An Investigation of the Flow Physics of Acoustic Liners by Direct Numerical Simulation
NASA Technical Reports Server (NTRS)
Watson, Willie R. (Technical Monitor); Tam, Christopher
2004-01-01
This report concentrates on reporting the effort and status of work done on three dimensional (3-D) simulation of a multi-hole resonator in an impedance tube. This work is coordinated with a parallel experimental effort to be carried out at the NASA Langley Research Center. The outline of this report is as follows : 1. Preliminary consideration. 2. Computation model. 3. Mesh design and parallel computing. 4. Visualization. 5. Status of computer code development. 1. Preliminary Consideration.
Nonlinear Reduced-Order Simulation Using An Experimentally Guided Modal Basis
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2012-01-01
A procedure is developed for using nonlinear experimental response data to guide the modal basis selection in a nonlinear reduced-order simulation. The procedure entails using nonlinear acceleration response data to first identify proper orthogonal modes. Special consideration is given to cases in which some of the desired response data is unavailable. Bases consisting of linear normal modes are then selected to best represent the experimentally determined transverse proper orthogonal modes and either experimentally determined inplane proper orthogonal modes or the special case of numerically computed in-plane companions. The bases are subsequently used in nonlinear modal reduction and dynamic response simulations. The experimental data used in this work is simulated to allow some practical considerations, such as the availability of in-plane response data and non-idealized test conditions, to be explored. Comparisons of the nonlinear reduced-order simulations are made with the surrogate experimental data to demonstrate the effectiveness of the approach.
Development of High-Speed IV-VI Photodiodes
1976-06-01
is not yet an adequate theoretical analysis. However, early experimental results indicated that collection efficienclea near unitv are attainable...82171~$* te g w w ( I .f 1 INTRODUCTION 2 EXPERIMENTAL 3 JUNCTION CAPACITANCE 4 THE PINCHED-OFF PHOTODIODE 4.1 Genaral Considerations 4.2...developed by Ford Research Staff. The essential references to this previous work and to new experimental detVKji are given In Section 2 of the
Chapter 2: Effects of fire on nonnative invasive plants and invasibility of wildland ecosystems
Kristin Zouhar; Jane Kapler Smith; Steve Sutherland
2008-01-01
Considerable experimental and theoretical work has been done on general concepts regarding nonnative species and disturbance, but experimental research on the effects of fire on nonnative invasive species is sparse. We begin this chapter by connecting fundamental concepts from the literature of invasion ecology to fire. Then we examine fire behavior characteristics,...
Temperature Scales: Celsius, Fahrenheit, Kelvin, Reamur, and Romer.
ERIC Educational Resources Information Center
Romer, Robert H.
1982-01-01
Traces the history and development of temperature scales which began with the 17th-century invention of the liquid-in-glass thermometer. Focuses on the work of Olaf Romer, Daniel Fahrenheit, Rene-Antoine de Reamur, Anders Celsius, and William Thomson (Lord Kelvin). Includes experimental work and consideration of high/low fixed points on the…
NASA Astrophysics Data System (ADS)
Dudin, S. M.; Novitskiy, D. V.
2018-05-01
The works of researchers at VNIIgaz, Giprovostokneft, Kuibyshev NIINP, Grozny Petroleum Institute, etc., are devoted to modeling heterogeneous medium flows in pipelines under laboratory conditions. In objective consideration, the empirical relationships obtained and the calculation procedures for pipelines transporting multiphase products are a bank of experimental data on the problem of pipeline transportation of multiphase systems. Based on the analysis of the published works, the main design requirements for experimental installations designed to study the flow regimes of gas-liquid flows in pipelines were formulated, which were taken into account by the authors when creating the experimental stand. The article describes the results of experimental studies of the flow regimes of a gas-liquid mixture in a pipeline, and also gives a methodological description of the experimental installation. Also the article describes the software of the experimental scientific and educational stand developed with the participation of the authors.
On designing low pressure loss working spaces for a planar Stirling micromachine
NASA Astrophysics Data System (ADS)
Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.
2015-12-01
In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.
Feminist Transformation: Teaching Experimental Psychology. Working Paper No. 140.
ERIC Educational Resources Information Center
Hoffnung, Michele
Integrating the new scholarship on women into the mainstream college curriculum is an important task for feminist teachers, not withstanding considerable resistance among traditionally minded male colleagues. Efforts to transform the psychology curriculum have met with additional problems because of psychology's commitment to the experimental…
Some Nice Relations between Right-Angled Triangles and the Golden Section
ERIC Educational Resources Information Center
Scimone, Aldo
2011-01-01
The international debate about experimental approaches to the teaching and learning mathematics is very current. While number theory lends itself naturally to such approaches, elementary geometry can also provide interesting starting points for creative work in class. This article shows how simple considerations about right triangles and the…
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
NASA Astrophysics Data System (ADS)
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-06-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However, logistical constraints (most especially related to funding) place significant limitations on the ability of schools to provide and maintain high-quality science laboratory experiences and equipment. One potential solution that has recently been the subject of growing interest is the use of remotely accessible laboratories to either supplant, or more commonly to supplement, conventional hands-on laboratories. Remote laboratories allow students and teachers to use high-speed networks, coupled with cameras, sensors, and controllers, to carry out experiments on real physical laboratory apparatus that is located remotely from the student. Research has shown that when used appropriately this can bring a range of potential benefits, including the ability to share resources across multiple institutions, support access to facilities that would otherwise be inaccessible for cost or technical reasons, and provide augmentation of the experimental experience. Whilst there has been considerable work on evaluating the use of remote laboratories within tertiary education, consideration of their role within secondary school science education is much more limited. This paper describes trials of the use of remote laboratories within secondary schools, reporting on the student and teacher reactions to their interactions with the laboratories. The paper concludes that remote laboratories can be highly beneficial, but considerable care must be taken to ensure that their design and delivery address a number of critical issues identified in this paper.
Direct experimental observation of nonclassicality in ensembles of single-photon emitters
NASA Astrophysics Data System (ADS)
Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.
2017-11-01
In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.
Perspectives on Computational Organic Chemistry
Streitwieser, Andrew
2009-01-01
The author reviews how his early love for theoretical organic chemistry led to experimental research and the extended search for quantitative correlations between experiment and quantum calculations. The experimental work led to ion pair acidities of alkali-organic compounds and most recently to equilibria and reactions of lithium and cesium enolates in THF. This chemistry is now being modeled by ab initio calculations. An important consideration is the treatment of solvation in which coordination of the alkali cation with the ether solvent plays a major role. PMID:19518150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng
2015-10-15
The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.
Quantum Speed Limit of a Photon under Non-Markovian Dynamics
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu; Zhu, Shi-Qun
2014-02-01
Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes—Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology.
NASA Astrophysics Data System (ADS)
Komov, A. T.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Boltenko, É. A.
2017-01-01
The present work is a continuation of experimental investigations conducted at the Moscow Power Engineering Institute (MPEI) on heat-transfer intensification. Brief descriptions of the working section and structure of intensifiers are given and their basic geometric parameters are enumerated. New systematized experimental data on the coefficients of hydraulic resistance and heat transfer in the regime of single-phase convection are given in an extended range of regime parameters and geometric characteristics of the intensifiers. Considerable increase in the heat-transfer coefficient as a function of the geometric characteristics of the intensifier has been established experimentally. The values of the relative fin height, at which these are the maxima of heat transfer and hydraulic resistance, have been established. Calculated dependences for the coefficient of hydraulic resistance and heat transfer have been obtained.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... unclear how expanded monitoring, in the absence of specific experimental design, would empirically verify..., designed to minimize disturbance to harbor seals within the action area in consideration of timing... February (i.e., within the designated in-water work window designed to reduce impacts to fish species in...
ERIC Educational Resources Information Center
Zambrana, Imac M.; Dearing, Eric; Naerde, Ane; Zachrisson, Henrik D.
2016-01-01
There is considerable evidence that high-quality Early Childhood Education and Care (ECEC) is associated with children's language competence. Yet, studies in contexts of universal access to quality-regulated ECEC are rarer, exacerbating concerns over selection bias endemic to non-experimental work on the topic. Extending the cumulative knowledge…
ERIC Educational Resources Information Center
Kafafian, Haig
Presented is a report on the work of Cybernetics Research Institute (CRI) investigators on the development of deaf-blind communication and control systems (DEBLICOM). Described in Part One is one embodiment of DEBLICOM designed and built by CRI engineers. Reported in Part Two are experimental procedures and human factors considerations of…
Experimental Aerodynamic Derivatives of a Sinusoidally Oscillating Airfoil in Two-Dimensional Flow
NASA Technical Reports Server (NTRS)
Halfman, Robert L
1952-01-01
Experimental measurements of the aerodynamic reactions on a symmetrical airfoil oscillating harmonically in a two-dimensional flow are presented and analyzed. Harmonic motions include pure pitch and pure translation, for several amplitudes and superimposed on an initial angle of attack, as well as combined pitch and translation. The apparatus and testing program are described briefly and the necessary theoretical background is presented. In general, the experimental results agree remarkably well with the theory, especially in the case of the pure motions. The net work per cycle for a motion corresponding to flutter is experimentally determined to be zero. Considerable consistent data for pure pitch were obtained from a search of available reference material, and several definite Reynolds number effects are evident.
Behavioral and neural representation of emotional facial expressions across the lifespan
Somerville, Leah H.; Fani, Negar; McClure-Tone, Erin B.
2011-01-01
Humans’ experience of emotion and comprehension of affective cues varies substantially across the lifespan. Work in cognitive and affective neuroscience has begun to characterize behavioral and neural responses to emotional cues that systematically change with age. This review examines work to date characterizing the maturation of facial expression comprehension, and dynamic changes in amygdala recruitment from early childhood through late adulthood while viewing facial expressions of emotion. Recent neuroimaging work has tested amygdala and prefrontal engagement in experimental paradigms mimicking real aspects of social interactions, which we highlight briefly, along with considerations for future research. PMID:21516541
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.
2016-07-01
The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.
ERIC Educational Resources Information Center
Ackerman, Matthew; Egalite, Anna J.
2015-01-01
When lotteries are infeasible, researchers must rely on observational methods to estimate charter effectiveness at raising student test scores. Considerable attention has been paid to observational studies by the Stanford Center for Research on Education Outcomes (CREDO), which have analyzed charter performance in 27 states. However, the…
Alternate working fluids for solar air conditioning applications
NASA Technical Reports Server (NTRS)
Evans, R. D.; Beck, J. K.
1978-01-01
An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.
Teacher Professional Development to Foster Authentic Student Research Experiences
NASA Astrophysics Data System (ADS)
Conn, K.; Iyengar, E.
2004-12-01
This presentation reports on a new teacher workshop design that encourages teachers to initiate and support long-term student-directed research projects in the classroom setting. Teachers were recruited and engaged in an intensive marine ecology learning experience at Shoals Marine Laboratory, Appledore Island, Maine. Part of the weeklong summer workshop was spent in field work, part in laboratory work, and part in learning experimental design and basic statistical analysis of experimental results. Teachers were presented with strategies to adapt their workshop learnings to formulate plans for initiating and managing authentic student research projects in their classrooms. The authors will report on the different considerations and constraints facing the teachers in their home school settings and teachers' progress in implementing their plans. Suggestions for replicating the workshop will be offered.
An experimental verification of metamaterial coupled enhanced transmission for antenna applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushpakaran, Sarin V.; Raj, Rohith K.; Pradeep, Anju
2014-02-10
Inspired by the work of Bethe on electromagnetic transmission through subwavelength hole, there has been immense interest on the extraordinary transmission through subwavelength slot/slit on metal plates. The invention of metamaterials has boosted the extra ordinary transmission through subwavelength slots. We examine computationally and experimentally the concept of metamaterial cover using an array of split ring resonators (SRRs), for enhancing the transmission in a stacked dipole antenna working in the S band. The front to back ratio is considerably improved by enhancing the magnetic resonant strength in close proximity of the slit of the upper parasitic dipole. The effect ofmore » stacking height of the SRR monolayer on the resonant characteristics of the split ring resonators and its effect on antenna radiation characteristics has been studied.« less
ERIC Educational Resources Information Center
Bettinger, Eric; Doss, Christopher; Loeb, Susanna; Taylor, Eric
2015-01-01
Class size is a first-order consideration in the study of education production and education costs. How larger or smaller classes affect student outcomes is especially relevant to the growth and design of online classes. We study a field experiment in which college students were quasi-randomly assigned to either a large or a small class. All…
Extravehicular activity welding experiment
NASA Technical Reports Server (NTRS)
Watson, J. Kevin
1989-01-01
The In-Space Technology Experiments Program (INSTEP) provides an opportunity to explore the many critical questions which can only be answered by experimentation in space. The objective of the Extravehicular Activity Welding Experiment definition project was to define the requirements for a spaceflight experiment to evaluate the feasibility of performing manual welding tasks during EVA. Consideration was given to experiment design, work station design, welding hardware design, payload integration requirements, and human factors (including safety). The results of this effort are presented. Included are the specific objectives of the flight test, details of the tasks which will generate the required data, and a description of the equipment which will be needed to support the tasks. Work station requirements are addressed as are human factors, STS integration procedures and, most importantly, safety considerations. A preliminary estimate of the cost and the schedule for completion of the experiment through flight and postflight analysis are given.
Acquisition and Tracking Behavior of Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Viterbi, A. J.
1958-01-01
Phase-locked or APC loops have found increasing applications in recent years as tracking filters, synchronizing devices, and narrowband FM discriminators. Considerable work has been performed to determine the noise-squelching properties of the loop when it is operating in or near phase lock and is functioning as a linear coherent detector. However, insufficient consideration has been devoted to the non-linear behavior of the loop when it is out of lock and in the process of pulling in. Experimental evidence has indicated that there is a strong tendency for phase-locked loops to achieve lock under most circumstances. However, the analysis which has appeared in the literature iis limited to the acquisition of a constant frequency reference signal with only one phase-locked loop filter configuration. This work represents an investigation of frequency acquisition properties of phase-locked loops for a variety of reference-signal behavior and loop configurations
Cancer in light of experimental evolution.
Sprouffske, Kathleen; Merlo, Lauren M F; Gerrish, Philip J; Maley, Carlo C; Sniegowski, Paul D
2012-09-11
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cancer in Light of Experimental Evolution
Sprouffske, Kathleen; Merlo, Lauren M.F.; Gerrish, Philip J.; Maley, Carlo C.; Sniegowski, Paul D.
2012-01-01
Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. PMID:22975007
Husemann, Britta; Von Mach, Carolin Yvonne; Borsotto, Daniel; Zepf, Kirsten Isabel; Scharnbacher, Jutta
2009-06-01
Seated working positions are often regarded as a cause for discomfort in the musculoskeletal system. Performing work in different working positions--that is, alternating between sitting and standing (sit-stand workstation paradigm)--could help reduce physical complaints. The questions were whether performing office work partly in a standing position leads to reduced complaints and whether standing would change the efficiency of data entry office work. We investigated the effect of a sit-stand workstation paradigmd during experimental data entry office work on physical and psychological complaints and data entry efficiency by conducting a randomized controlled trial with 60 male participants ages 18 to 35 years. In this experiment, musculoskeletal complaints were reduced by a sit-stand workstation paradigm. A trend could be identified indicating a small but nonsignificant loss of efficiency in data entry while standing. A sit-stand workstation paradigm reduces musculoskeletal complaints without considerably affecting data entry efficiency under the presented study conditions (young male participants, short duration, fixed and controlled sit-stand workstation paradigm, simulated experimental working condition). According to the present data, implementing a sit-stand workstation paradigm can be an effective workplace health intervention to reduce musculoskeletal complaints. This experiment encourages further studies on the effectiveness of a sit-stand workstation paradigm. Experimental research and field studies that prove the reduction of complaints when introducing a sit-stand workstation paradigm in the workplace could be the basis for evidence-based recommendations regarding such interventions.
Structural dynamic and aeroelastic considerations for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.
1991-01-01
The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.
Pulmonary Toxicity of Carbon Nanotubes: Ethical Implications and Human Risk Assessment
NASA Technical Reports Server (NTRS)
James, John T.
2006-01-01
Presentation viewgraphs review the health considerations of working with and manufacturing Carbon Nanotubes. The inherent toxicity of Single Walled Carbon Nanotubes (SWNT) are reviewed, and how the preparation of the SWNTs are reviewed. The experimental protocol that was used is reviewed, and the results in lungs of rodents are shown. The presentation ends with posing the ethical questions in reference to the manufacture and use of carbon nanotubes.
Applications of computational modeling in ballistics
NASA Technical Reports Server (NTRS)
Sturek, Walter B.
1987-01-01
The development of the technology of ballistics as applied to gun launched Army weapon systems is the main objective of research at the U.S. Army Ballistic Research Laboratory (BRL). The primary research programs at the BRL consist of three major ballistic disciplines: exterior, interior, and terminal. The work done at the BRL in these areas was traditionally highly dependent on experimental testing. A considerable emphasis was placed on the development of computational modeling to augment the experimental testing in the development cycle; however, the impact of the computational modeling to this date is modest. With the availability of supercomputer computational resources recently installed at the BRL, a new emphasis on the application of computational modeling to ballistics technology is taking place. The major application areas are outlined which are receiving considerable attention at the BRL at present and to indicate the modeling approaches involved. An attempt was made to give some information as to the degree of success achieved and indicate the areas of greatest need.
Neighborhoods and health: where are we and were do we go from here?
DIEZ-ROUX, A. V.
2007-01-01
Summary In recent years there has been an explosion of interest in neighborhood health effects. Most existing work has relied on secondary data analyses and has used administrative areas and aggregate census data to characterize neighborhoods. Important questions remain regarding whether the associations reported by these studies reflect causal processes. This paper reviews the major limitations of existing work and discusses areas for future development including (1) definition and measurement of area or ecologic attributes (2) consideration of spatial scale (3) cumulative exposures and lagged effects and (4) the complementary nature of observational, quasi-experimental, and experimental evidence. As is usually the case with complex research questions, consensus regarding the presence and magnitude of neighborhood health effects will emerge from the work of multiple disciplines, often with diverse methodological approaches, each with its strengths and its limitations. Partnership across disciplines, as well as among health researchers, communities, urban planners, and policy experts will be key. PMID:17320330
Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P
1999-10-01
A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.
Estimating Coherence Measures from Limited Experimental Data Available
NASA Astrophysics Data System (ADS)
Zhang, Da-Jian; Liu, C. L.; Yu, Xiao-Dong; Tong, D. M.
2018-04-01
Quantifying coherence has received increasing attention, and considerable work has been directed towards finding coherence measures. While various coherence measures have been proposed in theory, an important issue following is how to estimate these coherence measures in experiments. This is a challenging task, since the state of a system is often unknown in practical applications and the accessible measurements in a real experiment are typically limited. In this Letter, we put forward an approach to estimate coherence measures of an unknown state from any limited experimental data available. Our approach is not only applicable to coherence measures but can be extended to other resource measures.
Seat pressure measurement technologies: considerations for their evaluation.
Gyi, D E; Porter, J M; Robertson, N K
1998-04-01
Interface pressure measurement has generated interest in the automotive industry as a technique which could be used in the prediction of driver discomfort for various car seat designs, and provide designers and manufacturers with rapid information early on in the design process. It is therefore essential that the data obtained are of the highest quality, relevant and have some quantitative meaning. Exploratory experimental work carried out with the commercially available Talley Pressure Monitor is outlined. This led to a better understanding of the strengths and weaknesses of this system and the re-design of the sensor matrix. Such evaluation, in the context of the actual experimental environment, is considered essential.
Lunar base agriculture: Soils for plant growth
NASA Technical Reports Server (NTRS)
Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)
1989-01-01
This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.
Considerations for Infectious Disease Research Studies Using Animals
Colby, Lesley A; Quenee, Lauriane E; Zitzow, Lois A
2017-01-01
Animal models are vital in understanding the transmission and pathogenesis of infectious organisms and the host immune response to infection. In addition, animal models are essential in vaccine and therapeutic drug development and testing. Prior to selecting an animal model to use when studying an infectious agent, the scientific team must determine that sufficient in vitro and ex vivo data are available to justify performing research in an animal model, that ethical considerations are addressed, and that the data generated from animal work will add useful information to the body of scientific knowledge. Once it is established that an animal should be used, the questions become ‘Which animal model is most suitable?’ and ‘Which experimental design issues should be considered?’ The answers to these questions take into account numerous factors, including scientific, practical, welfare, and regulatory considerations, which are the focus of this article. PMID:28662751
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Fedoseyev, A. I.; Kim, S.; Curreri, Peter A. (Technical Monitor)
2002-01-01
Gravity-driven thermosolutal convection that arises during controlled directional solidification (DS) of dendritic alloys promotes detrimental macro-segregation (e.g. freckles and steepling) in products such as turbine blades. Considerable time and effort has been spent to experimentally and theoretically investigate this phenomena; although our knowledge has advanced to the point where convection can be modeled and accurately compared to experimental results, little has been done to minimize its onset and deleterious effects. The experimental work demonstrates that segregation can be. minimized and microstructural uniformity promoted when a slow axial rotation is applied to the sample crucible during controlled directional solidification processing. Numerical modeling utilizing continuation and bifurcation methods have been employed to develop accurate physical and mathematical models with the intent of identifying and optimizing processing parameters.
[The 1, 2, 3 of laboratory animal experimentation].
Romero-Fernandez, Wilber; Batista-Castro, Zenia; De Lucca, Marisel; Ruano, Ana; García-Barceló, María; Rivera-Cervantes, Marta; García-Rodríguez, Julio; Sánchez-Mateos, Soledad
2016-06-01
The slow scientific development in Latin America in recent decades has delayed the incorporation of laboratory animal experimentation; however, this situation has started to change. Today, extraordinary scientific progress is evident, which has promoted the introduction and increased use of laboratory animals as an important tool for the advancement of biomedical sciences. In the aftermath of this boom, the need to provide the scientific community with training and guidance in all aspects related to animal experimentation has arisen. It is the responsibility of each country to regulate this practice, for both bioethical and legal reasons, to ensure consideration of the animals' rights and welfare. The following manuscript is the result of papers presented at the International Workshop on Laboratory Animal Testing held at the Technical University of Ambato, Ecuador; it contains information regarding the current state of affairs in laboratory animal testing and emphasizes critical aspects such as main species used, ethical and legal principles, and experimental and alternative designs for animal use. These works aim to ensure good practices that should define scientific work. This document will be relevant to both researchers who aim to newly incorporate animal testing into their research and those who seek to update their knowledge.
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-Learning Methods
Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu
2018-01-01
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist. PMID:29651416
e-Bitter: Bitterant Prediction by the Consensus Voting From the Machine-learning Methods
NASA Astrophysics Data System (ADS)
Zheng, Suqing; Jiang, Mengying; Zhao, Chengwei; Zhu, Rui; Hu, Zhicheng; Xu, Yong; Lin, Fu
2018-03-01
In-silico bitterant prediction received the considerable attention due to the expensive and laborious experimental-screening of the bitterant. In this work, we collect the fully experimental dataset containing 707 bitterants and 592 non-bitterants, which is distinct from the fully or partially hypothetical non-bitterant dataset used in the previous works. Based on this experimental dataset, we harness the consensus votes from the multiple machine-learning methods (e.g., deep learning etc.) combined with the molecular fingerprint to build the bitter/bitterless classification models with five-fold cross-validation, which are further inspected by the Y-randomization test and applicability domain analysis. One of the best consensus models affords the accuracy, precision, specificity, sensitivity, F1-score, and Matthews correlation coefficient (MCC) of 0.929, 0.918, 0.898, 0.954, 0.936, and 0.856 respectively on our test set. For the automatic prediction of bitterant, a graphic program “e-Bitter” is developed for the convenience of users via the simple mouse click. To our best knowledge, it is for the first time to adopt the consensus model for the bitterant prediction and develop the first free stand-alone software for the experimental food scientist.
Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes
NASA Astrophysics Data System (ADS)
Panchal, Hitesh; Awasthi, Anuradha
2017-06-01
In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.
Protection of autonomous microgrids using agent-based distributed communication
Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.
2016-04-06
This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less
Protection of autonomous microgrids using agent-based distributed communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cintuglu, Mehmet H.; Ma, Tan; Mohammed, Osama A.
This study presents a real-time implementation of autonomous microgrid protection using agent-based distributed communication. Protection of an autonomous microgrid requires special considerations compared to large scale distribution net-works due to the presence of power converters and relatively low inertia. In this work, we introduce a practical overcurrent and a frequency selectivity method to overcome conventional limitations. The proposed overcurrent scheme defines a selectivity mechanism considering the remedial action scheme (RAS) of the microgrid after a fault instant based on feeder characteristics and the location of the intelligent electronic devices (IEDs). A synchrophasor-based online frequency selectivity approach is proposed to avoidmore » pulse loading effects in low inertia microgrids. Experimental results are presented for verification of the pro-posed schemes using a laboratory based microgrid. The setup was composed of actual generation units and IEDs using IEC 61850 protocol. The experimental results were in excellent agreement with the proposed protection scheme.« less
Broadband polygonal invisibility cloak for visible light
Chen, Hongsheng; Zheng, Bin
2012-01-01
Invisibility cloaks have recently become a topic of considerable interest thanks to the theoretical works of transformation optics and conformal mapping. The design of the cloak involves extreme values of material properties and spatially dependent parameter tensors, which are very difficult to implement. The realization of an isolated invisibility cloak in the visible light, which is an important step towards achieving a fully movable invisibility cloak, has remained elusive. Here, we report the design and experimental demonstration of an isolated polygonal cloak for visible light. The cloak is made of several elements, whose electromagnetic parameters are designed by a linear homogeneous transformation method. Theoretical analysis shows the proposed cloak can be rendered invisible to the rays incident from all the directions. Using natural anisotropic materials, a simplified hexagonal cloak which works for six incident directions is fabricated for experimental demonstration. The performance is validated in a broadband visible spectrum. PMID:22355767
Hydrodynamic Analyses and Evaluation of New Fluid Film Bearing Concepts
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Dimofte, Florin
1998-01-01
Over the past several years, numerical and experimental investigations have been performed on a waved journal bearing. The research work was undertaken by Dr. Florin Dimofte, a Senior Research Associate in the Mechanical Engineering Department at the University of Toledo. Dr. Theo Keith, Distinguished University Professor in the Mechanical Engineering Department was the Technical Coordinator of the project. The wave journal bearing is a bearing with a slight but precise variation in its circular profile such that a waved profile is circumscribed on the inner bearing diameter. The profile has a wave amplitude that is equal to a fraction of the bearing clearance. Prior to this period of research on the wave bearing, computer codes were written and an experimental facility was established. During this period of research considerable effort was directed towards the study of the bearing's stability. The previously developed computer codes and the experimental facility were of critical importance in performing this stability research. A collection of papers and reports were written to describe the results of this work. The attached captures that effort and represents the research output during the grant period.
Cascade Raman sidebands generation and orbital angular momentum relations for paraxial beam modes
NASA Astrophysics Data System (ADS)
Strohaber, James; Schuessler, Hans; Kolomenskii, Alexandre; Zhu, Feng
2015-05-01
In this work, the nonlinear parametric interaction of optical radiation in various transverse modes in a Raman-active medium is investigated both experimentally and theoretically. Verification of the orbital angular momentum algebra (OAM-algebra) was performed for high-order Laguerre Gaussian modes. It was found that this same algebra also describes the coherent transfer of OAM when Ince-Gaussian modes were used. New theoretical considerations extend the OAM-algebra to even and odd Laguerre Gaussian, and Hermite Gaussian beam modes through a change of basis. The results of this work provide details in the spatiotemporal synthesis of custom broadband pulses of radiation from Raman sideband generation.
Self-Editing: On the Relation Between behavioral and Psycholinguistic Approaches
Kimberly Epting, L; Critchfield, Thomas S
2006-01-01
In Skinner's (1957) conceptual analysis, the process of self-editing is integral to the dynamic complexities of multiply determined verbal behavior, but the analysis has generated little in the way of an experimental analysis. The majority of scientific work on self-editing has taken place within linguistics and cognitive psycholinguistics. Here we compare and contrast behavioral and cognitive psycholinguistic approaches to self-editing, highlighting points of contact that can be identified despite fundamental differences in theoretical styles. We conclude that the two approaches are not mutually exclusive on all dimensions, and suggest that a consideration of cognitive psycholinguistic research may help to spur an experimental analysis of self-editing from a behavioral perspective. PMID:22478464
Investigation of the Relationship between Undercooling and Solidification Velocity
NASA Technical Reports Server (NTRS)
Bayuzick, Robert J.; Hofmeister, William H.
2004-01-01
This work was aimed at reconciling the differences between experimental measurements of the theoretical predictions of the solidification velocity as a function of undercooling. The theory proposed by Boettinger, Coriell and Trivedi (the BCT theory) has been one of the most widely used models for describing the nature of the solidification of undercooled metals and alloys. However, for undercoolings greater than about 5% of the absolute melting temperature, there is considerable discrepancy between theory and experiment. At these large undercoolings, experimental results exhibit a much lessened dependency of solidification velocity on undercooling than is predicted by theory. Furthermore, unpredicted plateaus in the solidification velocity as a function of undercooling are observed.
Advances in Canadian forest hydrology, 1999-2003
NASA Astrophysics Data System (ADS)
Buttle, J. M.; Creed, I. F.; Moore, R. D.
2005-01-01
Understanding key hydrological processes and properties is critical to sustaining the ecological, economic, social and cultural roles of Canada's varied forest types. This review examines recent progress in studying the hydrology of Canada's forest landscapes. Work in some areas, such as snow interception, accumulation and melt under forest cover, has led to modelling tools that can be readily applied for operational purposes. Our understanding in other areas, such as the link between runoff-generating processes in different forest landscapes and hydrochemical fluxes to receiving waters, is much more tentative. The 1999-2003 period saw considerable research examining hydrological and biogeochemical responses to natural and anthropogenic disturbance of forest landscapes, spurred by major funding initiatives at the provincial and federal levels. This work has provided valuable insight; however, application of the findings beyond the experimental site is often restricted by such issues as a limited consideration of the background variability of hydrological systems, incomplete appreciation of hydrological aspects at the experiment planning stage, and experimental design problems that often bedevil studies of basin response to disturbance. Overcoming these constraints will require, among other things, continued support for long-term hydroecological monitoring programmes, the embedding of process measurement and modelling studies within these programmes, and greater responsiveness to the vagaries of policy directions related to Canada's forest resources. Progress in these and related areas will contribute greatly to the development of hydrological indicators of sustainable forest management in Canada. Copyright
NASA Technical Reports Server (NTRS)
Lagace, Paul A.
1999-01-01
Work was conducted over a ten-year period to address the central issue of damage in primary load-bearing aircraft composite structure, specifically fuselage structure. This included the three facets of damage resistance, damage tolerance, and damage arrest. Experimental, analytical, and numerical work was conducted in order to identify and better understand the mechanisms that control the structural behavior of fuselage structures in their response to the three aspects of damage. Furthermore, work was done to develop straightforward design methodologies that can be employed by structural designers in preliminary design stages to make intelligent choices concerning the material, layup, and structural configurations so that a more efficient structure with structural integrity can be designed and built. Considerable progress was made towards achieving these goals via this work. In regard to damage tolerance considerations, the following were identified as important effects: composite layup and associated orthotropy/structural anisotropy, specifics of initial local damage mechanisms, role of longitudinal versus hoop stress, and large deformation and associated geometric nonlinearity. Means were established to account for effects of radius and for the nonlinear response. In particular, nondimensional parameters were identified to characterize the importance of nonlinearity in the response of pressurized cylinders. This led to the establishment of a iso-nonlinear-error plot for reference in structural design. Finally, in the case of damage tolerance, the general approach of the original methodology to predict the failure pressure involving extending basic plate failure data by accounting for the local stress intensification was accomplished for the general case by accounting for the mechanisms noted by utilizing the capability of the STAGS finite element code and numerically calculating the local stress intensification for the particular configuration to be considered. For the issue of damage arrest, placement of and configuration of stiffeners (including stiffener curvature), and magnitude and orientation of principal strains due to local bending were found to be key considerations. Means were established to account for stiffener effectiveness quantitatively based on radius, slit size, stiffener curvature' and relative bending stifffiesses involved. Geometric nonlinearity was also found to play an - 24 - important role here. Furthermore, it was determined that damage propagation is controlled by different mechanisms (hoop stress versus flapping stress and the associated factors involved in each) depending upon the direction of damage propagation. This latter item results in an inability to scale these phenomena in one test due to the different factors involved. Finally, the importance of shell curvature and associated instability in response to transverse loading including impact were found to be important considerations in damage resistance. A technique, involving asymmetric meshing of a finite element mesh, was developed to predict this behavior and showed excellent correlation with experimental results. Further details of these ten years of work are presented herein with references made to the fourteen documents produced during this work where full details can be found. Implications of this work are discussed and recommendations made. Although it is clear that there is more work to be done to fully understand composite fuselage technology and specifically the overall issue of damage in primary load-bearing composite structures, important understanding and capability has been extended via this work.
Electronic stopping powers for heavy ions in SiC and SiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, K.; Xue, H.; Zhang, Y., E-mail: Zhangy1@ornl.gov
2014-01-28
Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO{sub 2}, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15 MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less
Electronic Stopping Powers For Heavy Ions In SiC And SiO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Zhang, Y.; Zhu, Zihua
2014-01-24
Accurate information on electronic stopping power is fundamental for broad advances in materials science, electronic industry, space exploration, and sustainable energy technologies. In the case of slow heavy ions in light targets, current codes and models provide significantly inconsistent predictions, among which the Stopping and Range of Ions in Matter (SRIM) code is the most commonly used one. Experimental evidence, however, has demonstrated considerable errors in the predicted ion and damage profiles based on SRIM stopping powers. In this work, electronic stopping powers for Cl, Br, I, and Au ions are experimentally determined in two important functional materials, SiC andmore » SiO2, based on a single ion technique, and new electronic stopping power values are derived over the energy regime from 0 to 15 MeV, where large deviations from the SRIM predictions are observed. As an experimental validation, Rutherford backscattering spectrometry (RBS) and secondary ion mass spectrometry (SIMS) are utilized to measure the depth profiles of implanted Au ions in SiC for energies from 700 keV to 15MeV. The measured ion distributions by both RBS and SIMS are considerably deeper than the SRIM predictions, but agree well with predictions based on our derived stopping powers.« less
Critical considerations when planning experimental in vivo studies in dental traumatology.
Andreasen, Jens O; Andersson, Lars
2011-08-01
In vivo studies are sometimes needed to understand healing processes after trauma. For several reasons, not the least ethical, such studies have to be carefully planned and important considerations have to be taken into account about suitability of the experimental model, sample size and optimizing the accuracy of the analysis. Several manuscripts of in vivo studies are submitted for publication to Dental Traumatology and rejected because of inadequate design, methodology or insufficient documentation of the results. The authors have substantial experience in experimental in vivo studies of tissue healing in dental traumatology and share their knowledge regarding critical considerations when planning experimental in vivo studies. © 2011 John Wiley & Sons A/S.
Recombination rate plasticity: revealing mechanisms by design
Sefick, Stephen; Rushton, Chase
2017-01-01
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit ‘plastic’ responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster. We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster. Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscura. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109222
Cartwright, A
1988-01-01
Surveys by personal interview are often assumed to be superior to those conducted by mail questionnaire. An experimental study of experiences and attitudes of 800 newly delivered mothers revealed surprising advantages to postal surveys: they are cheaper, more easily repeatable, and minimize interviewer effects. While response rates differed, the quality of responses was similar, except between middle- and working-class mothers. Postal surveys can be used with considerable assurance in national studies of fairly intimate experiences of pregnancy and delivery.
Meyer, Antje S; Alday, Phillip M; Decuyper, Caitlin; Knudsen, Birgit
2018-01-01
As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.
Power harvesting using PZT ceramics embedded in orthopedic implants.
Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua
2009-09-01
Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant.
de la Garza-Rodea, Anabel Sofía; Padilla-Sánchez, Luis; de la Garza-Aguilar, Javier; Neri-Vela, Rolando
2007-01-01
The progress of medicine has largely been due to research, and for surgery, in particular, the experimental surgical laboratory has been considered fundamental to the surgeon's education. In this study, a general view of experimental surgery is given in animal models based on bioethical norms as well as to design, create and apply different surgical procedures before performing in humans. Experimental surgery also facilitates surgical teaching and promotes the surgeon's scientific reasoning. Methods. This is a retrospective and descriptive study. Data were collected from direct and indirect sources of available publications on the historical, bioethical and educational aspects of medicine, focusing on surgery. The important facts corresponding to the field of experimental surgery and applicable in Mexico were selected. Concepts of experimental surgical models and of the experimental surgery laboratory were described. Bioethical considerations are emphasized for care of experimental animals. Finally, this work focuses on the importance of surgical experimentation in current and future development of the surgical researcher. Conclusions. Experimentation with animal models in a surgical laboratory is essential for surgical teaching and promotes development of the scientific thought in the surgeon. It is necessary for surgical research and is fundamental for making progress in surgery, treatment and medicine as science.
Experimental and theoretical study of Co sorption in clay montmorillonites
NASA Astrophysics Data System (ADS)
Gil Rebaza, A. V.; Montes, M. L.; Taylor, M. A.; Errico, L. A.; Alonso, R. E.
2018-03-01
Montmorillonite (MMT) clays are 2:1 layered structures which in natural state may allocate different hydrated cations such as M-nH2O (M = Na, Ca, Fe, etc) in its interlayer space. Depending on the capability for ion sorption, these materials are interesting for environmental remediation. In this work we experimentally study the Co sorption in a natural Na-MMT using UV-visible spectrometry and XRD on semi-oriented samples, and then analyze the sorption ability of this clay by means of ab initio calculation performed on pristine MMT. The structural properties of Na-MMT and Co-adsorbed MMT, and the hyperfine parameters at different atomic sites were analyzed and compared with the experimental ones for the first, and for the case of the hyperfine parameters, presented for the first time for the last. The theoretical predictions based on total energy considerations confirm that Co incorporation replacing Na is energetically favorable. Also, the basal spacing d001 experimentally obtained is well reproduced.
Torsion Tests of Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1944-01-01
The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)
Integration between chemical oxidation and membrane thermophilic biological process.
Bertanza, G; Collivignarelli, M C; Crotti, B M; Pedrazzani, R
2010-01-01
Full scale applications of activated sludge thermophilic aerobic process for treatment of liquid wastes are rare. This experimental work was carried out at a facility, where a thermophilic reactor (1,000 m(3) volume) is operated. In order to improve the global performance of the plant, it was decided to upgrade it, by means of two membrane filtration units (ultrafiltration -UF-, in place of the final sedimentation, and nanofiltration -NF-). Subsequently, the integration with chemical oxidation (O(3) and H(2)O(2)/UV processes) was taken into consideration. Studied solutions dealt with oxidation of both the NF effluents (permeate and concentrate). Based on experimental results and economic evaluation, an algorithm was proposed for defining limits of convenience of this process.
Physicochemical hydrodynamics of porous structures in vascular plants
NASA Astrophysics Data System (ADS)
Ryu, Jeongeun; Ahn, Sungsook; Kim, Seung-Gon; Kim, Taejoo; Lee, Sang Joon
2013-11-01
Transport of sap flow through xylem conduits of vascular plants has been considered as a passive process, because the xylem conduits are regarded as inert, dead wood. However, plants can actively regulate water transport using ion-mediated response for adapting to environmental changes. In order to understand the active regulation mechanism of physicochemical hydrodynamics of porous structures in vascular plants, the effects of specific ion types and their ionic ratios on the water transport were experimentally investigated under in vivocondition. Based on the experimental results, the principle of ionic effects will be explained through in-vitro comparative experiments and theoretical considerations. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).
Theoretical research program to study transition metal trimers and embedded clusters
NASA Technical Reports Server (NTRS)
Walch, S. P.
1984-01-01
Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.
Critical Evaluation of Kinetic Method Measurements: Possible Origins of Nonlinear Effects
NASA Astrophysics Data System (ADS)
Bourgoin-Voillard, Sandrine; Afonso, Carlos; Lesage, Denis; Zins, Emilie-Laure; Tabet, Jean-Claude; Armentrout, P. B.
2013-03-01
The kinetic method is a widely used approach for the determination of thermochemical data such as proton affinities (PA) and gas-phase acidities ( ΔH° acid ). These data are easily obtained from decompositions of noncovalent heterodimers if care is taken in the choice of the method, references used, and experimental conditions. Previously, several papers have focused on theoretical considerations concerning the nature of the references. Few investigations have been devoted to conditions required to validate the quality of the experimental results. In the present work, we are interested in rationalizing the origin of nonlinear effects that can be obtained with the kinetic method. It is shown that such deviations result from intrinsic properties of the systems investigated but can also be enhanced by artifacts resulting from experimental issues. Overall, it is shown that orthogonal distance regression (ODR) analysis of kinetic method data provides the optimum way of acquiring accurate thermodynamic information.
Micromachined probes for laboratory plasmas
NASA Astrophysics Data System (ADS)
Chiang, Franklin Changta
As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.
Considerations in the Use of Nonhuman Primate Models of Ebola Virus and Marburg Virus Infection.
Geisbert, Thomas W; Strong, James E; Feldmann, Heinz
2015-10-01
The filoviruses, Ebola virus and Marburg virus, are zoonotic pathogens that cause severe hemorrhagic fever in humans and nonhuman primates (NHPs), with case-fatality rates ranging from 23% to 90%. The current outbreak of Ebola virus infection in West Africa, with >26 000 cases, demonstrates the long-underestimated public health danger that filoviruses pose as natural human pathogens. Currently, there are no vaccines or treatments licensed for human use. Licensure of any medical countermeasure may require demonstration of efficacy in the gold standard cynomolgus or rhesus macaque models of filovirus infection. Substantial progress has been made over the last decade in characterizing the filovirus NHP models. However, there is considerable debate over a variety of experimental conditions, including differences among filovirus isolates used, routes and doses of exposure, and euthanasia criteria, all of which may contribute to variability of results among different laboratories. As an example of the importance of understanding these differences, recent data with Ebola virus shows that an addition of a single uridine residue in the glycoprotein gene at the editing site attenuates the virus. Here, we draw on decades of experience working with filovirus-infected NHPs to provide a perspective on the importance of various experimental conditions. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Application and principles of photon-doppler velocimetry for explosives testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Matthew Ellsworth; Hill, Larry; Hull, Larry
2010-01-01
The velocimetry technique PDV is easier to field than its predecessors VISAR and Fabry-Perot, works on a broader variety of experiments, and is more accurate and simple to analyze. Experiments and analysis have now demonstrated the accuracy, precision and interpretation of what PDV does and does not measure, and the successful application of POV to basic and applied detonation problems. We present a selection of results intended to help workers assess the capabilities of PDV. First we present general considerations about the technique: various PDV configurations, single-signal, multisignal (e.g., triature) and frequency-shifted PDV; what types of motion are sensed andmore » missed by PDV; analysis schemes for velocity and position extraction; accuracy and precision of the results; and, experimental considerations for probe selection and positioning. We then present the status of various applications: detonation speeds and wall motion in cylinder tests, breakout velocity distributions from bare HE, ejecta, measurements from fibers embedded in HE, projectile velocity, resolving 2 and 3-D velocity vectors. This paper is an overview of work done by many groups around the world.« less
NASA Astrophysics Data System (ADS)
Lyon, S. W.; Koutsouris, A. J.
2016-12-01
Robust natural variability and experimental design may help to overcome the data limitations and difficult conditions that typify much of the global south. This, in turn, can facilitate the application of advanced techniques to help inform management with science (which is sorely needed for guiding development). As an example on this concept, we used a limited amount of weekly water chemistry as well as stable water isotope data to perform end-member mixing analysis in a glue frame work (G-EMMA) in one main catchment and two sub-catchments of Kilombero Valley, Tanzania. How water interacts across the various storages in this region, which has been targeted for rapid agricultural intensification and expansion, is still largely unknown making estimation of potential impacts (not to mention sustainability) associated with various development scenarios difficult. Our results showed that there were, as would be expected, considerable uncertainties related to the characterization of end-members in this remote system. Regardless, some robust estimates could be made on contributions to seasonal streamflow variability. For example, it appears that there is a low connectivity between the deep groundwater and the stream system throughout the year. Also, there is a considerable wetting up period required before overland flow occurs. We demonstrate that the apparent miss-match between state-of-the-science techniques and data limitations (not to mention the issues associated with difficult working environments) can be bridged by leveraging experimental design and natural system variability. This is promising as we seek to advance our science in more and more remote (and in particular developing) regions to allow for important improvements for management of less and less available resources. Thus, in spite of large uncertainties this work highlights how research may still provide an improved system understanding of hydrological flows even when working under less than perfect conditions.
Toxicity testing of chemical mixtures: some general aspects and need of international guidelines.
Kappus, H; Yang, R S
1996-01-01
The topics discussed by the Working Group on Toxicity Testing of Chemical Mixtures included the following (1) the study designs and results from two real-life exposure scenarios as additional information to the various investigations reported at the conference; (2) the need to take into consideration low-level, long-term exposure (i.e. mimicking human exposure conditions) as well as the issue of limited resources in experimental toxicology studies; (3) the importance of exploring alternative and predictive toxicology methodologies to minimize animal use and to conserve resources; (4) the realization that interactive toxicity should include the consideration of physical and biological agents in addition to chemicals. Two specific studies reported at the conference were also discussed. A number of recommendations were made concerning the planning and implementation of toxicology studies on chemical mixtures.
