Pax and Six family genes, main components of the RDGN, are present in the hydrozoan Cladonema radiatum and that they are expressed in the eye. However, nothing had been known about the Eya family in hydrozoan jellyfish. Here we report the presence of an Eya homologue (CrEya) in Cladonema. Real-time PCR analysis and in situ hybridization showed that CrEya is expressed in the eye. Furthermore, the comprehensive survey of eukaryote genomes revealed that the acquisition of the N-terminal transactivation domain, including the EYA Domain 2 and its adjacent sequence shared by all eumetazoans, happened early in evolution, before the separation of Cnidaria and Bilateria. Our results uncover the evolution of the two domains and show a conservation of the expression pattern of the Eya gene between Cnidaria and Bilateria, which, together with previous data, supports the hypothesis of the monophyletic origin of metazoans eyes. We additionally show that CrEya is also expressed in the oocytes, where two other members of the RDGN, CrPaxB, and Six4/5-Cr, are known to be expressed. These data suggest that several members of the RDGN have begun to be localized also into the different context of egg development early in the course of metazoan evolution.

  3. Grayscale and Color Doppler Features of Testicular Lymphoma

    PubMed Central

    Bertolotto, Michele; Derchi, Lorenzo E.; Secil, Mustafa; Dogra, Vikram; Sidhu, Paul S.; Clements, Richard; Freeman, Simon; Grenier, Nicolas; Mannelli, Lorenzo; Ramchandani, Parvati; Cicero, Calogero; Abete, Luca; Bussani, Rossana; Rocher, Laurence; Spencer, John; Tsili, Athina; Valentino, Massimo; Pavlica, Pietro

    2016-01-01

    Pooled data from 16 radiology centers were retrospectively analyzed to seek patients with pathologically proven testicular lymphoma and grayscale and color Doppler images available for review. Forty-three cases were found: 36 (84%) primary and 7 (16%) secondary testicular lymphoma. With unilateral primary lymphoma, involvement was unifocal (n = 10), multifocal (n = 11), or diffuse (n = 11). Synchronous bilateral involvement occurred in 6 patients. Color Doppler sonography showed normal testicular vessels within the tumor in 31 of 43 lymphomas (72%). Testicular lymphoma infiltrates through the tubules, preserving the normal vascular architecture of the testis. Depiction of normal testicular vessels crossing the lesion is a useful adjunctive diagnostic criterion. PMID:26014335

  4. MicroRNAs in Testicular Cancer Diagnosis and Prognosis.

    PubMed

    Ling, Hui; Krassnig, Lisa; Bullock, Marc D; Pichler, Martin

    2016-02-01

    Testicular cancer processes a unique and clear miRNA expression signature. This differentiates testicular cancer from most other cancer types, which are usually more ambiguous when assigning miRNA patterns. As such, testicular cancer may represent a unique cancer type in which miRNAs find their use as biomarkers for cancer diagnosis and prognosis, with a potential to surpass the current available markers usually with low sensitivity. In this review, we present literature findings on miRNAs associated with testicular cancer, and discuss their potential diagnostic and prognostic values, as well as their potential as indicators of drug response in patients with testicular cancer.

  5. Sexual development in marsupials: genetic characterization of bandicoot siblings with scrotal and testicular maldevelopment.

    PubMed

    Watson, C M; Hughes, R L; Cooper, D W; Gemmell, R T; Loebel, D A; Johnston, P G

    2000-10-01

    In marsupials testis determination requires the presence of a Y chromosome. The sex determining region on the Y gene (SRY) is necessary for testicular development in eutherians and it is assumed to play a similar role in marsupials. Relatively few studies have investigated the genetic basis of sexual development, and as yet there is no direct evidence that SRY is required for testis development in marsupials. Studies on intersexual marsupials have revealed a fundamental difference between marsupial and eutherian sex determination. The scrotum of marsupials is analogous, not homologous, to the eutherian scrotum and is under the control of X-linked genes not androgens. The current study describes two bandicoot (Isoodon macrourus) siblings. Both siblings had underdeveloped male reproductive tracts and testicular dysgenesis, one was ascrotal and the other had a diminutive scrotum. Their karyotypes were normal for this species which eliminates the Y chromosome from some somatic tissues. SRY was detected by Southern blotting. SRY, ubiquitin activating enzyme-1 on the Y (UBE1Y) and glucose 6-phosphate dehydrogenase (G6PD) gene expression were examined. UBE1Y was widely expressed in many tissues. SRY gene expression was much lower than normal in the abnormal siblings and may be responsible for their failure of testicular and epididymal development. The cause of their scrotal abnormalities is unknown. It is possible that the separate defects of scrotal and testis development in the two siblings, which had normal relatives, were due to a mutation in a gene common to both developmental pathways.

  6. The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish

    PubMed Central

    Devarapalli, Pratap; Kumavath, Ranjith N; Barh, Debmalya; Azevedo, Vasco

    2014-01-01

    Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T. nutricula based on rRNA. Moreover, we have figured out four species that showed similar root distance based on COX1 protein sequence. PMID:25352727

  7. The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish.

    PubMed

    Devarapalli, Pratap; Kumavath, Ranjith N; Barh, Debmalya; Azevedo, Vasco

    2014-01-01

    Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T. nutricula based on rRNA. Moreover, we have figured out four species that showed similar root distance based on COX1 protein sequence.

  8. The clinical utility of testicular prosthesis placement in children with genital and testicular disorders

    PubMed Central

    2014-01-01

    Testicular prosthesis placement is a useful important adjunctive reconstructive therapy for managing children with testicular loss or absence. Though these prostheses are functionless, experience has shown that they are extremely helpful in creating a more normal male body image and in preventing/relieving psychological stress in males with a missing testicle. With attention to details of implant technique, excellent cosmetic results can be anticipated in simulating a normal appearing scrotum. PMID:26816795

  9. Evolutionary conservation of zinc finger transcription factor binding sites in promoters of genes co-expressed with WT1 in prostate cancer

    PubMed Central

    Eisermann, Kurtis; Tandon, Sunpreet; Bazarov, Anton; Brett, Adina; Fraizer, Gail; Piontkivska, Helen

    2008-01-01

    Background Gene expression analyses have led to a better understanding of growth control of prostate cancer cells. We and others have identified the presence of several zinc finger transcription factors in the neoplastic prostate, suggesting a potential role for these genes in the regulation of the prostate cancer transcriptome. One of the transcription factors (TFs) identified in the prostate cancer epithelial cells was the Wilms tumor gene (WT1). To rapidly identify coordinately expressed prostate cancer growth control genes that may be regulated by WT1, we used an in silico approach. Results Evolutionary conserved transcription factor binding sites (TFBS) recognized by WT1, EGR1, SP1, SP2, AP2 and GATA1 were identified in the promoters of 24 differentially expressed prostate cancer genes from eight mammalian species. To test the relationship between sequence conservation and function, chromatin of LNCaP prostate cancer and kidney 293 cells were tested for TF binding using chromatin immunoprecipitation (ChIP). Multiple putative TFBS in gene promoters of placental mammals were found to be shared with those in human gene promoters and some were conserved between genomes that diverged about 170 million years ago (i.e., primates and marsupials), therefore implicating these sites as candidate binding sites. Among those genes coordinately expressed with WT1 was the kallikrein-related peptidase 3 (KLK3) gene commonly known as the prostate specific antigen (PSA) gene. This analysis located several potential WT1 TFBS in the PSA gene promoter and led to the rapid identification of a novel putative binding site confirmed in vivo by ChIP. Conversely for two prostate growth control genes, androgen receptor (AR) and vascular endothelial growth factor (VEGF), known to be transcriptionally regulated by WT1, regulatory sequence conservation was observed and TF binding in vivo was confirmed by ChIP. Conclusion Overall, this targeted approach rapidly identified important candidate

  10. Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation.

