Leptokurtic pollen-flow, non-leptokurtic gene-flow in a wind-pollinated herb, Plantago lanceolata L.
Tonsor, Stephen J
1985-10-01
The purpose of this study was to simultaneously measure pollen dispersal distance and actual pollen-mediated gene-flow distance in a wind-pollinated herb, Plantago lanceolata. The pollen dispersal distribution, measured as pollen deposition in a wind tunnel, is leptokurtic, as expected from previous studies of wind-pollinated plants. Gene-flow, measured as seeds produced on rows of male-sterile inflorescences in the wind tunnel, is non-leptokurtic, peaking at an intermediate distance. The difference between the two distributions results from the tendency of the pollen grains to cluster. These pollen clusters are the units of gene dispersal, with clusters of intermediate and large size contributing disproportionately to gene-flow. Since many wind-pollinated species show pollen clustering (see text), the common assumption for wind-pollinated plants that gene-flow is leptokurtic requires re-examination. Gene-flow was also measured in an artifical outdoor population of male-steriles, containing a single pollen source plant in the center of the array. The gene flow distribution is significantly platykurtic, and has the same general properties outdoors, where wind speed and turbulence are uncontrolled, as it does in the wind tunnel. I estimated genetic neighborhood size based on my measure of gene-flow in the outdoor population. The estimate shows that populations of Plantago lanceolata will vary in effective number from a few tens of plants to more than five hundred plants, depending on the density of the population in question. Thus, the measured pollen-mediated gene-flow distribution and population density will interact to produce effective population sizes ranging from those in which there is no random genetic drift to those in which random genetic drift plays an important role in determining gene frequencies within and among populations. Despite the platykurtosis in the distribution, pollen-mediated gene dispersal distances are still quite limited, and considerable within and among-population genetic differentiation is to be expected in this species.
Rong, Jun; Xu, Shuhua; Meirmans, Patrick G.; Vrieling, Klaas
2013-01-01
Background and Aims Transgene introgression from crops into wild relatives may increase the resistance of wild plants to herbicides, insects, etc. The chance of transgene introgression depends not only on the rate of hybridization and the establishment of hybrids in local wild populations, but also on the metapopulation dynamics of the wild relative. The aim of the study was to estimate gene flow in a metapopulation for assessing and managing the risks of transgene introgression. Methods Wild carrots (Daucus carota) were sampled from 12 patches in a metapopulation. Eleven microsatellites were used to genotype wild carrots. Genetic structure was estimated based on the FST statistic. Contemporary (over the last several generations) and historical (over many generations) gene flow was estimated with assignment and coalescent methods, respectively. Key Results The genetic structure in the wild carrot metapopulation was moderate (FST = 0·082) and most of the genetic variation resided within patches. A pattern of isolation by distance was detected, suggesting that most of the gene flow occurred between neighbouring patches (≤1 km). The mean contemporary gene flow was 5 times higher than the historical estimate, and the correlation between them was very low. Moreover, the contemporary gene flow in roadsides was twice that in a nature reserve, and the correlation between contemporary and historical estimates was much higher in the nature reserve. Mowing of roadsides may contribute to the increase in contemporary gene flow. Simulations demonstrated that the higher contemporary gene flow could accelerate the process of transgene introgression in the metapopulation. Conclusions Human disturbance such as mowing may alter gene flow patterns in wild populations, affecting the metapopulation dynamics of wild plants and the processes of transgene introgression in the metapopulation. The risk assessment and management of transgene introgression and the control of weeds need to take metapopulation dynamics into consideration. PMID:24052560
He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong
2014-01-01
Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.
Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg
2009-12-01
Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.
He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong
2014-01-01
Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka. PMID:25436611
Yeung, Carol K.L.; Tsai, Pi-Wen; Chesser, R. Terry; Lin, Rong-Chien; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien
2011-01-01
Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10-8) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we discuss the potential importance of evolutionarily labile traits with significant fitness consequences, such as migratory behavior and habitat preference, in facilitating divergence of the spoonbills.
Ley, A C; Hardy, O J
2014-08-01
Gene flow within and between species is a fundamental process shaping the evolutionary history of taxa. However, the extent of hybridization and reinforcement is little documented in the tropics. Here we explore the pattern of gene flow between three sister species from the herbaceous genus Marantochloa (Marantaceae), sympatrically distributed in the understorey of the African rainforest, using data from the chloroplast and nuclear genomes (DNA sequences and AFLP). We found highly contrasting patterns: while there was no evidence of gene flow between M. congensis and M. monophylla, species identity between M. monophylla and M. incertifolia was maintained despite considerable gene flow. We hypothesize that M. incertifolia originated from an ancient hybridization event between M. congensis and M. monophylla, considering the current absence of hybridization between the two assumed parent species, the rare presence of shared haplotypes between all three species and the high percentage of haplotypes shared by M. incertifolia with each of the two parent species. This example is contrasted with two parapatrically distributed species from the same family in the genus Haumania forming a hybrid zone restricted to the area of overlap. This work illustrates the diversity of speciation/introgression patterns that can potentially occur in the flora of tropical Africa. Copyright © 2014 Elsevier Inc. All rights reserved.
Khitrinskaia, I Iu; Khar'kov, V N; Voevoda, M I; Stepanova, V A
2014-01-01
We for the first time have examined the autosomal gene pool of the Siberia, Central Asian and the Far East populations (27 populations of 12 ethnic groups) using a set of polymorphic Alu insertions in the human genome. The results of the analysis testify (i) to a significant level of genetic diversity in the Northern Eurasian populations and (ii) to a considerable differentiation of gene pool in the population of this region. It has been shown that at the CD4 locus, the frequency of Alu (-) is inversely related to the Mongoloid component of the population, the lowest and highest frequencies of the Alu deletion at locus CD4 were recorded respectively in Eskimo (0.012) and Russian and Ukrainian (0.35). The analysis of gene flow proved Caucasoid populations (Russian, Tajik and Uzbek), as well as those of Turkic ethnic groups from the Southern Siberia (Altaians and Tuvinians) and Khanty and Mansy populations to be the recipients of a considerable gene flow from the outside of the concerned population system, as compared with the East Siberian and the Far East ethnic groups. The results of the correlation analysis received with use polymorphic Alu insertion testify to the greatest correlation of genetic distances with anthropological characteristics of populations.
Kutschera, Verena E.; Bidon, Tobias; Hailer, Frank; Rodi, Julia L.; Fain, Steven R.; Janke, Axel
2014-01-01
Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145
Hey, Jody; Nielsen, Rasmus
2004-01-01
The genetic study of diverging, closely related populations is required for basic questions on demography and speciation, as well as for biodiversity and conservation research. However, it is often unclear whether divergence is due simply to separation or whether populations have also experienced gene flow. These questions can be addressed with a full model of population separation with gene flow, by applying a Markov chain Monte Carlo method for estimating the posterior probability distribution of model parameters. We have generalized this method and made it applicable to data from multiple unlinked loci. These loci can vary in their modes of inheritance, and inheritance scalars can be implemented either as constants or as parameters to be estimated. By treating inheritance scalars as parameters it is also possible to address variation among loci in the impact via linkage of recurrent selective sweeps or background selection. These methods are applied to a large multilocus data set from Drosophila pseudoobscura and D. persimilis. The species are estimated to have diverged approximately 500,000 years ago. Several loci have nonzero estimates of gene flow since the initial separation of the species, with considerable variation in gene flow estimates among loci, in both directions between the species. PMID:15238526
Identification of landscape features influencing gene flow: How useful are habitat selection models?
Roffler, Gretchen H.; Schwartz, Michael K.; Pilgrim, Kristy L.; Talbot, Sandra L.; Sage, Kevin; Adams, Layne G.; Luikart, Gordon
2016-01-01
Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is important to consider explicit assumptions and spatial scales of measurement. We calculated pairwise genetic distance among 301 Dall's sheep (Ovis dalli dalli) in southcentral Alaska using an intensive noninvasive sampling effort and 15 microsatellite loci. We used multiple regression of distance matrices to assess the correlation of pairwise genetic distance and landscape resistance derived from an RSF, and combinations of landscape features hypothesized to influence dispersal. Dall's sheep gene flow was positively correlated with steep slopes, moderate peak normalized difference vegetation indices (NDVI), and open land cover. Whereas RSF covariates were significant in predicting genetic distance, the RSF model itself was not significantly correlated with Dall's sheep gene flow, suggesting that certain habitat features important during summer (rugged terrain, mid-range elevation) were not influential to effective dispersal. This work underscores that consideration of both habitat selection and landscape genetics models may be useful in developing management strategies to both meet the immediate survival of a species and allow for long-term genetic connectivity.
Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel
2014-08-01
Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Baute, Gregory J; Owens, Gregory L; Bock, Dan G; Rieseberg, Loren H
2016-12-01
Wild sunflowers harbor considerable genetic diversity and are a major resource for improvement of the cultivated sunflower, Helianthus annuus. The Helianthus genus is also well known for its propensity for gene flow between taxa. We surveyed genomic diversity of 292 samples of wild Helianthus from 22 taxa that are cross-compatible with the cultivar using genotyping by sequencing. With these data, we derived a high-resolution phylogeny of the taxa, interrogated genome-wide levels of diversity, explored H. annuus population structure, and identified localized gene flow between H. annuus and its close relatives. Our phylogenomic analyses confirmed a number of previously established interspecific relationships and indicated for the first time that a newly described annual sunflower, H. winteri, is nested within H. annuus. Principal component analyses showed that H. annuus has geographic population structure with most notable subpopulations occurring in California and Texas. While gene flow was identified between H. annuus and H. bolanderi in California and between H. annuus and H. argophyllus in Texas, this genetic exchange does not appear to drive observed patterns of H. annuus population structure. Wild H. annuus remains an excellent resource for cultivated sunflower breeding effort because of its diversity and the ease with which it can be crossed with cultivated H. annuus. Cases of interspecific gene flow such as those documented here also indicate wild H. annuus can act as a bridge to capture alleles from other wild taxa; continued breeding efforts with it may therefore reap the largest rewards. © 2016 Botanical Society of America.
Pressoir, G; Berthaud, J
2004-02-01
To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.
Ley, A C; Hardy, O J
2013-04-01
AFLP markers are often used to study patterns of population genetic variation and gene flow because they offer a good coverage of the nuclear genome, but the reliability of AFLP scoring is critical. To assess interspecific gene flow in two African rainforest liana species (Haumania danckelmaniana, H. liebrechtsiana) where previous evidence of chloroplast captures questioned the importance of hybridization and species boundaries, we developed new AFLP markers and a novel approach to select reliable bands from their degree of reproducibility. The latter is based on the estimation of the broad-sense heritability of AFLP phenotypes, an improvement over classical scoring error rates, which showed that the polymorphism of most AFLP bands was affected by a substantial nongenetic component. Therefore, using a quantitative genetics framework, we also modified an existing estimator of pairwise kinship coefficient between individuals correcting for the limited heritability of markers. Bayesian clustering confirms the recognition of the two Haumania species. Nevertheless, the decay of the relatedness between individuals of distinct species with geographic distance demonstrates that hybridization affects the nuclear genome. In conclusion, although we showed that AFLP markers might be substantially affected by nongenetic factors, their analysis using the new methods developed considerably advanced our understanding of the pattern of gene flow in our model species. © 2013 Blackwell Publishing Ltd.
Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape.
Semizer-Cuming, Devrim; Kjær, Erik Dahl; Finkeldey, Reiner
2017-01-01
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback.
Gene flow of common ash (Fraxinus excelsior L.) in a fragmented landscape
Kjær, Erik Dahl; Finkeldey, Reiner
2017-01-01
Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55–64%) and seedlings (75–98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26–45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback. PMID:29053740
Introgressive Hybridization between Anciently Diverged Lineages of Silene (Caryophyllaceae)
Petri, Anna; Pfeil, Bernard E.; Oxelman, Bengt
2013-01-01
Hybridization has played a major role during the evolution of angiosperms, mediating both gene flow between already distinct species and the formation of new species. Newly formed hybrids between distantly related taxa are often sterile. For this reason, interspecific crosses resulting in fertile hybrids have rarely been described to take place after more than a few million years after divergence. We describe here the traces of a reproductively successful hybrid between two ancestral species of Silene, diverged for about six million years prior to hybridization. No extant hybrids between the two parental lineages are currently known, but introgression of the RNA polymerase gene NRPA2 provides clear evidence of a temporary and fertile hybrid. Parsimony reconciliation between gene trees and the species tree, as well as consideration of clade ages, help exclude gene paralogy and lineage sorting as alternative hypotheses. This may represent one of the most extreme cases of divergence between species prior to introgressive hybridization discovered yet, notably at a homoploid level. Although species boundaries are generally believed to be stable after millions of years of divergence, we believe that this finding may indicate that gene flow between distantly related species is merely largely undetected at present. PMID:23861793
Davies, Neil; Bermingham, Eldredge
2002-03-01
Mitochondrial DNA and allozyme variation was examined in populations of two Neotropical butterflies, Heliconius charithonia and Dryas iulia. On the mainland, both species showed evidence of considerable gene flow over huge distances. The island populations, however, revealed significant genetic divergence across some, but not all, ocean passages. Despite the phylogenetic relatedness and broadly similar ecologies of these two butterflies, their intraspecific biogeography clearly differed. Phylogenetic analyses of mitochondrial DNA sequences revealed that populations of D. iulia north of St. Vincent are monophyletic and were probably derived from South America. By contrast, the Jamaican subspecies of H. charithonia rendered West Indian H. charithonia polyphyletic with respect to the mainland populations; thus, H. charithonia seems to have colonized the Greater Antilles on at least two separate occasions from Central America. Colonization velocity does not correlate with subsequent levels of gene flow in either species. Even where range expansion seems to have been instantaneous on a geological timescale, significant allele frequency differences at allozyme loci demonstrate that gene flow is severely curtailed across narrow ocean passages. Stochastic extinction, rapid (re)colonization, but low gene flow probably explain why, in the same species, some islands support genetically distinct and nonexpanding populations, while nearby a single lineage is distributed across several islands. Despite the differences, some common biogeographic patterns were evident between these butterflies and other West Indian taxa; such congruence suggests that intraspecific evolution in the West Indies has been somewhat constrained by earth history events, such as changes in sea level.
Lee, Moon-Sub; Anderson, Eric K; Stojšin, Duška; McPherson, Marc A; Baltazar, Baltazar; Horak, Michael J; de la Fuente, Juan Manuel; Wu, Kunsheng; Crowley, James H; Rayburn, A Lane; Lee, D K
2017-08-01
Eastern gamagrass (Tripsacum dactyloides L.) belongs to the same tribe of the Poaceae family as maize (Zea mays L.) and grows naturally in the same region where maize is commercially produced in the USA. Although no evidence exists of gene flow from maize to eastern gamagrass in nature, experimental crosses between the two species were produced using specific techniques. As part of environmental risk assessment, the possibility of transgene flow from maize to eastern gamagrass populations in nature was evaluated with the objectives: (1) to assess the seeds of eastern gamagrass populations naturally growing near commercial maize fields for the presence of a transgenic glyphosate-tolerance gene (cp4 epsps) that would indicate cross-pollination between the two species, and (2) to evaluate the possibility of interspecific hybridization between transgenic maize used as male parent and eastern gamagrass used as female parent. A total of 46,643 seeds from 54 eastern gamagrass populations collected in proximity of maize fields in Illinois, USA were planted in a field in 2014 and 2015. Emerged seedlings were treated with glyphosate herbicide and assessed for survival. An additional 48,000 seeds from the same 54 eastern gamagrass populations were tested for the presence of the cp4 epsps transgene markers using TaqMan ® PCR method. The results from these trials showed that no seedlings survived the herbicide treatment and no seed indicated presence of the herbicide tolerant cp4 epsps transgene, even though these eastern gamagrass populations were exposed to glyphosate-tolerant maize pollen for years. Furthermore, no interspecific hybrid seeds were produced from 135 hand-pollination attempts involving 1529 eastern gamagrass spikelets exposed to maize pollen. Together, these results indicate that there is no evidence of gene flow from maize to eastern gamagrass in natural habitats. The outcome of this study should be taken in consideration when assessing for environmental risks regarding the consequence of gene flow from transgenic maize to its wild relatives.
Modliszewski, Jennifer L; Thomas, David T; Fan, Chuanzhu; Crawford, Daniel J; Depamphilis, Claude W; Xiang, Qiu-Yun Jenny
2006-03-01
Knowledge regarding the origin and maintenance of hybrid zones is critical for understanding the evolutionary outcomes of natural hybridization. To evaluate the contribution of historical contact vs. long-distance gene flow in the formation of a broad hybrid zone in central and northern Georgia that involves Aesculus pavia, A. sylvatica, and A. flava, three cpDNA regions (matK, trnD-trnT, and trnH-trnK) were analyzed. The maternal inheritance of cpDNA in Aesculus was confirmed via sequencing of matK from progeny of controlled crosses. Restriction site analyses identified 21 unique haplotypes among 248 individuals representing 29 populations from parental species and hybrids. Haplotypes were sequenced for all cpDNA regions. Restriction site and sequence data were subjected to phylogeographic and population genetic analyses. Considerable cpDNA variation was detected in the hybrid zone, as well as ancestral cpDNA polymorphism; furthermore, the distribution of haplotypes indicates limited interpopulation gene flow via seeds. The genealogy and structure of genetic variation further support the historical presence of A. pavia in the Piedmont, although they are at present locally extinct. In conjunction with previous allozyme studies, the cpDNA data suggest that the hybrid zone originated through historical local gene flow, yet is maintained by periodic long-distance pollen dispersal.
Morphological and molecular evidence reveals recent hybridization between gorilla taxa.
Ackermann, Rebecca Rogers; Bishop, Jacqueline M
2010-01-01
Molecular studies have demonstrated a deep lineage split between the two gorilla species, as well as divisions within these taxa; estimates place this divergence in the mid-Pleistocene, with gene flow continuing until approximately 80,000 years ago. Here, we present analyses of skeletal data indicating the presence of substantial recent gene flow among gorillas at all taxonomic levels: between populations, subspecies, and species. Complementary analyses of DNA sequence variation suggest that low-level migration occurred primarily in a westerly-to-easterly direction. In western gorillas, the locations of hybrid phenotypes map closely to expectations based on population refugia and riverine barrier hypotheses, supporting the presence of significant vicariance-driven structuring and occasional admixture within this taxon. In eastern lowland gorillas, the high frequency of hybrid phenotypes is surprising, suggesting that this region represents a zone of introgression between eastern gorillas and migrants from the west, and underscoring the conservation priority of this critically endangered group. These results highlight the complex nature of evolutionary divergence in this genus, indicate that historical gene flow has played a major role in structuring gorilla diversity, and demonstrate that our understanding of the evolutionary processes responsible for shaping biodiversity can benefit immensely from consideration of morphological and molecular data in conjunction.
Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D
2018-01-01
Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.
Ancient trade routes shaped the genetic structure of horses in eastern Eurasia.
Warmuth, Vera M; Campana, Michael G; Eriksson, Anders; Bower, Mim; Barker, Graeme; Manica, Andrea
2013-11-01
Animal exchange networks have been shown to play an important role in determining gene flow among domestic animal populations. The Silk Road is one of the oldest continuous exchange networks in human history, yet its effectiveness in facilitating animal exchange across large geographical distances and topographically challenging landscapes has never been explicitly studied. Horses are known to have been traded along the Silk Roads; however, extensive movement of horses in connection with other human activities may have obscured the genetic signature of the Silk Roads. To investigate the role of the Silk Roads in shaping the genetic structure of horses in eastern Eurasia, we analysed microsatellite genotyping data from 455 village horses sampled from 17 locations. Using least-cost path methods, we compared the performance of models containing the Silk Roads as corridors for gene flow with models containing single landscape features. We also determined whether the recent isolation of former Soviet Union countries from the rest of Eurasia has affected the genetic structure of our samples. The overall level of genetic differentiation was low, consistent with historically high levels of gene flow across the study region. The spatial genetic structure was characterized by a significant, albeit weak, pattern of isolation by distance across the continent with no evidence for the presence of distinct genetic clusters. Incorporating landscape features considerably improved the fit of the data; however, when we controlled for geographical distance, only the correlation between genetic differentiation and the Silk Roads remained significant, supporting the effectiveness of this ancient trade network in facilitating gene flow across large geographical distances in a topographically complex landscape. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Sunamura, Eiriki; Hoshizaki, Sugihiko; Sakamoto, Hironori; Fujii, Takeshi; Nishisue, Koji; Suzuki, Shun; Terayama, Mamoru; Ishikawa, Yukio; Tatsuki, Sadahiro
2011-05-01
Some invasive ants form large networks of mutually non-aggressive nests, i.e., supercolonies. The Argentine ant Linepithema humile forms much larger supercolonies in introduced ranges than in its native range. In both cases, it has been shown that little gene flow occurs between supercolonies of this species, though the mechanism of gene flow restriction is unknown. In this species, queens do not undertake nuptial flight, and males have to travel to foreign nests and cope with workers before gaining access to alien queens. In this study, we hypothesized that male Argentine ants receive interference from workers of alien supercolonies. To test this hypothesis, we conducted behavioral and chemical experiments using ants from two supercolonies in Japan. Workers attacked males from alien supercolonies but not those from their own supercolonies. The level of aggression against alien males was similar to that against alien workers. The frequency of severe aggression against alien males increased as the number of recipient workers increased. Cuticular hydrocarbon profiles, which serve as cues for nestmate recognition, of workers and males from the same supercolony were very similar. Workers are likely to distinguish alien males from males of their own supercolony using the profiles. It is predicted that males are subject to considerable aggression from workers when they intrude into the nests of alien supercolonies. This may be a mechanism underlying the restricted gene flow between supercolonies of Argentine ants. The Argentine ant may possess a distinctive reproductive system, where workers participate in selecting mates for their queens. We argue that the aggression of workers against alien males is a novel form of reproductive interference.
Jackson, Nathan D.; Austin, Christopher C.
2013-01-01
Despite considerable attention, the long-term impact of rivers on species diversification remains uncertain. Meander loop cutoff (MLC) is one river phenomenon that may compromise a river’s diversifying effects by passively transferring organisms from one side of the river to the other. However, the ability of MLC to promote gene flow across rivers has not been demonstrated empirically. Here, we test several predictions of MLC-mediated gene flow in populations of North American ground skinks (Scincella lateralis) separated by a well-established riverine barrier, the Mississippi River: 1) individuals collected from within meander cutoffs should be more closely related to individuals across the river than on the same side, 2) individuals within meander cutoffs should contain more immigrants than individuals away from meander cutoffs, 3) immigration rates estimated across the river should be highest in the direction of the cutoff event, and 4) the distribution of alleles native to one side of the river should be better predicted by the historical rather than current path of the river. To test these predictions we sampled 13 microsatellite loci and mitochondrial DNA from ground skinks collected near three ancient meander loops. These predictions were generally supported by genetic data, although support was stronger for mtDNA than for microsatellite data. Partial support for genetic divergence of samples within ancient meander loops also provides evidence for the MLC hypothesis. Although a role for MLC-mediated gene flow was supported here for ground skinks, the transient nature of river channels and morphologies may limit the long-term importance of MLC in stemming population divergence across major rivers. PMID:23658778
Genomics of local adaptation with gene flow.
Tigano, Anna; Friesen, Vicki L
2016-05-01
Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow. © 2016 John Wiley & Sons Ltd.
Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K
2001-07-01
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.
Roberts, Mark A; Schwartz, Tonia S; Karl, Stephen A
2004-01-01
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model. PMID:15126404
Schield, Drew R; Adams, Richard H; Card, Daren C; Corbin, Andrew B; Jezkova, Tereza; Hales, Nicole R; Meik, Jesse M; Perry, Blair W; Spencer, Carol L; Smith, Lydia L; García, Gustavo Campillo; Bouzid, Nassima M; Strickland, Jason L; Parkinson, Christopher L; Borja, Miguel; Castañeda-Gaytán, Gamaliel; Bryson, Robert W; Flores-Villela, Oscar A; Mackessy, Stephen P; Castoe, Todd A
2018-06-15
The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene. Copyright © 2018 Elsevier Inc. All rights reserved.
Scribner, Kim T.; Petersen, Margaret R.; Fields, Raymond L.; Talbot, Sandra L.; Pearce, John M.; Chesser, Ronald K.
2001-01-01
Genetic markers that differ in mode of inheritance and rate of evolution (a sex-linked Z-specific microsatellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro- and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex-specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon-Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (ϕCT = 0.189, P < 0.01; ϕSC = 0.059, P < 0.01, respectively). Eleven of 17 mtDNA haplotypes were restricted to a single breeding region. Genetic differences among regions were considerably lower for nuclear DNA loci (sex-linked: ϕST = 0.001, P > 0.05; biparentally inherited microsatellites: mean θ = 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 × 10−4 and 1.28 × 10−2, respectively). Effective population size for mtDNA was estimated to be at least three times lower than that for biparental genes (30,671 and 101,528, respectively). Large disparities in population sizes among breeding areas greatly reduces the proportion of total genetic variance captured by dispersal, which may accelerate rates of inbreeding (i.e., promote higher coancestries) within populations due to nonrandom pairing of males with females from the same breeding population.
The Himalayas as a directional barrier to gene flow.
Gayden, Tenzin; Cadenas, Alicia M; Regueiro, Maria; Singh, Nanda B; Zhivotovsky, Lev A; Underhill, Peter A; Cavalli-Sforza, Luigi L; Herrera, Rene J
2007-05-01
High-resolution Y-chromosome haplogroup analyses coupled with Y-short tandem repeat (STR) haplotypes were used to (1) investigate the genetic affinities of three populations from Nepal--including Newar, Tamang, and people from cosmopolitan Kathmandu (referred to as "Kathmandu" subsequently)--as well as a collection from Tibet and (2) evaluate whether the Himalayan mountain range represents a geographic barrier for gene flow between the Tibetan plateau and the South Asian subcontinent. The results suggest that the Tibetans and Nepalese are in part descendants of Tibeto-Burman-speaking groups originating from Northeast Asia. All four populations are represented predominantly by haplogroup O3a5-M134-derived chromosomes, whose Y-STR-based age (+/-SE) was estimated at 8.1+/-2.9 thousand years ago (KYA), more recent than its Southeast Asian counterpart. The most pronounced difference between the two regions is reflected in the opposing high-frequency distributions of haplogroups D in Tibet and R in Nepal. With the exception of Tamang, both Newar and Kathmandu exhibit considerable similarities to the Indian Y-haplogroup distribution, particularly in their haplogroup R and H composition. These results indicate gene flow from the Indian subcontinent and, in the case of haplogroup R, from Eurasia as well, a conclusion that is also supported by the admixture analysis. In contrast, whereas haplogroup D is completely absent in Nepal, it accounts for 50.6% of the Tibetan Y-chromosome gene pool. Coalescent analyses suggest that the expansion of haplogroup D derivatives--namely, D1-M15 and D3-P47 in Tibet--involved two different demographic events (5.1+/-1.8 and 11.3+/-3.7 KYA, respectively) that are more recent than those of D2-M55 representatives common in Japan. Low frequencies, relative to Nepal, of haplogroup J and R lineages in Tibet are also consistent with restricted gene flow from the subcontinent. Yet the presence of haplogroup O3a5-M134 representatives in Nepal indicates that the Himalayas have been permeable to dispersals from the east. These genetic patterns suggest that this cordillera has been a biased bidirectional barrier.
2010-01-01
Background In the past 40 years, there has been increasing acceptance that variation in levels of gene expression represents a major source of evolutionary novelty. Gene expression divergence is therefore likely to be involved in the emergence of incipient species, namely, in a context of adaptive radiation. In this study, a genome-wide expression profiling approach (cDNA-AFLP), validated by quantitative real-time polymerase chain reaction (qPCR) were used to get insights into the role of differential gene expression on the ecological adaptation of the marine snail Littorina saxatilis. This gastropod displays two sympatric ecotypes (RB and SU) which are becoming one of the best studied systems for ecological speciation. Results Among the 99 transcripts shared between ecotypes, 12.12% showed significant differential expression. At least 4% of these transcripts still displayed significant differences after correction for multiple tests, highlighting that gene expression can differ considerably between subpopulations adapted to alternative habitats in the face of gene flow. One of the transcripts identified was Cytochrome c Oxidase subunit I (COI). In addition, 6 possible reference genes were validated to normalize and confirm this result using qPCR. α-Tubulin and histone H3.3 showed the more stable expression levels, being therefore chosen as the best option for normalization. The qPCR analysis confirmed a higher COI expression in SU individuals. Conclusions At least 4% of the transcriptome studied is being differentially expressed between ecotypes living in alternative habitats, even when gene flow is still substantial between ecotypes. We could identify a candidate transcript of such ecotype differentiation: Cytochrome c Oxidase Subunit I (COI), a mitochondrial gene involved in energy metabolism. Quantitative PCR was used to confirm the differences found in COI and its over-expression in the SU ecotype. Interestingly, COI is involved in the oxidative phosphorylation, suggesting an enhanced mitochondrial gene expression (or increased number of mitochondria) to improve energy supply in the ecotype subjected to the strongest wave action. PMID:21087461
Zayed, A; Packer, L
2007-10-01
Strong evidence exists for global declines in pollinator populations. Data on the population genetics of solitary bees, especially diet specialists, are generally lacking. We studied the population genetics of the oligolectic bee Lasioglossum oenotherae, a specialist on the pollen of evening primrose (Onagraceae), by genotyping 455 females from 15 populations across the bee's North American range at six hyper-variable microsatellite loci. We found significant levels of genetic differentiation between populations, even at small geographic scales, as well as significant patterns of isolation by distance. However, using multilocus genotype assignment tests, we detected 11 first-generation migrants indicating that L. oenotherae's sub-populations are experiencing ongoing gene flow. Southern populations of L. oenotherae were significantly more likely to deviate from Hardy-Weinberg equilibrium and from genotypic equilibrium, suggesting regional differences in gene flow and/or drift and inbreeding. Short-term N(e) estimated using temporal changes in allele frequencies in several populations ranged from approximately 223 to 960. We discuss our findings in terms of the conservation genetics of specialist pollinators, a group of considerable ecological importance.
Genomic evidence of gene flow during reinforcement in Texas Phlox.
Roda, Federico; Mendes, Fábio K; Hahn, Matthew W; Hopkins, Robin
2017-04-01
Gene flow can impede the evolution of reproductive isolating barriers between species. Reinforcement is the process by which prezygotic reproductive isolation evolves in sympatry due to selection to decrease costly hybridization. It is known that reinforcement can be prevented by too much gene flow, but we still do not know how often have prezygotic barriers evolved in the presence of gene flow or how much gene flow can occur during reinforcement. Flower colour divergence in the native Texas wildflower, Phlox drummondii, is one of the best-studied cases of reinforcement. Here we use genomic analyses to infer gene flow between P. drummondii and a closely related sympatric species, Phlox cuspidata. We de novo assemble transcriptomes of four Phlox species to determine the phylogenetic relationships between these species and find extensive discordance among gene tree topologies across genes. We find evidence of introgression between sympatric P. drummondii and P. cuspidata using the D-statistic, and use phylogenetic analyses to infer the predominant direction of introgression. We investigate geographic variation in gene flow by comparing the relative divergence of genes displaying discordant gene trees between an allopatric and sympatric sample. These analyses support the hypothesis that sympatric P. drummondii has experienced gene flow with P. cuspidata. We find that gene flow between these species is asymmetrical, which could explain why reinforcement caused divergence in only one of the sympatric species. Given the previous research in this system, we suggest strong selection can explain how reinforcement successfully evolved in this system despite gene flow in sympatry. © 2017 John Wiley & Sons Ltd.
Restoration of genetic connectivity among Northern Rockies wolf populations.
Hebblewhite, Mark; Musiani, Marco; Mills, L Scott
2010-10-01
Probably no conservation genetics issue is currently more controversial than the question of whether grey wolves (Canis lupus) in the Northern Rockies have recovered to genetically effective levels. Following the dispersal-based recolonization of Northwestern Montana from Canada, and reintroductions to Yellowstone and Central Idaho, wolves have vastly exceeded population recovery goals of 300 wolves distributed in at least 10 breeding pairs in each of Wyoming, Idaho and Montana. With >1700 wolves currently, efforts to delist wolves from endangered status have become mired in legal battles over the distinct population segment (DPS) clause of the Endangered Species Act (ESA), and whether subpopulations within the DPS were genetically isolated. An earlier study by vonHoldt et al. (2008) suggested Yellowstone National Park wolves were indeed isolated and was used against delisting in 2008. Since then, wolves were temporarily delisted, and a first controversial hunting season occurred in fall of 2009. Yet, concerns over the genetic recovery of wolves in the Northern Rockies remain, and upcoming District court rulings in the summer of 2010 will probably include consideration of gene flow between subpopulations. In this issue of Molecular Ecology, vonHoldt et al. (2010) conduct the largest analysis of gene flow and population structure of the Northern Rockies wolves to date. Using an impressive sampling design and novel analytic methods, vonHoldt et al. (2010) show substantial levels of gene flow between three identified subpopulations of wolves within the Northern Rockies, clarifying previous analyses and convincingly showing genetic recovery. © 2010 Blackwell Publishing Ltd.
Isolation-by-distance in landscapes: considerations for landscape genetics
van Strien, M J; Holderegger, R; Van Heck, H J
2015-01-01
In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow. PMID:25052412
Chao, Jinquan; Yang, Shuguang; Chen, Yueyi; Tian, Wei-Min
2016-01-01
Latex exploitation-caused latex flow is effective in enhancing latex regeneration in laticifer cells of rubber tree. It should be suitable for screening appropriate reference gene for analysis of the expression of latex regeneration-related genes by quantitative real-time PCR (qRT-PCR). In the present study, the expression stability of 23 candidate reference genes was evaluated on the basis of latex flow by using geNorm and NormFinder algorithms. Ubiquitin-protein ligase 2a (UBC2a) and ubiquitin-protein ligase 2b (UBC2b) were the two most stable genes among the selected candidate references in rubber tree clones with differential duration of latex flow. The two genes were also high-ranked in previous reference gene screening across different tissues and experimental conditions. By contrast, the transcripts of latex regeneration-related genes fluctuated significantly during latex flow. The results suggest that screening reference gene during latex flow should be an efficient and effective clue for selection of reference genes in qRT-PCR. PMID:27524995
Air-mediated pollen flow from genetically modified to conventional crops.
Kuparinen, Anna; Schurr, Frank; Tackenberg, Oliver; O'Hara, Robert B
2007-03-01
Tools for estimating pollen dispersal and the resulting gene flow are necessary to assess the risk of gene flow from genetically modified (GM) to conventional fields, and to quantify the effectiveness of measures that may prevent such gene flow. A mechanistic simulation model is presented and used to simulate pollen dispersal by wind in different agricultural scenarios over realistic pollination periods. The relative importance of landscape-related variables such as isolation distance, topography, spatial configuration of the fields, GM field size and barrier, and environmental variation are examined in order to find ways to minimize gene flow and to detect possible risk factors. The simulations demonstrated a large variation in pollen dispersal and in the predicted amount of contamination between different pollination periods. This was largely due to variation in vertical wind. As this variation in wind conditions is difficult to control through management measures, it should be carefully considered when estimating the risk of gene flow from GM crops. On average, the predicted level of gene flow decreased with increasing isolation distance and with increasing depth of the conventional field, and increased with increasing GM field size. Therefore, at a national scale and over the long term these landscape properties should be accounted for when setting regulations for controlling gene flow. However, at the level of an individual field the level of gene flow may be dominated by uncontrollable variation. Due to the sensitivity of pollen dispersal to the wind, we conclude that gene flow cannot be summarized only by the mean contamination; information about the frequency of extreme events should also be considered. The modeling approach described in this paper offers a way to predict and compare pollen dispersal and gene flow in varying environmental conditions, and to assess the effectiveness of different management measures.
The evolutionary history of bears is characterized by gene flow across species
Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A.; Janke, Axel
2017-01-01
Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow. PMID:28422140
The evolutionary history of bears is characterized by gene flow across species.
Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A; Janke, Axel
2017-04-19
Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.