Blumenthal, Heidemarie; Leen-Feldner, Ellen W; Badour, Christal L; Babson, Kimberly A
2011-01-01
Adolescent alcohol use is a critical public health concern; accordingly, a considerable body of work exists identifying developmentally salient risk and protective factors. One area receiving increasing attention among adults is the linkage between specific constellations of anxiety psychopathology and alcohol use problems. Relatively less is known about such linkages among adolescents, despite the onset of both anxiety-type problems and alcohol use during this developmental period. The current review presents a detailed summary and analysis of the empirical literature focused on specific forms of anxiety psychopathology as they relate to alcohol use among adolescents, and provides a number of specific recommendations for future work with an emphasis on the utility of experimental psychopathology techniques for clarifying basic questions and forwarding this body of work.
Multi-directional electromagnetic vibration energy harvester using circular Halbach array
NASA Astrophysics Data System (ADS)
Qiu, Jing; Liu, Xin; Hu, Zhenwen; Chang, Qijie; Gao, Yuan; Yang, Jin; Wen, Jing; Tang, Xiaosheng; Hu, Wei
2017-05-01
In this paper, a multi-directional electromagnetic vibration energy harvester (EVEH) using the circular Halbach array (HA) is presented based on the Faraday's law of electromagnetic induction. The circular HA is a specific arrangement of permanent magnets which could concentrate the magnetic field inside the circular array by a certain rule, while reduce the magnetic field outside the circular array to almost zero at the same time. The HA could break through the limitation of the related published vibration energy harvesters that could work in only one single direction. Thus, it could optimize the collecting efficiency. The experimental results show that the presented harvester could generate considerable electric output power in all vibrating directions. An optimal output power is 9.32 mW at a resonant frequency of 15.40 Hz with an acceleration of 0.5 g (with g=9.8 m/s2) across a 700-turn coil in the vibrating direction of 90°, which is 1.53 times than the minimum optimal one in the direction of 45°. The EVEH using the circular HA could work in all directions and generate considerable electric output power, which validates the feasibility of the EVEH that works in all directions and is beneficial for improving the practical application.
Ergonomics action research I: shifting from hypothesis testing to experiential learning.
Neumann, W P; Dixon, S M; Ekman, M
2012-01-01
This paper presents the case for the need for 'Action Research' (AR) approaches to gain understanding of how ergonomics considerations can best be integrated into the design of new work systems. The AR researchers work collaboratively with other stakeholders to solve a real-world problem: gaining insight into the problem and factors influencing solution building from an embedded position in the development process. This experience is interpreted in terms of available theory and can support further theory development. This non-experimental approach can help provide practical new approaches for integrating ergonomics considerations into real work system design processes. The AR approach suffers from a lack of acceptance by conventionally trained scientists. This paper aims to help overcome this weakness by developing the underlying theory and rationale for using AR approaches in ergonomics research. We propose further development of hybrid approaches which incorporate other evaluation techniques to extend the knowledge gains from AR projects. Researchers should engage directly with organisations in ergonomics projects so that they can better understand the challenges and needs of practitioners who are trying to apply available scientific knowledge in their own unique context. Such 'Action Research' could help develop theory and approaches useful to improve mobilisation and application of ergonomics knowledge in organisations.
NASA Technical Reports Server (NTRS)
Boelens, Okko J.; Luckring, James M.; Breitsamter, Christian; Hovelmann, Andreas; Knoth, Florian; Malloy, Donald J.; Deck, Sebatien
2015-01-01
A diamond-wing configuration has been developed to isolate and study blunt-leading edge vortex separation with both computations and experiments. The wing has been designed so that the results are relevant to a more complex Uninhabited Combat Air Vehicle concept known as SACCON. The numerical and theoretical development process for this diamond wing is presented, including a view toward planned wind tunnel experiments. This work was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel. All information is in the public domain.
NASA Technical Reports Server (NTRS)
Sheppard, Albert P.; Wood, Joan M.
1976-01-01
Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.
[Combination chemotherapy of experimental leukemia].
Emanuel', N M; Konovalova, N P; D'iachkovskaia, R F
1977-01-01
In the present work an attempt was made to gain greater therapeutic effect of diazane coupled with adriamycin and sarcolysin. Leucemias L-1210 and La served as a model. In leucosis La diazane was injected once in 5 days. Either an additional injection of adriamycin two days prior to diazane injection or sarcolysin injected simultaneously with diazane enabled the authors to obtain a distinct synergestic effect. In leucemia L-1210 a simultaneous administration of diazane and sarcolysin also contributes to considerably longer survival of leucemic animals. Such combinations are likely to be promising in their clinical use.
Meyer, Antje S.; Alday, Phillip M.; Decuyper, Caitlin; Knudsen, Birgit
2018-01-01
As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation. PMID:29706919
NASA Astrophysics Data System (ADS)
Lottermoser, Werner; Redhammer, Günther J.; Weber, Sven-Ulf; Litterst, Fred Jochen; Tippelt, Gerold; Dlugosz, Stephen; Bank, Hermann; Amthauer, Georg; Grodzicki, Michael
2011-12-01
This work reports on the evaluation of the electric field gradient (EFG) in natural chrysoberyl Al2BeO4 and sinhalite MgAlBO4 using two different procedures: (1) experimental, with single crystal Mössbauer spectroscopy (SCMBS) on the three principal sections of each sample and (2) a "fully quantitative" method with cluster molecular orbital calculations based on the density functional theory. Whereas the experimental and theoretical results for the EFG tensor are in quantitative agreement, the calculated isomer shifts and optical d-d-transitions exhibit systematic deviations from the measured values. These deviations indicate that the substitution of Al and Mg with iron should be accompanied by considerable local expansion of the coordination octahedra.
Evaluation of cross sections for neutron-induced reactions in sodium. [10/sup -5/ eV to 20 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larson, D.C.
1980-09-01
An evaluation of the neutron-induced cross sections of /sup 23/Na has been done for the energy range from 10/sup -5/ eV to 20 MeV. All significant cross sections are given, including differential cross sections for production of gamma rays. The recommended values are based on experimental data where available, and use results of a consistent model code analysis of available data to predict cross sections where there are no experimental data. This report describes the evaluation that was submitted to the Cross Section Evaluation Working Group (CSEWG) for consideration as a part of the Evaluated Nuclear Data File, Version V,more » and subsequently issued as MAT 1311. 126 references, 130 figures, 14 tables.« less
Solvent effect on the vibrational spectra of Carvedilol.
Billes, Ferenc; Pataki, Hajnalka; Unsalan, Ozan; Mikosch, Hans; Vajna, Balázs; Marosi, György
2012-09-01
Carvedilol (CRV) is an important medicament for heart arrhythmia. The aim of this work was the interpretation of its vibrational spectra with consideration on the solvent effect. Infrared and Raman spectra were recorded in solid state as well in solution. The experimental spectra were evaluated using DFT quantum chemical calculations computing the optimized structure, atomic net charges, vibrational frequencies and force constants. The same calculations were done for the molecule in DMSO and aqueous solutions applying the PCM method. The calculated force constants were scaled to the experimentally observed solid state frequencies. The characters of the vibrational modes were determined by their potential energy distributions. Solvent effects on the molecular properties were interpreted. Based on these results vibrational spectra were simulated. Copyright © 2012 Elsevier B.V. All rights reserved.
An experimental study of wall adaptation and interference assessment using Cauchy integral formula
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1991-01-01
This paper summarizes the results of an experimental study of combined wall adaptation and residual interference assessment using the Cauchy integral formula. The experiments were conducted on a supercritical airfoil model in the Langley 0.3-m Transonic Cryogenic Tunnel solid flexible wall test section. The ratio of model chord to test section height was about 0.7. The method worked satisfactorily in reducing the blockage interference and demonstrated the primary requirement for correcting for the blockage effects at high model incidences to correctly determine high lift characteristics. The studies show that the method has potential for reducing the residual interference to considerably low levels. However, corrections to blockage and upwash velocities gradients may still be required for the final adapted wall shapes.
NASA Astrophysics Data System (ADS)
Sisodia, Mitali; Shukla, Abhishek; Pathak, Anirban
2017-12-01
A scheme for distributed quantum measurement that allows nondestructive or indirect Bell measurement was proposed by Gupta et al [1]. In the present work, Gupta et al.'s scheme is experimentally realized using the five-qubit super-conductivity-based quantum computer, which has been recently placed in cloud by IBM Corporation. The experiment confirmed that the Bell state can be constructed and measured in a nondestructive manner with a reasonably high fidelity. A comparison of the outcomes of this study and the results obtained earlier in an NMR-based experiment (Samal et al. (2010) [10]) has also been performed. The study indicates that to make a scalable SQUID-based quantum computer, errors introduced by the gates (in the present technology) have to be reduced considerably.
NASA Technical Reports Server (NTRS)
1948-01-01
Considerable work has been done on report preparation. All items listed in the March program report will be reported during July. Fundamental studies are in progress to establish the fundamental processes by which treatments and composition control properties of commercial alloys at high temperatures. As yet work has been confined to Low-Carbon N155 alloy and progress has been reported twice previously. The work is divided into two sections: studies of solution treated and aged material and studies of rolled structures. Electron microscopic work has been started as an additional technique for the studies. Brief descriptions of experimental techniques used, results, and interpretation of the data obtained since the last report covering this field are summarized below. Since the work outlined is to a large extent still in progress, the discussion given is to be considered tentative and subject to further modification as additional data becomes available.
Energetics of Single Substitutional Impurities in NiTi
NASA Technical Reports Server (NTRS)
Good, Brian S.; Noebe, Ronald
2003-01-01
Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.
The potential influence of rain on airfoil performance
NASA Technical Reports Server (NTRS)
Dunham, R. Earl, Jr.
1987-01-01
The potential influence of heavy rain on airfoil performance is discussed. Experimental methods for evaluating rain effects are reviewed. Important scaling considerations for extrapolating model data are presented. It is shown that considerable additional effort, both analytical and experimental, is necessary to understand the degree of hazard associated with flight operations in rain.
Radiation dominated acoustophoresis driven by surface acoustic waves.
Guo, Jinhong; Kang, Yuejun; Ai, Ye
2015-10-01
Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.
A cycloidal wobble motor driven by shape memory alloy wires
NASA Astrophysics Data System (ADS)
Hwang, Donghyun; Higuchi, Toshiro
2014-05-01
A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor.
Check your biosignals here: a new dataset for off-the-person ECG biometrics.
da Silva, Hugo Plácido; Lourenço, André; Fred, Ana; Raposo, Nuno; Aires-de-Sousa, Marta
2014-02-01
The Check Your Biosignals Here initiative (CYBHi) was developed as a way of creating a dataset and consistently repeatable acquisition framework, to further extend research in electrocardiographic (ECG) biometrics. In particular, our work targets the novel trend towards off-the-person data acquisition, which opens a broad new set of challenges and opportunities both for research and industry. While datasets with ECG signals collected using medical grade equipment at the chest can be easily found, for off-the-person ECG data the solution is generally for each team to collect their own corpus at considerable expense of resources. In this paper we describe the context, experimental considerations, methods, and preliminary findings of two public datasets created by our team, one for short-term and another for long-term assessment, with ECG data collected at the hand palms and fingers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Parks, Nathan A.
2013-01-01
The simultaneous application of transcranial magnetic stimulation (TMS) with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Recent work has also demonstrated the feasibility and utility of combining TMS with non-invasive near-infrared optical imaging techniques, functional near-infrared spectroscopy (fNIRS) and the event-related optical signal (EROS). Simultaneous TMS and optical imaging affords a number of advantages over other neuroimaging methods but also involves a unique set of methodological challenges and considerations. This paper describes the methodology of concurrently performing optical imaging during the administration of TMS, focusing on experimental design, potential artifacts, and approaches to controlling for these artifacts. PMID:24065911
Bhandarkar, Suhas; Fair, Jim; Haid, Ben; ...
2018-01-19
Many of the early cryogenic shots on NIF were plagued by buildup of considerable mass of extraneous ice on the LEH windows, a consequence of condensation of the residual air in the surrounding chamber. Thickness of this ice depended on the exact chamber pressure and the target fielding time duration, both extremely difficult to keep constant given the broad range of target types being shot. In this paper, we describe our work in designing a robust solution in the form of a second thin film that shielded the LEH window from the contaminating ice. Several detailed cryogenic considerations were requiredmore » to ensure the proper functioning of this new window, which were simulated and verified experimentally. Data from numerous subsequent shots showed marked improvement in performance, which made this new feature an essential component for all cryogenic NIF targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhandarkar, Suhas; Fair, Jim; Haid, Ben
Many of the early cryogenic shots on NIF were plagued by buildup of considerable mass of extraneous ice on the LEH windows, a consequence of condensation of the residual air in the surrounding chamber. Thickness of this ice depended on the exact chamber pressure and the target fielding time duration, both extremely difficult to keep constant given the broad range of target types being shot. In this paper, we describe our work in designing a robust solution in the form of a second thin film that shielded the LEH window from the contaminating ice. Several detailed cryogenic considerations were requiredmore » to ensure the proper functioning of this new window, which were simulated and verified experimentally. Data from numerous subsequent shots showed marked improvement in performance, which made this new feature an essential component for all cryogenic NIF targets.« less
Gel compression considerations for chromatography scale-up for protein C purification.
He, W; Bruley, D F; Drohan, W N
1998-01-01
This work is to establish theoretical and experimental relationships for the scale-up of Immobilized Metal Affinity Chromatography (IMAC) and Immuno Affinity Chromatography for the low cost production of large quantities of Protein C. The external customer requirements for this project have been established for Protein C deficient people with the goal of providing prophylactic patient treatment. Deep vein thrombosis is the major symptom for protein C deficiency creating the potential problem of embolism transport to important organs, such as, lung and brain. Gel matrices for protein C separation are being analyzed to determine the relationship between the material properties of the gel and the column collapse characteristics. The fluid flow rate and pressure drop is being examined to see how they influence column stability. Gel packing analysis includes two considerations; one is bulk compression due to flow rate, and the second is gel particle deformation due to fluid flow and pressure drop. Based on the assumption of creeping flow, Darcy's law is being applied to characterize the flow through the gel particles. Biot's mathematical description of three-dimensional consolidation in porous media is being used to develop a set of system equations. Finite difference methods are being utilized to obtain the equation solutions. In addition, special programs such as finite element approaches, ABAQUS, will be studied to determine their application to this particular problem. Experimental studies are being performed to determine flow rate and pressure drop correlation for the chromatographic columns with appropriate gels. Void fraction is being measured using pulse testing to allow Reynolds number calculations. Experimental yield stress is being measured to compare with the theoretical calculations. Total Quality Management (TQM) tools have been utilized to optimize this work. For instance, the "Scatter Diagram" has been used to evaluate and select the appropriate gels and operating conditions via Taguchi techniques. Targeting customer requirements under the structure of TQM represents a novel approach to graduate student research in an academic institution which is designed to simulate an industrial environment.
Spectral broadening of optical transitions in InAs/GaAs coupled quantum dot pairs
NASA Astrophysics Data System (ADS)
Kumar, P.; Czarnocki, C.; Jennings, C.; Casara, J.; Monteros, A. L.; Zahbihi, N.; Scheibner, M.; Economou, S. E.; Bracker, A. S.; Pursley, B. C.; Gammon, D.; Carter, S. G.
The optical transitions in InAs/GaAs coupled quantum dot (CQD) pairs are investigated experimentally. These coupled dot systems provide new means to study the interaction of quantum states with the mechanical modes of the crystal environment. Here, the line width and line shape of CQD optical transitions are analyzed in detail as a function of temperature, excitation power, excitation energy, and tunnel coupling strength. A significant line broadening, up to 25 times the typical lifetime-limited linewidth of single-dot excitons, is being observed at level anti-crossings where the coherent tunnel coupling between spatially direct and indirect exciton states is considerable. The experimental observations are compared with theoretical predictions where linewidth broadening at anti-crossings is attributed to the phonon assisted transitions, and found to be strongly dependent on the energy splitting of the two exciton branches. This work focuses on understanding the linewidth broadening due to the pure dephasing, and fundamental aspects of the interaction of these systems with the local environment. This work was supported by the Defense Threat Reduction Agency, Basic Research Award HDTRA1-15-1-0011.
NASA Astrophysics Data System (ADS)
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, C.A.W.; Watts, K.C.
Engine results using biofuels have varied considerably in the reported literature. This article addresses two potential sources of this variation, atomization differences and impurities due to lack of quality control during production. Atomization is the first process encountered during the combustion of fuels in a compression ignition engine and is largely determined by the fuel's viscosity and surface tension. Previous work using five experimentally produced methyl ester biodiesel fuels showed that the viscosity and surface tension could be predicted from their fatty acid ester composition, and the atomization characteristics in turn could be predicted from their viscosity and surface tension.more » This article utilizes the results of that work to give a quantitative comparison of the atomization characteristics of fifteen biodiesel fuel types using the fuel's viscosity and surface tension, predicted directly from the fatty acid composition of the fuels. Except for coconut and rapeseed biodiesel fuels, all of the rest of the 15 biodiesel fuels had similar atomization characteristics. Since the most likely contaminant in the fuel from the processing was residual glycerides, their effect on viscosity and surface tension was studied experimentally and their effect on the atomization characteristics was computed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colaneri, Luca
2017-04-01
With the experimental discovery of the Higgs boson, the Standard Model has been considered veri ed in all its previsions. The Standard Model, though, is still considered an incomplete theory, because it fails to address many theoretical and phenomenological issues. Among those, it doesn't provide any viable Dark Matter candidate. Many Beyond-Standard Model theories, such as the Supersymmetric Standard Model, provide possible solutions. In this work we have reported the experimental observations that led to considerate the existence of a new Force, mediated by a new massive vector boson, that could address all the observed phenomenology. This new dark Forcemore » could open an observational channel between the Standard Model and a new Dark Sector, convey by the interaction of the Standard Model photon with the massive dark photon, also called the A'. Purpose of this work was to develop an independent study of the background processes and the implementation of an independent event generator, to better understand the kinematics of the produced particles in the process e - +W → e - +W' + e + + e - and validate, or invalidate, the o cial event generator.« less
Assessment of Intracorporeal Suturing in Single-Port Surgery Using an Experimental Suturing Model.
Ishiyama, Yasuhiro; Inaki, Noriyuki; Bando, Hiroyuki; Yamada, Tetsuji
2017-04-01
The aim of this study is to assess the difficulty of intracorporeal suturing in single-port surgery, using experimental suturing model in dry box. Subjects were divided for three groups: seven experienced laparoscopic surgeons, seven surgical residents, and seven interns. An experimental suturing model is developed, and working angle was set from 0° to 90°. The completion rate in 0° was significantly lower than that in the other angles. Completion rate of group A was higher than that of the other groups. Precision of task in group A was significantly higher than that of group B and group C in 0° and 60°. Stress score in 0° were significantly higher than that in the other angles. Our study demonstrated that intracorporeal suturing in single-port surgery seems to be more difficult than conventional laparoscopic surgery. Our data should be taken the institution under consideration for introduction of single-port surgery.
Andrews, Nick A; Latrémolière, Alban; Basbaum, Allan I; Mogil, Jeffrey S; Porreca, Frank; Rice, Andrew S C; Woolf, Clifford J; Currie, Gillian L; Dworkin, Robert H; Eisenach, James C; Evans, Scott; Gewandter, Jennifer S; Gover, Tony D; Handwerker, Hermann; Huang, Wenlong; Iyengar, Smriti; Jensen, Mark P; Kennedy, Jeffrey D; Lee, Nancy; Levine, Jon; Lidster, Katie; Machin, Ian; McDermott, Michael P; McMahon, Stephen B; Price, Theodore J; Ross, Sarah E; Scherrer, Grégory; Seal, Rebecca P; Sena, Emily S; Silva, Elizabeth; Stone, Laura; Svensson, Camilla I; Turk, Dennis C; Whiteside, Garth
2016-04-01
There is growing concern about lack of scientific rigor and transparent reporting across many preclinical fields of biological research. Poor experimental design and lack of transparent reporting can result in conscious or unconscious experimental bias, producing results that are not replicable. The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public-private partnership with the U.S. Food and Drug Administration sponsored a consensus meeting of the Preclinical Pain Research Consortium for Investigating Safety and Efficacy (PPRECISE) Working Group. International participants from universities, funding agencies, government agencies, industry, and a patient advocacy organization attended. Reduction of publication bias, increasing the ability of others to faithfully repeat experimental methods, and increased transparency of data reporting were specifically discussed. Parameters deemed essential to increase confidence in the published literature were clear, specific reporting of an a priori hypothesis and definition of primary outcome measure. Power calculations and whether measurement of minimal meaningful effect size to determine these should be a core component of the preclinical research effort provoked considerable discussion, with many but not all agreeing. Greater transparency of reporting should be driven by scientists, journal editors, reviewers, and grant funders. The conduct of high-quality science that is fully reported should not preclude novelty and innovation in preclinical pain research, and indeed, any efforts that curtail such innovation would be misguided. We believe that to achieve the goal of finding effective new treatments for patients with pain, the pain field needs to deal with these challenging issues.
Working group report on beam plasmas, electronic propulsion, and active experiments using beams
NASA Technical Reports Server (NTRS)
Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.
1986-01-01
The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.
Investigation of the asymptotic state of rotating turbulence using large-eddy simulation
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude
1993-01-01
Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.
A near infrared line list for NH3: Analysis of a Kitt Peak spectrum after 35 years
NASA Astrophysics Data System (ADS)
Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Béguier, Serge; Campargue, Alain
2016-07-01
A Fourier Transform (FT) absorption spectrum of room temperature NH3 in the region 7400-8640 cm-1 is analysed using a variational line list and ground state energies determined using the MARVEL procedure. The spectrum was measured by Dr. Catherine de Bergh in 1980 and is available from the Kitt Peak data center. The centers and intensities of 8468 ammonia lines were retrieved using a multiline fitting procedure. 2474 lines are assigned to 21 bands providing 1692 experimental energies in the range 7500-9200 cm-1. The spectrum was assigned by the joint use of the BYTe variational line list and combination differences. The assignments and experimental energies presented in this work are the first for ammonia in the region 7400-8640 cm-1, considerably extending the range of known vibrational-excited states.
Research of thermionic converter collector properties in model experiments with surface control
NASA Astrophysics Data System (ADS)
Agafonov, Valerii R.; Vizgalov, Anatolii V.; Iarygin, Valerii I.
Consideration was given to a possible scheme of phenomena on electrodes leading to changes in emission properties (EP) of a thermionic converter (TEC) collector. It was based on technology and materials typical of the TOPAZ-type reactor-converter (TRC). The element composition (EC), near-surface layer (NSL) structure, and work function (WF) of a collector made from niobium-based polycrystal alloy were studied within this scheme experimentally. The influence of any media except for the interelectrode gap (IEG) medium was excluded when investigating the effect of thermovacuum treatment (TVT) as well as the influence of carbon monoxide, hydrogen, and methane on the NSL characteristics. Experimental data and analytical estimates of the impact of fission products of the nuclear fuel on collector EP are presented. The calculation of possible TRC electrical power decrease was also carried out.
Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN
NASA Astrophysics Data System (ADS)
Ginting, B.; Sembiring, R. W.; Manurung, N.
2017-09-01
The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.
Cross section calculations for subthreshold pion production in peripheral heavy-ion collisions
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Cucinotta, F. A.; Deutchman, P. A.; Townsend, L. W.
1986-01-01
Total cross sections angular distributions, and spectral distributions for the exclusive production of charged and neutral subthreshold pions produced in peripheral nucleus-nucleus collisions are calculated by using a particle-hole formalism. The pions result from the formation and decay of an isobar giant resonance state formed in a C-12 nucleus. From considerations of angular momentum conservation and for the sake of providing a unique experimental signature, the other nucleus, chosen for this work to be C-12 also, is assumed to be excited to one of its isovector (1+) giant resonance states. The effects of nucleon recoil by the pion emission are included, and Pauli blocking and pion absorption effects are studied by varying the isobar width. Detailed comparisons with experimental subthreshold pion data for incident energies between 35 and 86 MeV/nucleon are made.
Setting Up CD-ROM Work Areas. Part I: Ergonomic Considerations, User Furniture, Location.
ERIC Educational Resources Information Center
Vasi, John; LaGuardia, Cheryl
1992-01-01
The first of a two-part series on design of CD-ROM work areas in libraries discusses (1) space and location considerations; (2) ergonomics, including work surface, chairs, lighting, printers, other accessories, and security; and (3) other considerations, including staff assistance, reference tools, literature racks, and promotional materials. (MES)
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tendick, Frank; Stark, Lawrence W.; Ellis, Stephen R.
1987-01-01
Position and rate control are the two common manual control modes in teleoperations. Human operator performance using the two modes is evaluated and compared. Simulated three-axis pick-and-place operations are used as the primary task for evaluation. First, ideal position and rate control are compared by considering several factors, such as joystick gain, joystick type, display mode, task, and manipulator work space size. Then the effects of the manipulator system dynamics are investigated by varying the natural frequency and speed limit. Experimental results show that ideal position control is superior to ideal rate control, regardless of joystick type or display mode, when the manipulation work space is small or comparable to the human operator's control space. Results also show that when the manipulator system is slow, the superiority of position control disappears. Position control is recommended for small-work-space telemanipulation tasks, while rate control is recommended for slow wide-work-space telemanipulation tasks.
Co-combustion of pellets from Soma lignite and waste dusts of furniture works
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, N.D.; Yilgin, M.; Pehlivan, D.
2008-07-01
In this work, volatiles and char combustion behaviors of the fuel pellets prepared from a low quality lignite and the dusts of furniture works and their various blends were investigated in an experimental fixed bed combustion system through which air flowed by natural convection. Combustion data obtained for varied bed temperatures, mass of pellets, and blend compositions has showed that ignition times of the pellets decreased and volatiles combustion rates tended to increase with the burning temperature. It was concluded that some synergy had existed between lignite and lower ratios of furniture work dusts, which was indicated by a promptmore » effect on the volatiles combustion rates. Char combustion rates of blend pellets have depended predominantly on the amount of lignite in the blend. The amounts of combustion residues of the pellets were considerably higher than those calculated from individual ash contents of the raw materials and related to lignite ratio in the blends.« less
Burden, Natalie; Maynard, Samuel K; Weltje, Lennart; Wheeler, James R
2016-10-01
The European Plant Protection Products Regulation 1107/2009 requires that registrants establish whether pesticide metabolites pose a risk to the environment. Fish acute toxicity assessments may be carried out to this end. Considering the total number of pesticide (re-) registrations, the number of metabolites can be considerable, and therefore this testing could use many vertebrates. EFSA's recent "Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters" outlines opportunities to apply non-testing methods, such as Quantitative Structure Activity Relationship (QSAR) models. However, a scientific evidence base is necessary to support the use of QSARs in predicting acute fish toxicity of pesticide metabolites. Widespread application and subsequent regulatory acceptance of such an approach would reduce the numbers of animals used. The work presented here intends to provide this evidence base, by means of retrospective data analysis. Experimental fish LC50 values for 150 metabolites were extracted from the Pesticide Properties Database (http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm). QSAR calculations were performed to predict fish acute toxicity values for these metabolites using the US EPA's ECOSAR software. The most conservative predicted LC50 values generated by ECOSAR were compared with experimental LC50 values. There was a significant correlation between predicted and experimental fish LC50 values (Spearman rs = 0.6304, p < 0.0001). For 62% of metabolites assessed, the QSAR predicted values are equal to or lower than their respective experimental values. Refined analysis, taking into account data quality and experimental variation considerations increases the proportion of sufficiently predictive estimates to 91%. For eight of the nine outliers, there are plausible explanation(s) for the disparity between measured and predicted LC50 values. Following detailed consideration of the robustness of this non-testing approach, it can be concluded there is a strong data driven rationale for the applicability of QSAR models in the metabolite assessment scheme recommended by EFSA. As such there is value in further refining this approach, to improve the method and enable its future incorporation into regulatory guidance and practice. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Jaekyoon; Tuscher, Jennifer J.; Fortress, Ashley M.
2015-01-01
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs. PMID:26286657
Synthetic Development of Low Dimensional Materials
Men, Long; White, Miles A.; Andaraarachchi, Himashi; ...
2016-11-02
Here, in this invited paper, we highlight some of our most recent work on the synthesis of low dimensional nanomaterials. Current graduate students and members of our group present four specific case systems: Nowotny-Juza phases, nickel phosphides, germanium-based core/shells, and organolead mixed-halide perovskites. Each system is accompanied by commentary from the student involved, which explains our motivation behind our work, as well as by a protocol detailing the key experimental considerations involved in their synthesis. We trust these and similar efforts by others and us will help further advance our understanding of the broader field of synthetic nanomaterials chemistry, while,more » at the same time, highlighting how important this area is to the development of new materials for technologically relevant applications.« less
NASA Astrophysics Data System (ADS)
Mocellin, Enrico; Russell, Richard; Ravera, Mauro
1998-06-01
The experimental content of this paper will appeal to pedagogues and students who might be looking for new ideas that have an element of challenge. By combining experimental procedures which place microscale, chemical synthesis, and an inclusive, unified, product characterization in perspective, we have afforded the student the scope to obtain progressive, disciplined results and the opportunity to discuss these in the subsequent reporting. By this process, it is our experience that the students often identify with the practical work that is being undertaken, and they develop considerable empathy during their contribution to the "discovery" process that this laboratory program offers. The experimental work can be abbreviated to a single compound, subdivided into synthesis or electrochemistry, or extended to macroscale and other instrumental techniques of characterization, thus offering opportunities to accommodate time constraints, class results combination and discussion, and individual student enthusiasm. We believe that having to accept and/or constructively criticize sequential experimental results, collected by fellow students, mimics more realistically the practice of chemistry at the workplace and can build enthusiasm and elicit contagious fellowship from the class. All of these aspects can simply be achieved by utilizing the listed journals and references therein. Most importantly, it affords the students the opportunity to extricate themselves as innocent bystanders from the conventional "single experiment" practical laboratory to a path of practice and achievement in the scientific method.
Hodge, N. E.; Ferencz, R. M.; Vignes, R. M.
2016-05-30
Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of the complex interaction between heat transfer and solid mechanics. Here, the present work describes the authors initial efforts to validate their first generation model. In particular, the comparison of model-generated solid mechanics results, including both deformation and stresses, is presented. Additionally, results of various perturbations of the process parameters and modeling strategies are discussed.
High-sensitivity silicon nanowire phototransistors
NASA Astrophysics Data System (ADS)
Tan, Siew Li; Zhao, Xingyan; Dan, Yaping
2014-08-01
Silicon nanowires (SiNWs) have emerged as a promising material for high-sensitivity photodetection in the UV, visible and near-infrared spectral ranges. In this work, we demonstrate novel planar SiNW phototransistors on silicon-oninsulator (SOI) substrate using CMOS-compatible processes. The device consists of a bipolar transistor structure with an optically-injected base region. The electronic and optical properties of the SiNW phototransistors are investigated. Preliminary simulation and experimental results show that nanowire geometry, doping densities and surface states have considerable effects on the device performance, and that a device with optimized parameters can potentially outperform conventional Si photodetectors.
The display of tactile information
NASA Technical Reports Server (NTRS)
Sherrick, Carl E.
1991-01-01
There are a number of examples of natural tactile displays that can five us some insights about the solid geometry of touch, and recent experimental work on the subject has extended our thinking considerably. The concern of here is, however, more with synthetic or artificial displays for the production of a virtual environment. Features of synthetic displays that have enjoyed some success in one of the following two enterprises are discussed: the study of the spatio-temporal dimensions of stimuli that afford accurate and rapid processing of environmental information, or the use of displays in the design of sensory aids for disabled persons.
How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels.
Silva, Jonathan R
2018-01-23
Many have worked to create cardiac action potential models that explicitly represent atomic-level details of ion channel structure. Such models have the potential to define new therapeutic directions and to show how nanoscale perturbations to channel function predispose patients to deadly cardiac arrhythmia. However, there have been significant experimental and theoretical barriers that have limited model usefulness. Recently, many of these barriers have come down, suggesting that considerable progress toward creating these long-sought models may be possible in the near term. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.
2013-12-01
The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.
Patankar, Neelesh A
2010-06-01
Recent experimental work has successfully revealed pressure induced transition from Cassie to Wenzel state on rough hydrophobic substrates. Formulas, based on geometric considerations and imposed pressure, have been developed as transition criteria. In the past, transition has also been considered as a process of overcoming the energy barrier between the Cassie and Wenzel states. A unified understanding of the various considerations of transition has not been apparent. To address this issue, in this work, we consolidate the transition criteria with a homogenized energy minimization approach. This approach decouples the problem of minimizing the energy to wet the rough substrate, from the energy of the macroscopic drop. It is seen that the transition from Cassie to Wenzel state, due to depinning of the liquid-air interface, emerges from the approximate energy minimization approach if the pressure-volume energy associated with the impaled liquid in the roughness is included. This transition can be viewed as a process in which the work done by the pressure force is greater than the barrier due to the surface energy associated with wetting the roughness. It is argued that another transition mechanism, due to a sagging liquid-air interface that touches the bottom of the roughness grooves, is not typically relevant if the substrate roughness is designed such that the Cassie state is at lower energy compared to the Wenzel state.
[Theodor Emil Kocher, modern surgery pioneer].
Chigot, J P
2000-11-01
Theodore Kocher was awarded the Nobel Prize in 1909 for his work on the physiology, pathology and surgery of the thyroid gland. He was the first Swiss citizen and the first surgeon to ever receive such a distinction. He was a pioneer and a world leader in the surgical revolution of the end of the nineteenth century. After graduation in 1865, he traveled in Germany, England, France and Austria to observe the work of Langenbeck, Paget, Wells, Nelaton, Billroth.... In 1866, he returned to Bern and was appointed assistant in the surgical clinic of Lücke. In 1872 he applied for the succession of Lücke. After a lively debate, he was appointed by the Board of Regents against the recommendation of the faculty who wished to nominate a German surgeon, König. It proved to be a good choice, as, over a period of 45 years, Kocher developed a considerable activity in various fields of surgery leading to world-wide acclaim and renown. Kocher's most significant contribution to medicine concerned the thyroid gland. He considerably improved thyroid surgery. His anatomical knowledge, precise operating technic and respect of the aseptic principles defined by Lister, whom he had met in Glasgow, contributed to a reduction of mortality from 13% to 0.18%. He described postoperative hypothyroidism, which he called cachexia strumipriva and concluded that total thyroidectomy was not indicated in benign diseases. When he died, more than 7,000 thyroidectomies had been performed in his clinic. Kocher was also interested in orthopedics, abdominal and genitourinary surgery, surgical oncology, neurosurgery (Cushing conducted experimental research with him). He developed or modified many surgical instruments. He conducted a large number of experimental studies and published 249 articles and books.
Study for verification testing of the helmet-mounted display in the Japanese Experimental Module.
Nakajima, I; Yamamoto, I; Kato, H; Inokuchi, S; Nemoto, M
2000-02-01
Our purpose is to propose a research and development project in the field of telemedicine. The proposed Multimedia Telemedicine Experiment for Extra-Vehicular Activity will entail experiments designed to support astronaut health management during Extra-Vehicular Activity (EVA). Experiments will have relevant applications to the Japanese Experimental Module (JEM) operated by National Space Development Agency of Japan (NASDA) for the International Space Station (ISS). In essence, this is a proposal for verification testing of the Helmet-Mounted Display (HMD), which enables astronauts to verify their own blood pressures and electrocardiograms, and to view a display of instructions from the ground station and listings of work procedures. Specifically, HMD is a device designed to project images and data inside the astronaut's helmet. We consider this R&D proposal to be one of the most suitable projects under consideration in response to NASDA's open invitation calling for medical experiments to be conducted on JEM.
NASA Astrophysics Data System (ADS)
Gashkov, M. A.; Zubarev, N. M.
2018-01-01
Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.
Effect of bandage thickness on interface pressure applied by compression bandages.
Al Khaburi, Jawad; Dehghani-Sanij, Abbas A; Nelson, E Andrea; Hutchinson, Jerry
2012-04-01
Medical compression bandages are widely used in the treatment of chronic venous disorder. In order to design effective compression bandages, researchers have attempted to describe the interface pressure applied by these bandages using mathematical models. This paper reports on the work carried out to derive the mathematical model used to describe the interface pressure applied by single-layer bandage using two different approaches. The first assumes that the bandage thickness is negligible, whereas the second model includes the bandage thickness. The estimated pressures using the two formulae are then compared, simulated over a 3D representation of a real leg and validated experimentally. Both theoretical and experimental results have shown that taking bandage thickness into consideration while estimating the pressures applied by a medical compression bandage will result in more accurate estimation. However, the additional accuracy is clinically insignificant. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Risko, Evan F; Kingstone, Alan
2017-06-01
Understanding the basic mechanisms underlying attentional function using naturalistic stimuli, tasks, and/or settings is the focus of everyday attention research. Interest in everyday approaches to attention research has increased recently-arguably riding a more general wave of support for such considerations in experimental psychology. This special issue of the Canadian Journal of Experimental Psychology attempts to capture the emerging enthusiasm for studying everyday attention by bringing together work from a wide array of attentional domains (e.g., visual attention, dual tasking, search, mind wandering, social attention) that are representative of this general approach. The 14 contributions to the special issue highlight the breadth of topics addressed in this research, the methodological creativity required to carry it out, and the promise of everyday attention for understanding the basic mechanisms underlying attentional function. This introduction will summarise the everyday attention approach as represented in the contributions to the special issue. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Doxastakis, Emmanouil; Garcia Sakai, Victoria; Ohtake, Satoshi; Maranas, Janna K.; de Pablo, Juan J.
2006-03-01
Trehalose, a disaccharide of glucose, is often used for the stabilization of cell membranes in the absence of water. This work studies the effects of trehalose on model membrane systems as they undergo a melting transition using a combination of experimental methods and atomistic molecular simulations. Quasielastic neutron scattering experiments on selectively deuterated samples provide the incoherent dynamic structure over a wide time range. Elastic scans probing the lipid tail dynamics display clear evidence of a main melting transition that is significantly lowered in the presence of trehalose. Lipid headgroup mobility is considerably restricted at high temperatures and directly associated with the dynamics of the sugar in the mixture. Molecular simulations provide a detailed overview of the dynamics and their spatial and time dependence. The combined simulation and experimental methodology offers a unique, molecular view of the physics of systems commonly employed in cryopreservation and lyophilization processes.
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Bostian, C. W.; Stutzman, W. L.
1973-01-01
The influence of polarization on millimeter wave propagation is investigated from both an experimental and a theoretical viewpoint. First, previous theoretical and experimental work relating to the attenuation and depolarization of millimeter waves by rainfall is discussed. Considerable detail is included in the literature review. Next, a theoretical model is developed to predict the cross polarization level during rainfall from the path average rain rate and the scattered field from a single raindrop. Finally, data from the VPI and SU depolarization experiment are presented as verification of the new model, and a comparison is made with other theories and experiments. Aspects of the new model are: (1) spherical rather than plane waves are assumed, (2) the average drop diameter is used rather than a drop size distribution, and (3) it is simple enough so that the effect which changing one or more parameters has on the crosspolarization level is easily seen.
Perspective on the prospects of a carrier multiplication nanocrystal solar cell.
Nair, Gautham; Chang, Liang-Yi; Geyer, Scott M; Bawendi, Moungi G
2011-05-11
This article presents a perspective on the experimental and theoretical work to date on the efficiency of carrier multiplication (CM) in colloidal semiconductor nanocrystals (NCs). Early reports on CM in NCs suggested large CM efficiency enhancements. However, recent experiments have shown that CM in nanocrystalline samples is not significantly stronger, and often is weaker, than in the parent bulk when compared on an absolute photon energy basis. This finding is supported by theoretical consideration of the CM process and the competing intraband relaxation. We discuss the experimental artifacts that may have led to the apparently strong CM estimated in early reports. The finding of bulklike CM in NCs suggests that the main promise of quantum confinement is to boost the photovoltage at which carriers can be extracted. With this in mind, we discuss research directions that may result in effective use of CM in a solar cell.
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
Iyer, Swami; Reyes, Joshua; Killingback, Timothy
2014-01-01
The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games. PMID:24709851
Iyer, Swami; Reyes, Joshua; Killingback, Timothy
2014-01-01
The Traveler's Dilemma game and the Minimum Effort Coordination game are two social dilemmas that have attracted considerable attention due to the fact that the predictions of classical game theory are at odds with the results found when the games are studied experimentally. Moreover, a direct application of deterministic evolutionary game theory, as embodied in the replicator dynamics, to these games does not explain the observed behavior. In this work, we formulate natural variants of these two games as smoothed continuous-strategy games. We study the evolutionary dynamics of these continuous-strategy games, both analytically and through agent-based simulations, and show that the behavior predicted theoretically is in accord with that observed experimentally. Thus, these variants of the Traveler's Dilemma and the Minimum Effort Coordination games provide a simple resolution of the paradoxical behavior associated with the original games.
Social and Contextual Constraints on Embodied Perception.
Schnall, Simone
2017-03-01
A number of papers have challenged research on physiological and psychological influences on perception by claiming to show that such findings can be explained by nonperceptual factors such as demand characteristics. Relatedly, calls for separating perception from judgment have been issued. However, such efforts fail to consider key processes known to shape judgment processes: people's inability to report accurately on their judgments, conversational dynamics of experimental research contexts, and misattribution and discounting processes. Indeed, the fact that initially observed effects of embodied influences disappear is predicted by an extensive amount of literature on judgments studied within social psychology. Thus, findings from such studies suggest that the initially presumed underlying processes are at work-namely, functional considerations that are informative in the context of preparing the body for action. In this article, I provide suggestions on how to conduct research on perception within the social constraints of experimental contexts.
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Lagoudas, D. C.
2009-10-01
The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.
Andrews, Nick A.; Latrémolière, Alban; Basbaum, Allan I.; Mogil, Jeffrey S.; Porreca, Frank; Rice, Andrew S.C.; Woolf, Clifford J.; Currie, Gillian L.; Dworkin, Robert H.; Eisenach, James C.; Evans, Scott; Gewandter, Jennifer S.; Gover, Tony D.; Handwerker, Hermann; Huang, Wenlong; Iyengar, Smriti; Jensen, Mark P.; Kennedy, Jeffrey D.; Lee, Nancy; Levine, Jon; Lidster, Katie; Machin, Ian; McDermott, Michael P.; McMahon, Stephen B.; Price, Theodore J.; Ross, Sarah E.; Scherrer, Grégory; Seal, Rebecca P.; Sena, Emily S.; Silva, Elizabeth; Stone, Laura; Svensson, Camilla I.; Turk, Dennis C.; Whiteside, Garth
2015-01-01
Abstract There is growing concern about lack of scientific rigor and transparent reporting across many preclinical fields of biological research. Poor experimental design and lack of transparent reporting can result in conscious or unconscious experimental bias, producing results that are not replicable. The Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks (ACTTION) public–private partnership with the U.S. Food and Drug Administration sponsored a consensus meeting of the Preclinical Pain Research Consortium for Investigating Safety and Efficacy (PPRECISE) Working Group. International participants from universities, funding agencies, government agencies, industry, and a patient advocacy organization attended. Reduction of publication bias, increasing the ability of others to faithfully repeat experimental methods, and increased transparency of data reporting were specifically discussed. Parameters deemed essential to increase confidence in the published literature were clear, specific reporting of an a priori hypothesis and definition of primary outcome measure. Power calculations and whether measurement of minimal meaningful effect size to determine these should be a core component of the preclinical research effort provoked considerable discussion, with many but not all agreeing. Greater transparency of reporting should be driven by scientists, journal editors, reviewers, and grant funders. The conduct of high-quality science that is fully reported should not preclude novelty and innovation in preclinical pain research, and indeed, any efforts that curtail such innovation would be misguided. We believe that to achieve the goal of finding effective new treatments for patients with pain, the pain field needs to deal with these challenging issues. PMID:26683237
Directionally Hiding Objects and Creating Illusions at Visible Wavelengths by Holography
Cheng, Qiluan; Wu, Kedi; Shi, Yile; Wang, Hui; Wang, Guo Ping
2013-01-01
Invisibility devices have attracted considerable attentions in the last decade. In addition to invisibility cloaks, unidirectional invisibility systems such as carpet-like cloaks and parity-time symmetric structures are also inspiring some specific researching interests due to their relatively simplifying design. However, unidirectional invisibility systems worked generally in just one certain illumination direction. Here, based on time-reversal principle, we present the design and fabrication of a kind of all-dielectric device that could directionally cancel objects and create illusions as the illuminating light was from different directions. Our devices were experimentally realized through holographic technology and could work for macroscopic objects with any reasonable size at visible wavelengths, and hence may take directional invisibility technology a big step towards interesting applications ranging from magic camouflaging, directional detection to super-resolution biomedical imaging. PMID:23756877
Color and Contingency in Robert Boyle's Works.
Baker, Tawrin
2015-01-01
This essay investigates the relationship between color and contingency in Robert Boyle's Experiments and Considerations Touching Colours (1664) and his essays on the unsuccessfulness of experiments in Certain Physiological Essays (1661). In these two works Boyle wrestles with a difficult practical and philosophical problem with experiments, which he calls the problem of contingency. In Touching Colours, the problem of contingency is magnified by the much-debated issue of whether color had any deep epistemic importance. His limited theoretical principle guiding him in Touching Colours, that color is but modified light, further exacerbated the problem. Rather than theory, Boyle often relied on craftsmen, whose mastery of color phenomena was, Boyle mentions, brought about by economic forces, to determine when colors were indicators of important 'inward' properties of substances, and thus to secure a solid foundation for his experimental history of color.