    PubMed

    Palumbi, S R; Cipriano, F

    1998-01-01

    DNA sequence analysis is a powerful tool for identifying the source of samples thought to be derived from threatened or endangered species. Analysis of mitochondrial DNA (mtDNA) from retail whale meat markets has shown consistently that the expected baleen whale in these markets, the minke whale, makes up only about half the products analyzed. The other products are either unregulated small toothed whales like dolphins or are protected baleen whales such as humpback, Bryde's, fin, or blue whales. Independent verification of such mtDNA identifications requires analysis of nuclear genetic loci, but this is technically more difficult than standard mtDNA sequencing. In addition, evolution of species-specific sequences (i.e., fixation of sequence differences to produce reciprocally monophyletic gene trees) is slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. When will use of nuclear sequences allow forensic DNA identification? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" suggests that phylogenetic sorting at nuclear loci is likely to produce species-specific sequences when mitochondrial alleles are reciprocally monophyletic and the branches leading to the mtDNA sequences of a species are three times longer than the average difference observed within species. A preliminary test of the three-times rule, which depends on many assumptions about the species and genes involved, suggests that blue and fin whales should have species-specific sequences at most neutral nuclear loci, whereas humpback and fin whales should show species-specific sequences at fewer nuclear loci. Partial sequences of actin introns from these species confirm the predictions of the three-times rule and show that blue and fin whales are reciprocally monophyletic at this locus. These intron sequences are thus good tools for the identification of these species

  11. Genetic mapping in a natural population of collared flycatchers (Ficedula albicollis): conserved synteny but gene order rearrangements on the avian Z chromosome.

    PubMed

    Backström, Niclas; Brandström, Mikael; Gustafsson, Lars; Qvarnström, Anna; Cheng, Hans; Ellegren, Hans

    2006-09-01

    Data from completely sequenced genomes are likely to open the way for novel studies of the genetics of nonmodel organisms, in particular when it comes to the identification and analysis of genes responsible for traits that are under selection in natural populations. Here we use the draft sequence of the chicken genome as a starting point for linkage mapping in a wild bird species, the collared flycatcher - one of the most well-studied avian species in ecological and evolutionary research. A pedigree of 365 flycatchers was established and genotyped for single nucleotide polymorphisms in 23 genes selected from (and spread over most of) the chicken Z chromosome. All genes were also found to be located on the Z chromosome in the collared flycatcher, confirming conserved synteny at the level of gene content across distantly related avian lineages. This high degree of conservation mimics the situation seen for the mammalian X chromosome and may thus be a general feature in sex chromosome evolution, irrespective of whether there is male or female heterogamety. Alternatively, such unprecedented chromosomal conservation may be characteristic of most chromosomes in avian genome evolution. However, several internal rearrangements were observed, meaning that the transfer of map information from chicken to nonmodel bird species cannot always assume conserved gene orders. Interestingly, the rate of recombination on the Z chromosome of collared flycatchers was only approximately 50% that of chicken, challenging the widely held view that birds generally have high recombination rates.

  12. A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment.

    PubMed

    Yuan, Meijin; Wu, Wenbi; Liu, Chao; Wang, Yanjie; Hu, Zhaoyang; Yang, Kai; Pang, Yi

    2008-09-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) is a highly conserved baculovirus gene of unknown function. In the present study, we generated a knockout of the p48 gene in an AcMNPV bacmid and investigated the role of P48 in baculovirus life cycle. The p48-null Bacmid vAc(P48-KO-PH-GFP) was unable to propagate in cell culture, while a 'repair' Bacmid vAc(P48-REP-PH-GFP) was able to replicate in a manner similar to a wild-type Bacmid vAc(PH-GFP). Titration assays and Western blotting confirmed that vAc(P48-KO-PH-GFP) was unable to produce budded viruses (BVs). qPCR analysis showed that p48 deletion did not affect viral DNA replication. Electron microscopy indicated that P48 was required for nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and their subsequent occlusion. Confocal analysis showed that P48 prominently condensed in the centre of the nucleus. Our results demonstrate that P48 plays an essential role in BV production and ODV envelopment in the AcMNPV life cycle.

  13. Highly conserved functions of the Brachyury gene on morphogenetic movements: insight from the early-diverging phylum Ctenophora.

    PubMed

    Yamada, Atsuko; Martindale, Mark Q; Fukui, Akimasa; Tochinai, Shin

    2010-03-01

    Brachyury, a member of the T-box transcription family identified in a diverse array of metazoans, was initially recognized for its function in mesoderm formation and notochord differentiation in vertebrates; however, its ancestral role has been suggested to be in control of morphogenetic movements. Here, we show that morpholino oligonucleotide knockdown of Brachyury (MlBra) in embryos of a ctenophore, one of the most ancient groups of animals, prevents the invagination of MlBra expressing stomodeal cells and is rescued with corresponding RNA injections. Injection of RNA encoding a dominant-interfering construct of MlBra causes identical phenotypes to that of RNA encoding a dominant-interfering form of Xenopus Brachyury (Xbra) in Xenopus embryos. Both injected embryos down-regulate Xbra downstream genes, Xbra itself and Xwnt11 but not axial mesodermal markers, resulting in failure to complete gastrulation due to loss of convergent extension movements. Moreover, animal cap assay reveals that MlBra induces Xwnt11 like Xbra. Overall results using Xenopus embryos show that these two genes are functionally interchangeable. These functional experiments demonstrate for the first time in a basal metazoan that the primitive role of Brachyury is to regulate morphogenetic movements, rather than to specify endomesodermal fates, and the role is conserved between non-bilaterian metazoans and vertebrates.

  14. Primer Sets Developed To Amplify Conserved Genes from Filamentous Ascomycetes Are Useful in Differentiating Fusarium Species Associated with Conifers

    PubMed Central

    Donaldson, G. C.; Ball, L. A.; Axelrood, P. E.; Glass, N. L.

    1995-01-01

    We examined the usefulness of primer sets designed to amplify introns within conserved genes in filamentous ascomycetes to differentiate 35 isolates representing six different species of Fusarium commonly found in association with conifer seedlings. We analyzed restriction fragment length polymorphisms (RFLP) in five amplified PCR products from each Fusarium isolate. The primers used in this study were constructed on the basis of sequence information from the H3, H4, and (beta)-tubulin genes in Neurospora crassa. Primers previously developed for the intergenic transcribed spacer region of the ribosomal DNA were also used. The degree of interspecific polymorphism observed in the PCR products from the six Fusarium species allowed differentiation by a limited number of amplifications and restriction endonuclease digestions. The level of intraspecific RFLP variation in the five PCR products was low in both Fusarium proliferatum and F. avenaceum but was high in a population sample of F. oxysporum isolates. Clustering of the 35 isolates by statistical analyses gave similar dendrograms for H3, H4, and (beta)-tubulin RFLP analysis, but a dendrogram produced by intergenic transcribed spacer analysis varied in the placement of some F. oxysporum isolates. PMID:16534991

  15. Novel PDE10A transcript diversity in the human striatum: Insights into gene complexity, conservation and regulation.

    PubMed

    MacMullen, Courtney M; Fallahi, Mohammad; Davis, Ronald L

    2017-03-30

    PDE10A is a cAMP/cGMP phosphodiesterase important in signal transduction within medium spiny neurons of the human striatum. This gene region has been associated with bipolar disorder via case-control and linkage studies. The three most studied human PDE10A isoforms differ in both their N-termini and trafficking within the cell with PDE10A2 found predominantly at the plasma membrane and PDE10A1 and PDE10A19 remaining primarily within the cytosol. RNA-sequencing and 5' RLM-RACE studies of the human putamen and caudate nucleus revealed 16 new exons and 12 novel transcripts of PDE10A, 3 of which are predicted to produce proteins with unique N-termini. The novel first exons of these transcripts are highly conserved in non-human primate species and are rarely found in other mammals. One hundred and eight previously classified intronic SNPs were found within the novel PDE10A exons of which 78% were classified as rare variants. Since most of the rare variants localize to 5' UTR regions, they may influence PDE10A transcription, translation, or mRNA stability. Dysregulation of cAMP signaling has been proposed as a cause of bipolar disorder and PDE10A inhibitors have been investigated as potential therapeutics for schizophrenia. Understanding the mechanisms contributing to PDE10A expression in the human striatum may provide evidence linking this gene to the phenotypes observed in neuropsychiatric disorders.