Demographic history and gene flow during silkworm domestication
2014-01-01
Background Gene flow plays an important role in domestication history of domesticated species. However, little is known about the demographic history of domesticated silkworm involving gene flow with its wild relative. Results In this study, four model-based evolutionary scenarios to describe the demographic history of B. mori were hypothesized. Using Approximate Bayesian Computation method and DNA sequence data from 29 nuclear loci, we found that the gene flow at bottleneck model is the most likely scenario for silkworm domestication. The starting time of silkworm domestication was estimated to be approximate 7,500 years ago; the time of domestication termination was 3,984 years ago. Using coalescent simulation analysis, we also found that bi-directional gene flow occurred during silkworm domestication. Conclusions Estimates of silkworm domestication time are nearly consistent with the archeological evidence and our previous results. Importantly, we found that the bi-directional gene flow might occur during silkworm domestication. Our findings add a dimension to highlight the important role of gene flow in domestication of crops and animals. PMID:25123546
Cassens, Insa; Van Waerebeek, Koen; Best, Peter B; Tzika, Athanasia; Van Helden, Anton L; Crespo, Enrique A; Milinkovitch, Michel C
2005-01-01
Using nine nuclear species-specific microsatellite loci and two mitochondrial gene fragments (cytochrome b and control region), we investigated the processes that have shaped the geographical distribution of genetic diversity exhibited by contemporary dusky dolphin (Lagenorhynchus obscurus) populations. A total of 221 individuals from four locations (Peru, Argentina, southern Africa, and New Zealand) were assayed, covering most of the species' distribution range. Although our analyses identify a general demographic decline in the Peruvian dusky dolphin stock (recently affected by high natural and human-induced mortality levels), comparison between the different molecular markers hint at an ancient bottleneck that predates recent El Niño oscillations and human exploitation. Moreover, we find evidence of a difference in dispersal behaviour of dusky dolphins along the South American coast and across the Atlantic. While data in Peruvian and Argentine waters are best explained by male-specific gene flow between these two populations, our analyses suggest that dusky dolphins from Argentina and southern Africa recently separated from an ancestral Atlantic population and, since then, diverged without considerable gene flow. The inclusion of a few New Zealand samples further confirms the low levels of genetic differentiation among most dusky dolphin populations. Only the Peruvian dusky dolphin stock is highly differentiated, especially at mitochondrial loci, suggesting that major fluctuations in its population size have led to an increased rate of genetic drift.
García, Angelina; Dermarchi, Darío A.; Tovo-Rodrigues, Luciana; Pauro, Maia; Callegari-Jacques, Sidia M.; Salzano, Francisco M.; Hutz, Mara H.
2015-01-01
The population of Argentina has already been studied with regard to several genetic markers, but much more data are needed for the appropriate definition of its genetic profile. This study aimed at investigating the admixture patterns and genetic structure in Central Argentina, using biparental markers and comparing the results with those previously obtained by us with mitochondrial DNA (mtDNA) in the same samples. A total of 521 healthy unrelated individuals living in 13 villages of the Córdoba and San Luis provinces were tested. The individuals were genotyped for ten autosomal ancestry informative markers (AIMs). Allele frequencies were compared with those of African, European and Native American populations, chosen to represent parental contributions. The AIM estimates indicated a greater influence of the Native American ancestry as compared to previous studies in the same or other Argentinean regions, but smaller than that observed with the mtDNA tests. These differences can be explained, respectively, by different genetic contributions between rural and urban areas, and asymmetric gene flow occurred in the past. But a most unexpected finding was the marked interpopulation genetic homogeneity found in villages located in diverse geographic environments across a wide territory, suggesting considerable gene flow. PMID:26500436
El-Kassaby, Yousry A; Funda, Tomas; Lai, Ben S K
2010-01-01
The impact of female reproductive success on the mating system, gene flow, and genetic diversity of the filial generation was studied using a random sample of 801 bulk seed from a 49-clone Pseudotsuga menziesii seed orchard. We used microsatellite DNA fingerprinting and pedigree reconstruction to assign each seed's maternal and paternal parents and directly estimated clonal reproductive success, selfing rate, and the proportion of seed sired by outside pollen sources. Unlike most family array mating system and gene flow studies conducted on natural and experimental populations, which used an equal number of seeds per maternal genotype and thus generating unbiased inferences only on male reproductive success, the random sample we used was a representative of the entire seed crop; therefore, provided a unique opportunity to draw unbiased inferences on both female and male reproductive success variation. Selfing rate and the number of seed sired by outside pollen sources were found to be a function of female fertility variation. This variation also substantially and negatively affected female effective population size. Additionally, the results provided convincing evidence that the use of clone size as a proxy to fertility is questionable and requires further consideration.
No population genetic structure in a widespread aquatic songbird from the Neotropics
Cadena, Carlos Daniel; Gutierrez-Pinto, Natalia; Davila, Nicolas; Chesser, R. Terry
2011-01-01
Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.
Liu, Wei; Liu, Hui-Xin; Zhang, Lin; Hou, Xue-Xia; Wan, Kang-Lin; Hao, Qin
2016-08-03
A novel isothermal detection for recombinase polymerase amplification with lateral flow (LF-RPA) was established for Borrelia burgdorferi (B. burgdorferi) detection in this study. This assay with high sensitivity and specificity can get a visible result without any additional equipment in 30 min. We designed a pair of primers according to recA gene of B. burgdorferi strains and a methodology evaluation was performed. The results showed that the RPA assay based on the recA gene was successfully applied in B. burgdorferi detection, and its specific amplification was only achieved from the genomic DNA of B. burgdorferi. The detection limit of the new assay was about 25 copies of the B. burgdorferi genomic DNA. Twenty Lyme borreliosis patients' serum samples were detected by LF-RPA assay, real-time qPCR and nested-PCR. Results showed the LF-RPA assay is more effective than nested-PCR for its shorter reaction time and considerably higher detection rate. This method is of great value in clinical rapid detection for Lyme borreliosis. Using the RPA assay might be a megatrend for DNA detection in clinics and endemic regions.
Hidden histories of gene flow in highland birds revealed with genomic markers.
Zarza, Eugenia; Faircloth, Brant C; Tsai, Whitney L E; Bryson, Robert W; Klicka, John; McCormack, John E
2016-10-01
Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species-rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well-studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these 'hidden histories' using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation-with-bouts-of-gene-flow will turn out to be a common mode of speciation. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Sex-biased gene flow among elk in the greater Yellowstone ecosystem
Hand, Brian K.; Chen, Shanyuan; Anderson, Neil; Beja-Pereira, Albano; Cross, Paul C.; Ebinger, Michael R.; Edwards, Hank; Garrott, Robert A.; Kardos, Marty D.; Kauffman, Matthew J.; Landguth, Erin L.; Middleton, Arthur; Scurlock, Brandon M.; White, P.J.; Zager, Pete; Schwartz, Michael K.; Luikart, Gordon
2014-01-01
We quantified patterns of population genetic structure to help understand gene flow among elk populations across the Greater Yellowstone Ecosystem. We sequenced 596 base pairs of the mitochondrial control region of 380 elk from eight populations. Analysis revealed high mitochondrial DNA variation within populations, averaging 13.0 haplotypes with high mean gene diversity (0.85). The genetic differentiation among populations for mitochondrial DNA was relatively high (FST = 0.161; P = 0.001) compared to genetic differentiation for nuclear microsatellite data (FST = 0.002; P = 0.332), which suggested relatively low female gene flow among populations. The estimated ratio of male to female gene flow (mm/mf = 46) was among the highest we have seen reported for large mammals. Genetic distance (for mitochondrial DNA pairwise FST) was not significantly correlated with geographic (Euclidean) distance between populations (Mantel's r = 0.274, P = 0.168). Large mitochondrial DNA genetic distances (e.g., FST > 0.2) between some of the geographically closest populations (<65 km) suggested behavioral factors and/or landscape features might shape female gene flow patterns. Given the strong sex-biased gene flow, future research and conservation efforts should consider the sexes separately when modeling corridors of gene flow or predicting spread of maternally transmitted diseases. The growing availability of genetic data to compare male vs. female gene flow provides many exciting opportunities to explore the magnitude, causes, and implications of sex-biased gene flow likely to occur in many species.
Spatial genetic structure and asymmetrical gene flow within the Pacific walrus
Sonsthagen, Sarah A.; Jay, Chadwick V.; Fischbach, Anthony S.; Sage, George K.; Talbot, Sandra L.
2012-01-01
Pacific walruses (Odobenus rosmarus divergens) occupying shelf waters of Pacific Arctic seas migrate during spring and summer from 3 breeding areas in the Bering Sea to form sexually segregated nonbreeding aggregations. We assessed genetic relationships among 2 putative breeding populations and 6 nonbreeding aggregations. Analyses of mitochondrial DNA (mtDNA) control region sequence data suggest that males are distinct among breeding populations (ΦST=0.051), and between the eastern Chukchi and other nonbreeding aggregations (ΦST=0.336–0.449). Nonbreeding female aggregations were genetically distinct across marker types (microsatellite FST=0.019; mtDNA ΦST=0.313), as was eastern Chukchi and all other nonbreeding aggregations (microsatellite FST=0.019–0.035; mtDNA ΦST=0.386–0.389). Gene flow estimates are asymmetrical from St. Lawrence Island into the southeastern Bering breeding population for both sexes. Partitioning of haplotype frequencies among breeding populations suggests that individuals exhibit some degree of philopatry, although weak. High levels of genetic differentiation among eastern Chukchi and all other nonbreeding aggregations, but considerably lower genetic differentiation between breeding populations, suggest that at least 1 genetically distinct breeding population remained unsampled. Limited genetic structure at microsatellite loci between assayed breeding areas can emerge from several processes, including male-mediated gene flow, or population admixture following a decrease in census size (i.e., due to commercial harvest during 1880–1950s) and subsequent recovery. Nevertheless, high levels of genetic diversity in the Pacific walrus, which withstood prolonged decreases in census numbers with little impact on neutral genetic diversity, may reflect resiliency in the face of past environmental challenges.
You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change. PMID:27580056
Liu, Wensheng; Zhao, Yao; You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change.
Van Belleghem, Steven M; Baquero, Margarita; Papa, Riccardo; Salazar, Camilo; McMillan, W Owen; Counterman, Brian A; Jiggins, Chris D; Martin, Simon H
2018-03-22
Sex chromosomes are disproportionately involved in reproductive isolation and adaptation. In support of such a "large-X" effect, genome scans between recently diverged populations and species pairs often identify distinct patterns of divergence on the sex chromosome compared to autosomes. When measures of divergence between populations are higher on the sex chromosome compared to autosomes, such patterns could be interpreted as evidence for faster divergence on the sex chromosome, that is "faster-X", barriers to gene flow on the sex chromosome. However, demographic changes can strongly skew divergence estimates and are not always taken into consideration. We used 224 whole-genome sequences representing 36 populations from two Heliconius butterfly clades (H. erato and H. melpomene) to explore patterns of Z chromosome divergence. We show that increased divergence compared to equilibrium expectations can in many cases be explained by demographic change. Among Heliconius erato populations, for instance, population size increase in the ancestral population can explain increased absolute divergence measures on the Z chromosome compared to the autosomes, as a result of increased ancestral Z chromosome genetic diversity. Nonetheless, we do identify increased divergence on the Z chromosome relative to the autosomes in parapatric or sympatric species comparisons that imply postzygotic reproductive barriers. Using simulations, we show that this is consistent with reduced gene flow on the Z chromosome, perhaps due to greater accumulation of incompatibilities. Our work demonstrates the importance of taking demography into account to interpret patterns of divergence on the Z chromosome, but nonetheless provides evidence to support the Z chromosome as a strong barrier to gene flow in incipient Heliconius butterfly species. © 2018 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush
Baillie, Shauna M.; Muir, Andrew M.; Hansen, Michael J.; Krueger, Charles C.; Bentzen, Paul
2016-01-01
BackgroundAdaptive radiation involving a colonizing phenotype that rapidly evolves into at least one other ecological variant, or ecotype, has been observed in a variety of freshwater fishes in post-glacial environments. However, few studies consider how phenotypic traits vary with regard to neutral genetic partitioning along ecological gradients. Here, we present the first detailed investigation of lake trout Salvelinus namaycushthat considers variation as a cline rather than discriminatory among ecotypes. Genetic and phenotypic traits organized along common ecological gradients of water depth and geographic distance provide important insights into diversification processes in a lake with high levels of human disturbance from over-fishing.ResultsFour putative lake trout ecotypes could not be distinguished using population genetic methods, despite morphological differences. Neutral genetic partitioning in lake trout was stronger along a gradient of water depth, than by locality or ecotype. Contemporary genetic migration patterns were consistent with isolation-by-depth. Historical gene flow patterns indicated colonization from shallow to deep water. Comparison of phenotypic (Pst) and neutral genetic variation (Fst) revealed that morphological traits related to swimming performance (e.g., buoyancy, pelvic fin length) departed more strongly from neutral expectations along a depth gradient than craniofacial feeding traits. Elevated phenotypic variance with increasing water depth in pelvic fin length indicated possible ongoing character release and diversification. Finally, differences in early growth rate and asymptotic fish length across depth strata may be associated with limiting factors attributable to cold deep-water environments.ConclusionWe provide evidence of reductions in gene flow and divergent natural selection associated with water depth in Lake Superior. Such information is relevant for documenting intraspecific biodiversity in the largest freshwater lake in the world for a species that recently lost considerable genetic diversity and is now in recovery. Unknown is whether observed patterns are a result of an early stage of incipient speciation, gene flow-selection equilibrium, or reverse speciation causing formerly divergent ecotypes to collapse into a single gene pool.
Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong
2016-01-01
Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow.
Dong, Shanshan; Liu, Yan; Yu, Cigang; Zhang, Zhenhua; Chen, Ming; Wang, Changyong
2016-01-01
Pollen-mediated gene flow (PMGF) is the main mode of transgene flow in flowering plants. The study of pollen and gene flow of transgenic wheat can help to establish the corresponding strategy for preventing transgene escape and contamination between compatible genotypes in wheat. To investigate the pollen dispersal and gene flow frequency in various directions and distances around the pollen source and detect the association between frequency of transgene flow and pollen density from transgenic wheat, a concentric circle design was adopted to conduct a field experiment using transgenic wheat with resistance to wheat yellow mosaic virus (WYMV) as the pollen donor and dwarf male-sterile wheat as the pollen receptor. The results showed that the pollen and gene flow of transgenic wheat varied significantly among the different compass sectors. A higher pollen density and gene flow frequency was observed in the downwind SW and W sectors, with average frequencies of transgene flow of 26.37 and 23.69% respectively. The pollen and gene flow of transgenic wheat declined dramatically with increasing distance from its source. Most of the pollen grains concentrated within 5 m and only a few pollen grains were detected beyond 30 m. The percentage of transgene flow was the highest where adjacent to the pollen source, with an average of 48.24% for all eight compass directions at 0 m distance. Transgene flow was reduced to 50% and 95% between 1.61 to 3.15 m, and 10.71 to 20.93 m, respectively. Our results suggest that climate conditions, especially wind direction, may significantly affect pollen dispersal and gene flow of wheat. The isolation-by-distance model is one of the most effective methods for achieving stringent transgene confinement in wheat. The frequency of transgene flow is directly correlated with the relative density of GM pollen grains in air currents, and pollen competition may be a major factor influencing transgene flow. PMID:26975052
Kulmuni, J; Westram, A M
2017-06-01
The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Jhala, A J; Bhatt, H; Topinka, K; Hall, L M
2011-04-01
Coexistence allows growers and consumers the choice of producing or purchasing conventional or organic crops with known standards for adventitious presence of genetically engineered (GE) seed. Flax (Linum usitatissimum L.) is multipurpose oilseed crop in which product diversity and utility could be enhanced for industrial, nutraceutical and pharmaceutical markets through genetic engineering. If GE flax were released commercially, pollen-mediated gene flow will determine in part whether GE flax could coexist without compromising other markets. As a part of pre-commercialization risk assessment, we quantified pollen-mediated gene flow between two cultivars of flax. Field experiments were conducted at four locations during 2006 and 2007 in western Canada using a concentric donor (20 × 20 m) receptor (120 × 120 m) design. Gene flow was detected through the xenia effect of dominant alleles of high α-linolenic acid (ALA; 18:3(cisΔ9,12,15)) to the low ALA trait. Seeds were harvested from the pollen recipient plots up to a distance of 50 m in eight directions from the pollen donor. High ALA seeds were identified using a thiobarbituric acid test and served as a marker for gene flow. Binomial distribution and power analysis were used to predict the minimum number of seeds statistically required to detect the frequency of gene flow at specific α (confidence interval) and power (1-β) values. As a result of the low frequency of gene flow, approximately 4 million seeds were screened to derive accurate quantification. Frequency of gene flow was highest near the source: averaging 0.0185 at 0.1 m but declined rapidly with distance, 0.0013 and 0.00003 at 3 and 35 m, respectively. Gene flow was reduced to 50% (O₅₀) and 90% (O₉₀) between 0.85 to 2.64 m, and 5.68 to 17.56 m, respectively. No gene flow was detected at any site or year > 35 m distance from the pollen source, suggesting that frequency of gene flow was ≤ 0.00003 (P = 0.95). Although it is not possible to eliminate all adventitious presence caused by pollen-mediated gene flow, through harvest blending and the use of buffer zones between GE and conventional flax fields, it could be minimized. Managing other sources of adventitious presence including seed mixing and volunteer populations may be more problematic.
Yu, Han; Hageman Blair, Rachael
2016-01-01
Understanding community structure in networks has received considerable attention in recent years. Detecting and leveraging community structure holds promise for understanding and potentially intervening with the spread of influence. Network features of this type have important implications in a number of research areas, including, marketing, social networks, and biology. However, an overwhelming majority of traditional approaches to community detection cannot readily incorporate information of node attributes. Integrating structural and attribute information is a major challenge. We propose a exible iterative method; inverse regularized Markov Clustering (irMCL), to network clustering via the manipulation of the transition probability matrix (aka stochastic flow) corresponding to a graph. Similar to traditional Markov Clustering, irMCL iterates between "expand" and "inflate" operations, which aim to strengthen the intra-cluster flow, while weakening the inter-cluster flow. Attribute information is directly incorporated into the iterative method through a sigmoid (logistic function) that naturally dampens attribute influence that is contradictory to the stochastic flow through the network. We demonstrate advantages and the exibility of our approach using simulations and real data. We highlight an application that integrates breast cancer gene expression data set and a functional network defined via KEGG pathways reveal significant modules for survival.
Kaňuch, Peter; Dorková, Martina; Mikhailenko, Andrey P.; Polumordvinov, Oleg A.; Jarčuška, Benjamín; Krištín, Anton
2017-01-01
Abstract Phylogenetic analysis and assessment of the species status of mostly isolated populations of Pholidoptera frivaldszkyi in south-western Russia occurring far beyond the accepted area of the species distribution in the Carpathian-Balkan region were performed. Using the mitochondrial DNA cytochrome c oxidase subunit I gene fragment, we found a very low level of genetic diversity in these populations. Phylogeographic reconstruction did not support recent introduction events but rather historical range fragmentation. The grouping of the Russian and Romanian haplotypes in a distinct phylogenetic clade suggests that the pre-glacial range of P. frivaldszkyi had extended towards the Ponto-Caspian region, with considerable gene flow between different refugia. However, post-glacial northward expansion of the species from supposed Caucasus refugia contributed most likely to the current disjunct distribution of this relict-like bush-cricket. PMID:28769628
Kaňuch, Peter; Dorková, Martina; Mikhailenko, Andrey P; Polumordvinov, Oleg A; Jarčuška, Benjamín; Krištín, Anton
2017-01-01
Phylogenetic analysis and assessment of the species status of mostly isolated populations of Pholidoptera frivaldszkyi in south-western Russia occurring far beyond the accepted area of the species distribution in the Carpathian-Balkan region were performed. Using the mitochondrial DNA cytochrome c oxidase subunit I gene fragment, we found a very low level of genetic diversity in these populations. Phylogeographic reconstruction did not support recent introduction events but rather historical range fragmentation. The grouping of the Russian and Romanian haplotypes in a distinct phylogenetic clade suggests that the pre-glacial range of P. frivaldszkyi had extended towards the Ponto-Caspian region, with considerable gene flow between different refugia. However, post-glacial northward expansion of the species from supposed Caucasus refugia contributed most likely to the current disjunct distribution of this relict-like bush-cricket.
Long-distance gene flow and adaptation of forest trees to rapid climate change
Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio
2012-01-01
Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change. PMID:22372546
Long-distance gene flow and adaptation of forest trees to rapid climate change.
Kremer, Antoine; Ronce, Ophélie; Robledo-Arnuncio, Juan J; Guillaume, Frédéric; Bohrer, Gil; Nathan, Ran; Bridle, Jon R; Gomulkiewicz, Richard; Klein, Etienne K; Ritland, Kermit; Kuparinen, Anna; Gerber, Sophie; Schueler, Silvio
2012-04-01
Forest trees are the dominant species in many parts of the world and predicting how they might respond to climate change is a vital global concern. Trees are capable of long-distance gene flow, which can promote adaptive evolution in novel environments by increasing genetic variation for fitness. It is unclear, however, if this can compensate for maladaptive effects of gene flow and for the long-generation times of trees. We critically review data on the extent of long-distance gene flow and summarise theory that allows us to predict evolutionary responses of trees to climate change. Estimates of long-distance gene flow based both on direct observations and on genetic methods provide evidence that genes can move over spatial scales larger than habitat shifts predicted under climate change within one generation. Both theoretical and empirical data suggest that the positive effects of gene flow on adaptation may dominate in many instances. The balance of positive to negative consequences of gene flow may, however, differ for leading edge, core and rear sections of forest distributions. We propose future experimental and theoretical research that would better integrate dispersal biology with evolutionary quantitative genetics and improve predictions of tree responses to climate change. © 2012 Blackwell Publishing Ltd/CNRS.
Direct and reverse pollen-mediated gene flow between GM rice and red rice weed
Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.
2013-01-01
Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.
Muscarella, Robert A.; Murray, Kevin L.; Ortt, Derek; Russell, Amy L.; Fleming, Theodore H.
2011-01-01
Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern. PMID:21445291
Nosil, P; Crespi, B J
2004-01-01
Population differentiation often reflects a balance between divergent natural selection and the opportunity for homogenizing gene flow to erode the effects of selection. However, during ecological speciation, trait divergence results in reproductive isolation and becomes a cause, rather than a consequence, of reductions in gene flow. To assess both the causes and the reproductive consequences of morphological differentiation, we examined morphological divergence and sexual isolation among 17 populations of Timema cristinae walking-sticks. Individuals from populations adapted to using Adenostoma as a host plant tended to exhibit smaller overall body size, wide heads, and short legs relative to individuals using Ceonothus as a host. However, there was also significant variation in morphology among populations within host-plant species. Mean trait values for each single population could be reliably predicted based upon host-plant used and the potential for homogenizing gene flow, inferred from the size of the neighboring population using the alternate host and mitochondrial DNA estimates of gene flow. Morphology did not influence the probability of copulation in between-population mating trials. Thus, morphological divergence is facilitated by reductions in gene flow, but does not cause reductions in gene flow via the evolution of sexual isolation. Combined with rearing data indicating that size and shape have a partial genetic basis, evidence for parallel origins of the host-associated forms, and inferences from functional morphology, these results indicate that morphological divergence in T. cristinae reflects a balance between the effects of host-specific natural selection and gene flow. Our findings illustrate how data on mating preferences can help determine the causal associations between trait divergence and levels of gene flow.
Gene flow among wild and domesticated almond species: insights from chloroplast and nuclear markers
Delplancke, Malou; Alvarez, Nadir; Espíndola, Anahí; Joly, Hélène; Benoit, Laure; Brouck, Elise; Arrigo, Nils
2012-01-01
Hybridization has played a central role in the evolutionary history of domesticated plants. Notably, several breeding programs relying on gene introgression from the wild compartment have been performed in fruit tree species within the genus Prunus but few studies investigated spontaneous gene flow among wild and domesticated Prunus species. Consequently, a comprehensive understanding of genetic relationships and levels of gene flow between domesticated and wild Prunus species is needed. Combining nuclear and chloroplastic microsatellites, we investigated the gene flow and hybridization among two key almond tree species, the cultivated Prunus dulcis and one of the most widespread wild relative Prunus orientalis in the Fertile Crescent. We detected high genetic diversity levels in both species along with substantial and symmetric gene flow between the domesticated P. dulcis and the wild P. orientalis. These results were discussed in light of the cultivated species diversity, by outlining the frequent spontaneous genetic contributions of wild species to the domesticated compartment. In addition, crop-to-wild gene flow suggests that ad hoc transgene containment strategies would be required if genetically modified cultivars were introduced in the northwestern Mediterranean. PMID:25568053
Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape
Buehler, D.; Graf, R.; Holderegger, R.; Gugerli, F.
2012-01-01
Background and Aims Gene flow is important in counteracting the divergence of populations but also in spreading genes among populations. However, contemporary gene flow is not well understood across alpine landscapes. The aim of this study was to estimate contemporary gene flow through pollen and to examine the realized mating system in the alpine perennial plant, Arabis alpina (Brassicaceae). Methods An entire sub-alpine to alpine landscape of 2 km2 was exhaustively sampled in the Swiss Alps. Eighteen nuclear microsatellite loci were used to genotype 595 individuals and 499 offspring from 49 maternal plants. Contemporary gene flow by pollen was estimated from paternity analysis, matching the genotypes of maternal plants and offspring to the pool of likely father plants. Realized mating patterns and genetic structure were also estimated. Key Results Paternity analysis revealed several long-distance gene flow events (≤1 km). However, most outcrossing pollen was dispersed close to the mother plants, and 84 % of all offspring were selfed. Individuals that were spatially close were more related than by chance and were also more likely to be connected by pollen dispersal. Conclusions In the alpine landscape studied, genetic structure occurred on small spatial scales as expected for alpine plants. However, gene flow also covered large distances. This makes it plausible for alpine plants to spread beneficial alleles at least via pollen across landscapes at a short time scale. Thus, gene flow potentially facilitates rapid adaptation in A. alpina likely to be required under ongoing climate change. PMID:22492332
The structural and functional connectivity of the grassland plant Lychnis flos-cuculi
Aavik, T; Holderegger, R; Bolliger, J
2014-01-01
Understanding the relationship between structural and functional connectivity is essential for successful restoration and conservation management, particularly in intensely managed agricultural landscapes. We evaluated the relationship between structural and functional connectivity of the wetland plant Lychnis flos-cuculi in a fragmented agricultural landscape using landscape genetic and network approaches. First, we studied the effect of structural connectivity, such as geographic distance and various landscape elements (forest, agricultural land, settlements and ditch verges), on gene flow among populations as a measurement of functional connectivity. Second, we examined the effect of structural graph-theoretic connectivity measures on gene flow among populations and on genetic diversity within populations of L. flos-cuculi. Among landscape elements, forests hindered gene flow in L. flos-cuculi, whereas gene flow was independent of geographic distance. Among the structural graph-theoretic connectivity variables, only intrapopulation connectivity, which was based on population size, had a significant positive effect on gene flow, that is, more gene flow took place among larger populations. Unexpectedly, interpopulation connectivity of populations, which takes into account the spatial location and distance among populations, did not influence gene flow in L. flos-cuculi. However, higher observed heterozygosity and lower inbreeding was observed in populations characterised by higher structural interpopulation connectivity. This finding shows that a spatially coherent network of populations is significant for maintaining the genetic diversity of populations. Nevertheless, lack of significant relationships between gene flow and most of the structural connectivity measures suggests that structural connectivity does not necessarily correspond to functional connectivity. PMID:24253937
GIS assessment of the risk of gene flow from Brassica napus to its wild relatives in China.
Dong, Jing-Jing; Zhang, Ming-Gang; Wei, Wei; Ma, Ke-Ping; Wang, Ying-Hao
2018-06-16
Risk of gene flow from canola (Brassica napus) to species of wild relatives was used as an example to evaluate the risk of gene flow of transgenic crops. B. juncea and B. rapa were the most common weedy Brassica species in China, which were both sexually compatible with canola. Data on canola cultivation in China were collected and analyzed using geographic information system (GIS), and the distribution of its wild relatives was predicted by MaxEnt species distribution model. Based on biological and phenological evidence, our results showed that gene flow risk exists in most parts of the country, especially in places with higher richness of wild Brassica species. However, risk in dominant canola cultivation regions is relatively low owing to the reduced distribution density of wild species in these regions. Three regions of higher risk of gene flow had been identified. Risk of gene flow is relatively high in certain areas. China has been assumed to be the original center of B. juncea and B. rapa, and gene flow may lead to negative effects on the conservation of biodiversity of local species. Strategies had been proposed to reduce the possibility of gene flow either by monitoring introgression from crops to wild relatives in the areas of high adoption of the crop or by taking measures to limit the releasing of new crops or varieties in the areas with abundant wild relatives.
Jhala, A J; Bhatt, H; Topinka, K; Hall, L M
2011-01-01
Coexistence allows growers and consumers the choice of producing or purchasing conventional or organic crops with known standards for adventitious presence of genetically engineered (GE) seed. Flax (Linum usitatissimum L.) is multipurpose oilseed crop in which product diversity and utility could be enhanced for industrial, nutraceutical and pharmaceutical markets through genetic engineering. If GE flax were released commercially, pollen-mediated gene flow will determine in part whether GE flax could coexist without compromising other markets. As a part of pre-commercialization risk assessment, we quantified pollen-mediated gene flow between two cultivars of flax. Field experiments were conducted at four locations during 2006 and 2007 in western Canada using a concentric donor (20 × 20 m) receptor (120 × 120 m) design. Gene flow was detected through the xenia effect of dominant alleles of high α-linolenic acid (ALA; 18:3cisΔ9,12,15) to the low ALA trait. Seeds were harvested from the pollen recipient plots up to a distance of 50 m in eight directions from the pollen donor. High ALA seeds were identified using a thiobarbituric acid test and served as a marker for gene flow. Binomial distribution and power analysis were used to predict the minimum number of seeds statistically required to detect the frequency of gene flow at specific α (confidence interval) and power (1−β) values. As a result of the low frequency of gene flow, approximately 4 million seeds were screened to derive accurate quantification. Frequency of gene flow was highest near the source: averaging 0.0185 at 0.1 m but declined rapidly with distance, 0.0013 and 0.00003 at 3 and 35 m, respectively. Gene flow was reduced to 50% (O50) and 90% (O90) between 0.85 to 2.64 m, and 5.68 to 17.56 m, respectively. No gene flow was detected at any site or year >35 m distance from the pollen source, suggesting that frequency of gene flow was ⩽0.00003 (P=0.95). Although it is not possible to eliminate all adventitious presence caused by pollen-mediated gene flow, through harvest blending and the use of buffer zones between GE and conventional flax fields, it could be minimized. Managing other sources of adventitious presence including seed mixing and volunteer populations may be more problematic. PMID:20551976
Zhou, Yangbo; Tang, Zhaomin; Shi, Chunli; Shi, Shuai; Qian, Zhiyong; Zhou, Shaobing
2012-11-01
Polyethylenimine (PEI) functionalized magnetic nanoparticles were synthesized as a potential non-viral vector for gene delivery. The nanoparticles could provide the magnetic-targeting, and the cationic polymer PEI could condense DNA and avoid in vitro barriers. The magnetic nanoparticles were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, dynamic light scattering measurements, transmission electron microscopy, vibrating sample magnetometer and atomic force microscopy. Agarose gel electrophoresis was used to asses DNA binding and perform a DNase I protection assay. The Alamar blue assay was used to evaluate negative effects on the metabolic activity of cells incubated with PEI modified magnetic nanoparticles and their complexes with DNA both in the presence or absence of an external magnetic field. Flow cytometry and fluorescent microscopy were also performed to investigate the transfection efficiency of the DNA-loaded magnetic nanoparticles in A549 and B16-F10 tumor cells with (+M) or without (-M) the magnetic field. The in vitro transfection efficiency of magnetic nanoparticles was improved obviously in a permanent magnetic field. Therefore, the magnetic nanoparticles show considerable potential as nanocarriers for gene delivery.
Rebelatto, Carmen K; Aguiar, Alessandra M; Senegaglia, Alexandra C; Aita, Carlos M; Hansen, Paula; Barchiki, Fabiane; Kuligovski, Crisciele; Olandoski, Márcia; Moutinho, José A; Dallagiovanna, Bruno; Goldenberg, Samuel; Brofman, Paulo S; Nakao, Lia S; Correa, Alejandro
2009-01-16
Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.
MOLECULAR METHODS USED TO ASSESS THE RISKS OF TRANSGENE FLOW; BENEFITS AND LIMITATIONS
The US EPA WED has initiated a gene flow project to characterize ecological risks of gene flow from GM plants to native species. Development of molecular assays for risk characterization down to gene expression level is of high interest to the EPA. Phylogenetic analyses of ampl...
A conceptual framework that links pollinator foraging behavior to gene flow
USDA-ARS?s Scientific Manuscript database
In insect-pollinated crops such as alfalfa, a better understanding of how pollinator foraging behavior affects gene flow could lead to the development of management strategies to reduce gene flow and facilitate the coexistence of distinct seed-production markets. Here, we introduce a conceptual fram...
Clegg, Sonya M.; Phillimore, Albert B.
2010-01-01
Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago. PMID:20194170
Quantitating and Dating Recent Gene Flow between European and East Asian Populations
Qin, Pengfei; Zhou, Ying; Lou, Haiyi; Lu, Dongsheng; Yang, Xiong; Wang, Yuchen; Jin, Li; Chung, Yeun-Jun; Xu, Shuhua
2015-01-01
Historical records indicate that extensive cultural, commercial and technological interaction occurred between European and Asian populations. What have been the biological consequences of these contacts in terms of gene flow? We systematically estimated gene flow between Eurasian groups using genome-wide polymorphisms from 34 populations representing Europeans, East Asians, and Central/South Asians. We identified recent gene flow between Europeans and Asians in most populations we studied, including East Asians and Northwestern Europeans, which are normally considered to be non-admixed populations. In addition we quantitatively estimated the extent of this gene flow using two statistical approaches, and dated admixture events based on admixture linkage disequilibrium. Our results indicate that most genetic admixtures occurred between 2,400 and 310 years ago and show the admixture proportions to be highly correlated with geographic locations, with the highest admixture proportions observed in Central Asia and the lowest in East Asia and Northwestern Europe. Interestingly, we observed a North-to-South decline of European gene flow in East Asians, suggesting a northern path of European gene flow diffusing into East Asian populations. Our findings contribute to an improved understanding of the history of human migration and the evolutionary mechanisms that have shaped the genetic structure of populations in Eurasia. PMID:25833680
Streisfeld, Matthew A.; Young, Wambui N.; Sobel, James M.
2013-01-01
Identifying the molecular genetic basis of traits contributing to speciation is of crucial importance for understanding the ecological and evolutionary mechanisms that generate biodiversity. Despite several examples describing putative “speciation genes,” it is often uncertain to what extent these genetic changes have contributed to gene flow reductions in nature. Therefore, considerable interest lies in characterizing the molecular basis of traits that actively confer reproductive isolation during the early stages of speciation, as these loci can be attributed directly to the process of divergence. In Southern California, two ecotypes of Mimulus aurantiacus are parapatric and differ primarily in flower color, with an anthocyanic, red-flowered morph in the west and an anthocyanin-lacking, yellow-flowered morph in the east. Evidence suggests that the genetic changes responsible for this shift in flower color have been essential for divergence and have become fixed in natural populations of each ecotype due to almost complete differences in pollinator preference. In this study, we demonstrate that a cis-regulatory mutation in an R2R3-MYB transcription factor results in differential regulation of enzymes in the anthocyanin biosynthetic pathway and is the major contributor to differences in floral pigmentation. In addition, molecular population genetic data show that, despite gene flow at neutral loci, divergent selection has driven the fixation of alternate alleles at this gene between ecotypes. Therefore, by identifying the genetic basis underlying ecologically based divergent selection in flower color between these ecotypes, we have revealed the ecological and functional mechanisms involved in the evolution of pre-mating isolation at the early stages of incipient speciation. PMID:23555295
Anagnostou, Paolo; Dominici, Valentina; Battaggia, Cinzia; Pagani, Luca; Vilar, Miguel; Wells, R. Spencer; Pettener, Davide; Sarno, Stefania; Boattini, Alessio; Francalacci, Paolo; Colonna, Vincenza; Vona, Giuseppe; Calò, Carla; Destro Bisol, Giovanni; Tofanelli, Sergio
2017-01-01
Human populations are often dichotomized into “isolated” and “open” categories using cultural and/or geographical barriers to gene flow as differential criteria. Although widespread, the use of these alternative categories could obscure further heterogeneity due to inter-population differences in effective size, growth rate, and timing or amount of gene flow. We compared intra and inter-population variation measures combining novel and literature data relative to 87,818 autosomal SNPs in 14 open populations and 10 geographic and/or linguistic European isolates. Patterns of intra-population diversity were found to vary considerably more among isolates, probably due to differential levels of drift and inbreeding. The relatively large effective size estimated for some population isolates challenges the generalized view that they originate from small founding groups. Principal component scores based on measures of intra-population variation of isolated and open populations were found to be distributed along a continuum, with an area of intersection between the two groups. Patterns of inter-population diversity were even closer, as we were able to detect some differences between population groups only for a few multidimensional scaling dimensions. Therefore, different lines of evidence suggest that dichotomizing human populations into open and isolated groups fails to capture the actual relations among their genomic features. PMID:28145502
Mitochondrial and nuclear genetic relationships of deer (Odocoileus spp.) in western North America
Cronin, Matthew A.