A pattern recognition approach to transistor array parameter variance
NASA Astrophysics Data System (ADS)
da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.
2018-06-01
The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.
Comment on ‘Oxygen vacancy-induced magnetic moment in edge-sharing CuO2 chains of Li2CuO2’
NASA Astrophysics Data System (ADS)
Kuzian, R. O.; Klingeler, R.; Lorenz, W. E. A.; Wizent, N.; Nishimoto, S.; Nitzsche, U.; Rosner, H.; Milosavljevic, D.; Hozoi, L.; Yadav, R.; Richter, J.; Hauser, A.; Geck, J.; Hayn, R.; Yushankhai, V.; Siurakshina, L.; Monney, C.; Schmitt, T.; Thar, J.; Roth, G.; Ito, T.; Yamaguchi, H.; Matsuda, M.; Johnston, S.; Málek, J.; Drechsler, S.-L.
2018-05-01
In a recent work devoted to the magnetism of Li2CuO2, Shu et al (2017 New J. Phys. 19, 023026) have proposed a ‘simplified’ unfrustrated microscopic model that differs considerably from the models refined through decades of prior work. We show that the proposed model is at odds with known experimental data, including the reported magnetic susceptibility χ(T) data up to 550 K. Using an 8th order high-temperature expansion for χ(T), we show that the experimental data for Li2CuO2 are consistent with the prior model derived from inelastic neutron scattering studies. We also establish the T-range of validity for a Curie–Weiss law for the real frustrated magnetic system. We argue that the knowledge of the long-range ordered magnetic structure for T < T N and of χ(T) in a restricted T-range provides insufficient information to extract all of the relevant couplings in frustrated magnets; the saturation field and INS data must also be used to determine several exchange couplings, including the weak but decisive frustrating antiferromagnetic interchain couplings.
Study and Validation of Eavesdropping Scenarios over a Visible Light Communication Channel
Perez-Jimenez, Rafael
2017-01-01
The security and privacy provided by Visible Light Communication (VLC) technologies is an area that has been slightly addressed due to the misconception that, since light does not go through solid objects like walls, VLC-based communications cannot be eavesdropped on by outside observers. As an upcoming technology, VLC is expected to be used in multiple environments were, due to radio frequency RF overuse or limitations, RF solutions cannot or should not be employed. In this work, we study the eavesdropping characteristics of a VLC-based communication. To evaluate these concerns, a two-step process was followed. First, several simulations of a standardly used scenario were run. Later on, experimental tests were performed. Following those tests, the results of the simulations and the experimental tests were analyzed. The results of these simulations and tests seemed to indicate that VLC channels can be eavesdropped on without considerable difficulties. Furthermore, the results showed that sniffing attacks could be performed from areas outside the expected coverage of the VLC infrastructure. Finally, the use of the simulation such as the one implemented in this work to recognize places from which sniffing is possible helps determine the risk for eavesdropping that our VLC-based network has. PMID:29160800
Network meta-analysis in health psychology and behavioural medicine: a primer.
Molloy, G J; Noone, C; Caldwell, D; Welton, N J; Newell, J
2018-04-05
Progress in the science and practice of health psychology depends on the systematic synthesis of quantitative psychological evidence. Meta-analyses of experimental studies have led to important advances in understanding health-related behaviour change interventions. Fundamental questions regarding such interventions have been systematically investigated through synthesising relevant experimental evidence using standard pairwise meta-analytic procedures that provide reliable estimates of the magnitude, homogeneity and potential biases in effects observed. However, these syntheses only provide information about whether particular types of interventions work better than a control condition or specific alternative approaches. To increase the impact of health psychology on health-related policy-making, evidence regarding the comparative efficacy of all relevant intervention approaches - which may include biomedical approaches - is necessary. With the development of network meta-analysis (NMA), such evidence can be synthesised, even when direct head-to-head trials do not exist. However, care must be taken in its application to ensure reliable estimates of the effect sizes between interventions are revealed. This review paper describes the potential importance of NMA to health psychology, how the technique works and important considerations for its appropriate application within health psychology.
Study and Validation of Eavesdropping Scenarios over a Visible Light Communication Channel.
Marin-Garcia, Ignacio; Guerra, Victor; Perez-Jimenez, Rafael
2017-11-21
The security and privacy provided by Visible Light Communication (VLC) technologies is an area that has been slightly addressed due to the misconception that, since light does not go through solid objects like walls, VLC-based communications cannot be eavesdropped on by outside observers. As an upcoming technology, VLC is expected to be used in multiple environments were, due to radio frequency RF overuse or limitations, RF solutions cannot or should not be employed. In this work, we study the eavesdropping characteristics of a VLC-based communication. To evaluate these concerns, a two-step process was followed. First, several simulations of a standardly used scenario were run. Later on, experimental tests were performed. Following those tests, the results of the simulations and the experimental tests were analyzed. The results of these simulations and tests seemed to indicate that VLC channels can be eavesdropped on without considerable difficulties. Furthermore, the results showed that sniffing attacks could be performed from areas outside the expected coverage of the VLC infrastructure. Finally, the use of the simulation such as the one implemented in this work to recognize places from which sniffing is possible helps determine the risk for eavesdropping that our VLC-based network has.
Nicolas, Serge
2016-07-01
The importance of instrument firms in the development of psychology, and science in general, should not be underestimated since it would not have been possible for various leading psychologists at the turn of the twentieth century to conduct certain experiments without the assistance of instrument makers, as is often the case today. To illustrate the historical perspective introduced here, the example of Alfred Binet is taken, as he is an interesting case of a psychologist working in close collaboration with various French instrument designers of the time. The objective of this article is twofold: (1) to show the considerable activity carried out by early psychologists to finalize new laboratory instruments in order to develop their research projects; (2) to reassess the work of a major figure in French psychology through his activity as a designer of precision instruments. The development of these new instruments would certainly have been difficult without the presence in Paris of numerous precision instrument manufacturers such as Charles Verdin, Otto Lund, Henri Collin, and Lucien Korsten, on whom Binet successively called in order to develop his projects in the field of experimental psychology. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Coad, J. P.; Restall, J. E.
1982-01-01
Considerable effort is being devoted to the development of overlay coatings for protecting critical components such as turbine blades against high-temperature oxidation, corrosion, and erosion damage in service. The most commercially advanced methods for depositing coatings are electron-beam evaporation and plasma spraying. Sputter-ion plating (SIP) offers a potentially cheaper and simpler alternative method for depositing overlays. Experimental work on SIP of Co-Cr-Al-Y and Ni-Cr-Al-Ti alloy coatings is described. Results are presented of metallographic assessment of these coatings, and of the results obtained from high-velocity testing using a gas-turbine simulator rig.
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.
1986-01-01
In this work consideration is given to the problem of the extraction of physical data information from gas bubble dissolution and growth measurements. The discussion is limited to the analysis of the simplest experimental systems consisting of a single, one component gas bubble in a glassmelt. It is observed that if the glassmelt is highly under- (super-) saturated, then surface tension effects may be ignored, simplifying the task of extracting gas diffusivity values from the measurements. If, in addition, the bubble rise velocity is very small (or very large) the ease of obtaining physical property data is enhanced. Illustrations are given for typical cases.
High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction
NASA Astrophysics Data System (ADS)
Fukui, Kosuke; Tomita, Akihisa; Okamoto, Atsushi; Fujii, Keisuke
2018-04-01
To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.
Remote Semi-State Preparation as SuperDense Quantum Teleportation
NASA Astrophysics Data System (ADS)
Bernstein, Herbert J.
2011-03-01
Recent advances in experimental technique make SuperDense Teleportation (SDT) possible. The effect uses remote state preparation to send more state-specifying parameters per bit than ordinary quantum teleportation (QT) can transmit. SDT uses a maximal entanglement to teleport the relative phases of an {n}-dimensional equimodular state. This means that one can send only {n}-1 of the total (2 n - 2) parameters -- comprising the relative phases and amplitudes -- of a general state. Nevertheless, for {n} >= 3 , SDT sends more of these state-specifying parameters than QT for a given number of classical bits. In the limit of large {n} the ratio is 2 to 1, hence the nomenclature Bennett suggested, SDT, by analogy with Super Dense Coding. Alice's measurements and Bob's transformations are simpler than in QT. The roles of Charles the state chooser, and Diana who deploys it, are different than in QT. I briefly review possible experimental realizations, including two that are under consideration at the present time by an experimental group leading in higher-dimension entanglement work. Supported in part by NSF grants PHY97-22614 & 07-58149 & KITP, UCSB, including an ITP Scholar-ship.
NASA Astrophysics Data System (ADS)
Ramazani, Ali; Mukherjee, Krishnendu; Prahl, Ulrich; Bleck, Wolfgang
2012-10-01
The flow behavior of dual-phase (DP) steels is modeled on the finite-element method (FEM) framework on the microscale, considering the effect of the microstructure through the representative volume element (RVE) approach. Two-dimensional RVEs were created from microstructures of experimentally obtained DP steels with various ferrite grain sizes. The flow behavior of single phases was modeled through the dislocation-based work-hardening approach. The volume change during austenite-to-martensite transformation was modeled, and the resultant prestrained areas in the ferrite were considered to be the storage place of transformation-induced, geometrically necessary dislocations (GNDs). The flow curves of DP steels with varying ferrite grain sizes, but constant martensite fractions, were obtained from the literature. The flow curves of simulations that take into account the GND are in better agreement with those of experimental flow curves compared with those of predictions without consideration of the GND. The experimental results obeyed the Hall-Petch relationship between yield stress and flow stress and the simulations predicted this as well.
Electrode Coverage Optimization for Piezoelectric Energy Harvesting from Tip Excitation
Chen, Guangzhu; Bai, Nan
2018-01-01
Piezoelectric energy harvesting using cantilever-type structures has been extensively investigated due to its potential application in providing power supplies for wireless sensor networks, but the low output power has been a bottleneck for its further commercialization. To improve the power conversion capability, a piezoelectric beam with different electrode coverage ratios is studied theoretically and experimentally in this paper. A distributed-parameter theoretical model is established for a bimorph piezoelectric beam with the consideration of the electrode coverage area. The impact of the electrode coverage on the capacitance, the output power and the optimal load resistance are analyzed, showing that the piezoelectric beam has the best performance with an electrode coverage of 66.1%. An experimental study was then carried out to validate the theoretical results using a piezoelectric beam fabricated with segmented electrodes. The experimental results fit well with the theoretical model. A 12% improvement on the Root-Mean-Square (RMS) output power was achieved with the optimized electrode converge ratio (66.1%). This work provides a simple approach to utilizing piezoelectric beams in a more efficient way. PMID:29518934
Cavendish's crocodile and dark horse: the lives of Rutherford and Aston in parallel.
Downard, Kevin M
2007-01-01
Ernest Rutherford and Francis Aston were born a world apart but both would become two of the most influential physicists of their time. Their separate training, under the direction of J.J. Thomson at the Cavendish Laboratory, shaped their future and allowed both men to develop and apply their considerable skills in experimental physics. It also catalyzed their careers and ultimately led to each receiving a Nobel Prize. Although they had very different characters, Rutherford and Aston became close colleagues and confidants who spent considerable time together within the confines of the Cavendish Laboratory, at Trinity College, and elsewhere in Cambridge. They also traveled the world in company, usually as part of a group or British delegation of scientists attending conferences and meetings overseas. This article parallels the lives of the two men. It describes how they came to work at the Cavendish, their scientific accomplishments and accolades, and their activities and interactions away from the laboratory.
Key technology issues for space robotic systems
NASA Technical Reports Server (NTRS)
Schappell, Roger T.
1987-01-01
Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.
NASA Astrophysics Data System (ADS)
Stotesbury, Theresa E.
The research and development of synthetic blood substitutes is a reported need within the forensic community. This work contributes to the growing body of knowledge in bloodstain pattern analysis by offering a materials science approach to designing, producing and testing synthetic forensic blood substitutes. A key deliverable from this research is the creation of a robust silicon-based material using the solution-gelation technique that has been validated for controlled passive drip and spatter simulation. The work investigates the physical properties (viscosity, surface tension and density) of forensic blood substitute formulations and describes the similarity in the spreading dynamics of the optimized material to whole human blood. It then explores how blood and other fluids behave in impact simulation using high-speed video analysis and supports the use of the optimized material for spatter simulation. Finally, the work highlights the practical value of the material as an educational tool for both basic and advanced bloodstain experimentation and training.
Porro prism lasers: a new perspective
NASA Astrophysics Data System (ADS)
Burger, Liesl; Forbes, Andrew
2008-08-01
Porro prism lasers are insensitive to misalignment caused by, for example, shock and temperature variation, making them useful in field applications, for example in target designation and range-finding systems. This property is a result of the property of Porro prisms that they return a reflected beam parallel to the incident beam, regardless of any tilt on the prism. These lasers are generally used in a marginally stable or unstable configuration for low divergence, but in the stable configuration some interesting kaleidoscope modes can be modelled. In previous work on Porro prism resonators we formulated an analytical method of determining which Porro angles resonate and result in petal output modes, as well as the corresponding number of petals. This work has been verified using a numerical model as well as experimentally. We have developed this work further and have investigated the losses associated with a range of Porro angles as well as the effects of these losses on the resulting modes. We conclude by summarizing the design considerations for Porro prism lasers.
Tarone, Robert E
2018-01-01
The recent classification by International Agency for Research on Cancer (IARC) of the herbicide glyphosate as a probable human carcinogen has generated considerable discussion. The classification is at variance with evaluations of the carcinogenic potential of glyphosate by several national and international regulatory bodies. The basis for the IARC classification is examined under the assumptions that the IARC criteria are reasonable and that the body of scientific studies determined by IARC staff to be relevant to the evaluation of glyphosate by the Monograph Working Group is sufficiently complete. It is shown that the classification of glyphosate as a probable human carcinogen was the result of a flawed and incomplete summary of the experimental evidence evaluated by the Working Group. Rational and effective cancer prevention activities depend on scientifically sound and unbiased assessments of the carcinogenic potential of suspected agents. Implications of the erroneous classification of glyphosate with respect to the IARC Monograph Working Group deliberative process are discussed.
Controlling coherence in epsilon-near-zero metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Caglayan, Humeyra; Hajian, Hodjat; Ozbay, Ekmel
2017-05-01
Recently, metamaterials with near-zero refractive index have attracted much attention. Light inside these materials experiences no spatial phase change and extremely large phase velocity, makes these peculiar systems applicable for realizing directional emission, tunneling waveguides, large-area single-mode devices and electromagnetic cloaks. In addition, epsilon-near-zero (ENZ) metamaterials can also enhance light transmission through a subwavelength aperture. Impedance-matched all-dielectric zero-index metamaterials which exhibit Dirac cone dispersions at center of the Brillouin zone, have been experimentally demonstrated at microwave regime and optical frequencies for transverse-magnetic (TM) polarization of light. More recently, it has been also proved that these systems can be realized in a miniaturized in-plane geometry useful for integrated photonic applications, i.e. these metamaterials can be integrated with other optical elements, including waveguides, resonators and interferometers. In this work, using a zero-index metamaterial at the inner and outer sides of a subwavelength aperture, we numerically and experimental study light transmission through and its extraction from the aperture. The metamaterial consists of a combination of two double-layer arrays of scatterers with dissimilar subwavelength dimensions. The metamaterial exhibits zero-index optical response in microwave region. Our numerical investigation shows that the presence of the metamaterial at the inner side of the aperture leads to a considerable increase in the transmission of light through the subwavelength aperture. This enhancement is related to the amplification of the amplitude of the electromagnetic field inside the metamaterial which drastically increases the coupling between free space and the slit. By obtaining the electric field profile of the light passing through the considered NZI/aperture/NZI system at this frequency we found out that in addition to the enhanced transmission there is an excellent beaming of the extracted light from the structure. We have theoretically and experimentally shown that using a zero-index metamaterial at the inner and outer sides of a metallic subwavelength slit can considerably enhance the transmission of light through the aperture and beam its extraction, respectively. This work has been supported by TUBITAK under Project No 114E505. The author H.C. also acknowledges partial support from the Turkish Academy of Sciences.
The Influence of Finite-size Sources in Acousto-ultrasonics
NASA Technical Reports Server (NTRS)
Pavlakovic, Brian N.; Rose, Joseph L.
1994-01-01
This work explores the effects that the finite normal axisymmetric traction loading of an infinite isotropic plate has on wave propagation in acousto-ultrasonics (AU), in which guided waves are created using two normal incidence transducers. Although the work also addresses the effects of the transducer pressure distribution and pulse shape, this thesis concentrates on two main questions: how does the transducer's diameter control the phase velocity and frequency spectrum of the response, and how does the plate thickness relate to the plate's excitability? The mathematics of the time-harmonic solution and the physical principles and the practical considerations for AU wave generation are explained. Transient sources are modeled by the linear superposition of the time-harmonic solutions found using the Hankel transform and they are then compared to experimental data to provide insight into the relation between the size of the transducer and the preferred phase velocity.
Williams, A Mark; Ericsson, K Anders
2005-06-01
The number of researchers studying perceptual-cognitive expertise in sport is increasing. The intention in this paper is to review the currently accepted framework for studying expert performance and to consider implications for undertaking research work in the area of perceptual-cognitive expertise in sport. The expert performance approach presents a descriptive and inductive approach for the systematic study of expert performance. The nature of expert performance is initially captured in the laboratory using representative tasks that identify reliably superior performance. Process-tracing measures are employed to determine the mechanisms that mediate expert performance on the task. Finally, the specific types of activities that lead to the acquisition and development of these mediating mechanisms are identified. General principles and mechanisms may be discovered and then validated by more traditional experimental designs. The relevance of this approach to the study of perceptual-cognitive expertise in sport is discussed and suggestions for future work highlighted.
Monolithic optoelectronic integrated broadband optical receiver with graphene photodetectors
NASA Astrophysics Data System (ADS)
Cheng, Chuantong; Huang, Beiju; Mao, Xurui; Zhang, Zanyun; Zhang, Zan; Geng, Zhaoxin; Xue, Ping; Chen, Hongda
2017-07-01
Optical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.
Higher Order Chemistry Models in the CFD Simulation of Laser-Ablated Carbon Plumes
NASA Technical Reports Server (NTRS)
Greendyke, R. B.; Creel, J. R.; Payne, B. T.; Scott, C. D.
2005-01-01
Production of single-walled carbon nanotubes (SWNT) has taken place for a number of years and by a variety of methods such as laser ablation, chemical vapor deposition, and arc-jet ablation. Yet, little is actually understood about the exact chemical kinetics and processes that occur in SWNT formation. In recent time, NASA Johnson Space Center has devoted a considerable effort to the experimental evaluation of the laser ablation production process for SWNT originally developed at Rice University. To fully understand the nature of the laser ablation process it is necessary to understand the development of the carbon plume dynamics within the laser ablation oven. The present work is a continuation of previous studies into the efforts to model plume dynamics using computational fluid dynamics (CFD). The ultimate goal of the work is to improve understanding of the laser ablation process, and through that improved understanding, refine the laser ablation production of SWNT.
Measurement and Characterization of Concentrator Solar Cells II
NASA Technical Reports Server (NTRS)
Scheiman, Dave; Sater, Bernard L.; Chubb, Donald; Jenkins, Phillip; Snyder, Dave
2005-01-01
Concentrator solar cells are continuing to get more consideration for use in power systems. This interest is because concentrator systems can have a net lower cost per watt in solar cell materials plus ongoing improvements in sun-tracking technology. Quantitatively measuring the efficiency of solar cells under concentration is difficult. Traditionally, the light concentration on solar cells has been determined by using a ratio of the measured solar cell s short circuit current to that at one sun, this assumes that current changes proportionally with light intensity. This works well with low to moderate (<20 suns) concentration levels on "well-behaved" linear cells but does not apply when cells respond superlinearly, current increases faster than intensity, or sublinearly, current increases more slowly than intensity. This paper continues work on using view factors to determine the concentration level and linearity of the solar cell with mathematical view factor analysis and experimental results [1].
NASA Astrophysics Data System (ADS)
Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng
2013-01-01
Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass.
Feasibility study of self-powered magnetorheological damper systems
NASA Astrophysics Data System (ADS)
Chen, Chao; Liao, Wei-Hsin
2012-04-01
This paper is aimed to provide a feasibility study of self-powered magnetorheological (MR) damper systems, which could convert vibration and shock energy into electrical energy to power itself under control. The self-powered feature could bring merits such as higher reliability, energy saving, and less maintenance for the MR damper systems. A self-powered MR damper system is proposed and modeled. The criterion whether the MR damper system is self-powered or not is proposed. A prototype of MR damper with power generation is designed, fabricated, and tested. The modeling of this damper is experimentally validated. Then the damper is applied to a 2 DOF suspension system under on-off skyhook controller, to obtain the self-powered working range and vibration control performance. Effects of key factors on the self-powered MR damper systems are studied. Design considerations are given in order to increase the self-powered working range.
Wei, Zhenglun Alan; Sonntag, Simon Johannes; Toma, Milan; Singh-Gryzbon, Shelly; Sun, Wei
2018-04-19
The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.
Design of simulated moving bed for separation of fumaric acid with a little fronting phenomenon.
Choi, Jae-Hwan; Kang, Mun-Seok; Lee, Chung-Gi; Wang, Nien-Hwa Linda; Mun, Sungyong
2017-03-31
The production of fumaric acid through a biotechnological pathway has grown in importance because of its potential value in related industries. This has sparked an interest in developing an economically-efficient process for separation of fumaric acid (product of interest) from acetic acid (by-product). This study aimed to develop a simulated moving bed (SMB) chromatographic process for such separation in a systematic way. As a first step for this work, commercially available adsorbents were screened for their applicability to the considered separation, which revealed that an Amberchrom-CG71C resin had a sufficient potential to become an adsorbent of the targeted SMB. Using this adsorbent, the intrinsic parameters of fumaric and acetic acids were determined and then applied to optimizing the SMB process under consideration. The optimized SMB process was tested experimentally, from which the yield of fumaric-acid product was found to become lower than expected in the design. An investigation about the reason for such problem revealed that it was attributed to a fronting phenomenon occurring in the solute band of fumaric acid. To resolve this issue, the extent of the fronting was evaluated quantitatively using an experimental axial dispersion coefficient for fumaric acid, which was then considered in the design of the SMB of interest. The SMB experimental results showed that the SMB design based on the consideration of the fumaric-acid fronting could guarantee the attainment of both high purity (>99%) and high yield (>99%) for fumaric-acid product under the desorbent consumption of 2.6 and the throughput of 0.36L/L/h. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Granger Morgan, M.
2011-04-01
In a book for the general public published a year before his death, Carl Sagan wrote, "Every time a scientific paper presents a bit of data, it's accompanied by an error bar---a quiet but instant reminder that no knowledge is complete or perfect." For those of us educated in experimental natural science such an observation seems so obvious as to hardly need saying. Yet when, after completing a PhD in experimental radio physics, I began to work on problems in environmental and energy risk and policy analysis in the early 1970s, I was amazed to find that the characterization and treatment of uncertainty was almost completely lacking in the analysis of that day. In the first part of this talk, I will briefly summarize how I, and a number of my physics-educated colleagues, have worked to rectify this situation. Doctoral education in the Department of Engineering and Public Policy (EPP) at Carnegie Mellon University has also been shaped by a number of ideas and problem-solving styles that derive from physics. These have been strengthened considerably through integration with a number of ideas from experimental social science -- a field that too many in physics ignore or even belittle. In the second part of the talk, I will describe the PhD program in EPP, talk a bit about some of its unique features, and describe a few of the problems we address.
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Zischka, Peter J.; Fentress, Michael L.; Chang, Stephen
1992-01-01
Some of the unique considerations that are associated with the design and experimental evaluation of chordwise deformable wing structures are addressed. Since chordwise elastic camber deformations are desired and must be free to develop, traditional rib concepts and experimental methodology cannot be used. New rib design concepts are presented and discussed. An experimental methodology based upon the use of a flexible sling support and load application system has been created and utilized to evaluate a model box beam experimentally. Experimental data correlate extremely well with design analysis predictions based upon a beam model for the global properties of camber compliance and spanwise bending compliance. Local strain measurements exhibit trends in agreement with intuition and theory but depart slightly from theoretical perfection based upon beam-like behavior alone. It is conjectured that some additional refinement of experimental technique is needed to explain or eliminate these (minor) departures from asymmetric behavior of upper and lower box cover strains. Overall, a solid basis for the design of box structures based upon the bending method of elastic camber production has been confirmed by the experiments.
ERIC Educational Resources Information Center
Birk, James P., Ed.
1989-01-01
Presented is a simple laboratory set-up for teaching microprocessor-controlled data acquisition as a part of an instrumental analysis course. Discussed are the experimental set-up, experimental procedures, and technical considerations for this technique. (CW)
Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy
NASA Technical Reports Server (NTRS)
Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.; Plawsky, J. L.; Wong, Harris
2004-01-01
The major accomplishments of the experimental portion of the research were documented in Ling Zheng's doctoral dissertation. Using Pentane, he obtained a considerable amount of data on the stability and heat transfer characteristics of an evaporating meniscus. The important points are that experimental equipment to obtain data on the stability and heat transfer characteristics of an evaporating meniscus were built and successfully operated. The data and subsequent analyses were accepted by the Journal of Heat Transfer for publication in 2004 [PU4]. The work was continued by a new graduate student using HFE-7000 [PU3] and then Pentane at lower heat fluxes. The Pentane results are being analyzed for publication. The experimental techniques are currently being used in our other NASA Grant. The oscillation of the contact line observed in the experiments involves evaporation (retraction part) and spreading. Since both processes occur with finite contact angles, it is important to derive a precise equation of the intermolecular forces (disjoining pressure) valid for non-zero contact angles. This theoretical derivation was accepted for publication by Journal of Fluid Mechanics [PU5]. The evaporation process near the contact line is complicated, and an idealized micro heat pipe has been proposed to help in elucidating the detailed evaporation process [manuscripts in preparation].
Emergence of complementarity and the Baconian roots of Niels Bohr's method
NASA Astrophysics Data System (ADS)
Perovic, Slobodan
2013-08-01
I argue that instead of a rather narrow focus on N. Bohr's account of complementarity as a particular and perhaps obscure metaphysical or epistemological concept (or as being motivated by such a concept), we should consider it to result from pursuing a particular method of studying physical phenomena. More precisely, I identify a strong undercurrent of Baconian method of induction in Bohr's work that likely emerged during his experimental training and practice. When its development is analyzed in light of Baconian induction, complementarity emerges as a levelheaded rather than a controversial account, carefully elicited from a comprehensive grasp of the available experimental basis, shunning hasty metaphysically motivated generalizations based on partial experimental evidence. In fact, Bohr's insistence on the "classical" nature of observations in experiments, as well as the counterintuitive synthesis of wave and particle concepts that have puzzled scholars, seem a natural outcome (an updated instance) of the inductive method. Such analysis clarifies the intricacies of early Schrödinger's critique of the account as well as Bohr's response, which have been misinterpreted in the literature. If adequate, the analysis may lend considerable support to the view that Bacon explicated the general terms of an experimentally minded strand of the scientific method, developed and refined by scientists in the following three centuries.
NASA Astrophysics Data System (ADS)
Virk, Amninder; Stait-Gardner, Timothy; Willis, Scott; Torres, Allan; Price, William
2015-02-01
Molecular crowding occurs when the total concentration of macromolecular species in a solution is so high that a considerable proportion of the volume is physically occupied and therefore not accessible to other molecules. This results in significant changes in the solution properties of the molecules in such systems. Macromolecular crowding is ubiquitous in biological systems due to the generally high intracellular protein concentrations. The major hindrance to understanding crowding is the lack of direct comparison of experimental data with theoretical or simulated data. Self-diffusion is sensitive to changes in the molecular weight and shape of the diffusing species, and the available diffusion space (i.e., diffusive obstruction). Consequently, diffusion measurements are a direct means for probing crowded systems including the self-association of molecules. In this work, nuclear magnetic resonance measurements of the self-diffusion of four amino acids (glycine, alanine, valine and phenylalanine) up to their solubility limit in water were compared directly with molecular dynamics simulations. The experimental data were then analyzed using various models of aggregation and obstruction. Both experimental and simulated data revealed that the diffusion of both water and the amino acids were sensitive to the amino acid concentration. The direct comparison of the simulated and experimental data afforded greater insights into the aggregation and obstruction properties of each amino acid.
Reducing physical size limits for low-frequency horn loudspeaker systems
NASA Astrophysics Data System (ADS)
Honeycutt, Richard Allison
From 1881 until the present day, many excellent scholars have studied acoustic horns. This dissertation begins by discussing over eighty results of such study. Next, the methods of modeling horn behavior are examined with an emphasis on the prediction of throat impedance. Because of the time constraints in a product-design environment, in which the results of this study may be used, boundary-element and cascaded-section types of analysis were not considered due to their time intensiveness. Of the methods studied, an analytical process based upon Olson's adaptation of Webster's analysis is selected as the most accurate of the rapid methods, although other good methods exist. Reasons and extent of inaccuracy are discussed. The concept of interleaved horn loading is introduced: it involves using two horns of different parameters, fed by a single driver, with a view toward interleaving and thus smoothing the impedance peaks of the separate horns to produce a smoother response. The validity of the technique is demonstrated both theoretically and practically. Then the reactance annulling technique is explained and tested experimentally. It is found to work well, but the exact parameter values involved are not found to be critical. Finally, the considerations involved in building a practical working system are discussed, and a preliminary working model reviewed. Future work could be directed toward finding the optimum parameter values for the two "parallel horns" whose impedances are to be interleaved, as well as the system parameters that determine these optimum values. Also, further experimental investigation or ported loading of the back air chamber would be useful.
Influence of magnesium sulfate on HCO3/Cl transmembrane exchange rate in human erythrocytes.
Chernyshova, Ekaterina S; Zaikina, Yulia S; Tsvetovskaya, Galina A; Strokotov, Dmitry I; Yurkin, Maxim A; Serebrennikova, Elena S; Volkov, Leonid; Maltsev, Valeri P; Chernyshev, Andrei V
2016-03-21
Magnesium sulfate (MgSO4) is widely used in medicine but molecular mechanisms of its protection through influence on erythrocytes are not fully understood and are considerably controversial. Using scanning flow cytometry, in this work for the first time we observed experimentally (both in situ and in vitro) a significant increase of HCO3(-)/Cl(-) transmembrane exchange rate of human erythrocytes in the presence of MgSO4 in blood. For a quantitative analysis of the obtained experimental data, we introduced and verified a molecular kinetic model, which describes activation of major anion exchanger Band 3 (or AE1) by its complexation with free intracellular Mg(2+) (taking into account Mg(2+) membrane transport and intracellular buffering). Fitting the model to our in vitro experimental data, we observed a good correspondence between theoretical and experimental kinetic curves that allowed us to evaluate the model parameters and to estimate for the first time the association constant of Mg(2+) with Band 3 as KB~0.07mM, which is in agreement with known values of the apparent Mg(2+) dissociation constant (from 0.01 to 0.1mM) that reflects experiments on enrichment of Mg(2+) at the inner erythrocyte membrane (Gunther, 2007). Results of this work partly clarify the molecular mechanisms of MgSO4 action in human erythrocytes. The method developed allows one to estimate quantitatively a perspective of MgSO4 treatment for a patient. It should be particularly helpful in prenatal medicine for early detection of pathologies associated with the risk of fetal hypoxia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan
2016-01-01
Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects — both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the material properties. PMID:27168093
Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Eggeler, Gunther; Schütze, Andreas; Seelecke, Stefan
2016-05-02
Shape Memory Alloys (SMA) using elastocaloric cooling processes have the potential to be an environmentally friendly alternative to the conventional vapor compression based cooling process. Nickel-Titanium (Ni-Ti) based alloy systems, especially, show large elastocaloric effects. Furthermore, exhibit large latent heats which is a necessary material property for the development of an efficient solid-state based cooling process. A scientific test rig has been designed to investigate these processes and the elastocaloric effects in SMAs. The realized test rig enables independent control of an SMA's mechanical loading and unloading cycles, as well as conductive heat transfer between SMA cooling elements and a heat source/sink. The test rig is equipped with a comprehensive monitoring system capable of synchronized measurements of mechanical and thermal parameters. In addition to determining the process-dependent mechanical work, the system also enables measurement of thermal caloric aspects of the elastocaloric cooling effect through use of a high-performance infrared camera. This combination is of particular interest, because it allows illustrations of localization and rate effects - both important for efficient heat transfer from the medium to be cooled. The work presented describes an experimental method to identify elastocaloric material properties in different materials and sample geometries. Furthermore, the test rig is used to investigate different cooling process variations. The introduced analysis methods enable a differentiated consideration of material, process and related boundary condition influences on the process efficiency. The comparison of the experimental data with the simulation results (of a thermomechanically coupled finite element model) allows for better understanding of the underlying physics of the elastocaloric effect. In addition, the experimental results, as well as the findings based on the simulation results, are used to improve the material properties.
On the correlation of plume centerline velocity decay of turbulent acoustically excited jets
NASA Technical Reports Server (NTRS)
Vonglahn, Uwe H.
1987-01-01
Acoustic excitation was shown to alter the velocity decay and spreading characteristics of jet plumes by modifying the large-scale structures in the plume shear layer. The present work consists of reviewing and analyzing available published and unpublished experimental data in order to determine the importance and magnitude of the several variables that contribute to plume modification by acoustic excitation. Included in the study were consideration of the effects of internal and external acoustic excitation, excitation Strouhal number, acoustic excitation level, nozzle size, and flow conditions. The last include jet Mach number and jet temperature. The effects of these factors on the plume centerline velocity decay are then summarized in an overall empirical correlation.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Sandler, H.
1974-01-01
An analytical method is presented for determining the oxygen consumption rate of the intact heart working (as opposed to empty but beating) human left ventricle. Use is made of experimental recordings obtained for the chamber pressure and the associated dimensions of the LV. LV dimensions are determined by cineangiocardiography, and the chamber pressure is obtained by means of fluid-filled catheters during retrograde or transeptal catheterization. An analytical method incorporating these data is then employed for the evaluation of the LV coronary oxygen consumption in five subjects. Oxygen consumption for these subjects was also obtained by the conventional clinical method in order to evaluate the reliability of the proposed method.
Kim, Ildoo; Wu, X L
2015-10-01
A structure-based Strouhal-Reynolds number relationship, St=1/(A+B/Re), has been recently proposed based on observations of laminar vortex shedding from circular cylinders in a flowing soap film. Since the new St-Re relation was derived from a general physical consideration, it raises the possibility that it may be applicable to vortex shedding from bodies other than circular ones. The work presented herein provides experimental evidence that this is the case. Our measurements also show that, in the asymptotic limit (Re→∞), St(∞)=1/A≃0.21 is constant independent of rod shapes, leaving B the only parameter that is shape dependent.
Studying real-world perceptual expertise
Shen, Jianhong; Mack, Michael L.; Palmeri, Thomas J.
2014-01-01
Significant insights into visual cognition have come from studying real-world perceptual expertise. Many have previously reviewed empirical findings and theoretical developments from this work. Here we instead provide a brief perspective on approaches, considerations, and challenges to studying real-world perceptual expertise. We discuss factors like choosing to use real-world versus artificial object domains of expertise, selecting a target domain of real-world perceptual expertise, recruiting experts, evaluating their level of expertise, and experimentally testing experts in the lab and online. Throughout our perspective, we highlight expert birding (also called birdwatching) as an example, as it has been used as a target domain for over two decades in the perceptual expertise literature. PMID:25147533
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
2015-12-07
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
Status review of NASA programs for reducing aircraft gas turbine engine emissions
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1976-01-01
The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine engine combustors. The results from the two major NASA technology development programs, the ECCP (Experimental Clean Combustor Program) and the PRTP (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.
Photonic simulation of topological superconductor edge state and zero-energy mode at a vortex
Tan, Wei; Chen, Liang; Ji, Xia; Lin, Hai-Qing
2014-01-01
Photonic simulations of quantum Hall edge states and topological insulators have inspired considerable interest in recent years. Interestingly, there are theoretical predictions for another type of topological states in topological superconductors, but debates over their experimental observations still remain. Here we investigate the photonic analogue of the px + ipy model of topological superconductor. Two essential characteristics of topological superconductor, particle-hole symmetry and px + ipy pairing potentials, are well emulated in photonic systems. Its topological features are presented by chiral edge state and zero-energy mode at a vortex. This work may fertilize the study of photonic topological states, and open up the possibility for emulating wave behaviors in superconductors. PMID:25488408
Ferromagnetic resonance study of the non-stoichiometric double perovskite Sr2Fe1+xMo1-xO6
NASA Astrophysics Data System (ADS)
Medina, J. De La Torre; Piraux, L.; Soto, T. E.; Morales, R.; Navarro, O.
2018-02-01
In this work we report a ferromagnetic resonance study on the magnetic properties of double perovskite compounds fab-ricated by solid state reaction. Based on a mean field approach, along with morphological considerations, we accurately determined the saturation magnetization of the non-stoichiometric double perovskite Sr2Fe1+xMo1-xO6. Our approach has revealed a direct in-fluence of composition on the overall magnetic behavior of these materials, providing complementary experimental evidence that corroborates previous theoretical findings. The understanding of the influence of composition is of paramount importance for the design of ferromagnetic oxides with tunable magnetic and magneto-transport behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Zhang, Yongfeng; Tonks, Michael R.
In this study, the fracture behavior of brittle materials is strongly influenced by their underlying microstructure that needs explicit consideration for accurate prediction of fracture properties and the associated scatter. In this work, a hierarchical multi-scale approach is pursued to model microstructure sensitive brittle fracture. A quantitative phase-field based fracture model is utilized to capture the complex crack growth behavior in the microstructure and the related parameters are calibrated from lower length scale atomistic simulations instead of engineering scale experimental data. The workability of this approach is demonstrated by performing porosity dependent intergranular fracture simulations in UO 2 and comparingmore » the predictions with experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.
This report describes an extensive program of investigations conducted at Arzamas-16 in Russia over the past several decades. The focus of the work is on material interface instability and the mixing of two materials. Part 1 of the report discusses analytical and computational studies of hydrodynamic instabilities and turbulent mixing. The EGAK codes are described and results are illustrated for several types of unstable flow. Semiempirical turbulence transport equations are derived for the mixing of two materials, and their capabilities are illustrated for several examples. Part 2 discusses the experimental studies that have been performed to investigate instabilities and turbulentmore » mixing. Shock-tube and jelly techniques are described in considerable detail. Results are presented for many circumstances and configurations.« less
Thermoplastic Ribbon-Ply Bonding Model
NASA Technical Reports Server (NTRS)
Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.
1996-01-01
The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.
Shreffler, Karina M; Johnson, David R
2013-09-01
Prior research indicates a negative relationship between women's labor force participation and fertility at the individual level in the United States, but little is known about the reasons for this relationship beyond work hours. We employed discrete event history models using panel data from the National Survey of Families and Households ( N = 2,411) and found that the importance of career considerations mediates the work hours/fertility relationship. Further, fertility intentions and the importance of career considerations were more predictive of birth outcomes as women's work hours increase. Ultimately, our findings challenge the assumption that working more hours is the direct cause for employed women having fewer children and highlight the importance of career and fertility preferences in fertility outcomes.
Charge transfer and adsorption-desorption kinetics in carbon nanotube and graphene gas sensing
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik; Cole, Milton; Sofo, Jorge
2014-03-01
Detection of molecules in the gas phase by carbon nanotube and graphene has great application potentials due to the high sensitivity and surface-to-volume ratio. In chemiresistor, the conductance of the materials has been proposed to change as a result of charge transfer from the adsorbed molecules. Due to self-interaction errors, calculations using LDA or GGA density functionals have an innate disadvantage in dealing with charge transfer situations. A model which takes into consideration the dielectric interaction between the graphene surface and the molecule is employed to estimate the distance where charge transfer becomes favorable. Adsorption-desorption kinetics is studied with a modified Langmuir model, including sites from which the molecules do not desorb within the experimental time. Assuming a constant mobility, the model reproduces existing experimental conductance data. Its parameters provide information about the microscopic process during the detection and varying them allows optimization of aspects of sensor performance, including sensitivity, detection limit and response time. This work is supported by Honda Research Institute USA, Inc.
Wang, Tong; Puchtler, Tim J; Patra, Saroj K; Zhu, Tongtong; Jarman, John C; Oliver, Rachel A; Schulz, Stefan; Taylor, Robert A
2017-09-21
We report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorton, H.C.; Mengali, O.J.; Zacaroli, A.R.
A practical, prototype silicon p-n junction fast-neutron dosimeter, sensitive in the same range as human tissue, was developed, together with sn associated read-out circuit to facilitate the accurate measurement of accumulated dose. From both theoretical and experimental considerations, it was demonstrated that the dosimeter is essentially insensitive to the gamma and thermal components of a uranium fission spectrum. It was shown that accumulated damage effects appear to be environmentally stable up to an ambient temperature of 100 C. A rather raarked reversible temperature dependence of the read-out parameters requires either control of the read-out temperature or temperature compensation in themore » read-out device. A high degree of reproducibility of dosimeter characteristics from one device to another was not achieved. The lack of reproducibility was attributed to uncontrolled variables in the bulk silicon from which the devices are fabricated, and in the production procedure. (auth)« less
Numerical and experimental study on multi-pass laser bending of AH36 steel strips
NASA Astrophysics Data System (ADS)
Fetene, Besufekad N.; Kumar, Vikash; Dixit, Uday S.; Echempati, Raghu
2018-02-01
Laser bending is a process of bending of plates, small sized sheets, strips and tubes, in which a moving or stationary laser beam heats the workpiece to achieve the desired curvature due to thermal stresses. Researchers studied the effects of different process parameters related to the laser source, material and workpiece geometry on laser bending of metal sheets. The studies are focused on large sized sheets. The workpiece geometry parameters like sheet thickness, length and width also affect the bend angle considerably. In this work, the effects of width and thickness on multi-pass laser bending of AH36 steel strips were studied experimentally and numerically. Finite element model using ABAQUS® was developed to investigate the size effect on the prediction of the bend angle. Microhardness and flexure tests showed an increase in the flexural strength as well as microhardness in the scanned zone. The microstructures of the bent strips also supported the physical observations.
Methodological considerations for global analysis of cellular FLIM/FRET measurements
NASA Astrophysics Data System (ADS)
Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.
2012-02-01
Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.
Gapless Andreev bound states in the quantum spin Hall insulator HgTe.
Bocquillon, Erwann; Deacon, Russell S; Wiedenmann, Jonas; Leubner, Philipp; Klapwijk, Teunis M; Brüne, Christoph; Ishibashi, Koji; Buhmann, Hartmut; Molenkamp, Laurens W
2017-02-01
In recent years, Majorana physics has attracted considerable attention because of exotic new phenomena and its prospects for fault-tolerant topological quantum computation. To this end, one needs to engineer the interplay between superconductivity and electronic properties in a topological insulator, but experimental work remains scarce and ambiguous. Here, we report experimental evidence for topological superconductivity induced in a HgTe quantum well, a 2D topological insulator that exhibits the quantum spin Hall (QSH) effect. The a.c. Josephson effect demonstrates that the supercurrent has a 4π periodicity in the superconducting phase difference, as indicated by a doubling of the voltage step for multiple Shapiro steps. In addition, this response like that of a superconducting quantum interference device to a perpendicular magnetic field shows that the 4π-periodic supercurrent originates from states located on the edges of the junction. Both features appear strongest towards the QSH regime, and thus provide evidence for induced topological superconductivity in the QSH edge states.
NASA Astrophysics Data System (ADS)
Lien, F. S.; Ji, H.; Yee, E.
Early experimental work, conducted at Defence R&D Canada — Suffield, measured and characterized the personal and environmental contamination associated with the simulated opening of anthrax-tainted letters under a number of different scenarios. A better understanding of the physical and biological processes is considerably significant for detecting, assessing, and formulating potential mitigation strategies for managing these risks. These preliminary experimental investigations have been extended to simulate the contamination from the opening of anthrax-tainted letters in an Open-Office environment using Computational Fluid Dynamics (CFD). Bacillus globigii (BG) was used as a biological simulant for anthrax, with 0.1 gram of the simulant released from opened letters in the experiments conducted. The accuracy of the model for prediction of the spatial distribution of BG spores in the office is first assessed quantitatively by comparison with measured SF6 concentrations (the baseline experiment), and then qualitatively by comparison with measured BG concentrations obtained under a number of scenarios, some involving people moving within various offices.
A new class of variable capacitance generators based on the dielectric fluid transducer
NASA Astrophysics Data System (ADS)
Duranti, Mattia; Righi, Michele; Vertechy, Rocco; Fontana, Marco
2017-11-01
This paper introduces the novel concept of dielectric fluid transducer (DFT), which is an electrostatic variable capacitance transducer made by compliant electrodes, solid dielectrics and a dielectric fluid with variable volume and/or shape. The DFT can be employed in actuator mode and generator mode. In this work, DFTs are studied as electromechanical generators able to convert oscillating mechanical energy into direct current electricity. Beside illustrating the working principle of dielectric fluid generators (DFGs), we introduce different architectural implementations and provide considerations on limitations and best practices for their design. Additionally, the proposed concept is demonstrated in a preliminary experimental test campaign conducted on a first DFG prototype. During experimental tests a maximum energy per cycle of 4.6 {mJ} and maximum power of 0.575 {mW} has been converted, with a conversion efficiency up to 30%. These figures correspond to converted energy densities of 63.8 {mJ} {{{g}}}-1 with respect to the displaced dielectric fluid and 179.0 {mJ} {{{g}}}-1 with respect to the mass of the solid dielectric. This promising performance can be largely improved through the optimization of device topology and dimensions, as well as by the adoption of more performing conductive and dielectric materials.