  16. A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment

    SciTech Connect

    Yuan Meijin; Wu Wenbi; Liu Chao; Wang Yanjie; Hu Zhaoyang; Yang Kai Pang Yi

    2008-09-15

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) p48 (ac103) is a highly conserved baculovirus gene of unknown function. In the present study, we generated a knockout of the p48 gene in an AcMNPV bacmid and investigated the role of P48 in baculovirus life cycle. The p48-null Bacmid vAc{sup P48-KO-PH-GFP} was unable to propagate in cell culture, while a 'repair' Bacmid vAc{sup P48-REP-PH-GFP} was able to replicate in a manner similar to a wild-type Bacmid vAc{sup PH-GFP}. Titration assays and Western blotting confirmed that vAc{sup P48-KO-PH-GFP} was unable to produce budded viruses (BVs). qPCR analysis showed that p48 deletion did not affect viral DNA replication. Electron microscopy indicated that P48 was required for nucleocapsid envelopment to form occlusion-derived viruses (ODVs) and their subsequent occlusion. Confocal analysis showed that P48 prominently condensed in the centre of the nucleus. Our results demonstrate that P48 plays an essential role in BV production and ODV envelopment in the AcMNPV life cycle.

  17. A fungal conserved gene from the basidiomycete Hebeloma cylindrosporum is essential for efficient ectomycorrhiza formation.

    PubMed

    Doré, Jeanne; Marmeisse, Roland; Combier, Jean-Philippe; Gay, Gilles

    2014-10-01

    We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter(-1), a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter(-1). Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.

  18. Testicular self-examination and testicular cancer: a cost-utility analysis.

    PubMed

    Aberger, Michael; Wilson, Bradley; Holzbeierlein, Jeffrey M; Griebling, Tomas L; Nangia, Ajay K

    2014-12-01

    The United States Preventive Services Task Force (USPSTF) has recommended against testicular self-examinations (TSE) or clinical examination for testicular cancer screening. However, in this recommendation there was no consideration of the significant fiscal cost of treating advanced disease versus evaluation of benign disease. In this study, a cost-utility validation for TSE was performed. The cost of treatment for an advanced-stage testicular tumor (both seminomatous and nonseminomatous) was compared to the cost of six other scenarios involving the clinical assessment of a testicular mass felt during self-examination (four benign and two early-stage malignant). Medicare reimbursements were used as an estimate for a national cost standard. The total treatment cost for an advanced-stage seminoma ($48,877) or nonseminoma ($51,592) equaled the cost of 313-330 benign office visits ($156); 180-190 office visits with scrotal ultrasound ($272); 79-83 office visits with serial scrotal ultrasounds and labs ($621); 6-7 office visits resulting in radical inguinal orchiectomy for benign pathology ($7,686) or 2-3 office visits resulting in treatment and surveillance of an early-stage testicular cancer ($17,283: seminoma, $26,190: nonseminoma). A large number of clinical evaluations based on the TSE for benign disease can be made compared to the cost of one missed advanced-stage tumor. An average of 2.4 to 1 cost benefit ratio was demonstrated for early detected testicular cancer versus advanced-stage disease.

  19. From testicular biopsy to human embryo.

    PubMed

    Jezek, D; Knezević, N; Kalanj-Bognar, S; Vukelić, Z; Krhen, I

    2004-01-01

    The aim of the study was to investigate the role of a testicular biopsy in the diagnosis and therapy of infertile men with a non-obstructive azoospermia. Overall, 70 testicular biopsies from infertile men were analysed. Samples were obtained by the "open testicular biopsy" method. After dissection, several pieces of the tissue were immediately immersed into the Sperm Prep Medium (Medi-Cult) and fixative (5.5% buffered glutaraldehyde). Tissue samples transported in Sperm Prep Medium were plunged into Sperm Freezing Medium (Medi-Cult) and were stored in liquid nitrogen for potential in vitro fertilization procedures. The tissue was also processed for semithin sections and transmission electron microscopy. Semithin sections from 8 infertile patients demonstrated regular testis structure and fully preserved spermatogenesis (control biopsies). In the remaining 62 cases, spermatogenesis was impaired and a variety of pathological changes could be seen: disorganization and desquamation of spermatogenic cells, spermatid or spermatocyte "stop", spermatogonia only, "Sertoli cells only" or tubular fibrosis. However, in 65% of cases (despite the above mentioned changes of seminiferous epithelium) foci of preserved spermatogenesis could be detected. These cases were classified as "mixed atrophy" of seminiferous tubules. In 63% of infertile patients, a successful extraction of sperm from the biopsy could be performed. In azoospermic patients, histological analysis of testicular biopsy proved to be very useful in terms of diagnosis as well as therapy, i.e. for further in vitro fertilization procedures.

  20. Testicular Biopsy in Evaluation of Male Infertility

    PubMed Central

    Meinhard, Elizabeth; McRae, C. U.; Chisholm, G. D.

    1973-01-01

    Testicular biopsy findings in 100 infertile men were correlated with the clinical findings. Mild or moderately severe tubular lesions were seen in 57 cases and severe changes in 43. Clinical examination and semen analysis were no guide to the severity of the testicular lesion. Though patients with normal sized testes more commonly had mild tubular lesions, many were severe. Patients with small testes more often had severe lesions but some had only mild tubular changes. Biopsy findings in both aspermic and oligospermic patients ranged from normal to a complete loss of germinal tissue. Testicular biopsy is advocated in infertile men for the complete assessment of the case and for identifying those which are potentially treatable. Patients with a severe lesion can be spared further investigations. The choice and results of treatment are discussed, particularly the surgical treatment of varicocele or obstruction. Only patients with a mild or moderate testicular tubular lesion should participate in future trials with drugs for male infertility. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6FIG. 7FIG. 8FIG. 9FIG. 10 PMID:4726930

  1. Testicular Vasculitis: A Sonographic and Pathologic Diagnosis

    PubMed Central

    Hague, Cameron; Bicknell, Simon

    2017-01-01

    Very little has been published about single-organ vasculitis of the testicle in the radiological literature. Consequently, it is a diagnosis that is unfamiliar to most radiologists. This case report describes the sonographic, pathologic, and laboratory findings of testicular vasculitis and reviews the available literature with regard to this subject. PMID:28246567

  2. How to Do a Testicular Self Examination

    MedlinePlus

    ... Cancer Resource Center How to Do a Testicular Self Examination: For men over the age of 14, a monthly self-exam of the testicles is an effective way ... do it monthly? Because the point of the self exam is not to find something wrong today. ...