1991-01-01
Odocoileus hemionus (mule deer and black-tailed deer) and Odocoileus virginanus (white-tailed deer) are sympatric in western North America and are characterized by distinct morphology, behavior, and allozyme allele frequencies. However, there is discordance among nuclear and mitochondrial genetic relationships, as mule deer (O. h. hemionus) and white-tailed deer have similar mitochondrial DNA (mtDNA) which is very different from that of black-tailed deer (O. h. columbianus, O. h. sitkensis). I expanded previous studies to clarify the genetic relationships of these groups by determining mtDNA haplotype and allozyme genotypes for 667 deer from several locations in northwestern North America. Different mtDNA haplotypes in mule deer, black-tailed deer, and white-tailed deer indicate that mitochondrial gene flow is restricted. Allozyme allele frequencies indicate that there is also restriction of nuclear gene flow between O. virginianus and O. hemionus, and to a lesser extent between mule deer and black-tailed deer. There is a low level of introgressive hybridization of mtDNA from mule deer and black-tailed deer into white-tailed deer populations and considerable interbreeding of mule deer and black-tailed deer in a contact zone. The discordance of mitochondrial and nuclear genomes is apparent only if mtDNA sequence divergences, and not haplotype frequencies, are considered.
Operational considerations for laminar flow aircraft
NASA Technical Reports Server (NTRS)
Maddalon, Dal V.; Wagner, Richard D.
1986-01-01
Considerable progress has been made in the development of laminar flow technology for commercial transports during the NASA Aircraft Energy Efficiency (ACEE) laminar flow program. Practical, operational laminar flow control (LFC) systems have been designed, fabricated, and are undergoing flight testing. New materials, fabrication methods, analysis techniques, and design concepts were developed and show much promise. The laminar flow control systems now being flight tested on the NASA Jetstar aircraft are complemented by natural laminar flow flight tests to be accomplished with the F-14 variable-sweep transition flight experiment. An overview of some operational aspects of this exciting program is given.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
... and Gene Therapy Products; Extension of Comment Period AGENCY: Food and Drug Administration, HHS...: Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products'' that... sponsors of Investigational New Drug Applications for cellular therapy (CT) and gene therapy (GT) products...
AN UNUSUAL PATTERN OF GENE FLOW BETWEEN THE TWO SOCIAL FORMS OF THE FIRE ANT SOLENOPSIS INVICTA.
Ross, Kenneth G; Shoemaker, D DeWayne
1993-10-01
Uncertainty over the role of shifts in social behavior in the process of speciation in social insects has stimulated interest in determining the extent of gene flow between conspecific populations differing in colony social organization. Allele and genotype frequencies at 12 neutral polymorphic protein markers, as well as the numbers of alleles at the sex-determining locus (loci), are shown here to be consistent with significant ongoing gene flow between two geographically adjacent populations of Solenopsis invicta that differ in colony queen number. Data from a thirteenth protein marker that is under strong differential selection in the two social forms confirm that such gene flow occurs. Data from this selected locus, combined with knowledge of the reproductive biology of the two social forms, further suggest that interform gene flow is largely unidirectional and mediated through males only. This unusual pattern of gene flow results from the influence of the unique social enviroments of the two forms on the behavior of workers and on the reproductive physiology of sexuals. © 1993 The Society for the Study of Evolution.
Evolutionary Construction of Block-Based Neural Networks in Consideration of Failure
NASA Astrophysics Data System (ADS)
Takamori, Masahito; Koakutsu, Seiichi; Hamagami, Tomoki; Hirata, Hironori
In this paper we propose a modified gene coding and an evolutionary construction in consideration of failure in evolutionary construction of Block-Based Neural Networks. In the modified gene coding, we arrange the genes of weights on a chromosome in consideration of the position relation of the genes of weight and structure. By the modified gene coding, the efficiency of search by crossover is increased. Thereby, it is thought that improvement of the convergence rate of construction and shortening of construction time can be performed. In the evolutionary construction in consideration of failure, the structure which is adapted for failure is built in the state where failure occured. Thereby, it is thought that BBNN can be reconstructed in a short time at the time of failure. To evaluate the proposed method, we apply it to pattern classification and autonomous mobile robot control problems. The computational experiments indicate that the proposed method can improve convergence rate of construction and shorten of construction and reconstruction time.
Genetic variation in domestic reindeer and wild caribou in Alaska
Cronin, M.; Renecker, L.; Pierson, Barbara J.; Patton, J.C.
1995-01-01
Reindeer were introduced into Alaska 100 years ago and have been maintained as semidomestic livestock. They have had contact with wild caribou herds, including deliberate cross-breeding and mixing in the wild. Reindeer have considerable potential as a domestic animal for meat or velvet antler production, and wild caribou are important to subsistence and sport hunters. Our objective was to quantify the genetic relationships of reindeer and caribou in Alaska. We identified allelic variation among five herds of wild caribou and three herds of reindeer with DNA sequencing and restriction enzymes for three loci: a DQA locus of the major histocompatibility complex (Rata-DQA1), k-casein and the D-loop of mitochondrial DNA. These loci are of interest because of their potential influence on domestic animal performance and the fitness of wild populations. There is considerable genetic variation in reindeer and caribou for all three loci, including five, three and six alleles for DQA, k-casein and D-loop respectively. Most alleles occur in both reindeer and caribou, which may be the result of recent common ancestry or genetic introgression in either direction. However, allele frequencies differ considerably between reindeer and caribou, which suggests that gene flow has been limited.
SCIENCE QUESTIONS:
-Does gene flow occur from genetically modified (GM) crop plants to compatible plants?
-How can it be measured?
-Are there ecological consequences of GM crop gene flow to plant communities?
RESEARCH:
The objectives ...
Speciation reversal and biodiversity dynamics with hybridization in changing environments.
Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka
2008-01-01
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.
Rieseberg, Loren H.; Blackman, Benjamin K.
2010-01-01
Background Analyses of speciation genes – genes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation genes in plants exhibit intraspecific polymorphism, consistent with an important role for stochastic forces and/or balancing selection in development of RI in plants. PMID:20576737
Gene flow analysis method, the D-statistic, is robust in a wide parameter space.
Zheng, Yichen; Janke, Axel
2018-01-08
We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, [Formula: see text] and [Formula: see text], to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations.
Why replication is important in landscape genetics: American black bear in the Rocky Mountains
Short, Bull R.A.; Cushman, S.A.; MacE, R.; Chilton, T.; Kendall, K.C.; Landguth, E.L.; Schwartz, Maurice L.; McKelvey, K.; Allendorf, F.W.; Luikart, G.
2011-01-01
We investigated how landscape features influence gene flow of black bears by testing the relative support for 36 alternative landscape resistance hypotheses, including isolation by distance (IBD) in each of 12 study areas in the north central U.S. Rocky Mountains. The study areas all contained the same basic elements, but differed in extent of forest fragmentation, altitude, variation in elevation and road coverage. In all but one of the study areas, isolation by landscape resistance was more supported than IBD suggesting gene flow is likely influenced by elevation, forest cover, and roads. However, the landscape features influencing gene flow varied among study areas. Using subsets of loci usually gave models with the very similar landscape features influencing gene flow as with all loci, suggesting the landscape features influencing gene flow were correctly identified. To test if the cause of the variability of supported landscape features in study areas resulted from landscape differences among study areas, we conducted a limiting factor analysis. We found that features were supported in landscape models only when the features were highly variable. This is perhaps not surprising but suggests an important cautionary note – that if landscape features are not found to influence gene flow, researchers should not automatically conclude that the features are unimportant to the species’ movement and gene flow. Failure to investigate multiple study areas that have a range of variability in landscape features could cause misleading inferences about which landscape features generally limit gene flow. This could lead to potentially erroneous identification of corridors and barriers if models are transferred between areas with different landscape characteristics.
Spatial variation in climate mediates gene flow across an island archipelago.
Logan, Michael L; Duryea, M C; Molnar, Orsolya R; Kessler, Benji J; Calsbeek, Ryan
2016-10-01
High levels of gene flow among partially isolated populations can overwhelm selection and limit local adaptation. This process, known as "gene swamping," can homogenize genetic diversity among populations and reduce the capacity of a species to withstand rapid environmental change. We studied brown anole lizards (Anolis sagrei) distributed across seven islands in The Bahamas. We used microsatellite markers to estimate gene flow among islands and then examined the correlation between thermal performance and island temperature. The thermal optimum for sprint performance was correlated with both mean and maximum island temperature, whereas performance breadth was not correlated with any measure of temperature variation. Gene flow between islands decreased as the difference between mean island temperatures increased, even when those islands were adjacent to one another. These data suggest that phenotypic variation is the result of either (1) local genetic adaptation with selection against immigrants maintaining variation in the thermal optimum, (2) irreversible forms of adaptive plasticity such that immigrants have reduced fitness, or (3) an interaction between fixed genetic differences and plasticity. In general, the patterns of gene flow we observed suggest that local thermal environments represent important ecological filters that can mediate gene flow on relatively fine geographic scales. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Sá-Pinto, Alexandra; Branco, Madalena S.; Alexandrino, Paulo B.; Fontaine, Michaël C.; Baird, Stuart J. E.
2012-01-01
Knowledge of the scale of dispersal and the mechanisms governing gene flow in marine environments remains fragmentary despite being essential for understanding evolution of marine biota and to design management plans. We use the limpets Patella ulyssiponensis and Patella rustica as models for identifying factors affecting gene flow in marine organisms across the North-East Atlantic and the Mediterranean Sea. A set of allozyme loci and a fragment of the mitochondrial gene cytochrome C oxidase subunit I were screened for genetic variation through starch gel electrophoresis and DNA sequencing, respectively. An approach combining clustering algorithms with clinal analyses was used to test for the existence of barriers to gene flow and estimate their geographic location and abruptness. Sharp breaks in the genetic composition of individuals were observed in the transitions between the Atlantic and the Mediterranean and across southern Italian shores. An additional break within the Atlantic cluster separates samples from the Alboran Sea and Atlantic African shores from those of the Iberian Atlantic shores. The geographic congruence of the genetic breaks detected in these two limpet species strongly supports the existence of transpecific barriers to gene flow in the Mediterranean Sea and Northeastern Atlantic. This leads to testable hypotheses regarding factors restricting gene flow across the study area. PMID:23239977
The Limits to Parapatric Speciation: Dobzhansky–Muller Incompatibilities in a Continent–Island Model
Bank, Claudia; Bürger, Reinhard; Hermisson, Joachim
2012-01-01
How much gene flow is needed to inhibit speciation by the accumulation of Dobzhansky–Muller incompatibilities (DMIs) in a structured population? Here, we derive these limits in a classical migration–selection model with two haploid or diploid loci and unidirectional gene flow from a continent to an island. We discuss the dependence of the maximum gene-flow rate on ecological factors (exogeneous selection), genetic factors (epistasis, recombination), and the evolutionary history. Extensive analytical and numerical results show the following: (1) The maximum rate of gene flow is limited by exogeneous selection. In particular, maintenance of neutral DMIs is impossible with gene flow. (2) There are two distinct mechanisms that drive DMI evolution in parapatry, selection against immigrants in a heterogeneous environment and selection against hybrids due to the incompatibility. (3) Depending on the mechanism, opposite predictions result concerning the genetic architecture that maximizes the rate of gene flow a DMI can sustain. Selection against immigrants favors evolution of tightly linked DMIs of arbitrary strength, whereas selection against hybrids promotes the evolution of strong unlinked DMIs. In diploids, the fitness of the double heterozygotes is the decisive factor to predict the pattern of DMI stability. PMID:22542972
Gholamnezhadjafari, Reza; Tajik, Nader; Falak, Reza; Aflatoonian, Reza; Dehghan, Sanaz; Rezaei, Abbas
2017-07-01
Our study aimed to assess the influence of common methylprednisolone therapy on innate inflammatory factors in potential brain-dead organ donors (BDDs). The study groups consisted of 50 potential BDDs who received 15 mg/kg/d methylprednisolone and 25 live organ donors (LDs) as control group. Innate immunity gene expression profiling was performed by RT-PCR array. Soluble serum cytokines and chemokines, complement components, heat shock protein 70 (HSP70) and high mobility group box-1 (HMGB1) were measured by ELISA. Surface expression of TLR2 and TLR4 were determined using flow cytometry. Gene expression profiling revealed up-regulation of TLRs 1, 2, 4, 5, 6, 7 and 8, MYD88, NF-κB, NF-κB1A, IRAK1, STAT3, JAK2, TNF-α, IL-1β, CD86 and CD14 in the BDD group. Remarkably, the serum levels of C-reactive protein and HSP70 were considerably higher in the BDD group. In addition, serum amounts of IL-1β, IL-6, TNF-α, HMGB1, HSP70, C3a and C5a, but not IL-8, sCD86 or monocyte chemoattractant protein-1, were significantly increased in the BDD group. Significant differences were observed in flow cytometry analysis of TLR2 and TLR4 between the two groups. In summary, common methylprednisolone therapy in BDDs did not adequately reduce systemic inflammation, which could be due to inadequate doses or inefficient impact on other inflammatory-inducing pathways, for example oxidative stress or production of damage-associated molecules.
Gonçalves, Rita; Rosa, Alexandra; Freitas, Ana; Fernandes, Ana; Kivisild, Toomas; Villems, Richard; Brehm, António
2003-11-01
The Y-chromosome haplogroup composition of the population of the Cabo Verde Archipelago was profiled by using 32 single-nucleotide polymorphism markers and compared with potential source populations from Iberia, west Africa, and the Middle East. According to the traditional view, the major proportion of the founding population of Cabo Verde was of west African ancestry with the addition of a minor fraction of male colonizers from Europe. Unexpectedly, more than half of the paternal lineages (53.5%) of Cabo Verdeans clustered in haplogroups I, J, K, and R1, which are characteristic of populations of Europe and the Middle East, while being absent in the probable west African source population of Guiné-Bissau. Moreover, a high frequency of J* lineages in Cabo Verdeans relates them more closely to populations of the Middle East and probably provides the first genetic evidence of the legacy of the Jews. In addition, the considerable proportion (20.5%) of E3b(xM81) lineages indicates a possible gene flow from the Middle East or northeast Africa, which, at least partly, could be ascribed to the Sephardic Jews. In contrast to the predominance of west African mitochondrial DNA haplotypes in their maternal gene pool, the major west African Y-chromosome lineage E3a was observed only at a frequency of 15.9%. Overall, these results indicate that gene flow from multiple sources and various sex-specific patterns have been important in the formation of the genomic diversity in the Cabo Verde islands.
van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine
2014-03-01
For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (< 3 km), we calculated several measures of landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.
Funk, W.C.; Blouin, M.S.; Corn, P.S.; Maxell, B.A.; Pilliod, D.S.; Amish, S.; Allendorf, F.W.
2005-01-01
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a 'randomly mating population' (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.
Fluid Mechanics, Arterial Disease, and Gene Expression.
Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong
2014-01-01
This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.
Zhao, Wei; Zhong, Tao; Wang, Lin Jie; Li, Li; Zhang, Hong Ping
2014-08-01
Indigenous Chinese goat mtDNA is highly diverse but lacks geographic specificity; however, whether gene flow or gene exchange contributed to this remains unknown. We reanalyzed a consensus fragment of 481 bp in the D-loop region from 339 individuals. The network and neighbor-joining tree revealed three divergent maternal haplogroups (A, B1, and B2) in 17 local breeds. Although high polymorphism resulting in 198 different haplotypes was observed (h = 0.984 ± 0.002; π = 0.0336 ± 0.0008), neither the distribution of haplotypes nor PCA analysis revealed any obvious geographic structure in the local breeds. Extensive gene flow was widely detected among breeds from southwest China. High levels of gene exchange were detected between Qianbei Brown goats and the other breeds, indicating either more contribution or introgression to their gene pools. This study will be helpful in understanding the phylogeography and gene flow among the goat breeds of southwest China.
Victoria J. Apsit; Rodney J. Dyer; Victoria L. Sork
2002-01-01
Contemporary gene flow is a major mechanism for the maintenance of genetic diversity. One component of gene flow is the mating system, which is a composite measure of selfing, mating with relatives, and outcrossing. Although both gene flow and mating patterns contribute to the ecological sustainability of populations, a focus of many forest management plans, these...
Targeted gene flow and rapid adaptation in an endangered marsupial.
Kelly, Ella; Phillips, Ben L
2018-06-13
Targeted gene flow is an emerging conservation strategy. It involves translocating individuals with favorable genes to areas where they will have a conservation benefit. The applications for targeted gene flow are wide-ranging, but include pre-adapting natives to the arrival of invasive species. The endangered carnivorous marsupial, the northern quoll, has declined rapidly since the introduction of the cane toad, which fatally poisons quolls that attack them. There are, however, a few remaining toad-invaded quoll populations in which the quolls survive because they know not to eat cane toads. It is this "toad-smart" behavior that we hope to promote through targeted gene flow. For targeted gene flow to be feasible, however, toad-smarts must have a genetic basis. To assess this, we used a common garden experiment and found offspring from toad-exposed populations were substantially less likely to eat toads than those with toad-naïve parents. Hybrid offspring showed similar responses to quolls with two toad-exposed parents, indicating the trait may be dominant. Together, these results suggest a heritable trait and rapid adaptive response in small number of toad-impacted populations. Although questions remain about outbreeding depression, our results are encouraging for targeted gene flow: suggesting it should be possible to introduce toad-smart behavior into soon to be impacted quoll populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Watrud, L.S.; Lee, E.H.; Fairbrother, A.; Burdick, C.; Reichman, J.R.; Bollman, M.; Storm, M.; King, G.; Van De Water, Peter K.
2004-01-01
Sampling methods and results of a gene flow study are described that will be of interest to plant scientists, evolutionary biologists, ecologists, and stakeholders assessing the environmental safety of transgenic crops. This study documents gene flow on a landscape level from creeping bentgrass (Agrostis stolonifera L.), one of the first wind-pollinated, perennial, and highly outcrossing transgenic crops being developed for commercial use. Most of the gene flow occurred within 2 km in the direction of prevailing winds. The maximal gene flow distances observed were 21 km and 14 km in sentinel and resident plants, respectively, that were located in primarily nonagronomic habitats. The selectable marker used in these studies was the CP4 EPSPS gene derived from Agrobacterium spp. strain CP4 that encodes 5-enol-pyruvylshikimate-3-phosphate synthase and confers resistance to glyphosate herbicide. Evidence for gene flow to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident Agrostis plants was based on seedling progeny survival after spraying with glyphosate in greenhouse assays and positive TraitChek, PCR, and sequencing results. Additional studies are needed to determine whether introgression will occur and whether it will affect the ecological fitness of progeny or the structure of plant communities in which transgenic progeny may become established.
Vrselja, Zvonimir; Brkic, Hrvoje; Mrdenovic, Stefan; Radic, Radivoje; Curic, Goran
2014-01-01
Nearly 400 years ago, Thomas Willis described the arterial ring at the base of the brain (the circle of Willis, CW) and recognized it as a compensatory system in the case of arterial occlusion. This theory is still accepted. We present several arguments that via negativa should discard the compensatory theory. (1) Current theory is anthropocentric; it ignores other species and their analog structures. (2) Arterial pathologies are diseases of old age, appearing after gene propagation. (3) According to the current theory, evolution has foresight. (4) Its commonness among animals indicates that it is probably a convergent evolutionary structure. (5) It was observed that communicating arteries are too small for effective blood flow, and (6) missing or hypoplastic in the majority of the population. We infer that CW, under physiologic conditions, serves as a passive pressure dissipating system; without considerable blood flow, pressure is transferred from the high to low pressure end, the latter being another arterial component of CW. Pressure gradient exists because pulse wave and blood flow arrive into the skull through different cerebral arteries asynchronously, due to arterial tree asymmetry. Therefore, CW and its communicating arteries protect cerebral artery and blood–brain barrier from hemodynamic stress. PMID:24473483
Pleistocene land bridges act as semipermeable agents of avian gene flow in Wallacea.
Garg, Kritika M; Chattopadhyay, Balaji; Wilton, Peter R; Malia Prawiradilaga, Dewi; Rheindt, Frank E
2018-08-01
Cyclical periods of global cooling have been important drivers of biotic differentiation throughout the Quaternary. Ice age-induced sea level fluctuations can lead to changing patterns of land connections, both facilitating and disrupting gene flow. In this study, we test if species with differing life histories are differentially affected by Quaternary land connections. We used genome-wide SNPs in combination with mitochondrial gene sequences to analyse levels of divergence and gene flow between two songbird complexes across two Wallacean islands that have been repeatedly connected during glaciations. Although the two bird complexes are similar in ecological attributes, the forest and edge-inhabiting golden whistler Pachycephala pectoralis is comparatively flexible in its diet and niche requirements as compared to the henna-tailed jungle-flycatcher Cyornis colonus, which is largely restricted to the forest interior. Using population-genomic and coalescent approaches, we estimated levels of gene flow, population differentiation and divergence time between the two island populations. We observed higher levels of differentiation, an approximately two to four times deeper divergence time and near-zero levels of gene flow between the two island populations of the more forest-dependent henna-tailed jungle-flycatcher as compared to the more generalist golden whistler. Our results suggest that Quaternary land bridges act as semipermeable agents of gene flow in Wallacea, allowing only certain taxa to connect between islands while others remain isolated. Quaternary land bridges do not accommodate all terrestrial species equally, differing in suitability according to life history and species biology. More generalist species are likely to use Quaternary land connections as a conduit for gene flow between islands whereas island populations of more specialist species may continue to be reproductively isolated even during periods of Quaternary land bridges. Copyright © 2018 Elsevier Inc. All rights reserved.
The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat
Puechmaille, Sébastien J.; Gouilh, Meriadeg Ar; Piyapan, Piyathip; Yokubol, Medhi; Mie, Khin Mie; Bates, Paul J.; Satasook, Chutamas; Nwe, Tin; Bu, Si Si Hla; Mackie, Iain J.; Petit, Eric J.; Teeling, Emma C.
2011-01-01
The sensory drive theory of speciation predicts that populations of the same species inhabiting different environments can differ in sensory traits, and that this sensory difference can ultimately drive speciation. However, even in the best-known examples of sensory ecology driven speciation, it is uncertain whether the variation in sensory traits is the cause or the consequence of a reduction in levels of gene flow. Here we show strong genetic differentiation, no gene flow and large echolocation differences between the allopatric Myanmar and Thai populations of the world's smallest mammal, Craseonycteris thonglongyai, and suggest that geographic isolation most likely preceded sensory divergence. Within the geographically continuous Thai population, we show that geographic distance has a primary role in limiting gene flow rather than echolocation divergence. In line with sensory-driven speciation models, we suggest that in C. thonglongyai, limited gene flow creates the suitable conditions that favour the evolution of sensory divergence via local adaptation. PMID:22146392
A Test for Gene Flow among Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.
Kang, Lin; Garner, Harold R; Price, Donald K; Michalak, Pawel
2017-06-01
The Hawaiian Drosophila are one of the most species-rich endemic groups in Hawaii and a spectacular example of adaptive radiation. Drosophila silvestris and D. heteroneura are two closely related picture-winged Drosophila species that occur sympatrically on Hawaii Island and are known to hybridize in nature, yet exhibit highly divergent behavioral and morphological traits driven largely through sexual selection. Their closest-related allopatric species, D. planitibia from Maui, exhibits hybrid male sterility and reduced behavioral reproductive isolation when crossed experimentally with D. silvestris or D. heteroneura. A modified four-taxon test for gene flow was applied to recently obtained genomes of the three Hawaiian Drosophila species. The analysis indicates recent gene flow in sympatry, but also, although less extensive, between allopatric species. This study underscores the prevalence of gene flow, even in taxonomic groups considered classic examples of allopatric speciation on islands. The potential confounding effects of gene flow in phylogenetic and population genetics inference are discussed, as well as the implications for conservation.
Zepeda-Paulo, Francisca; Lavandero, Blas; Mahéo, Frédérique; Dion, Emilie; Outreman, Yannick; Simon, Jean-Christophe; Figueroa, Christian C
2015-01-01
Host recognition and use in female parasitoids strongly relies on host fidelity, a plastic behavior which can significantly restrict the host preferences of parasitoids, thus reducing the gene flow between parasitoid populations attacking different insect hosts. However, the effect of migrant males on the genetic differentiation of populations has been frequently ignored in parasitoids, despite its known impact on gene flow between populations. Hence, we studied the extent of gene flow mediated by female and male parasitoids by assessing sibship relationships among parasitoids within and between populations, and its impact on geographic and host-associated differentiation in the aphid parasitoid Aphidius ervi. We report evidences of a high gene flow among parasitoid populations on different aphid hosts and geographic locations. The high gene flow among parasitoid populations was found to be largely male mediated, suggested by significant differences in the distribution of full-sib and paternal half-sib dyads of parasitoid populations. PMID:26078852
Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park.
Sawaya, Michael A; Kalinowski, Steven T; Clevenger, Anthony P
2014-04-07
Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation.
Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes.
Nevado, Bruno; Contreras-Ortiz, Natalia; Hughes, Colin; Filatov, Dmitry A
2018-06-04
Mountain ranges are amongst the most species-rich habitats, with many large and rapid evolutionary radiations. The tempo and mode of diversification in these systems are key unanswered questions in evolutionary biology. Here we study the Andean Lupinus radiation to understand the processes driving very rapid diversification in montane systems. We use genomic and transcriptomic data of multiple species and populations, and apply phylogenomic and demographic analyses to test whether diversification proceeded without interspecific gene flow - as expected if Andean orogeny and geographic isolation were the main drivers of diversification - or if diversification was accompanied by gene flow, in which case other processes were probably involved. We uncover several episodes of gene flow between species, including very recent events likely to have been prompted by changes in habitat connectivity during Pleistocene glacial cycles. Furthermore, we find that gene flow between species was heterogeneously distributed across the genome. We argue that exceptionally fast diversification of Andean Lupinus was partly a result of Late Pleistocene glacial cycles, with associated cycles of expansion and contraction driving geographic isolation or secondary contact of species. Furthermore, heterogeneous gene flow across the genome suggests a role for selection and ecological speciation in rapid diversification in this system. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park
Sawaya, Michael A.; Kalinowski, Steven T.; Clevenger, Anthony P.
2014-01-01
Roads can fragment and isolate wildlife populations, which will eventually decrease genetic diversity within populations. Wildlife crossing structures may counteract these impacts, but most crossings are relatively new, and there is little evidence that they facilitate gene flow. We conducted a three-year research project in Banff National Park, Alberta, to evaluate the effectiveness of wildlife crossings to provide genetic connectivity. Our main objective was to determine how the Trans-Canada Highway and crossing structures along it affect gene flow in grizzly (Ursus arctos) and black bears (Ursus americanus). We compared genetic data generated from wildlife crossings with data collected from greater bear populations. We detected a genetic discontinuity at the highway in grizzly bears but not in black bears. We assigned grizzly bears that used crossings to populations north and south of the highway, providing evidence of bidirectional gene flow and genetic admixture. Parentage tests showed that 47% of black bears and 27% of grizzly bears that used crossings successfully bred, including multiple males and females of both species. Differentiating between dispersal and gene flow is difficult, but we documented gene flow by showing migration, reproduction and genetic admixture. We conclude that wildlife crossings allow sufficient gene flow to prevent genetic isolation. PMID:24552834
Rangewide landscape genetics of an endemic Pacific northwestern salamander.
Trumbo, Daryl R; Spear, Stephen F; Baumsteiger, Jason; Storfer, Andrew
2013-03-01
A species' genetic structure often varies in response to ecological and landscape processes that differ throughout the species' geographic range, yet landscape genetics studies are rarely spatially replicated. The Cope's giant salamander (Dicamptodon copei) is a neotenic, dispersal-limited amphibian with a restricted geographic range in the Pacific northwestern USA. We investigated which landscape factors affect D. copei gene flow in three regions spanning the species' range, which vary in climate, landcover and degree of anthropogenic disturbance. Least cost paths and Circuitscape resistance analyses revealed that gene flow patterns vary across the species' range, with unique combinations of landscape variables affecting gene flow in different regions. Populations in the northern coastal portions of the range had relatively high gene flow, largely facilitated by stream and river networks. Near the southeastern edge of the species' range, gene flow was more restricted overall, with relatively less facilitation by streams and more limitation by heat load index and fragmented forest cover. These results suggested that the landscape is more difficult for individuals to disperse through at the southeastern edge of the species' range, with terrestrial habitat desiccation factors becoming more limiting to gene flow. We suggest that caution be used when attempting to extrapolate landscape genetic models and conservation measures from one portion of a species' range to another. © 2013 Blackwell Publishing Ltd.
Cornille, Amandine; Feurtey, Alice; Gélin, Uriel; Ropars, Jeanne; Misvanderbrugge, Kristine; Gladieux, Pierre; Giraud, Tatiana
2015-01-01
Gene flow is an essential component of population adaptation and species evolution. Understanding of the natural and anthropogenic factors affecting gene flow is also critical for the development of appropriate management, breeding, and conservation programs. Here, we explored the natural and anthropogenic factors impacting crop-to-wild and within wild gene flow in apples in Europe using an unprecedented dense sampling of 1889 wild apple (Malus sylvestris) from European forests and 339 apple cultivars (Malus domestica). We made use of genetic, environmental, and ecological data (microsatellite markers, apple production across landscapes and records of apple flower visitors, respectively). We provide the first evidence that both human activities, through apple production, and human disturbance, through modifications of apple flower visitor diversity, have had a significant impact on crop-to-wild interspecific introgression rates. Our analysis also revealed the impact of previous natural climate change on historical gene flow in the nonintrogressed wild apple M. sylvestris, by identifying five distinct genetic groups in Europe and a north–south gradient of genetic diversity. These findings identify human activities and climate as key drivers of gene flow in a wild temperate fruit tree and provide a practical basis for conservation, agroforestry, and breeding programs for apples in Europe. PMID:25926882
Browne, Patrick; Tamaki, Hideyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Imachi, Hiroyuki; Bräuer, Suzanna; Yavitt, Joseph B; Liu, Wen-Tso; Zinder, Stephen; Cadillo-Quiroz, Hinsby
2017-01-01
Members of the order Methanomicrobiales are abundant, and sometimes dominant, hydrogenotrophic (H 2 -CO 2 utilizing) methanoarchaea in a broad range of anoxic habitats. Despite their key roles in greenhouse gas emissions and waste conversion to methane, little is known about the physiological and genomic bases for their widespread distribution and abundance. In this study, we compared the genomes of nine diverse Methanomicrobiales strains, examined their pangenomes, reconstructed gene flow and identified genes putatively mediating their success across different habitats. Most strains slowly increased gene content whereas one, Methanocorpusculum labreanum, evidenced genome downsizing. Peat-dwelling Methanomicrobiales showed adaptations centered on improved transport of scarce inorganic nutrients and likely use H + rather than Na + transmembrane chemiosmotic gradients during energy conservation. In contrast, other Methanomicrobiales show the potential to concurrently use Na + and H + chemiosmotic gradients. Analyses also revealed that the Methanomicrobiales lack a canonical electron bifurcation system (MvhABGD) known to produce low potential electrons in other orders of hydrogenotrophic methanogens. Additional putative differences in anabolic metabolism suggest that the dynamics of interspecies electron transfer from Methanomicrobiales syntrophic partners can also differ considerably. Altogether, these findings suggest profound differences in electron trafficking in the Methanomicrobiales compared with other hydrogenotrophs, and warrant further functional evaluations.
Horizontal Gene Transfers in Mycoplasmas (Mollicutes).
Citti, C; Dordet-Frisoni, E; Nouvel, L X; Kuo, C H; Baranowski, E
2018-04-12
The class Mollicutes (trivial name "mycoplasma") is composed of wall-less bacteria with reduced genomes whose evolution was long thought to be only driven by gene losses. Recent evidences of massive horizontal gene transfer (HGT) within and across species provided a new frame to understand the successful adaptation of these minimal bacteria to a broad range of hosts. Mobile genetic elements are being identified in a growing number of mycoplasma species, but integrative and conjugative elements (ICEs) are emerging as pivotal in HGT. While sharing common traits with other bacterial ICEs, such as their chromosomal integration and the use of a type IV secretion system to mediate horizontal dissemination, mycoplasma ICEs (MICEs) revealed unique features: their chromosomal integration is totally random and driven by a DDE recombinase related to the Mutator-like superfamily. Mycoplasma conjugation is not restricted to ICE transmission, but also involves the transfer of large chromosomal fragments that generates progenies with mosaic genomes, nearly every position of chromosome being mobile. Mycoplasmas have thus developed efficient ways to gain access to a considerable reservoir of genetic resources distributed among a vast number of species expanding the concept of minimal cell to the broader context of flowing information.
Emelianov, I; Hernandes-Lopez, A; Torrence, M; Watts, N
2011-01-01
Studying host-based divergence naturally maintained by a balance between selection and gene flow can provide valuable insights into genetic underpinnings of host adaptation and ecological speciation in parasites. Selection-gene flow balance is often postulated in sympatric host races, but direct experimental evidence is scarce. In this study, we present such evidence obtained in host races of Aphidius ervi, an important hymenopteran agent of biological control of aphids in agriculture, using a novel fusion–fission method of gene flow perturbation. In our study, between-race genetic divergence was obliterated by means of advanced hybridisation, followed by a multi-generation exposure of the resulting genetically uniform hybrid swarm to a two-host environment. This fusion–fission procedure was implemented under two contrasting regimes of between-host gene flow in two replicated experiments involving different racial pairs. Host-based genetic fission in response to environmental bimodality occurred in both experiments in as little as six generations of divergent adaptation despite continuous gene flow. We demonstrate that fission recovery of host-based divergence evolved faster and hybridisation-induced linkage disequilibrium decayed slower under restricted (6.7%) compared with unrestricted gene flow, directly pointing at a balance between gene flow and divergent selection. We also show, in four separate tests, that random drift had no or little role in the observed genetic split. Rates and patterns of fission divergence differed between racial pairs. Comparative linkage analysis of these differences is currently under way to test for the role of genomic architecture of adaptation in ecology-driven divergent evolution. PMID:20924399
Rajendran, Saranya; Sundaresan, Lakshmikirupa; Rajendran, Krithika; Selvaraj, Monica; Gupta, Ravi; Chatterjee, Suvro
2016-02-11
Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.
Saenz-Agudelo, P; Jones, G P; Thorrold, S R; Planes, S
2009-04-01
The application of spatially explicit models of population dynamics to fisheries management and the design marine reserve network systems has been limited due to a lack of empirical estimates of larval dispersal. Here we compared assignment tests and parentage analysis for examining larval retention and connectivity under two different gene flow scenarios using panda clownfish (Amphiprion polymnus) in Papua New Guinea. A metapopulation of panda clownfish in Bootless Bay with little or no genetic differentiation among five spatially discrete locations separated by 2-6 km provided the high gene flow scenario. The low gene flow scenario compared the Bootless Bay metapopulation with a genetically distinct population (F(ST )= 0.1) located at Schumann Island, New Britain, 1500 km to the northeast. We used assignment tests and parentage analysis based on microsatellite DNA data to identify natal origins of 177 juveniles in Bootless Bay and 73 juveniles at Schumann Island. At low rates of gene flow, assignment tests correctly classified juveniles to their source population. On the other hand, parentage analysis led to an overestimate of self-recruitment within the two populations due to the significant deviation from panmixia when both populations were pooled. At high gene flow (within Bootless Bay), assignment tests underestimated self-recruitment and connectivity among subpopulations, and grossly overestimated self-recruitment within the overall metapopulation. However, the assignment tests did identify immigrants from distant (genetically distinct) populations. Parentage analysis clearly provided the most accurate estimates of connectivity in situations of high gene flow.