Types of flow on the lee side of delta wings
NASA Astrophysics Data System (ADS)
Narayan, K. Yegna; Seshadri, S. N.
1997-03-01
Delta wings have found wide application in a variety of aerospace vehicles including high performance combat aircraft, supersonic civil aircraft, (proposed) hypersonic aircraft and the space shuttle orbiter. A considerable amount of research work has been carried out over the past three decades and an extensive body of literature is available. The present review focuses attention on the nine possible types of flow that can occur on the lee side of delta wings in a Mach number range which extends from subsonic to hypersonic. The dependence of the flow types on geometrical and freestream parameters has been discussed in detail. The extensive experimental data available has made it possible to obtain a broad physical understanding of the mechanisms underlying the different flow types. However much more work needs to be done to determine the effects of Reynolds number, particularly when either the state of the boundary layer is transitional or when the type of flow is changing from leading edge attached to separated. Computational methods have made spectacular advances in recent years. In particular, solutions of Reynolds averaged Navier-Stokes equations at fairly high Reynolds number have become possible and these computations have captured eight of the nine experimentally observed flow types, including those involving cross flow shock waves and shock-induced separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaira, Gurdaman; Doxastakis, Manolis; Bowen, Alec
There is considerable interest in developing multimodal characterization frameworks capable of probing critical properties of complex materials by relying on distinct, complementary methods or tools. Any such framework should maximize the amount of information that is extracted from any given experiment and should be sufficiently powerful and efficient to enable on-the-fly analysis of multiple measurements in a self-consistent manner. Such a framework is demonstrated in this work in the context of self-assembling polymeric materials, where theory and simulations provide the language to seamlessly mesh experimental data from two different scattering measurements. Specifically, the samples considered here consist of diblock copolymersmore » (BCP) that are self-assembled on chemically nanopatterned surfaces. The copolymers microphase separate into ordered lamellae with characteristic dimensions on the scale of tens of nanometers that are perfectly aligned by the substrate over macroscopic areas. These aligned lamellar samples provide ideal standards with which to develop the formalism introduced in this work and, more generally, the concept of high-information-content, multimodal experimentation. The outcomes of the proposed analysis are then compared to images generated by 3D scanning electron microscopy tomography, serving to validate the merit of the framework and ideas proposed here.« less
Experimental study of the constituents of space wash water
NASA Technical Reports Server (NTRS)
Putnam, D. F.; Colombo, G. V.
1975-01-01
This report presents experimental data, obtained under controlled conditions, which quantify the various constituents of human origin that may be expected in space wash water. The experiments were conducted with a simulated crew of two male and two female subjects. The data show that the expected wash water contaminants originating from human secretions are substantially lower than theoretical projections indicated. The data presented are immediately useful and may have considerable impact on the tradeoff comparisons among various unit processes and systems under consideration by NASA for recycling space wash water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Holloway, L
Purpose: MRI guided radiation therapy (MRIgRT) is a rapidly growing field; however, Linac operation in MRI fringe fields represents an ongoing challenge. We have previously shown in-silico that Linacs could be redesigned to function in the in-line orientation with no magnetic shielding by adopting an RF-gun configuration. Other authors have also published insilico studies of Linac operation in magnetic fields; however to date no experimental validation data is published. This work details the design, construction, and installation of an experimental beam line to validate our in-silico results. Methods: An RF-gun comprising 1.5 accelerating cells and capable of generating electron energiesmore » up to 3.2MeV is used. The experimental apparatus was designed to monitor both beam current (toroid current monitor), spot size (two phosphor screens with viewports), and generate peak magnetic fields of at least 1000G (three variable current electromagnetic coils). Thermal FEM simulations were developed to ensure coil temperature remained within 100degC. Other design considerations included beam disposal, vacuum maintenance, radiation shielding, earthquake safety, and machine protection interlocks. Results: The beam line has been designed, built, and installed in a radiation shielded bunker. Water cooling, power supplies, thermo-couples, cameras, and radiation shielding have been successfully connected and tested. Interlock testing, vacuum processing, and RF processing have been successfully completed. The first beam on is expected within weeks. The coil heating simulations show that with care, peak fields of up to 1200G (320G at cathode) can be produced using 40A current, which is well within the fields expected for MRI-Linac systems. The maximum coil temperature at this current was 84degC after 6 minutes. Conclusion: An experimental beam line has been constructed and installed at SLAC in order to experimentally characterise RF gun performance in in-line magnetic fields, validate in-silico design work, and provide the first published experimental data relating to accelerator functionality for MRIgRT.« less
NASA Astrophysics Data System (ADS)
Watson, Judith J.
1992-08-01
An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.
Southern Regional Center for Lightweight Innovative Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Paul T.
The Southern Regional Center for Lightweight Innovative Design (SRCLID) has developed an experimentally validated cradle-to-grave modeling and simulation effort to optimize automotive components in order to decrease weight and cost, yet increase performance and safety in crash scenarios. In summary, the three major objectives of this project are accomplished: To develop experimentally validated cradle-to-grave modeling and simulation tools to optimize automotive and truck components for lightweighting materials (aluminum, steel, and Mg alloys and polymer-based composites) with consideration of uncertainty to decrease weight and cost, yet increase the performance and safety in impact scenarios; To develop multiscale computational models that quantifymore » microstructure-property relations by evaluating various length scales, from the atomic through component levels, for each step of the manufacturing process for vehicles; and To develop an integrated K-12 educational program to educate students on lightweighting designs and impact scenarios. In this final report, we divided the content into two parts: the first part contains the development of building blocks for the project, including materials and process models, process-structure-property (PSP) relationship, and experimental validation capabilities; the second part presents the demonstration task for Mg front-end work associated with USAMP projects.« less
IFCPT S-Duct Grid-Adapted FUN3D Computations for the Third Propulsion Aerodynamics Works
NASA Technical Reports Server (NTRS)
Davis, Zach S.; Park, M. A.
2017-01-01
Contributions of the unstructured Reynolds-averaged Navier-Stokes code, FUN3D, to the 3rd AIAA Propulsion Aerodynamics Workshop are described for the diffusing IFCPT S-Duct. Using workshop-supplied grids, results for the baseline S-Duct, baseline S-Duct with Aerodynamic Interface Plane (AIP) rake hardware, and baseline S-Duct with flow control devices are compared with experimental data and results computed with output-based, off-body grid adaptation in FUN3D. Due to the absence of influential geometry components, total pressure recovery is overpredicted on the baseline S-Duct and S-Duct with flow control vanes when compared to experimental values. An estimate for the exact value of total pressure recovery is derived for these cases given an infinitely refined mesh. When results from output-based mesh adaptation are compared with those computed on workshop-supplied grids, a considerable improvement in predicting total pressure recovery is observed. By including more representative geometry, output-based mesh adaptation compares very favorably with experimental data in terms of predicting the total pressure recovery cost-function; whereas, results computed using the workshop-supplied grids are underpredicted.
Experimental study on internal cooling system in hard turning of HCWCI using CBN tools
NASA Astrophysics Data System (ADS)
Ravi, A. M.; Murigendrappa, S. M.
2018-04-01
In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.
On the possible use of the MASURCA reactor as a flexible, high-intensity, fast neutron beam facility
NASA Astrophysics Data System (ADS)
Dioni, Luca; Jacqmin, Robert; Sumini, Marco; Stout, Brian
2017-09-01
In recent work [1, 2], we have shown that the MASURCA research reactor could be used to deliver a fairly-intense continuous fast neutron beam to an experimental room located next to the reactor core. As a consequence of the MASURCA favorable characteristics and diverse material inventories, the neutron beam intensity and spectrum can be further tailored to meet the users' needs, which could be of interest for several applications. Monte Carlo simulations have been performed to characterize in detail the extracted neutron (and photon) beam entering the experimental room. These numerical simulations were done for two different bare cores: A uranium metallic core (˜30% 235U enriched) and a plutonium oxide core (˜25% Pu fraction, ˜78% 239Pu). The results show that the distinctive resonance energy structures of the two core leakage spectra are preserved at the channel exit. As the experimental room is large enough to house a dedicated set of neutron spectrometry instruments, we have investigated several candidate neutron spectrum measurement techniques, which could be implemented to guarantee well-defined, repeatable beam conditions to users. Our investigation also includes considerations regarding the gamma rays in the beams.
Selecting Models for Measuring Change When True Experimental Conditions Do Not Exist.
ERIC Educational Resources Information Center
Fortune, Jim C.; Hutson, Barbara A.
1984-01-01
Measuring change when true experimental conditions do not exist is a difficult process. This article reviews the artifacts of change measurement in evaluations and quasi-experimental designs, delineates considerations in choosing a model to measure change under nonideal conditions, and suggests ways to organize models to facilitate selection.…
ERIC Educational Resources Information Center
Brooks, Penelope H.; Baumeister, Alfred A.
1977-01-01
The authors contend that the experimental psychology of mental retardation suffers from methatheoretical and methodological weaknesses, preeminently the failure to consider the ecology of mental retardation. (CL)
PLACE: an open-source python package for laboratory automation, control, and experimentation.
Johnson, Jami L; Tom Wörden, Henrik; van Wijk, Kasper
2015-02-01
In modern laboratories, software can drive the full experimental process from data acquisition to storage, processing, and analysis. The automation of laboratory data acquisition is an important consideration for every laboratory. When implementing a laboratory automation scheme, important parameters include its reliability, time to implement, adaptability, and compatibility with software used at other stages of experimentation. In this article, we present an open-source, flexible, and extensible Python package for Laboratory Automation, Control, and Experimentation (PLACE). The package uses modular organization and clear design principles; therefore, it can be easily customized or expanded to meet the needs of diverse laboratories. We discuss the organization of PLACE, data-handling considerations, and then present an example using PLACE for laser-ultrasound experiments. Finally, we demonstrate the seamless transition to post-processing and analysis with Python through the development of an analysis module for data produced by PLACE automation. © 2014 Society for Laboratory Automation and Screening.
Johnson, David R.
2014-01-01
Prior research indicates a negative relationship between women’s labor force participation and fertility at the individual level in the United States, but little is known about the reasons for this relationship beyond work hours. We employed discrete event history models using panel data from the National Survey of Families and Households (N = 2,411) and found that the importance of career considerations mediates the work hours/fertility relationship. Further, fertility intentions and the importance of career considerations were more predictive of birth outcomes as women’s work hours increase. Ultimately, our findings challenge the assumption that working more hours is the direct cause for employed women having fewer children and highlight the importance of career and fertility preferences in fertility outcomes. PMID:25506189
To address accuracy and precision using methods from analytical chemistry and computational physics.
Kozmutza, Cornelia; Picó, Yolanda
2009-04-01
In this work the pesticides were determined by liquid chromatography-mass spectrometry (LC-MS). In present study the occurrence of imidacloprid in 343 samples of oranges, tangerines, date plum, and watermelons from Valencian Community (Spain) has been investigated. The nine additional pesticides were chosen as they have been recommended for orchard treatment together with imidacloprid. The Mulliken population analysis has been applied to present the charge distribution in imidacloprid. Partitioned energy terms and the virial ratios have been calculated for certain molecules entering in interaction. A new technique based on the comparison of the decomposed total energy terms at various configurations is demonstrated in this work. The interaction ability could be established correctly in the studied case. An attempt is also made in this work to address accuracy and precision. These quantities are well-known in experimental measurements. In case precise theoretical description is achieved for the contributing monomers and also for the interacting complex structure some properties of this latter system can be predicted to quite a good accuracy. Based on simple hypothetical considerations we estimate the impact of applying computations on reducing the amount of analytical work.
Victor Henri: 111 years of his equation.
Cornish-Bowden, Athel; Mazat, Jean-Pierre; Nicolas, Serge
2014-12-01
Victor Henri's great contribution to the understanding of enzyme kinetics and mechanism is not always given the credit that it deserves. In addition, his earlier work in experimental psychology is totally unknown to biochemists, and his later work in spectroscopy and photobiology almost equally so. Applying great rigour to his analysis he succeeded in obtaining a model of enzyme action that explained all of the observations available to him, and he showed why the considerable amount of work done in the preceding decade had not led to understanding. His view was that only physical chemistry could explain the behaviour of enzymes, and that models should be judged in accordance with their capacity not only to explain previously known facts but also to predict new observations against which they could be tested. The kinetic equation usually attributed to Michaelis and Menten was in reality due to him. His thesis of 1903 is now available in English. Copyright © 2014 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.
Investigation on the performance of a viscoelastic dielectric elastomer membrane generator.
Zhou, Jianyou; Jiang, Liying; Khayat, Roger E
2015-04-21
Dielectric elastomer generators (DEGs), as a recent transduction technology, harvest electrical energy by scavenging mechanical energy from diverse sources. Their performance is affected by various material properties and failure modes of the dielectric elastomers. This work presents a theoretical analysis on the performance of a dielectric elastomer membrane generator under equi-biaxial loading conditions. By comparing our simulation results with the experimental observations existing in the literature, this work considers the fatigue life of DE-based devices under cyclic loading for the first time. From the simulation results, it is concluded that the efficiency of the DEG can be improved by raising the deforming rate and the prescribed maximum stretch ratio, and applying an appropriate bias voltage. However, the fatigue life expectancy compromises the efficiency improvement of the DEG. With the consideration of the fatigue life, applying an appropriate bias voltage appears to be a more desirable way to improve the DEG performance. The general framework developed in this work is expected to provide an increased understanding on the energy harvesting mechanisms of the DEGs and benefit their optimal design.
Evaluation of health centre community nurse team.
Dixon, P N; Trounson, E
1969-02-01
This report gives an account of the work during six months of a community nurse team attached to the doctors working from a new health centre. The team consisted of two community nurses, who had both health visiting and Queen's nursing qualifications, and a State-enrolled nurse. The community nurses, in addition to undertaking all the health visiting for the population at risk, assessed the social and nursing needs of patients at the request of the general practitioners and ensured that these needs were met. When necessary they undertook practical nursing tasks in the home and in the health centre, but most of the bedside nursing in the home was done by the State-enrolled nurse.The needs of the population at risk were such that only one State-enrolled nurse could usefully be employed, and this proved to be a considerable disadvantage. Despite this, the experimental work pattern held advantages to patients, doctors, and nurses, and is potentially capable of providing a satisfying and economic division of responsibilities, with different tasks being carried out by the individual most appropriately qualified.
Walter, Frank; Lam, Catherine K; van der Vegt, Gerben S; Huang, Xu; Miao, Qing
2015-07-01
Drawing from moral exclusion theory, this article examines outcome dependence and interpersonal liking as key boundary conditions for the linkage between perceived subordinate performance and abusive supervision. Moreover, it investigates the role of abusive supervision for subordinates' subsequent, objective work performance. Across 2 independent studies, an experimental scenario study (N = 157; Study 1) and a time-lagged field study (N = 169; Study 2), the negative relationship between perceived subordinate performance and abusive supervision was found to hinge on a supervisor's outcome dependence on subordinates but not on a supervisor's liking of subordinates. Furthermore, Study 2 demonstrated (a) a negative association between abusive supervision and subordinates' subsequent objective performance and (b) a conditional indirect effect of perceived performance on subsequent objective performance, through abusive supervision, contingent on the degree of outcome dependence, although these relationships did not reach conventional significance levels when controlling for prior objective performance. All in all, the findings highlight the role of instrumentality considerations in relation to abusive supervision and promote new knowledge on both origins and consequences of such supervisory behavior. (c) 2015 APA, all rights reserved).
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
Momentum considerations on the New MEXICO experiment
NASA Astrophysics Data System (ADS)
Parra, E. A.; Boorsma, K.; Schepers, J. G.; Snel, H.
2016-09-01
The present paper regards axial and angular momentum considerations combining detailed loads from pressure sensors and the flow field mapped with particle image velocimetry (PIV) techniques. For this end, the study implements important results leaning on experimental data from wind tunnel measurements of the New MEXICO project. The measurements, taken on a fully instrumented rotor, were carried out in the German Dutch Wind tunnel Organisation (DNW) testing the MEXICO rotor in the open section. The work revisits the so-called momentum theory, showing that the integral thrust and torque measured on the rotor correspond with an extent of 0.7 and 2.4% respectively to the momentum balance of the global flow field using the general momentum equations. Likewise, the sectional forces combined with the local induced velocities are found to plausibly obey the annular streamtube theory, albeit some limitations in the axial momentum become more apparent at high inductions after a=0.3. Finally, azimuth induced velocities are measured and compared to predictions from models of Glauert and Burton et al., showing close-matching forecasts for blade spans above 25%.
ERIC Educational Resources Information Center
Whittington, Marna C.
Methods for the implementation of on-line contingent research are described in this study. In a contingent experimentation procedure, the content of successive experimental trials is a function of a subject's responses to a previous trial or trials (in contrast to traditional experimentation in which the subject is presented a previously…
Transcranial direct current stimulation to enhance cognition in euthymic bipolar disorder.
Martin, Donel M; Chan, Herng-Nieng; Alonzo, Angelo; Green, Melissa J; Mitchell, Philip B; Loo, Colleen K
2015-12-01
To investigate the use of transcranial direct current stimulation (tDCS) for enhancing working memory and sustained attention in euthymic patients with bipolar disorder. Fifteen patients with bipolar disorder received anodal left prefrontal tDCS with an extracephalic cathode (prefrontal condition), anodal left prefrontal and cathodal cerebellar tDCS (fronto-cerebellar condition), and sham tDCS given 'online' during performance on a working memory and sustained attention task in an intra-individual, cross-over, sham-controlled experimental design. Exploratory cluster analyses examined responders and non-responders for the different active tDCS conditions on both tasks. For working memory, approximately one-third of patients in both active tDCS conditions showed performance improvement. For sustained attention, three of 15 patients showed performance improvement with prefrontal tDCS. Responders to active tDCS for working memory performed more poorly on the task during sham tDCS compared to non-responders. A single session of active prefrontal or fronto-cerebellar tDCS failed to improve working memory or sustained attention performance in euthymic patients with bipolar disorder. Several important considerations are discussed in relation to future studies investigating tDCS for enhancing cognition in patients with bipolar disorder. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Investigation on the Cracking Character of Jointed Rock Mass Beneath TBM Disc Cutter
NASA Astrophysics Data System (ADS)
Yang, Haiqing; Liu, Junfeng; Liu, Bolong
2018-04-01
With the purpose to investigate the influence of joint dip angle and spacing on the TBM rock-breaking efficacy and cracking behaviour, experiments that include miniature cutter head tests are carried out on sandstone rock material. In the experiment, prefabricated joints of different forms are made in rock samples. Then theoretical analysis is conducted to improve the calculating models of the fractured work and crack length of rock in the TBM process. The experimental results indicate that lower rupture angles appear for specimens with joint dip angles between 45° and 60°. Meanwhile, rock-breaking efficacy for rock mass with joint dip angles in this interval is also higher. Besides, the fracture patterns are transformed from compressive shear mode to tensile shear mode as the joint spacing decreases. As a result, failure in a greater extent is resulted for specimens with smaller joint spacings. The results above suggest that joint dip angle between 45° and 60° and joint spacing of 1 cm are the optimal rock-breaking conditions for the tested specimens. Combining the present experimental data and taking the joint dip angle and spacing into consideration, the calculating model for rock fractured work that proposed by previous scholars is improved. Finally, theoretical solution of rock median and side crack length is also derived based on the analytical method of elastoplastic invasion fracture for indenter. The result of the analytical solution is also in good agreement with the actual measured experimental result. The present study may provide some primary knowledge about the rock cracking character and breaking efficacy under different engineering conditions.
Muon background studies for shallow depth Double - Chooz near detector
NASA Astrophysics Data System (ADS)
Gómez, H.
2015-08-01
Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine the muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.
NASA Astrophysics Data System (ADS)
Anbu, V.; Vijayalakshmi, K. A.; Karthick, T.; Tandon, Poonam; Narayana, B.
2017-09-01
In the proposed work, the non-linear optical response, spectroscopic signature and binding activity of 4-Benzyloxybenzaldehyde (4BB) has been investigated. In order to find the vibrational contribution of functional groups in mixed or coupled modes in the experimental FT-IR and FT-Raman spectra, the potential energy distribution (PED) based on the internal coordinates have been computed. Since the molecule exists in the form of dimer in solid state, the electronic structure of dimer has been proposed in order to explain the intermolecular hydrogen bonding interactions via aldehyde group. The experimental and simulated powder X-ray diffraction data was compared and the miller indices which define the crystallographic planes in the crystal lattices were identified. Optical transmittance and absorbance measurement were taken at ambient temperature in order to investigate the transparency and optical band gap. For screening the material for nonlinear applications, theoretical second order hyperpolarizability studies were performed and compared with the standard reference urea. To validate the theoretical results, powder second harmonic generation (SHG) studies were carried out using Kurtz and Perry technique. The results show that the molecule studied in this work exhibit considerable non-linear optical (NLO) response. In addition to the characterization and NLO studies, we also claimed based on the experimental and theoretical data that the molecule shows antioxidant property and inhibition capability. Since the title molecule shows significant binding with Tau protein that helps to stabilize microtubules in the nervous system, the molecular docking investigation was performed to find the inhibition constant, binding affinity and active binding residues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez, H.
Muon events are one of the main concerns regarding background in neutrino experiments. The placement of experimental set-ups in deep underground facilities reduce considerably their impact on the research of the expected signals. But in the cases where the detector is installed on surface or at shallow depth, muon flux remains high, being necessary their precise identification for further rejection. Total flux, mean energy or angular distributions are some of the parameters that can help to characterize the muons. Empirically, the muon rate can be measured in an experiment by a number of methods. Nevertheless, the capability to determine themore » muons angular distribution strongly depends on the detector features, while the measurement of the muon energy is quite difficult. Also considering that on-site measurements can not be extrapolated to other sites due to the difference on the overburden and its profile, it is necessary to find an adequate solution to perform the muon characterization. The method described in this work to obtain the main features of the muons reaching the experimental set-up, is based on the muon transport simulation by the MUSIC software, combined with a dedicated sampling algorithm for shallow depth installations based on a modified Gaisser parametrization. This method provides all the required information about the muons for any shallow depth installation if the corresponding overburden profile is implemented. In this work, the method has been applied for the recently commissioned Double - Chooz near detector, which will allow the cross-check between the simulation and the experimental data, as it has been done for the far detector.« less
Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R
2013-02-07
Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.
EVA Physiology and Medical Considerations Working in the Suit
NASA Technical Reports Server (NTRS)
Parazynski, Scott
2012-01-01
This "EVA Physiology and Medical Considerations Working in the Suit" presentation covers several topics related to the medical implications and physiological effects of suited operations in space from the perspective of a physician with considerable first-hand Extravehicular Activity (EVA) experience. Key themes include EVA physiology working in a pressure suit in the vacuum of space, basic EVA life support and work support, Thermal Protection System (TPS) inspections and repairs, and discussions of the physical challenges of an EVA. Parazynski covers the common injuries and significant risks during EVAs, as well as physical training required to prepare for EVAs. He also shares overall suit physiological and medical knowledge with the next generation of Extravehicular Mobility Unit (EMU) system designers.
A fundamental study of suction for Laminar Flow Control (LFC)
NASA Astrophysics Data System (ADS)
Watmuff, Jonathan H.
1992-10-01
This report covers the period forming the first year of the project. The aim is to experimentally investigate the effects of suction as a technique for Laminar Flow Control. Experiments are to be performed which require substantial modifications to be made to the experimental facility. Considerable effort has been spent developing new high performance constant temperature hot-wire anemometers for general purpose use in the Fluid Mechanics Laboratory. Twenty instruments have been delivered. An important feature of the facility is that it is totally automated under computer control. Unprecedently large quantities of data can be acquired and the results examined using the visualization tools developed specifically for studying the results of numerical simulations on graphics works stations. The experiment must be run for periods of up to a month at a time since the data is collected on a point-by-point basis. Several techniques were implemented to reduce the experimental run-time by a significant factor. Extra probes have been constructed and modifications have been made to the traverse hardware and to the real-time experimental code to enable multiple probes to be used. This will reduce the experimental run-time by the appropriate factor. Hot-wire calibration drift has been a frustrating problem owing to the large range of ambient temperatures experienced in the laboratory. The solution has been to repeat the calibrations at frequent intervals. However the calibration process has consumed up to 40 percent of the run-time. A new method of correcting the drift is very nearly finalized and when implemented it will also lead to a significant reduction in the experimental run-time.
A fundamental study of suction for Laminar Flow Control (LFC)
NASA Technical Reports Server (NTRS)
Watmuff, Jonathan H.
1992-01-01
This report covers the period forming the first year of the project. The aim is to experimentally investigate the effects of suction as a technique for Laminar Flow Control. Experiments are to be performed which require substantial modifications to be made to the experimental facility. Considerable effort has been spent developing new high performance constant temperature hot-wire anemometers for general purpose use in the Fluid Mechanics Laboratory. Twenty instruments have been delivered. An important feature of the facility is that it is totally automated under computer control. Unprecedently large quantities of data can be acquired and the results examined using the visualization tools developed specifically for studying the results of numerical simulations on graphics works stations. The experiment must be run for periods of up to a month at a time since the data is collected on a point-by-point basis. Several techniques were implemented to reduce the experimental run-time by a significant factor. Extra probes have been constructed and modifications have been made to the traverse hardware and to the real-time experimental code to enable multiple probes to be used. This will reduce the experimental run-time by the appropriate factor. Hot-wire calibration drift has been a frustrating problem owing to the large range of ambient temperatures experienced in the laboratory. The solution has been to repeat the calibrations at frequent intervals. However the calibration process has consumed up to 40 percent of the run-time. A new method of correcting the drift is very nearly finalized and when implemented it will also lead to a significant reduction in the experimental run-time.
Effect of the atmosphere on the color coordinates of sunlit surfaces
NASA Astrophysics Data System (ADS)
Willers, Cornelius J.; Viljoen, Johan W.
2016-02-01
Aerosol attenuation in the atmosphere has a relatively weak spectral variation compared to molecular absorption. However, the solar spectral irradiance differs considerably for the sun at high zenith angles versus the sun at low zenith angles. The perceived color of a sunlit object depends on the object's spectral reflectivity as well as the irradiance spectrum. The color coordinates of the sunlit object, hence also the color balance in a scene, shift with changes in the solar zenith angle. The work reported here does not claim accurate color measurement. With proper calibration mobile phones may provide reasonably accurate color measurement, but the mobile phones used for taking these pictures and videos are not scientific instruments and were not calibrated. The focus here is on the relative shift of the observed colors, rather than absolute color. The work in this paper entails the theoretical analysis of color coordinates of surfaces and how they change for different colored surfaces. Then follows three separate investigations: (1) Analysis of a number of detailed atmospheric radiative transfer code (Modtran) runs to show from the theory how color coordinates should change. (2) Analysis of a still image showing how the colors of two sample surfaces vary between sunlit and shaded areas. (3) Time lapse video recordings showing how the color coordinates of a few surfaces change as a function of time of day. Both the theoretical and experimental work shows distinct shifts in color as function of atmospheric conditions. The Modtran simulations demonstrate the effect from clear atmospheric conditions (no aerosol) to low visibility conditions (5 km visibility). Even under moderate atmospheric conditions the effect was surprisingly large. The experimental work indicated significant shifts during the diurnal cycle.
NASA Astrophysics Data System (ADS)
Devrient, M.; Da, X.; Frick, T.; Schmidt, M.
Laser transmission welding is a well known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production thermoplastics are usually filled with glass fibers. These lead to higher absorption and more scattering within the upper joining partner with a negative influence on the welding process. Here an experimental method for the characterization of the scattering behavior of semi crystalline thermoplastics filled with short glass fibers and a finite element model of the welding process capable to consider scattering as well as an analytical model are introduced. The experimental data is used for the numerical and analytical investigation of laser transmission welding under consideration of scattering. The scattering effects of several thermoplastics onto the calculated temperature fields as well as weld seam geometries are quantified.
Ion and electron temperatures in the topside ionosphere
NASA Technical Reports Server (NTRS)
Munninghoff, D. E.
1979-01-01
Experimental and theoretical ion and electron temperatures in the topside ionosphere were investigated. Experimental results came from an analysis of incoherent scatter data taken at Arecibo, Puerto Rico. Consideration of the energy balance equations gave the theoretical ion and electron temperatures.
Using the Git Software Tool on the Peregrine System | High-Performance
branch workflow. Create a local branch called "experimental" based on the current master... git branch experimental Use your branch (start working on that experimental branch....) git checkout experimental git pull origin experimental # work, work, work, commit.... Send local branch to the repo git push
Consideration of Alternate Working Fluid Properties in Gas Lubricated Foil Journal Bearings
NASA Technical Reports Server (NTRS)
Smith, Matthew J.
2004-01-01
The Oil-Free Turbomachinery Program at the NASA Glenn Research center is committed to, revolutionary improvements in performance, efficiency and reliability of turbomachinery propulsion systems. One of the key breakthroughs by which this goal is being achieved is the maturation of air lubricated foil bearing technology. Through experimental testing, foil bearings have demonstrated a variety of exceptional qualities that show them to have an important role in the future of rotordynamic lubrication. Most of the work done with foil bearings thus far has considered ambient air at atmospheric pressure as the working fluid or lubricating fluid in the bearing. However, special applications of oil-free technology require the use of air at non- standard ambient conditions or completely different working fluids altogether. The NASA Jupiter Icy Moon Orbiter program presents power generation needs far beyond that of any previous space exploration effort. The proposed spacecraft will require significant power generation to provide the propulsion necessary to reach the moons of Jupiter and navigate between them. Once there, extensive scientific research will be conducted that will also present significant power requirements. Such extreme needs require exploring a new method for power generation in space. A proposed solution involves a Brayton cycle nuclear fission reactor. The nature of this application requires reliable performance of all reactor components for many years of operation under demanding conditions. This includes the bearings which will be operating with an alternative working fluid that is a combination of Helium and Xenon gases commonly known as HeXe. This fluid has transport and thermal properties that vary significantly from that of air and the effect of these property differences on bearing performance must be considered. One of the most promising applications of oil-free technology is in aircraft turbine engines. Eliminating the oil supply systems from aircraft engines will lead to significant weight and maintenance reduction. In such applications, the lubricating fluid will be high altitude air. This air will be at much lower pressure than that at sea level. Again this property change will result in a change in bearing performance, and analysis is required to quantify this effect. The study of these alternate working fluid properties will be conducted in two ways: analytically and experimentally. Analytical research will include the use of a mathematical code that can predict film thickness profiles for various ambient conditions. Estimations of load capacity can be made based upon the film thickness trends. These values will then be compared to those obtained from classical rigid bearing analysis. Experimental Research will include testing a foil bearing at a variety of ambient air pressures. The analytical and experimental data will be compared to draw conclusions on bearing performance under alternate working fluid properties.
Theodoridis, Michael P; Mollov, Stefan V
2014-10-01
This article presents the design of a domestic, radiofrequency induction charger for implants toward compliance with the Federal Communications Commission safety and electromagnetic compatibility regulations. The suggested arrangement does not impose any patient compliance requirements other than the use of a designated bed for night sleep, and therefore can find a domestic use. The method can be applied to a number of applications; a rechargeable pacemaker is considered as a case study. The presented work has proven that it is possible to realize a fully compliant inductive charging system with minimal patient interaction, and has generated important information for consideration by the designers of inductive charging systems. Experimental results have verified the validity of the theoretical findings.
Jang, Kyung-In; Jung, Han Na; Lee, Jung Woo; Xu, Sheng; Liu, Yu Hao; Ma, Yinji; Jeong, Jae-Woong; Song, Young Min; Kim, Jeonghyun; Kim, Bong Hun; Banks, Anthony; Kwak, Jean Won; Yang, Yiyuan; Shi, Dawei; Wei, Zijun; Feng, Xue; Paik, Ungyu; Huang, Yonggang; Ghaffari, Roozbeh; Rogers, John A
2016-10-25
This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.
On the correlation of plume centerline velocity decay of turbulent acoustically excited jets
NASA Technical Reports Server (NTRS)
Von Glahn, Uwe H.
1987-01-01
Acoustic excitation has been shown to alter the velocity decay and spreading characteristics of jet plumes by modifying the large-scale structures in the plume shear layer. The present work consists of reviewing and analyzing available published and unpublished experimental data in order to determine the importance and magnitude of the several variables that contribute to plume modification by acoustic excitation. Included in the study were consideration of the effects of internal or external acoustic excitation, excitation Strouhal number, acoustic excitation level, nozzle size and flow conditions. The last include jet Mach number and jet temperature. The effects of these factors on the plume centerline velocity decay are then summarized in an overall empirical correlation.
Conducting-insulating transition in adiabatic memristive networks
NASA Astrophysics Data System (ADS)
Sheldon, Forrest C.; Di Ventra, Massimiliano
2017-01-01
The development of neuromorphic systems based on memristive elements—resistors with memory—requires a fundamental understanding of their collective dynamics when organized in networks. Here, we study an experimentally inspired model of two-dimensional disordered memristive networks subject to a slowly ramped voltage and show that they undergo a discontinuous transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON-OFF ratio. We investigate the consequences of this transition for the memristive current-voltage characteristics both through simulation and theory, and demonstrate the role of current-voltage duality in relating forward and reverse switching processes. Our work sheds considerable light on the statistical properties of memristive networks that are presently studied both for unconventional computing and as models of neural networks.
Radiation of Sawtooth Waves from the End of an Open Pipe
NASA Astrophysics Data System (ADS)
Bakaitis, Rachael; Bodon, Josh; Gee, Kent; Thomas, Derek
2012-10-01
It is known, that because of nonlinear propagation distortion, a sinusoidal wave is transformed into a sawtooth-like wave as it travels through a pipe. It has been observed that the sawtooth wave, when measured immediately after it exits a pipe, has a form similar to a delta function. Currently this behavior is not understood, but has potential application to radiation of sound from brass instruments and rocket motors. Building on previous work in the 1970s by Blackstock and Wright, the purpose of the current research is to better understand the radiation of sawtooth waves from the open end of a circular pipe. Nonlinear propagation theory, the experimental apparatus and considerations, and some preliminary results are described.
Ostapchenko, L I; Drobins'ka, O V; Chaĭka, V O; Bohun, L I; Bohdanova, O V; Kot, L I; Haĭda, L M
2009-01-01
The goal of the presented work was the research of signal transduction mechanism in the rat gastric parietal cells under stomach ulcer conditions. In these cells activation of adenylate cyclase (increase of cAMP level and proteinkinase A activity) and phosphoinositide (increases [Ca2+]i; cGMP and phoshatidylinocitole levels; proteinkinase C, proteinkinase G, and calmodulin-dependent-proteinkinase activity) of signals pathway was shown. An increase of plasma membrane phospholipids (PC, PS, PE, PI, LPC) level was shown. Under conditions of influence of the stress factor the membran enzymes activity (H+, K+ -ATPase, 5'-AMPase, Na+, K+ -ATPase, Ca2+, Mg2+ -ATPase and H+, K+ -ATPase) was considerably increased. The intensification of lipid peroxidation processes in rats was demonstrated.
Zhou, Gaochao; Tao, Xudong; Shen, Ze; Zhu, Guanghao; Jin, Biaobing; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng
2016-01-01
We propose a kind of general framework for the design of a perfect linear polarization converter that works in the transmission mode. Using an intuitive picture that is based on the method of bi-directional polarization mode decomposition, it is shown that when the device under consideration simultaneously possesses two complementary symmetry planes, with one being equivalent to a perfect electric conducting surface and the other being equivalent to a perfect magnetic conducting surface, linear polarization conversion can occur with an efficiency of 100% in the absence of absorptive losses. The proposed framework is validated by two design examples that operate near 10 GHz, where the numerical, experimental and analytic results are in good agreements. PMID:27958313
Adamska, K; Bellinghausen, R; Voelkel, A
2008-06-27
The Hansen solubility parameter (HSP) seems to be a useful tool for the thermodynamic characterization of different materials. Unfortunately, estimation of the HSP values can cause some problems. In this work different procedures by using inverse gas chromatography have been presented for calculation of pharmaceutical excipients' solubility parameter. The new procedure proposed, based on the Lindvig et al. methodology, where experimental data of Flory-Huggins interaction parameter are used, can be a reasonable alternative for the estimation of HSP values. The advantage of this method is that the values of Flory-Huggins interaction parameter chi for all test solutes are used for further calculation, thus diverse interactions between test solute and material are taken into consideration.
Constitutive equation on basis of electo-thermal uniaxial tension for titanium profile
NASA Astrophysics Data System (ADS)
Baosheng, Liu; Fenggong, Lv; Yuansong, Zeng; Wei, Wu; Yongjun, Wang; Fengchao, Cao
2017-10-01
Titanium alloy profiles are widely applied as airframe parts due to its excellent mechanical properties and high compatibility of electrical potential with resin composite material. The electrical assisted forming is recognized as the effective approach to improve plasticity of titanium alloy profile. In this work, the electo-thermal uniaxial tension was performed to investigate the mechanical properties. The experiment results show that, the stress-strain curves increases sharply to the peak and declines quickly, exhibiting no stable deformation occurring. On basis of the obtained curves, a constitutive equation was established with consideration of the characteristic of self resistance heating, and the microstructure evolution was predicted. A comparison of the calculated stress-strain curves with the experimental ones was conducted, showing a reasonable agreement.
The phenomenon of voltage controlled switching in disordered superconductors.
Ghosh, Sanjib; De Munshi, D
2014-01-15
The superconductor-to-insulator transition (SIT) is a phenomenon occurring in highly disordered superconductors and may be useful in the development of superconducting switches. The SIT has been demonstrated to be induced by different external parameters: temperature, magnetic field, electric field, etc. However, the electric field induced SIT (ESIT), which has been experimentally demonstrated for some specific materials, holds particular promise for practical device development. Here, we demonstrate, from theoretical considerations, the occurrence of the ESIT. We also propose a general switching device architecture using the ESIT and study some of its universal behavior, such as the effects of sample size, disorder strength and temperature on the switching action. This work provides a general framework for the development of such a device.
GaSbBi/GaSb quantum-well and wire laser diodes
NASA Astrophysics Data System (ADS)
Ridene, Said
2018-06-01
In this work, we present detailed theoretical studies of the optical gain spectra and the emission wavelength of GaSb1-xBix/GaSb and traditional GaAs1-xBix/GaAs dilute-bismide quantum wells and wires (QWs, QWRs) focusing on comparison between their performances. It is found that the optical gain and the emission wavelength of the GaSb-based QW and QWRs lasers would be considerably greater than that of the GaAs-based QW lasers and QWRs for the same QW-, QWR-width, Bi-content and carrier density. The theoretical results were found to be in good agreement with available experimental data, especially for the emission wavelength given by GaSb-based QW laser diodes.
Atomistic study of nanoprecipitates influence on plasticity and fracture of crystalline metals
NASA Astrophysics Data System (ADS)
Stegailov, Vladimir; Kuksin, Alexey; Norman, Genri; Yanilkin, Alexey
2007-06-01
The recent experimental results [G.I.Kanel et al., 2006] show the essential influence of the nanoprecipitates on spall strength of copper single crystals. In this work we address this issue by the molecular dynamics study. The models under consideration are the EAM systems of Al nanoclusters in the Cu matrix and Cu clusters in the Al matrix. We consider these two cases as the representative examples of nanocluster-matrix difference in shear strength. Three ways of the high strain rate deformation modeling are studied: hydrostatic and uniaxial strain and shock wave loading in the impactor-target model. The preexisting edge dislocation interaction with the precipitate under shear deformation is addressed. The effect of the precipitate size is considered.
Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures
NASA Technical Reports Server (NTRS)
Carter, H. G.; Bullock, R. E.
1972-01-01
Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.
Employee-oriented leadership and quality of working life: mediating roles of idiosyncratic deals.
Hornung, Severin; Glaser, Jürgen; Rousseau, Denise M; Angerer, Peter; Weigl, Matthias
2011-02-01
Leader consideration has long been suggested to be conducive to quality of working life experienced by employees. The present study links this classic leadership dimension with more recent research on idiosyncratic deals, referring to personalized conditions workers negotiate in their employment relationships. A two-wave survey study (N = 159/142) among German hospital physicians suggests that authorizing idiosyncratic deals is a manifestation of employee-oriented leader behavior. Consideration had consistent positive effects on idiosyncratic deals regarding both professional development and working time flexibility. These two types had differential effects on two indicators of the quality of working life. Development related positively to work engagement, flexibility related negatively to work-family conflict. Cross-lagged correlations supported the proposed direction of influence between consideration and idiosyncratic deals in a subsample of repeating responders (n=91). The relation between development and engagement appeared to be reciprocal. Longitudinal results for the association between flexibility and work-family conflict were inconclusive.
Casares, J J Giner; Camacho, L; Romero, M T Martín; Cascales, J J López
2007-12-13
Understanding the structure and dynamics of phospholipid bilayers is of fundamental relevance in biophysics, biochemistry, and chemical physics. Lipid Langmuir monolayers are used as a model of lipid bilayers, because they are much more easily studied experimentally, although some authors question the validity of this model. With the aim of throwing light on this debate, we used molecular dynamics simulations to obtain an atomistic description of a membrane of dimyristoylphosphatidic acid under different surface pressures. Our results show that at low surface pressure the interdigitation between opposite lipids (that is, back-to-back interactions) controls the system structure. In this setting and due to the absence of this effect in the Langmuir monolayers, the behavior between these two systems differs considerably. However, when the surface pressure increases the lipid interdigitation diminishes and so monolayer and bilayer behavior converges. In this work, four computer simulations were carried out, subjecting the phospholipids to lateral pressures ranging from 0.17 to 40 mN/m. The phospholipids were studied in their charged state because this approach is closer to the experimental situation. Special attention was paid to validating our simulation results by comparison with available experimental data, therebeing in general excellent agreement between experimental and simulation data. In addition, the properties of the lipid/solution interface associated with the lipid barometric phase transition were studied.
Experimental and numerical investigation of hydro power generator ventilation
NASA Astrophysics Data System (ADS)
Jamshidi, H.; Nilsson, H.; Chernoray, V.
2014-03-01
Improvements in ventilation and cooling offer means to run hydro power generators at higher power output and at varying operating conditions. The electromagnetic, frictional and windage losses generate heat. The heat is removed by an air flow that is driven by fans and/or the rotor itself. The air flow goes through ventilation channels in the stator, to limit the electrical insulation temperatures. The temperature should be kept limited and uniform in both time and space, avoiding thermal stresses and hot-spots. For that purpose it is important that the flow of cooling air is distributed uniformly, and that flow separation and recirculation are minimized. Improvements of the air flow properties also lead to an improvement of the overall efficiency of the machine. A significant part of the windage losses occurs at the entrance of the stator ventilation channels, where the air flow turns abruptly from tangential to radial. The present work focuses exclusively on the air flow inside a generator model, and in particular on the flow inside the stator channels. The generator model design of the present work is based on a real generator that was previously studied. The model is manufactured taking into consideration the needs of both the experimental and numerical methodologies. Computational Fluid Dynamics (CFD) results have been used in the process of designing the experimental setup. The rotor and stator are manufactured using rapid-prototyping and plexi-glass, yielding a high geometrical accuracy, and optical experimental access. A special inlet section is designed for accurate air flow rate and inlet velocity profile measurements. The experimental measurements include Particle Image Velocimetry (PIV) and total pressure measurements inside the generator. The CFD simulations are performed based on the OpenFOAM CFD toolbox, and the steady-state frozen rotor approach. Specific studies are performed, on the effect of adding "pick-up" to spacers, and the effects of the inlet fan blades on the flow rate through the model. The CFD results capture the experimental flow details to a reasonable level of accuracy.
Stahnisch, Frank W
2014-01-01
Since the middle of the Nineteenth Century, neurophysiological researchers such as Theodor Fechner (1801-1887), Wilhelm Wundt (1832-1920), or Maximilian Ruppert Franz von Frey (1852-1932) started to analyze the causes, propagation, and perception of "pain" in the nervous system through the systematic use of experimental laboratory investigations. Particularly, Theodor Fechner's groundbreaking works made the contemporary neurophysiologists aware of the potential inclusion of psychological and subjective perceptions as a respectable object for the experimental study in mid-nineteenth century laboratories and clinical wards. Wilhelm Wundt frequently crossed the intersections between animal and human subject research and opened up many theoretical discussions, which also incorporated pluridisciplinary perspectives. On the research side, Wundt worked with many experimental physiological methods, developed theoretical psychophysiological considerations, and provided a detailed philosophical analysis of the new experimental findings and the subjective accounts of pain perceptions in his test persons--among many other experimental and investigative approaches. While each one of these neurophysiologists' research programs have been extensively studied in their own right, their mutual contributions to modern pain research and impact on this emerging interdisciplinary field of biomedical, psychophysiological and philosophical studies have so far not sufficiently been analyzed from a historiographical perspective. This even regards their highly sophisticated instruments and apparatuses that they applied to the study of pain, which Maximilian von Frey used further in the medical wards at the Fin de Siècle. These instruments became applied to many patients with acute or chronic pain disorders. In a way, the substantial time lag between early laboratory research and the application of these findings in the medical clinics of the time could also be explained as a process of newly defining the boundaries of the experimental instrumentation by situating the physiological apparatuses and experiments alongside the spectrum from threshold values to normal values. This hence led to the recalibration of the new field of investigations of pain phenomena. Until today, the elements of phenomenological "identification", "evaluation" and "physical reduction", which these pioneers had started and importantly put on the scientific map of nineteenth-century medicine and neuroscience, accompany the scientific endeavour of modern pain research.