  3. Comparison of Different Electroporation Parameters on Transfection Efficiency of Sheep Testicular Cells

    PubMed Central

    Niakan, Sarah; Heidari, Banafsheh; Akbari, Ghasem; Nikousefat, Zahra

    2016-01-01

    Objective Electroporation can be a highly efficient method for introducing the foreign genetic materials into the targeted cells for transient and/or permanent genetic modification. Considering the application of this technique as a very efficient method for drug, oligonucleotide, antibody and plasmid delivery for clinical applications and production of transgenic animals, the present study aimed to optimize the transfection efficiency of sheep testicular cells including spermatogonial stem cells (SSCs) via electroporation. Materials and Methods This study is an experimental research conducted in Biotechnology Research Center (Avicenna Research Institute, Tehran, Iran) from September 2013 to March 2014. Following isolation and propagation of one-month lamb testicular cells (SSCs and somatic testicular cells including; Sertoli, Leydig, and myoid cells), the effect of different electroporation parameters including total voltages (280, 320, and 350 V), burst durations (10, 8, and 5 milliseconds), burst modes (single or double) and addition of dimethyl sulfoxide (DMSO) were evaluated on transfection efficiency, viability rate and mean fluorescent intensity (MFI) of sheep testicular cells. Results The most transfection efficiency was obtained in 320 V/8 milliseconds/single burst group in transduction medium with and without DMSO. There was a significantly inverse correlation between transfection efficiency with application of both following parameters: addition of DMSO and double burst. After transfection, the highest and lowest viability rates of testicular cells were demonstrated in 320 V/8 milliseconds with transduction medium without DMSO and 350 V/5 milliseconds in medium containing DMSO. Ad- dition of DMSO to transduction medium in all groups significantly decreased the viability rate. The comparison of gene expression indicated that Sertoli and SSCs had the most fluorescence intensity in 320 V/double burst/DMSO positive. However, myoid and Leydig cells showed the

  4. Population genomics of C. melanopterus using target gene capture data: demographic inferences and conservation perspectives

    PubMed Central

    Maisano Delser, Pierpaolo; Corrigan, Shannon; Hale, Matthew; Li, Chenhong; Veuille, Michel; Planes, Serge; Naylor, Gavin; Mona, Stefano

    2016-01-01

    Population genetics studies on non-model organisms typically involve sampling few markers from multiple individuals. Next-generation sequencing approaches open up the possibility of sampling many more markers from fewer individuals to address the same questions. Here, we applied a target gene capture method to deep sequence ~1000 independent autosomal regions of a non-model organism, the blacktip reef shark (Carcharhinus melanopterus). We devised a sampling scheme based on the predictions of theoretical studies of metapopulations to show that sampling few individuals, but many loci, can be extremely informative to reconstruct the evolutionary history of species. We collected data from a single deme (SID) from Northern Australia and from a scattered sampling representing various locations throughout the Indian Ocean (SCD). We explored the genealogical signature of population dynamics detected from both sampling schemes using an ABC algorithm. We then contrasted these results with those obtained by fitting the data to a non-equilibrium finite island model. Both approaches supported an Nm value ~40, consistent with philopatry in this species. Finally, we demonstrate through simulation that metapopulations exhibit greater resilience to recent changes in effective size compared to unstructured populations. We propose an empirical approach to detect recent bottlenecks based on our sampling scheme. PMID:27651217

  5. CONSERVED HIGHER ORDER CHROMATIN REGULATES NMDA RECEPTOR GENE EXPRESSION AND COGNITION

    PubMed Central

    Bharadwaj, Rahul; Peter, Cyril J.; Jiang, Yan; Roussos, Panos; Vogel-Ciernia, Annie; Shen, Erica; Mitchell, Amanda; Mao, Wenjie; Whittle, Catheryne; Dincer, Aslihan; Jakovcevski, Mira; Pothula, Venu; Rasmussen, Theodore P.; Giakoumaki, Stella G.; Bitsios, Panos; Sherif, Ajfar; Gardner, Paul D.; Ernst, Patricia; Ghose, Subroto; Sklar, Pamela; Haroutunian, Vahram; Tamminga, Carol; Myers, Richard H.; Futai, Kensuke; Wood, Marcelo A.; Akbarian, Schahram

    2014-01-01

    3-dimensional chromosomal conformations regulate transcription by moving enhancers and regulatory elements into spatial proximity with target genes. Here, we describe activity-regulated long-range loopings bypassing up to 0.5 megabase of linear genome to modulate NMDA glutamate receptor GRIN2B expression in human and mouse prefrontal cortex. Distal intronic and 3’ intergenic loop formations competed with repressor elements to access promoter-proximal sequences, and facilitated expression via a ‘cargo’ of AP-1 and NRF-1 transcription factors and TALE-based transcriptional activators. Neuronal deletion or overexpression of Kmt2a/Mll1 H3K4- and Kmt1e/Setdb1 H3K9-methyltransferase was associated with higher order chromatin changes at distal regulatory Grin2b sequences and impairments in working memory. Genetic polymorphisms and isogenic deletions of loop-bound sequences conferred liability for cognitive performance and decreased GRIN2B expression. Dynamic regulation of chromosomal conformations emerges as a novel layer for transcriptional mechanisms impacting neuronal signaling and cognition. PMID:25467983

  6. Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms.

    PubMed

    Hinman, Veronica F; Yankura, Kristen A; McCauley, Brenna S

    2009-04-01

    Developmental gene regulatory networks (GRNs) explain how regulatory states are established in particular cells during development and how these states then determine the final form of the embryo. Evolutionary changes to the sequence of the genome will direct reorganization of GRN architectures, which in turn will lead to the alteration of developmental programs. A comparison of GRN architectures must consequently reveal the molecular basis for the evolution of developmental programs among different organisms. This review highlights some of the important findings that have emerged from the most extensive direct comparison of GRN architectures to date. Comparison of the orthologous GRNs for endomesodermal specification in the sea urchin and sea star, provides examples of several discrete, functional GRN subcircuits and shows that they are subject to diverse selective pressures. This demonstrates that different regulatory linkages may be more or less amenable to evolutionary change. One of the more surprising findings from this comparison is that GRN-level functions may be maintained while the factors performing the functions have changed, suggesting that GRNs have a high capacity for compensatory changes involving transcription factor binding to cis regulatory modules.

  7. [Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family].

    PubMed

    Chakravorty, S; Sarkar, S; Gachhui, R

    2015-01-01

    The Acetobacteraceae family of the class Alpha Proteobacteria is comprised of high sugar and acid tolerant bacteria. The Acetic Acid Bacteria are the economically most significant group of this family because of its association with food products like vinegar, wine etc. Acetobacteraceae are often hard to culture in laboratory conditions and they also maintain very low abundances in their natural habitats. Thus identification of the organisms in such environments is greatly dependent on modern tools of molecular biology which require a thorough knowledge of specific conserved gene sequences that may act as primers and or probes. Moreover unconserved domains in genes also become markers for differentiating closely related genera. In bacteria, the 16S rRNA gene is an ideal candidate for such conserved and variable domains. In order to study the conserved and variable domains of the 16S rRNA gene of Acetic Acid Bacteria and the Acetobacteraceae family, sequences from publicly available databases were aligned and compared. Near complete sequences of the gene were also obtained from Kombucha tea biofilm, a known Acetobacteraceae family habitat, in order to corroborate the domains obtained from the alignment studies. The study indicated that the degree of conservation in the gene is significantly higher among the Acetic Acid Bacteria than the whole Acetobacteraceae family. Moreover it was also observed that the previously described hypervariable regions V1, V3, V5, V6 and V7 were more or less conserved in the family and the spans of the variable regions are quite distinct as well.