Male-Mediated Gene Flow in Patrilocal Primates
Schubert, Grit; Stoneking, Colin J.; Arandjelovic, Mimi; Boesch, Christophe; Eckhardt, Nadin; Hohmann, Gottfried; Langergraber, Kevin; Lukas, Dieter; Vigilant, Linda
2011-01-01
Background Many group–living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male–mediated gene flow might occur through rare events such as extra–group matings leading to extra–group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. Methodology/Principal Findings Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y–chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y–chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y–haplotypes within western chimpanzee and bonobo groups is best explained by successful male–mediated gene flow. Conclusions/Significance The similarity of inferred rates of male–mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male–mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos. PMID:21747938
Morphological and Genetic Analysis of Four Color Morphs of Bean Leaf Beetle.
Tiroesele, Bamphitlhi; Skoda, Steven R; Hunt, Thomas E; Lee, Donald J; Ullah, Muhammad Irfan; Molina-Ochoa, Jaime; Foster, John E
2018-03-01
Bean leaf beetle (BLB), Cerotoma trifurcata (Forster; Coleoptera: Chrysomelidae), exhibits considerable color variation but little is known about the underlying genetic structure and gene flow among color phenotypes. Genetic and morphological variation among four color phenotypes-green with spots (G+S), green without spots (G-S), red with spots (R+S) and red without spots (R-S)-were analyzed using amplified fragment length polymorphisms (AFLP) and morphometrics, respectively. AFLP generated 175 markers that showed ≥80% polymorphism. Analysis of molecular variance (AMOVA) indicated that genetic variation was greatest within phenotypes (82.6-84.0%); gene flow among the four phenotypes was relatively high (Nm = 3.82). The dendrogram and STRUCTURE analysis indicated some population divergence of G-S from the other phenotypes. Morphological parameters were similar among phenotypes except that R+S showed significant differences in weight and body-length. Canonical variables 1 and 2, based on average morphometric characters, accounted for 98% of the total variation; some divergence was indicated between G+S and R+S from each other and from the G-S/R-S BLB color morphs. The pattern of genetic variation indicated potential divergence of G-S and G+S from each other and from R-S and R+S. Although these results indicate that the four different color morphs are not genetically or reproductively isolated, there is some genetic differentiation/structure and morphological dissimilarity suggesting weak/incomplete isolation.
Genetic variation in the endangered Southwestern Willow Flycatcher
Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul
2000-01-01
The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P < 0.0005; θ = 0.0816, 95% CI = 0.0608 to 0.1034; ΦST = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.
Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe.
Vicente, José L; Sousa, Carla A; Alten, Bulent; Caglar, Selim S; Falcutá, Elena; Latorre, José M; Toty, Celine; Barré, Hélène; Demirci, Berna; Di Luca, Marco; Toma, Luciano; Alves, Ricardo; Salgueiro, Patrícia; Silva, Teresa L; Bargues, Maria D; Mas-Coma, Santiago; Boccolini, Daniela; Romi, Roberto; Nicolescu, Gabriela; do Rosário, Virgílio E; Ozer, Nurdan; Fontenille, Didier; Pinto, João
2011-01-11
There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004
Adaptive introgression as a resource for management and genetic conservation in a changing climate.
Hamilton, Jill A; Miller, Joshua M
2016-02-01
Current rates of climate change require organisms to respond through migration, phenotypic plasticity, or genetic changes via adaptation. We focused on questions regarding species' and populations' ability to respond to climate change through adaptation. Specifically, the role adaptive introgression, movement of genetic material from the genome of 1 species into the genome of another through repeated interbreeding, may play in increasing species' ability to respond to a changing climate. Such interspecific gene flow may mediate extinction risk or consequences of limited adaptive potential that result from standing genetic variation and mutation alone, enabling a quicker demographic recovery in response to changing environments. Despite the near dismissal of the potential benefits of hybridization by conservation practitioners, we examined a number of case studies across different taxa that suggest gene flow between sympatric or parapatric sister species or within species that exhibit strong ecotypic differentiation may represent an underutilized management option to conserve evolutionary potential in a changing environment. This will be particularly true where advanced-generation hybrids exhibit adaptive traits outside the parental phenotypic range, a phenomenon known as transgressive segregation. The ideas presented in this essay are meant to provoke discussion regarding how we maintain evolutionary potential, the conservation value of natural hybrid zones, and consideration of their important role in adaptation to climate. © 2015 Society for Conservation Biology.
Instream flow assessment and economic valuation: a survey of nonmarket benefits research
Douglas, Aaron J.; Johnson, Richard L.
1993-01-01
Instream flow benefits for United States streams and rivers have recently been investigated by a number of resource economists. These valuation efforts differ in scope, method, and quantitative results. An assessment and review of these valuation efforts is presented. The various sources of differences in non‐market values produced by these studies are explored in some detail. The considerable difficulty of producing estimates of instream flow benefits values that consider all of the pertinent policy and technical issues is delineated in various policy contexts. Evidence is presented that indicates that the considerable policy impact of recent research on this topic is justified despite considerable variation in the magnitude of the estimates.
Strasburg, Jared L.; Rieseberg, Loren H.
2008-01-01
Hybridization between distinct species may lead to introgression of genes across species boundaries, and this pattern can potentially persist for extended periods as long as selection at some loci or genomic regions prevents thorough mixing of gene pools. However, very few reliable estimates of long-term levels of effective migration are available between hybridizing species throughout their history. Accurate estimates of divergence dates and levels of gene flow require data from multiple unlinked loci as well as an analytical framework that can distinguish between lineage sorting and gene flow and incorporate the effects of demographic changes within each species. Here we use sequence data from 18 anonymous nuclear loci in two broadly sympatric sunflower species, Helianthus annuus and H. petiolaris, analyzed within an “isolation with migration” framework to make genome-wide estimates of the ages of these two species, long-term rates of gene flow between them, and effective population sizes and historical patterns of population growth. Our results indicate that H. annuus and H. petiolaris are approximately one million years old and have exchanged genes at a surprisingly high rate (long-term Nef m estimates of approximately 0.5 in each direction), with somewhat higher rates of introgression from H. annuus into H. petiolaris than vice versa. In addition, each species has undergone dramatic population expansion since divergence, and both species have among the highest levels of genetic diversity reported for flowering plants. Our results provide the most comprehensive estimate to date of long-term patterns of gene flow and historical demography in a nonmodel plant system, and they indicate that species integrity can be maintained even in the face of extensive gene flow over a prolonged period. PMID:18462213
Matter, Philippe; Kettle, Chris J.; Ghazoul, Jaboury; Pluess, Andrea R.
2013-01-01
Background and Aims Genetic connectivity between plant populations allows for exchange and dispersal of adaptive genes, which can facilitate plant population persistence particularly in rapidly changing environments. Methods Patterns of historic gene flow, flowering phenology and contemporary pollen flow were investigated in two common herbs, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient of 1200–1800 m a.s.l. over a distance of 1 km among five alpine meadows in Switzerland. Key Results Historic gene flow was extensive, as revealed by Fst values of 0·01 and 0·007 in R. bulbosus and T. montanum, respectively, by similar levels of allelic richness among meadows and by the grouping of all individuals into one genetic cluster. Our data suggest contemporary pollen flow is not limited across altitudes in either species but is more pronounced in T. montanum, as indicated by the differential decay of among-sibships correlated paternity with increasing spatial distance. Flowering phenology among meadows was not a barrier to pollen flow in T. montanum, as the large overlap between meadow pairs was consistent with the extensive pollen flow. The smaller flowering overlap among R. bulbosus meadows might explain the slightly more limited pollen flow detected. Conclusions High levels of pollen flow among altitudes in both R. bulbosus and T. montanum should facilitate exchange of genes which may enhance adaptive responses to rapid climate change. PMID:23408831
Sarangi, Debalin; Tyre, Andrew J.; Patterson, Eric L.; Gaines, Todd A.; Irmak, Suat; Knezevic, Stevan Z.; Lindquist, John L.; Jhala, Amit J.
2017-01-01
Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at <3 m distance from the pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States. PMID:28327669
Gene Flow within and between Catchments in the Threatened Riparian Plant Myricaria germanica
Werth, Silke; Scheidegger, Christoph
2014-01-01
One of the major distinctions of riparian habitats is their linearity. In linear habitats, gene flow is predicted to follow a one-dimensional stepping stone model, characterized by bidirectional gene flow between neighboring populations. Here, we studied the genetic structure of Myricaria germanica, a threatened riparian shrub which is capable of both wind and water dispersal. Our data led us to reject the ‘one catchment – one gene pool’ hypothesis as we found support for two gene pools, rather than four as expected in a study area including four catchments. This result also implies that in the history of the studied populations, dispersal across catchments has occurred. Two contemporary catchment-crossing migration events were detected, albeit between spatially proximate catchments. Allelic richness and inbreeding coefficients differed substantially between gene pools. There was significant isolation by distance, and our data confirmed the one-dimensional stepping-stone model of gene flow. Contemporary migration was bidirectional within the studied catchments, implying that dispersal vectors other than water are important for M. germanica. PMID:24932520
Jenkins, Paul A; Song, Yun S; Brem, Rachel B
2012-01-01
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance.
Jenkins, Paul A.; Song, Yun S.; Brem, Rachel B.
2012-01-01
Genetic exchange between isolated populations, or introgression between species, serves as a key source of novel genetic material on which natural selection can act. While detecting historical gene flow from DNA sequence data is of much interest, many existing methods can be limited by requirements for deep population genomic sampling. In this paper, we develop a scalable genealogy-based method to detect candidate signatures of gene flow into a given population when the source of the alleles is unknown. Our method does not require sequenced samples from the source population, provided that the alleles have not reached fixation in the sampled recipient population. The method utilizes recent advances in algorithms for the efficient reconstruction of ancestral recombination graphs, which encode genealogical histories of DNA sequence data at each site, and is capable of detecting the signatures of gene flow whose footprints are of length up to single genes. Further, we employ a theoretical framework based on coalescent theory to test for statistical significance of certain recombination patterns consistent with gene flow from divergent sources. Implementing these methods for application to whole-genome sequences of environmental yeast isolates, we illustrate the power of our approach to highlight loci with unusual recombination histories. By developing innovative theory and methods to analyze signatures of gene flow from population sequence data, our work establishes a foundation for the continued study of introgression and its evolutionary relevance. PMID:23226196
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Birnbaum, Kenneth; Desalle, Rob; Peters, Charles M; Benfey, Philip N
2003-11-01
Maintaining crop diversity on farms where cultivars can evolve is a conservation goal, but few tools are available to assess the long-term maintenance of genetic diversity on farms. One important issue for on-farm conservation is gene flow from crops with a narrow genetic base into related populations that are genetically diverse. In a case study of avocado (Persea americana var. americana) in one of its centers of diversity (San Jerónimo, Costa Rica), we used 10 DNA microsatellite markers in a parentage analysis to estimate gene flow from commercialized varieties into a traditional crop population. Five commercialized genotypes comprised nearly 40% of orchard trees, but they contributed only about 14.5% of the gametes to the youngest cohort of trees. Although commercialized varieties and the diverse population were often planted on the same farm, planting patterns appeared to keep the two types of trees separated on small scales, possibly explaining the limited gene flow. In a simulation that combined gene flow estimates, crop biology, and graft tree management, loss of allelic diversity was less than 10% over 150 yr, and selection was effective in retaining desirable alleles in the diverse subpopulation. Simulations also showed that, in addition to gene flow, managing the genetic makeup and life history traits of the invasive commercialized varieties could have a significant impact on genetic diversity in the target population. The results support the feasibility of on-farm crop conservation, but simulations also showed that higher levels of gene flow could lead to severe losses of genetic diversity even if farmers continue to plant diverse varieties.
Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations.
Jones, Kenneth L; Krapu, Gary L; Brandt, David A; Ashley, Mary V
2005-08-01
Previous studies of migratory sandhill cranes (Grus canadensis) have made significant progress explaining evolution of this group at the species scale, but have been unsuccessful in explaining the geographically partitioned variation in morphology seen on the population scale. The objectives of this study were to assess the population structure and gene flow patterns among migratory sandhill cranes using microsatellite DNA genotypes and mitochondrial DNA haplotypes of a large sample of individuals across three populations. In particular, we were interested in evaluating the roles of Pleistocene glaciation events and postglaciation gene flow in shaping the present-day population structure. Our results indicate substantial gene flow across regions of the Midcontinental population that are geographically adjacent, suggesting that gene flow for most of the region follows an isolation-by-distance model. Male-mediated gene flow and strong female philopatry may explain the differing patterns of nuclear and mitochondrial variation. Taken in context with precise geographical information on breeding locations, the morphologic and microsatellite DNA variation shows a gradation from the Arctic-nesting subspecies G. c. canadensis to the nonArctic subspecies G. c. tabida. Analogous to other Arctic-nesting birds, it is probable that the population structure seen in Midcontinental sandhill cranes reflects the result of postglacial secondary contact. Our data suggest that subspecies of migratory sandhills experience significant gene flow and therefore do not represent distinct and independent genetic entities.
Application of network methods for understanding evolutionary dynamics in discrete habitats.
Greenbaum, Gili; Fefferman, Nina H
2017-06-01
In populations occupying discrete habitat patches, gene flow between habitat patches may form an intricate population structure. In such structures, the evolutionary dynamics resulting from interaction of gene-flow patterns with other evolutionary forces may be exceedingly complex. Several models describing gene flow between discrete habitat patches have been presented in the population-genetics literature; however, these models have usually addressed relatively simple settings of habitable patches and have stopped short of providing general methodologies for addressing nontrivial gene-flow patterns. In the last decades, network theory - a branch of discrete mathematics concerned with complex interactions between discrete elements - has been applied to address several problems in population genetics by modelling gene flow between habitat patches using networks. Here, we present the idea and concepts of modelling complex gene flows in discrete habitats using networks. Our goal is to raise awareness to existing network theory applications in molecular ecology studies, as well as to outline the current and potential contribution of network methods to the understanding of evolutionary dynamics in discrete habitats. We review the main branches of network theory that have been, or that we believe potentially could be, applied to population genetics and molecular ecology research. We address applications to theoretical modelling and to empirical population-genetic studies, and we highlight future directions for extending the integration of network science with molecular ecology. © 2017 John Wiley & Sons Ltd.
Identifying Loci Under Selection Against Gene Flow in Isolation-with-Migration Models
Sousa, Vitor C.; Carneiro, Miguel; Ferrand, Nuno; Hey, Jody
2013-01-01
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus). PMID:23457232
Lohse, Konrad; Clarke, Magnus; Ritchie, Michael G.; Etges, William J.
2015-01-01
Models of speciation‐with‐gene‐flow have shown that the reduction in recombination between alternative chromosome arrangements can facilitate the fixation of locally adaptive genes in the face of gene flow and contribute to speciation. However, it has proven frustratingly difficult to show empirically that inversions have reduced gene flow and arose during or shortly after the onset of species divergence rather than represent ancestral polymorphisms. Here, we present an analysis of whole genome data from a pair of cactophilic fruit flies, Drosophila mojavensis and D. arizonae, which are reproductively isolated in the wild and differ by several large inversions on three chromosomes. We found an increase in divergence at rearranged compared to colinear chromosomes. Using the density of divergent sites in short sequence blocks we fit a series of explicit models of species divergence in which gene flow is restricted to an initial period after divergence and may differ between colinear and rearranged parts of the genome. These analyses show that D. mojavensis and D. arizonae have experienced postdivergence gene flow that ceased around 270 KY ago and was significantly reduced in chromosomes with fixed inversions. Moreover, we show that these inversions most likely originated around the time of species divergence which is compatible with theoretical models that posit a role of inversions in speciation with gene flow. PMID:25824653
The Gene Flow Project at the US Environmental Protection Agency, Western Ecology Division is developing methodologies for ecological risk assessments of transgene flow using Agrostis and Brassica engineered with CP4 EPSPS genes that confer resistance to glyphosate herbicide. In ...
NASA Astrophysics Data System (ADS)
Wang, Rong; Yang, Chang-Hong; Ding, Yuan-Yuan; Tong, Xin; Chen, Xiao-Yong
2018-07-01
Genus Ficus (Moraceae) plays a critical role in the sustainability and biodiversity in tropical and subtropical ecosystems. Ficus species and their host specific pollinating fig wasps (Agaonidae) represent a classic example of obligate mutualism. The genetic consequence of range expansion and range shift is still under investigation, but extensive gene flow and subsequently low level of genetic divergence may be expected to occur among the populations at the poleward range limit of some Ficus species due to long distance gene flow in the genus. In the present study, we focused on populations of F. sarmentosa var. henryi at its northeastern range limit in southeast China to test whether edge populations were genetically fragile. Consistent with our hypothesis, high level of genetic diversity and weak genetic structure were revealed in Ficus sarmentosa var. henryi populations, suggesting extensive gene flow at the plant's range limit. Long-distance movements of both pollinators and frugivorous birds were likely to be frequent and thereby predominantly contributed to the extensive gene flow at large scale despite of some magnificent landscape elements like huge mountains.
Introgression Makes Waves in Inferred Histories of Effective Population Size.
Hawks, John
2017-01-01
Human populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent "wave" of larger effective population sizes, found in both African and non-African populations, that appears to reflect events prior to the last 100,000 years. I carried out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have visible effects on the inference of effective population size.
Using parentage analysis to examine gene flow and spatial genetic structure.
Kane, Nolan C; King, Matthew G
2009-04-01
Numerous approaches have been developed to examine recent and historical gene flow between populations, but few studies have used empirical data sets to compare different approaches. Some methods are expected to perform better under particular scenarios, such as high or low gene flow, but this, too, has rarely been tested. In this issue of Molecular Ecology, Saenz-Agudelo et al. (2009) apply assignment tests and parentage analysis to microsatellite data from five geographically proximal (2-6 km) and one much more distant (1500 km) panda clownfish populations, showing that parentage analysis performed better in situations of high gene flow, while their assignment tests did better with low gene flow. This unusually complete data set is comprised of multiple exhaustively sampled populations, including nearly all adults and large numbers of juveniles, enabling the authors to ask questions that in many systems would be impossible to answer. Their results emphasize the importance of selecting the right analysis to use, based on the underlying model and how well its assumptions are met by the populations to be analysed.
Amaya, Ronny; Cancel, Limary M; Tarbell, John M
2016-01-01
Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease.
Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.
2016-01-01
Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA as well as reversal flow (OSI) are important parameters characterizing arterial susceptibility to disease. PMID:27846267
Smouse, P E; Dyer, R J; Westfall, R D; Sork, V L
2001-02-01
Gene flow is a key factor in the spatial genetic structure in spatially distributed species. Evolutionary biologists interested in microevolutionary processess and conservation biologists interested in the impact of landscape change require a method that measures the real time process of gene movement. We present a novel two-generation (parent-offspring) approach to the study of genetic structure (TwoGener) that allows us to quantify heterogeneity among the male gamete pools sampled by maternal trees scattered across the landscape and to estimate mean pollination distance and effective neighborhood size. First, we describe the model's elements: genetic distance matrices to estimate intergametic distances, molecular analysis of variance to determine whether pollen profiles differ among mothers, and optimal sampling considerations. Second, we evaluate the model's effectiveness by simulating spatially distributed populations. Spatial heterogeneity in male gametes can be estimated by phiFT, a male gametic analogue of Wright's F(ST) and an inverse function of mean pollination distance. We illustrate TwoGener in cases where the male gamete can be categorically or ambiguously determined. This approach does not require the high level of genetic resolution needed by parentage analysis, but the ambiguous case is vulnerable to bias in the absence of adequate genetic resolution. Finally, we apply TwoGener to an empirical study of Quercus alba in Missouri Ozark forests. We find that phiFT = 0.06, translating into about eight effective pollen donors per female and an effective pollination neighborhood as a circle of radius about 17 m. Effective pollen movement in Q. alba is more restricted than previously realized, even though pollen is capable of moving large distances. This case study illustrates that, with a modest investment in field survey and laboratory analysis, the TwoGener approach permits inferences about landscape-level gene movements.
Kartzinel, Tyler R; Shefferson, Richard P; Trapnell, Dorset W
2013-12-01
Populations of many species are isolated within narrow elevation bands of Neotropical mountain habitat, and how well dispersal maintains genetic connectivity is unknown. We asked whether genetic structure of an epiphytic orchid, Epidendrum firmum, corresponds to gaps between Costa Rican mountain ranges, and how these gaps influence pollen and seed flow. We predicted that significant genetic structure exists among mountain ranges due to different colonization histories and limited gene flow. Furthermore, we predicted that pollen movement contributes more to gene flow than seeds because seeds are released into strong winds perpendicular to the narrow northwest-southeast species distribution, while the likely pollinators are strong fliers. Individuals from 12 populations and three mountain ranges were genotyped with nuclear microsatellites (nDNA) and chloroplast sequences (cpDNA). Genetic diversity was high for both markers, while nDNA genetic structure was low (FSTn = 0.020) and cpDNA structure was moderate (FSTc = 0.443). Significant cpDNA barriers occurred within and among mountain ranges, but nDNA barriers were not significant after accounting for geographic distance. Consistent with these contrasting patterns of genetic structure, pollen contributes substantially more to gene flow among populations than seed (mp /ms = 46). Pollinators mediated extensive gene flow, eroding nDNA colonization footprints, while seed flow was comparatively limited, possibly due to directional prevailing winds across linearly distributed populations. Dispersal traits alone may not accurately inform predictions about gene flow or genetic structure, supporting the need for research into the potentially crucial role of pollinators and landscape context in gene flow among isolated populations. © 2013 John Wiley & Sons Ltd.
Space bioreactor: Design/process flow
NASA Technical Reports Server (NTRS)
Cross, John H.
1987-01-01
The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.
Pabijan, Maciej; Brown, Jason L; Chan, Lauren M; Rakotondravony, Hery A; Raselimanana, Achille P; Yoder, Anne D; Glaw, Frank; Vences, Miguel
2015-11-01
The rainforest biome of eastern Madagascar is renowned for its extraordinary biodiversity and restricted distribution ranges of many species, whereas the arid western region of the island is relatively species poor. We provide insight into the biogeography of western Madagascar by analyzing a multilocus phylogeographic dataset assembled for an amphibian, the widespread Malagasy bullfrog, Laliostoma labrosum. We find no cryptic species in L. labrosum (maximum 1.1% pairwise genetic distance between individuals in the 16S rRNA gene) attributable to considerable gene flow at the regional level as shown by genetic admixture in both mtDNA and three nuclear loci, especially in central Madagascar. Low breeding site fidelity, viewed as an adaptation to the unreliability of standing pools of freshwater in dry and seasonal environments, and a ubiquitous distribution within its range may underlie overall low genetic differentiation. Moreover, reductions in population size associated with periods of high aridity in western Madagascar may have purged DNA variation in this species. The mtDNA gene tree revealed seven major phylogroups within this species, five of which show mostly non-overlapping distributions. The nested positions of the northern and central mtDNA phylogroups imply a southwestern origin for all extant mtDNA lineages in L. labrosum. The current phylogeography of this species and paleo-distributions of major mtDNA lineages suggest five potential refugia in northern, western and southwestern Madagascar, likely the result of Pleistocene range fragmentation during drier and cooler climates. Lineage sorting in mtDNA and nuclear loci highlighted a main phylogeographic break between populations north and south of the Sambirano region, suggesting a role of the coastal Sambirano rainforest as a barrier to gene flow. Paleo-species distribution models and dispersal networks suggest that the persistence of some refugial populations was mainly determined by high population connectivity through space and time. Copyright © 2015 Elsevier Inc. All rights reserved.
Chen, Jun; Ying, Guang-Guo; Wei, Xiao-Dong; Liu, You-Sheng; Liu, Shuang-Shuang; Hu, Li-Xin; He, Liang-Ying; Chen, Zhi-Feng; Chen, Fan-Rong; Yang, Yong-Qiang
2016-11-15
This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.
Herrig, Danielle K; Modrick, Alec J; Brud, Evgeny; Llopart, Ana
2014-03-01
Species hybridization, and thus the potential for gene flow, was once viewed as reproductive mistake. However, recent analysis based on large datasets and newly developed models suggest that gene exchange is not as rare as originally suspected. To investigate the history and speciation of the closely related species Drosophila subobscura, D. madeirensis, and D. guanche, we obtained polymorphism and divergence data for 26 regions throughout the genome, including the Y chromosome and mitochondrial DNA. We found that the D. subobscura X/autosome ratio of silent nucleotide diversity is significantly smaller than the 0.75 expected under neutrality. This pattern, if held genomewide, may reflect a faster accumulation of beneficial mutations on the X chromosome than on autosomes. We also detected evidence of gene flow in autosomal regions, while sex chromosomes remain distinct. This is consistent with the large X effect on hybrid male sterility seen in this system and the presence of two X chromosome inversions fixed between species. Overall, our data conform to chromosomal speciation models in which rearrangements are proposed to serve as gene flow barriers. Contrary to other observations in Drosophila, the mitochondrial genome appears resilient to gene flow in the presence of nuclear exchange. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice
Wang, Hongru; Vieira, Filipe G.; Crawford, Jacob E.; Chu, Chengcai; Nielsen, Rasmus
2017-01-01
The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon, are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus, indica, and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica, possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow. PMID:28385712
Ozawa, Hajime; Watanabe, Atsushi; Uchiyama, Kentaro; Saito, Yoko; Ide, Yuji
2013-01-01
Long-distance dispersal (LDD) of seeds has a critical impact on species survival in patchy landscapes. However, relative to pollen dispersal, empirical data on how seed LDD affects genetic diversity in fragmented populations have been poorly reported. Thus, we attempted to indirectly evaluate the influence of seed LDD by estimating maternal and paternal inbreeding in the seed rain of fragmented 8 Pinus densiflora populations. In total, the sample size was 458 seeds and 306 adult trees. Inbreeding was estimated by common parentage analysis to evaluate gene flow within populations and by sibship reconstruction analysis to estimate gene flow within and among populations. In the parentage analysis, the observed probability that sampled seeds had the same parents within populations was significantly larger than the expected probability in many populations. This result suggested that gene dispersal was limited to within populations. In the sibship reconstruction, many donors both within and among populations appeared to contribute to sampled seeds. Significant differences in sibling ratios were not detected between paternity and maternity. These results suggested that seed-mediated gene flow and pollen-mediated gene flow from outside population contributed some extent to high genetic diversity of the seed rain (H E > 0.854). We emphasize that pine seeds may have excellent potential for gene exchange within and among populations.
Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow.
Ravinet, M; Faria, R; Butlin, R K; Galindo, J; Bierne, N; Rafajlović, M; Noor, M A F; Mehlig, B; Westram, A M
2017-08-01
Speciation, the evolution of reproductive isolation among populations, is continuous, complex, and involves multiple, interacting barriers. Until it is complete, the effects of this process vary along the genome and can lead to a heterogeneous genomic landscape with peaks and troughs of differentiation and divergence. When gene flow occurs during speciation, barriers restricting gene flow locally in the genome lead to patterns of heterogeneity. However, genomic heterogeneity can also be produced or modified by variation in factors such as background selection and selective sweeps, recombination and mutation rate variation, and heterogeneous gene density. Extracting the effects of gene flow, divergent selection and reproductive isolation from such modifying factors presents a major challenge to speciation genomics. We argue one of the principal aims of the field is to identify the barrier loci involved in limiting gene flow. We first summarize the expected signatures of selection at barrier loci, at the genomic regions linked to them and across the entire genome. We then discuss the modifying factors that complicate the interpretation of the observed genomic landscape. Finally, we end with a road map for future speciation research: a proposal for how to account for these modifying factors and to progress towards understanding the nature of barrier loci. Despite the difficulties of interpreting empirical data, we argue that the availability of promising technical and analytical methods will shed further light on the important roles that gene flow and divergent selection have in shaping the genomic landscape of speciation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity.
Odendaal, Lizelle J; Jacobs, David S; Bishop, Jacqueline M
2014-03-27
Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of 'adaptive differentiation with minimal gene flow' in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments.
Ozkan, Bugra; Cagliyan, Caglar E; Elbasan, Zafer; Uysal, Onur K; Kalkan, Gulhan Y; Bozkurt, Mehmet; Tekin, Kamuran; Bozdogan, Sevcan T; Ozalp, Ozge; Duran, Mustafa; Sahin, Durmus Y; Cayli, Murat
2012-09-01
In this study, we examined the relationship between PAI-1 4G/5G polymorphism and patency of the infarct-related artery after thrombolysis in patients with ST-elevation myocardial infarction (STEMI). Acute STEMI patients who received thrombolytic therapy within first 12 h were included in our study. The PAI-1 4G/5G promoter region insertion/deletion polymorphism was studied from venous blood samples. Patients with the PAI-1 4G/5G gene polymorphism were included in group 1 and the others were included in group 2. Coronary angiography was performed in all patients in the first 24 h after receiving thrombolytic therapy. Thrombolysis in myocardial infarction (TIMI) 0-1 flow in the infarct-related artery was considered as 'no flow', TIMI 2 flow as 'slow flow', and TIMI 3 flow as 'normal flow'. A total of 61 patients were included in our study. Thirty patients (49.2%) were positive for the PAI-1 4G/5G gene polymorphism, whereas 31 of them (50.8%) were in the control group. There were significantly more patients with 'no flow' (14 vs. 6; P=0.02) and less patients with 'normal flow' (8 vs. 19; P=0.02) in group 1. In addition, time to thrombolytic therapy (TTT) was maximum in the 'no flow' group and minimum in the 'normal flow' group (P=0.005). In the logistic regression analysis, TTT (odds ratio: 0.9898; 95% confidence interval: 0.982-0.997; P=0.004) and the PAI-1 4G/5G gene polymorphism (odds ratio: 4.621; 95% confidence interval: 1.399-15.268; P<0.01) were found to be independently associated with post-thrombolytic 'no flow'. The PAI-1 4G/5G gene polymorphism and TTT are associated independently with 'no flow' after thrombolysis in patients with STEMI.
Thaenkham, U; Phuphisut, O; Nuamtanong, S; Yoonuan, T; Sa-Nguankiat, S; Vonghachack, Y; Belizario, V Y; Dung, D T; Dekumyoy, P; Waikagul, J
2017-09-01
Haplorchis taichui is an intestinal heterophyid fluke that is pathogenic to humans. It is widely distributed in Asia, with a particularly high prevalence in Indochina. Previous work revealed that the lack of gene flow between three distinct populations of Vietnamese H. taichui can be attributed to their geographic isolation with no interconnected river basins. To test the hypothesis that interconnected river basins allow gene flow between otherwise isolated populations of H. taichui, as previously demonstrated for another trematode, Opisthorchis viverrini, we compared the genetic structures of seven populations of H. taichui from various localities in the lower Mekong Basin, in Thailand and Laos, with those in Vietnam, using the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. To determine the gene flow between these H. taichui populations, we calculated their phylogenetic relationships, genetic distances and haplotype diversity. Each population showed very low nucleotide diversity at this locus. However, high levels of genetic differentiation between the populations indicated very little gene flow. A phylogenetic analysis divided the populations into four clusters that correlated with the country of origin. The negligible gene flow between the Thai and Laos populations, despite sharing the Mekong Basin, caused us to reject our hypothesis. Our data suggest that the distribution of H. taichui populations was incidentally associated with national borders.
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
Inferring landscape effects on gene flow: A new model selection framework
A. J. Shirk; D. O. Wallin; S. A. Cushman; C. G. Rice; K. I. Warheit
2010-01-01
Populations in fragmented landscapes experience reduced gene flow, lose genetic diversity over time and ultimately face greater extinction risk. Improving connectivity in fragmented landscapes is now a major focus of conservation biology. Designing effective wildlife corridors for this purpose, however, requires an accurate understanding of how landscapes shape gene...
Thompson, Cody W; Anwarali Khan, Faisal Ali; Stangl, Frederick B; Baker, Robert J; Bradley, Robert D
2013-01-01
DNA sequence data from mitochondrial cytochrome-b (Cytb) and Y-linked structural maintenance of chromosomes (SmcY) genes were combined with 478 nuclear loci obtained from amplified fragment length polymorphisms (AFLP) to assess the extent of hybridization and genetic spatial structure of populations in two hybridizing species of ground squirrel (Ictidomys parvidens and Ictidomys tridecemlineatus). Based on AFLP analyses of 134 individuals from 28 populations, 10 populations were identified that possessed hybrid individuals. Overall estimates of FST values revealed strong support for population structure in the Cytb data set; however, analyses of the SmcY gene and the AFLP data indicated ongoing gene flow between species. Pairwise FST comparisons of populations were not significant for the SmcY gene; although they were significant for the Cytb gene, indicating that these populations were structured and that gene flow was minimal. Therefore, gene flow between I. parvidens and I. tridecemlineatus appeared to be restricted to populations that exhibited hybridization. In addition, the fragmented nature of the geographic landscape suggested limited gene flow between populations. As a result, the distributional pattern of interspersed parental and hybrid populations were compatible with a mosaic hybrid zone model. Because ground squirrels display female philopatry and male-biased dispersal, the ecology of these species is compatible with this hypothesis. PMID:24340186
Mean velocities and Reynolds stresses in a juncture flow
NASA Technical Reports Server (NTRS)
Mcmahon, H.; Hubbartt, J.; Kubendran, L.
1982-01-01
Values of three mean velocity components and six turbulence stresses measured in a juncture flow are presented and discussed. The juncture flow is generated by a constant thickness body, having an elliptical leading edge, which is mounted perpendicular to a large flat plate along which a turbulent boundary layer is growing. The measurements were carried out at two streamwise stations in the juncture and were made using two single sensor hot-wire probes. The secondary flow in the juncture results in a considerable distortion in the mean velocity profiles. The secondary flow also transports turbulence in the juncture flow and has a large effect on the turbulence stresses. From visual inspection of the results, there is considerable evidence of similarity between the turbulent shear stresses and the mean flow strain rates. There is some evidence of similarity between the variations in the turbulent stress components.
Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats.
Clare, Elizabeth L
2011-01-01
Levels of sequence divergence at mitochondrial loci are frequently used in phylogeographic analysis and species delimitation though single marker systems cannot assess bi-parental gene flow. In this investigation I compare the phylogeographic patterns revealed through the maternally inherited mitochondrial COI region and the paternally inherited 7(th) intron region of the Dby gene on the Y-chromosome in eight common Neotropical bat species. These species are diverse and include members of two families from the feeding guilds of sanguivores, nectarivores, frugivores, carnivores and insectivores. In each case, the currently recognized taxon is comprised of distinct, substantially divergent intraspecific mitochondrial lineages suggesting cryptic species complexes. In Chrotopterus auritus, and Saccopteryx bilineata I observed congruent patterns of divergence in both genetic regions suggesting a cessation of gene flow between intraspecific groups. This evidence supports the existence of cryptic species complexes which meet the criteria of the genetic species concept. In Glossophaga soricina two intraspecific groups with largely sympatric South American ranges show evidence for incomplete lineage sorting or frequent hybridization while a third group with a Central American distribution appears to diverge congruently at both loci suggesting speciation. Within Desmodus rotundus and Trachops cirrhosus the paternally inherited region was monomorphic and thus does not support or refute the potential for cryptic speciation. In Uroderma bilobatum, Micronycteris megalotis and Platyrrhinus helleri the gene regions show conflicting patterns of divergence and I cannot exclude ongoing gene flow between intraspecific groups. This analysis provides a comprehensive comparison across taxa and employs both maternally and paternally inherited gene regions to validate patterns of gene flow. I present evidence for previously unrecognized species meeting the criteria of the genetic species concept but demonstrate that estimates of mitochondrial diversity alone do not accurately represent gene flow in these species and that contact/hybrid zones must be explored to evaluate reproductive isolation.
Bossart, J L; Scriber, J M
1995-12-01
Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.