Educational Neuroethics: A Contribution from Empirical Research
ERIC Educational Resources Information Center
Zocchi, Meghan; Pollack, Courtney
2013-01-01
In recent years, educational neuroscience has begun to move into the limelight, suggesting an increased importance on the ethical considerations of educational neuroscience work, or "educational neuroethics." In a departure from previous work on educational neuroethics, this article focuses on the ethical considerations that are applicable to…
Enhanced Condensation Heat Transfer On Patterned Surfaces
NASA Astrophysics Data System (ADS)
Alizadeh-Birjandi, Elaheh; Kavehpour, H. Pirouz
2017-11-01
Transition from film to drop wise condensation can improve the efficiency of thermal management applications and result in considerable savings in investments and operating costs by millions of dollars every year. The current methods available are either hydrophobic coating or nanostructured surfaces. The former has little adhesion to the structure which tends to detach easily under working conditions, the fabrication techniques of the latter are neither cost-effective nor scalable, and both are made with low thermal conductivity materials that would negate the heat transfer enhancement by drop wise condensation. Therefore, the existing technologies have limitations in enhancing vapor-to-liquid condensation. This work focuses on development of surfaces with wettability contrast to boost drop wise condensation, which its overall heat transfer efficiency is 2-3 times film wise condensation, while maintaining high conduction rate through the surface at low manufacturing costs. The variation in interfacial energy is achieved through crafting hydrophobic patterns to the surface of the metal via scalable fabrication techniques. The results of experimental and surface optimization studies are also presented.
NASA Astrophysics Data System (ADS)
Trinchenko, A. A.; Paramonov, A. P.
2017-10-01
Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.
Proceedings of the Jet Noise Workshop
NASA Technical Reports Server (NTRS)
Huff, Dennis (Compiler)
2001-01-01
Jet noise has been a major problem for aircraft for nearly 50 years. There has been considerable research performed around the world aimed at identifying ways to reduce jet noise. This work was first intended for turbojet aircraft and later extended to low bypass ratio turbofans. Many of the people who performed this pioneering research have retired or are no longer active in aeroacoustics. After so many years of work in jet noise, it is a challenge to piece together the history of its development through existing publications due to the large volume of documents. It is possible to forget important developments from the past as new researchers tackle similar problems. Therefore, a jet noise workshop was organized by the AeroAcoustics Research Consortium (AARC) with the intent of reviewing research that has been done by experts throughout the world. The forum provided a unique opportunity for current researchers to hear the diverse views from world experts on issues related to jet noise modeling and interpretation of experimental data.
Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng
2013-01-01
Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass. PMID:23350028
Pulse Front Tilt and Laser Plasma Acceleration
NASA Astrophysics Data System (ADS)
Mittelberger, Daniel; Thévenet, Maxence; Nakamura, Kei; Lehe, Remi; Gonsalves, Anthony; Benedetti, Carlo; Leemans, Wim
2017-10-01
Pulse front tilt (PFT) is potentially present in any CPA laser system, but its effects may be overlooked because spatiotemporal pulse characterization is considerably more involved than measuring only spatial or temporal profile. PFT is particularly important for laser plasma accelerators (LPA) because it influences electron beam injection and steering. In this work, experimental results from the BELLA Center will be presented that demonstrate the effect of optical grating misalignment and optical compression, resulting in PFT, on accelerator performance. Theoretical models of laser and electron beam steering will be introduced based on particle-in-cell simulations showing distortion of the plasma wake. Theoretical predictions will be compared with experiments and complimentary simulations, and tolerances on PFT and optical compressor alignment will be developed as a function of LPA performance requirements. This work was supported by the Office of High Energy Physics, Office of Science, US Department of Energy under Contract DE-AC02-05CH11231 and the National Science Foundation under Grant PHY-1415596.
NASA Astrophysics Data System (ADS)
Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun
2018-06-01
Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
The Fernow Experimental Forest and Canaan Valley: A history of research
Mary Beth Adams; James N. Kochenderfer
2015-01-01
The Fernow Experimental Forest (herein called the Fernow) in Tucker County, WV, was set aside in 1934 for âexperimental and demonstration purposes under the direction of the Appalachian Forest Experiment Stationâ of the US Forest Service. Named after a famous German forester, Bernhard Fernow, the Fernow was initially developed with considerable assistance from the...
Adamczyk, Andrew J.; Cao, Jie; Kamerlin, Shina C. L.; Warshel, Arieh
2011-01-01
The proposal that enzymatic catalysis is due to conformational fluctuations has been previously promoted by means of indirect considerations. However, recent works have focused on cases where the relevant motions have components toward distinct conformational regions, whose population could be manipulated by mutations. In particular, a recent work has claimed to provide direct experimental evidence for a dynamical contribution to catalysis in dihydrofolate reductase, where blocking a relevant conformational coordinate was related to the suppression of the motion toward the occluded conformation. The present work utilizes computer simulations to elucidate the true molecular basis for the experimentally observed effect. We start by reproducing the trend in the measured change in catalysis upon mutations (which was assumed to arise as a result of a “dynamical knockout” caused by the mutations). This analysis is performed by calculating the change in the corresponding activation barriers without the need to invoke dynamical effects. We then generate the catalytic landscape of the enzyme and demonstrate that motions in the conformational space do not help drive catalysis. We also discuss the role of flexibility and conformational dynamics in catalysis, once again demonstrating that their role is negligible and that the largest contribution to catalysis arises from electrostatic preorganization. Finally, we point out that the changes in the reaction potential surface modify the reorganization free energy (which includes entropic effects), and such changes in the surface also alter the corresponding motion. However, this motion is never the reason for catalysis, but rather simply a reflection of the shape of the reaction potential surface. PMID:21831831
Optograms and criminology: science, news reporting, and fanciful novels.
Lanska, Douglas J
2013-01-01
A persistent nineteenth-century urban legend was the notion that photograph-like images of the last-seen object or person would be preserved in the eyes of the dead. This popular notion followed technological developments (the daguerreotype and ophthalmoscope) that antedated by decades a basic understanding of retinal physiology. From 1876 to 1877, Boll described photochemical bleaching of the retina and produced a crude retinal image that remained briefly visible after death in an experimental animal. From 1877 to 1881, Kühne elaborated the processes involved in photochemical transduction, and created more complex retinal images, or "optograms," that were visible after the death of experimental animals under special laboratory circumstances. In 1880, Kühne reported the first human "optogram" when he examined the eyes following the state execution of a convicted murderer. Although the work of these physiologists increased public interest in "optography" as a potential tool in forensic investigations, Kühne and his student, Ayres, concluded after an extensive series of investigations that optography would never be useful for this purpose. Nevertheless, because of the prior tantalizing results, optography became a frequent consideration in speculative news reports of sensational unsolved murders, and as a plot device in works of fiction, some quite fantastical. Fictional portrayals included works by Rudyard Kipling and Jules Verne. Despite denouncement of optography for forensic investigations by Kühne, and by numerous physicians, the general public and mass media continued to press for examination of the retinae of murder victims well into the twentieth century, particularly in high-profile unsolved cases. © 2013 Elsevier B.V. All rights reserved.
The skyshine benchmark experiment revisited.
Terry, Ian R
2005-01-01
With the coming renaissance of nuclear power, heralded by new nuclear power plant construction in Finland, the issue of qualifying modern tools for calculation becomes prominent. Among the calculations required may be the determination of radiation levels outside the plant owing to skyshine. For example, knowledge of the degree of accuracy in the calculation of gamma skyshine through the turbine hall roof of a BWR plant is important. Modern survey programs which can calculate skyshine dose rates tend to be qualified only by verification with the results of Monte Carlo calculations. However, in the past, exacting experimental work has been performed in the field for gamma skyshine, notably the benchmark work in 1981 by Shultis and co-workers, which considered not just the open source case but also the effects of placing a concrete roof above the source enclosure. The latter case is a better reflection of reality as safety considerations nearly always require the source to be shielded in some way, usually by substantial walls but by a thinner roof. One of the tools developed since that time, which can both calculate skyshine radiation and accurately model the geometrical set-up of an experiment, is the code RANKERN, which is used by Framatome ANP and other organisations for general shielding design work. The following description concerns the use of this code to re-address the experimental results from 1981. This then provides a realistic gauge to validate, but also to set limits on, the program for future gamma skyshine applications within the applicable licensing procedures for all users of the code.
Reduction of measurement errors in OCT scanning
NASA Astrophysics Data System (ADS)
Morel, E. N.; Tabla, P. M.; Sallese, M.; Torga, J. R.
2018-03-01
Optical coherence tomography (OCT) is a non-destructive optical technique, which uses a light source with a wide band width that focuses on a point in the sample to determine the distance (strictly, the optical path difference, OPD) between this point and a reference surface. The point can be superficial or at an interior interface of the sample (transparent or semitransparent), allowing topographies and / or tomographies in different materials. The Michelson interferometer is the traditional experimental scheme for this technique, in which a beam of light is divided into two arms, one the reference and the other the sample. The overlap of reflected light in the sample and in the reference generates an interference signal that gives us information about the OPD between arms. In this work, we work on the experimental configuration in which the reference signal and the reflected signal in the sample travel on the same arm, improving the quality of the interference signal. Among the most important aspects of this improvement we can mention that the noise and errors produced by the relative reference-sample movement and by the dispersion of the refractive index are considerably reduced. It is thus possible to obtain 3D images of surfaces with a spatial resolution in the order of microns. Results obtained on the topography of metallic surfaces, glass and inks printed on paper are presented.
Pulsatile Flow Across a Cylinder--An Investigation of Flow in a Total Artificial Lung
NASA Astrophysics Data System (ADS)
Lin, Yu-Chun
2005-11-01
The effect of pulsatility on flow across a single cylinder has been examined experimentally using particle image velocimetry. This work is motivated by the ongoing development of a total artificial lung (TAL), a device which would serve as a bridge to lung transplant. The prototype TAL consists of hollow microfibers through which oxygen-rich gas flows and blood flows around. Flow through the device is provided entirely by right heart and, therefore, is puslatile. The Peclet number of the flow is large and consequently the development of secondary flow affects the resulting gas exchange. The effects of frequency and average flow rate of pulsatile flow around a cylinder were investigated experimentally in a water tunnel and some of the results were compared with preliminary numerical results. Vortices developed behind the cylinder at lower Reynolds numbers in pulsatile flow than steady flow. The results indicate that there are critical values of the Reynolds number between 3 to 5 and Stokes numbers of 0.22, below which vortices were not observed. The findings suggest that higher Stokes and Reynolds numbers within the device could enhance vortex formation. However, this enhanced gas exchange could be at the expense of higher device resistance and increased likelihood of blood trauma. Intelligent TAL design will require consideration of these effects. This work is supported by NIH grant HL69420.
Modernization at the Y-12 National Security Complex: A Case for Additional Experimental Benchmarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornbury, M. L.; Juarez, C.; Krass, A. W.
Efforts are underway at the Y-12 National Security Complex (Y-12) to modernize the recovery, purification, and consolidation of un-irradiated, highly enriched uranium metal. Successful integration of advanced technology such as Electrorefining (ER) eliminates many of the intermediate chemistry systems and processes that are the current and historical basis of the nuclear fuel cycle at Y-12. The cost of operations, the inventory of hazardous chemicals, and the volume of waste are significantly reduced by ER. It also introduces unique material forms and compositions related to the chemistry of chloride salts for further consideration in safety analysis and engineering. The work hereinmore » briefly describes recent investigations of nuclear criticality for 235UO2Cl2 (uranyl chloride) and 6LiCl (lithium chloride) in aqueous solution. Of particular interest is the minimum critical mass of highly enriched uranium as a function of the molar ratio of 6Li to 235U. The work herein also briefly describes recent investigations of nuclear criticality for 235U metal reflected by salt mixtures of 6LiCl or 7LiCl (lithium chloride), KCl (potassium chloride), and 235UCl3 or 238UCl3 (uranium tri-chloride). Computational methods for analysis of nuclear criticality safety and published nuclear data are employed in the absence of directly relevant experimental criticality benchmarks.« less
View of Soviet ionospheric modification research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, L.M.; Showen, R.L.
1990-10-01
We have reviewed and provided a technical assessment of Soviet research of the past five to ten years in ionospheric modification by high-power radio waves. This review includes a comprehensive survey of Soviet published literature, conference proceedings, and direct discussions with the involved Soviet researchers. The current state of the art for Soviet research in this field is evaluated, identifying areas of potential breakthrough discoveries, and discussing implications of this work for emerging technologies and future applications. This assessment is divided into the categories of basic research, advanced research, and applications. Basic research is further subdivided into studies of themore » modified natural geophysical environment, nonlinear plasma physics, and polar geophysical studies. Advanced research topics include the generation of artificial ionization mirrors and high-power oblique propagation effects. A separate comparative assessment of Soviet theoretical work also is included in this analysis. Our evaluation of practical and potential applications of this research discusses the utility of ionospheric modification in creating disturbed radio wave propagation environments, and its role in current and future remote-sensing and telecommunications systems. This technical assessment does not include consideration of ionospheric modification by means other than high-power radio waves. The Soviet effort in ionospheric modification sustains theoretical and experimental research at activity levels considerably greater than that found in comparable programs in the West. Notable strengths of the Soviet program are its breadth of coverage, large numbers of scientific participation, theoretical creativity and insight, and its powerful radio wave transmitting facilities.« less
The importance of media roughness considerations for describing particle deposition in porous media
NASA Astrophysics Data System (ADS)
Jin, C.; Emelko, M.
2016-12-01
The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.
NASA Astrophysics Data System (ADS)
Yousfi, M.; Eichwald, O.; Merbahi, N.; Jomaa, N.
2012-08-01
This work is devoted to fluid modeling based on experimental investigations of a classical setup of a low-temperature plasma jet. The latter is generated at atmospheric pressure using a quartz tube of small diameter crossed by helium gas flow and surrounded by an electrode system powered by a mono-polar high-voltage pulse. The streamer-like behavior of the fast plasma bullets or ionization waves launched in ambient air for every high-voltage pulse, already emphasized in the literature from experimental or analytical considerations or recent preliminary fluid models, is confirmed by a numerical one-moment fluid model for the simulation of the ionization wave dynamics. The dominant interactions between electron and the main ions present in He-air mixtures with their associated basic data are taken into account. The gradual dilution of helium in air outside the tube along the axis is also considered using a gas hydrodynamics model based on the Navier-Stokes equation assuming a laminar flow. Due to the low magnitude of the reduced electric field E/N (not exceeding 15 Td), it is first shown that consideration of the stepwise ionization of helium metastables is required to reach the critical size of the electron avalanches in order to initiate the formation of ionization waves. It is also shown that a gas pre-ionization ahead of the wave front of about 109 cm-3 (coming from Penning ionization without considering the gas photo-ionization) is required for the propagation. Furthermore, the second ionization wave experimentally observed during the falling time of the voltage pulse, between the powered electrode and the tube exit, is correlated with the electric field increase inside the ionized channel in the whole region between the electrode and the tube exit. The propagation velocity and the distance traveled by the front of the ionization wave outside the tube in the downstream side are consistent with the present experimental measurements. In comparison with the streamer dynamics in a classical corona discharge, it is shown that under the same gas composition the plasma jet ionization waves propagate with a lower velocity (about 5 times), and have a higher diameter (at least 10 times) and a lower plasma density (at least 100 times).
Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep
2016-05-06
A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.
Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.
Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong
2011-08-09
This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.
NASA Astrophysics Data System (ADS)
Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep
2016-05-01
A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.
Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow
2011-01-01
This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644
Numerical and Experimental Evaluation of Blast Retrofit of Windows
2013-07-18
Retrofitting windows against blast load environments is a topic under considerable investigation. The retrofits added to existing buildings need the strength...experimentally survived the desired loading environment. Two views of the posttest vertical blind system can be seen in Figure 8. Although the vertical...vertica Figure 8: Posttest views l blind system and the connections Both the numerical and experimental systems deformed in a similar
Ethical considerations in biomedical research: a personal view.
Dahlöf, Carl
2013-06-01
Ethical considerations are made when an experiment is planned and take a regulatory system of moral principles into account. Ethical considerations should first and foremost be made in order to protect the individual subject/animal from being exposed to any unethical and perhaps even illegal intervention and to ensure that the experimental conditions used are appropriate. The main role of research ethics committees is to assess the scientific and ethical aspects of submitted protocols and follow up the trial until its closure.
OPTIMIZING THE PRECISION OF TOXICITY THRESHOLD ESTIMATION USING A TWO-STAGE EXPERIMENTAL DESIGN
An important consideration for risk assessment is the existence of a threshold, i.e., the highest toxicant dose where the response is not distinguishable from background. We have developed methodology for finding an experimental design that optimizes the precision of threshold mo...
Lateral spread affects nitrogen leaching from urine patches.
Cichota, Rogerio; Vogeler, Iris; Snow, Val; Shepherd, Mark; McAuliffe, Russell; Welten, Brendon
2018-09-01
Nitrate leaching from urine deposited by grazing animals is a critical constraint for sustainable dairy farming in New Zealand. While considerable progress has been made to understand the fate of nitrogen (N) under urine patches, little consideration has been given to the spread of urinary N beyond the wetted area. In this study, we modelled the lateral spread of nitrogen from the wetted area of a urine patch to the soil outside the patch using a combination of two process-based models (HYDRUS and APSIM). The simulations provided insights on the extent and temporal pattern for the redistribution of N in the soil following a urine deposition and enabled investigating the effect of lateral spread of urinary N on plant growth and N leaching. The APSIM simulation, using an implementation of a dispersion-diffusion function, was tested against experimental data from a field experiment conducted in spring on a well-drained soil. Depending on the geometry considered for the dispersion-diffusion function (plate or cylindrical) the area-averaged N leaching decreased by 8 and 37% compared with simulations without lateral N spread; this was due to additional N uptake from pasture on the edge area. A sensitivity analysis showed that area-averaged pasture growth was not greatly affected by the value of the dispersion factor used in the model, whereas N leaching was very sensitive. Thus, the need to account for the edge effect may depend on the objective of the simulations. The modelling results also showed that considering lateral spread of urinary N was sufficient to describe the experimental data, but plant root uptake across urine patch zones may still be relevant in other conditions. Although further work is needed for improving accuracy, the simulated and experimental results demonstrate that accounting for the edge effect is important for determining N leaching from urine-affected areas. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fonseca, E. S. R.; de Jesus, M. E. P.
2007-07-01
The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.
The Impact of Temperatures on the Stability of Rocks Surrounding a Single Fracture
NASA Astrophysics Data System (ADS)
Zhang, Yan; Li, Ning; Dai, Jun
2018-05-01
Research on the influence of temperature and the accompanying stress on the stability of the rocks surrounding an underground tunnel has become ever more important. This paper constructs a geometric model of a single-fracture tunnel by combining a high-temperature underground tunnel as the object of study with an example that uses a high-temperature tunnel segment in the water diversion tunnel of a hydropower station in Xinjiang. Based on the relevant theoretical analysis, with the consideration of different working conditions, a numerical experimental analysis was conducted to determine the two-dimensional transient temperature field distribution of the tunnel rock mass by using a numerical analysis software. The experimental data was consistent with the measured data. The calculated results show the following: a. when the temperature difference is greater, the stress concentration is higher near the fracture of the surrounding rock; b. the degree of the stress concentration in the crack tip region is not positively correlated to the distance, and there is a sensitive region where the stress varies.
NASA Astrophysics Data System (ADS)
Srivastava, Y.; Srivastava, S.; Boriwal, L.
2016-09-01
Mechanical alloying is a novelistic solid state process that has received considerable attention due to many advantages over other conventional processes. In the present work, Co2FeAl healer alloy powder, prepared successfully from premix basic powders of Cobalt (Co), Iron (Fe) and Aluminum (Al) in stoichiometric of 60Co-26Fe-14Al (weight %) by novelistic mechano-chemical route. Magnetic properties of mechanically alloyed powders were characterized by vibrating sample magnetometer (VSM). 2 factor 5 level design matrix was applied to experiment process. Experimental results were used for response surface methodology. Interaction between the input process parameters and the response has been established with the help of regression analysis. Further analysis of variance technique was applied to check the adequacy of developed model and significance of process parameters. Test case study was performed with those parameters, which was not selected for main experimentation but range was same. Response surface methodology, the process parameters must be optimized to obtain improved magnetic properties. Further optimum process parameters were identified using numerical and graphical optimization techniques.
The University of Arizona program in solid propellants
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar
1989-01-01
The University of Arizona program is aimed at introducing scientific rigor to the predictability and quality assurance of composite solid propellants. Two separate approaches are followed: to use the modern analytical techniques to experimentally study carefully controlled propellant batches to discern trends in mixing, casting, and cure; and to examine a vast bank of data, that has fairly detailed information on the ingredients, processing, and rocket firing results. The experimental and analytical work is described briefly. The principle findings were that: (1) pre- (dry) blending of the coarse and fine ammonium perchlorate can significantly improve the uniformity of mixing; (2) the Fourier transformed IR spectra of the uncured and cured polymer have valuable data on the state of the fuel; (3) there are considerable non-uniformities in the propellant slurry composition near the solid surfaces (blades, walls) compared to the bulk slurry; and (4) in situ measurements of slurry viscosity continuously during mixing can give a good indication of the state of the slurry. Several important observations in the study of the data bank are discussed.
How reproducible are methods to measure the dynamic viscoelastic properties of poroelastic media?
NASA Astrophysics Data System (ADS)
Bonfiglio, Paolo; Pompoli, Francesco; Horoshenkov, Kirill V.; Rahim, Mahmud Iskandar B. Seth A.; Jaouen, Luc; Rodenas, Julia; Bécot, François-Xavier; Gourdon, Emmanuel; Jaeger, Dirk; Kursch, Volker; Tarello, Maurizio; Roozen, Nicolaas Bernardus; Glorieux, Christ; Ferrian, Fabrizio; Leroy, Pierre; Vangosa, Francesco Briatico; Dauchez, Nicolas; Foucart, Félix; Lei, Lei; Carillo, Kevin; Doutres, Olivier; Sgard, Franck; Panneton, Raymond; Verdiere, Kévin; Bertolini, Claudio; Bär, Rolf; Groby, Jean-Philippe; Geslain, Alan; Poulain, Nicolas; Rouleau, Lucie; Guinault, Alain; Ahmadi, Hamid; Forge, Charlie
2018-08-01
There is a considerable number of research publications on the acoustical properties of porous media with an elastic frame. A simple search through the Web of Science™ (last accessed 21 March 2018) suggests that there are at least 819 publications which deal with the acoustics of poroelastic media. A majority of these researches require accurate knowledge of the elastic properties over a broad frequency range. However, the accuracy of the measurement of the dynamic elastic properties of poroelastic media has been a contentious issue. The novelty of this paper is that it studies the reproducibility of some popular experimental methods which are used routinely to measure the key elastic properties such as the dynamic Young's modulus, loss factor and Poisson ratio of poroelastic media. In this paper, fourteen independent sets of laboratory measurements were performed on specimens of the same porous materials. The results from these measurements suggest that the reproducibility of this type of experimental method is poor. This work can be helpful to suggest improvements which can be developed to harmonize the way the elastic properties of poroelastic media are measured worldwide.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid
NASA Astrophysics Data System (ADS)
Pavlenko, Alexander
2011-06-01
The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.
Heat Transfer in a Turbulent Liquid or Gas Stream
NASA Technical Reports Server (NTRS)
Latzko, H.
1944-01-01
The,theory of heat.transfer from a solid body to a liquid stream could he presented previously** only with limiting assumptions about the movement of the fluid (potential flow, laminar frictional flow). (See references 1, 2, and 3). For turbulent flow, the most important practical case, the previous theoretical considerations did not go beyond dimensionless formulas and certain conclusions as to the analogy between the friction factor and the unit thermal conductance, (See references 4, 5, 6, and 7,) In order to obtain numerical results, an experimental treatment of the problem was resorted to, which gave rise to numerous investigations because of the importance of this problem in many branches of technology. However, the results of these investigations frequently deviate from one another. The experimental results are especially dependent upon the overall dimensions and the specific proportions of the equipment. In the present work, the attempt will be made to develop systematically the theory of the heat transfer and of the dependence of the unit thermal conductance upon shape and dimensions, using as a basis the velocity distribution for turbulent flow set up by Prandtl and Von Karman.
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
1999-01-01
Rocket thrusters for Rocket Based Combined Cycle (RBCC) engines typically operate with hydrogen/oxygen propellants in a very compact space. Packaging considerations lead to designs with either axisymmetric or two-dimensional throat sections. Nozzles tend to be either two- or three-dimensional. Heat transfer characteristics, particularly in the throat, where the peak heat flux occurs, are not well understood. Heat transfer predictions for these small thrusters have been made with one-dimensional analysis such as the Bartz equation or scaling of test data from much larger thrusters. The current work addresses this issue with an experimental program that examines the heat transfer characteristics of a gaseous oxygen (GO2)/gaseous hydrogen (GH2) two-dimensional compact rocket thruster. The experiments involved measuring the axial wall temperature profile in the nozzle region of a water-cooled gaseous oxygen/gaseous hydrogen rocket thruster at a pressure of 3.45 MPa. The wall temperature measurements in the thruster nozzle in concert with Bartz's correlation are utilized in a one-dimensional model to obtain axial profiles of nozzle wall heat flux.
[Study of the radioprotective effects of TMG on teratogenic malformations in irradiated mice].
Gu, Y; Hasegawa, T; Kim, H; Suzuki, I; Mori, T; Yamamoto, Y
2000-12-01
ICR mice fetuses in the organogenesis stage were used to clarify experimentally the mechanism of the protective effect of vitamin E derivant (TMG: 2-(alpha-D-Glucopyranosyl) methyl-2, -5, -7, -8-Teramethylchorman-6-working woman) on the effects of radiation. The authors paid careful attention to radiation, and the radioprotective effects of TMG on the induction of malformations was examined. Radiation is an important consideration because of its widespread use in the areas of medicine, nuclear energy, and industry. Malformations induced by radiation at the organogenesis stage, skeletal malformations, and the effects at the cellular level of embryos were examined in this research. Further, the mechanism of the protection effect of TMG against radiation-induced malformations was analyzed and observed experimentally. Thus, this study was done to provide fundamental data on the radioprotective agent TMG. It was clear that TMG exerted radioprotective effects against embryonic death and the rate of teratogenesis when administered before exposure. Such effects were also exerted against skeletal malformations and fetal body weight. In summary, radioprotective effects were observed at the whole-body level as well as at the cellular level.
Grodowska, Katarzyna; Parczewski, Andrzej
2013-01-01
The purpose of the present work was to find optimum conditions of headspace gas chromatography (HS-GC) determination of residual solvents which usually appear in pharmaceutical products. Two groups of solvents were taken into account in the present examination. Group I consisted of isopropanol, n-propanol, isobutanol, n-butanol and 1,4-dioxane and group II included cyclohexane, n-hexane and n-heptane. The members of the groups were selected in previous investigations in which experimental design and chemometric methods were applied. Four factors were taken into consideration in optimization which describe HS conditions: sample volume, equilibration time, equilibrium temperature and NaCl concentration in a sample. The relative GC peak area served as an optimization criterion which was considered separately for each analyte. Sequential variable size simplex optimization strategy was used and the progress of optimization was traced and visualized in various ways simultaneously. The optimum HS conditions appeared different for the groups of solvents tested, which proves that influence of experimental conditions (factors) depends on analyte properties. The optimization resulted in significant signal increase (from seven to fifteen times).
Statistical exchange-coupling errors and the practicality of scalable silicon donor qubits
NASA Astrophysics Data System (ADS)
Song, Yang; Das Sarma, S.
2016-12-01
Recent experimental efforts have led to considerable interest in donor-based localized electron spins in Si as viable qubits for a scalable silicon quantum computer. With the use of isotopically purified 28Si and the realization of extremely long spin coherence time in single-donor electrons, the recent experimental focus is on two-coupled donors with the eventual goal of a scaled-up quantum circuit. Motivated by this development, we simulate the statistical distribution of the exchange coupling J between a pair of donors under realistic donor placement straggles, and quantify the errors relative to the intended J value. With J values in a broad range of donor-pair separation ( 5 <|R |<60 nm), we work out various cases systematically, for a target donor separation R0 along the [001], [110] and [111] Si crystallographic directions, with |R0|=10 ,20 or 30 nm and standard deviation σR=1 ,2 ,5 or 10 nm. Our extensive theoretical results demonstrate the great challenge for a prescribed J gate even with just a donor pair, a first step for any scalable Si-donor-based quantum computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javaid, Saqib; National Centre of Physics, Islamabad 45320; Javed Akhtar, M., E-mail: javedakhtar6@gmail.com
Recently, experimental results have shown that photovoltaic properties of Fullerene (C60)/Phthalocyanine based devices improve considerably as molecular orientation is changed from edge-on to face-on. In this work, we have studied the impact of molecular orientation on C60/ZnPc interfacial properties, particularly focusing on experimentally observed face-on and edge-on configuration, using density functional theory based simulations. The results show that the interfacial electronic properties are strongly anisotropic: direction of charge transfer and interface dipole fluctuates as molecular orientation is switched. As a result of orientation dependant interface dipole, difference between acceptor LUMO and donor HOMO increases as the orientation is changed frommore » edge-on to face-on, suggesting a consequent increase in open circuit voltage (V{sub OC}). Moreover, adsorption and electronic properties indicate that the interfacial interactions are much stronger in the face-on configuration which should further facilitate the charge-separation process. These findings elucidate the energy level alignment at C60/ZnPc interface and help to identify interface dipole as the origin of the orientation dependence of V{sub OC}.« less
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.
Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
Experimental investigate of heat transfer for graphene/water nanofluid in micro heat exchanger
NASA Astrophysics Data System (ADS)
Abd Elhafez, S. E.; Abo-Zahhad, E. M.; El-Shazly, A. H.; El-Kady, M. F.
2017-02-01
In this investigation, the heat transfer characteristics of graphene nano platelets (GNPs)/water nanofluid were studied in a micro heat exchanger (MHE). The micro heat exchanger performance was also examined. The test setup was worked out in the laminar regime with Reynold numbers varying between 100 and 400GNPs/water nanofluid was prepared three different concentrations (0.025 wt. %, 0.05 wt. % and 0.1 wt. %) using ultrasonic wave. The influence of mass flow rate, inlet temperatures and weight fraction on the overall heat transfer coefficient (U) and logarithmic mean temperature (LMTD) were examined. The results showed considerable enhancement on the overall heat transfer coefficient of graphene/water nanofluid and the MHE effectiveness. A maximum enhancement on overall heat transfer coefficient was reached to 150% at Re=100 by 0.1wt% nanofluid. The effectiveness of micro heat exchanger was enhanced by increase weight fraction of graphene nanoparticle. Moreover, the experimental results showed that 0.1 wt. % GNPs/water nanofluid, flowing through MHE, has had high pressure drop, and pumping power, when it has been compared with 0.5 wt. % and 0.025 wt.%.
Raevsky, O; Andreeva, E; Raevskaja, O; Skvortsov, V; Schaper, K
2005-01-01
QSPR analyses of the solubility in water of 558 vapors, 786 liquids and 2045 solid organic neutral chemicals and drugs are presented. Simultaneous consideration of H-bond acceptor and donor factors leads to a good description of the solubility of vapors and liquids. A volume-related term was found to have an essential negative contribution to the solubility of liquids. Consideration of polarizability, H-bond acceptor and donor factors and indicators for a few functional groups, as well as the experimental solubility values of structurally nearest neighbors yielded good correlations for liquids. The application of Yalkowsky's "General Solubility Equation" to 1063 solid chemicals and drugs resulted in a correlation of experimental vs calculated log S values with only modest statistical criteria. Two approaches to derive predictive models for solubility of solid chemicals and drugs were tested. The first approach was based on the QSPR for liquids together with indicator variables for different functional groups. Furthermore, a calculation of enthalpies for intermolecular complexes in crystal lattices, based on new H-bond potentials, was carried out for the better consideration of essential solubility- decreasing effects in the solid state, as compared with the liquid state. The second approach was based on a combination of similarity considerations and traditional QSPR. Both approaches lead to high quality predictions with average absolute errors on the level of experimental log S determination.
Experimental study on the inlet fogging system using two-fluid nozzles
NASA Astrophysics Data System (ADS)
Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong
2010-04-01
Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
Influence of vapor deposition on structural and charge transport properties of ethylbenzene films
Antony, Lucas W.; Jackson, Nicholas E.; Lyubimov, Ivan; ...
2017-04-14
Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that themore » model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. Finally, these results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.« less
Influence of vapor deposition on structural and charge transport properties of ethylbenzene films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antony, Lucas W.; Jackson, Nicholas E.; Lyubimov, Ivan
Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that themore » model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. Finally, these results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design.« less
Influence of Vapor Deposition on Structural and Charge Transport Properties of Ethylbenzene Films
2017-01-01
Organic glass films formed by physical vapor deposition exhibit enhanced stability relative to those formed by conventional liquid cooling and aging techniques. Recently, experimental and computational evidence has emerged indicating that the average molecular orientation can be tuned by controlling the substrate temperature at which these “stable glasses” are grown. In this work, we present a comprehensive all-atom simulation study of ethylbenzene, a canonical stable-glass former, using a computational film formation procedure that closely mimics the vapor deposition process. Atomistic studies of experimentally formed vapor-deposited glasses have not been performed before, and this study therefore begins by verifying that the model and method utilized here reproduces key structural features observed experimentally. Having established agreement between several simulated and experimental macroscopic observables, simulations are used to examine the substrate temperature dependence of molecular orientation. The results indicate that ethylbenzene glasses are anisotropic, depending upon substrate temperature, and that this dependence can be understood from the orientation present at the surface of the equilibrium liquid. By treating ethylbenzene as a simple model for molecular semiconducting materials, a quantum-chemical analysis is then used to show that the vapor-deposited glasses exhibit decreased energetic disorder and increased magnitude of the mean-squared transfer integral relative to isotropic, liquid-cooled films, an effect that is attributed to the anisotropic ordering of the molecular film. These results suggest a novel structure–function simulation strategy capable of tuning the electronic properties of organic semiconducting glasses prior to experimental deposition, which could have considerable potential for organic electronic materials design. PMID:28573203
Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
Zeng, Qingyu; Zhao, Xia
2018-01-01
Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.
Hankiewicz, Ewelina M.; Culcer, Dimitrie
2017-01-01
Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167
7 CFR 1728.70 - Procurement of materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... unlisted item in emergency situations and for experimental use or to meet a specific need. For purposes of... from the industry is not readily available, or the standard designs are not applicable to the borrower's specific problem under consideration. (3) RUS will make arrangements for test or experimental use...
Systematic Experimental Designs For Mixed-species Plantings
Jeffery C. Goelz
2001-01-01
Systematic experimental designs provide splendid demonstration areas for scientists and land managers to observe the effects of a gradient of species composition. Systematic designs are based on large plots where species composition varies gradually. Systematic designs save considerable space and require many fewer seedlings than conventional mixture designs. One basic...
7 CFR 1728.70 - Procurement of materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... unlisted item in emergency situations and for experimental use or to meet a specific need. For purposes of... from the industry is not readily available, or the standard designs are not applicable to the borrower's specific problem under consideration. (3) RUS will make arrangements for test or experimental use...
7 CFR 1728.70 - Procurement of materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... unlisted item in emergency situations and for experimental use or to meet a specific need. For purposes of... from the industry is not readily available, or the standard designs are not applicable to the borrower's specific problem under consideration. (3) RUS will make arrangements for test or experimental use...
7 CFR 1728.70 - Procurement of materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... unlisted item in emergency situations and for experimental use or to meet a specific need. For purposes of... from the industry is not readily available, or the standard designs are not applicable to the borrower's specific problem under consideration. (3) RUS will make arrangements for test or experimental use...
7 CFR 1728.70 - Procurement of materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... unlisted item in emergency situations and for experimental use or to meet a specific need. For purposes of... from the industry is not readily available, or the standard designs are not applicable to the borrower's specific problem under consideration. (3) RUS will make arrangements for test or experimental use...
Multiple Drafts of Experimental Laboratory Reports.
ERIC Educational Resources Information Center
Sanford, James F.
Students could gain considerable insight into the philosophy and methods of scientific experimentation if instructors adopted procedures based on an understanding of and respect for writing as a process. Laboratory courses in psychology offer such an opportunity. These courses usually involve a heavy workload for both students and faculty, for, in…
First year physics practicals in distance education in South Africa
NASA Astrophysics Data System (ADS)
Cilliers, Johanna Albertha
Although the merits of practical work in physics is often questioned, it remains part of physics curricula word- wide. In distance education the incorporation of practical work into the curriculum is considerably complicated by the unique logistics of the setting and the high cost involved. The research reported in this thesis emanated from the need to improve the practical work module for first year physics at the University of South Africa, one of the largest distance education universities in the world. Specifically, the home-based component which, up to the commencement of the research had been entirely text-based, needed to be addressed. To this end it was necessary to identify a valid and attainable set of objectives and to determine the characteristics, abilities and needs of the students in the target group. A survey polling the viewpoints of South African physics lecturers and students about the objectives of practical work was conducted and an extensive student profile comprising a biographic, cognitive and affective component was compiled. Biographically, the target group is unique in the sense that it consists mainly of adult learners, a large percentage of whom study in a second language. The cognitive component of the profile covered aptitude, proficiency in English, mathematics and the integrated science process skills and level of cognitive development, all of which were investigated for possible influence on performance in practical work. On an affective level, students displayed a very positive attitude towards practical work, seated mainly in their need for concrete exploration of the theory. A practical work module structured around an experiential learning cycle adapted to the distance education environment was subsequently designed. The study material developed for the module comprised an interactive study guide on data processing and experimental procedure, a home experiment kit with accompanying workbook and a laboratory manual. From the pilot study forming part of the development process, it was found that students performed significantly better in an assignment based on home- experimentation than in any of the pen-and-paper assignments preceding it. Based on the results of the pilot study, a full home experiment kit was designed, evaluated, refined and implemented.
Psychiatrists and neuroscientists of Indian origin in Canada: Glimpses
Shrivastava, Amresh; Natarajan, D.
2010-01-01
Psychiatrists of Indian origin are popular in Canada, being firmly rooted in the Canadian mental health system, and they have been making considerable contributions internationally. The Indian Psychiatric Society has long been collaborating with and inviting contributions from overseas Indian psychiatrists, particularly those in academics, and this collaboration has fructified well. There are several different challenges these psychiatrists have had to face in their own specialty work, with having to adjust to a new culture, new ways of living, and new ways of work. Our colleagues of Indian origin have demonstrated excellence in almost all fields of mental health and neurosciences. There are many popular teachers, outstanding researchers, and psychiatrists in community practice and community development. The Early Psychosis Program, Mood and Anxiety Program, Perinatal Psychiatry, Women’s Mental Health, and Postpartum Mental Health are some of their key areas of research. Our basic scientists are involved in experimental design, neurochemistry, imaging, and genetics, where they have made their mark with acclaim. This article highlights some of the achievements of a few members and is by no means completely representative of the entire work that psychiatrists of Indian origin are doing in Canada, providing readers with a glimpse of our labors away from home. PMID:21836717
Influence of the pressure dependent coefficient of friction on deep drawing springback predictions
NASA Astrophysics Data System (ADS)
Gil, Imanol; Galdos, Lander; Mendiguren, Joseba; Mugarra, Endika; Sáenz de Argandoña, Eneko
2016-10-01
This research studies the effect of considering an advanced variable friction coefficient on the springback prediction of stamping processes. Traditional constant coefficient of friction considerations are being replaced by more advanced friction coefficient definitions. The aim of this work is to show the influence of defining a pressure dependent friction coefficient on numerical springback predictions of a DX54D mild steel, a HSLA380 and a DP780 high strength steel. The pressure dependent friction model of each material was fitted to the experimental data obtained by Strip Drawing tests. Then, these friction models were implemented in a numerical simulation of a drawing process of an industrial automotive part. The results showed important differences between defining a pressure dependent friction coefficient or a constant friction coefficient.
Mutual benefits of research collaborations between zoos and academic institutions.
Fernandez, Eduardo J; Timberlake, William
2008-11-01
Zoos focus on welfare, conservation, education, and research related to animals they keep. Academic institutions emphasize description, experimentation, modeling, and teaching of general and specific animal biology and behavior through work in both laboratory and field. The considerable overlap in concerns and methods has increased interest in collaborative projects, but there is ample room for closer and more extensive interactions. The purpose of this article is to increase awareness of potential research collaborations in three areas: (1) control and analysis of behavior, (2) conservation and propagation of species, and (3) education of students and the general public. In each area, we outline (a) research in zoos, (b) research in academics, and (c) potential collaborative efforts. Zoo Biol 27:470-487, 2008. (c) 2008 Wiley-Liss, Inc.
Some considerations about Gaussian basis sets for electric property calculations
NASA Astrophysics Data System (ADS)
Arruda, Priscilla M.; Canal Neto, A.; Jorge, F. E.
Recently, segmented contracted basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (XZP, X = D, T, and Q, respectively) for the atoms from H to Ar were reported. In this work, with the objective of having a better description of polarizabilities, the QZP set was augmented with diffuse (s and p symmetries) and polarization (p, d, f, and g symmetries) functions that were chosen to maximize the mean dipole polarizability at the UHF and UMP2 levels, respectively. At the HF and B3LYP levels of theory, electric dipole moment and static polarizability for a sample of molecules were evaluated. Comparison with experimental data and results obtained with a similar size basis set, whose diffuse functions were optimized for the ground state energy of the anion, was done.
Experimental Investigation of a Piezo-Optical Transducer for Highly Sensitive Strain Gauges
NASA Astrophysics Data System (ADS)
Paulish, A. G.; Zagubisalo, P. S.; Barakov, V. N.; Pavlov, M. A.
2018-03-01
The characteristics of a piezo-optical transducer of a new design with high strain sensitivity at compact size have been studied.The original form of the photoelastic element provides a considerable increase in the stress in its working area at a given external force, resulting in an increase in the sensitivity of the transducer. The main characteristics of the transducer were measured using a specially designed device. The strain at a given applied force was calculated using a developed mathematical model of the transducer. As a result, the sensitivity to the relative strain was Δ x/ x=3 · 10-10, the dynamic range was at least four orders of magnitude higher and the gauge factor three orders of magnitude higher than those of strain-resistive gauges.
An extraordinary transmission analogue for enhancing microwave antenna performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushpakaran, Sarin V., E-mail: sarincrema@gmail.com; Purushothaman, Jayakrishnan M.; Chandroth, Aanandan
2015-10-15
The theory of diffraction limit proposed by H.A Bethe limits the total power transfer through a subwavelength hole. Researchers all over the world have gone through different techniques for boosting the transmission through subwavelength holes resulting in the Extraordinary Transmission (EOT) behavior. We examine computationally and experimentally the concept of EOT nature in the microwave range for enhancing radiation performance of a stacked dipole antenna working in the S band. It is shown that the front to back ratio of the antenna is considerably enhanced without affecting the impedance matching performance of the design. The computational analysis based on Finitemore » Difference Time Domain (FDTD) method reveals that the excitation of Fabry-Perot resonant modes on the slots is responsible for performance enhancement.« less
NASA Technical Reports Server (NTRS)
Lee, Chun P.; Wang, Taylor G.
1988-01-01
A previous theoretical result on the subject of the acoustic radiation force on a heated sphere (Lee and Wang, 1984) is reexamined. For a more complete understanding, effects of heat transfer and acoustic streaming are taken into consideration. Essentially, it was found that, at high sound-pressure levels in a steady situation, the force is not affected significantly by the temperature profile, consistent with the result of an experimental work (Leung and Wang, 1985). This resolves the earlier apparent contradiction between the theory and the experiment. If excessive hot air is accumulated around the sphere, which can happen in transient situations, the force can be weakened or reversed in sign. A heat transfer model due to acoustic streaming was also found.
Three-dimensional vectorial multifocal arrays created by pseudo-period encoding
NASA Astrophysics Data System (ADS)
Zeng, Tingting; Chang, Chenliang; Chen, Zhaozhong; Wang, Hui-Tian; Ding, Jianping
2018-06-01
Multifocal arrays have been attracting considerable attention recently owing to their potential applications in parallel optical tweezers, parallel single-molecule orientation determination, parallel recording and multifocal multiphoton microscopy. However, the generation of vectorial multifocal arrays with a tailorable structure and polarization state remains a great challenge, and reports on multifocal arrays have hitherto been restricted either to scalar focal spots without polarization versatility or to regular arrays with fixed spacing. In this work, we propose a specific pseudo-period encoding technique to create three-dimensional (3D) vectorial multifocal arrays with the ability to manipulate the position, polarization state and intensity of each focal spot. We experimentally validated the flexibility of our approach in the generation of 3D vectorial multiple spots with polarization multiplicity and position tunability.
Process feasibility study in support of silicon material task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1978-01-01
Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.