  8. Nursing supports neonatal porcine testicular development.

    PubMed

    Rahman, K M; Lovich, J E; Lam, C; Camp, M E; Wiley, A A; Bartol, F F; Bagnell, C A

    2014-07-01

    The lactocrine hypothesis suggests a mechanism whereby milk-borne bioactive factors delivered to nursing offspring affect development of neonatal tissues. The objective of this study was to assess whether nursing affects testicular development in neonatal boars as reflected by: (1) Sertoli cell number and proliferation measured by GATA-4 expression and proliferating cell nuclear antigen immunostaining patterns; (2) Leydig cell development and steroidogenic activity as reflected by insulin-like factor 3 (INSL3), and P450 side chain cleavage (scc) enzyme expression; and (3) expression of estrogen receptor-alpha (ESR1), vascular endothelial growth factor (VEGF) A, and relaxin family peptide receptor (RXFP) 1. At birth, boars were randomly assigned (n = 6-7/group) to nurse ad libitum or to be pan fed porcine milk replacer for 48 h. Testes were collected from boars at birth, before nursing and from nursed and replacer-fed boars at 50 h on postnatal day (PND) 2. Sertoli cell proliferating cell nuclear antigen labeling index increased (P < 0.01) from birth to PND 2 in nursed, but not in replacer-fed boars. Sertoli cell number and testicular GATA-4 protein levels increased (P < 0.01) from PND 0 to PND 2 only in nursed boars. Neither age nor nursing affected testicular INSL3, P450scc, ESR1, or VEGFA levels. However, testicular relaxin family peptide receptor 1 (RXFP1) levels increased (P < 0.01) with age and were greater in replacer-fed boars on PND 2. Results suggest that nursing supports neonatal porcine testicular development and provide additional evidence for the importance of lactocrine signaling in pigs.

  9. The Conserved Dcw Gene Cluster of R. sphaeroides Is Preceded by an Uncommonly Extended 5' Leader Featuring the sRNA UpsM.

    PubMed

    Weber, Lennart; Thoelken, Clemens; Volk, Marcel; Remes, Bernhard; Lechner, Marcus; Klug, Gabriele

    2016-01-01

    Cell division and cell wall synthesis mechanisms are similarly conserved among bacteria. Consequently some bacterial species have comparable sets of genes organized in the dcw (division and cell wall) gene cluster. Dcw genes, their regulation and their relative order within the cluster are outstandingly conserved among rod shaped and gram negative bacteria to ensure an efficient coordination of growth and division. A well studied representative is the dcw gene cluster of E. coli. The first promoter of the gene cluster (mraZ1p) gives rise to polycistronic transcripts containing a 38 nt long 5' UTR followed by the first gene mraZ. Despite reported conservation we present evidence for a much longer 5' UTR in the gram negative and rod shaped bacterium Rhodobacter sphaeroides and in the family of Rhodobacteraceae. This extended 268 nt long 5' UTR comprises a Rho independent terminator, which in case of termination gives rise to a non-coding RNA (UpsM). This sRNA is conditionally cleaved by RNase E under stress conditions in an Hfq- and very likely target mRNA-dependent manner, implying its function in trans. These results raise the question for the regulatory function of this extended 5' UTR. It might represent the rarely described case of a trans acting sRNA derived from a riboswitch with exclusive presence in the family of Rhodobacteraceae.

  10. The Conserved Dcw Gene Cluster of R. sphaeroides Is Preceded by an Uncommonly Extended 5’ Leader Featuring the sRNA UpsM

    PubMed Central

    Weber, Lennart; Thoelken, Clemens; Volk, Marcel; Remes, Bernhard; Lechner, Marcus; Klug, Gabriele

    2016-01-01

    Cell division and cell wall synthesis mechanisms are similarly conserved among bacteria. Consequently some bacterial species have comparable sets of genes organized in the dcw (division and cell wall) gene cluster. Dcw genes, their regulation and their relative order within the cluster are outstandingly conserved among rod shaped and gram negative bacteria to ensure an efficient coordination of growth and division. A well studied representative is the dcw gene cluster of E. coli. The first promoter of the gene cluster (mraZ1p) gives rise to polycistronic transcripts containing a 38 nt long 5’ UTR followed by the first gene mraZ. Despite reported conservation we present evidence for a much longer 5’ UTR in the gram negative and rod shaped bacterium Rhodobacter sphaeroides and in the family of Rhodobacteraceae. This extended 268 nt long 5’ UTR comprises a Rho independent terminator, which in case of termination gives rise to a non-coding RNA (UpsM). This sRNA is conditionally cleaved by RNase E under stress conditions in an Hfq- and very likely target mRNA-dependent manner, implying its function in trans. These results raise the question for the regulatory function of this extended 5’ UTR. It might represent the rarely described case of a trans acting sRNA derived from a riboswitch with exclusive presence in the family of Rhodobacteraceae. PMID:27802301

  11. The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis

    PubMed Central

    Berke, Lidija; Snel, Berend

    2014-01-01

    The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants. PMID:24567304

  12. Fsh and Lh direct conserved and specific pathways during flatfish semicystic spermatogenesis.

    PubMed

    Chauvigné, François; Zapater, Cinta; Crespo, Diego; Planas, Josep V; Cerdà, Joan

    2014-10-01

    The current view of the control of spermatogenesis by Fsh and Lh in non-mammalian vertebrates is largely based on studies carried out in teleosts with cystic and cyclic spermatogenesis. Much less is known concerning the specific actions of gonadotropins during semicystic germ cell development, a type of spermatogenesis in which germ cells are released into the tubular lumen where they transform into spermatozoa. In this study, using homologous gonadotropins and a candidate gene approach, for which the genes' testicular cell-type-specific expression was established, we investigated the regulatory effects of Fsh and Lh on gene expression during spermatogenesis in Senegalese sole (Solea senegalensis), a flatfish with asynchronous and semicystic germ cell development. During early spermatogenesis, Fsh and Lh upregulated steroidogenesis-related genes and nuclear steroid receptors, expressed in both somatic and germ cells, through steroid-dependent pathways, although Lh preferentially stimulated the expression of downstream genes involved in androgen and progestin syntheses. In addition, Lh specifically promoted the expression of spermatid-specific genes encoding spermatozoan flagellar proteins through direct interaction with the Lh receptor in these cells. Interestingly, at this spermatogenic stage, Fsh primarily regulated genes encoding Sertoli cell growth factors with potentially antagonistic effects on germ cell proliferation and differentiation through steroid mediation. During late spermatogenesis, fewer genes were regulated by Fsh or Lh, which was associated with a translational and posttranslational downregulation of the Fsh receptor in different testicular compartments. These results reveal that conserved and specialized gonadotropic pathways regulate semicystic spermatogenesis in flatfish, which may spatially adjust cell germ development to maintain a continuous reservoir of spermatids in the testis.

  13. Gene duplication, conservation and divergence of Heme oxygenase 2 genes in blunt snout bream (Megalobrama amblycephala) and their responses to hypoxia.

    PubMed

    Zhang, Xue-Li; Sun, Yi-Wen; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming

    2017-04-30

    Heme oxygenase (HO) that catalyzes the degradation of heme, is involved in responding and using oxygen in teleost fish. Physiologic heme degradation can be catalyzed by two isozymes of HO (HO-1 and HO-2). In fish, the molecular constructions, expression characteristics and hypoxic regulation of HO-2 are still not well known. Here, we report the isolation and characterization of duplicated HO-2 genes in blunt snout bream, a hypoxia sensitive fish species. Blunt snout bream HO-2a and -2b genes shared a relatively low sequence identity of 67%. The HO-2a and -2b mRNAs were widely expressed in adult tissues. During embryogenesis, HO-2a mRNAs was significantly upregulated at 16hpf and then maintained with high lever, while HO-2b mRNAs was gradually increased at 12hpf and then reduced significantly. Whole-mount in situ hybridization demonstrated that HO-2a and -2b mRNAs mainly detected in brain and eyes at different embryonic stages. The results of acute hypoxia experiment showed that both HO-2a and -2b mRNAs have significant changes in different tissues. Both HO-2a and -2b mRNAs were significantly up-regulated in the brain, but down-regulated in the gill and liver during hypoxia. Under hypoxia, HO-2a mRNA in the heart was significantly increased while HO-2b mRNA was decreased. Embryos in hypoxic conditions at different developmental stages strongly induced the mRNA expression of HO-2a and -2b. These results provide new insights into the functional conservation and divergence of HO-2 genes and improve our understanding of HO-2 responses to hypoxia.