Divergence and gene flow in the globally distributed blue-winged ducks
Nelson, Joel; Wilson, Robert E.; McCracken, Kevin G.; Cumming, Graeme; Joseph, Leo; Guay, Patrick-Jean; Peters, Jeffrey
2017-01-01
The ability to disperse over long distances can result in a high propensity for colonizing new geographic regions, including uninhabited continents, and lead to lineage diversification via allopatric speciation. However, high vagility can also result in gene flow between otherwise allopatric populations, and in some cases, parapatric or divergence-with-gene-flow models might be more applicable to widely distributed lineages. Here, we use five nuclear introns and the mitochondrial control region along with Bayesian models of isolation with migration to examine divergence, gene flow, and phylogenetic relationships within a cosmopolitan lineage comprising six species, the blue-winged ducks (genus Anas), which inhabit all continents except Antarctica. We found two primary sub-lineages, the globally-distributed shoveler group and the New World blue-winged/cinnamon teal group. The blue-winged/cinnamon sub-lineage is composed of sister taxa from North America and South America, and taxa with parapatric distributions are characterized by low to moderate levels of gene flow. In contrast, our data support strict allopatry for most comparisons within the shovelers. However, we found evidence of gene flow from the migratory, Holarctic northern shoveler (A. clypeata) and the more sedentary, African Cape shoveler (A. smithii) into the Australasian shoveler (A. rhynchotis), although we could not reject strict allopatry. Given the diverse mechanisms of speciation within this complex, the shovelers and blue-winged/cinnamon teals can serve as an effective model system for examining how the genome diverges under different evolutionary processes and how genetic variation is partitioned among highly dispersive taxa.
Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John
2013-09-22
Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura-Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km(2) landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration-drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.
Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E.; Wood, Thomas C.; Panwar, Hemendra Singh; Seidensticker, John
2013-01-01
Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura–Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km2 landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration–drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors. PMID:23902910
da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu
2016-06-02
The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Using artificial intelligence to control fluid flow computations
NASA Technical Reports Server (NTRS)
Gelsey, Andrew
1992-01-01
Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.
Gene flow among established Puerto Rican populations of the exotic tree species, Albizia lebbeck.
Dunphy, B K; Hamrick, J L
2005-04-01
We estimate gene flow and patterns of genetic diversity in Albizia lebbeck, an invasive leguminous tree in the dry forest of southwestern Puerto Rico. Genetic diversity estimates calculated for 10 populations of 24 trees each indicated that these populations may have been formed from multiple introductions. The presence of unique genotypes in the northernmost populations suggests that novel genotypes are still immigrating into the area. This combination of individuals from disparate locations led to high estimates of genetic diversity (He = 0.266, P = 0.67). Indirect estimates of gene flow indicate that only 0.69 migrants per generation move between populations, suggesting that genetic diversity within populations should decrease due to genetic drift. Since migration-drift equilibrium was not found, however, this estimate needs to be viewed with caution. The regular production of pods in this outcrossing species (tm = 0.979) indicates that sufficient outcross pollen is received to insure successful reproduction. Direct estimates of gene flow indicate that between 44 and 100% of pollen received by trees in four small stands of trees (n < 11) was foreign. The role of gene flow in facilitating the spread of this invasive plant species is discussed.
Rangan, Haripriya; Bell, Karen L.; Baum, David A.; Fowler, Rachael; McConvell, Patrick; Saunders, Thomas; Spronck, Stef; Kull, Christian A.; Murphy, Daniel J.
2015-01-01
This study investigates the role of human agency in the gene flow and geographical distribution of the Australian baobab, Adansonia gregorii. The genus Adansonia is a charismatic tree endemic to Africa, Madagascar, and northwest Australia that has long been valued by humans for its multiple uses. The distribution of genetic variation in baobabs in Africa has been partially attributed to human-mediated dispersal over millennia, but this relationship has never been investigated for the Australian species. We combined genetic and linguistic data to analyse geographic patterns of gene flow and movement of word-forms for A. gregorii in the Aboriginal languages of northwest Australia. Comprehensive assessment of genetic diversity showed weak geographic structure and high gene flow. Of potential dispersal vectors, humans were identified as most likely to have enabled gene flow across biogeographic barriers in northwest Australia. Genetic-linguistic analysis demonstrated congruence of gene flow patterns and directional movement of Aboriginal loanwords for A. gregorii. These findings, along with previous archaeobotanical evidence from the Late Pleistocene and Holocene, suggest that ancient humans significantly influenced the geographic distribution of Adansonia in northwest Australia. PMID:25830225
Barnes, Kayla G.; Irving, Helen; Chiumia, Martin; Mzilahowa, Themba; Coleman, Michael; Hemingway, Janet; Wondji, Charles S.
2017-01-01
Resistance to pyrethroids, the sole insecticide class recommended for treating bed nets, threatens the control of major malaria vectors, including Anopheles funestus. Effective management of resistance requires an understanding of the dynamics and mechanisms driving resistance. Here, using genome-wide transcription and genetic diversity analyses, we show that a shift in the molecular basis of pyrethroid resistance in southern African populations of this species is associated with a restricted gene flow. Across the most highly endemic and densely populated regions in Malawi, An. funestus is resistant to pyrethroids, carbamates, and organochlorides. Genome-wide microarray-based transcription analysis identified overexpression of cytochrome P450 genes as the main mechanism driving this resistance. The most up-regulated genes include cytochrome P450s (CYP) CYP6P9a, CYP6P9b and CYP6M7. However, a significant shift in the overexpression profile of these genes was detected across a south/north transect, with CYP6P9a and CYP6P9b more highly overexpressed in the southern resistance front and CYP6M7 predominant in the northern front. A genome-wide genetic structure analysis of southern African populations of An. funestus from Zambia, Malawi, and Mozambique revealed a restriction of gene flow between populations, in line with the geographical variation observed in the transcriptomic analysis. Genetic polymorphism analysis of the three key resistance genes, CYP6P9a, CYP6P9b, and CYP6M7, support barriers to gene flow that are shaping the underlying molecular basis of pyrethroid resistance across southern Africa. This barrier to gene flow is likely to impact the design and implementation of resistance management strategies in the region. PMID:28003461
Asian wild rice is a hybrid swarm with extensive gene flow and feralization from domesticated rice.
Wang, Hongru; Vieira, Filipe G; Crawford, Jacob E; Chu, Chengcai; Nielsen, Rasmus
2017-06-01
The domestication history of rice remains controversial, with multiple studies reaching different conclusions regarding its origin(s). These studies have generally assumed that populations of living wild rice, O. rufipogon , are descendants of the ancestral population that gave rise to domesticated rice, but relatively little attention has been paid to the origins and history of wild rice itself. Here, we investigate the genetic ancestry of wild rice by analyzing a diverse panel of rice genomes consisting of 203 domesticated and 435 wild rice accessions. We show that most modern wild rice is heavily admixed with domesticated rice through both pollen- and seed-mediated gene flow. In fact, much presumed wild rice may simply represent different stages of feralized domesticated rice. In line with this hypothesis, many presumed wild rice varieties show remnants of the effects of selective sweeps in previously identified domestication genes, as well as evidence of recent selection in flowering genes possibly associated with the feralization process. Furthermore, there is a distinct geographical pattern of gene flow from aus , indica , and japonica varieties into colocated wild rice. We also show that admixture from aus and indica is more recent than gene flow from japonica , possibly consistent with an earlier spread of japonica varieties. We argue that wild rice populations should be considered a hybrid swarm, connected to domesticated rice by continuous and extensive gene flow. © 2017 Wang et al.; Published by Cold Spring Harbor Laboratory Press.
Pilot, Małgorzata; Dąbrowski, Michał J.; Hayrapetyan, Vahram; Yavruyan, Eduard G.; Kopaliani, Natia; Tsingarska, Elena; Bujalska, Barbara; Kamiński, Stanisław; Bogdanowicz, Wiesław
2014-01-01
Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population – a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems. PMID:24714198
Baird, Helena Phoenix; Miller, Karen Joy; Stark, Jonathan Sean
2012-01-01
Currently there is very limited understanding of genetic population structure in the Antarctic benthos. We conducted one of the first studies of microsatellite variation in an Antarctic benthic invertebrate, using the ubiquitous amphipod Orchomenella franklini (Walker, 1903). Seven microsatellite loci were used to assess genetic structure on three spatial scales: sites (100 s of metres), locations (1–10 kilometres) and regions (1000 s of kilometres) sampled in East Antarctica at Casey and Davis stations. Considerable genetic diversity was revealed, which varied between the two regions and also between polluted and unpolluted sites. Genetic differentiation among all populations was highly significant (F ST = 0.086, R ST = 0.139, p<0.001) consistent with the brooding mode of development in O. franklini. Hierarchical AMOVA revealed that the majority of the genetic subdivision occurred across the largest geographical scale, with Nem≈1 suggesting insufficient gene flow to prevent independent evolution of the two regions, i.e., Casey and Davis are effectively isolated. Isolation by distance was detected at smaller scales and indicates that gene flow in O. franklini occurs primarily through stepping-stone dispersal. Three of the microsatellite loci showed signs of selection, providing evidence that localised adaptation may occur within the Antarctic benthos. These results provide insights into processes of speciation in Antarctic brooders, and will help inform the design of spatial management initiatives recently endorsed for the Antarctic benthos. PMID:22479613
Gonçalves-Oliveira, Rodrigo C; Wöhrmann, Tina; Benko-Iseppon, Ana M; Krapp, Florian; Alves, Marccus; Wanderley, Maria das Graças L; Weising, Kurt
2017-06-01
Inselbergs are terrestrial, island-like rock outcrop environments that present a highly adapted flora. The epilithic bromeliad Encholirium spectabile is a dominant species on inselbergs in the Caatinga of northeastern Brazil. We conducted a population genetic analysis to test whether the substantial phenotypic diversity of E. spectabile could be explained by limited gene flow among populations and to assess the relative impact of pollen vs. seed dispersal on the genetic structure of the species. Nuclear and chloroplast microsatellite markers were used to genotype E. spectabile individuals from 20 rock outcrop locations, representing four geographic regions: northern Espinhaço Range, Borborema Plateau, southwestern Caatinga and southeastern Caatinga. F -statistics, structure, and other tools were applied to evaluate the genetic makeup of populations. Considerable levels of genetic diversity were revealed. Genetic structuring among populations was stronger on the plastid as compared with the nuclear level, indicating higher gene flow via bat pollination as compared with seed dispersal by wind. structure and AMOVA analyses of the nuclear data suggested a high genetic differentiation between two groups, one containing all populations from the southeastern Caatinga and the other one comprising all remaining samples. The strong genetic differentiation between southeastern Caatinga and the remaining regions may indicate the occurrence of a cryptic species in E. spectabile . The unique genetic composition of each inselberg population suggests in situ conservation as the most appropriate protection measure for this plant lineage. © 2017 Botanical Society of America.
Azamathulla, H. Md.; Jarrett, Robert D.
2013-01-01
Manning’s roughness coefficient (n) has been widely used in the estimation of flood discharges or depths of flow in natural channels. Therefore, the selection of appropriate Manning’s nvalues is of paramount importance for hydraulic engineers and hydrologists and requires considerable experience, although extensive guidelines are available. Generally, the largest source of error in post-flood estimates (termed indirect measurements) is due to estimates of Manning’s n values, particularly when there has been minimal field verification of flow resistance. This emphasizes the need to improve methods for estimating n values. The objective of this study was to develop a soft computing model in the estimation of the Manning’s n values using 75 discharge measurements on 21 high gradient streams in Colorado, USA. The data are from high gradient (S > 0.002 m/m), cobble- and boulder-bed streams for within bank flows. This study presents Gene-Expression Programming (GEP), an extension of Genetic Programming (GP), as an improved approach to estimate Manning’s roughness coefficient for high gradient streams. This study uses field data and assessed the potential of gene-expression programming (GEP) to estimate Manning’s n values. GEP is a search technique that automatically simplifies genetic programs during an evolutionary processes (or evolves) to obtain the most robust computer program (e.g., simplify mathematical expressions, decision trees, polynomial constructs, and logical expressions). Field measurements collected by Jarrett (J Hydraulic Eng ASCE 110: 1519–1539, 1984) were used to train the GEP network and evolve programs. The developed network and evolved programs were validated by using observations that were not involved in training. GEP and ANN-RBF (artificial neural network-radial basis function) models were found to be substantially more effective (e.g., R2 for testing/validation of GEP and RBF-ANN is 0.745 and 0.65, respectively) than Jarrett’s (J Hydraulic Eng ASCE 110: 1519–1539, 1984) equation (R2 for testing/validation equals 0.58) in predicting the Manning’s n.
Larcombe, Matthew J; Costa E Silva, João; Tilyard, Paul; Gore, Peter; Potts, Brad M
2016-09-01
Many previous studies conclude that pre-zygotic barriers such as mechanical isolation account for most reproductive isolation between pairs of taxa. However, the inheritance and persistence of barriers such as these after the first generation of hybridization is rarely quantified, even though it is a vital consideration in understanding gene flow potential. There is an asymmetrical pre-zygotic mechanical barrier to hybridization between Eucalyptus nitens and Eucalyptus globulus, which completely prevents small-flowered E. nitens pollen from mating with large E. globulus flowers, while the reverse cross is possible. We aimed to determine the relative importance of pre- and post-zygotic barriers in preventing gene flow following secondary contact between E. nitens and E. globulus, including the inheritance of barriers in advanced-generation hybrids. Experimental crossing was used to produce outcrossed E. nitens, E. globulus and their F1, F2, BCg and BCn hybrids. The strength and inheritance of a suite of pre- and post-zygotic barriers were assessed, including 20-year survival, growth and reproductive capacity. The mechanical barrier to hybridization was lost or greatly reduced in the F1 hybrid. In contrast, intrinsic post-zygotic barriers were strong and persistent. Line-cross analysis indicated that the outbreeding depression in the hybrids was best explained by epistatic loss. The removal of strong mechanical barriers between E. nitens and E. globulus allows F1 hybrids to act as a bridge for bi-directional gene flow between these species. However, strong and persistent post-zygotic barriers exist, meaning that wherever F1 hybridization does occur, intrinsic post-zygotic barriers will be responsible for most reproductive isolation in this system. This potential transient nature of mechanical barriers to zygote formation due to additive inheritance in hybrids appears under-appreciated, and highlights the often important role that intrinsic post-mating barriers play in maintaining species boundaries at zones of secondary contact. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sun, Haimeng; Yang, Zhongchen; Wei, Caijie; Wu, Weizhong
2018-04-26
An up-flow vertical flow constructed wetland (AC-VFCW) filled with ceramsite and 5% external carbon source poly(3-hydroxybutyrate-hydroxyvalerate) (PHBV) as substrate was set for nitrogen removal with micro aeration. Simultaneous nitrification and denitrification process was observed with 90.4% NH 4 + -N and 92.1% TN removal efficiencies. Nitrification and denitrification genes were both preferentially enriched on the surface of PHBV. Nitrogen transformation along the flow direction showed that NH 4 + -N was oxidized to NO 3 - -N at the lowermost 10 cm of the substrate and NO 3 - -N gradually degraded over the depth. AmoA gene was more enriched at -10 and -50 cm layers. NirS gene was the dominant functional gene at the bottom layer with the abundance of 2.05 × 10 7 copies g -1 substrate while nosZ gene was predominantly abundant with 7.51 × 10 6 and 2.64 × 10 6 copies g -1 substrate at the middle and top layer, respectively, indicating that functional division of dominant nitrogen functional genes forms along the flow direction in AC-VFCW. Copyright © 2018. Published by Elsevier Ltd.
Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity
2014-01-01
Background Across heterogeneous environments selection and gene flow interact to influence the rate and extent of adaptive trait evolution. This complex relationship is further influenced by the rarely considered role of phenotypic plasticity in the evolution of adaptive population variation. Plasticity can be adaptive if it promotes colonization and survival in novel environments and in doing so may increase the potential for future population differentiation via selection. Gene flow between selectively divergent environments may favour the evolution of phenotypic plasticity or conversely, plasticity itself may promote gene flow, leading to a pattern of trait differentiation in the presence of gene flow. Variation in sensory traits is particularly informative in testing the role of environment in trait and population differentiation. Here we test the hypothesis of ‘adaptive differentiation with minimal gene flow’ in resting echolocation frequencies (RF) of Cape horseshoe bats (Rhinolophus capensis) across a gradient of increasingly cluttered habitats. Results Our analysis reveals a geographically structured pattern of increasing RF from open to highly cluttered habitats in R. capensis; however genetic drift appears to be a minor player in the processes influencing this pattern. Although Bayesian analysis of population structure uncovered a number of spatially defined mitochondrial groups and coalescent methods revealed regional-scale gene flow, phylogenetic analysis of mitochondrial sequences did not correlate with RF differentiation. Instead, habitat discontinuities between biomes, and not genetic and geographic distances, best explained echolocation variation in this species. We argue that both selection for increased detection distance in relatively less cluttered habitats and adaptive phenotypic plasticity may have influenced the evolution of matched echolocation frequencies and habitats across different populations. Conclusions Our study reveals significant sensory trait differentiation in the presence of historical gene flow and suggests roles for both selection and plasticity in the evolution of echolocation variation in R. capensis. These results highlight the importance of population level analyses to i) illuminate the subtle interplay between selection, plasticity and gene flow in the evolution of adaptive traits and ii) demonstrate that evolutionary processes may act simultaneously and that their relative influence may vary across different environments. PMID:24674227
Munshi-South, Jason
2012-03-01
In this study, I examine the influence of urban canopy cover on gene flow between 15 white-footed mouse (Peromyscus leucopus) populations in New York City parklands. Parks in the urban core are often highly fragmented, leading to rapid genetic differentiation of relatively nonvagile species. However, a diverse array of 'green' spaces may provide dispersal corridors through 'grey' urban infrastructure. I identify urban landscape features that promote genetic connectivity in an urban environment and compare the success of two different landscape connectivity approaches at explaining gene flow. Gene flow was associated with 'effective distances' between populations that were calculated based on per cent tree canopy cover using two different approaches: (i) isolation by effective distance (IED) that calculates the single best pathway to minimize passage through high-resistance (i.e. low canopy cover) areas, and (ii) isolation by resistance (IBR), an implementation of circuit theory that identifies all low-resistance paths through the landscape. IBR, but not IED, models were significantly associated with three measures of gene flow (Nm from F(ST) , BayesAss+ and Migrate-n) after factoring out the influence of isolation by distance using partial Mantel tests. Predicted corridors for gene flow between city parks were largely narrow, linear parklands or vegetated spaces that are not managed for wildlife, such as cemeteries and roadway medians. These results have implications for understanding the impacts of urbanization trends on native wildlife, as well as for urban reforestation efforts that aim to improve urban ecosystem processes. © 2012 Blackwell Publishing Ltd.
Beekeeping practices and geographic distance, not land use, drive gene flow across tropical bees.
Jaffé, Rodolfo; Pope, Nathaniel; Acosta, André L; Alves, Denise A; Arias, Maria C; De la Rúa, Pilar; Francisco, Flávio O; Giannini, Tereza C; González-Chaves, Adrian; Imperatriz-Fonseca, Vera L; Tavares, Mara G; Jha, Shalene; Carvalheiro, Luísa G
2016-11-01
Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability. © 2016 John Wiley & Sons Ltd.
Spatiotemporal analysis of gene flow in Chesapeake Bay Diamondback Terrapins (Malaclemys terrapin)
Converse, Paul E.; Kuchta, Shawn R; Roosenburg, Willem R; Henry, Paula F.; Haramis, G. Michael; King, Timothy L.
2015-01-01
There is widespread concern regarding the impacts of anthropogenic activities on connectivity among populations of plants and animals, and understanding how contemporary and historical processes shape metapopulation dynamics is crucial for setting appropriate conservation targets. We used genetic data to identify population clusters and quantify gene flow over historical and contemporary time frames in the Diamondback Terrapin (Malaclemys terrapin). This species has a long and complicated history with humans, including commercial over-harvesting and subsequent translocation events during the early twentieth century. Today, terrapins face threats from habitat loss and mortality in fisheries bycatch. To evaluate population structure and gene flow among Diamondback Terrapin populations in the Chesapeake Bay region, we sampled 617 individuals from 15 localities, and screened individuals at 12 polymorphic microsatellite loci. Our goals were to demarcate metapopulation structure, quantify genetic diversity, estimate effective population sizes, and document temporal changes in gene flow. We found that terrapins in the Chesapeake Bay region harbor high levels of genetic diversity and form four populations. Effective population sizes were variable. Among most population comparisons, estimates of historical and contemporary terrapin gene flow were generally low (m ≈ 0.01). However, we detected a substantial increase in contemporary gene flow into Chesapeake Bay from populations outside the bay, as well as between two populations within Chesapeake Bay, possibly as a consequence of translocations during the early twentieth century. Our study shows that inferences across multiple time scales are needed to evaluate population connectivity, especially as recent changes may identify threats to population persistence.
Colosimo, Giuliano; Knapp, Charles R.; Wallace, Lisa E.; Welch, Mark E.
2014-01-01
Ecological data, the primary source of information on patterns and rates of migration, can be integrated with genetic data to more accurately describe the realized connectivity between geographically isolated demes. In this paper we implement this approach and discuss its implications for managing populations of the endangered Andros Island Rock Iguana, Cyclura cychlura cychlura. This iguana is endemic to Andros, a highly fragmented landmass of large islands and smaller cays. Field observations suggest that geographically isolated demes were panmictic due to high, inferred rates of gene flow. We expand on these observations using 16 polymorphic microsatellites to investigate the genetic structure and rates of gene flow from 188 Andros Iguanas collected across 23 island sites. Bayesian clustering of specimens assigned individuals to three distinct genotypic clusters. An analysis of molecular variance (AMOVA) indicates that allele frequency differences are responsible for a significant portion of the genetic variance across the three defined clusters (Fst = 0.117, p0.01). These clusters are associated with larger islands and satellite cays isolated by broad water channels with strong currents. These findings imply that broad water channels present greater obstacles to gene flow than was inferred from field observation alone. Additionally, rates of gene flow were indirectly estimated using BAYESASS 3.0. The proportion of individuals originating from within each identified cluster varied from 94.5 to 98.7%, providing further support for local isolation. Our assessment reveals a major disparity between inferred and realized gene flow. We discuss our results in a conservation perspective for species inhabiting highly fragmented landscapes. PMID:25229344
Saavedra-Rodriguez, Karla; Beaty, Meaghan; Lozano-Fuentes, Saul; Denham, Steven; Garcia-Rejon, Julian; Reyes-Solis, Guadalupe; Machain-Williams, Carlos; Loroño-Pino, Maria Alba; Flores-Suarez, Adriana; Ponce-Garcia, Gustavo; Beaty, Barry; Eisen, Lars; Black, William C
2015-01-01
The mosquito Aedes aegypti is the major vector of the four serotypes of dengue virus (DENV1-4). Previous studies have shown that Ae. aegypti in Mexico have a high effective migration rate and that gene flow occurs among populations that are up to 150 km apart. Since 2000, pyrethroids have been widely used for suppression of Ae. aegypti in cities in Mexico. In Yucatan State in particular, pyrethroids have been applied in and around dengue case households creating an opportunity for local selection and evolution of resistance. Herein, we test for evidence of local adaptation by comparing patterns of variation among 27 Ae. aegypti collections at 13 single nucleotide polymorphisms (SNPs): two in the voltage-gated sodium channel gene para known to confer knockdown resistance, three in detoxification genes previously associated with pyrethroid resistance, and eight in putatively neutral loci. The SNPs in para varied greatly in frequency among collections, whereas SNPs at the remaining 11 loci showed little variation supporting previous evidence for extensive local gene flow. Among Ae. aegypti in Yucatan State, Mexico, local adaptation to pyrethroids appears to offset the homogenizing effects of gene flow. © The American Society of Tropical Medicine and Hygiene.
Ma, Mark; Balasubramanian, Nanda; Dodge, Robert; Zhang, Yan
2017-09-01
Gene and nucleic acid therapies have demonstrated patient benefits to address unmet medical needs. Beside considerations regarding the biological nature of the gene therapy, the quality of bioanalytical methods plays an important role in ensuring the success of these novel therapies. Inconsistent approaches among bioanalytical labs during preclinical and clinical phases have been observed. There are many underlying reasons for this inconsistency. Various platforms and reagents used in quantitative methods, lacking of detailed regulatory guidance on method validation and uncertainty of immunogenicity strategy in supporting gene therapy may all be influential. This review summarizes recent practices and considerations in bioanalytical support of pharmacokinetics/pharmacodynamics and immunogenicity evaluations in gene therapy development with insight into method design, development and validations.
2013-01-01
Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low-shear force in a drip-flow apparatus and analyses indicated that the formation of a biofilm under low-shear force requires a different sub-set of genes than a biofilm grown under static conditions. The drip-flow apparatus may represent the better in vitro model to investigate biofilm formation of A. pleuropneumoniae. PMID:23725589
Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii
NASA Technical Reports Server (NTRS)
Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.
1995-01-01
The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.
Digest: Local adaptation at close quarters.
Schmidt, Chloé; Garroway, Colin
2018-06-19
Although the theory of how gene flow and genetic drift interact with local adaptation is well understood, few empirical studies have examined this process. Hämälä et al. (2018) present evidence that adaptive divergence between populations of Arabidopsis lyrata can persist in the face of relatively high levels of gene flow and drift. Maintaining divergence despite gene flow and drift has important implications for understanding adaptive responses of populations in response to human-driven environmental change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Convergent evolution and divergent selection: lizards at the White Sands ecotone.
Rosenblum, Erica Bree
2006-01-01
Ecological transition zones, where organismal phenotypes result from a delicate balance between selection and migration, highlight the interplay of local adaptation and gene flow. Here, I study the response of an entire species assemblage to natural selection across a common ecotone. Three lizard species, distributed along a dramatic environmental gradient in substrate color, display convergent adaptation of blanched coloration on the gypsum dunes of White Sands National Monument. I investigate the role of gene flow in modulating phenotypic response to selection by quantifying color variation and genetic variation across the ecotone. I find species differences in degree of background matching and in genetic connectivity of populations across the ecotone. Differences among species in phenotypic response to selection scale precisely to levels of genetic isolation. Species with higher levels of gene flow across the ecotone exhibit less dramatic responses to selection. Results also reveal a strong signal of ecologically mediated divergence for White Sands lizards. For all species, phenotypic variation is better explained by habitat similarity than genetic similarity. Convergent evolution of blanched coloration at White Sands clearly reflects the action of strong divergent selection; however, adaptive response appears to be modulated by gene flow and demographic history and can be predicted by divergence-with-gene-flow models.
Yannic, G; Basset, P; Hausser, J
2009-06-01
Most hybrid zones have existed for hundreds or thousands of years but have generally been observed for only a short time period. Studies extending over periods long enough to track evolutionary changes in the zones or assess the ultimate outcome of hybridization are scarce. Here, we describe the evolution over time of the level of genetic isolation between two karyotypically different species of shrews (Sorex araneus and Sorex antinorii) at a hybrid zone located in the Swiss Alps. We first evaluated hybrid zone movement by contrasting patterns of gene flow and changes in cline parameters (centre and width) using 24 microsatellite loci, between two periods separated by 10 years apart. Additionally, we tested the role of chromosomal rearrangements on gene flow by analysing microsatellite loci located on both rearranged and common chromosomes to both species. We did not detect any movement of the hybrid zone during the period analysed, suggesting that the zone is a typical tension zone. However, the gene flow was significantly lower among the rearranged than the common chromosomes for the second period, whereas the difference was only marginally significant for the first period. This further supports the role of chromosomal rearrangements on gene flow between these taxa.
Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.
Simard, Marie-Josée; Légère, Anne; Willenborg, Christian J
2009-01-01
Pollen-mediated gene flow in space is well documented and isolation distances are recommended to ensure genetic purity of Brassica napus seed crops. Isolation in time could also contribute to gene flow management but has been little investigated. We assessed the effects of asynchronous and synchronous flowering on intraspecific B. napus gene flow by seeding adjacent plots of transgenic spring canola cultivars, either resistant to glyphosate or glufosinate, over a 0-4 week interval and measuring outcrossing rates and seed-set. Outcrossing rates, evaluated in the center of the first adjacent row, were reduced to the lowest level in plots flowering first when the seeding interval > 2 weeks. Increasing the time gap increased outcrossing rates in plots flowering second up to a seeding interval of two weeks. Flowers that opened during the last week of the flowering period produced fewer seed (< 10% of total seed production) and a smaller fraction of outcrossed seed (-25%). Observed time gap effects were likely caused by extraneous pollen load during the receptivity of productive seed-setting early flowers. Clearly, manipulation of B. napus flowering development through staggered planting dates can contribute to gene flow management. The approach will need to be validated by additional site-years and increased isolation distances.
Bonnet-Lebrun, Anne-Sophie; Manica, Andrea; Eriksson, Anders; Rodrigues, Ana S L
2017-05-01
Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modeled communities-that is with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities-from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in preequilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under preequilibrium conditions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
de Fraga, Rafael; Lima, Albertina P; Magnusson, William E; Ferrão, Miquéias; Stow, Adam J
2017-07-01
Knowledge of genetic structure, geographic distance and environmental heterogeneity can be used to identify environmental features and natural history traits that influence dispersal and gene flow. Foraging mode is a trait that might predict dispersal capacity in snakes, because actively foragers typically have greater movement rates than ambush predators. Here, we test the hypothesis that 2 actively foraging snakes have higher levels of gene flow than 2 ambush predators. We evaluated these 4 co-distributed species of snakes in the Brazilian Amazon. Snakes were sampled along an 880 km transect from the central to the southwest of the Amazon basin, which covered a mosaic of vegetation types and seasonal differences in climate. We analyzed thousands of single nucleotide polymorphisms to compare patterns of neutral gene flow based on isolation by geographic distance (IBD) and environmental resistance (IBR). We show that IBD and IBR were only evident in ambush predators, implying lower levels of dispersal than the active foragers. Therefore, gene flow was high enough in the active foragers analyzed here to prevent any build-up of spatial genotypic structure with respect to geographic distance and environmental heterogeneity. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Individual differences in flow proneness are linked to a dopamine D2 receptor gene variant.
Gyurkovics, Mate; Kotyuk, Eszter; Katonai, Eniko Rozsa; Horvath, Erzsebet Zsofia; Vereczkei, Andrea; Szekely, Anna
2016-05-01
Flow is a special mental state characterized by deep concentration that occurs during the performance of optimally challenging tasks. In prior studies, proneness to experience flow has been found to be moderately heritable. In the present study, we investigated whether individual differences in flow proneness are related to a polymorphism of the dopamine D2 receptor coding gene (DRD2 C957T rs6277). This polymorphism affects striatal D2 receptor availability, a factor that has been shown to be related to flow proneness. To our knowledge, this is the first study to investigate the association between this trait and a specific gene variant. In a sample of 236 healthy Hungarian adults, we found that CC homozygotes report higher flow proneness than do T allele carriers, but only during mandatory activities (i.e., studying and working), not during leisure time. We discuss implications of this result, e.g., the potential mediators of the relationship. Copyright © 2016 Elsevier Inc. All rights reserved.
Reduced Order Modeling Incompressible Flows
NASA Technical Reports Server (NTRS)
Helenbrook, B. T.
2010-01-01
The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models
DOT National Transportation Integrated Search
2014-12-01
The report documents policy considerations for the Intelligent Network Flow Optimization (INFLO) connected vehicle applications bundle. INFLO aims to optimize network flow on freeways and arterials by informing motorists of existing and impendi...
LONG DISTANCE POLLEN-MEDIATED GENE FLOW FROM CREEPING BENTGRASS
Researchers from USEPA WED have measured gene flow from experimental fields of Roundup? herbicide resistant genetically modified (GM) creeping bentgrass a grass used primarily on golf courses, to compatible non-crop relatives. Using a sampling design based on the estimated time ...
Song, Xiaoling; Liu, Linli; Wang, Zhou; Qiang, Sheng
2009-08-01
The possibility of gene flow from transgenic crops to wild relatives may be affected by reproductive capacity between them. The potential gene flow from two transgenic rice lines containing the bar gene to five accessions of weedy rice (WR1-WR5) was determined through examination of reproductive compatibility under controlled pollination. The pollen grain germination of two transgenic rice lines on the stigma of all weedy rice, rice pollen tube growth down the style and entry into the weedy rice ovary were similar to self-pollination in weedy rice. However, delayed double fertilisation and embryo abortion in crosses between WR2 and Y0003 were observed. Seed sets between transgenic rice lines and weedy rice varied from 8 to 76%. Although repeated pollination increased seed set significantly, the rank of the seed set between the weedy rice accessions and rice lines was not changed. The germination rates of F(1) hybrids were similar or greater compared with respective females. All F(1) plants expressed glufosinate resistance in the presence of glufosinate selection pressure. The frequency of gene flow between different weedy rice accessions and transgenic herbicide-resistant rice may differ owing to different reproductive compatibility. This result suggests that, when wild relatives are selected as experimental materials for assessing the gene flow of transgenic rice, it is necessary to address the compatibility between transgenic rice and wild relatives.
Gene flow in Prunus species in the context of novel trait risk assessment.
Cici, S Zahra H; Van Acker, Rene C
2010-01-01
Prunus species are important commercial fruit (plums, apricot, peach and cherries), nut (almond) and ornamental trees cultivated broadly worldwide. This review compiles information from available literature on Prunus species in regard to gene flow and hybridization within this complex of species. The review serves as a resource for environmental risk assessment related to pollen mediated gene flow and the release of transgenic Prunus. It reveals that Prunus species, especially plums and cherries show high potential for transgene flow. A range of characteristics including; genetic diversity, genetic bridging capacity, inter- and intra-specific genetic compatibility, self sterility (in most species), high frequency of open pollination, insect assisted pollination, perennial nature, complex phenotypic architecture (canopy height, heterogeneous crown, number of flowers produced in an individual plant), tendency to escape from cultivation, and the existence of ornamental and road side Prunus species suggest that there is a tremendous and complicated ability for pollen mediated gene movement among Prunus species. Ploidy differences among Prunus species do not necessarily provide genetic segregation. The characteristics of Prunu s species highlight the complexity of maintaining coexistence between GM and non-GM Prunus if there were commercial production of GM Prunus species. The results of this review suggest that the commercialization of one GM Prunus species can create coexistence issues for commercial non-GM Prunus production. Despite advances in molecular markers and genetic analysis in agroecology, there remains limited information on the ecological diversity, metapopulation nature, population dynamics, and direct measures of gene flow among different subgenera represented in the Prunus genus. Robust environmental impact, biosafety and coexistence assessments for GM Prunus species will require better understanding of the mechanisms of gene flow and hybridization among species within the Prunus species complex. © ISBR, EDP Sciences, 2011.
Stefenon, V M; Gailing, O; Finkeldey, R
2008-05-01
The morphological features of pollen and seed of Araucaria angustifolia have led to the proposal of limited gene dispersal for this species. We used nuclear microsatellite and AFLP markers to assess patterns of genetic variation in six natural populations at the intra- and inter-population level, and related our findings to gene dispersal in this species. Estimates of both fine-scale spatial genetic structure (SGS) and migration rate suggest relatively short-distance gene dispersal. However, gene dispersal differed among populations, and effects of more efficient dispersal within population were observed in at least one stand. In addition, even though some seed dispersal may be aggregated in this principally barochorous species, reasonable secondary seed dispersal, presumably facilitated by animals, and overlap of seed shadows within populations is suggested. Overall, no correlation was observed between levels of SGS and inbreeding, density or age structure, except that a higher level of SGS was revealed for the population with a higher number of juvenile individuals. A low estimate for the number of migrants per generation between two neighbouring populations implies limited gene flow. We expect that stepping-stone pollen flow may have contributed to low genetic differentiation among populations observed in a previous survey. Thus, strategies for maintenance of gene flow among remnant populations should be considered in order to avoid degrading effects of population fragmentation on the evolution of A. angustifolia.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
NASA Astrophysics Data System (ADS)
Bøhn, Thomas; Aheto, Denis W.; Mwangala, Felix S.; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-10-01
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).
Bøhn, Thomas; Aheto, Denis W.; Mwangala, Felix S.; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-01-01
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing). PMID:27694819
Bøhn, Thomas; Aheto, Denis W; Mwangala, Felix S; Fischer, Klara; Bones, Inger Louise; Simoloka, Christopher; Mbeule, Ireen; Schmidt, Gunther; Breckling, Broder
2016-10-03
Gene flow in agricultural crops is important for risk assessment of genetically modified (GM) crops, particularly in countries with a large informal agricultural sector of subsistence cultivation. We present a pollen flow model for maize (Zea mays), a major staple crop in Africa. We use spatial properties of fields (size, position) in three small-scale maize farming communities in Zambia and estimate rates of cross-fertilisation between fields sown with different maize varieties (e.g. conventional and transgene). As an additional factor contributing to gene flow, we present data on seed saving and sharing among farmers that live in the same communities. Our results show that: i) maize fields were small and located in immediate vicinity of neighboring fields; ii) a majority of farmers saved and shared seed; iii) modeled rates of pollen-mediated gene flow showed extensive mixing of germplasm between fields and farms and iv) as a result, segregation of GM and non-GM varieties is not likely to be an option in these systems. We conclude that the overall genetic composition of maize, in this and similar agricultural contexts, will be strongly influenced both by self-organised ecological factors (pollen flow), and by socially mediated intervention (seed recycling and sharing).