NASA Technical Reports Server (NTRS)
Fridlind, Ann; Seifert, Axel; Ackerman, Andrew; Jensen, Eric
2004-01-01
Numerical models that resolve cloud particles into discrete mass size distributions on an Eulerian grid provide a uniquely powerful means of studying the closely coupled interaction of aerosols, cloud microphysics, and transport that determine cloud properties and evolution. However, such models require many experimentally derived paramaterizations in order to properly represent the complex interactions of droplets within turbulent flow. Many of these parameterizations remain poorly quantified, and the numerical methods of solving the equations for temporal evolution of the mass size distribution can also vary considerably in terms of efficiency and accuracy. In this work, we compare results from two size-resolved microphysics models that employ various widely-used parameterizations and numerical solution methods for several aspects of stochastic collection.
The digitization of the Wundt estate at Leipzig University.
Meyer, Till; Mädebach, Andreas; Schröger, Erich
2017-08-01
Wilhelm M. Wundt (1832-1920) was one of the most important German scholars of the 19th and early 20th centuries and famously founded the first institute for experimental psychology in Leipzig in 1879. Wundt's institute established a teaching and research facility that attracted a large number of students from all over the world and contributed greatly to the development of modern psychology. Until now, the relatively poor indexing and documentation as well as the difficulty in accessing the Wundt estate has prevented a widespread and comprehensive investigation and consideration of these documents. The digitization project described in this article has rectified these problems and will hopefully provide a valuable source for students and researchers interested in Wundt's work. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Method of Optimizing the Construction of Machining, Assembly and Control Devices
NASA Astrophysics Data System (ADS)
Iordache, D. M.; Costea, A.; Niţu, E. L.; Rizea, A. D.; Babă, A.
2017-10-01
Industry dynamics, driven by economic and social requirements, must generate more interest in technological optimization, capable of ensuring a steady development of advanced technical means to equip machining processes. For these reasons, the development of tools, devices, work equipment and control, as well as the modernization of machine tools, is the certain solution to modernize production systems that require considerable time and effort. This type of approach is also related to our theoretical, experimental and industrial applications of recent years, presented in this paper, which have as main objectives the elaboration and use of mathematical models, new calculation methods, optimization algorithms, new processing and control methods, as well as some structures for the construction and configuration of technological equipment with a high level of performance and substantially reduced costs..
Problems Facing Rural Schools.
ERIC Educational Resources Information Center
Stewart, C. E.; And Others
Problems facing rural Scottish schools range from short term consideration of daily operation to long term consideration of organizational alternatives. Addressed specifically, such problems include consideration of: (1) liaison between a secondary school and its feeder primary schools; (2) preservice teacher training for work in small, isolated…
Efficiency of muscle contraction. The chemimechanic equilibrium
NASA Astrophysics Data System (ADS)
Becker, E. W.
1991-10-01
Although muscle contraction is one of the principal themes of biological research, the exact mechanism whereby the chemical free energy of ATP hydrolysis is converted into mechanical work remains elusive. The high thermodynamic efficiency of the process, above all, is difficult to explain on the basis of present theories. A model of the elementary effect in muscle contraction is proposed which aims at high thermodynamic efficiency based on an approximate equilibrium between chemical and mechanical forces throughout the transfer of free energy. The experimental results described in the literature support the assumption that chemimechanic equilibrium is approximated by a free energy transfer system based on the binding of divalent metal ions to the myosin light chains. Muscle contraction demonstrated without light chains is expected to proceed with a considerably lower efficiency. Free energy transfer systems based on the binding of ions to proteins seem to be widespread in the cell. By establishing an approximate chemimechanic equilibrium, they could facilitate biological reactions considerably and save large amounts of free energy. The concept of chemimechanic equilibrium is seen as a supplementation to the concept of chemiosmotic equilibrium introduced for the membrane transport by P. Mitchell.
Raghubar, Kimberly P; Mahone, E Mark; Yeates, Keith Owen; Cecil, Kim M; Makola, Monwabisi; Ris, M Douglas
2017-08-01
Children are at risk for cognitive difficulties following the diagnosis and treatment of a brain tumor. Longitudinal studies have consistently demonstrated declines on measures of intellectual functioning, and recently it has been proposed that specific neurocognitive processes underlie these changes, including working memory, processing speed, and attention. However, a fine-grained examination of the affected neurocognitive processes is required to inform intervention efforts. Radiation therapy (RT) impacts white matter integrity, likely affecting those cognitive processes supported by distributed neural networks. This study examined working memory and attention in children during the early delayed stages of recovery following surgical resection and RT. The participants included 27 children diagnosed with pediatric brain tumor, treated with (n = 12) or without (n = 15) RT, who completed experimental and standardized measures of working memory and attention (n-back and digit span tasks). Children treated with radiation performed less well than those who did not receive radiation on the n-back measure, though performance at the 0-back level was considerably poorer than would be expected for both groups, perhaps suggesting difficulties with more basic processes such as vigilance. Along these lines, marginal differences were noted on digit span forward. The findings are discussed with respect to models of attention and working memory, and the interplay between the two.
Multidisciplinary Research for Demining
2002-11-30
control over the form factor of the detector film, as demonstrated herein both theoretically and experimentally . 5.2. Geometric considerations of the... controllers were veri®ed independently to be within speci®cation prior to and after an experimental run. In addition, calibrations of the ¯ow system using a...detection of DMMP and DIMP in environments in which the relative humidity is not fully controlled . The data clearly show that, within experimental
Titanium Dioxide Modulation of the Contractibility of Visceral Smooth Muscles In Vivo
NASA Astrophysics Data System (ADS)
Tsymbalyuk, Olga V.; Naumenko, Anna M.; Rohovtsov, Oleksandr O.; Skoryk, Mykola A.; Voiteshenko, Ivan S.; Skryshevsky, Valeriy A.; Davydovska, Tamara L.
2017-02-01
Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.
Manipulating glucocorticoids in wild animals: basic and applied perspectives
Sopinka, Natalie M.; Patterson, Lucy D.; Redfern, Julia C.; Pleizier, Naomi K.; Belanger, Cassia B.; Midwood, Jon D.; Crossin, Glenn T.; Cooke, Steven J.
2015-01-01
One of the most comprehensively studied responses to stressors in vertebrates is the endogenous production and regulation of glucocorticoids (GCs). Extensive laboratory research using experimental elevation of GCs in model species is instrumental in learning about stressor-induced physiological and behavioural mechanisms; however, such studies fail to inform our understanding of ecological and evolutionary processes in the wild. We reviewed emerging research that has used GC manipulations in wild vertebrates to assess GC-mediated effects on survival, physiology, behaviour, reproduction and offspring quality. Within and across taxa, exogenous manipulation of GCs increased, decreased or had no effect on traits examined in the reviewed studies. The notable diversity in responses to GC manipulation could be associated with variation in experimental methods, inherent differences among species, morphs, sexes and age classes, and the ecological conditions in which responses were measured. In their current form, results from experimental studies may be applied to animal conservation on a case-by-case basis in contexts such as threshold-based management. We discuss ways to integrate mechanistic explanations for changes in animal abundance in altered environments with functional applications that inform conservation practitioners of which species and traits may be most responsive to environmental change or human disturbance. Experimental GC manipulation holds promise for determining mechanisms underlying fitness impairment and population declines. Future work in this area should examine multiple life-history traits, with consideration of individual variation and, most importantly, validation of GC manipulations within naturally occurring and physiologically relevant ranges. PMID:27293716
Bechtold, Joan E.; Swider, Pascal; Goreham-Voss, Curtis; Soballe, Kjeld
2016-01-01
This research review aims to focus attention on the effect of specific surgical and host factors on implant fixation, and the importance of accounting for them in experimental and numerical models. These factors affect (a) eventual clinical applicability and (b) reproducibility of findings across research groups. Proper function and longevity for orthopedic joint replacement implants relies on secure fixation to the surrounding bone. Technology and surgical technique has improved over the last 50 years, and robust ingrowth and decades of implant survival is now routinely achieved for healthy patients and first-time (primary) implantation. Second-time (revision) implantation presents with bone loss with interfacial bone gaps in areas vital for secure mechanical fixation. Patients with medical comorbidities such as infection, smoking, congestive heart failure, kidney disease, and diabetes have a diminished healing response, poorer implant fixation, and greater revision risk. It is these more difficult clinical scenarios that require research to evaluate more advanced treatment approaches. Such treatments can include osteogenic or antimicrobial implant coatings, allo- or autogenous cellular or tissue-based approaches, local and systemic drug delivery, surgical approaches. Regarding implant-related approaches, most experimental and numerical models do not generally impose conditions that represent mechanical instability at the implant interface, or recalcitrant healing. Many treatments will work well in forgiving settings, but fail in complex human settings with disease, bone loss, or previous surgery. Ethical considerations mandate that we justify and limit the number of animals tested, which restricts experimental permutations of treatments. Numerical models provide flexibility to evaluate multiple parameters and combinations, but generally need to employ simplifying assumptions. The objectives of this paper are to (a) to highlight the importance of mechanical, material, and surgical features to influence implant–bone healing, using a selection of results from two decades of coordinated experimental and numerical work and (b) discuss limitations of such models and the implications for research reproducibility. Focusing model conditions toward the clinical scenario to be studied, and limiting conclusions to the conditions of a particular model can increase clinical relevance and research reproducibility. PMID:26720312
NASA Astrophysics Data System (ADS)
Niaz, Mansoor; Aguilera, Damarys; Maza, Arelys; Liendo, Gustavo
2002-07-01
Most general chemistry courses and textbooks emphasize experimental details and lack a history and philosophy of science perspective. The objective of this study is to facilitate freshman general chemistry students' understanding of atomic structure based on the work of Thomson, Rutherford, and Bohr. It is hypothesized that classroom discussions based on arguments/counterarguments of the heuristic principles, on which these scientists based their atomic models, can facilitate students' conceptual understanding. This study is based on 160 freshman students enrolled in six sections of General Chemistry I (three sections formed part of the experimental group). All three models (Thomson, Rutherford, and Bohr) were presented to the experimental and control group students in the traditional manner, as found in most textbooks. After this, the three sections of the experimental group participated in the discussion of six items with alternative responses. Students were first asked to select a response and then participate in classroom discussions leading to arguments in favor or against the selected response and finally select a new response. Three weeks after having discussed the six items, both the experimental and control groups presented a monthly exam (based on the three models) and after another 3 weeks a semester exam. Results obtained show that given the opportunity to argue and discuss, students' understanding can go beyond the simple regurgitation of experimental details. Performance of the experimental group showed contradictions, resistances, and progressive conceptual change with considerable and consistent improvement in the last item. It is concluded that if we want our students to understand scientific progress and practice, then it is important that we include the experimental details not as a rhetoric of conclusions (Schwab, 1962, The teaching of science as enquiry, Cambridge, MA, Harward University Press; Schwab, 1974, Conflicting conceptions of curriculum, Berkeley, CA, McCutchan) but as heuristic principles (Lakatos, 1970, Criticism and the growth of knowledge, Cambridge, UK, Cambridge University Press, pp. 91-195), which were based on arguments, controversies, and interpretations of the scientists.
Schweizer, Marin L; Braun, Barbara I; Milstone, Aaron M
2016-10-01
Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt, nonrandomized interventions. Quasi-experimental studies can be categorized into 3 major types: interrupted time-series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship, including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. Infect Control Hosp Epidemiol 2016;1-6.
Schweizer, Marin L.; Braun, Barbara I.; Milstone, Aaron M.
2016-01-01
Quasi-experimental studies evaluate the association between an intervention and an outcome using experiments in which the intervention is not randomly assigned. Quasi-experimental studies are often used to evaluate rapid responses to outbreaks or other patient safety problems requiring prompt non-randomized interventions. Quasi-experimental studies can be categorized into three major types: interrupted time series designs, designs with control groups, and designs without control groups. This methods paper highlights key considerations for quasi-experimental studies in healthcare epidemiology and antimicrobial stewardship including study design and analytic approaches to avoid selection bias and other common pitfalls of quasi-experimental studies. PMID:27267457
Jipp, Meike
2016-12-01
This study explored whether working memory and sustained attention influence cognitive lock-up, which is a delay in the response to consecutive automation failures. Previous research has demonstrated that the information that automation provides about failures and the time pressure that is associated with a task influence cognitive lock-up. Previous research has also demonstrated considerable variability in cognitive lock-up between participants. This is why individual differences might influence cognitive lock-up. The present study tested whether working memory-including flexibility in executive functioning-and sustained attention might be crucial in this regard. Eighty-five participants were asked to monitor automated aircraft functions. The experimental manipulation consisted of whether or not an initial automation failure was followed by a consecutive failure. Reaction times to the failures were recorded. Participants' working-memory and sustained-attention abilities were assessed with standardized tests. As expected, participants' reactions to consecutive failures were slower than their reactions to initial failures. In addition, working-memory and sustained-attention abilities enhanced the speed with which participants reacted to failures, more so with regard to consecutive than to initial failures. The findings highlight that operators with better working memory and sustained attention have small advantages when initial failures occur, but their advantages increase across consecutive failures. The results stress the need to consider personnel selection strategies to mitigate cognitive lock-up in general and training procedures to enhance the performance of low ability operators. © 2016, Human Factors and Ergonomics Society.
International standards on working postures and movements ISO 11226 and EN 1005-4.
Delleman, N J; Dul, J
2007-11-01
Standards organizations have given considerable attention to the problem of work-related musculoskeletal disorders. The publication of international standards for evaluating working postures and movements, ISO 11,226 in 2000 and EN 1,005-4 in 2005, may be considered as a support for those involved in preventing and controlling these disorders. The first one is a tool for evaluation of existing work situations, whereas the latter one is a tool for evaluation during a design/engineering process. Key publications and considerations that led to the content of the standards are presented, followed by examples of application.
WORK POTENTIAL OF THE HANDICAPPED—The Physician's Role in Evaluating It
Montero, Jose C.
1960-01-01
Even a severe physical defect may not be a handicap on some jobs; even a mild one may be a handicap on others. Physicians considering the employability of a disabled person must not only appraise the person but also must analyze the job. Job analysis must take into consideration the degree of exertion necessary, the emotional demands, working conditions (including accessibility of the place of work, of toilet facilities and the like) and job hazards. Appraisal of the person must include a medical examination, a review of the work history, consideration of socio-economic background, and psychological testing. PMID:14423720
Cascaded Bragg scattering in fiber optics.
Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G
2013-01-15
We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.
Experimental Verification of Boyle's Law and the Ideal Gas Law
ERIC Educational Resources Information Center
Ivanov, Dragia Trifonov
2007-01-01
Two new experiments are offered concerning the experimental verification of Boyle's law and the ideal gas law. To carry out the experiments, glass tubes, water, a syringe and a metal manometer are used. The pressure of the saturated water vapour is taken into consideration. For educational purposes, the experiments are characterized by their…
Collins, Linda M.; Dziak, John J.; Li, Runze
2009-01-01
An investigator who plans to conduct experiments with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy. Considerations in making design decisions include whether research questions are framed as main effects or simple effects; whether and which effects are aliased (confounded) in a particular design; the number of experimental conditions that must be implemented in a particular design and the number of experimental subjects the design requires to maintain the desired level of statistical power; and the costs associated with implementing experimental conditions and obtaining experimental subjects. In this article four design options are compared: complete factorial, individual experiments, single factor, and fractional factorial designs. Complete and fractional factorial designs and single factor designs are generally more economical than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral scientists, fractional factorial designs merit serious consideration because of their economy and versatility. PMID:19719358
Effectiveness of Student Learning during Experimental Work in Primary School.
Logar, Ana; Peklaj, Cirila; Ferk Savec, Vesna
2017-09-01
The aim of the research was to optimize the effectiveness of student learning based on experimental work in chemistry classes in Slovenian primary schools. To obtain evidence about how experimental work is implemented during regular chemistry classes, experimental work was videotaped during 19 units of chemistry lessons at 12 Slovenian primary schools from the pool of randomly selected schools. Altogether 332 eight-grade students were involved in the investigation, with an average age of 14.2 years. Students were videotaped during chemistry lessons, and their worksheets were collected afterward. The 12 chemistry teachers, who conducted lessons in these schools, were interviewed before the lessons; their teaching plans were also collected. The collected data was analyzed using qualitative methods. The results indicate that many teachers in Slovenian primary schools are not fully aware of the potential of experimental work integrated into chemistry lessons for the development of students' experimental competence. Further research of the value of different kinds of training to support teachers for the use of experimental work in chemistry teaching is needed.
Advanced Gear Alloys for Ultra High Strength Applications
NASA Technical Reports Server (NTRS)
Shen, Tony; Krantz, Timothy; Sebastian, Jason
2011-01-01
Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.
Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking
Huang, Tzu-wei P.; Shorter, Kenneth A.; Adamczyk, Peter G.; Kuo, Arthur D.
2015-01-01
ABSTRACT The human ankle produces a large burst of ‘push-off’ mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s−1, using ankle–foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. PMID:26385330
Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking.
Huang, Tzu-wei P; Shorter, Kenneth A; Adamczyk, Peter G; Kuo, Arthur D
2015-11-01
The human ankle produces a large burst of 'push-off' mechanical power late in the stance phase of walking, reduction of which leads to considerably poorer energy economy. It is, however, uncertain whether the energetic penalty results from poorer efficiency when the other leg joints substitute for the ankle's push-off work, or from a higher overall demand for work due to some fundamental feature of push-off. Here, we show that greater metabolic energy expenditure is indeed explained by a greater demand for work. This is predicted by a simple model of walking on pendulum-like legs, because proper push-off reduces collision losses from the leading leg. We tested this by experimentally restricting ankle push-off bilaterally in healthy adults (N=8) walking on a treadmill at 1.4 m s(-1), using ankle-foot orthoses with steel cables limiting motion. These produced up to ∼50% reduction in ankle push-off power and work, resulting in up to ∼50% greater net metabolic power expenditure to walk at the same speed. For each 1 J reduction in ankle work, we observed 0.6 J more dissipative collision work by the other leg, 1.3 J more positive work from the leg joints overall, and 3.94 J more metabolic energy expended. Loss of ankle push-off required more positive work elsewhere to maintain walking speed; this additional work was performed by the knee, apparently at reasonably high efficiency. Ankle push-off may contribute to walking economy by reducing dissipative collision losses and thus overall work demand. © 2015. Published by The Company of Biologists Ltd.
Modelling and simulation of a robotic work cell
NASA Astrophysics Data System (ADS)
Sękala, A.; Gwiazda, A.; Kost, G.; Banaś, W.
2017-08-01
The subject of considerations presented in this work concerns the designing and simulation of a robotic work cell. The designing of robotic cells is the process of synergistic combining the components in the group, combining this groups into specific, larger work units or dividing the large work units into small ones. Combinations or divisions are carried out in the terms of the needs of realization the assumed objectives to be performed in these unit. The designing process bases on the integrated approach what lets to take into consideration all needed elements of this process. Each of the elements of a design process could be an independent design agent which could tend to obtain its objectives.
A guide to the contained use of plant virus infectious clones.
Brewer, Helen C; Hird, Diane L; Bailey, Andy M; Seal, Susan E; Foster, Gary D
2018-04-01
Plant virus infectious clones are important tools with wide-ranging applications in different areas of biology and medicine. Their uses in plant pathology include the study of plant-virus interactions, and screening of germplasm as part of prebreeding programmes for virus resistance. They can also be modified to induce transient plant gene silencing (Virus Induced Gene Silencing - VIGS) and as expression vectors for plant or exogenous proteins, with applications in both plant pathology and more generally for the study of plant gene function. Plant viruses are also increasingly being investigated as expression vectors for in planta production of pharmaceutical products, known as molecular farming. However, plant virus infectious clones may pose a risk to the environment due to their ability to reconstitute fully functional, transmissible viruses. These risks arise from both their inherent pathogenicity and the effect of any introduced genetic modifications. Effective containment measures are therefore required. There has been no single comprehensive review of the biosafety considerations for the contained use of genetically modified plant viruses, despite their increasing importance across many biological fields. This review therefore explores the biosafety considerations for working with genetically modified plant viruses in contained environments, with focus on plant growth facilities. It includes regulatory frameworks, risk assessment, assignment of biosafety levels, facility features and working practices. The review is based on international guidance together with information provided by plant virus researchers. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Galat, Yekaterina; Perepitchka, Mariana; Jennings, Lawrence J.; Iannaccone, Philip M.; Hendrix, Mary J.C.
2016-01-01
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation. PMID:27193052
Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard.
Rusyn, Ivan; Chiu, Weihsueh A; Lash, Lawrence H; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z
2014-01-01
The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. The strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. © 2013.
Trichloroethylene: Mechanistic, Epidemiologic and Other Supporting Evidence of Carcinogenic Hazard
Rusyn, Ivan; Chiu, Weihsueh A.; Lash, Lawrence H.; Kromhout, Hans; Hansen, Johnni; Guyton, Kathryn Z.
2013-01-01
The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including from hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. Strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin's lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE. PMID:23973663
Charge exchange cross sections in slow collisions of Si3+ with Hydrogen atom
NASA Astrophysics Data System (ADS)
Joseph, Dwayne; Quashie, Edwin; Saha, Bidhan
2011-05-01
In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. In recent years both the experimental and theoretical studies of electron transfer in ion-atom collisions have progressed considerably. Accurate determination of the cross sections and an understanding of the dynamics of the electron-capture process by multiply charged ions from atomic hydrogen over a wide range of projectile velocities are important in various field ranging from fusion plasma to astrophysics. The soft X-ray emission from comets has been explained by charge transfer of solar wind ions, among them Si3+, with neutrals in the cometary gas vapor. The cross sections are evaluated using the (a) full quantum and (b) semi-classical molecular orbital close coupling (MOCC) methods. Adiabatic potentials and wave functions for relavent singlet and triplet states are generated using the MRDCI structure codes. Details will be presented at the conference. Work supported by NSF CREST project (grant #0630370).
Methylene Blue Removal by Biochars from Food Industry By-Products
NASA Astrophysics Data System (ADS)
Orfanos, Alexis; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.
2016-04-01
Biomass produced by food industries is mainly used as feedstock or in composting. In recent years, considerable research effort has been focused on the production of biochar under oxygen-limited conditions from carbon-rich biomass, such as food industry by-products, as mitigation measure for global warming once it is used as a soil amendment. The present study presents the findings of an experimental work, which investigated the use of different biochars for the removal of methylene blue (MB) from aqueous solutions. Biochars were produced from malt spent rootlets (MSR) from brewering and espresso coffee residue from coffee shops. MSR was pyrolyzed at temperatures of 300, 400, 500, 750, 850, and 900oC and the coffee residue was pyrolyzed at 850oC. The charring process was performed under limited-oxygen conditions using specialized containers. The surface area and the porosity of the materials were determined. Batch experiments were conducted in order to evaluate the sorption capacity of the above materials, and samples were agitated for 24 h at 25oC, at an optimum pH of about 7. Kinetic analysis was conducted over a period of 24 h, and isotherm studies were also constructed. The surface area of biochar produced from MSR and the MB removal were considerably increased at pyrolysis temperatures higher than 500oC. At 850oC, the maximum surface area value (300 m2 g-1) was observed, and the MB sorption capacity was 99 mg g-1. Based on the kinetic experimental data, sorption capacities at 120 min were over 58% of their equilibrium values for the biochars used. The maximum MB sorption capacity, based on the isotherm data, was 130 mg g-1, for the two biochars employed.
Terrestrial scanning or digital images in inventory of monumental objects? - case study
NASA Astrophysics Data System (ADS)
Markiewicz, J. S.; Zawieska, D.
2014-06-01
Cultural heritage is the evidence of the past; monumental objects create the important part of the cultural heritage. Selection of a method to be applied depends on many factors, which include: the objectives of inventory, the object's volume, sumptuousness of architectural design, accessibility to the object, required terms and accuracy of works. The paper presents research and experimental works, which have been performed in the course of development of architectural documentation of elements of the external facades and interiors of the Wilanów Palace Museum in Warszawa. Point clouds, acquired from terrestrial laser scanning (Z+F 5003h) and digital images taken with Nikon D3X and Hasselblad H4D cameras were used. Advantages and disadvantages of utilisation of these technologies of measurements have been analysed with consideration of the influence of the structure and reflectance of investigated monumental surfaces on the quality of generation of photogrammetric products. The geometric quality of surfaces obtained from terrestrial laser scanning data and from point clouds resulting from digital images, have been compared.
An affine microsphere approach to modeling strain-induced crystallization in rubbery polymers
NASA Astrophysics Data System (ADS)
Nateghi, A.; Dal, H.; Keip, M.-A.; Miehe, C.
2018-01-01
Upon stretching a natural rubber sample, polymer chains orient themselves in the direction of the applied load and form crystalline regions. When the sample is retracted, the original amorphous state of the network is restored. Due to crystallization, properties of rubber change considerably. The reinforcing effect of the crystallites stiffens the rubber and increases the crack growth resistance. It is of great importance to understand the mechanism leading to strain-induced crystallization. However, limited theoretical work has been done on the investigation of the associated kinetics. A key characteristic observed in the stress-strain diagram of crystallizing rubber is the hysteresis, which is entirely attributed to strain-induced crystallization. In this work, we propose a micromechanically motivated material model for strain-induced crystallization in rubbers. Our point of departure is constructing a micromechanical model for a single crystallizing polymer chain. Subsequently, a thermodynamically consistent evolution law describing the kinetics of crystallization on the chain level is proposed. This chain model is then incorporated into the affine microsphere model. Finally, the model is numerically implemented and its performance is compared to experimental data.
Manipulating waves by distilling frequencies: a tunable shunt-enabled rainbow trap
NASA Astrophysics Data System (ADS)
Cardella, Davide; Celli, Paolo; Gonella, Stefano
2016-08-01
In this work, we propose and test a strategy for tunable, broadband wave attenuation in electromechanical waveguides with shunted piezoelectric inclusions. Our strategy is built upon the vast pre-existing literature on vibration attenuation and bandgap generation in structures featuring periodic arrays of piezo patches, but distinguishes itself for several key features. First, we demystify the idea that periodicity is a requirement for wave attenuation and bandgap formation. We further embrace the idea of ‘organized disorder’ by tuning the circuits as to resonate at distinct neighboring frequencies. In doing so, we create a tunable ‘rainbow trap’ (Tsakmakidis et al 2007 Nature 450 397-401) capable of attenuating waves with broadband characteristics, by distilling (sequentially) seven frequencies from a traveling wavepacket. Finally, we devote considerable attention to the implications in terms of packet distortion of the spectral manipulation introduced by shunting. This work is also meant to serve as a didactic tool for those approaching the field of shunted piezoelectrics, and attempts to provide a different perspective, with abundant details, on how to successfully design an experimental setup involving resistive-inductive shunts.
Starting-Up the Irbene 16-m Fully Steerable Parabolic Antenna for Radioastronomic Observations
NASA Astrophysics Data System (ADS)
Bezrukov, V.; Berzinsh, A.; Gaigals, G.; Lesinsh, A.; Trokshs, J.
2011-01-01
The methodology proposed in the paper is based on the concept of Energy Efficiency Uninterrupted Development Cycle (EEUDC). The goal of the authors was to clarify how the district heating system (DHS) development is affected by the heat consumption. The primary emphasis was given to the hot water consumption, with its noticeable daily fluctuations as well as changes caused by those in the inhabitants' way of life. The methodology, which is in good agreement with the ideology of advanced management of DHS development, employs the ISO 14000 series of standards (widely applied in the sphere of environment management). In the work, experimental results are presented that have been obtained through monitoring the hot water consumption. The results evidence that this consumption and its usage indices correspond to the level achieved by Western (in particular, North-European) countries. This circumstance changes considerably the input data for calculation of DHS elements, making it possible to work out appropriate measures in order to improve the DHS efficiency through step-by-step replacement of the elements with high energy loss.
Requirement Generation for Space Infrastructure Systems
NASA Astrophysics Data System (ADS)
Hempsell, M.
Despite heavy investment, in the half-century period between 1970 and 2020 there will almost no progress in the capability provided by the space infrastructure. It is argued that this is due to a failure during the requirement generation phase of the infrastructure's elements, a failure that is primarily due to following the accepted good practice of involving stakeholders while establishing a mission based set of technical requirements. This argument is supported by both a consideration of the history of the requirement generation phase of past space infrastructure projects, in particular the Space Shuttle, and an analysis of the interactions of the stakeholders during this phase. Traditional stakeholder involvement only works well in mature infrastructures where investment aims to make minor improvements, whereas space activity is still in the early experimental stages and is open to major new initiatives that aim to radically change the way we work in space. A new approach to requirement generation is proposed, which is more appropriate to these current circumstances. This uses a methodology centred on the basic functions the system is intended to perform rather than its expected missions.
Mass reduction patterning of silicon-on-oxide-based micromirrors
NASA Astrophysics Data System (ADS)
Hall, Harris J.; Green, Andrew; Dooley, Sarah; Schmidt, Jason D.; Starman, LaVern A.; Langley, Derrick; Coutu, Ronald A.
2016-10-01
It has long been recognized in the design of micromirror-based optical systems that balancing static flatness of the mirror surface through structural design with the system's mechanical dynamic response is challenging. Although a variety of mass reduction approaches have been presented in the literature to address this performance trade, there has been little quantifiable comparison reported. In this work, different mass reduction approaches, some unique to the work, are quantifiably compared with solid plate thinning in both curvature and mass using commercial finite element simulation of a specific square silicon-on-insulator-based micromirror geometry. Other important considerations for micromirror surfaces, including surface profile and smoothness, are also discussed. Fabrication of one of these geometries, a two-dimensional tessellated square pattern, was performed in the presence of a 400-μm-tall central post structure using a simple single mask process. Limited experimental curvature measurements of fabricated samples are shown to correspond well with properly characterized simulation results and indicate ˜67% improvement in radius of curvature in comparison to a solid plate design of equivalent mass.
Matsubara, Eri; Tsunetsugu, Yuko; Ohira, Tatsuro; Sugiyama, Masaki
2017-01-21
Employee problems arising from mental illnesses have steadily increased and become a serious social problem in recent years. Wood is a widely available plant material, and knowledge of the psychophysiological effects of inhalation of woody volatile compounds has grown considerably. In this study, we established an experimental method to evaluate the effects of Japanese cedar wood essential oil on subjects performing monotonous work. Two experiment conditions, one with and another without diffusion of the essential oil were prepared. Salivary stress markers were determined during and after a calculation task followed by distribution of questionnaires to achieve subjective odor assessment. We found that inhalation of air containing the volatile compounds of Japanese cedar wood essential oil increased the secretion of dehydroepiandrosterone sulfate (DHEA-s). Slight differences in the subjective assessment of the odor of the experiment rooms were observed. The results of the present study indicate that the volatile compounds of Japanese cedar wood essential oil affect the endocrine regulatory mechanism to facilitate stress responses. Thus, we suggest that this essential oil can improve employees' mental health.
An empirical method for deriving RBE values associated with electrons, photons and radionuclides.
Bellamy, M; Puskin, J; Hertel, N; Eckerman, K
2015-12-01
There is substantial evidence to justify using relative biological effectiveness (RBE) values of >1 for low-energy electrons and photons. But, in the field of radiation protection, radiation associated with low linear energy transfer has been assigned a radiation weighting factor wR of 1. This value may be suitable for radiation protection but, for risk considerations, it is important to evaluate the potential elevated biological effectiveness of radiation to improve the quality of risk estimates. RBE values between 2 and 3 for tritium are implied by several experimental measurements. Additionally, elevated RBE values have been found for other similar low-energy radiation sources. In this work, RBE values are derived for electrons based upon the fractional deposition of absorbed dose of energies less than a few kiloelectron volts. Using this empirical method, RBE values were also derived for monoenergetic photons and 1070 radionuclides from ICRP Publication 107 for which photons and electrons are the primary emissions. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Ferri, G.; Murante, G.; Provenzale, A.; Silva, L.; Vladilo, G.
2012-04-01
The study of the habitability and potential for life formation of terrestrial planets requires a considerable work of modelization owing to the limited amount of experimental constraints typical of this type of research. As an example, the paucity of experimental Archean data severely limits the study of the habitability of the primitive Earth at the epoch of the origin of life. In the case of exoplanets the amount of experimental information available is quite limited and the need for modelization strong. Here we focus on the modelization of the surface planetary temperature, a key thermodynamical quantity used to define the habitability. Energy Balance Models (EBM) of planetary climate provide a simple way to calculate the temperature-latitude profile of terrestrial planets with a small amount of computing resources. Thanks to this fact EBMs offer an excellent tool to exploring a wide range of parameter space and therefore testing the effects of variations of physical/chemical quantities unconstrained by experimental data. In particular, one can easily probe possible scenarios of habitability at different stages of planetary evolution. We have recently implemented one-dimensional EBMs featuring the possibility of probing variations of astronomical and geophysical parameters, such as stellar luminosity, orbital semi-major axis and eccentricity, obliquity of the planetary axis, planet rotational velocity, land/ocean surface fractions and thermal capacities, and latitudinal heat diffusion. After testing our models against results obtained in previous work (Williams & Kasting 1997, Icarus, 129, 254; Spiegel et al. 2008, ApJ, 681, 1609), we introduced a novel parametrization of the diffusion coefficient as a function of the stellar zenith distance. Our models have been validated using the mean temperature-latitude profiles of the present Earth and its seasonal variations; the global albedo has been used as an additional constraint. In this work we present specific examples of application of our EBMs to studies of habitability of terrestrial planets. In the first part we focus on the primitive Earth, taking into account the effects of the higher speed of Earth rotation and reduced solar luminosity at the epoch of life formation. In the second part we provide examples of habitability studies of planetary systems discovered in surveys of exoplanets. These examples allow us to critically discuss the concept of circumstellar habitable zone.
Determining the drivers' acceptance of EFTCD in highway work zones.
Bai, Yong; Li, Yingfeng
2011-05-01
Traffic safety is a major concern in the temporary one-lane, two-way highway work zones due to the increasing of construction and maintenance operations. To prevent rear-end crashes and to mitigate the severity of these crashes caused by the inattentive driving, the utilization of the Emergency Flasher Traffic Control Device (EFTCD) was under consideration by government agencies, in addition to existing temporary traffic control devices installed in the one-lane, two-way highway work zones. The EFTCD was a newly proposed traffic warning device implemented through the use of vehicles' hazard warning flashers. The primary objective of the research project was to investigate the drivers' acceptance of the proposed EFTCD by measuring the mean speed changes of vehicles with and without EFTCD and by evaluating the drivers' opinions of the EFTCD using the survey method. Field experimental results revealed that the EFTCD effectively reduced the mean vehicle speeds in the upstream of two work zones. A slow speed is more likely to reduce the severity of a crash in work zones. In addition, survey results indicated that 60% of the drivers thought the EFTCD signified a need for speed reduction and 82% of drivers recommended the implementation of the EFTCD in one-lane, two-way work zones. These results provide the necessary scientific justifications for the government agencies to decide if the EFTCD should be implemented in the one-lane, two-way highway work zones to prevent rear-end crashes and to mitigate the severity of these crashes. Copyright © 2010 Elsevier Ltd. All rights reserved.
Experimental toxicology: Issues of statistics, experimental design, and replication.
Briner, Wayne; Kirwan, Jeral
2017-01-01
The difficulty of replicating experiments has drawn considerable attention. Issues with replication occur for a variety of reasons ranging from experimental design to laboratory errors to inappropriate statistical analysis. Here we review a variety of guidelines for statistical analysis, design, and execution of experiments in toxicology. In general, replication can be improved by using hypothesis driven experiments with adequate sample sizes, randomization, and blind data collection techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
1981-01-01
per-rev, ring weighting factor, etc.) and with compression system design . A detailed description of the SAE methodology is provided in Ref. 1...offers insights into the practical application of experimental aeromechanical procedures and establishes the process of valid design assessment, avoiding...considerations given to the total engine system. Design Verification in the Experimental Laboratory Certain key parameters are influencing the design of modern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, L.R.; Praeg, W.F.
1982-03-01
The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results.
Pospeeva, N A; Morogova, V M; Gil'dina, S S; Nikolaeva, N V; Losev, M N
1975-01-01
The optimal regimen of sheep brain rabies vaccine inactivation with UV rays has been developed. The immunogenic activity of 22 experimental lots of UV-inactivated rabies vaccine was found to be considerably higher than that of commercial Fermi vaccine. The antigenic activity of the inactivated vaccine in animals was also high.
NASA Technical Reports Server (NTRS)
Prokhorov, V. Y.; Shilov, V. M.; Borman, E. A.
1980-01-01
A study was made of the effect of certain factors of space flight, acceleration and hypokinesia, on the course of experimental staphylococcus infection in mice. Combined action of hypokinesia and acceleration caused a marked depression of the phagocytic activity of leukocytes and formation of a considerable amount of alpha toxin.
ERIC Educational Resources Information Center
Hsiung, C. -M.
2010-01-01
The present study conducts an experimental investigation to compare the efficiency of the cooperative learning method with that of the traditional learning method. A total of 42 engineering students are randomly assigned to the two learning conditions and are formed into mixed-ability groups comprising three team members. In addition to the…
Some observations on precipitation measurement on forested experimental watersheds
Raymond E. Leonard; Kenneth G. Reinhart
1963-01-01
Measurement of precipitation on forested experimental watersheds presents difficulties other than those associated with access to and from the gages in all kinds of weather. For instance, the tree canopy must be cleared above the gage. The accepted practice of keeping an unobstructed sky view of 45" around the gage involves considerable tree cutting. On a level...
2003-10-01
Toujours comparativement au placebo, les sujets ayant pris du zopiclone avaient eu moins de difficulté à s’endormir (p < 0,001), s’étaient réveillés...5 Multitask (MT)........................................................................... 6 Experimental Design Considerations...Experimental Design ............................................................................ 19 Statistical Analysis
Bat noseleaf model: echolocation function, design considerations, and experimental verification.
Kuc, Roman
2011-05-01
This paper describes a possible bat noseleaf echolocation function that improves target elevation resolution. Bats with a protruding noseleaf can rotate the lancet to act as an acoustic mirror that reflects the nostril emission, modeled as a virtual nostril that produces a delayed emission. The cancellation of the nostril and virtual nostril components at a target produces a sharp spectral notch whose frequency location relates to target elevation. This notch can be observed directly from the swept-frequency emission waveform, suggesting cochlear processing capabilities. Physical acoustic principles indicate the design considerations and trade-offs that a bat can accomplish through noseleaf shape and emission characteristics. An experimental model verifies the analysis and exhibits an elevation versus notch frequency sensitivity of approximately 1°/kHz.
A method for predicting static-to-flight effects on coaxial jet noise
NASA Astrophysics Data System (ADS)
Bryce, William D.; Chinoy, Cyrus B.
2016-08-01
Previously-published work has provided a theoretical modelling of the jet noise from coaxial nozzle configurations in the form of component sources which can each be quantified in terms of modified single-stream jets. This modelling has been refined and extended to cover a wide range of the operating conditions of aircraft turbofan engines with separate exhaust flows, encompassing area ratios from 0.8 to 4. The objective has been to establish a basis for predicting the static-to-flight changes in the coaxial jet noise by applying single-stream flight effects to each of the sources comprising the modelling of the coaxial jet noise under static conditions. Relatively few experimental test points are available for validation although these do cover the full extent of the jet conditions and area ratios considered. The experimental results are limited in their frequency range by practical considerations but the static-to-flight changes in the third-octave SPLs are predicted to within a standard deviation of 0.4 dB although the complex effects of jet refraction and convection cause the errors to increase at low flight emission angles to the jet axis. The modelling also provides useful insights into the mechanisms involved in the generation of coaxial jet noise and has facilitated the identification of inadequacies in the experimental simulation of flight effects.
Applied use of cardiac and respiration measures: practical considerations and precautions.
Wilson, G F
1992-11-01
Cardiac and respiratory measures can be successfully applied to "real world" environments and these measures have certain advantages over both performance and subjective measures that are typically used to monitor operator state and workload. However, because of large differences between laboratory and "real world" environments one must utilize caution in directly applying laboratory data and theories to the day-to-day world environment. While most workers are highly over-trained in their jobs, laboratory subjects are often under-trained in the cognitive tasks that are used to study cognitive activity. It is possible that a substantial portion of experimental effects reported in laboratory studies is due to learning effects. In addition, relatively small changes in cardiac and respiration measures are reported to experimental manipulations in the laboratory while a much larger range of changes are reported in "real world" environments. These differences highlight questions about laboratory/real world similarities and the need to develop a database of actual work environment data. A third area of concern is the relative lack of control over the experimental situation that is the case with most applied research. The possible confounding of changes due to cognitive and physical activity levels is a major concern and strategies for overcoming these problems are suggested. The potential for valuable contributions by cardiac and respiratory measures to applied research make overcoming these difficulties worthwhile.
NASA Astrophysics Data System (ADS)
Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jian; Department of Physics, The Ohio State University, 191 W. Woodruff Ave, Columbus, OH 43210; Chen, Mingjun, E-mail: chenmj@hit.edu.cn, E-mail: chowdhury.24@osu.edu
Rapid growth and ultra-precision machining of large-size KDP (KH{sub 2}PO{sub 4}) crystals with high laser damage resistance are tough challenges in the development of large laser systems. It is of high interest and practical significance to have theoretical models for scientists and manufacturers to determine the laser-induced damage threshold (LIDT) of actually prepared KDP optics. Here, we numerically and experimentally investigate the laser-induced damage on KDP crystals in ultra-short pulse laser regime. On basis of the rate equation for free electron generation, a model dedicated to predicting the LIDT is developed by considering the synergistic effect of photoionization, impact ionizationmore » and decay of electrons. Laser damage tests are performed to measure the single-pulse LIDT with several testing protocols. The testing results combined with previously reported experimental data agree well with those calculated by the model. By taking the light intensification into consideration, the model is successfully applied to quantitatively evaluate the effect of surface flaws inevitably introduced in the preparation processes on the laser damage resistance of KDP crystals. This work can not only contribute to further understanding of the laser damage mechanisms of optical materials, but also provide available models for evaluating the laser damage resistance of exquisitely prepared optical components used in high power laser systems.« less
NASA Astrophysics Data System (ADS)
Rao, D. V.; Takeda, T.; Itai, Y.; Akatsuka, T.; Seltzer, S. M.; Hubbell, J. H.; Cesareo, R.; Brunetti, A.; Gigante, G. E.
Atomic Rayleigh scattering cross-sections for low, medium and high Z atoms are measured in vacuum using X-ray tube with a secondary target as an excitation source instead of radioisotopes. Monoenergetic Kα radiation emitted from the secondary target and monoenergetic radiation produced using two secondary targets with filters coupled to an X-ray tube are compared. The Kα radiation from the second target of the system is used to excite the sample. The background has been reduced considerably and the monochromacy is improved. Elastic scattering of Kα X-ray line energies of the secondary target by the sample is recorded with Hp Ge and Si (Li) detectors. A new approach is developed to estimate the solid angle approximation and geometrical efficiency for a system with experimental arrangement using X-ray tube and secondary target. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. The efficiency is larger because the X-ray fluorescent source acts as a converter. Experimental results based on this system are compared with theoretical estimates and good agreement is observed in between them.
Flexural behaviour of RCC beams with externally bonded FRP
NASA Astrophysics Data System (ADS)
Vignesh, S. Arun; Sumathi, A.; Saravana Raja Mohan, K.
2017-07-01
The increasing use of carbon and glass fibre reinforced polymer (FRP) sheets for strengthening existing reinforced concrete beams has generated considerable interest in understanding the behavior of the FRP sheets when subjected to bending. The study on flexure includes various parameters like percentage of increase in strength of the member due to the externally bonded Fiber reinforced polymer, examining the crack patterns, reasons of debonding of the fibre from the structure, scaling, convenience of using the fibres, cost effectiveness etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an EB-FRP concrete beam by studying the various parameters. Deflection control may become as important as flexural strength for the design of FRPreinforced concrete structures. A numerical model is created using FEM software and the results are compared with that of the experiment.
Temperature dependence of electron impact ionization coefficient in bulk silicon
NASA Astrophysics Data System (ADS)
Ahmed, Mowfaq Jalil
2017-09-01
This work exhibits a modified procedure to compute the electron impact ionization coefficient of silicon for temperatures between 77 and 800K and electric fields ranging from 70 to 400 kV/cm. The ionization coefficients are computed from the electron momentum distribution function through solving the Boltzmann transport equation (BTE). The arrangement is acquired by joining Legendre polynomial extension with BTE. The resulting BTE is solved by differences-differential method using MATLAB®. Six (X) equivalent ellipsoidal and non-parabolic valleys of the conduction band of silicon are taken into account. Concerning the scattering mechanisms, the interval acoustic scattering, non-polar optical scattering and II scattering are taken into consideration. This investigation showed that the ionization coefficients decrease with increasing temperature. The overall results are in good agreement with previous experimental and theoretical reported data predominantly at high electric fields.
Genetic engineering for haemophilia A.
Gan, Shu Uin; Kon, Oi Lian; Calne, Roy Y
2006-10-01
At first sight, haemophilia A would appear to be an ideal candidate for treatment by gene therapy. There is a single gene defect; cells in different parts of the body, but especially the liver, produce Factor VIII, and only 5% of normal levels of Factor VIII are necessary to prevent the serious symptoms of bleeding. This review attempts to outline the status of gene therapy at present and efforts that have been made to overcome the difficulties and remaining problems that require solving. Undoubtedly, success will be achieved, but it is likely that considerably more work will be necessary before experimental models can be introduced into the clinic with any likelihood of success. The most successful results in animals that may have clinical application were from introducing the Factor VIII gene to newborn animals before antibodies are produced, presumably inducing a state of tolerance.