  14. Altered gene expression signature of early stages of the germ line supports the pre-meiotic origin of human spermatogenic failure.

    PubMed

    Bonache, S; Algaba, F; Franco, E; Bassas, L; Larriba, S

    2014-07-01

    The molecular basis of spermatogenic failure (SpF) is still largely unknown. Accumulating evidence suggests that a series of specific events such as meiosis, are determined at the early stage of spermatogenesis. This study aims to assess the expression profile of pre-meiotic genes of infertile testicular biopsies that might help to define the molecular phenotype associated with human deficiency of sperm production. An accurate quantification of testicular mRNA levels of genes expressed in spermatogonia was carried out by RT-qPCR in individuals showing SpF owing to germ cell maturation defects, Sertoli cell-only syndrome or conserved spermatogenesis. In addition, the gene expression profile of SpF was compared with that of testicular tumour, which is considered to be a severe developmental disease of germ cell differentiation. Protein expression from selected genes was evaluated by immunohistochemistry. Our results indicate that SpF is accompanied by differences in expression of certain genes associated with spermatogonia in the absence of any apparent morphological and/or numerical change in this specific cell type. In SpF testicular samples, we observed down-regulation of genes involved in cell cycle (CCNE1 and POLD1), transcription and post-transcription regulation (DAZL, RBM15 and DICER1), protein degradation (FBXO32 and TM9SF2) and homologous recombination in meiosis (MRE11A and RAD50) which suggests that the expression of these genes is critical for a proper germ cell development. Interestingly, a decrease in the CCNE1, DAZL, RBM15 and STRA8 cellular transcript levels was also observed, suggesting that the gene expression capacity of spermatogonia is altered in SpF contributing to an unsuccessful sperm production. Altogether, these data point to the spermatogenic derangement being already determined at, or arising in, the initial stages of the germ line.

  15. Comparative Developmental Transcriptomics Reveals Rewiring of a Highly Conserved Gene Regulatory Network during a Major Life History Switch in the Sea Urchin Genus Heliocidaris

    PubMed Central

    Israel, Jennifer W.; Martik, Megan L.; Byrne, Maria; Raff, Elizabeth C.; Raff, Rudolf A.; McClay, David R.; Wray, Gregory A.

    2016-01-01

    The ecologically significant shift in developmental strategy from planktotrophic (feeding) to lecithotrophic (nonfeeding) development in the sea urchin genus Heliocidaris is one of the most comprehensively studied life history transitions in any animal. Although the evolution of lecithotrophy involved substantial changes to larval development and morphology, it is not known to what extent changes in gene expression underlie the developmental differences between species, nor do we understand how these changes evolved within the context of the well-defined gene regulatory network (GRN) underlying sea urchin development. To address these questions, we used RNA-seq to measure expression dynamics across development in three species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph H. tuberculata, and an outgroup planktotroph Lytechinus variegatus. Using well-established statistical methods, we developed a novel framework for identifying, quantifying, and polarizing evolutionary changes in gene expression profiles across the transcriptome and within the GRN. We found that major changes in gene expression profiles were more numerous during the evolution of lecithotrophy than during the persistence of planktotrophy, and that genes with derived expression profiles in the lecithotroph displayed specific characteristics as a group that are consistent with the dramatically altered developmental program in this species. Compared to the transcriptome, changes in gene expression profiles within the GRN were even more pronounced in the lecithotroph. We found evidence for conservation and likely divergence of particular GRN regulatory interactions in the lecithotroph, as well as significant changes in the expression of genes with known roles in larval skeletogenesis. We further use coexpression analysis to identify genes of unknown function that may contribute to both conserved and derived developmental traits between species. Collectively, our results

  16. Comparative transcriptome analysis of testes and ovaries for the discovery of novel genes from Amur sturgeon (Acipenser schrenckii).

    PubMed

    Jin, S B; Zhang, Y; Dong, X L; Xi, Q K; Song, D; Fu, H T; Sun, D J

    2015-12-29

    Sturgeons (Acipenser schrenckii) are of high evolutionary, economic, and conservation value, and caviar isone of the most valuable animal food products in the world. The Illumina HiSeq2000 sequencing platform was used to construct testicular and ovarian transcriptomes to identify genes involved in reproduction and sex determination in A. schrenckii. A total of 122,381 and 114,527 unigenes were obtained in the testicular and ovarian transcriptomes, respectively, with average lengths of 748 and 697 bp. A total of 46,179 genes were matched to the non-redundant nr database. GO (31,266), KEGG (39,712), and COG analyses (20,126) were performed to identify potential genes and their functions. Twenty-six gene families involved in reproduction and sex determination were identified from the A. schrenckii testicular and ovarian transcriptomes based on functional annotation of non-redundant transcripts and comparisons with the published literature. Furthermore, 1309 unigenes showed significant differences between the testes and ovaries, including 782 genes that were up-regulated in the testes and 527 that were up-regulated in the ovaries. Eleven genes were involved in reproduction and sex determination mechanisms. Furthermore, 19,065 simple sequence repeats (SSRs) were identified in the expressed sequence tagged dataset, and 190,863 and 193,258 single nucleotide polymorphisms (SNPs) were obtained from the testicular and ovarian transcriptomic databases, respectively. This study provides new sequence information about A. schrenckii, which will provide a basis for the further study of reproduction and sex determination mechanisms in Acipenser species. The potential SSR and SNP markers isolated from the transcriptome may shed light on the evolution and molecular ecology of Acipenser species.

  17. Development of interspecies testicular germ-cell transplantation in flatfish.

    PubMed

    Pacchiarini, Tiziana; Sarasquete, Carmen; Cabrita, Elsa

    2014-06-01

    Interspecific testicular germ cell (TGC) transplantation was investigated in two commercial flatfish species. Testes from donor species (Senegalese sole) were evaluated using classical histological techniques (haematoxylin-eosin staining and haematoxylin-light green-orange G-acid fuchsine staining), in situ hybridisation and immunohistochemical analysis. Both Ssvasa1-2 mRNAs and SsVasa protein allowed the characterisation of TGCs, confirming the usefulness of the vasa gene in the detection of Senegalese sole TGCs. Xenogenic transplants were carried out using TGCs from one-year-old Senegalese sole into turbot larvae. Propidium iodide-SYBR-14 and 4',6'-diamidino-2-phenylindole (DAPI) staining showed that 87.98% of the extracted testicular cells were viable for microinjection and that 15.63% of the total recovered cells were spermatogonia. The vasa gene was characterised in turbot recipients using cDNA cloning. Smvasa mRNA was confirmed as a germ cell-specific molecular marker in this species. Smvasa expression analysis during turbot ontogeny was carried out before Senegalese sole TGC transplants into turbot larvae. Turbot larvae at 18 days after hatching (DAH) proved to be susceptible to manipulation procedures. High survival rates (83.75±15.90-100%) were obtained for turbot larvae at 27, 34 and 42 DAH. These data highlight the huge potential of this species for transplantation studies. Quantitative PCR was employed to detect Senegalese sole vasa mRNAs (Ssvasa1-2) in the recipient turbot larvae. The Ssvasa mRNAs showed a significant increase in relative expression in 42-DAH microinjected larvae three weeks after treatment, showing the proliferation of Senegalese sole spermatogonia in transplanted turbot larvae.

  18. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders.