Applying gene flow science to environmental policy needs: a boundary work perspective.
Ridley, Caroline E; Alexander, Laurie C
2016-08-01
One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.
Geographically multifarious phenotypic divergence during speciation
Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L
2013-01-01
Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669
Targeted gene flow for conservation.
Kelly, Ella; Phillips, Ben L
2016-04-01
Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens. © 2015 Society for Conservation Biology.
Preliminary design of turbopumps and related machinery
NASA Technical Reports Server (NTRS)
Wislicenus, George F.
1986-01-01
Pumps used in large liquid-fuel rocket engines are examined. The term preliminary design denotes the initial, creative phases of design, where the general shape and characteristics of the machine are determined. This compendium is intended to provide the design engineer responsible for these initial phases with a physical understanding and background knowledge of the numerous special fields involved in the design process. Primary attention is directed to the pumping part of the turbopump and hence is concerned with essentially incompressible fluids. However, compressible flow principles are developed. As much as possible, the simplicity and reliability of incompressible flow considerations are retained by treating the mechanics of compressible fluids as a departure from the theory of incompressible fluids. Five areas are discussed: a survey of the field of turbomachinery in dimensionless form; the theoretical principles of the hydrodynamic design of turbomachinery; the hydrodynamic and gas dynamic design of axial flow turbomachinery; the hydrodynamic and gas dynamic design of radial and mixed flow turbomachinery; and some mechanical design considerations of turbomachinery. Theoretical considerations are presented with a relatively elementary mathematical treatment.
Reifová, Radka; Majerová, Veronika; Reif, Jiří; Ahola, Markus; Lindholm, Antero; Procházka, Petr
2016-06-16
Understanding the mechanisms and selective forces leading to adaptive radiations and origin of biodiversity is a major goal of evolutionary biology. Acrocephalus warblers are small passerines that underwent an adaptive radiation in the last approximately 10 million years that gave rise to 37 extant species, many of which still hybridize in nature. Acrocephalus warblers have served as model organisms for a wide variety of ecological and behavioral studies, yet our knowledge of mechanisms and selective forces driving their radiation is limited. Here we studied patterns of interspecific gene flow and selection across three European Acrocephalus warblers to get a first insight into mechanisms of radiation of this avian group. We analyzed nucleotide variation at eight nuclear loci in three hybridizing Acrocephalus species with overlapping breeding ranges in Europe. Using an isolation-with-migration model for multiple populations, we found evidence for unidirectional gene flow from A. scirpaceus to A. palustris and from A. palustris to A. dumetorum. Gene flow was higher between genetically more closely related A. scirpaceus and A. palustris than between ecologically more similar A. palustris and A. dumetorum, suggesting that gradual accumulation of intrinsic barriers rather than divergent ecological selection are more efficient in restricting interspecific gene flow in Acrocephalus warblers. Although levels of genetic differentiation between different species pairs were in general not correlated, we found signatures of apparently independent instances of positive selection at the same two Z-linked loci in multiple species. Our study brings the first evidence that gene flow occurred during Acrocephalus radiation and not only between sister species. Interspecific gene flow could thus be an important source of genetic variation in individual Acrocephalus species and could have accelerated adaptive evolution and speciation rate in this avian group by creating novel genetic combinations and new phenotypes. Independent instances of positive selection at the same loci in multiple species indicate an interesting possibility that the same loci might have contributed to reproductive isolation in several speciation events.
Zhang, Chuan-Jie; Yook, Min-Jung; Park, Hae-Rim; Lim, Soo-Hyun; Kim, Jin-Won; Nah, Gyoungju; Song, Hae-Ryong; Jo, Beom-Ho; Roh, Kyung Hee; Park, Suhyoung; Kim, Do-Soon
2018-06-02
The cultivation of genetically modified (GM) crops has raised many questions regarding their environmental risks, particularly about their ecological impact on non-target organisms, such as their closely-related relative species. Although evaluations of transgene flow from GM crops to their conventional crops has been conducted under large-scale farming system worldwide, in particular in North America and Australia, few studies have been conducted under smallholder farming systems in Asia with diverse crops in co-existence. A two-year field study was conducted to assess the potential environmental risks of gene flow from glufosinate-ammonium resistant (GR) Brassica napus to its conventional relatives, B. napus, B. juncea, and Raphanus sativus under simulated smallholder field conditions in Korea. Herbicide resistance and simple sequence repeat (SSR) markers were used to identify the hybrids. Hybridization frequency of B. napus × GR B. napus was 2.33% at a 2 m distance, which decreased to 0.007% at 75 m. For B. juncea, it was 0.076% at 2 m and decreased to 0.025% at 16 m. No gene flow was observed to R. sativus. The log-logistic model described hybridization frequency with increasing distance from GR B. napus to B. napus and B. juncea and predicted that the effective isolation distances for 0.01% gene flow from GR B. napus to B. napus and B. juncea were 122.5 and 23.7 m, respectively. Results suggest that long-distance gene flow from GR B. napus to B. napus and B. juncea is unlikely, but gene flow can potentially occur between adjacent fields where the smallholder farming systems exist. Copyright © 2018. Published by Elsevier B.V.
Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.
Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne
2008-08-01
Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.
Nightshift work and genome-wide DNA methylation.
Bhatti, Parveen; Zhang, Yuzheng; Song, Xiaoling; Makar, Karen W; Sather, Cassandra L; Kelsey, Karl T; Houseman, E Andres; Wang, Pei
2015-02-01
The negative health effects of shift work, including carcinogenesis, may be mediated by changes in DNA methylation, particularly in the circadian genes. Using the Infinium HumanMethylation450 Bead Array (Illumina, San Diego, CA), we compared genome-wide methylation between 65 actively working dayshift workers and 59 actively working nightshift workers in the healthcare industry. A total of 473 800 loci, including 391 loci across the 12 core circadian genes, were analyzed to identify methylation markers associated with shift work status using linear regression models adjusted for gender, age, body mass index, race, smoking status and leukocyte cell profile as measured by flow cytometry. Analyses at the level of gene, CpG island and gene region were also conducted. To account for multiple comparisons, we controlled the false discovery rate (FDR ≤0.05). Significant differences between nightshift and dayshift workers were found at 16 135 of 473 800 loci, across 3769 of 20 164 genes, across 7173 of 22 721 CpG islands and across 5508 of 51 843 gene regions. For each significant loci, gene, CpG island or gene region, average methylation was consistently found to be decreased among nightshift workers compared to dayshift workers. Twenty-one loci located in the circadian genes were also found to be significantly hypomethylated among nightshift workers. The largest differences were observed for three loci located in the gene body of PER3. A total of nine significant loci were found in the CSNK1E gene, most of which were located in a CpG island and near the transcription start site of the gene. Methylation changes in these circadian genes may lead to altered expression of these genes which has been associated with cancer in previous studies. Gene ontology enrichment analysis revealed that among the significantly hypomethylated genes, processes related to host defense and immunity were represented. Our results indicate that the health effects of shift work may be mediated by hypomethylation of a wide variety of genes, including those related to circadian rhythms. While these findings need to be followed-up among a considerably expanded group of shift workers, the data generated by this study supports the need for future targeted research into the potential impacts of shift work on specific carcinogenic mechanisms.
NASA Astrophysics Data System (ADS)
Park, E.; Jeong, J.
2017-12-01
A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.
Human Genome Editing and Ethical Considerations.
Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur
2016-04-01
Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.
The Dynamics of Rapidly Emplaced Terrestrial Lava Flows and Implications for Planetary Volcanism
NASA Technical Reports Server (NTRS)
Baloga, Stephen; Spudis, Paul D.; Guest, John E.
1995-01-01
The Kaupulehu 1800-1801 lava flow of Hualalai volcano and the 1823 Keaiwa flow from the Great Crack of the Kilauea southwest rift zone had certain unusual and possibly unique properties for terrestrial basaltic lava flows. Both flows apparently had very low viscosities, high effusion rates, and uncommonly rapid rates of advance. Ultramafic xenolith nodules in the 1801 flow form stacks of cobbles with lava rinds of only millimeter thicknesses. The velocity of the lava stream in the 1801 flow was extremely high, at least 10 m/s (more than 40 km/h). Observations and geological evidence suggest similarly high velocities for the 1823 flow. The unusual eruption conditions that produced these lava flows suggest a floodlike mode of emplacement unlike that of most other present-day flows. Although considerable effort has gone into understanding the viscous fluid dynamics and thermal processes that often occur in basaltic flows, the unusual conditions prevalent for the Kaupulehu and Keaiwa flows necessitate different modeling considerations. We propose an elementary flood model for this type of lava emplacement and show that it produces consistent agreement with the overall dimensions of the flow, channel sizes, and other supporting field evidence. The reconstructed dynamics of these rapidly emplaced terrestrial lava flows provide significant insights about the nature of these eruptions and their analogs in planetary volcanism.
Roumet, Marie; Cayre, Adeline; Latreille, Muriel; Muller, Marie-Hélène
2015-01-01
Flowering time divergence can be a crucial component of reproductive isolation between sympatric populations, but few studies have quantified its actual contribution to the reduction of gene flow. In this study, we aimed at estimating pollen-mediated gene flow between cultivated sunflower and a weedy conspecific sunflower population growing in the same field and at quantifying, how it is affected by the weeds' flowering time. For that purpose, we extended an existing mating model by including a temporal distance (i.e. flowering time difference between potential parents) effect on mating probabilities. Using phenological and genotypic data gathered on the crop and on a sample of the weedy population and its offspring, we estimated an average hybridization rate of approximately 10%. This rate varied strongly from 30% on average for weeds flowering at the crop flowering peak to 0% when the crop finished flowering and was affected by the local density of weeds. Our result also suggested the occurrence of other factors limiting crop-to-weed gene flow. This level of gene flow and its dependence on flowering time might influence the evolutionary fate of weedy sunflower populations sympatric to their crop relative. PMID:25667603
Speciation with gene flow in whiptail lizards from a Neotropical xeric biome.
Oliveira, Eliana F; Gehara, Marcelo; São-Pedro, Vinícius A; Chen, Xin; Myers, Edward A; Burbrink, Frank T; Mesquita, Daniel O; Garda, Adrian A; Colli, Guarino R; Rodrigues, Miguel T; Arias, Federico J; Zaher, Hussam; Santos, Rodrigo M L; Costa, Gabriel C
2015-12-01
Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well-delimited lineages (Northeast and Southwest) that have diverged along the Cerrado-Caatinga border during the Mid-Late Miocene (6-14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado-Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process. © 2015 John Wiley & Sons Ltd.
Feurtey, Alice; Cornille, Amandine; Shykoff, Jacqui A; Snirc, Alodie; Giraud, Tatiana
2017-02-01
Crop-to-wild gene flow can reduce the fitness and genetic integrity of wild species. Malus sylvestris , the European crab-apple fruit tree in particular, is threatened by the disappearance of its habitat and by gene flow from its domesticated relative , Malus domestica . With the aims of evaluating threats for M. sylvestris and of formulating recommendations for its conservation, we studied here, using microsatellite markers and growth experiments: (i) hybridization rates in seeds and trees from a French forest and in seeds used for replanting crab apples in agrosystems and in forests, (ii) the impact of the level of M. domestica ancestry on individual tree fitness and (iii) pollen dispersal abilities in relation to crop-to-wild gene flow. We found substantial contemporary crop-to-wild gene flow in crab-apple tree populations and superior fitness of hybrids compared to wild seeds and seedlings. Using paternity analyses, we showed that pollen dispersal could occur up to 4 km and decreased with tree density. The seed network furnishing the wild apple reintroduction agroforestry programmes was found to suffer from poor genetic diversity, introgressions and species misidentification. Overall, our findings indicate supported threats for the European wild apple steering us to provide precise recommendations for its conservation.
Intercontinental gene flow among western arctic populations of Lesser Snow Geese
Shorey, Rainy I.; Scribner, Kim T.; Kanefsky, Jeannette; Samuel, Michael D.; Libants, Scot V.
2011-01-01
Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced.
Turbine Design for Energy Extraction from Dust Devils
NASA Astrophysics Data System (ADS)
Malaya, Nicholas; Moser, Robert
2016-11-01
Columnar vortices ("Dust-Devils") arise naturally in the atmosphere, over a wide range of scales in many different locations across the Earth, as well as on Mars. A new energy harvesting approach makes use of this ubiquitous process by creating and anchoring the vortices artificially and extracting energy from them. However, any analysis of the power that can be extracted is complicated by the presence of considerable vertical and azimuthal flow in the vortex, and so the design considerations are different from those for a classical wind turbine. This talk presents a modeling approach to estimate the upper limit on the power that could be extracted from such a flow. This method is based on the actuator disk model common to turbine design, but with generalized drag polars permitting exploration of a broader design space. This model can be fully coupled to the flow, which ensures the results do not violate any Betz-like considerations that might similarly arise in an analysis of frozen flow fields. The results of this model demonstrate a limit on how much of the energy can be extracted before disrupting the flow so greatly that the vortex cannot be maintained. This work supported by the Department of Energy [ARPA-E] un- der Award Number [DE-FOA-0000670].
Grimes, Daniel T.; Keynton, Jennifer L.; Buenavista, Maria T.; Jin, Xingjian; Patel, Saloni H.; Kyosuke, Shinohara; Williams, Debbie J.; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M.; Norris, Dominic P.
2016-01-01
During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319
Clinical Applications Involving CNS Gene Transfer
Kantor, Boris; McCown, Thomas; Leone, Paola; Gray, Steven J.
2015-01-01
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood–brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors. PMID:25311921
Bartsch, Detlef; Cuguen, Joel; Biancardi, Enrico; Sweet, Jeremy
2003-01-01
Gene flow via seed or pollen is a basic biological process in plant evolution. The ecological and genetic consequences of gene flow depend on the amount and direction of gene flow as well as on the fitness of hybrids. The assessment of potential risks of transgenic plants should take into account the fact that conventional crops can often cross with wild plants. The precautionary approach in risk management of genetically modified plants (GMPs) may make it necessary to monitor significant wild and weed populations that might be affected by transgene escape. Gene flow is hard to control in wind-pollinated plants like beet (Beta vulgaris). In addition, wild beet populations potentially can undergo evolutionary changes which might expand their geographical distribution. Unintended products of cultivated beets pollinated by wild beets are weed beets that bolt and flower during their first year of planting. Weed beets cause yield losses and can delay harvest. Wild beets are important plant genetic resources and the preservation of wild beet diversity in Europe has been considered in biosafety research. We present here the methodology and research approaches that can be used for monitoring the geographical distribution and diversity of Beta populations. It has recently been shown that a century of gene flow from Beta vulgaris ssp. vulgaris has not altered the genetic diversity of wild Beta vulgaris L. ssp. maritima (L.) Arcang. in the Italian sugar beet seed production area. Future research should focus on the potential evolution of transgenic wild beet populations in comparison to these baseline data. Two monitoring models are presented describing how endpoints can be measured: (1) "Pre-post" crop commercialization against today's baseline and (2) "Parallel" to crop commercialization against GMP free reference areas/ populations. Model 2 has the advantage of taking ongoing changes in genetic diversity and population dynamics into account. Model 1 is more applicable if gene flow is so strong that most areas/populations contain GMPs. Important traits that may change the ecology of populations are genes that confer tolerance to biotic and abiotic stress. An assessment of environmental effects can realistically only be based on endpoints and consequences of gene introgression, which may include economic values of biodiversity in littoral and other ecosystems containing wild beet. In general, there is still a great need to harmonize worldwide monitoring systems by the development of appropriate methods to evaluate the environmental impact of introgressed transgenes.
Lindtke, Dorothea; Gompert, Zachariah; Lexer, Christian; Buerkle, C Alex
2014-09-01
In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early vs. late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11 976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity. © 2014 John Wiley & Sons Ltd.
Shirk, Andrew J; Landguth, Erin L; Cushman, Samuel A
2018-01-01
Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Sample design effects in landscape genetics
Oyler-McCance, Sara J.; Fedy, Bradley C.; Landguth, Erin L.
2012-01-01
An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10-300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts.
Chattopadhyay, Balaji; Garg, Kritika M; Gwee, Chyi Yin; Edwards, Scott V; Rheindt, Frank E
2017-09-01
Pleistocene climatic fluctuations are known to be an engine of biotic diversification at higher latitudes, but their impact on highly diverse tropical areas such as the Andes remains less well-documented. Specifically, while periods of global cooling may have led to fragmentation and differentiation at colder latitudes, they may - at the same time - have led to connectivity among insular patches of montane tropical habitat with unknown consequences on diversification. In the present study we utilized ~5.5 kb of DNA sequence data from eight nuclear loci and one mitochondrial gene alongside diagnostic morphological and bioacoustic markers to test the effects of Pleistocene climatic fluctuations on diversification in a complex of Andean tyrant-flycatchers of the genus Elaenia. Population genetic and phylogenetic approaches coupled with coalescent simulations demonstrated disparate levels of gene flow between the taxon chilensis and two parapatric Elaenia taxa predominantly during the last glacial period but not thereafter, possibly on account of downward shifts of montane forest habitat linking the populations of adjacent ridges. Additionally, morphological and bioacoustic analyses revealed a distinct pattern of character displacement in coloration and vocal traits between the two sympatric taxa albiceps and pallatangae, which were characterized by a lack of gene flow. Our study demonstrates that global periods of cooling are likely to have facilitated gene flow among Andean montane Elaenia flycatchers that are more isolated from one another during warm interglacial periods such as the present era. We also identify a hitherto overlooked case of plumage and vocal character displacement, underpinning the complexities of gene flow patterns caused by Pleistocene climate change across the Andes.
Bagavathiannan, Muthukumar V; Gulden, Robert H; Van Acker, Rene C
2011-04-01
Alfalfa is a highly outcrossing perennial species that can be noticed in roadsides as feral populations. There remains little information available on the extent of feral alfalfa populations in western Canadian prairies and their role in gene flow. The main objectives of this study were (a) to document the occurrence of feral alfalfa populations, and (b) to estimate the levels of outcrossing facilitated by feral populations. A roadside survey confirmed widespread occurrence of feral alfalfa populations, particularly in alfalfa growing regions. The feral populations were dynamic and their frequency ranged from 0.2 to 1.7 populations km(-1). In many cases, the nearest feral alfalfa population from alfalfa production field was located within a distance sufficient for outcrossing in alfalfa. The gene flow study confirmed that genes can move back and forth between feral and cultivated alfalfa populations. In this study, the estimated outcrossing levels were 62% (seed fields to feral), 78% (feral to seed fields), 82% (hay fields to feral) and 85% (feral to feral). Overall, the results show that feral alfalfa plants are prevalent in alfalfa producing regions in western Canada and they can serve as bridges for gene flow at landscape level. Management of feral populations should be considered, if gene flow is a concern. Emphasis on preventing seed spill/escapes and intentional roadside planting of alfalfa cultivars will be particularly helpful. Further, realistic and pragmatic threshold levels should be established for markets sensitive to the presence of GE traits.
Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data
Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans
2015-01-01
Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow. PMID:26187295
Dwivedi, Ankit; Khim, Nimol; Reynes, Christelle; Ravel, Patrice; Ma, Laurence; Tichit, Magali; Bourchier, Christiane; Kim, Saorin; Dourng, Dany; Khean, Chanra; Chim, Pheaktra; Siv, Sovannaroth; Frutos, Roger; Lek, Dysoley; Mercereau-Puijalon, Odile; Ariey, Frédéric; Menard, Didier; Cornillot, Emmanuel
2016-06-14
Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008-2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010-2011 from 16 health centres in malaria endemics areas in Cambodia. Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia.
Crop-to-wild gene flow, introgression and possible fitness effects of transgenes.
Jenczewski, Eric; Ronfort, Joëlle; Chèvre, Anne-Marie
2003-01-01
Crop-to-wild gene flow has received close attention over the past ten years in connection with the development and cultivation of transgenic crops. In this paper, we review key examples of crop/wild sympatry and overlapping flowering phenology, pollen and seed dispersal, the barriers to hybridisation and introgression, the evolution and fate of interspecific hybrids, their fitness, and the potential cost of transgenes. We pay particular attention to ways in which the evolution and divergence between crops and their wild relatives may interfere with these successive steps. Our review suggests that crop-to-weed gene flow is highly idiosyncratic and that crop gene dispersion will certainly be very difficult to preclude totally. Future directions for research should thus focus on the long-term establishment and effects of transgenes on natural communities.
Vosen, Sarah; Rieck, Sarah; Heidsieck, Alexandra; Mykhaylyk, Olga; Zimmermann, Katrin; Plank, Christian; Gleich, Bernhard; Pfeifer, Alexander; Fleischmann, Bernd K; Wenzel, Daniela
2016-11-10
Gene therapy is a promising approach for chronic disorders that require continuous treatment such as cardiovascular disease. Overexpression of vasoprotective genes has generated encouraging results in animal models, but not in clinical trials. One major problem in humans is the delivery of sufficient amounts of genetic vectors to the endothelium which is impeded by blood flow, whereas prolonged stop-flow conditions impose the risk of ischemia. In the current study we have therefore developed a strategy for the efficient circumferential lentiviral gene transfer in the native endothelium under constant flow conditions. For that purpose we perfused vessels that were exposed to specially designed magnetic fields with complexes of lentivirus and magnetic nanoparticles thereby enabling overexpression of therapeutic genes such as endothelial nitric oxide synthase (eNOS) and vascular endothelial growth factor (VEGF). This treatment enhanced NO and VEGF production in the transduced endothelium and resulted in a reduction of vascular tone and increased angiogenesis. Thus, the combination of MNPs with magnetic fields is an innovative strategy for site-specific and efficient vascular gene therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Recent advances concerning an understanding of sound transmission through engine nozzles and jets
NASA Technical Reports Server (NTRS)
Bechert, D.; Michel, U.; Dfizenmaier, E.
1978-01-01
Experiments on the interaction between a turbulent jet and pure tone sound coming from inside the jet nozzle are reported. This is a model representing the sound transmission from sound sources in jet engines through the nozzle and the jet flow into the far field. It is shown that pure tone sound at low frequencies is considerably attenuated by the jet flow, whereas it is conserved at higher frequencies. On the other hand, broadband jet noise can be amplified considerably by a pure tone excitation. Both effects seem not to be interdependent. Knowledge on how they are created and on relevant parameter dependences allow new considerations for the development of sound attenuators.
Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations.
Shama, Lisa N S; Kubow, Karen B; Jokela, Jukka; Robinson, Christopher T
2011-09-27
Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003. We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods. We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state, or whether the observed changes represent a new genetic equilibrium.
Légère, Anne
2005-03-01
Data from the literature and recent experiments with herbicide-resistant (HR) canola (Brassica napus L) repeatedly confirm that genes and transgenes will flow and hybrids will form if certain conditions are met. These include sympatry with a compatible relative (weedy, wild or crop), synchrony of flowering, successful fertilization and viable offspring. The chance of these events occurring is real; however, it is generally low and varies with species and circumstances. Plants of the same species (non-transgenic or with a different HR transgene) in neighbouring fields may inherit the new HR gene, potentially generating plants with single and multiple HR. For canola, seed losses at harvest and secondary dormancy ensures the persistence over time of the HR trait(s) in the seed bank, and the potential presence of crop volunteers in subsequent crops. Although canola has many wild/weedy relatives, the risk of gene flow is quite low for most of these species, except with Brassica rapa L. Introgression of genes and transgenes in B rapa populations occurs with apparently little or no fitness costs. Consequences of HR canola gene flow for the agro-ecosystem include contamination of seed lots, potentially more complex and costly control strategy, and limitations in cropping system design. Consequences for non-agricultural habitats may be minor but appear largely undocumented. Minister of Public Works and Government Services Canada 2005
Evaluation of exhaled nitric oxide in schoolchildren at different exhalation flow rates.
Pedroletti, Christophe; Zetterquist, Wilhelm; Nordvall, Lennart; Alving, Kjell
2002-09-01
Nitric oxide (NO) in exhaled air is believed to reflect allergic inflammation in the airways. Measured levels of exhaled NO vary with the exhaled flow rate, which therefore must be standardized. The aim of this study was to estimate the optimal exhalation flow rate when measuring NO in exhaled air. We studied 15 asthmatic children (8-18 y) with elevated NO levels and 15 age-matched controls and focused on how the quality of the NO curve profile, the discriminatory power, and the reproducibility were influenced by the exhalation flow rate. We used an on-line system for NO measurements at six different exhalation flow rates in the interval of 11-382 mL/s. The fraction of exhaled nitric oxide (FENO) was highly flow-dependent as was expected. Intermediate flow rates yielded a flat and stable NO plateau and were considerably easier to interpret than those obtained at the highest and lowest flow rates. The ratio of FENO between asthmatics and controls was lower at higher flow rates and a considerable overlap in NO values was demonstrated at all flow rates except 50 mL/s. The reproducibility was much lower at more extreme flow rates and was best at 50 mL/s. We conclude that a target exhalation flow rate of approximately 50 mL/s is to be preferred using the single-breath method for on-line NO measurements in schoolchildren.
Transborder Data Flow, Informatics and National Policies: A Comparison among 22 Nations.
ERIC Educational Resources Information Center
Wigand, Rolf T.; And Others
The product of advanced information technology and digital transmission capabilities, transborder data flow (TDF)--the flow of information across national borders via computer and other electronic communications systems--has considerable political, social, economic, and legal implications. Important issues in TDF include (1) the regulation of…
Identification of genes and gene clusters involved in mycotoxin synthesis
USDA-ARS?s Scientific Manuscript database
Research methods to identify and characterize genes involved in mycotoxin biosynthetic pathways have evolved considerably over the years. Before whole genome sequences were available (e.g. pre-genomics), work focused primarily on chemistry, biosynthetic mutant strains and molecular analysis of sing...
Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M; Marcet, Paula L
2013-12-01
Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. Copyright © 2013. Published by Elsevier B.V.
Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M.; Marcet, Paula L.
2016-01-01
Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. PMID:24035810
Ethylene Trace-gas Techniques for High-speed Flows
NASA Technical Reports Server (NTRS)
Davis, David O.; Reichert, Bruce A.
1994-01-01
Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.
Plastid DNA analysis reveals cryptic hybridization in invasive dalmatian toadflax populations
Andrew Boswell; Sharlene E. Sing; Sarah M. Ward
2016-01-01
Gene flow between Dalmatian toadflax (DT) and yellow toadflax (YT), both aggressive invaders throughout the Intermountain West, is creating hybrid populations potentially more invasive than either parent species. To determine the direction of gene flow in these hybrid populations, species-diagnostic cytoplasmic markers were developed. Markers were based on...
Identification of landscape features influencing gene flow: How useful are habitat selection models?
Gretchen H. Roffler; Michael K. Schwartz; Kristine Pilgrim; Sandra L. Talbot; George K. Sage; Layne G. Adams; Gordon Luikart
2016-01-01
Understanding how dispersal patterns are influenced by landscape heterogeneity is critical for modeling species connectivity. Resource selection function (RSF) models are increasingly used in landscape genetics approaches. However, because the ecological factors that drive habitat selection may be different from those influencing dispersal and gene flow, it is...
USDA-ARS?s Scientific Manuscript database
Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color polymorphisms, and shows evidence of genetic structuring among regional populations. We test whether this structure is evidence for discrete gene flow barriers tha...
In a landscape level study, gene flow via pollen was tracked from multiple source fields of genetically modified (GM) herbicide resistant creeping bentgrass (Agrostis stolonifera L.) to 75 of 138 sentinel plants of A. stolonifera and to 29 of 69 resident populations of Agrostis s...
Pollen and seed mediated gene flow in commercial alfalfa seed production fields
USDA-ARS?s Scientific Manuscript database
The potential for gene flow has been widely recognized since alfalfa is pollinated by bees. The Western US is a major exporter of alfalfa seed and hay and the organic dairy industry is one of the fastest growing agricultural sectors. Because of this, many alfalfa producers are impacted by market sen...
Earlier population genetic spatial analysis of European corn borer, Ostrinia nubilalis (Hubner), indicated no genetic differentiation even between locations separated by 720 km. This result suggests either high dispersal resulting in high gene flow, or that populations are not in...
Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho
Tzeidle N. Wasserman; Samuel A. Cushman; Michael K. Schwartz; David O. Wallin
2010-01-01
Individual-based analyses relating landscape structure to genetic distances across complex landscapes enable rigorous evaluation of multiple alternative hypotheses linking landscape structure to gene flow. We utilize two extensions to increase the rigor of the individual-based causal modeling approach to inferring relationships between landscape patterns and gene flow...
Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears
Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth
2015-01-01
Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. PMID:25490862
Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears.
Cahill, James A; Stirling, Ian; Kistler, Logan; Salamzade, Rauf; Ersmark, Erik; Fulton, Tara L; Stiller, Mathias; Green, Richard E; Shapiro, Beth
2015-03-01
Polar bears are an arctic, marine adapted species that is closely related to brown bears. Genome analyses have shown that polar bears are distinct and genetically homogeneous in comparison to brown bears. However, these analyses have also revealed a remarkable episode of polar bear gene flow into the population of brown bears that colonized the Admiralty, Baranof and Chichagof islands (ABC islands) of Alaska. Here, we present an analysis of data from a large panel of polar bear and brown bear genomes that includes brown bears from the ABC islands, the Alaskan mainland and Europe. Our results provide clear evidence that gene flow between the two species had a geographically wide impact, with polar bear DNA found within the genomes of brown bears living both on the ABC islands and in the Alaskan mainland. Intriguingly, while brown bear genomes contain up to 8.8% polar bear ancestry, polar bear genomes appear to be devoid of brown bear ancestry, suggesting the presence of a barrier to gene flow in that direction. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Population connectivity of endangered Ozark big-eared bats (Corynorhinus townsendii ingens)
Lee, Dana N.; Stark, Richard C.; Puckette, William L.; Hamilton, Meredith J.; Leslie, David M.; Van Den Bussche, Ronald A.
2015-01-01
The endangered Ozark big-eared bat (Corynorhinus townsendii ingens) is restricted to eastern Oklahoma and western and north-central Arkansas, where populations may be susceptible to losses of genetic variation due to patchy distribution of colonies and potentially small effective population sizes. We used mitochondrial D-loop DNA sequences and 15 nuclear microsatellite loci to determine population connectivity among Ozark big-eared bat caves. Assessment of 7 caves revealed a haplotype not detected in a previous study (2002–2003) and gene flow among colonies in eastern Oklahoma. Our data suggest genetic mixing of individuals, which may be occurring at nearby swarming sites in the autumn. Further evidence of limited gene flow between caves in Oklahoma with a cave in Arkansas highlights the importance of including samples from geographically widespread caves to fully understand gene flow in this subspecies. It appears autumn swarming sites and winter hibernacula play an important role in providing opportunities for mating; therefore, we suggest protection of these sites, maternity caves, and surrounding habitat to facilitate gene flow among populations of Ozark big-eared bats.
Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel
2016-12-14
Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean F ST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds.
Martínez, Amparo; Manunza, Arianna; Delgado, Juan Vicente; Landi, Vincenzo; Adebambo, Ayotunde; Ismaila, Muritala; Capote, Juan; El Ouni, Mabrouk; Elbeltagy, Ahmed; Abushady, Asmaa M.; Galal, Salah; Ferrando, Ainhoa; Gómez, Mariano; Pons, Agueda; Badaoui, Bouabid; Jordana, Jordi; Vidal, Oriol; Amills, Marcel
2016-01-01
Human-driven migrations are one of the main processes shaping the genetic diversity and population structure of domestic species. However, their magnitude and direction have been rarely analysed in a statistical framework. We aimed to estimate the impact of migration on the population structure of Spanish and African goats. To achieve this goal, we analysed a dataset of 1,472 individuals typed with 23 microsatellites. Population structure of African and Spanish goats was moderate (mean FST = 0.07), with the exception of the Canarian and South African breeds that displayed a significant differentiation when compared to goats from North Africa and Nigeria. Measurement of gene flow with Migrate-n and IMa coalescent genealogy samplers supported the existence of a bidirectional gene flow between African and Spanish goats. Moreover, IMa estimates of the effective number of migrants were remarkably lower than those calculated with Migrate-n and classical approaches. Such discrepancies suggest that recent divergence, rather than extensive gene flow, is the main cause of the weak population structure observed in caprine breeds. PMID:27966592
Population genetic structure of moose (Alces alces) of South-central Alaska
Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.
2015-01-01
The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.
Gene Flow Patterns of the Mayfly Fallceon quilleri in San Diego County, California.
NASA Astrophysics Data System (ADS)
Zickovich, J.; Bohonak, A. J.
2005-05-01
Management decisions and conservation strategies for freshwater invertebrates critically depend on an understanding of gene flow and genetic structure. We collected the mayfly Fallceon quilleri (Ephemeroptera: Baetidae) from 15 streams across three geographically distinct watersheds in San Diego County, California (San Dieguito, Santa Margarita, and Tijuana) and one site in Anza-Borrego desert. We sequenced a 667 base pair region of the mitochondrial DNA (COI) to assess genetic structure and gene flow. We found eight haplotypes across all populations. San Dieguito and Santa Margarita each contained six haplotypes. Tijuana and Anza Borrego each contained four haplotypes. The expected heterozygosity for San Dieguito, Santa Margarita, Tijuana, and Anza Borrego was 0.81, 0.83, 0.75, and 1.0, respectively. A hierarchical AMOVA analysis indicated restricted gene flow and a pairwise comparison indicated that Tijuana watershed differs significantly from San Dieguito and Anza Borrego. A haplotype cladogram revealed two internal ancestral haplotypes and six derived tip haplotypes that are unique to particular watersheds. These results suggest that Tijuana (the southernmost and the most impacted watershed) is more genetically distinct and isolated than the other watersheds sampled.
Funk, W. C.; Murphy, M.A.; Hoke, K. L.; Muths, Erin L.; Amburgey, Staci M.; Lemmon, Emily M.; Lemmon, A. R.
2016-01-01
Evolutionary theory predicts that divergent selection pressures across elevational gradients could cause adaptive divergence and reproductive isolation in the process of ecological speciation. Although there is substantial evidence for adaptive divergence across elevation, there is less evidence that this restricts gene flow. Previous work in the boreal chorus frog (Pseudacris maculata) has demonstrated adaptive divergence in morphological, life history and physiological traits across an elevational gradient from approximately 1500–3000 m in the Colorado Front Range, USA. We tested whether this adaptive divergence is associated with restricted gene flow across elevation – as would be expected if incipient speciation were occurring – and, if so, whether behavioural isolation contributes to reproductive isolation. Our analysis of 12 microsatellite loci in 797 frogs from 53 populations revealed restricted gene flow across elevation, even after controlling for geographic distance and topography. Calls also varied significantly across elevation in dominant frequency, pulse number and pulse duration, which was partly, but not entirely, due to variation in body size and temperature across elevation. However, call variation did not result in strong behavioural isolation: in phonotaxis experiments, low-elevation females tended to prefer an average low-elevation call over a high-elevation call, and vice versa for high-elevation females, but this trend was not statistically significant. In summary, our results show that adaptive divergence across elevation restricts gene flow in P. maculata, but the mechanisms for this potential incipient speciation remain open.
Welt, Rachel S; Litt, Amy; Franks, Steven J
2015-03-27
The impact of environmental change on population structure is not well understood. This study aimed to examine the effect of a climate change event on gene flow over space and time in two populations of Brassica rapa that evolved more synchronous flowering times over 5 years of drought in southern California. Using plants grown from seeds collected before and after the drought, we estimated genetic parameters within and between populations and across generations. We expected that with greater temporal opportunity to cross-pollinate, due to reduced phenological isolation, these populations would exhibit an increase in gene flow following the drought. We found low but significant FST, but no change in FST or Nm across the drought, in contrast to predictions. Bayesian analysis of these data indicates minor differentiation between the two populations but no noticeable change in structure before and after the shift in flowering times. However, we found high and significant levels of FIS, indicating that inbreeding likely occurred in these populations despite self-incompatibility in B. rapa. In this system, we did not find an impact of climate change on gene flow or population structuring. The contribution of gene flow to adaptive evolution may vary by system, however, and is thus an important parameter to consider in further studies of natural responses to environmental change. Published by Oxford University Press on behalf of the Annals of Botany Company.
Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C
2010-06-01
Transgenic wheat (Triticum aestivum L.) with improved agronomic traits is currently being field-tested. Gene flow in space is well-documented, but isolation in time has not received comparable attention. Here, we report the results of a field experiment that investigated reductions in intraspecific gene flow associated with temporal isolation of flowering between T. aestivum conspecifics. Pollen-mediated gene flow (PMGF) between an imazamox-resistant (IR) volunteer wheat population and a non-IR spring wheat crop was assessed over a range of volunteer emergence timings and plant population densities that collectively promoted flowering asynchrony. Natural hybridization events between the two populations were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) lines. Based on the examination of >545,000 seedlings, we identified a hybridization window in spring wheat approximately 125 growing degree-days (GDD) in length. We found a sizeable reduction (two- to four-fold) in gene flow frequencies when flowering occurred outside of this window. The hybridization window identified in this research also will serve to temporally isolate neighboring wheat crops. However, strict control of volunteer populations or spatial isolation of neighbouring crops emerging within a 125 GDD hybridization window will be necessary to maintain low frequencies of PMGF in spring wheat fields. The model developed herein also is likely to be applicable to other wind-pollinated species.
Intercontinental gene flow among western arctic populations of lesser snow geese
Shorey, Rainy I.; Scribner, K.T.; Kanefsky, Jeannette; Samuel, M.D.; Libants, S.V.
2011-01-01
Quantifying the spatial genetic structure of highly vagile species of birds is important in predicting their degree of population demographic and genetic independence during changing environmental conditions, and in assessing their abundance and distribution. In the western Arctic, Lesser Snow Geese (Chen caerulescens caerulescens) provide an example useful for evaluating spatial population genetic structure and the relative contribution of male and female philopatry to breeding and wintering locales. We analyzed biparentally inherited microsatellite loci and maternally inherited mtDNA sequences from geese breeding at Wrangel Island (Russia) and Banks Island (Canada) to estimate gene flow among populations whose geographic overlap during breeding and winter differ. Significant differences in the frequencies of mtDNA haplotypes contrast with the homogeneity of allele frequencies for microsatellite loci. Coalescence simulations revealed high variability and asymmetry between males and females in rates and direction of gene flow between populations. Our results highlight the importance of wintering areas to demographic independence and spatial genetic structure of these populations. Male-mediated gene flow among the populations on northern Wrangel Island, southern Wrangel Island, and Banks Island has been substantial. A high rate of female-mediated gene flow from southern Wrangel Island to Banks Island suggests that population exchange can be achieved when populations winter in a common area. Conversely, when birds from different breeding populations do not share a common wintering area, the probability of population exchange is likely to be dramatically reduced. ?? The Cooper Ornithological Society 2011.
Spear, Stephen F; Storfer, Andrew
2008-11-01
Habitat loss and fragmentation are the leading causes of species' declines and extinctions. A key component of studying population response to habitat alteration is to understand how fragmentation affects population connectivity in disturbed landscapes. We used landscape genetic analyses to determine how habitat fragmentation due to timber harvest affects genetic population connectivity of the coastal tailed frog (Ascaphus truei), a forest-dwelling, stream-breeding amphibian. We compared rates of gene flow across old-growth (Olympic National Park) and logged landscapes (Olympic National Forest) and used spatial autoregression to estimate the effect of landscape variables on genetic structure. We detected higher overall genetic connectivity across the managed forest, although this was likely a historical signature of continuous forest before timber harvest began. Gene flow also occurred terrestrially, as connectivity was high across unconnected river basins. Autoregressive models demonstrated that closed forest and low solar radiation were correlated with increased gene flow. In addition, there was evidence for a temporal lag in the correlation of decreased gene flow with harvest, suggesting that the full genetic impact may not appear for several generations. Furthermore, we detected genetic evidence of population bottlenecks across the Olympic National Forest, including at sites that were within old-growth forest but surrounded by harvested patches. Collectively, this research suggests that absence of forest (whether due to natural or anthropogenic changes) is a key restrictor of genetic connectivity and that intact forested patches in the surrounding environment are necessary for continued gene flow and population connectivity.
Laser Doppler detection systems for gas velocity measurement.
Huffaker, R M
1970-05-01
The velocity of gas flow has been remotely measured using a technique which involves the coherent detection of scattered laser radiation from small particles suspended in the fluid utilizing the doppler effect. Suitable instrumentation for the study of wind tunnel type and atmospheric flows are described. Mainly for reasons of spatial resolution, a function of the laser wavelength, the wind tunnel system utilizes an argon laser operating at 0.5 micro. The relaxed spatial resolution requirement of atmospheric applications allows the use of a carbon dioxide laser, which has superior performance at a wavelength of 10.6 micro, a deduction made from signal-to-noise ratio considerations. Theoretical design considerations are given which consider Mie scattering predictions, two-phase flow effects, photomixing fundamentals, laser selection, spatial resolution, and spectral broadening effects. Preliminary experimental investigations using the instrumentation are detailed. The velocity profile of the flow field generated by a 1.27-cm diam subsonic jet was investigated, and the result compared favorably with a hot wire investigation conducted in the same jet. Measurements of wind velocity at a range of 50 m have also shown the considerable promise of the atmospheric system.
The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia.
Yan, Hongbin; Lou, Zhongzi; Li, Li; Ni, Xingwei; Guo, Aijiang; Li, Hongmin; Zheng, Yadong; Dyachenko, Viktor; Jia, Wanzhong
2013-03-01
Most species of the genus Taenia are of considerable medical and veterinary significance. In this study, complete nuclear 18S rRNA gene sequences were obtained from seven members of genus Taenia [Taenia multiceps, Taenia saginata, Taenia asiatica, Taenia solium, Taenia pisiformis, Taenia hydatigena, and Taenia taeniaeformis] and a phylogeny inferred using these sequences. Most of the variable sites fall within the variable regions, V1-V5. We show that sequences from the nuclear 18S ribosomal RNA gene have considerable promise as sources of phylogenetic information within the genus Taenia. Furthermore, given that almost all the variable sites lie within defined variable portions of that gene, it will be appropriate and economical to sequence only those regions for additional species of Taenia.
Gene flow contributes to diversification of the major fungal pathogen Candida albicans.
Ropars, Jeanne; Maufrais, Corinne; Diogo, Dorothée; Marcet-Houben, Marina; Perin, Aurélie; Sertour, Natacha; Mosca, Kevin; Permal, Emmanuelle; Laval, Guillaume; Bouchier, Christiane; Ma, Laurence; Schwartz, Katja; Voelz, Kerstin; May, Robin C; Poulain, Julie; Battail, Christophe; Wincker, Patrick; Borman, Andrew M; Chowdhary, Anuradha; Fan, Shangrong; Kim, Soo Hyun; Le Pape, Patrice; Romeo, Orazio; Shin, Jong Hee; Gabaldon, Toni; Sherlock, Gavin; Bougnoux, Marie-Elisabeth; d'Enfert, Christophe
2018-06-08
Elucidating population structure and levels of genetic diversity and recombination is necessary to understand the evolution and adaptation of species. Candida albicans is the second most frequent agent of human fungal infections worldwide, causing high-mortality rates. Here we present the genomic sequences of 182 C. albicans isolates collected worldwide, including commensal isolates, as well as ones responsible for superficial and invasive infections, constituting the largest dataset to date for this major fungal pathogen. Although, C. albicans shows a predominantly clonal population structure, we find evidence of gene flow between previously known and newly identified genetic clusters, supporting the occurrence of (para)sexuality in nature. A highly clonal lineage, which experimentally shows reduced fitness, has undergone pseudogenization in genes required for virulence and morphogenesis, which may explain its niche restriction. Candida albicans thus takes advantage of both clonality and gene flow to diversify.
Margetts, Caroline D E; Morris, Mark; Astuti, Dewi; Gentle, Dean C; Cascon, Alberto; McRonald, Fiona E; Catchpoole, Daniel; Robledo, Mercedes; Neumann, Hartmut P H; Latif, Farida; Maher, Eamonn R
2008-01-01
The molecular genetics of inherited phaeochromocytoma have received considerable attention, but the somatic genetic and epigenetic events that characterise tumourigenesis in sporadic phaeochromocytomas are less well defined. Previously, we found considerable overlap between patterns of promoter region tumour suppressor gene (TSG) hypermethylation in two neural crest tumours, neuroblastoma and phaeochromocytoma. In order to identify candidate biomarkers and epigenetically inactivated TSGs in phaeochromocytoma and neuroblastoma, we characterised changes in gene expression in three neuroblastoma cell lines after treatment with the demethylating agent 5-azacytidine. Promoter region methylation status was then determined for 28 genes that demonstrated increased expression after demethylation. Three genes HSP47, homeobox A9 (HOXA9) and opioid binding protein (OPCML) were methylated in >10% of phaeochromocytomas (52, 17 and 12% respectively). Two of the genes, epithelial membrane protein 3 (EMP3) and HSP47, demonstrated significantly more frequent methylation in neuroblastoma than phaeochromocytoma. These findings extend epigenotype of phaeochromocytoma and identify candidate genes implicated in sporadic phaeochromocytoma tumourigenesis. PMID:18499731
Qiong, La; Zhang, Wenju; Wang, Hao; Zeng, Liyan; Birks, H. John B.; Zhong, Yang
2017-01-01
Hippophae tibetana is a small, dioecious wind-pollinated shrub endemic to the Tibetan-Qinghai Plateau. It is one of the shrubs that occur at very high elevations (5250 m a.s.l.). The Himalayan mountains provides a significant geographical barrier to the Qinghai-Tibetan Plateau, dividing the Himalayan area into two regions with Nepal to the south and Tibet to the north. There is no information on how the Himalayan mountains influence gene flow and population differentiation of alpine plants. In this study, we analyzed eight nuclear microsatellite markers and cpDNA trnT-trnF regions to test the role of the Himalayan mountains as a barrier to gene flow between populations of H. tibetana. We also examined the fine-scale genetic structure within a population of H. tibetana on the north slope of Mount (Mt.) Everest. For microsatellite analyses, a total of 241 individuals were sampled from seven populations in our study area (4 from Nepal, 3 from Tibet), including 121 individuals that were spatially mapped within a 100 m × 100 m plot. To test for seed flow, the cpDNA trnT-trnF regions of 100 individuals from 6 populations (4 from Nepal, 2 from Tibet) were also sequenced. Significant genetic differentiation was detected between the two regions by both microsatellite and cpDNA data analyses. These two datasets agree about southern and northern population differentiation, indicating that the Himalayan mountains represent a barrier to H. tibetana limiting gene flow between these two areas. At a fine scale, spatial autocorrelation analysis suggests significant genetic structure within a distance of less than 45 m, which may be attributed mainly to vegetative reproduction and habitat fragmentation, as well as limited gene flow. PMID:28489850
Qiong, La; Zhang, Wenju; Wang, Hao; Zeng, Liyan; Birks, H John B; Zhong, Yang
2017-01-01
Hippophae tibetana is a small, dioecious wind-pollinated shrub endemic to the Tibetan-Qinghai Plateau. It is one of the shrubs that occur at very high elevations (5250 m a.s.l.). The Himalayan mountains provides a significant geographical barrier to the Qinghai-Tibetan Plateau, dividing the Himalayan area into two regions with Nepal to the south and Tibet to the north. There is no information on how the Himalayan mountains influence gene flow and population differentiation of alpine plants. In this study, we analyzed eight nuclear microsatellite markers and cpDNA trnT-trnF regions to test the role of the Himalayan mountains as a barrier to gene flow between populations of H. tibetana. We also examined the fine-scale genetic structure within a population of H. tibetana on the north slope of Mount (Mt.) Everest. For microsatellite analyses, a total of 241 individuals were sampled from seven populations in our study area (4 from Nepal, 3 from Tibet), including 121 individuals that were spatially mapped within a 100 m × 100 m plot. To test for seed flow, the cpDNA trnT-trnF regions of 100 individuals from 6 populations (4 from Nepal, 2 from Tibet) were also sequenced. Significant genetic differentiation was detected between the two regions by both microsatellite and cpDNA data analyses. These two datasets agree about southern and northern population differentiation, indicating that the Himalayan mountains represent a barrier to H. tibetana limiting gene flow between these two areas. At a fine scale, spatial autocorrelation analysis suggests significant genetic structure within a distance of less than 45 m, which may be attributed mainly to vegetative reproduction and habitat fragmentation, as well as limited gene flow.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong
2015-10-01
Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly-regulated river basins of the globe.
Zhu, Chaoying; Chen, Peng; Han, Yuqing; Ruan, Luzhang
2018-05-12
The Ruddy-breasted Crake (Porzana fusca) is an extremely poorly known species. Although it is not listed as globally endangered, in recent years, with the interference of climate change and human activities, its habitat is rapidly disappearing and its populations have been shrinking. There are two different life history traits for Ruddy-breasted Crake in China, i.e., non-migratory population in the south and migratory population in the north of China. In this study, mitochondrial control sequences and microsatellite datasets of 88 individuals sampled from 8 sites were applied to analyze their genetic diversity, genetic differentiation, and genetic structure. Our results indicated that low genetic diversity and genetic differentiation exit in most populations. The neutrality test suggested significantly negative Fu's Fs value, which, in combination with detection of the mismatch distribution, indicated that population expansion occurred in the interglacier approximately 98,000 years ago, and the time of the most recent common ancestor (TMRCA) was estimated to about 202,705 years ago. Gene flow analysis implied that the gene flow was low, but gene exchange was frequent among adjacent populations. Both phylogenetic and STRUCTURE analyses implied weak genetic structure. In general, the genetic diversity, gene flow, and genetic structure of Ruddy-breasted Crake were low.
Burns, Lynne E; Frasier, Timothy R; Broders, Hugh G
2014-01-01
Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white-nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292-bp region of the mitochondrial genome. Analyses of FST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, P < 0.05, Global ΦST = 0.045, P < 0.01, STRUCTURE K = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male-biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation. PMID:25505539
An orange fluorescent protein tagging system for real-time pollen tracking.
Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal
2013-09-27
Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.
High Rates of Gene Flow by Pollen and Seed in Oak Populations across Europe
Gerber, Sophie; Chadœuf, Joël; Gugerli, Felix; Lascoux, Martin; Buiteveld, Joukje; Cottrell, Joan; Dounavi, Aikaterini; Fineschi, Silvia; Forrest, Laura L.; Fogelqvist, Johan; Goicoechea, Pablo G.; Jensen, Jan Svejgaard; Salvini, Daniela; Vendramin, Giovanni G.; Kremer, Antoine
2014-01-01
Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe. Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale. On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation. Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands. PMID:24454802
Ferchaud, Anne-Laure; Hansen, Michael M
2016-01-01
Heterogeneous genomic divergence between populations may reflect selection, but should also be seen in conjunction with gene flow and drift, particularly population bottlenecks. Marine and freshwater three-spine stickleback (Gasterosteus aculeatus) populations often exhibit different lateral armour plate morphs. Moreover, strikingly parallel genomic footprints across different marine-freshwater population pairs are interpreted as parallel evolution and gene reuse. Nevertheless, in some geographic regions like the North Sea and Baltic Sea, different patterns are observed. Freshwater populations in coastal regions are often dominated by marine morphs, suggesting that gene flow overwhelms selection, and genomic parallelism may also be less pronounced. We used RAD sequencing for analysing 28 888 SNPs in two marine and seven freshwater populations in Denmark, Europe. Freshwater populations represented a variety of environments: river populations accessible to gene flow from marine sticklebacks and large and small isolated lakes with and without fish predators. Sticklebacks in an accessible river environment showed minimal morphological and genomewide divergence from marine populations, supporting the hypothesis of gene flow overriding selection. Allele frequency spectra suggested bottlenecks in all freshwater populations, and particularly two small lake populations. However, genomic footprints ascribed to selection could nevertheless be identified. No genomic regions were consistent freshwater-marine outliers, and parallelism was much lower than in other comparable studies. Two genomic regions previously described to be under divergent selection in freshwater and marine populations were outliers between different freshwater populations. We ascribe these patterns to stronger environmental heterogeneity among freshwater populations in our study as compared to most other studies, although the demographic history involving bottlenecks should also be considered in the interpretation of results. © 2015 John Wiley & Sons Ltd.
Sympatric speciation of spiny mice, Acomys, unfolded transcriptomically at Evolution Canyon, Israel
Li, Kexin; Wang, Huihua; Cai, Zhenyuan; Wang, Liuyang; Xu, Qinqin; Lövy, Matěj; Wang, Zhenlong; Nevo, Eviatar
2016-01-01
Spiny mice, Acomys cahirinus, colonized Israel 30,000 y ago from dry tropical Africa and inhabited rocky habitats across Israel. Earlier, we had shown by mtDNA that A. cahirinus incipiently sympatrically speciates at Evolution Canyon I (EC I) in Mount Carmel, Israel because of microclimatic interslope divergence. The EC I microsite consists of a dry and hot savannoid “African” slope (AS) and an abutting humid and cool-forested “European” slope (ES). Here, we substantiate incipient SS in A. cahirinus at EC I based on the entire transcriptome, showing that multiple slope-specific adaptive complexes across the transcriptome result in two divergent clusters. Tajima’s D distribution of the abutting Acomys interslope populations shows that the ES population is under stronger positive selection, whereas the AS population is under balancing selection, harboring higher genetic polymorphisms. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25–0.75. Remarkably, 24 and 37 putatively adaptively selected genes were detected in the AS and ES populations, respectively. The AS genes involved DNA repair, growth arrest, neural cell differentiation, and heat-shock proteins adapting to the local AS stresses of high solar radiation, drought, and high temperature. In contrast, the ES genes involved high ATP associated with energetics stress. The sharp ecological interslope divergence led to strong slope-specific selection overruling the interslope gene flow. Earlier tests suggested slope-specific mate choice. Habitat interslope-adaptive selection across the transcriptome and mate choice substantiate sympatric speciation (SS), suggesting its prevalence at EC I and commonality in nature. PMID:27370801
Dhont, J K; Wagner, N J
2001-02-01
The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.
Stability in Young Infants' Discrimination of Optic Flow
ERIC Educational Resources Information Center
Gilmore, Rick O.; Baker, Thomas J.; Grobman, K. H.
2004-01-01
Although considerable progress has been made in understanding how adults perceive their direction of self-motion, or heading, from optic flow, little is known about how these perceptual processes develop in infants. In 3 experiments, the authors explored how well 3- to 6-month-old infants could discriminate between optic flow patterns that…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... tool. The PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and... PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and is... that reflects adequate consideration to the Government for the improved contractor cash flow...
Tania Barros; Samuel A. Cushman; Joao Carvalho; Carlos Fonseca
2016-01-01
Identifying the environmental features affecting gene flow across a species range is of extreme importance for conservation planning. We investigated the genetic structure of the Egyptian mongoose (Herpestes ichneumon) in Western Iberian Peninsula by analyzing the correlations between genetic distances and landscape resistance models. We evaluated several...
József Geml; Frank Kauff; Christan Brochmann; D.L. Taylor
2010-01-01
We examined genetic structure and long-distance gene flow in two lichenized ascomycetes, Flavocetraria cucullata and Flavocetraria nivalis, which are widespread in arctic and alpine tundra. DNA sequences were obtained for 90 specimens (49 for F. cucullata and 41 for F. nivalis)...
Simulating pattern-process relationships to validate landscape genetic models
A. J. Shirk; S. A. Cushman; E. L. Landguth
2012-01-01
Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...
Lindy B. Mullen; H. Arthur Woods; Michael K. Schwartz; Adam J. Sepulveda; Winsor H. Lowe
2010-01-01
The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho...
Phylogenomics of the killer whale indicates ecotype divergence in sympatry.
Moura, A E; Kenny, J G; Chaudhuri, R R; Hughes, M A; Reisinger, R R; de Bruyn, P J N; Dahlheim, M E; Hall, N; Hoelzel, A R
2015-01-01
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the 'marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists.
Application of cryopreservation to genetic analyses of a photosynthetic picoeukaryote community.
Kawachi, Masanobu; Kataoka, Takafumi; Sato, Mayumi; Noël, Mary-Hélène; Kuwata, Akira; Demura, Mikihide; Yamaguchi, Haruyo
2016-02-01
Cryopreservation is useful for long-term maintenance of living strains in microbial culture collections. We applied this technique to environmental specimens from two monitoring sites at Sendai Bay, Japan and compared the microbial diversity of photosynthetic picoeukaryotes in samples before and after cryopreservation. Flow cytometry (FCM) showed no considerable differences between specimens. We used 2500 cells sorted with FCM for next-generation sequencing of 18S rRNA gene amplicons and after removing low-quality sequences obtained 10,088-37,454 reads. Cluster analysis and comparative correlation analysis of observed high-level operational taxonomic units indicated similarity between specimens before and after cryopreservation. The effects of cryopreservation on cells were assessed with representative culture strains, including fragile cryptophyte cells. We confirmed the usefulness of cryopreservation for genetic studies on environmental specimens, and found that small changes in FCM cytograms after cryopreservation may affect biodiversity estimation. Copyright © 2015 Elsevier B.V. All rights reserved.
Phylogenomics of the killer whale indicates ecotype divergence in sympatry
Moura, A E; Kenny, J G; Chaudhuri, R R; Hughes, M A; Reisinger, R R; de Bruyn, P J N; Dahlheim, M E; Hall, N; Hoelzel, A R
2015-01-01
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the ‘marine speciation paradox'. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists. PMID:25052415
Investigation of the asymptotic state of rotating turbulence using large-eddy simulation
NASA Technical Reports Server (NTRS)
Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude
1993-01-01
Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.
O'Malley, Kathleen G; Jacobson, Dave P; Kurth, Ryon; Dill, Allen J; Banks, Michael A
2013-01-01
Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. PMID:24478800
Kejnovský, E; Vrána, J; Matsunaga, S; Soucek, P; Siroký, J; Dolezel, J; Vyskot, B
2001-07-01
The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted X chromosomes and autosomes as a template for PCR with internal primers. Our results indicate that the MROS3 gene is located in at least two copies tandemly arranged on the X chromosome with additional copy(ies) on the autosome(s), while MROS1, MROS2, and MROS4 are exclusively autosomal. The specificity of PCR products was checked by digestion with a restriction enzyme or reamplification using nested primers. Homology search of databases has shown the presence of five MROS3 homologues in A. thaliana, four of them arranged in two tandems, each consisting of two copies. We conclude that MROS3 is a low-copy gene family, connected with the proper pollen development, which is present not only in dioecious but also in other dicot plant species.
The Slotted Blade Axial-Flow Blower
1955-09-01
YORK 18, NEW YORK w is|’ .THE SLOTTED BLADE AXIAL-FLOW BLOVER AUG 0 1 13941J F Dr. H. E. Sheets, Member ASME Chief Research and Development Engineer ... blades of an axial flow blower. The subject of boundary-layer control has attracted considerable attention in respect to the isolated airfoil (1)1 but... blades . Flow through airfoils displays a region of laminar flow beginning at the leading edge. Further downstream, at approximately the location of the
Bischoff, W E; Kindermann, A; Sander, U; Sander, J
1995-10-01
In eleven centrally ventilated operating theatres the concentration of particles and airborne germs in wound vicinity was measured on three workdays. Five theatres were equipped with air supply ceilings with supporting flow outlets (supporting flow ceilings), five with laminar air flow ceilings and one with an air supply ceiling, a body exhaust system and a partition wall between the anesthetic and operating areas. Under routine conditions the air supply of the laminar air flow ceiling with its lower turbulence shielded the operating field from the largely staff-related air contamination in the rest of the theatre better than in the case of the supporting flow ceilings. Particles and airborne germs were removed from the endangered wound area faster. A spatial separation between the anesthetic and the operating areas as well as a body exhaust system lead to a considerable reduction of the contamination. Two theatres were conspicuous by reason of their considerably raised values due to defective control engineering and the wrongly positioning of the operating table. From the point of view of ventilation technique the laminar air flow ceilings with lower turbulence are superior to air supply ceilings with supporting flow outlets in the working day of an operating theatre. In order to minimize the influence of the staff, which up till now has been neglected in testing specifications, constructional possibilities such as the size of ceiling, the partitioning off of operating and anaesthetic areas and the positioning of the operating table in relation to the incoming air should be coordinated rationally. Taking measurements regularly during operations can provide the impulse for considerable improvements in both operational and planning phases.
Time-Distance Analysis of Deep Solar Convection
NASA Technical Reports Server (NTRS)
Duvall, T. L., Jr.; Hanasoge, S. M.
2011-01-01
Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees l is considerably smaller than the flows predicted by the ASH simulations (Miesch et a7. ref) at the depth r/R=0.95 ' The deep-focusing Lime-distance technique used to develop the upper limit was applied to linear acoustic simulations of a solar interior perturbed by convective flows in order to calibrate the technique. This technique has been applied to other depths in the convection zone and the results will be presented. The deep-focusing technique has considerable sensitivity to the flow ' signals at the desired subsurface location ' However, as shown by Birch {ref}, there is remaining much sensitivity to near-surface signals. Modifications to the technique using multiple bounce signals have been examined in a search for a more refined sensitivity, or kernel function. Initial results are encouraging and results will be presented'
Large eddy simulation applications in gas turbines.
Menzies, Kevin
2009-07-28
The gas turbine presents significant challenges to any computational fluid dynamics techniques. The combination of a wide range of flow phenomena with complex geometry is difficult to model in the context of Reynolds-averaged Navier-Stokes (RANS) solvers. We review the potential for large eddy simulation (LES) in modelling the flow in the different components of the gas turbine during a practical engineering design cycle. We show that while LES has demonstrated considerable promise for reliable prediction of many flows in the engine that are difficult for RANS it is not a panacea and considerable application challenges remain. However, for many flows, especially those dominated by shear layer mixing such as in combustion chambers and exhausts, LES has demonstrated a clear superiority over RANS for moderately complex geometries although at significantly higher cost which will remain an issue in making the calculations relevant within the design cycle.
Navier-Stokes and viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Vandalsem, William R.
1989-01-01
Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.
A PC-based inverse design method for radial and mixed flow turbomachinery
NASA Technical Reports Server (NTRS)
Skoe, Ivar Helge
1991-01-01
An Inverse Design Method suitable for radial and mixed flow turbomachinery is presented. The codes are based on the streamline curvature concept; therefore, it is applicable for current personal computers from the 286/287 range. In addition to the imposed aerodynamic constraints, mechanical constraints are imposed during the design process to ensure that the resulting geometry satisfies production consideration and that structural considerations are taken into account. By the use of Bezier Curves in the geometric modeling, the same subroutine is used to prepare input for both aero and structural files since it is important to ensure that the geometric data is identical to both structural analysis and production. To illustrate the method, a mixed flow turbine design is shown.
Sachithanandan, Anand; Nanjaiah, Prakash; Wright, Christine J; Rooney, Stephen J
2008-01-01
Homozygous sickle cell disease (SCD) presents a multitude of challenges in patients undergoing cardiac surgery with cardiopulmonary bypass. Special consideration must be made in such patients and routine practice modified to prevent hypoxia, hypothermia, acidaemia and low-flow states which may potentially trigger a fatal sickling crisis perioperatively. We discuss several perioperative management strategies including a preoperative exchange transfusion, high flow normothermic bypass and warm blood cardioplegia that was utilized in a woman with homozygous SCD who underwent a successful double valve procedure.
Setoguchi, H; Watanabe, I
2000-06-01
Hybridization and introgression play important roles in plant evolution, and their occurrence on the oceanic islands provides good examples of plant speciation and diversification. Restriction fragment length polymorphisms (RFLPs) and trnL (UAA) 3'exon-trnF (GAA) intergenic spacer (IGS) sequences of chloroplast DNA (cpDNA), and the sequences of internal transcribed spacer (ITS) of nuclear ribosomal DNA were examined to investigate the occurrence of gene transfer in Ilex species on the Bonin Islands and the Ryukyu Islands in Japan. A gene phylogeny for the plastid genome is in agreement with the morphologically based taxonomy, whereas the nuclear genome phylogeny clusters putatively unrelated endemics both on the Bonin and the Ryukyu Islands. Intersectional hybridization and nuclear gene flow were independently observed in insular endemics of Ilex on both sets of islands without evidence of plastid introgression. Gene flow observed in these island systems can be explained by ecological features of insular endemics, i.e., limits of distribution range or sympatric distribution in a small land area.
Funk, Steven Daniel; Yurdagul, Arif; Green, Jonette M.; Jhaveri, Krishna A.; Schwartz, Martin Alexander; Orr, A. Wayne
2010-01-01
Rationale Atherosclerosis is initiated by blood flow patterns that activate inflammatory pathways in endothelial cells. Activation of inflammatory signaling by fluid shear stress is highly dependent on the composition of the subendothelial extracellular matrix. The basement membrane proteins laminin and collagen found in normal vessels suppress flow-induced p21 activated kinase (PAK) and NF-κB activation. By contrast, the provisional matrix proteins fibronectin and fibrinogen found in wounded or inflamed vessels support flow-induced PAK and NF-κB activation. PAK mediates both flow-induced permeability and matrix-specific activation of NF-κB. Objective To elucidate the mechanisms regulating matrix-specific PAK activation. Methods and Results We now show that matrix composition does not affect the upstream pathway by which flow activates PAK (integrin activation, Rac). Instead basement membrane proteins enhance flow-induced protein kinase A (PKA) activation, which suppresses PAK. Inhibiting PKA restored flow-induced PAK and NF-κB activation in cells on basement membrane proteins, whereas stimulating PKA inhibited flow-induced activation of inflammatory signaling in cells on fibronectin. PKA suppressed inflammatory signaling through PAK inhibition. Activating PKA by injection of the PGI2 analog iloprost reduced PAK activation and inflammatory gene expression at sites of disturbed flow in vivo, whereas inhibiting PKA by PKI injection enhanced PAK activation and inflammatory gene expression. Inhibiting PAK prevented the enhancement of inflammatory gene expression by PKI. Conclusions Basement membrane proteins inhibit inflammatory signaling in endothelial cells via PKA-dependent inhibition of PAK. PMID:20224042
Thapa, Kanchan; Manandhar, Sulochana; Bista, Manisha; Shakya, Jivan; Sah, Govind; Dhakal, Maheshwar; Sharma, Netra; Llewellyn, Bronwyn; Wultsch, Claudia; Waits, Lisette P; Kelly, Marcella J; Hero, Jean-Marc; Hughes, Jane; Karmacharya, Dibesh
2018-01-01
With fewer than 200 tigers (Panthera tigris tigris) left in Nepal, that are generally confined to five protected areas across the Terai Arc Landscape, genetic studies are needed to provide crucial information on diversity and connectivity for devising an effective country-wide tiger conservation strategy. As part of the Nepal Tiger Genome Project, we studied landscape change, genetic variation, population structure, and gene flow of tigers across the Terai Arc Landscape by conducting Nepal's first comprehensive and systematic scat-based, non-invasive genetic survey. Of the 770 scat samples collected opportunistically from five protected areas and six presumed corridors, 412 were tiger (57%). Out of ten microsatellite loci, we retain eight markers that were used in identifying 78 individual tigers. We used this dataset to examine population structure, genetic variation, contemporary gene flow, and potential population bottlenecks of tigers in Nepal. We detected three genetic clusters consistent with three demographic sub-populations and found moderate levels of genetic variation (He = 0.61, AR = 3.51) and genetic differentiation (FST = 0.14) across the landscape. We detected 3-7 migrants, confirming the potential for dispersal-mediated gene flow across the landscape. We found evidence of a bottleneck signature likely caused by large-scale land-use change documented in the last two centuries in the Terai forest. Securing tiger habitat including functional forest corridors is essential to enhance gene flow across the landscape and ensure long-term tiger survival. This requires cooperation among multiple stakeholders and careful conservation planning to prevent detrimental effects of anthropogenic activities on tigers.
van Strien, Maarten J
2017-07-01
Many landscape genetic studies aim to determine the effect of landscape on gene flow between populations. These studies frequently employ link-based methods that relate pairwise measures of historical gene flow to measures of the landscape and the geographical distance between populations. However, apart from landscape and distance, there is a third important factor that can influence historical gene flow, that is, population topology (i.e., the arrangement of populations throughout a landscape). As the population topology is determined in part by the landscape configuration, I argue that it should play a more prominent role in landscape genetics. Making use of existing literature and theoretical examples, I discuss how population topology can influence results in landscape genetic studies and how it can be taken into account to improve the accuracy of these results. In support of my arguments, I have performed a literature review of landscape genetic studies published during the first half of 2015 as well as several computer simulations of gene flow between populations. First, I argue why one should carefully consider which population pairs should be included in link-based analyses. Second, I discuss several ways in which the population topology can be incorporated in response and explanatory variables. Third, I outline why it is important to sample populations in such a way that a good representation of the population topology is obtained. Fourth, I discuss how statistical testing for link-based approaches could be influenced by the population topology. I conclude the article with six recommendations geared toward better incorporating population topology in link-based landscape genetic studies.
Upadhyay, M R; Chen, W; Lenstra, J A; Goderie, C R J; MacHugh, D E; Park, S D E; Magee, D A; Matassino, D; Ciani, F; Megens, H-J; van Arendonk, J A M; Groenen, M A M; Marsan, P A; Balteanu, V; Dunner, S; Garcia, J F; Ginja, C; Kantanen, J
2017-01-01
The domestication of taurine cattle initiated ~10 000 years ago in the Near East from a wild aurochs (Bos primigenius) population followed by their dispersal through migration of agriculturalists to Europe. Although gene flow from wild aurochs still present at the time of this early dispersion is still debated, some of the extant primitive cattle populations are believed to possess the aurochs-like primitive features. In this study, we use genome-wide single nucleotide polymorphisms to assess relationship, admixture patterns and demographic history of an ancient aurochs sample and European cattle populations, several of which have primitive features and are suitable for extensive management. The principal component analysis, the model-based clustering and a distance-based network analysis support previous works suggesting different histories for north-western and southern European cattle. Population admixture analysis indicates a zebu gene flow in the Balkan and Italian Podolic cattle populations. Our analysis supports the previous report of gene flow between British and Irish primitive cattle populations and local aurochs. In addition, we show evidence of aurochs gene flow in the Iberian cattle populations indicating wide geographical distribution of the aurochs. Runs of homozygosity (ROH) reveal that demographic processes like genetic isolation and breed formation have contributed to genomic variations of European cattle populations. The ROH also indicate recent inbreeding in southern European cattle populations. We conclude that in addition to factors such as ancient human migrations, isolation by distance and cross-breeding, gene flow between domestic and wild-cattle populations also has shaped genomic composition of European cattle populations. PMID:27677498
Meier, Joana I; Sousa, Vitor C; Marques, David A; Selz, Oliver M; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole
2017-01-01
Modes and mechanisms of speciation are best studied in young species pairs. In older taxa, it is increasingly difficult to distinguish what happened during speciation from what happened after speciation. Lake Victoria cichlids in the genus Pundamilia encompass a complex of young species and polymorphic populations. One Pundamilia species pair, P. pundamilia and P. nyererei, is particularly well suited to study speciation because sympatric population pairs occur with different levels of phenotypic differentiation and reproductive isolation at different rocky islands within the lake. Genetic distances between allopatric island populations of the same nominal species often exceed those between the sympatric species. It thus remained unresolved whether speciation into P. nyererei and P. pundamilia occurred once, followed by geographical range expansion and interspecific gene flow in local sympatry, or if the species pair arose repeatedly by parallel speciation. Here, we use genomic data and demographic modelling to test these alternative evolutionary scenarios. We demonstrate that gene flow plays a strong role in shaping the observed patterns of genetic similarity, including both gene flow between sympatric species and gene flow between allopatric populations, as well as recent and early gene flow. The best supported model for the origin of P. pundamilia and P. nyererei population pairs at two different islands is one where speciation happened twice, whereby the second speciation event follows shortly after introgression from an allopatric P. nyererei population that arose earlier. Our findings support the hypothesis that very similar species may arise repeatedly, potentially facilitated by introgressed genetic variation. © 2016 John Wiley & Sons Ltd.