Details of Exact Low Prandtl Number Boundary-Layer Solutions for Forced and For Free Convection
NASA Technical Reports Server (NTRS)
Sparrow, E. M.; Gregg, J. L.
1959-01-01
A detailed report is given of exact (numerical) solutions of the laminar-boundary-layer equations for the Prandtl number range appropriate to liquid metals (0.003 to 0.03). Consideration is given to the following situations: (1) forced convection over a flat plate for the conditions of uniform wall temperature and uniform wall heat flux, and (2) free convection over an isothermal vertical plate. Tabulations of the new solutions are given in detail. Results are presented for the heat-transfer and shear-stress characteristics; temperature and velocity distributions are also shown. The heat-transfer results are correlated in terms of dimensionless parameters that vary only slightly over the entire liquid-metal range. Previous analytical and experimental work on low Prandtl number boundary layers is surveyed and compared with the new exact solutions.
Conceptual definition of a technology development mission for advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, R. P.
1986-01-01
An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.
Performance evaluation of CFRP-rubber shock absorbers
NASA Astrophysics Data System (ADS)
Lamanna, Giuseppe; Sepe, Raffaele
2014-05-01
In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.
Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering
NASA Astrophysics Data System (ADS)
Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team
Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Liu, Changqin; Li, Zhe; Zhang, Yuanlei; Huang, Yinsheng; Ye, Miaofu; Sun, Xiaodong; Zhang, Guojie; Cao, Yiming; Xu, Kun; Jing, Chao
2018-05-01
In this work, we have developed a ferromagnetic shape memory alloy Co50V34Ga16 with a metamagnetic martensitic transformation (MT) from the high-magnetization austenitic phase to the low-magnetization martensitic phase. As a consequence of a strong coupling between structure and magnetic degrees of freedom, the metamagnetic MT of this alloy is relatively sensitive to the external magnetic field, thus giving rise to a field-induced reverse MT. Associated with such a unique behavior, both considerable inverse magnetocaloric effect (9.6 J/kg K) and magnetostrain (0.07%) have also been obtained under the magnetic field change of 3 T. Our experimental results indicate that this kind of Co-V based alloy probably becomes an alternatively promising candidate for applications in magnetic sensors and magnetic refrigeration.
Load-sensitive dynamic workflow re-orchestration and optimisation for faster patient healthcare.
Meli, Christopher L; Khalil, Ibrahim; Tari, Zahir
2014-01-01
Hospital waiting times are considerably long, with no signs of reducing any-time soon. A number of factors including population growth, the ageing population and a lack of new infrastructure are expected to further exacerbate waiting times in the near future. In this work, we show how healthcare services can be modelled as queueing nodes, together with healthcare service workflows, such that these workflows can be optimised during execution in order to reduce patient waiting times. Services such as X-ray, computer tomography, and magnetic resonance imaging often form queues, thus, by taking into account the waiting times of each service, the workflow can be re-orchestrated and optimised. Experimental results indicate average waiting time reductions are achievable by optimising workflows using dynamic re-orchestration. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.
On the use of video projectors for three-dimensional scanning
NASA Astrophysics Data System (ADS)
Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.; Robledo-Sanchez, Carlos; Diaz-Gonzalez, Gerardo
2017-08-01
Structured light projection is one of the most useful methods for accurate three-dimensional scanning. Video projectors are typically used as the illumination source. However, because video projectors are not designed for structured light systems, some considerations such as gamma calibration must be taken into account. In this work, we present a simple method for gamma calibration of video projectors. First, the experimental fringe patterns are normalized. Then, the samples of the fringe patterns are sorted in ascending order. The sample sorting leads to a simple three-parameter sine curve that is fitted using the Gauss-Newton algorithm. The novelty of this method is that the sorting process removes the effect of the unknown phase. Thus, the resulting gamma calibration algorithm is significantly simplified. The feasibility of the proposed method is illustrated in a three-dimensional scanning experiment.
[Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].
Starek-Świechowicz, Beata; Starek, Andrzej
2015-01-01
Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
NASA Astrophysics Data System (ADS)
Shao, Xinxing; Zhu, Feipeng; Su, Zhilong; Dai, Xiangjun; Chen, Zhenning; He, Xiaoyuan
2018-03-01
The strain errors in stereo-digital image correlation (DIC) due to camera calibration were investigated using precisely controlled numerical experiments and real experiments. Three-dimensional rigid body motion tests were conducted to examine the effects of camera calibration on the measured results. For a fully accurate calibration, rigid body motion causes negligible strain errors. However, for inaccurately calibrated camera parameters and a short working distance, rigid body motion will lead to more than 50-μɛ strain errors, which significantly affects the measurement. In practical measurements, it is impossible to obtain a fully accurate calibration; therefore, considerable attention should be focused on attempting to avoid these types of errors, especially for high-accuracy strain measurements. It is necessary to avoid large rigid body motions in both two-dimensional DIC and stereo-DIC.
The advanced thermionic converter with microwave power as an auxiliary ionization source
NASA Technical Reports Server (NTRS)
Manikopoulos, C. N.; Hatziprocopiou, M.; Chiu, H. S.; Shaw, D. T.
1978-01-01
In the search for auxiliary sources of ionization for the advanced thermionic converter plasma, as required for terrestial applications, the use of externally applied microwave power is considered. The present work is part of the advanced model thermionic converter development research currently performed at the laboratory for Power and Environmental Studies at SUNY Buffalo. Microwave power in the frequency range 1-3 GHz is used to externally pump a thermionic converter and the results are compared to the theoretical model proposed by Lam (1976) in describing the thermionic converter plasma. The electron temperature of the plasma is found to be raised considerably by effective microwave heating which results in the disappearance of the double sheath ordinarily erected in front of the emitter. The experimental data agree satisfactorily with theory in the low current region.
Experimental Study of Ignition by Hot Spot in Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Serruys, Max
1938-01-01
In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.
NASA Astrophysics Data System (ADS)
Van Malderen, Stijn J. M.; van Elteren, Johannes T.; Šelih, Vid S.; Vanhaecke, Frank
2018-02-01
This work describes the aliasing effects induced by undersampling the high-frequency signal patterns generated by a laser ablation-inductively coupled plasma-mass spectrometer equipped with a low-dispersion ablation cell and sequential mass analyzer. By characterizing the width of the signal peak generated from a single shot on the sample, critical experimental parameters, such as the laser repetition rate and detector cycle timings for the individual nuclides can be matched so as to avoid these imaging artifacts (spectral skew) induced by an insufficient sampling rate. By increasing the laser repetition rate by a factor 2-3, masses at the end of the mass scan can be sampled at higher sensitivity. Furthermore, the dwell times can be redistributed over the nuclides of interest based on the signal-to-noise ratio to increase the image contrast.
Influence of minor geometric features on Stirling pulse tube cryocooler performance
NASA Astrophysics Data System (ADS)
Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.; Perrella, M.
2017-12-01
Minor geometric features and imperfections are commonly introduced into the basic design of multi-component systems to simplify or reduce the manufacturing expense. In this work, the cooling performance of a Stirling type cryocooler was tested in different driving powers, cold-end temperatures and inclination angles. A series of Computational Fluid Dynamics (CFD) simulations based on a prototypical cold tip was carried out. Detailed CFD model predictions were compared with the experiment and were used to investigate the impact of such apparently minor geometric imperfections on the performance of Stirling type pulse tube cryocoolers. Predictions of cooling performance and gravity orientation sensitivity were compared with experimental results obtained with the cryocooler prototypes. The results indicate that minor geometry features in the cold tip assembly can have considerable negative effects on the gravity orientation sensitivity of a pulse tube cryocooler.
Chemist and meteorologist - Antoine Lavoisier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaffney, J. S.; Marley, N. A.; Environmental Research
2003-01-01
Antoine Lavoisier (1743-1794) is well known as the father of modern chemistry. His work on the chemistry of oxygen and the development of the concept of mass balance lighted the way for future chemists to apply rigorous scientific methods in their work. However, Lavoisier also made considerable contributions to other scientific disciplines, including meteorology and atmospheric science. This paper will survey the life of Antoine Lavoisier and his considerable scientific contributions. We will highlight his work on lightning and his attempts to develop a meteorological network for temperature and humidity measurements to support weather prediction.
Poms, Laura Wheeler; Botsford, Whitney E; Kaplan, Seth A; Buffardi, Louis C; O'Brien, Alison S
2009-10-01
This article introduces the role of financial considerations into work-family research by considering the costs and benefits of employed mothers' child care satisfaction. Data from 2 samples offer empirical support for the addition of a fourth factor to a current measure of child care satisfaction so that the measure reflects mothers' satisfaction not only with caregiver attentiveness, communication, and dependability but also with child care-related financial considerations. This article also discusses relationships between child care satisfaction and work-family conflict and job satisfaction for this population. The results of this study provide both organizations and child care providers with a broader picture of the concerns that employed mothers face as they search for reliable, affordable child care. PsycINFO Database Record (c) 2009 APA, all rights reserved.
NASA Technical Reports Server (NTRS)
Wang, Charles C.; Peng, Ted; Sue, Miles K.
2004-01-01
In the 23'd Annual SFCG meeting in San Diego, CA, the SFCG created SFCG Action Item No. 23/10 to provide a readable summary of the work done by the Mars Interim Working Group (MIWG). The SFCG created the MIWG to develop a frequency plan for future Mars missions. The working group has produced a number of documents resulting in a recommendation, SFCG Rec 22-1 [1], titled Frequency Assignment Guidelines for Communications in Mars Region, including a frequency plan for the Mars Region. This document is prepared in response to the SFCG Action Item to provide an overview of the considerations taken when selecting the frequencies and to point out where detailed information of the considerations can be found.
Integrating health promotion with quality improvement in a Swedish hospital.
Astnell, Sandra; von Thiele Schwarz, Ulrica; Hasson, Henna; Augustsson, Hanna; Stenfors-Hayes, Terese
2016-09-01
Integration of workplace employee health promotion (HP) and occupational health and safety (OHS) work into organizational quality improvement systems is suggested as a way to strengthen HP and OHS activities in an organization. The aim of this article was to study what consequences integration of HP, OHS and a quality improvement system called kaizen has on the frequency and type of HP and OHS activities. A quasi-experimental study design was used where an integration of the three systems for HP, OHS respectively kaizen, was performed at six intervention units at a Swedish hospital. The remaining six units served as controls. Document analysis of all employees' written improvement suggestions (kaizen notes) during 2013 was conducted. The findings show that the intervention group had more suggestions concerning HP and OHS (n = 114) when compared with the control group (n = 78) and a greater variety of HP and OHS suggestions. In addition, only the intervention group had included HP aspects. In both groups, most kaizen notes with health consideration had a preventive focus rather than rehabilitative. The intervention, i.e. the integration of HP, OHS and kaizen work, had a favourable effect on HP and OHS work when compared with the controls. The results of the study support that this system can work in practice at hospitals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhen, Wang
2017-07-01
Flotation and adsorption performance of sodium oleate(NaOl)on powellite and fluorapatite were investigated in this work through micro-flotation tests, work of adhesion calculations, molecular dynamics simulation, micro-topography studies and FTIR measurements. The micro-flotation results show a similar flotation behaviors of powellite and fluorapatite under alkaline conditions, but a considerable difference in mineral recoveries in the pH range 2-7, which demonstrates the possibilities for separating powillite from fluorapatite under acidic conditions. The great difference in mineral recovery displays a good accordance with the obvious difference in the work of adhesion of powellite and fluorapatite at NaOl dosage range of 40-80 mg/L, obtained from flotation and contact angle measurements, respectively. The more negative interaction energy (ΔE) between NaOl and powellite/water interface from molecular dynamics simulation reveals a more easily adsorption of NaOl onto powellite than onto fluorapatite, which excellently matches with the results of flotation and work of adhesion. The results of micro-topography study shows that the adsorption of NaOl on powellite is mainly ascribed to the chemisorption of oleate ions with Ca2+ on powellite lattice or the precipitation of calcium dioleate agglomerates on powellite surface when it was in the solution without or with Ca2+, respectively. The FTIR measurements further confirm the chemisorption of oleate ions with Ca2+ active sites on powellite surface.
AN EXPERIMENTAL STUDY OF GYE'S CANCER THEORY.
Mueller, J H
1927-01-31
It is obviously impossible to draw definite conclusions as to the significance of the differences between our work and Gye's, and still less, of the differences between Gye's work and that of Murphy and of Flu. We can only say that in a fairly large series of experiments, extending over a period of 12 months, we have had absolutely no indication of the necessity of two factors in the production of the Rous sarcoma. In other words, we have been unable to duplicate either the results of Gye or the modified confirmations of his work by Murphy and Flu. We have shown that uncontrollable local and individual variations may produce results in occasional chicks which simulate satisfactory experiments, but when viewed as a whole, mean nothing. Because of the conflicting nature of results obtained by those who have undertaken to repeat the work, and on account of the difficulty of controlling all factors involved, we do not feel that it may be stated definitely that Gye's theory of the cause of cancer is wrong. On the other hand the theory apparently needs more evidence in its support if it is to receive further serious consideration. It is suggested, in order to untangle the subjéct as rapidly as possible, that future publications should include sufficient consecutive protocols to make the trend of the experiments obvious to the reader.
AN EXPERIMENTAL STUDY OF GYE'S CANCER THEORY
Mueller, J. Howard
1927-01-01
It is obviously impossible to draw definite conclusions as to the significance of the differences between our work and Gye's, and still less, of the differences between Gye's work and that of Murphy and of Flu. We can only say that in a fairly large series of experiments, extending over a period of 12 months, we have had absolutely no indication of the necessity of two factors in the production of the Rous sarcoma. In other words, we have been unable to duplicate either the results of Gye or the modified confirmations of his work by Murphy and Flu. We have shown that uncontrollable local and individual variations may produce results in occasional chicks which simulate satisfactory experiments, but when viewed as a whole, mean nothing. Because of the conflicting nature of results obtained by those who have undertaken to repeat the work, and on account of the difficulty of controlling all factors involved, we do not feel that it may be stated definitely that Gye's theory of the cause of cancer is wrong. On the other hand the theory apparently needs more evidence in its support if it is to receive further serious consideration. It is suggested, in order to untangle the subjéct as rapidly as possible, that future publications should include sufficient consecutive protocols to make the trend of the experiments obvious to the reader. PMID:19869249
The Effect of Self-Directed Work Teams on Work Ethic
ERIC Educational Resources Information Center
Petty, Gregory C.; Lim, Doo Hun; Yoon, Seung Won; Fontan, Johnny
2008-01-01
This study examined the work ethic of manufacturing machine operators between self-directed work teams and traditional work groups using four work ethic subscales: dependable, considerate, ambitious, and cooperative (Dawson, [1999]; Petty, [1991]). Differences in measured work ethic scores were also compared across six demographic variables: age,…
Methodological standards in single-case experimental design: Raising the bar.
Ganz, Jennifer B; Ayres, Kevin M
2018-04-12
Single-case experimental designs (SCEDs), or small-n experimental research, are frequently implemented to assess approaches to improving outcomes for people with disabilities, particularly those with low-incidence disabilities, such as some developmental disabilities. SCED has become increasingly accepted as a research design. As this literature base is needed to determine what interventions are evidence-based practices, the acceptance of SCED has resulted in increased critiques with regard to methodological quality. Recent trends include recommendations from a number of expert scholars and institutions. The purpose of this article is to summarize the recent history of methodological quality considerations, synthesize the recommendations found in the SCED literature, and provide recommendations to researchers designing SCEDs with regard to essential and aspirational standards for methodological quality. Conclusions include imploring SCED to increase the quality of their experiments, with particular consideration regarding the applied nature of SCED research to be published in Research in Developmental Disabilities and beyond. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Davis, Jamie D., Ed.; Erickson, Jill Shepard, Ed.; Johnson, Sharon R., Ed.; Marshall, Catherine A., Ed.; Running Wolf, Paulette, Ed.; Santiago, Rolando L., Ed.
This first symposium of the Work Group on American Indian Research and Program Evaluation Methodology (AIRPEM) explored American Indian and Alaska Native cultural considerations in relation to "best practices" in research and program evaluation. These cultural considerations include the importance of tribal consultation on research…
Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.
Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E
2017-01-31
The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.
Protein Denaturation on p-T Axes--Thermodynamics and Analysis.
Smeller, László
2015-01-01
Proteins are essential players in the vast majority of molecular level life processes. Since their structure is in most cases substantial for their correct function, study of their structural changes attracted great interest in the past decades. The three dimensional structure of proteins is influenced by several factors including temperature, pH, presence of chaotropic and cosmotropic agents, or presence of denaturants. Although pressure is an equally important thermodynamic parameter as temperature, pressure studies are considerably less frequent in the literature, probably due to the technical difficulties associated to the pressure studies. Although the first steps in the high-pressure protein study have been done 100 years ago with Bridgman's ground breaking work, the field was silent until the modern spectroscopic techniques allowed the characterization of the protein structural changes, while the protein was under pressure. Recently a number of proteins were studied under pressure, and complete pressure-temperature phase diagrams were determined for several of them. This review summarizes the thermodynamic background of the typical elliptic p-T phase diagram, its limitations and the possible reasons for deviations of the experimental diagrams from the theoretical one. Finally we show some examples of experimentally determined pressure-temperature phase diagrams.
Suppressing bullfrog larvae with carbon dioxide
Gross, Jackson A.; Ray, Andrew; Sepulveda, Adam J.; Watten, Barnaby J.; Densmore, Christine L.; Layhee, Megan J.; Mark Abbey-Lambert,; ,
2014-01-01
Current management strategies for the control and suppression of the American Bullfrog (Lithobates catesbeianus = Rana catesbeiana Shaw) and other invasive amphibians have had minimal effect on their abundance and distribution. This study evaluates the effects of carbon dioxide (CO2) on pre- and prometamorphic Bullfrog larvae. Bullfrogs are a model organism for evaluating potential suppression agents because they are a successful invader worldwide. From experimental trials we estimated that the 24-h 50% and 99% lethal concentration (LC50 and LC99) values for Bullfrog larvae were 371 and 549 mg CO2/L, respectively. Overall, larvae that succumbed to experimental conditions had a lower body condition index than those that survived. We also documented sublethal changes in blood chemistry during prolonged exposure to elevated CO2. Specifically, blood pH decreased by more than 0.5 pH units after 9 h of exposure and both blood partial pressure of CO2 (pCO2) and blood glucose increased. These findings suggest that CO2 treatments can be lethal to Bullfrog larvae under controlled laboratory conditions. We believe this work represents the necessary foundation for further consideration of CO2 as a potential suppression agent for one of the most harmful invaders to freshwater ecosystems.
Discharge current distribution in stratified soil under impulse discharge
NASA Astrophysics Data System (ADS)
Eniola Fajingbesi, Fawwaz; Shahida Midi, Nur; Elsheikh, Elsheikh M. A.; Hajar Yusoff, Siti
2017-06-01
The mobility of charge particles traversing a material defines its electrical properties. Soil (earth) have long been the universal grounding before and after the inception of active ground systems for electrical appliance purpose due to it semi-conductive properties. The soil can thus be modelled as a single material exhibiting semi-complex inductive-reactive impedance. Under impulse discharge such as lightning strikes to soil this property of soil could result in electric potential level fluctuation ranging from ground potential rise/fall to electromagnetic pulse coupling that could ultimately fail connected electrical appliance. In this work we have experimentally model the soil and lightning discharge using point to plane electrode setup to observe the current distribution characteristics at different soil conductivity [mS/m] range. The result presented from this research indicate above 5% shift in conductivity before and after discharge which is significant for consideration when dealing with grounding designs. The current distribution in soil have also be successfully observed and analysed from experimental result using mean current magnitude in relation to electrode distance and location, current density variation with depth all showing strong correlation with theoretical assumptions of a semi-complex impedance material.
Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno
2016-01-01
Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323
Effect of capping layer on spin-orbit torques
NASA Astrophysics Data System (ADS)
Sun, Chi; Siu, Zhuo Bin; Tan, Seng Ghee; Yang, Hyunsoo; Jalil, Mansoor B. A.
2018-04-01
In order to enhance the magnitude of spin-orbit torque (SOT), considerable experimental works have been devoted to studying the thickness dependence of the different layers in multilayers consisting of heavy metal (HM), ferromagnet (FM), and capping layers. Here, we present a theoretical model based on the spin-drift-diffusion formalism to investigate the effect of the capping layer properties such as its thickness on the SOT observed in experiments. It is found that the spin Hall-induced SOT can be significantly enhanced by incorporating a capping layer with an opposite spin Hall angle to that of the HM layer. The spin Hall torque can be maximized by tuning the capping layer thickness. However, in the absence of the spin Hall effect (SHE) in the capping layer, the torque decreases monotonically with the capping layer thickness. Conversely, the spin Hall torque is found to decrease monotonically with the FM layer thickness, irrespective of the presence or absence of the SHE in the capping layer. All these trends are in correspondence with experimental observations. Finally, our model suggests that capping layers with a long spin diffusion length and high resistivity would also enhance the spin Hall torque.
Zone analysis in biology articles as a basis for information extraction.
Mizuta, Yoko; Korhonen, Anna; Mullen, Tony; Collier, Nigel
2006-06-01
In the field of biomedicine, an overwhelming amount of experimental data has become available as a result of the high throughput of research in this domain. The amount of results reported has now grown beyond the limits of what can be managed by manual means. This makes it increasingly difficult for the researchers in this area to keep up with the latest developments. Information extraction (IE) in the biological domain aims to provide an effective automatic means to dynamically manage the information contained in archived journal articles and abstract collections and thus help researchers in their work. However, while considerable advances have been made in certain areas of IE, pinpointing and organizing factual information (such as experimental results) remains a challenge. In this paper we propose tackling this task by incorporating into IE information about rhetorical zones, i.e. classification of spans of text in terms of argumentation and intellectual attribution. As the first step towards this goal, we introduce a scheme for annotating biological texts for rhetorical zones and provide a qualitative and quantitative analysis of the data annotated according to this scheme. We also discuss our preliminary research on automatic zone analysis, and its incorporation into our IE framework.
Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R
2008-11-01
The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.
Muharam, Yuswan; Warnatz, Jürgen
2007-08-21
A mechanism generator code to automatically generate mechanisms for the oxidation of large hydrocarbons has been successfully modified and considerably expanded in this work. The modification was through (1) improvement of the existing rules such as cyclic-ether reactions and aldehyde reactions, (2) inclusion of some additional rules to the code, such as ketone reactions, hydroperoxy cyclic-ether formations and additional reactions of alkenes, (3) inclusion of small oxygenates, produced by the code but not included in the handwritten C(1)-C(4) sub-mechanism yet, to the handwritten C(1)-C(4) sub-mechanism. In order to evaluate mechanisms generated by the code, simulations of observed results in different experimental environments have been carried out. Experimentally derived and numerically predicted ignition delays of n-heptane-air and n-decane-air mixtures in high-pressure shock tubes in a wide range of temperatures, pressures and equivalence ratios agree very well. Concentration profiles of the main products and intermediates of n-heptane and n-decane oxidation in jet-stirred reactors at a wide range of temperatures and equivalence ratios are generally well reproduced. In addition, the ignition delay times of different normal alkanes was numerically studied.
Comparison of Inboard-Outboard Pedestal Temperature Measurements in JET Using ECE Diagnostics
NASA Astrophysics Data System (ADS)
Barrera, L.; de la Luna, E.; Figini, L.
2008-03-01
Despite considerable effort, both theoretically and experimentally, a complete physical model to describe the particle and energy losses during ELMs is far from complete. On the experimental front, improved description of the spatial structure (poloidal asymmetry, radial distribution) and the dynamics of the ELM crash is a key requirement to answer some of the basic outstanding questions concerning the physics of ELMs. A significant number of diagnostics is now capable of fast measurements of the pedestal profile during an ELM, however, there is a lack of data from the inboard midplane, so assumptions of poloidal symmetry on the flux surfaces have often to be made. The aim of this work is to explore the capabilities of the electron cyclotron emission (ECE) diagnostics to provide simultaneous measurements of the edge temperature for both inboard and outboard plasma midplane. Access to the inboard region of the plasma is achieved in JET by using 1 harmonic/O-mode polarization, as it is not affected by harmonic overlap with the 2nd harmonic. This paper focuses on the validation of the inboard ECE data and the identification of the limitations of the measurements and the data analysis.
Simulations and Experiments of Dynamic Granular Compaction in Non-ideal Geometries
NASA Astrophysics Data System (ADS)
Homel, Michael; Herbold, Eric; Lind, John; Crum, Ryan; Hurley, Ryan; Akin, Minta; Pagan, Darren; LLNL Team
2017-06-01
Accurately describing the dynamic compaction of granular materials is a persistent challenge in computational mechanics. Using a synchrotron x-ray source we have obtained detailed imaging of the evolving compaction front in synthetic olivine powder impacted at 300 - 600 m / s . To facilitate imaging, a non-traditional sample geometry is used, producing multiple load paths within the sample. We demonstrate that (i) commonly used models for porous compaction may produce inaccurate results for complex loading, even if the 1 - D , uniaxial-strain compaction response is reasonable, and (ii) the experimental results can be used along with simulations to determine parameters for sophisticated constitutive models that more accurately describe the strength, softening, bulking, and poroelastic response. Effects of experimental geometry and alternative configurations are discussed. Our understanding of the material response is further enhanced using mesoscale simulations that allow us to relate the mechanisms of grain fracture, contact, and comminution to the macroscale continuum response. Numerical considerations in both continuum and mesoscale simulations are described. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LDRD#16-ERD-010. LLNL-ABS-725113.
Experimental evaluation of job provenance in ATLAS environment
NASA Astrophysics Data System (ADS)
Křenek, A.; Sitera, J.; Chudoba, J.; Dvořák, F.; Filipovič, J.; Kmuníček, J.; Matyska, L.; Mulaš, M.; Ruda, M.; Šustr, Z.; Campana, S.; Molinari, E.; Rebatto, D.
2008-07-01
Grid middleware stacks, including gLite, matured into the state of being able to process up to millions of jobs per day. Logging and Bookkeeping, the gLite job-tracking service, keeps pace with this rate; however, it is not designed to provide a long-term archive of information on executed jobs. ATLAS — representative of a large user community — addresses this issue with its own job catalogue (ProdDB). Development of such a customized service, not easily reusable, took considerable effort which is not affordable by smaller communities. On the contrary, Job Provenance (JP), a generic gLite service designed for long-term archiving of information on executed jobs focusing on scalability, extensibility, uniform data view, and configurability, allows more specialized catalogues to be easily built. We present the first results of an experimental JP deployment for the ATLAS production infrastructure where a JP installation was fed with a part of ATLAS jobs, and also stress tested with real production data. The main outcome of this work is a demonstration that JP can complement large-scale application-specific job catalogue services, while serving a similar purpose where there are none available.
NASA Astrophysics Data System (ADS)
Gitter, K.; Odenbach, S.
2011-12-01
Magnetic drug targeting (MDT), because of its high targeting efficiency, is a promising approach for tumour treatment. Unwanted side effects are considerably reduced, since the nanoparticles are concentrated within the target region due to the influence of a magnetic field. Nevertheless, understanding the transport phenomena of nanoparticles in an artery system is still challenging. This work presents experimental results for a branched tube model. Quantitative results describe, for example, the net amount of nanoparticles that are targeted towards the chosen region due to the influence of a magnetic field. As a result of measurements, novel drug targeting maps, combining, e.g. the magnetic volume force, the position of the magnet and the net amount of targeted nanoparticles, are presented. The targeting maps are valuable for evaluation and comparison of setups and are also helpful for the design and the optimisation of a magnet system with an appropriate strength and distribution of the field gradient. The maps indicate the danger of accretion within the tube and also show the promising result of magnetic drug targeting that up to 97% of the nanoparticles were successfully targeted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energiesmore » of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.« less
A molecular thermodynamic model for the stability of hepatitis B capsids
NASA Astrophysics Data System (ADS)
Kim, Jehoon; Wu, Jianzhong
2014-06-01
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
NASA Astrophysics Data System (ADS)
Chen, Mingji; Wang, Changxian; Cheng, Xiaodong; Gong, Congcheng; Song, Weili; Yuan, Xujin; Fang, Daining
2018-04-01
The realization of an ideal invisible cloak implementing transformation optics is still missing. An impedance matching concept is implanted into transformation optics cloak to generate an impedance matching cloak (IMC) shell. In this work, it is proved that impedance matching structure reduces the cloaking structure’s disturbance to a propagating electromagnetic field and improves its invisibility measured by scattering field intensity. Such a cylindrical IMC shell is designed, fabricated with proposed rounded rectangular split-ring-resonators (RR-SRRs), and experimental measurements show the total scattering field of a perfect electric conductor (PEC) cylinder surrounded by an IMC shell is improved greatly compared to the PEC cylinder showing electromagnetic wave front ripple suppression and a considerable scattering shrinking effect. IMC shell backward scattering field is suppressed down to 7.29%, compared to the previous value of 86.7% due to its impedance matching character, and overall scattering field intensity shrinking is down to 19.3% compared to the previously realized value of 56.4%. Sideward scattering field recorded in the experiment also has a remarkable improvement compared to the PEC cylinder. The impedance matching concept might enlighten the realization of an ideal cloak and other novel electromagnetic cloaking and shielding structures.
[Contribution of animal experimentation to pharmacology].
Sassard, Jean; Hamon, Michel; Galibert, Francis
2009-11-01
Animal experimentation is of considerable importance in pharmacology and cannot yet be avoided when studying complex, highly integrated physiological functions. The use of animals has been drastically reduced in the classical phases of pharmacological research, for example when comparing several compounds belonging to the same pharmacological class. However, animal experiments remain crucial for generating and validating new therapeutic concepts. Three examples of such research, conducted in strict ethical conditions, will be used to illustrate the different ways in which animal experimentation has contributed to human therapeutics.
Quality factor analysis for aberrated laser beam
NASA Astrophysics Data System (ADS)
Ghafary, B.; Alavynejad, M.; Kashani, F. D.
2006-12-01
The quality factor of laser beams has attracted considerable attention and some different approaches have been reported to treat the problem. In this paper we analyze quality factor of laser beam and compare the effect of different aberrations on beam quality by expanding pure phase term of wavefront in terms of Zernike polynomials. Also we analyze experimentally the change of beam quality for different Astigmatism aberrations, and compare theoretical results with experimentally results. The experimental and theoretical results are in good agreement.
Accounting for optical errors in microtensiometry.
Hinton, Zachary R; Alvarez, Nicolas J
2018-09-15
Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P
2013-02-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.
Altuntepe, Emrah; Emel'yanenko, Vladimir N; Forster-Rotgers, Maximilian; Sadowski, Gabriele; Verevkin, Sergey P; Held, Christoph
2017-10-01
Levulinic acid was esterified with methanol, ethanol, and 1-butanol with the final goal to predict the maximum yield of these equilibrium-limited reactions as function of medium composition. In a first step, standard reaction data (standard Gibbs energy of reaction Δ R g 0 ) were determined from experimental formation properties. Unexpectedly, these Δ R g 0 values strongly deviated from data obtained with classical group contribution methods that are typically used if experimental standard data is not available. In a second step, reaction equilibrium concentrations obtained from esterification catalyzed by Novozym 435 at 323.15 K were measured, and the corresponding activity coefficients of the reacting agents were predicted with perturbed-chain statistical associating fluid theory (PC-SAFT). The so-obtained thermodynamic activities were used to determine Δ R g 0 at 323.15 K. These results could be used to cross-validate Δ R g 0 from experimental formation data. In a third step, reaction-equilibrium experiments showed that equilibrium position of the reactions under consideration depends strongly on the concentration of water and on the ratio of levulinic acid: alcohol in the initial reaction mixtures. The maximum yield of the esters was calculated using Δ R g 0 data from this work and activity coefficients of the reacting agents predicted with PC-SAFT for varying feed composition of the reaction mixtures. The use of the new Δ R g 0 data combined with PC-SAFT allowed good agreement to the measured yields, while predictions based on Δ R g 0 values obtained with group contribution methods showed high deviations to experimental yields.
Evolutionary-based approaches for determining the deviatoric stress of calcareous sands
NASA Astrophysics Data System (ADS)
Shahnazari, Habib; Tutunchian, Mohammad A.; Rezvani, Reza; Valizadeh, Fatemeh
2013-01-01
Many hydrocarbon reservoirs are located near oceans which are covered by calcareous deposits. These sediments consist mainly of the remains of marine plants or animals, so calcareous soils can have a wide variety of engineering properties. Due to their local expansion and considerable differences from terrigenous soils, the evaluation of engineering behaviors of calcareous sediments has been a major concern for geotechnical engineers in recent years. Deviatoric stress is one of the most important parameters directly affecting important shearing characteristics of soils. In this study, a dataset of experimental triaxial tests was gathered from two sources. First, the data of previous experimental studies from the literature were gathered. Then, a series of triaxial tests was performed on calcareous sands of the Persian Gulf to develop the dataset. This work resulted in a large database of experimental results on the maximum deviatoric stress of different calcareous sands. To demonstrate the capabilities of evolutionary-based approaches in modeling the deviatoric stress of calcareous sands, two promising variants of genetic programming (GP), multigene genetic programming (MGP) and gene expression programming (GEP), were applied to propose new predictive models. The models' input parameters were the physical and in-situ condition properties of soil and the output was the maximum deviatoric stress (i.e., the axial-deviator stress). The results of statistical analyses indicated the robustness of these models, and a parametric study was also conducted for further verification of the models, in which the resulting trends were consistent with the results of the experimental study. Finally, the proposed models were further simplified by applying a practical geotechnical correlation.
Xie, Qiyuan; Zhang, Heping; Ye, Ruibo
2009-07-30
The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.
DOT National Transportation Integrated Search
2002-01-15
This report contains both analytical and experimental work, as well as mathematical work on concrete bridge, located on Route 89 in Vermont. The bridge was renovated by replacing the deck. The experimental work included monitoring the effect of the H...
NASA Technical Reports Server (NTRS)
Graydon, Patrick J.; Holloway, C. M.
2015-01-01
Safe use of software in safety-critical applications requires well-founded means of determining whether software is fit for such use. While software in industries such as aviation has a good safety record, little is known about whether standards for software in safety-critical applications 'work' (or even what that means). It is often (implicitly) argued that software is fit for safety-critical use because it conforms to an appropriate standard. Without knowing whether a standard works, such reliance is an experiment; without carefully collecting assessment data, that experiment is unplanned. To help plan the experiment, we organized a workshop to develop practical ideas for assessing software safety standards. In this paper, we relate and elaborate on the workshop discussion, which revealed subtle but important study design considerations and practical barriers to collecting appropriate historical data and recruiting appropriate experimental subjects. We discuss assessing standards as written and as applied, several candidate definitions for what it means for a standard to 'work,' and key assessment strategies and study techniques and the pros and cons of each. Finally, we conclude with thoughts about the kinds of research that will be required and how academia, industry, and regulators might collaborate to overcome the noted barriers.
Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Cambier, Jean-Luc
1993-01-01
Work continued on the improvement of 16-Inch Shock Tunnel. This comprised studies of ways of improving driver gas ignition, an improved driver gas mixing system, an axial translation system for the driver tube, improved diaphragm materials (carbon steel vs. stainless steel), a copper liner for the part of the driven tube near the nozzle, the use of a buffer gas between the driver and driven gases, the use of N2O in the driven tube, the use of a converging driven tube, operation of the facility as a non-reflected shock tunnel and expansion tube, operation with heated hydrogen or helium driver gas, the use of detonations in the driver and the construction of an enlarged test section. Maintenance and developmental work continued on the scramjet combustor continued. New software which greatly speeds up data analysis has been written and brought on line. In particular, software which provides very rapid generation of model surface heat flux profiles has been brought on line. A considerable amount of theoretical work was performed in connection with upgrading the 16 Inch Shock Tunnel Facility. A one-dimensional Godunov code for very high velocities and any equation of state is intended to add viscous effects in studying the operation of the Shock Tunnel and also of two-stage light gas guns.
NASA Astrophysics Data System (ADS)
Mlkvik, Marek; Zaremba, Matous; Jedelsky, Jan; Jicha, Miroslav
2016-03-01
Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s) by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, "outside in liquid" (OIL), configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa) and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%). The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR), internal flow regimes, Weber numbers of a liquid breakup (We) and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.
S. B. Cox; M. R. Willig; F. N. Scatena
2002-01-01
We assessed the effects of landscape features (vegetation type and topography), season, and spatial hierarchy on the nutrient content of surface soils in the Luquillo Experimental Forest (LEF) of Puerto Rico. Considerable spatial variation characterized the soils of the LEF, and differences between replicate sites within each combination of vegetation type (tabonuco vs...
Tomasso, Maria E.; Tarver, Micheal J.; Devarajan, Deepa; Whitten, Steven T.
2016-01-01
The properties of disordered proteins are thought to depend on intrinsic conformational propensities for polyproline II (PP II) structure. While intrinsic PP II propensities have been measured for the common biological amino acids in short peptides, the ability of these experimentally determined propensities to quantitatively reproduce structural behavior in intrinsically disordered proteins (IDPs) has not been established. Presented here are results from molecular simulations of disordered proteins showing that the hydrodynamic radius (R h) can be predicted from experimental PP II propensities with good agreement, even when charge-based considerations are omitted. The simulations demonstrate that R h and chain propensity for PP II structure are linked via a simple power-law scaling relationship, which was tested using the experimental R h of 22 IDPs covering a wide range of peptide lengths, net charge, and sequence composition. Charge effects on R h were found to be generally weak when compared to PP II effects on R h. Results from this study indicate that the hydrodynamic dimensions of IDPs are evidence of considerable sequence-dependent backbone propensities for PP II structure that qualitatively, if not quantitatively, match conformational propensities measured in peptides. PMID:26727467
George, Barbara Jane; Sobus, Jon R; Phelps, Lara P; Rashleigh, Brenda; Simmons, Jane Ellen; Hines, Ronald N
2015-05-01
Considerable concern has been raised regarding research reproducibility both within and outside the scientific community. Several factors possibly contribute to a lack of reproducibility, including a failure to adequately employ statistical considerations during study design, bias in sample selection or subject recruitment, errors in developing data inclusion/exclusion criteria, and flawed statistical analysis. To address some of these issues, several publishers have developed checklists that authors must complete. Others have either enhanced statistical expertise on existing editorial boards, or formed distinct statistics editorial boards. Although the U.S. Environmental Protection Agency, Office of Research and Development, already has a strong Quality Assurance Program, an initiative was undertaken to further strengthen statistics consideration and other factors in study design and also to ensure these same factors are evaluated during the review and approval of study protocols. To raise awareness of the importance of statistical issues and provide a forum for robust discussion, a Community of Practice for Statistics was formed in January 2014. In addition, three working groups were established to develop a series of questions or criteria that should be considered when designing or reviewing experimental, observational, or modeling focused research. This article describes the process used to develop these study design guidance documents, their contents, how they are being employed by the Agency's research enterprise, and expected benefits to Agency science. The process and guidance documents presented here may be of utility for any research enterprise interested in enhancing the reproducibility of its science. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.
Direct solar pumping of semiconductor lasers: A feasibility study
NASA Technical Reports Server (NTRS)
Anderson, Neal G.
1992-01-01
This report describes results of NASA Grant NAG-1-1148, entitled Direct Solar Pumping of Semiconductor Lasers: A Feasibility Study. The goals of this study were to provide a preliminary assessment of the feasibility of pumping semiconductor lasers in space with directly focused sunlight and to identify semiconductor laser structures expected to operate at the lowest possible focusing intensities. It should be emphasized that the structures under consideration would provide direct optical-to-optical conversion of sunlight into laser light in a single crystal, in contrast to a configuration consisting of a solar cell or storage battery electrically pumping a current injection laser. With external modulation, such lasers could perhaps be efficient sources for intersatellite communications. We proposed specifically to develop a theoretical model of semiconductor quantum-well lasers photopumped by a broadband source, test it against existing experimental data where possible, and apply it to estimating solar pumping requirements and identifying optimum structures for operation at low pump intensities. These tasks have been accomplished, as described in this report of our completed project. The report is organized as follows: Some general considerations relevant to the solar-pumped semiconductor laser problem are discussed in Section 2, and the types of structures chosen for specific investigation are described. The details of the laser model we developed for this work are then outlined in Section 3. In Section 4, results of our study are presented, including designs for optimum lattice-matched and strained-layer solar-pumped quantum-well lasers and threshold pumping estimates for these structures. It was hoped at the outset of this work that structures could be identified which could be expected to operate continuously at solar photoexcitation intensities of several thousand suns, and this indeed turned out to be the case as described in this section. Our project is summarized in Section 5, and information on publications resulting from this work is provided in Section 6.
Structural Inference in the Art of Violin Making.
NASA Astrophysics Data System (ADS)
Morse-Fortier, Leonard Joseph
The "secrets" of success of early Italian violins have long been sought. Among their many efforts to reproduce the results of Stradiveri, Guarneri, and Amati, luthiers have attempted to order and match natural resonant frequencies in the free violin plates. This tap-tone plate tuning technique is simply an eigenvalue extraction scheme. In the final stages of carving, the violin maker complements considerable intuitive knowledge of violin plate structure and of modal attributes with tap-tone frequency estimates to better understand plate structure and to inform decisions about plate carving and completeness. Examining the modal attributes of violin plates, this work develops and incorporates an impulse-response scheme for modal inference, measures resonant frequencies and modeshapes for a pair of violin plates, and presents modeshapes through a unique computer visualization scheme developed specifically for this purpose. The work explores, through simple examples questions of how plate modal attributes reflect underlying structure, and questions about the so -called evolution of modeshapes and frequencies through assembly of the violin. Separately, the work develops computer code for a carved, anisotropic, plate/shell finite element. Solutions are found to the static displacement and free-vibration eigenvalue problems for an orthotropic plate, and used to verify element accuracy. Finally, a violin back plate is modelled with full consideration of plate thickness and arching. Model estimates for modal attributes compare very well against experimentally acquired values. Finally, the modal synthesis technique is applied to predicting the modal attributes of the violin top plate with ribs attached from those of the top plate alone, and with an estimate of rib mass and stiffness. This last analysis serves to verify the modal synthesis method, and to quantify its limits of applicability in attempting to solve problems with severe structural modification. Conclusions emphasize the importance of better understanding the underlying structure, improved understanding of its relationship to modal attributes, and better estimates of wood elasticity.
2017-03-23
Consideration for Department of Defense Medical Facilities Erik B. Schuh Follow this and additional works at: https://scholar.afit.edu/etd Part of the...Citation Schuh, Erik B., "Examining Regionalization Efforts to Develop Lessons Learned and Consideration for Department of Defense Medical Facilities...Consideration for Department of Defense Medical Facilities THESIS Erik B. Schuh, 2Lt, USAF AFIT-ENS-MS-17-M-156 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR
Mechanics of Micro- and Nano-Textured Systems: Nanofibers, Nanochannels, Nanoparticles and Slurries
NASA Astrophysics Data System (ADS)
Sinha Ray, Suman
The first chapter of this work deals with bundles of microscopically long carbon nanochannels, which were assembled as a nanofluidic device to study bi-layer flows of n-decane and air. These experiments were accompanied and supported by theoretical considerations. The study paradoxically showed that it is possible to deliver more liquid through the nanochannels if they are partially filled with liquid in comparison to those which are completely filled with liquid. In the following chapter these nanochannels were used to produce thermoresponsive nanoparticles (˜400 nm in diameter) at a very high production rate of 107 particles/sec. These nanoparticles were loaded with a low molecular weight dye to study the thermoresponsive release profile experimentally. The experiments were accompanied and guided by theoretical work. In the third part of the work, a rigorous electron microscopy revealed the 2-nm islands of thermoresponsive hydrogels nanofibers produced by electrospinning and cross-linking of electropun PNIPAM-containing nanofibers. These islands were found to be responsible for positive thermosensitivity in dye release experiments. In the following chapters meltblowing was studied both experimentally and theoretically. The role of air turbulence in this process was elucidated experimentally by blowing a solid flexible threadline in high-speed gas flow. Using this information, theoretical understanding of polymer jet/gas jet turbulent interactions was achieved and a theory of small (linearized) and large (nonlinear) bending perturbations of polymer jets was developed. This theory was extended to simulate numerically multiple polymer jets being deposited on a screen moving normally to the blowing direction. In the subsequent chapter, a novel method, solution blowing, for producing monolithic and core-shell nanofibers was developed. The core-shell fibers were also converted into hollow carbon nanotubes. The carbon nanofiber mats produced by this method were used as an electrode in a microbial fuel cell, which showed a higher current density in comparison to standard polycrystalline graphite rods. In addition, solution blowing was used to form soy-protein-containing biodegradable nanofibers. In the next chapter, a novel method of intercalating wax and butter en masse into carbon nanotubes was demonstrated. It was shown that by manipulating the intercalated solute the working temperature range of phase-change materials (PCM) can be significantly widened, while the response time reduced to minimum. In the final part of the work the elongational rheology of gypsum slurries was also studied and corroborated using the data from the corresponding shear rheological studies. It was shown that the gypsum slurries approximately follow the tensorial Ostwald-de-Waele (power law) constitutive equation.
Management of work-relevant upper limb disorders: a review.