    PubMed

    Bay, K; Andersson, A-M

    2011-04-01

    Knockout of the gene encoding insulin-like factor 3 (INSL3) results in cryptorchidism in mice due to disruption of the transabdominal phase of testicular descent. This finding was essential for understanding the complete course of testis descensus, and wound up years of speculations regarding the endocrine regulation of this process. INSL3 is, along with testosterone, a major secretory product of testicular Leydig cells. In addition to its crucial function in testicular descent, INSL3 is suggested to play a paracrine role in germ cell survival and an endocrine role in bone metabolism. INSL3 is produced in human prenatal and neonatal, and in adult Leydig cells to various extents, and is in a developmental context regulated like testosterone, with production during second trimester, an early postnatal peak and increasing secretion during puberty, resulting in high adult serum levels. INSL3 production is entirely dependent on the state of Leydig cell differentiation, and is stimulated by the long-term trophic effects mediated by luteinizing hormone (LH). Once differentiated, Leydig cells apparently express INSL3 in a constitutive manner, and the hormone is thereby insensitive to the acute, steroidogenic effects of LH, which for example is an important factor in the regulation of testosterone. Clinically, serum INSL3 levels can turn out to be a usable tool to monitor basal Leydig cell function in patients with various disorders affecting Leydig cell function. According to animal studies, foetal INSL3 production is, directly or indirectly, sensitive to oestrogenic or anti-androgenic compounds. This provides important insight into the mechanism by which maternal exposure to endocrine disrupters can result in cryptorchidism in the next generation. Conclusively, INSL3 is an interesting testicular hormone with potential clinical value as a marker for Leydig cell function. It should be considered on a par with testosterone in the evaluation of testicular function and the

  19. The Expression and Function of the Achaete-Scute Genes in Tribolium castaneum Reveals Conservation and Variation in Neural Pattern Formation and Cell Fate Specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    SUMMARY The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ache genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ache genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we fmd that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Triboliurn and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Triboliurn proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-use is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Triboliurn ache genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  20. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  1. Targeted mutation of the gene encoding prion protein in zebrafish reveals a conserved role in neuron excitability.

    PubMed

    Fleisch, Valerie C; Leighton, Patricia L A; Wang, Hao; Pillay, Laura M; Ritzel, R Gary; Bhinder, Ganive; Roy, Birbickram; Tierney, Keith B; Ali, Declan W; Waskiewicz, Andrew J; Allison, W Ted

    2013-07-01

    The function of the cellular prion protein (PrP(C)) in healthy brains remains poorly understood, in part because Prnp knockout mice are viable. On the other hand, transient knockdown of Prnp homologs in zebrafish (including two paralogs, prp1 and prp2) has suggested that PrP(C) is required for CNS development, cell adhesion, and neuroprotection. It has been argued that zebrafish Prp2 is most similar to mammalian PrP(C), yet it has remained intransigent to the most thorough confirmations of reagent specificity during knockdown. Thus we investigated the role of prp2 using targeted gene disruption via zinc finger nucleases. Prp2(-/-) zebrafish were viable and did not display overt developmental phenotypes. Back-crossing female prp2(-/-) fish ruled out a role for maternal mRNA contributions. Prp2(-/-) larvae were found to have increased seizure-like behavior following exposure to the convulsant pentylenetetrazol (PTZ), as compared to wild type fish. In situ recordings from intact hindbrains demonstrated that prp2 regulates closing of N-Methyl-d-aspartate (NMDA) receptors, concomitant with neuroprotection during glutamate excitotoxicity. Overall, the knockout of Prp2 function in zebrafish independently confirmed hypothesized roles for PrP, identifying deeply conserved functions in post-developmental regulation of neuron excitability that are consequential to the etiology of prion and Alzheimer diseases.

  2. The Anaplasma marginale msp5 gene encodes a 19-kilodalton protein conserved in all recognized Anaplasma species.

    PubMed Central

    Visser, E S; McGuire, T C; Palmer, G H; Davis, W C; Shkap, V; Pipano, E; Knowles, D P

    1992-01-01

    Immunization with Anaplasma marginale outer membranes induced immunity against clinical disease which correlated with antibody titer to outer membrane proteins, including a 19-kDa protein (N. Tebele, T. C. McGuire, and G. H. Palmer, Infect. Immun. 59:3199-3204, 1991). This 19-kDa protein, designated major surface protein 5 (MSP-5), was encoded by a single-copy 633-bp gene. The molecular mass of MSP-5, defined in immunoblots by binding to monoclonal antibody ANAF16C1, was conserved among all recognized species of Anaplasma: A. marginale, A. centrale, and A. ovis. Recombinant MSP-5, which absorbed the antibody reactivity of bovine immune serum to native MSP-5, was recognized by anti-A. marginale and anti-A. centrale immune sera in a competitive inhibition assay with monoclonal antibody ANAF16C1. The presence of antibody to the epitope defined by monoclonal antibody ANAF16C1 in all postinfection sera tested indicates that this epitope is a potential diagnostic antigen for use in identifying persistently infected cattle. Images PMID:1280624

  3. Testicular cancer trends as 'whistle blowers' of testicular developmental problems in populations.

    PubMed

    Skakkebaek, N E; Rajpert-De Meyts, E; Jørgensen, N; Main, K M; Leffers, H; Andersson, A-M; Juul, A; Jensen, T K; Toppari, J

    2007-08-01

    Recently a worldwide rise in the incidence of testicular germ cell cancer (TGCC) has been repeatedly reported. The changing disease pattern may signal that other testicular problems may also be increasing. We have reviewed recent research progress, in particular evidence gathered in the Nordic countries, which shows strong associations between testicular cancer, undescended testis, hypospadias, poor testicular development and function, and male infertility. These studies have led us to suggest the existence of a testicular dysgenesis syndrome (TDS), of which TGCC, undescended testis, hypospadias/disorders of sex differentiation and male fertility problems may be symptoms with varying penetration. In spite of their fetal origin, most of the TDS symptoms, including TGCC and poor semen quality, can only be diagnosed in adulthood. Data from a Danish-Finnish research collaboration strongly suggest that trends in TGCC rates of a population may be 'whistle blowers' of other reproductive health problems. As cancer registries are often of excellent quality - in contrast to registries for congenital abnormalities - health authorities should consider an increase in TGCC as a warning that other reproductive health problems may also be rising.

  4. Relationships of testicular iron and ferritin concentrations with testicular weight and sperm production in boars.

    PubMed

    Wise, T; Lunstra, D D; Rohrer, G A; Ford, J J

    2003-02-01

    The inverse relationship of testicular size and circulating follicle-stimulating hormone (FSH) concentrations has been documented, and accompanying this relationship is the change in color of the parenchymal tissue of the testes. Large testes (300 to 400 g) are pink to light red and small testes (100 g) are dark maroon with color gradations for weights in between. It was hypothesized that this color most likely represented an iron protein. Chromatographic analysis of testicular tissue indicated that the Fe was associated primarily with ferritin, and immunohistochemistry showed that Leydig cells were the primary location of ferritin storage within the testes. Concentrations of Fe and ferritin were higher in small testes and decreased as testes weight increased (P < 0.05). As testicular Fe concentrations increased, daily sperm production (DSP) and total DSP declined (P < 0.05). Genotyping six generations of Meishan x White composite boars (n = 288) for a quantitative trait locus that is indicative of elevated FSH and small testes in boars indicated that the Meishan genotype had elevated testicular iron concentrations and darker color in conjunction with reduced total DSP (P < 0.01). It is not thought the elevated iron concentrations affect testicular weights but are probably a result of elevated FSH and FSH inducement of Fe transport. The storage of Fe in Leydig cells may provide a reservoir of Fe for easy access by Sertoli and germ cells, but still provide a degree of protection to germ cells from ionic iron.

  5. Familial testicular cancer: a report of the UK family register, estimation of risk and an HLA class 1 sib-pair analysis.

    PubMed Central

    Forman, D.; Oliver, R. T.; Brett, A. R.; Marsh, S. G.; Moses, J. H.; Bodmer, J. G.; Chilvers, C. E.; Pike, M. C.

    1992-01-01

    Forty-two families with two or more cases of testicular cancer have been reported to the UK Register for Familial Testicular Cancer, comprising two pairs of identical twins, 27 sets of other brothers (25 pairs, two triples), nine father-son pairs, two pairs of first cousins and two uncle-nephew pairs. In total 91 testicular tumours are described in 86 individuals (42 (46%) pure seminoma, 49 (54%) other germ cell tumours). The median age at diagnosis in these patients was significantly younger than that in a comparable series of non-familial patients (29 c.f. 32.5 years, P less than 0.01). In a case-control comparison of 794 testicular cancer patients, eight patients (1.0%) had a brother and four patients (0.5%) had a father with a previous diagnosis of testicular cancer at the time of their own diagnosis (and these families are all included in this report). Two out of 794 controls (0.3%) had a first degree relative with testicular cancer. The cumulative risk to a brother of a patient for developing testicular cancer by the age of 50 years was estimated to be 2.2% (95% C.I. 0.6-3.8%) which results in a relative risk of 9.8 (95% C.I. 2.8-16.7) in comparison with the general population. HLA Class I typing of 21 affected sib-pairs demonstrated four (19%) sharing two haplotypes, 13 pairs (62%) sharing one and four pairs (19%) sharing none. This did not differ significantly from the expected proportions of 25%/50%/25%. It is unlikely, therefore, that there is a major gene associated with testicular cancer predisposition within or closely linked to the major histocompatibility gene complex on chromosome 6. PMID:1739626

  6. Conservation of the sizes of 53 introns and over 100 intronic sequences for the binding of common transcription factors in the human and mouse genes for type II procollagen (COL2A1).

    PubMed Central

    Ala-Kokko, L; Kvist, A P; Metsäranta, M; Kivirikko, K I; de Crombrugghe, B; Prockop, D J; Vuorio, E

    1995-01-01

    Over 11,000 bp of previously undefined sequences of the human COL2A1 gene were defined. The results made it possible to compare the intron structures of a highly complex gene from man and mouse. Surprisingly, the sizes of the 53 introns of the two genes were highly conserved with a mean difference of 13%. After alignment of the sequences, 69% of the intron sequences were identical. The introns contained consensus sequences for the binding of over 100 different transcription factors that were conserved in the introns of the two genes. The first intron of the gene contained 80 conserved consensus sequences and the remaining 52 introns of the gene contained 106 conserved sequences for the binding of transcription factors. The 5'-end of intron 2 in both genes had a potential for forming a stem loop in RNA transcripts. Images Figure 4 PMID:8948452

  7. Homologous recombination-mediated double-strand break repair in mouse testicular extracts and comparison with different germ cell stages.

    PubMed

    Srivastava, Niloo; Raman, Mercy J

    2007-01-01

    Homologous recombination (HR) is established as a significant contributor to double-strand break (DSB) repair in mammalian somatic cells; however, its role in mammalian germ cells has not been characterized, although being conservative in nature it is anticipated to be the major pathway in germ cells. The germ cell system has inherent limitations by which intact cell approaches are not feasible. The present study, therefore, investigates HR-mediated DSB repair in mouse germ cell extracts by using an in vitro plasmid recombination assay based on functional rescue of a neomycin (neo) gene. A significantly high-fold increase in neo+ (Kan(R)) colonies following incubation of two plasmid substrates (neo delta1 and neo delta2) with testicular extracts demonstrated the extracts' ability to catalyze intermolecular recombination. A significant enhancement in recombinants upon linearization of one of the plasmids suggested the existence of an HR-mediated DSB repair activity. Comparison of the activity at sequential developmental stages, spermatogonia, spermatocytes and spermatids revealed its presence at all the stages; spermatocyte being the most proficient stage. Further, restriction analysis of recombinant plasmids indicated the predominance of gene conversion in enriched spermatocytes (mostly pachytenes), in contrast to gonial and spermatid extracts that showed higher reciprocal exchange. In conclusion, this study demonstrates HR repair activity at all stages of male germ cells, suggesting an important role of HR-mediated DSB repair during mammalian spermatogenesis. Further, the observed preference of gene conversion over reciprocal exchange at spermatocyte stage correlates with the close association of gene conversion with the meiotic recombination program.

  8. ESTviewer: a web interface for visualizing mouse, rat, cattle, pig and chicken conserved ESTs in human genes and human alternatively spliced variants.

    PubMed

    Chen, Feng-Chi; Chuang, Trees-Juen

    2005-05-15

    ESTviewer is a web application for interactively visualizing human gene structures, with emphasis on mammalian and avian expressed sequence tags (ESTs) that are conserved in the human genome and alternatively spliced (AS) variants. AS variants from the UCSC, Vega and PSEP annotations are presented in this application for comparison. EST data from six species, human, mouse, rat, cattle, pig and chicken, are mapped to the human genome to show cross-species EST conservation in annotated exonic and intronic regions. Cross-species EST conservation is evolutionarily and functionally important because it represents the effects of selection pressure on genic regions and transcriptome over evolutionary time. Emphatically, ESTviewer provides a convenient tool to compare highly conserved non-human ESTs and human AS variants. The application takes human gene accession Ids or coordinates of genomic sequences as inputs and presents annotated gene structures and their AS variants. In addition, the lengths and percentages of human genic regions covered by ESTs are displayed to show the level of EST coverage of different species. The percentages of the UCSC, Vega and PSEP annotated exons covered by ESTs of the six studied species are also displayed in the interface.

  9. Testicular chloroma in a nonleukemic infant.

    PubMed

    Armstrong, Michael B; Nafiu, Olubukola O; Valdez, Riccardo; Park, John M; Williams, James A; Wechsler, Daniel S

    2005-07-01

    Extramedullary myeloid cell tumors (EMCT) are localized collections of immature myeloid cells that occur outside of the bone marrow. Usually observed concurrently with bone marrow disease, EMCT also may occur in the absence of overt marrow leukemia. In this report, we describe an infant with a testicular mass that was identified as an EMCT after orchiectomy. Unlike the only previously reported case of infantile testicular chloroma, this patient did not exhibit bone marrow disease at diagnosis. Because systemic chemotherapy is considered to be superior to local control (surgery, radiation therapy), the patient was treated with intensively timed induction chemotherapy followed by 3 cycles of maintenance treatment (according to CCG protocol #2891) but no radiation therapy. The patient remains disease-free 18 months after diagnosis.

  10. FRG1, a gene in the FSH muscular dystrophy region on human chromosome 4q35, is highly conserved in vertebrates and invertebrates.

    PubMed

    Grewal, P K; Todd, L C; van der Maarel, S; Frants, R R; Hewitt, J E

    1998-08-17

    The human FRG1 gene maps to human chromosome 4q35 and was identified as a candidate for facioscapulohumeral muscular dystrophy. However, FRG1 is apparently not causally associated with the disease and as yet, its function remains unclear. We have cloned homologues of FRG1 from two additional vertebrates, the mouse and the Japanese puffer fish Fugu rubripes, and investigated the genomic organization of the genes in the two species. The intron/exon structure of the genes is identical throughout the protein coding region, although the Fugu gene is five times smaller than the mouse gene. We have also identified FRG1 homologues in two nematodes; Caenorhabditis elegans and Brugia malayi. The FRG1 protein is highly conserved and contains a lipocalin sequence motif, suggesting it may function as a transport protein.