Burton, A Kim; Kendall, Nicholas A S; Pearce, Brian G; Birrell, Lisa N; Bainbridge, L Christopher
2009-01-01
Upper limb disorders (ULDs) are clinically challenging and responsible for considerable work loss. There is a need to determine effective approaches for their management. To determine evidence-based management strategies for work-relevant ULDs and explore whether a biopsychosocial approach is appropriate. Literature review using a best evidence synthesis. Data from articles identified through systematic searching of electronic databases and citation tracking were extracted into evidence tables. The information was synthesized into high-level evidence statements, which were ordered into themes covering classification/diagnosis, epidemiology, associations/risks and management/treatment, focusing on return to work or work retention and taking account of distinctions between non-specific complaints and specific diagnoses. Neither biomedical treatment nor ergonomic workplace interventions alone offer an optimal solution; rather, multimodal interventions show considerable promise, particularly for occupational outcomes. Early return to work, or work retention, is an important goal for most cases and may be facilitated, where necessary, by transitional work arrangements. The emergent evidence indicates that successful management strategies require all the players to be on side and acting in a coordinated fashion; this requires engaging employers and workers to participate. The biopsychosocial model applies: biological considerations should not be ignored, but psychosocial factors are more influential for occupational outcomes. Implementation of interventions that address the full range of psychosocial issues will require a cultural shift in the way the relationship between upper limb complaints and work is conceived and handled. Dissemination of evidence-based messages can contribute to the needed cultural shift.
Code of Federal Regulations, 2011 CFR
2011-01-01
... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...
Code of Federal Regulations, 2014 CFR
2014-01-01
... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...
Code of Federal Regulations, 2013 CFR
2013-01-01
... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...
Code of Federal Regulations, 2012 CFR
2012-01-01
... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...
Use of Kinesiology Taping in Rehabilitation after Knee Arthroplasty: a Randomised Clinical Study.
Woźniak-Czekierda, Weronika; Woźniak, Kamil; Hadamus, Anna; Białoszewski, Dariusz
2017-10-31
Proprioception and body balance after knee arthroplasty have a considerable impact on restoration of joint function and a normal gait pattern. Kinesiology Taping (KT) is a method that may be able to influence these factors. The aim of this study was to assess the effects of KT application on sensorimotor efficiency, balance and gait in patients undergoing rehabili-ta--tion after knee replacement surgery. The study involved 120 male and female patients (mean age was 69 years) after total knee repla-cement. The patients were randomly assigned to one of two groups: Experimental Group (n=51) and Control Group (n=60). Both groups underwent standard rehabilitation lasting 20 days. In addition, the Experimental Group received KT applications. Treat-ment outcomes were assessed based on tests evaluating balance, joint position sense and functional gait performance, conducted both before and after the therapy. Statistically significant improvements were noted across all the parameters assessed in the Experimental Group (p<0.005). Significant improvements were also seen in the Control Group (p<0.005), but, in percentage terms, the improvement was higher in the Experimental Group. The only exception was the right/left foot load distribution, whose symmetry improved proportionally in both groups. 1. Patients after knee replacement surgery have considerable proprioception deficits, impaired body balance and reduced functional performance, which may increase the risk of falls in this group of patients. 2. Both standard physiotherapy and combination therapy with Kinesiology Taping (modified by the present authors) used in patients after knee arthroplasty may considerably improve the level of proprioception, body balance and overall functional performance. 3. The technique of dynamic taping proposed in this paper may optimise standard physiotherapy used in patients after knee arthroplasty and increase its clinical efficacy. Further studies are required.
NASA Astrophysics Data System (ADS)
Chowdhury, Sourav
2009-12-01
Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio channel tends to collect the condensate in the corners of its cross-section leaving only a thin liquid film on the flat side surfaces for better heat transfer than in circular or low aspect ratio channels.
Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis
NASA Astrophysics Data System (ADS)
Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo
2016-12-01
Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed based on AVT. Using advanced techniques in both the field testing and the numerical investigations produced reliable FEM specific for the tested tower, which can be further used in more advanced structural investigations for improving the design of such special structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
Alternative Work Patterns as Innovations in the Work Place. Overview: ERIC Fact Sheet No. 19.
ERIC Educational Resources Information Center
Denniston, Denie
Alternative work patterns are work schedules that allow employees to select the hours and length of their workweeks. Reasons for choosing alternative work patterns include transportation considerations, participation in outside activities, ability to work better during certain hours, child care, and household commitments. Examples of alternative…
Electrochemical investigations of advanced materials for microelectronic and energy storage devices
NASA Astrophysics Data System (ADS)
Goonetilleke, Pubudu Chaminda
A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response analysis (employed to study slow reactions such as solid state diffusion of Li). The designs of both the experimental equipment and the control variables change for studying the different aqueous and non-aqueous systems. The protocols for data analysis also change depending on the systems. In addition, it often becomes necessary to combine different aspects of the different experimental methods to obtain the necessary information about the system(s) under study. The experimental strategies and the associated theoretical considerations for developing these strategies are discussed in appropriate contexts of this work. CNT electrodes in combination with IL electrolytes are potentially important for electrochemical super-capacitors. We have carried out electrochemical investigation of such a system involving a paper-electrode of multiwall CNT in the IL of 1-Ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrated on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems. (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems have been discussed, focusing in particular, on the effects of faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results have been analyzed using an electrode equivalent circuit model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces. Chemical-mechanical planarization (CMP) of copper has now become an integral part of modern semiconductor fabrication technology. Recently, electrochemical-mechanical planarization (ECMP) has emerged as a possible extension of CMP, where through voltage-activated removal of Cu surface layers, one can substantially minimize the down-force necessary for mechanical polishing However, the detailed electrochemical factors that are central to designing efficient abrasive-free electrolytes for ECMP are not clearly understood at the present time. The present work has addressed this issue by studying the relative electrochemical effects of selected different chemical additives. Controlling the surface reactions (that is controlling the voltage-induced material removal) in ECMP requires a carefully designed combination of a number of electrochemical input variables (voltage activation program and electrolyte composition). We have studied the main experimental factors for designing these parameters, using triangular and rectangular-voltage-pulse modulated dissolution of Cu in electrolytes of different chemical compositions. Applications of rechargeable Li ion batteries have considerably expanded in recent years. As a result, research activities involving material-fabrication and characterization for these batteries also have expanded during this period. The importance of studying these specific materials lies in the fact that the cathode plays a major role in its contribution to the battery performance LiMn2O4 cathodes are being considered for next generation of Li ion batteries. The current work focuses on a specific problem commonly associated with Li cathode systems, namely surface film formation on the cathodes. LiMn2O4 cathodes tend to develop native surface films in carbonate electrolytes. By combining D.C. SSCV with A.C. EIS, we have studied how these films would react with an electrolyte of LiBF4 in ethylene and diethyl carbonates. We have demonstrated that such reactions could affect the measurement of the characteristic electrochemical parameters of the cathode, namely the intercalation capacitance, initial capacity-loss, coulometric titration profiles, and the solid state diffusion coefficient of Li+. A generalized framework for data analysis, based on the considerations of electrode equivalent circuits, has been used to combine the results of the D.C. and A.C. measurements.
JoAnn M. Hanowski; Gerald J. Niemi
1995-01-01
We established bird monitoring programs in two regions of Minnesota: the Chippewa National Forest and the Superior National Forest. The experimental design defined forest cover types as strata in which samples of forest stands were randomly selected. Subsamples (3 point counts) were placed in each stand to maximize field effort and to assess within-stand and between-...
20 CFR 220.130 - Work experience as a vocational factor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... RETIREMENT ACT DETERMINING DISABILITY Vocational Considerations § 220.130 Work experience as a vocational factor. (a) General. Work experience means skills and abilities the claimant has acquired through work he... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Work experience as a vocational factor. 220...
20 CFR 220.130 - Work experience as a vocational factor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... RETIREMENT ACT DETERMINING DISABILITY Vocational Considerations § 220.130 Work experience as a vocational factor. (a) General. Work experience means skills and abilities the claimant has acquired through work he... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Work experience as a vocational factor. 220...
20 CFR 220.130 - Work experience as a vocational factor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... RETIREMENT ACT DETERMINING DISABILITY Vocational Considerations § 220.130 Work experience as a vocational factor. (a) General. Work experience means skills and abilities the claimant has acquired through work he... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Work experience as a vocational factor. 220...
20 CFR 220.130 - Work experience as a vocational factor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... RETIREMENT ACT DETERMINING DISABILITY Vocational Considerations § 220.130 Work experience as a vocational factor. (a) General. Work experience means skills and abilities the claimant has acquired through work he... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Work experience as a vocational factor. 220...
Work-Based Learning: Learning To Work; Working To Learn; Learning To Learn.
ERIC Educational Resources Information Center
Strumpf, Lori; Mains, Kristine
This document describes a work-based learning approach designed to integrate work and learning at the workplace and thereby help young people develop the skills required for changing workplaces. The following considerations in designing work-based programs are discussed: the trend toward high performance workplaces and changes in the way work is…
Seing, Ida; MacEachen, Ellen; Ekberg, Kerstin; Ståhl, Christian
2015-01-01
The aim was to analyze the role and activities of employers with regard to return to work (RTW), in local workplace practice. Semi-structured interviews were conducted with sick-listed workers and their supervisors in 18 workplaces (n = 36). The analytical approach to study the role of employers in RTW was based on the three-domain model of social corporate responsibility. The model illustrates the linkage between corporations and their social environment, and consists of three areas of corporate responsibility: economic, legal and ethical. Employers had difficulties in taking social responsibility for RTW, in that economic considerations regarding their business took precedence over legal and ethical considerations. Employers engaged in either "RTW activities" or "transition activities" that were applied differently depending on how valued sick-listed workers were considered to be to their business, and on the nature of the job (e.g., availability of suitable work adjustments). This study suggests that Swedish legislation and policies does not always adequately prompt employers to engage in RTW. There is a need for further attention to the organizational conditions for employers to take social responsibility for RTW in the context of business pressure and work intensification. Employers may have difficulties in taking social responsibility for RTW when economic considerations regarding their business take precedence over legal and ethical considerations. Rehabilitation professionals should be aware of that outcomes of an RTW process can be influenced by the worker's value to the employer and the nature of the job (e.g., availability of suitable work adjustments). "Low-value" workers at workplaces with limited possibilities to offer workplace adjustments may run a high risk of dismissal. Swedish legislation and policies may need reforms to put more pressure on employers to promote RTW.
A novel in situ electrochemical NMR cell with a palisade gold film electrode
NASA Astrophysics Data System (ADS)
Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong
2017-08-01
In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.
Gyrokinetic analysis of pedestal transport
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike; Liu, X.; Hatch, Dr; Zheng, Lj; Mahajan, S.; Diallo, A.; Groebner, Rj; Hubbard, Ae; Hughes, Jw; Maggi, Cf; Saarelma, S.; JET Contributors
2017-10-01
Surprisingly, basic considerations can determine which modes are responsible for pedestal energy transport (e.g., KBM, ETG, ITG, MTM etc.). Gyrokinetic simulations of experiments, and analysis of the Gyrokinetic-Maxwell equations, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with the relative size of the driving sources of each channel, can strongly constrain or determine the dominant modes causing energy transport. MHD-like modes are not the dominant agent of energy transport - when the density source is weak as is often expected. Drift modes must fill this role. Detailed examination of experimental observations, including frequency and transport channel behavior, with simulations, demonstrates these points. Also see related posters by X. Liu, D.R. Hatch, and A. Blackmon. Work supported by US DOE under DE-FC02-04ER54698, DE-FG02-04ER54742 and DE-FC02-99ER54512 and by Eurofusion under Grant No. 633053.
Kohl, Kevin D
2017-10-01
Research on host-associated microbial communities has grown rapidly. Despite the great body of work, inclusion of microbiota-related questions into integrative and comparative biology is still lagging behind other disciplines. The purpose of this paper is to offer an introduction into the basic tools and techniques of host-microbe research. Specifically, what considerations should be made before embarking on such projects (types of samples, types of controls)? How is microbiome data analyzed and integrated with data measured from the hosts? How can researchers experimentally manipulate the microbiome? With this information, integrative and comparative biologists should be able to include host-microbe studies into their research and push the boundaries of both fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Rath, Asawari D.; Kundu, S.; Ray, A. K.
2018-02-01
Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.
Microscopic 3D measurement of dynamic scene using optimized pulse-width-modulation binary fringe
NASA Astrophysics Data System (ADS)
Hu, Yan; Chen, Qian; Feng, Shijie; Tao, Tianyang; Li, Hui; Zuo, Chao
2017-10-01
Microscopic 3-D shape measurement can supply accurate metrology of the delicacy and complexity of MEMS components of the final devices to ensure their proper performance. Fringe projection profilometry (FPP) has the advantages of noncontactness and high accuracy, making it widely used in 3-D measurement. Recently, tremendous advance of electronics development promotes 3-D measurements to be more accurate and faster. However, research about real-time microscopic 3-D measurement is still rarely reported. In this work, we effectively combine optimized binary structured pattern with number-theoretical phase unwrapping algorithm to realize real-time 3-D shape measurement. A slight defocusing of our proposed binary patterns can considerably alleviate the measurement error based on phase-shifting FPP, making the binary patterns have the comparable performance with ideal sinusoidal patterns. Real-time 3-D measurement about 120 frames per second (FPS) is achieved, and experimental result of a vibrating earphone is presented.
Modeling of LWIR HgCdTe Auger-Suppressed Infrared Photodiodes under Nonequilibrium Operation
NASA Astrophysics Data System (ADS)
Emelie, P. Y.; Velicu, S.; Grein, C. H.; Phillips, J. D.; Wijewarnasuriya, P. S.; Dhar, N. K.
2008-09-01
The general approach and effects of nonequilibrium operation of Auger-suppressed HgCdTe infrared photodiodes are well understood. However, the complex relationships of carrier generation and dependencies on nonuniform carrier profiles in the device prevent the development of simplistic analytical device models with acceptable accuracy. In this work, finite element methods are used to obtain self-consistent steady-state solutions of Poisson’s equation and the carrier continuity equations. Experimental current-voltage characteristics between 120 K and 300 K of HgCdTe Auger-suppressed photodiodes with cutoff wavelength of λ c = 10 μm at 120 K are fitted using our numerical model. Based on this fitting, we study the lifetime in the absorber region, extract the current mechanisms limiting the dark current in these photodiodes, and discuss design and fabrication considerations in order to optimize future HgCdTe Auger-suppressed photodiodes.
The emergence of spontaneous activity in neuronal cultures
NASA Astrophysics Data System (ADS)
Orlandi, J. G.; Alvarez-Lacalle, E.; Teller, S.; Soriano, J.; Casademunt, J.
2013-01-01
In vitro neuronal networks of dissociated hippocampal or cortical tissues are one of the most attractive model systems for the physics and neuroscience communities. Cultured neurons grow and mature, develop axons and dendrites, and quickly connect to their neighbors to establish a spontaneously active network within a week. The resulting neuronal network is characterized by a combination of excitatory and inhibitory neurons coupled through synaptic connections that interact in a highly nonlinear manner. The nonlinear behavior emerges from the dynamics of both the neurons' spiking activity and synaptic transmission, together with biological noise. These ingredients give rise to a rich repertoire of phenomena that are still poorly understood, including the emergence and maintenance of periodic spontaneous activity, avalanches, propagation of fronts and synchronization. In this work we present an overview on the rich activity of cultured neuronal networks, and detail the minimal theoretical considerations needed to describe experimental observations.
An international review of laser Doppler vibrometry: Making light work of vibration measurement
NASA Astrophysics Data System (ADS)
Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.
2017-12-01
In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.
A minimal physical model for crawling cells
NASA Astrophysics Data System (ADS)
Tiribocchi, Adriano; Tjhung, Elsen; Marenduzzo, Davide; Cates, Michael E.
Cell motility in higher organisms (eukaryotes) is fundamental to biological functions such as wound healing or immune response, and is also implicated in diseases such as cancer. For cells crawling on solid surfaces, considerable insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. We present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.
Okumura, Tetsu; Okanoya, Kazuo; Tani, Jun
2007-01-01
In chronic recording experiments, self-curing dental acrylic resins have been used as a mounting base of electrodes or microdialysis-probes. Since these acrylics do not bond to the bone, screws have been used as anchors. However, in small experimental animals like finches or mouse, their craniums are very fragile and can not successfully hold the anchors. In this report, we propose a new application of light-curing dental resins for mounting base of electrodes or microdialysis probes in chronic experiments. This material allows direct bonding to the cranium. Therefore, anchor screws are not required and surgical field can be reduced considerably. Past experiences show that the bonding effect maintains more than 2 months. Conventional resin's window of time when the materials are pliable and workable is a few minutes. However, the window of working time for these dental adhesives is significantly wider and adjustable. PMID:18997897
Research on the innovative hybrid impact hydroforming
NASA Astrophysics Data System (ADS)
Lang, Lihui; Wang, Shaohua; Yang, Chunlei
2013-12-01
The innovative hybrid impact hydro-forming (IHF) technology is a kind of high strain rate forming technique which can be used for forming complex parts with small features, such as convex tables, bars etc. The present work investigates IHF using a numerical /experimental approach. In this paper, the theory of IHF is presented and finite element simulation was carried out by using MSC. The pressure distribution changes in the depth direction, but not in the width direction. However, the pressure is uniform everywhere in traditional hydro-forming. Using this shock wave loading conditions, forming experiments were carried out. Punching occurred as a result of combined tensile and shear stress effects. Furthermore, results show that using IHF technology, the design constraint to make precise die may be considerably reduced. The need to accurately control punch-die clearance may also be eliminated. Therefore, the research is very useful for forming complicated products.
Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker
NASA Technical Reports Server (NTRS)
Cabell, Randolph H.
2008-01-01
Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yao; Ma, Kai; Kao, Teresa
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
Accuracy assessment for a multi-parameter optical calliper in on line automotive applications
NASA Astrophysics Data System (ADS)
D'Emilia, G.; Di Gasbarro, D.; Gaspari, A.; Natale, E.
2017-08-01
In this work, a methodological approach based on the evaluation of the measurement uncertainty is applied to an experimental test case, related to the automotive sector. The uncertainty model for different measurement procedures of a high-accuracy optical gauge is discussed in order to individuate the best measuring performances of the system for on-line applications and when the measurement requirements are becoming more stringent. In particular, with reference to the industrial production and control strategies of high-performing turbochargers, two uncertainty models are proposed, discussed and compared, to be used by the optical calliper. Models are based on an integrated approach between measurement methods and production best practices to emphasize their mutual coherence. The paper shows the possible advantages deriving from the considerations that the measurement uncertainty modelling provides, in order to keep control of the uncertainty propagation on all the indirect measurements useful for production statistical control, on which basing further improvements.
Healy, Thomas W; Fuerstenau, Douglas W
2007-05-01
From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0-3.0, dependent on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain (>C8) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material-water interfaces.
Empirical estimation of astrophysical photodisintegration rates of 106Cd
NASA Astrophysics Data System (ADS)
Belyshev, S. S.; Kuznetsov, A. A.; Stopani, K. A.
2017-09-01
It has been noted in previous experiments that the ratio between the photoneutron and photoproton disintegration channels of 106Cd might be considerably different from predictions of statistical models. The thresholds of these reactions differ by several MeV and the total astrophysical rate of photodisintegration of 106Cd, which is mostly produced in photonuclear reactions during the p-process nucleosynthesis, might be noticeably different from the calculated value. In this work the bremsstrahlung beam of a 55.6 MeV microtron and the photon activation technique is used to measure yields of photonuclear reaction products on isotopically-enriched cadmium targets. The obtained results are compared with predictions of statistical models. The experimental yields are used to estimate photodisintegration reaction rates on 106Cd, which are then used in nuclear network calculations to examine the effects of uncertainties on the produced abundences of p-nuclei.
A fitting empirical potential for NiTi alloy and its application
NASA Astrophysics Data System (ADS)
Ren, Guowu; Tang, Tiegang; Sehitoglu, Huseyin
Due to its superelastic behavior, NiTi shape memory alloy receives considerable attentions over a wide range of industrial and commercial applications. Limited to its complex structural transformation and multiple variants, semiempirical potentials for performing large-scale molecular dynamics simulations to investigate the atomistic mechanical process, are very few. In this work, we construct a new interatomic potential for the NiTi alloy by fitting to experimental or ab initio data. The fitting potential correctly predicts the lattice parameter, structural stability, equation of state for cubic B2(austenite) and monoclinic B19'(martensite) phases. In particular the elastic properties(three elastic constants for B2 and thirteen ones for B19') are in satisfactory agreement with the experiments or ab initio calculations. Furthermore, we apply this potential to conduct the molecular dynamics simulations of the mechanical behavior for NiTi alloy and the results capture its reversible transformation.
An Experimental Study of the Effect of Shared Information on Pilot/Controller Re-Route Negotiation
NASA Technical Reports Server (NTRS)
Farley, Todd C.; Hansman, R. John
1999-01-01
Air-ground data link systems are being developed to enable pilots and air traffic controllers to share information more fully. The sharing of information is generally expected to enhance their shared situation awareness and foster more collaborative decision making. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. The results indicate an improvement in situation awareness for pilots and controllers and a willingness to work cooperatively. Independent of data link considerations, the experiment also demonstrates the value of providing controllers with a good-quality weather representation on their plan view displays. Observed improvements in situation awareness and separation assurance are discussed. It is argued that deployment of this relatively simple, low-risk addition to the plan view displays be accelerated.
Failure monitoring in dynamic systems: Model construction without fault training data
NASA Technical Reports Server (NTRS)
Smyth, P.; Mellstrom, J.
1993-01-01
Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic.
Captured by motion: dance, action understanding, and social cognition.
Sevdalis, Vassilis; Keller, Peter E
2011-11-01
In this review article, we summarize the main findings from empirical studies that used dance-related forms of rhythmical full body movement as a research tool for investigating action understanding and social cognition. This work has proven to be informative about behavioral and brain mechanisms that mediate links between perceptual and motor processes invoked during the observation and execution of spatially-temporally coordinated action and interpersonal interaction. The review focuses specifically on processes related to (a) motor experience and expertise, (b) learning and memory, (c) action, intention, and emotion understanding, and (d) audio-visual synchrony and timing. Consideration is given to the relationship between research on dance and more general embodied cognition accounts of action understanding and social cognition. Finally, open questions and issues concerning experimental design are discussed with a view to stimulating future research on social-cognitive aspects of dance. Copyright © 2011 Elsevier Inc. All rights reserved.
PFC and Triglyme for Li-Air Batteries: A Molecular Dynamics Study.
Kuritz, Natalia; Murat, Michael; Balaish, Moran; Ein-Eli, Yair; Natan, Amir
2016-04-07
In this work, we present an all-atom molecular dynamics (MD) study of triglyme and perfluorinated carbons (PFCs) using classical atomistic force fields. Triglyme is a typical solvent used in nonaqueous Li-air battery cells. PFCs were recently reported to increase oxygen availability in such cells. We show that O2 diffusion in two specific PFC molecules (C6F14 and C8F18) is significantly faster than in triglyme. Furthermore, by starting with two very different initial configurations for our MD simulation, we demonstrate that C8F18 and triglyme do not mix. The mutual solubility of these molecules is evaluated both theoretically and experimentally, and a qualitative agreement is found. Finally, we show that the solubility of O2 in C8F18 is considerably higher than in triglyme. The significance of these results to Li-air batteries is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopyra, Janina; Abdoul-Carime, Hassan, E-mail: hcarime@ipnl.in2p3.fr
Providing experimental values for absolute Dissociative Electron Attachment (DEA) cross sections for nucleobases at realistic biological conditions is a considerable challenge. In this work, we provide the temperature dependence of the cross section, σ, of the dehydrogenated thymine anion (T − H){sup −} produced via DEA. Within the 393-443 K temperature range, it is observed that σ varies by one order of magnitude. By extrapolating to a temperature of 313 K, the relative DEA cross section for the production of the dehydrogenated thymine anion at an incident energy of 1 eV decreases by 2 orders of magnitude and the absolutemore » value reaches approximately 6 × 10{sup −19} cm{sup 2}. These quantitative measurements provide a benchmark for theoretical prediction and also a contribution to a more accurate description of the effects of ionizing radiation on molecular medium.« less
A partially reflecting random walk on spheres algorithm for electrical impedance tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Sylvain, E-mail: maire@univ-tln.fr; Simon, Martin, E-mail: simon@math.uni-mainz.de
2015-12-15
In this work, we develop a probabilistic estimator for the voltage-to-current map arising in electrical impedance tomography. This novel so-called partially reflecting random walk on spheres estimator enables Monte Carlo methods to compute the voltage-to-current map in an embarrassingly parallel manner, which is an important issue with regard to the corresponding inverse problem. Our method uses the well-known random walk on spheres algorithm inside subdomains where the diffusion coefficient is constant and employs replacement techniques motivated by finite difference discretization to deal with both mixed boundary conditions and interface transmission conditions. We analyze the global bias and the variance ofmore » the new estimator both theoretically and experimentally. Subsequently, the variance of the new estimator is considerably reduced via a novel control variate conditional sampling technique which yields a highly efficient hybrid forward solver coupling probabilistic and deterministic algorithms.« less
Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling
Sun, Yao; Ma, Kai; Kao, Teresa; ...
2017-08-15
Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less
Proton enhanced dynamic battery chemistry for aprotic lithium-oxygen batteries.
Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing
2017-02-06
Water contamination is generally considered to be detrimental to the performance of aprotic lithium-air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium-oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium-oxygen batteries and help to tackle the critical issues confronted.
Task allocation model for minimization of completion time in distributed computer systems
NASA Astrophysics Data System (ADS)
Wang, Jai-Ping; Steidley, Carl W.
1993-08-01
A task in a distributed computing system consists of a set of related modules. Each of the modules will execute on one of the processors of the system and communicate with some other modules. In addition, precedence relationships may exist among the modules. Task allocation is an essential activity in distributed-software design. This activity is of importance to all phases of the development of a distributed system. This paper establishes task completion-time models and task allocation models for minimizing task completion time. Current work in this area is either at the experimental level or without the consideration of precedence relationships among modules. The development of mathematical models for the computation of task completion time and task allocation will benefit many real-time computer applications such as radar systems, navigation systems, industrial process control systems, image processing systems, and artificial intelligence oriented systems.
A Demo opto-electronic power source based on single-walled carbon nanotube sheets.
Hu, Chunhua; Liu, Changhong; Chen, Luzhuo; Meng, Chuizhou; Fan, Shoushan
2010-08-24
It is known that single-walled carbon nanotubes (SWNTs) strongly absorb light, especially in the near-infrared (NIR) region, and convert it into heat. In fact, SWNTs also have considerable ability to convert heat into electricity. In this work, we show that SWNT sheets made from as-grown SWNT arrays display a large positive thermoelectric coefficient (p-type). We designed a simple SWNT device to convert illuminating NIR light directly into a notable voltage output, which was verified by experimental tests. Furthermore, by a simple functionalization step, the p- to n-type transition was conveniently achieved for the SWNT sheets. By integrating p- and n-type elements in series, we constructed a novel NIR opto-electronic power source, which outputs a large voltage that sums over the output of every single element. Additionally, the output of the demo device has shown a good linear relationship with NIR light power density, favorable for IR sensors.
NASA Astrophysics Data System (ADS)
Seo, Jongho; Kim, Jin-Su; Jeong, Un-Chang; Kim, Yong-Dae; Kim, Young-Cheol; Lee, Hanmin; Oh, Jae-Eung
2016-02-01
In this study, we derived an equation of motion for an electromechanical system in view of the components and working mechanism of an electromagnetic-type energy harvester (ETEH). An electromechanical transduction factor (ETF) was calculated using a finite-element analysis (FEA) based on Maxwell's theory. The experimental ETF of the ETEH measured by means of sine wave excitation was compared with and FEA data. Design parameters for the stationary part of the energy harvester were optimized in terms of the power performance by using a response surface method (RSM). With optimized design parameters, the ETEH showed an improvement in performance. We experimented with the optimized ETEH (OETEH) with respect to changes in the external excitation frequency and the load resistance by taking human body vibration in to account. The OETEH achieved a performance improvement of about 30% compared to the initial model.
Validating a Model for Welding Induced Residual Stress Using High-Energy X-ray Diffraction
NASA Astrophysics Data System (ADS)
Mach, J. C.; Budrow, C. J.; Pagan, D. C.; Ruff, J. P. C.; Park, J.-S.; Okasinski, J.; Beaudoin, A. J.; Miller, M. P.
2017-05-01
Integrated computational materials engineering (ICME) provides a pathway to advance performance in structures through the use of physically-based models to better understand how manufacturing processes influence product performance. As one particular challenge, consider that residual stresses induced in fabrication are pervasive and directly impact the life of structures. For ICME to be an effective strategy, it is essential that predictive capability be developed in conjunction with critical experiments. In the present work, simulation results from a multi-physics model for gas metal arc welding are evaluated through x-ray diffraction using synchrotron radiation. A test component was designed with intent to develop significant gradients in residual stress, be representative of real-world engineering application, yet remain tractable for finely spaced strain measurements with positioning equipment available at synchrotron facilities. The experimental validation lends confidence to model predictions, facilitating the explicit consideration of residual stress distribution in prediction of fatigue life.
Aeroacoustic research in wind tunnels: A status report
NASA Technical Reports Server (NTRS)
Bender, J.; Arndt, R. E. A.
1973-01-01
The increasing attention given to aerodynamically generated noise brings into focus the need for quality experimental research in this area. To meet this need several specialized anechoic wind tunnels have been constructed. In many cases, however, budgetary constraints and the like make it desirable to use conventional wind tunnels for this work. Three basic problems are inherent in conventional facilities: (1) high background noise, (2) strong frequency dependent reverberation effects, and (3) unique instrumentation problems. The known acoustic characteristics of several conventional wind tunnels are evaluated and data obtained in a smaller 4- x 5-foot wind tunnel which is convertible from a closed jet to an open jet mode are presented. The data from these tunnels serve as a guideline for proposed modifications to a 7- x 10-foot wind tunnel. Consideration is given to acoustic treatment in several different portions of the wind tunnel.
NASA Astrophysics Data System (ADS)
Rumyantsev, Valery D.; Ashcheulov, Yury V.; Chekalin, Alexander V.; Chumakov, Yury S.; Shvarts, Maxim Z.; Timofeev, Vladimir V.
2014-09-01
As a rule, the HCPV modules are mounted on solar trackers in a form of a flat panel. Wind pressure is one of the key factors limiting the operation capabilities of such type solar installations. At the PV Lab of the Ioffe Institute, the sun-trackers with step-like frame for modules have been proposed and developed, which have a potential for significant reduction of wind pressure. Such a reduction is realized in a wide range of the frame tilt angles the most typical for day-light operation of solar installations. In the present work, theoretical consideration and indoor experiments with mechanical models of installation frames have been carried out. A wind tunnel has been used as an experimental instrument for quantitative comparison in conventional units of expected wind loads on module frames of different designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torello, David; Kim, Jin-Yeon; Qu, Jianmin
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. Thesemore » experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.« less
Glazer, A M; Collins, S P; Zekria, D; Liu, J; Golshan, M
2004-03-01
In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.
NASA Technical Reports Server (NTRS)
Brunstrom, Anna; Leutenegger, Scott T.; Simha, Rahul
1995-01-01
Traditionally, allocation of data in distributed database management systems has been determined by off-line analysis and optimization. This technique works well for static database access patterns, but is often inadequate for frequently changing workloads. In this paper we address how to dynamically reallocate data for partionable distributed databases with changing access patterns. Rather than complicated and expensive optimization algorithms, a simple heuristic is presented and shown, via an implementation study, to improve system throughput by 30 percent in a local area network based system. Based on artificial wide area network delays, we show that dynamic reallocation can improve system throughput by a factor of two and a half for wide area networks. We also show that individual site load must be taken into consideration when reallocating data, and provide a simple policy that incorporates load in the reallocation decision.
Proton enhanced dynamic battery chemistry for aprotic lithium–oxygen batteries
Zhu, Yun Guang; Liu, Qi; Rong, Yangchun; Chen, Haomin; Yang, Jing; Jia, Chuankun; Yu, Li-Juan; Karton, Amir; Ren, Yang; Xu, Xiaoxiong; Adams, Stefan; Wang, Qing
2017-01-01
Water contamination is generally considered to be detrimental to the performance of aprotic lithium–air batteries, whereas this view is challenged by recent contrasting observations. This has provoked a range of discussions on the role of water and its impact on batteries. In this work, a distinct battery chemistry that prevails in water-contaminated aprotic lithium–oxygen batteries is revealed. Both lithium ions and protons are found to be involved in the oxygen reduction and evolution reactions, and lithium hydroperoxide and lithium hydroxide are identified as predominant discharge products. The crystallographic and spectroscopic characteristics of lithium hydroperoxide monohydrate are scrutinized both experimentally and theoretically. Intriguingly, the reaction of lithium hydroperoxide with triiodide exhibits a faster kinetics, which enables a considerably lower overpotential during the charging process. The battery chemistry unveiled in this mechanistic study could provide important insights into the understanding of nominally aprotic lithium–oxygen batteries and help to tackle the critical issues confronted. PMID:28165008
Lim, Hyeong Jun; Lee, Kunsil; Cho, Young Shik; Kim, Yern Seung; Kim, Taehoon; Park, Chong Rae
2014-09-07
The Hansen solubility parameters (HSPs) of as-produced multi-walled carbon nanotubes (APMWCNTs) were determined by means of the inverse gas chromatography (IGC) technique. Due to non-homogeneous surfaces of the APMWCNTs arising from defects and impurities, it was necessary to establish adequate working conditions for determining the HSPs of the CNTs. We then obtained the HSPs of the APMWCNTs and compared these results with earlier reports as determined by using sedimentation and molecular dynamics simulation methods. It was found that the determination of the HSPs of the CNTs by IGC can give an enhanced determination range based on the adsorption thermodynamic parameters, compared to the HSPs determined using sedimentation methods. And the HSPs of the APMWCNTs, determined here, provided good guidelines for the selection of feasible solvents that can improve the dispersion of the APMWCNTs.
Evaluation of ultrasonics and optimized radiography for 2219-T87 aluminum weldments
NASA Technical Reports Server (NTRS)
Clotfelter, W. N.; Hoop, J. M.; Duren, P. C.
1975-01-01
Ultrasonic studies are described which are specifically directed toward the quantitative measurement of randomly located defects previously found in aluminum welds with radiography or with dye penetrants. Experimental radiographic studies were also made to optimize techniques for welds of the thickness range to be used in fabricating the External Tank of the Space Shuttle. Conventional and innovative ultrasonic techniques were applied to the flaw size measurement problem. Advantages and disadvantages of each method are discussed. Flaw size data obtained ultrasonically were compared to radiographic data and to real flaw sizes determined by destructive measurements. Considerable success was achieved with pulse echo techniques and with 'pitch and catch' techniques. The radiographic work described demonstrates that careful selection of film exposure parameters for a particular application must be made to obtain optimized flaw detectability. Thus, film exposure techniques can be improved even though radiography is an old weld inspection method.
Chemistry of superheavy elements.
Schädel, Matthias
2006-01-09
The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.
Flight experiment of thermal energy storage. [for spacecraft power systems
NASA Technical Reports Server (NTRS)
Namkoong, David
1989-01-01
Thermal energy storage (TES) enables a solar dynamic system to deliver constant electric power through periods of sun and shade. Brayton and Stirling power systems under current considerations for missions in the near future require working fluid temperatures in the 1100 to 1300+ K range. TES materials that meet these requirements fall into the fluoride family of salts. Salts shrink as they solidify, a change reaching 30 percent for some salts. Hot spots can develop in the TES container or the container can become distorted if the melting salt cannot expand elsewhere. Analysis of the transient, two-phase phenomenon is being incorporated into a three-dimensional computer code. The objective of the flight program is to verify the predictions of the code, particularly of the void location and its effect on containment temperature. The four experimental packages comprising the program will be the first tests of melting and freezing conducted under microgravity.
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Carpenter, Mark H.; Lockard, David P.
2009-01-01
Recent experience in the application of an optimized, second-order, backward-difference (BDF2OPT) temporal scheme is reported. The primary focus of the work is on obtaining accurate solutions of the unsteady Reynolds-averaged Navier-Stokes equations over long periods of time for aerodynamic problems of interest. The baseline flow solver under consideration uses a particular BDF2OPT temporal scheme with a dual-time-stepping algorithm for advancing the flow solutions in time. Numerical difficulties are encountered with this scheme when the flow code is run for a large number of time steps, a behavior not seen with the standard second-order, backward-difference, temporal scheme. Based on a stability analysis, slight modifications to the BDF2OPT scheme are suggested. The performance and accuracy of this modified scheme is assessed by comparing the computational results with other numerical schemes and experimental data.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
Burn Control Mechanisms in Tokamaks
NASA Astrophysics Data System (ADS)
Hill, M. A.; Stacey, W. M.
2015-11-01
Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.
Performance evaluation of CFRP-rubber shock absorbers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it
2014-05-15
In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in themore » case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.« less
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
In-vehicle crash avoidance warning systems : human factors considerations
DOT National Transportation Integrated Search
1997-02-01
This document represents the final report of the work performed under contract DTNH22-91 C-07004, In-Vehicle Crash Avoidance Warning Systems: Human Factors Considerations. This project was performed to develop guidelines for the interface desig...
Prophages and Growth Dynamics Confound Experimental Results with Antibiotic-Tolerant Persister Cells
Fino, Cinzia; Sørensen, Michael A.; Semsey, Szabolcs
2017-01-01
ABSTRACT Bacterial persisters are phenotypic variants that survive antibiotic treatment in a dormant state and can be formed by multiple pathways. We recently proposed that the second messenger (p)ppGpp drives Escherichia coli persister formation through protease Lon and activation of toxin-antitoxin (TA) modules. This model found considerable support among researchers studying persisters but also generated controversy as part of recent debates in the field. In this study, we therefore used our previous work as a model to critically examine common experimental procedures to understand and overcome the inconsistencies often observed between results of different laboratories. Our results show that seemingly simple antibiotic killing assays are very sensitive to variations in culture conditions and bacterial growth phase. Additionally, we found that some assay conditions cause the killing of antibiotic-tolerant persisters via induction of cryptic prophages. Similarly, the inadvertent infection of mutant strains with bacteriophage ϕ80, a notorious laboratory contaminant, apparently caused several of the phenotypes that we reported in our previous studies. We therefore reconstructed all infected mutants and probed the validity of our model of persister formation in a refined assay setup that uses robust culture conditions and unravels the dynamics of persister cells through all bacterial growth stages. Our results confirm the importance of (p)ppGpp and Lon but no longer support a role of TA modules in E. coli persister formation under unstressed conditions. We anticipate that the results and approaches reported in our study will lay the ground for future work in the field. PMID:29233898
Vonder Haar, Cole; Maass, William R; Jacobs, Eric A; Hoane, Michael R
2014-10-15
One of the largest challenges in experimental neurotrauma work is the development of models relevant to the human condition. This includes both creating similar pathophysiology as well as the generation of relevant behavioral deficits. Recent studies have shown that there is a large potential for the use of discrimination tasks in rats to detect injury-induced deficits. The literature on discrimination and TBI is still limited, however. The current study investigated motivational and motor factors that could potentially contribute to deficits in discrimination. In addition, the efficacy of a neuroprotective agent, nicotinamide, was assessed. Rats were trained on a discrimination task and motivation task, given a bilateral frontal controlled cortical impact TBI (+3.0 AP, 0.0 ML from bregma), and then reassessed. They were also assessed on motor ability and Morris water maze (MWM) performance. Experiment 1 showed that TBI resulted in large deficits in discrimination and motivation. No deficits were observed on gross motor measures; however, the vehicle group showed impairments in fine motor control. Both injured groups were impaired on the reference memory MWM, but only nicotinamide-treated rats were impaired on the working memory MWM. Nicotinamide administration improved performance on discrimination and motivation measures. Experiment 2 evaluated retraining on the discrimination task and suggested that motivation may be a large factor underlying discrimination deficits. Retrained rats improved considerably on the discrimination task. The tasks evaluated in this study demonstrate robust deficits and may improve the detection of pharmaceutical effects by being very sensitive to pervasive cognitive deficits that occur after frontal TBI.
NASA Astrophysics Data System (ADS)
Sitalo, V.; Lytvyshko, T.
2002-01-01
Yuzhnoye SDO developed several generations of launch vehicles and spacecraft that are characterized by weight perfection, optimal cost, accuracy of output geometrical characteristics, stable strength characteristics, high tightness. The main structural material of launch vehicles are thermally welded non-strengthened aluminium- magnesium alloys. The aluminium-magnesium alloys in the annealed state have insufficiently high strength characteristics. Considerable increase of yield strength of sheets and plates can be reached by cold working but in this case, plasticity reduces. An effective way to improve strength of aluminium-magnesium alloys is their alloying with scandium. The alloying with scandium leads to modification of the structure of ingots (size reduction of cast grain) and formation of supersaturated solid solutions of scandium and aluminium during crystallization. During subsequent heatings (annealing of the ingots, heating for deformation) the solid solution disintegrates with the formation of disperse particles of Al3Sc type, that cause great strengthening of the alloy. High degree of dispersion and density of distribution in the matrix of secondary Al3Sc particles contribute to the considerable increase of the temperature of recrystallization of deformed intermediate products and to the formation of stable non-recrystallized structure. The alloying of alluminium-magnesium alloys with scandium increases their strength and operational characteristics, preserves their technological and corrosion properties, improves weldability. The alloys can be used within the temperature limits 196-/+150 0C. The experimental structures of propellant tanks made of alluminium-magnesium alloys with scandium have been manufactured and tested. It was ascertained that the propellant tanks have higher margin of safety during loading with internal pressure and higher stability factor of the shrouds during loading with axial compression force which is caused by higher value of yield strength. The analysis of the performed work showed good prospects of using the alluminium-magnesium alloys with increased mechanical characteristics for making body elements of propellant tanks of the Zenit -2S launch vehicles. The use of these alloys can give the increase of structural strength by 20-30% and considerable increase of payload weight.
The origin of modern plant virology.
Pennazio, S; Conti, M
2002-10-01
Plant virology, born with Mayer's work, saw a first (embryonic) phase of development during two decades (1900-1920) with outstanding contributions from Dimitri Ivanovski, Martinus Beijerinck, Erwin Baur and Harry Allard. Between 1920 and 1930 a second phase saw the elaboration of surprising hypotheses concerning the enigmatic nature of viruses and experimental evidence of great stress was obtained. Revolutionary renewal began from the mid-1930s on the basis of a body of knowledge which was organically assembled into the first textbook of plant virology published by Kenneth Smith in 1933. In 1922, the geneticist Hermann Muller put forward the hypothesis that considered viruses as possible genes. The theory was resumed in an apparently independent way by Benjamin Duggar and Joanne Karrer Armstrong in 1923, who considered TMV a biocolloidal self-reproducing protein, like genes appeared to be. This hypothesis, even if neglected by virologists, anticipated by some decades the functional nature of viruses and represented the first conceptual response to virus enigma. Considerable experimental results were obtained by James Johnson, who showed that plants could be infected by different viruses and who introduced a first rational system of plant virus classification. Harold McKinney showed that TMV could mutate. Harold Storey, Kenneth Smith and Harry Severin demonstrated that several viruses could be transmitted by insects and supplied the first interpretation of the relationship between virus and insect. Mayme Dvorak and Helen Purdy obtained the first experimental evidence of the antigenic power of plant viruses. Virus purification, first tentatively accomplished with physical methods, was brilliantly performed by chemical means. Finally, Francis Holmes elaborated the first suitable test to estimate virus infectivity. The evolution of plant virology from an empirical discipline to a biological science took place thanks to the work of one group of American and English scientists who must be regarded as the fathers of modern plant virology.
Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Wengrowski, Anastasia M; Kay, Matthew W
2015-06-01
What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.
Ab Initio Calculations Applied to Problems in Metal Ion Chemistry
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)
1994-01-01
Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.
Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments
NASA Technical Reports Server (NTRS)
Skala, R.; Lnagenhorst, F.; Hoerz, F.
2004-01-01
Various killing mechanisms have been suggested to contribute to the mass extinctions at the KT boundary, including severe, global deterioration of the atmosphere and hydrosphere due to SO(x) released from heavily shocked, sulfate-bearing target rocks. The devolatilization of anhydrite is predominantly inferred from thermodynamic considerations and lacks experimental confirmation. To date, the experimentally determined shock behavior of anhydrite is limited to solid-state effects employing X-ray diffraction methods. The present report employs additional methods to characterize experimentally shocked anhydrite.
NASA Astrophysics Data System (ADS)
Katin, Viktor; Kosygin, Vladimir; Akhtiamov, Midkhat
2017-10-01
This paper substantiates the method of mathematical planning for experimental research in the process of selecting the most efficient types of burning devices for tubular refinery furnaces of vertical-cylindrical design. This paper provides detailed consideration of an experimental plan of a 4×4 Latin square type when studying the impact of three factors with four levels of variance. On the basis of the experimental research we have developed practical recommendations on the employment of optimal burners for two-step fuel combustion.
Considerations for Micro- and Nano-scale Space Payloads
NASA Technical Reports Server (NTRS)
Altemir, David A.
1995-01-01
This paper collects and summarizes many of the issues associated with the design, analysis, and flight of space payloads. However, highly miniaturized experimental packages are highly susceptible to the deleterious effects of induced contamination and charged particles when they are directly exposed to the space environment. These two problem areas are addressed and a general discussion of space environments, applicable design and analysis practices (with extensive references to the open literature) and programmatic considerations are presented.
NASA Technical Reports Server (NTRS)
Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.
1977-01-01
Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.