Manandhar, Sulochana; Bista, Manisha; Shakya, Jivan; Sah, Govind; Dhakal, Maheshwar; Sharma, Netra; Llewellyn, Bronwyn; Wultsch, Claudia; Waits, Lisette P.; Kelly, Marcella J.; Hero, Jean-Marc; Hughes, Jane
2018-01-01
With fewer than 200 tigers (Panthera tigris tigris) left in Nepal, that are generally confined to five protected areas across the Terai Arc Landscape, genetic studies are needed to provide crucial information on diversity and connectivity for devising an effective country-wide tiger conservation strategy. As part of the Nepal Tiger Genome Project, we studied landscape change, genetic variation, population structure, and gene flow of tigers across the Terai Arc Landscape by conducting Nepal’s first comprehensive and systematic scat-based, non-invasive genetic survey. Of the 770 scat samples collected opportunistically from five protected areas and six presumed corridors, 412 were tiger (57%). Out of ten microsatellite loci, we retain eight markers that were used in identifying 78 individual tigers. We used this dataset to examine population structure, genetic variation, contemporary gene flow, and potential population bottlenecks of tigers in Nepal. We detected three genetic clusters consistent with three demographic sub-populations and found moderate levels of genetic variation (He = 0.61, AR = 3.51) and genetic differentiation (FST = 0.14) across the landscape. We detected 3–7 migrants, confirming the potential for dispersal-mediated gene flow across the landscape. We found evidence of a bottleneck signature likely caused by large-scale land-use change documented in the last two centuries in the Terai forest. Securing tiger habitat including functional forest corridors is essential to enhance gene flow across the landscape and ensure long-term tiger survival. This requires cooperation among multiple stakeholders and careful conservation planning to prevent detrimental effects of anthropogenic activities on tigers. PMID:29561865
Upadhyay, M R; Chen, W; Lenstra, J A; Goderie, C R J; MacHugh, D E; Park, S D E; Magee, D A; Matassino, D; Ciani, F; Megens, H-J; van Arendonk, J A M; Groenen, M A M
2017-02-01
The domestication of taurine cattle initiated ~10 000 years ago in the Near East from a wild aurochs (Bos primigenius) population followed by their dispersal through migration of agriculturalists to Europe. Although gene flow from wild aurochs still present at the time of this early dispersion is still debated, some of the extant primitive cattle populations are believed to possess the aurochs-like primitive features. In this study, we use genome-wide single nucleotide polymorphisms to assess relationship, admixture patterns and demographic history of an ancient aurochs sample and European cattle populations, several of which have primitive features and are suitable for extensive management. The principal component analysis, the model-based clustering and a distance-based network analysis support previous works suggesting different histories for north-western and southern European cattle. Population admixture analysis indicates a zebu gene flow in the Balkan and Italian Podolic cattle populations. Our analysis supports the previous report of gene flow between British and Irish primitive cattle populations and local aurochs. In addition, we show evidence of aurochs gene flow in the Iberian cattle populations indicating wide geographical distribution of the aurochs. Runs of homozygosity (ROH) reveal that demographic processes like genetic isolation and breed formation have contributed to genomic variations of European cattle populations. The ROH also indicate recent inbreeding in southern European cattle populations. We conclude that in addition to factors such as ancient human migrations, isolation by distance and cross-breeding, gene flow between domestic and wild-cattle populations also has shaped genomic composition of European cattle populations.
Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape
Lee, Justin S.; Ruell, Emily W.; Boydston, Erin E.; Lyren, Lisa M.; Alonso, Robert S.; Troyer, Jennifer L.; Crooks, Kevin R.; VandeWoude, Sue
2012-01-01
Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured--exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.
Centeno-Cuadros, A; Hulva, P; Romportl, D; Santoro, S; Stříbná, T; Shohami, D; Evin, A; Tsoar, A; Benda, P; Horáček, I; Nathan, R
2017-11-01
Understanding the ecological, behavioural and evolutionary response of organisms to changing environments is of primary importance in a human-altered world. It is crucial to elucidate how human activities alter gene flow and what are the consequences for the genetic structure of a species. We studied two lineages of the Egyptian fruit bat (Rousettus aegyptiacus) throughout the contact zone between mesic and arid Ecozones in the Middle East to evaluate the species' response to the growing proportion of human-altered habitats in the desert. We integrated population genetics, morphometrics and movement ecology to analyse population structure, morphological variation and habitat use from GPS- or radio-tagged individuals from both desert and Mediterranean areas. We classified the spatial distribution and environmental stratification by describing physical-geographical conditions and land cover. We analysed this information to estimate patch occupancy and used an isolation-by-resistance approach to model gene flow patterns. Our results suggest that lineages from desert and Mediterranean habitats, despite their admixture, are isolated by environment and by adaptation supporting their classification as ecotypes. We found a positive effect of human-altered habitats on patch occupancy and habitat use of fruit bats by increasing the availability of roosting and foraging areas. While this commensalism promotes the distribution of fruit bats throughout the Middle East, gene flow between colonies has not been altered by human activities. This discrepancy between habitat use and gene flow patterns may, therefore, be explained by the breeding system of the species and modifications of natal dispersal patterns. © 2017 John Wiley & Sons Ltd.
Edwards, Taylor; Tollis, Marc; Hsieh, PingHsun; Gutenkunst, Ryan N.; Liu, Zhen; Kusumi, Kenro; Culver, Melanie; Murphy, Robert W.
2016-01-01
Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA-seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best-fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).
Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E
2016-01-01
Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.
Ropars, Jeanne; Lo, Ying‐Chu; Dumas, Emilie; Snirc, Alodie; Begerow, Dominik; Rollnik, Tanja; Lacoste, Sandrine; Dupont, Joëlle; Giraud, Tatiana; López‐Villavicencio, Manuela
2016-01-01
Genetic differentiation occurs when gene flow is prevented, due to reproductive barriers or asexuality. Investigating the early barriers to gene flow is important for understanding the process of speciation. Here, we therefore investigated reproductive isolation between different genetic clusters of the fungus Penicillium roqueforti, used for maturing blue cheeses, and also occurring as food spoiler or in silage. We investigated premating and postmating fertility between and within three genetic clusters (two from cheese and one from other substrates), and we observed sexual structures under scanning electron microscopy. All intercluster types of crosses showed some fertility, suggesting that no intersterility has evolved between domesticated and wild populations despite adaptation to different environments and lack of gene flow. However, much lower fertility was found in crosses within the cheese clusters than within the noncheese cluster, suggesting reduced fertility of cheese strains, which may constitute a barrier to gene flow. Such degeneration may be due to bottlenecks during domestication and/or to the exclusive clonal replication of the strains in industry. This study shows that degeneration has occurred rapidly and independently in two lineages of a domesticated species. Altogether, these results inform on the processes and tempo of degeneration and speciation. PMID:27470007
Climate change alters reproductive isolation and potential gene flow in an annual plant.
Franks, Steven J; Weis, Arthur E
2009-11-01
Climate change will likely cause evolution due not only to selection but also to changes in reproductive isolation within and among populations. We examined the effects of a natural drought on the timing of flowering in two populations of Brassica rapa and the consequences for predicted reproductive isolation and potential gene flow. Seeds were collected before and after a 5-year drought in southern California from two populations varying in soil moisture. Lines derived from these seeds were raised in the greenhouse under wet and drought conditions. We found that the natural drought caused changes in reproductive timing and that the changes were greater for plants from the wet than from the dry site. This differential shift caused the populations to become more phenological similar, which should lead to less reproductive isolation and increased gene flow. We estimated a high level of assortative mating by flowering time, which potentially contributed to the rapid evolution of phenological traits following the drought. Estimates of assortative mating were higher for the wet site population, and assortative mating was reduced following the drought. This study shows that climate change can potentially alter gene flow and reproductive isolation within and among populations, strongly influencing evolution.
Merotto, Aldo; Goulart, Ives C G R; Nunes, Anderson L; Kalsing, Augusto; Markus, Catarine; Menezes, Valmir G; Wander, Alcido E
2016-08-01
Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies.
Gorman, Kristen B.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, George K.; Gravley, Megan C.; Fraser, William R.; Williams, Tony D.
2017-01-01
Adélie penguins (Pygoscelis adeliae) are responding to ocean–climate variability throughout the marine ecosystem of the western Antarctic Peninsula (WAP) where some breeding colonies have declined by 80%. Nuclear and mitochondrial DNA (mtDNA) markers were used to understand historical population genetic structure and gene flow given relatively recent and continuing reductions in sea ice habitats and changes in numbers of breeding adults at colonies throughout the WAP. Genetic diversity, spatial genetic structure, genetic signatures of fluctuations in population demography and gene flow were assessed in four regional Adélie penguin colonies. The analyses indicated little genetic structure overall based on bi-parentally inherited microsatellite markers (FST =-0.006–0.004). No significant variance was observed in overall haplotype frequency (mtDNA ΦST =0.017; P=0.112). Some comparisons with Charcot Island were significant, suggestive of female-biased philopatry. Estimates of gene flow based on a two-population coalescent model were asymmetrical from the species’ regional core to its northern range. Breeding Adélie penguins of the WAP are a panmictic population and hold adequate genetic diversity and dispersal capacity to be resilient to environmental change.
Why are marine adaptive radiations rare in Hawai'i?
Wainwright, Peter C
2015-02-01
Islands can be sites of dynamic evolutionary radiations, and the Hawaiian Islands have certainly given us a bounty of insights into the processes and mechanisms of diversification. Adaptive radiations in silverswords and honeycreepers have inspired a generation of biologists with evidence of rapid diversification that resulted in exceptional levels of ecological and morphological diversity. In this issue of Molecular Ecology, tiny waterfall-climbing gobies make a case for their place among Hawaiian evolutionary elite. Moody et al. (2015) present an analysis of gene flow and local adaptation in six goby populations on Kaua'i and Hawai'i measured in three consecutive years to try to disentangle the relative role of local adaptation and gene flow in shaping diversity within Sicyopterus stimpsoni. Their study shows that strong patterns of local selection result in streams with gobies adapted to local conditions in spite of high rates of gene flow between stream populations and no evidence for significant genetic population structure. These results help us understand how local adaptation and gene flow are balanced in gobies, but these fishes also offer themselves as a model that illustrates why adaptive diversification in Hawai'i's marine fauna is so different from the terrestrial fauna. © 2015 John Wiley & Sons Ltd.
Landscape Features Shape Genetic Structure in Threatened Northern Spotted Owls
Funk, W. Chris; Forsman, Eric D.; Mullins, Thomas D.; Haig, Susan M.
2008-01-01
Several recent studies have shown that landscape features can strongly affect spatial patterns of gene flow and genetic variation. Understanding landscape effects on genetic variation is important in conservation for defining management units and understanding movement patterns. The landscape may have little effect on gene flow, however, in highly mobile species such as birds. We tested for genetic breaks associated with landscape features in the northern spotted owl (Strix occidentalis caurina), a threatened subspecies associated with old forests in the U.S. Pacific Northwest and extreme southwestern Canada. We found little evidence for distinct genetic breaks in northern spotted owls using a large microsatellite dataset (352 individuals from across the subspecies' range genotyped at 10 loci). Nonetheless, dry low-elevation valleys and the Cascade and Olympic Mountains restrict gene flow, while the Oregon Coast Range facilitates it. The wide Columbia River is not a barrier to gene flow. In addition, inter-individual genetic distance and latitude were negatively related, likely reflecting northward colonization following Pleistocene glacial recession. Our study shows that landscape features may play an important role in shaping patterns of genetic variation in highly vagile taxa such as birds.
High gene flow in epiphytic ferns despite habitat loss and fragmentation.
Winkler, Manuela; Koch, Marcus; Hietz, Peter
2011-01-01
Tropical montane forests suffer from increasing fragmentation and replacement by other types of land-use such as coffee plantations. These processes are known to affect gene flow and genetic structure of plant populations. Epiphytes are particularly vulnerable because they depend on their supporting trees for their entire life-cycle. We compared population genetic structure and genetic diversity derived from AFLP markers of two epiphytic fern species differing in their ability to colonize secondary habitats. One species, Pleopeltis crassinervata , is a successful colonizer of shade trees and isolated trees whereas the other species, Polypodium rhodopleuron , is restricted to forests with anthropogenic separation leading to significant isolation between populations. By far most genetic variation was distributed within rather than among populations in both species, and a genetic admixture analysis did not reveal any clustering. Gene flow exceeded by far the benchmark of one migrant per generation to prevent genetic divergence between populations in both species. Though populations are threatened by habitat loss, long-distance dispersal is likely to support gene flow even between distant populations, which efficiently delays genetic isolation. Consequently, populations may rather be threatened by ecological consequences of habitat loss and fragmentation.
Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam
Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael
2013-01-01
Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Pereira, Filipe; Queirós, Sara; Gusmão, Leonor; Nijman, Isäac J; Cuppen, Edwin; Lenstra, Johannes A; Davis, Simon J M; Nejmeddine, Fouad; Amorim, António
2009-12-01
Valuable insights into the history of human populations have been obtained by studying the genetic composition of their domesticated species. Here we address some of the long-standing questions about the origin and subsequent movements of goat pastoralism in Northern Africa. We present the first study combining results from mitochondrial DNA (mtDNA) and Y chromosome loci for the genetic characterization of a domestic goat population. Our analyses indicate a remarkably high diversity of maternal and paternal lineages in a sample of indigenous goats from the northwestern fringe of the African continent. Median-joining networks and a multidimensional scaling of ours and almost 2000 published mtDNA sequences revealed a considerable genetic affinity between goat populations from the Maghreb (Northwest Africa) and the Near East. It has been previously shown that goats have a weak phylogeographic structure compatible with high levels of gene flow, as demonstrated by the worldwide dispersal of the predominant mtDNA haplogroup A. In contrast, our results revealed a strong correlation between genetic and geographical distances in 20 populations from different regions of the world. The distribution of Y chromosome haplotypes in Maghrebi goats indicates a common origin for goat patrilines in both Mediterranean coastal regions. Taken together, these results suggest that the colonization and subsequent dispersal of domestic goats in Northern Africa was influenced by the maritime diffusion throughout the Mediterranean Sea and its coastal regions of pastoralist societies whose economy included goat herding. Finally, we also detected traces of gene flow between goat populations from the Maghreb and the Iberian Peninsula corroborating evidence of past cultural and commercial contacts across the Strait of Gibraltar.
Design flow factors for sewerage systems in small arid communities.
Imam, Emad H; Elnakar, Haitham Y
2014-09-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.
Design flow factors for sewerage systems in small arid communities
Imam, Emad H.; Elnakar, Haitham Y.
2013-01-01
Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521
General theory of conical flows and its application to supersonic aerodynamics
NASA Technical Reports Server (NTRS)
Germain, Paul
1955-01-01
Points treated in this report are: homogeneous flows, the general study of conical flows with infinitesimal cone angles, the numerical or analogous methods for the study of flows flattened in one direction, and a certain number of results. A thorough consideration of the applications on conical flows and demonstration of how one may solve within the scope of linear theory, by combinations of conical flows, the general problems of the supersonic wing, taking into account dihedral and sweepback, and also fuselage and control surface effects.
Nishii, Kenichiro; Brodin, Erik; Renshaw, Taylor; Weesner, Rachael; Moran, Emma; Soker, Shay; Sparks, Jessica L
2018-05-01
The role of fluid stresses in activating the hepatic stem/progenitor cell regenerative response is not well understood. This study hypothesized that immediate early genes (IEGs) with known links to liver regeneration will be upregulated in liver progenitor cells (LPCs) exposed to in vitro shear stresses on the order of those produced from elevated interstitial flow after partial hepatectomy. The objectives were: (1) to develop a shear flow chamber for application of fluid stress to LPCs in 3D culture; and (2) to determine the effects of fluid stress on IEG expression in LPCs. Two hours of shear stress exposure at ∼4 dyn/cm 2 was applied to LPCs embedded individually or as 3D spheroids within a hyaluronic acid/collagen I hydrogel. Results were compared against static controls. Quantitative reverse transcriptase polymerase chain reaction was used to evaluate the effect of experimental treatments on gene expression. Twenty-nine genes were analyzed, including IEGs and other genes linked to liver regeneration. Four IEGs (CFOS, IP10, MKP1, ALB) and three other regeneration-related genes (WNT, VEGF, EpCAM) were significantly upregulated in LPCs in response to fluid mechanical stress. LPCs maintained an early to intermediate stage of differentiation in spheroid culture in the absence of the hydrogel, and addition of the gel initiated cholangiocyte differentiation programs which were abrogated by the onset of flow. Collectively the flow-upregulated genes fit the pattern of an LPC-mediated proliferative/regenerative response. These results suggest that fluid stresses are potentially important regulators of the LPC-mediated regeneration response in liver. © 2017 Wiley Periodicals, Inc.
Bosch, Elena; Calafell, Francesc; Comas, David; Oefner, Peter J.; Underhill, Peter A.; Bertranpetit, Jaume
2001-01-01
In the present study we have analyzed 44 Y-chromosome biallelic polymorphisms in population samples from northwestern (NW) Africa and the Iberian Peninsula, which allowed us to place each chromosome unequivocally in a phylogenetic tree based on >150 polymorphisms. The most striking results are that contemporary NW African and Iberian populations were found to have originated from distinctly different patrilineages and that the Strait of Gibraltar seems to have acted as a strong (although not complete) barrier to gene flow. In NW African populations, an Upper Paleolithic colonization that probably had its origin in eastern Africa contributed 75% of the current gene pool. In comparison, ∼78% of contemporary Iberian Y chromosomes originated in an Upper Paleolithic expansion from western Asia, along the northern rim of the Mediterranean basin. Smaller contributions to these gene pools (constituting 13% of Y chromosomes in NW Africa and 10% of Y chromosomes in Iberia) came from the Middle East during the Neolithic and, during subsequent gene flow, from Sub-Saharan to NW Africa. Finally, bidirectional gene flow across the Strait of Gibraltar has been detected: the genetic contribution of European Y chromosomes to the NW African gene pool is estimated at 4%, and NW African populations may have contributed 7% of Iberian Y chromosomes. The Islamic rule of Spain, which began in a.d. 711 and lasted almost 8 centuries, left only a minor contribution to the current Iberian Y-chromosome pool. The high-resolution analysis of the Y chromosome allows us to separate successive migratory components and to precisely quantify each historical layer. PMID:11254456
Glennon, Kelsey L; Cron, Glynis V
2016-05-01
Microsatellites were developed for the widespread Helichrysum odoratissimum (Asteraceae) to estimate gene flow across diploid populations and to test if gene flow occurs among other closely related lineages within this genus. Ten primer pairs were developed and tested using populations across South Africa; however, only seven primer pairs were polymorphic for the target species. The seven polymorphic primers amplified di- and trinucleotide repeats with up to 16 alleles per locus among 125 diploid individuals used for analyses. These markers can be used to estimate gene flow among populations of known ploidy level of H. odoratissimum to test evolutionary hypotheses. Furthermore, these markers amplify successfully in other Helichrysum species, including the other three taxonomic Group 4 species, and therefore can be used to inform taxonomic work on these species.
Improved prediction of disturbed flow via hemodynamically-inspired geometric variables.
Bijari, Payam B; Antiga, Luca; Gallo, Diego; Wasserman, Bruce A; Steinman, David A
2012-06-01
Arterial geometry has long been considered as a pragmatic alternative for inferring arterial flow disturbances, and their impact on the natural history and treatment of vascular diseases. Traditionally, definition of geometric variables is based on convenient shape descriptors, with only superficial consideration of their influence on flow and wall shear stress patterns. In the present study we demonstrate that a more studied consideration of the actual (cf. nominal) local hemodynamics can lead to substantial improvements in the prediction of disturbed flow by geometry. Starting from a well-characterized computational fluid dynamics (CFD) dataset of 50 normal carotid bifurcations, we observed that disturbed flow tended to be confined proximal to the flow divider, whereas geometric variables previously shown to be significant predictors of disturbed flow included features distal to the flow divider in their definitions. Flaring of the bifurcation leading to flow separation was redefined as the maximum relative expansion of the common carotid artery (CCA), proximal to the flow divider. The beneficial effect of primary curvature on flow inertia, via suppression of flow separation, was characterized by the in-plane tortuosity of CCA as it enters the flare region. Multiple linear regressions of these redefined geometric variables against various metrics of disturbed flow revealed R(2) values approaching 0.6, better than the roughly 0.3 achieved using the conventional shape-based variables, while maintaining their demonstrated real-world reproducibility. Such a hemodynamically-inspired approach to the definition of geometric variables may reap benefits for other applications where geometry is used as a surrogate marker of local hemodynamics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Predicting bifurcation angle effect on blood flow in the microvasculature.
Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin
2016-11-01
Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.
A Green's function formulation for a nonlinear potential flow solution applicable to transonic flow
NASA Technical Reports Server (NTRS)
Baker, A. J.; Fox, C. H., Jr.
1977-01-01
Routine determination of inviscid subsonic flow fields about wing-body-tail configurations employing a Green's function approach for numerical solution of the perturbation velocity potential equation is successfully extended into the high subsonic subcritical flow regime and into the shock-free supersonic flow regime. A modified Green's function formulation, valid throughout a range of Mach numbers including transonic, that takes an explicit accounting of the intrinsic nonlinearity in the parent governing partial differential equations is developed. Some considerations pertinent to flow field predictions in the transonic flow regime are discussed.
Vortex flows with suspended separation regions and long-range untwisted central jets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovich, G.N.; Trofimov, R.S.
1988-05-01
A study is made of possible physicoaerodynamic configurations of vortical flow with suspended separation regions and untwisted central jets. Such flows are encountered in power plants (heat exchangers, combustion chambers, and chemical reactors) and in nature (tornadoes). The basic configurations of several flows of this type are described, including the structure of a flow formed by coaxial cocurrent twisted jets, the flow in a conical swirl chamber with the formation of an untwisted long-range axial jet, the flow pattern in a gas turbine engine chamber, and some considerations regarding the aerodynamics of a tornado.
An Exercise to Estimate Differential Gene Expression in Human Cells
ERIC Educational Resources Information Center
Chaudhry, M. Ahmad
2006-01-01
The expression of genes in cells of various tissue types varies considerably and is correlated with the function of a particular organ. The pattern of gene expression changes in diseased tissues, in response to therapy or infection and exposure to environmental mutagens, chemicals, ultraviolet light, and ionizing radiation. To better understand…
Data Integration and Applications of Functional Gene Networks in Drosophila Melanogaster
ERIC Educational Resources Information Center
Costello, James Christopher
2009-01-01
Understanding the function of every gene in the genome is a central goal in the biological sciences. This includes full characterization of a genes phenotypic effects, molecular interactions, the evolutionary forces that shape its function(s), and how these functions interrelate. Despite a long history and considerable effort to understand all…
Britto, Fábio B; Schmidt, Anders J; Carvalho, Adriana M F; Vasconcelos, Carolina C M P; Farias, Antonia M; Bentzen, Paul; Diniz, Fábio M
2018-01-01
The mangrove crab Ucides cordatus is considered a key species for the ecological balance of mangrove forests and a major source of employment and income for traditional crab collectors in Brazil. Several studies evidenced weak genetic variation among populations due to an efficient larval transport. However, gene flow patterns of the species is poorly understood, with no information about migration rates. The influence of the two main Brazilian currents in larval dispersion is also not clear. In order to provide baseline information for conservation, planning and management of this important fishery resource, the present study aimed to estimate and evaluate spatial distribution of genetic diversity, migration rates and gene flow directivity among populations of U. cordatus in Brazil. Nine microsatellites were used to resolve population structure of 319 crabs collected from six sites located along the Brazilian coast. The degree of geographical differentiation included estimates of genetic diversity, population structure and gene flow models, with spatial analysis of shared alleles (SAShA), isolation by distance tests, AMOVA, discriminant analysis of principal components (DAPC) and Bayesian clustering. We estimated the amount of ongoing gene flow between clusters using the coalescent-based method implemented in Migrate-N. Loci were highly polymorphic (average of 12.4 alleles per locus) evidencing high genetic variability. There was significant differentiation among localities, despite of the low value of F ST (= 0.019; P < 0.001). F ST and Jost's D indexes were also estimated in pairwise comparisons and showed significant differences between most of the surveyed site pairs ( P < 0.05). Structure evidenced a single genetic group among samples, however SAShA pointed to a non-panmictic condition ( P = 0.011). AMOVA detected four statistical significant clusters with low level of differentiation ( F CT = 0.037; P = 0.023). The gene flow model that best described the population connectivity was the island model, with ∼24 crabs being exchanged among localities per generation. The high migration rates found among localities seem to be the main force acting to sustain the distribution of the genetic diversity of U. cordatus . Despite the high gene flow and the weak population structure among samples, the significant genetic differences found suggest that gene flow alone does not bypass the effects of genetic drift, natural selection and/or human exploitation. These findings are vital for the establishment of a database to be used in the development of conservation programs.
NASA Astrophysics Data System (ADS)
LaBella, Abigail Leavitt; Van Dover, Cindy L.; Jollivet, Didier; Cunningham, Clifford W.
2017-03-01
Pliocardiin (vesicomyid) clams rely on microbial symbionts for nutrition and are obligate inhabitants of deep-sea chemosynthetic ecosystems. Unlike many other invertebrate hosts of chemosynthetic microbes, pliocardiin clams are found in every ocean in a variety of reducing habitats, including hydrothermal vents, cold seeps, organic falls and deep-sea fans. The global distribution of pliocardiin clams suggests historical gene flow between ocean basins. We focus on 3 pliocardiin genera-'Pliocardia' I, Calyptogena and Abyssogena-each of which has a pair of sister clades in the Atlantic and Pacific. Our work tests the hypothesis that historical gene flow between the Atlantic and Pacific Oceans within these genera was interrupted by the closure of the Panamanian seaway and tests whether isolation between the ocean basins is the result of vicariance or past colonization. These questions are investigated in the context of fossil evidence, biogeography and phylogenetics. This study revealed a set of substitution rates consistent with other invertebrate studies (μ=0.8%/My/lineage), and a set consistent with much lower rates often attributed to deep-sea organisms (μ=0.3%/My/lineage). Among the Pacific/Atlantic sister pairs, 'Pliocardia' I COI divergence per lineage is intermediate (2.5%), Calyptogena is the highest (6.1%) and Abyssogena the lowest (0.8%). The substitution rates suggest that 'Pliocardia' I and Calyptogena have histories of at least 2.8 My in the Atlantic, with Calyptogena likely older. The slower rate, however, is inconsistent with both the maximum age of the family and several well studied fossils: leaving the faster rate preferred. With the faster rate, the Abyssogena southwardae clade diverged from its Pacific sister clade around 1 Mya, which likely post-dates the closure of the Isthmus of Panama and the opening of the Bering Strait. In light of this recent divergence, we test the previously proposed hypothesis that there is a high level of ongoing gene flow between Atlantic populations of A. southwardae. A. southwardae has colonized a broad geographic range of seep sites including the West Florida Escarpment, the Barbados Accretionary Prism, the Lobes of Congo, and the Mid-Atlantic Ridge north and south of the Romanche Transform Fault. Coalescent methods detect gene flow between Barbados and the Mid-Atlantic ridge; and between the West Florida Escarpment and the Lobes of Congo. All other comparisons failed to detect gene flow, contrary to prevailing interpretations of connectivity across the entire Atlantic Basin.
Schmidt, Anders J.; Carvalho, Adriana M.F.; Vasconcelos, Carolina C.M.P.; Farias, Antonia M.; Bentzen, Paul
2018-01-01
Background The mangrove crab Ucides cordatus is considered a key species for the ecological balance of mangrove forests and a major source of employment and income for traditional crab collectors in Brazil. Several studies evidenced weak genetic variation among populations due to an efficient larval transport. However, gene flow patterns of the species is poorly understood, with no information about migration rates. The influence of the two main Brazilian currents in larval dispersion is also not clear. In order to provide baseline information for conservation, planning and management of this important fishery resource, the present study aimed to estimate and evaluate spatial distribution of genetic diversity, migration rates and gene flow directivity among populations of U. cordatus in Brazil. Methods Nine microsatellites were used to resolve population structure of 319 crabs collected from six sites located along the Brazilian coast. The degree of geographical differentiation included estimates of genetic diversity, population structure and gene flow models, with spatial analysis of shared alleles (SAShA), isolation by distance tests, AMOVA, discriminant analysis of principal components (DAPC) and Bayesian clustering. We estimated the amount of ongoing gene flow between clusters using the coalescent-based method implemented in Migrate-N. Results Loci were highly polymorphic (average of 12.4 alleles per locus) evidencing high genetic variability. There was significant differentiation among localities, despite of the low value of FST (= 0.019; P < 0.001). FST and Jost’s D indexes were also estimated in pairwise comparisons and showed significant differences between most of the surveyed site pairs (P < 0.05). Structure evidenced a single genetic group among samples, however SAShA pointed to a non-panmictic condition (P = 0.011). AMOVA detected four statistical significant clusters with low level of differentiation (FCT = 0.037; P = 0.023). The gene flow model that best described the population connectivity was the island model, with ∼24 crabs being exchanged among localities per generation. Discussion The high migration rates found among localities seem to be the main force acting to sustain the distribution of the genetic diversity of U. cordatus. Despite the high gene flow and the weak population structure among samples, the significant genetic differences found suggest that gene flow alone does not bypass the effects of genetic drift, natural selection and/or human exploitation. These findings are vital for the establishment of a database to be used in the development of conservation programs. PMID:29736340
ZAP-70 staining in chronic lymphocytic leukemia.
Villamor, Neus
2005-05-01
Chronic lymphocytic leukemia (CLL) is the most common chronic leukemia in Western countries. The disease has an extremely variable clinical course, and several prognostic features have been identified to assess individual risk. The configuration of the immunoglobulin variable heavy-chain gene (IgV(H)) is a strong predictor of the outcome. CLL patients with unmutated IgV(H) status have an aggressive clinical course and a short survival. Unfortunately, analysis of IgV(H) gene configuration is not available in most clinical laboratories. A small number of genes are differentially expressed between unmutated IgV(H) and mutated IgV(H) clinical forms of CLL. One of these genes is ZAP-70, which is detected in leukemic cells from patients with the unmutated IgV(H) form of CLL. Flow cytometry presents advantages over other methods to detect ZAP-70, and its quantification by flow cytometry has proved its predictive value. This unit focuses on protocols to quantify ZAP-70 by flow cytometry in CLL.
Bajpai, Prabodh K; Warghat, Ashish R; Sharma, Ram Kumar; Yadav, Ashish; Thakur, Anil K; Srivastava, Ravi B; Stobdan, Tsering
2014-04-01
Sequence-related amplified polymorphism markers were used to assess the genetic structure in three natural populations of Morus alba from trans-Himalaya. Multilocation sampling was conducted across 14 collection sites. The overall genetic diversity estimates were high: percentage polymorphic loci 89.66%, Nei's gene diversity 0.2286, and Shannon's information index 0.2175. At a regional level, partitioning of variability assessed using analysis of molecular variance (AMOVA), revealed 80% variation within and 20% among collection sites. Pattern appeared in STRUCTURE, BARRIER, and AMOVA, clearly demonstrating gene flow between the Indus and Suru populations and a geographic barrier between the Indus-Suru and Nubra populations, which effectively hinders gene flow. The results showed significant genetic differentiation, population structure, high to restricted gene flow, and high genetic diversity. The assumption that samples collected from the three valleys represent three different populations does not hold true. The fragmentation present in trans-Himalaya was more natural and less anthropogenic.
Application of the Moment Method in the Slip and Transition Regime for Microfluidic Flows
2011-01-01
systems ( MEMS ), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic understanding of the nature of flow and heat ...Couette Flow Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To understand the damping mechanisms...transfer in these devices is considered essential for efficient design and control of MEMS . Engineering applications for gas microflows include
Suñé-Pou, Marc; Prieto-Sánchez, Silvia; El Yousfi, Younes; Boyero-Corral, Sofía; Nardi-Ricart, Anna; Nofrerias-Roig, Isaac; Pérez-Lozano, Pilar; García-Montoya, Encarna; Miñarro-Carmona, Montserrat; Ticó, Josep Ramón; Suñé-Negre, Josep Mª; Hernández-Munain, Cristina; Suñé, Carlos
2018-01-01
Background Cationic solid lipid nanoparticles (SLNs) have been given considerable attention for therapeutic nucleic acid delivery owing to their advantages over viral and other nanoparticle delivery systems. However, poor delivery efficiency and complex formulations hinder the clinical translation of SLNs. Aim The aim of this study was to formulate and characterize SLNs incorporating the cholesterol derivative cholesteryl oleate to produce SLN–nucleic acid complexes with reduced cytotoxicity and more efficient cellular uptake. Methods Five cholesteryl oleate-containing formulations were prepared. Laser diffraction and laser Doppler microelectrophoresis were used to evaluate particle size and zeta potential, respectively. Nanoparticle morphology was analyzed using electron microscopy. Cytotoxicity and cellular uptake of lipoplexes were evaluated using flow cytometry and fluorescence microscopy. The gene inhibition capacity of the lipoplexes was assessed using siRNAs to block constitutive luciferase expression. Results We obtained nanoparticles with a mean diameter of approximately 150–200 nm in size and zeta potential values of 25–40 mV. SLN formulations with intermediate concentrations of cholesteryl oleate exhibited good stability and spherical structures with no aggregation. No cell toxicity of any reference SLN was observed. Finally, cellular uptake experiments with DNA-and RNA-SLNs were performed to select one reference with superior transient transfection efficiency that significantly decreased gene activity upon siRNA complexation. Conclusion The results indicate that cholesteryl oleate-loaded SLNs are a safe and effective platform for nonviral nucleic acid delivery. PMID:29881274
Automated storm water sampling on small watersheds
Harmel, R.D.; King, K.W.; Slade, R.M.
2003-01-01
Few guidelines are currently available to assist in designing appropriate automated storm water sampling strategies for small watersheds. Therefore, guidance is needed to develop strategies that achieve an appropriate balance between accurate characterization of storm water quality and loads and limitations of budget, equipment, and personnel. In this article, we explore the important sampling strategy components (minimum flow threshold, sampling interval, and discrete versus composite sampling) and project-specific considerations (sampling goal, sampling and analysis resources, and watershed characteristics) based on personal experiences and pertinent field and analytical studies. These components and considerations are important in achieving the balance between sampling goals and limitations because they determine how and when samples are taken and the potential sampling error. Several general recommendations are made, including: setting low minimum flow thresholds, using flow-interval or variable time-interval sampling, and using composite sampling to limit the number of samples collected. Guidelines are presented to aid in selection of an appropriate sampling strategy based on user's project-specific considerations. Our experiences suggest these recommendations should allow implementation of a successful sampling strategy for most small watershed sampling projects with common sampling goals.
Newman, M. A.; Zebeli, Q.; Velde, K.; Grüll, D.; Molnar, T.; Kandler, W.; Metzler-Zebeli, B. U.
2016-01-01
Aside from being used as stabilizing agents in many processed foods, chemically modified starches may act as functional dietary ingredients. Therefore, development of chemically modified starches that are less digestible in the upper intestinal segments and promote fermentation in the hindgut receives considerable attention. This study aimed to investigate the impact of an enzymatically modified starch (EMS) on nutrient flow, passage rate, and bacterial activity at ileal and post-ileal level. Eight ileal-cannulated growing pigs were fed 2 diets containing 72% purified starch (EMS or waxy cornstarch as control) in a cross-over design for 10 d, followed by a 4-d collection of feces and 2-d collection of ileal digesta. On d 17, solid and liquid phase markers were added to the diet to determine ileal digesta flow for 8 h after feeding. Reduced small intestinal digestion after the consumption of the EMS diet was indicated by a 10%-increase in ileal flow and fecal excretion of dry matter and energy compared to the control diet (P<0.05). Moreover, EMS feeding reduced ileal transit time of both liquid and solid fractions compared to the control diet (P<0.05). The greater substrate flow to the large intestine with the EMS diet increased the concentrations of total and individual short-chain fatty acids (SCFA) in feces (P<0.05). Total bacterial 16S rRNA gene abundance was not affected by diet, whereas the relative abundance of the Lactobacillus group decreased (P<0.01) by 50% and of Enterobacteriaceae tended (P<0.1) to increase by 20% in ileal digesta with the EMS diet compared to the control diet. In conclusion, EMS appears to resemble a slowly digestible starch by reducing intestinal transit and increasing SCFA in the distal large intestine. PMID:27936165
Erin L. Landguth; Bradley C. Fedy; Sara J. Oyler-McCance; Andrew L. Garey; Sarah L. Emel; Matthew Mumma; Helene H. Wagner; Marie-Josee Fortin; Samuel A. Cushman
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population...
NASA Astrophysics Data System (ADS)
Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Dryasov, A. D.; Semenov, A. N.; Yatskikh, A. A.
2016-10-01
The paper is devoted to an experimental study of laminar-turbulent transition in a three-dimensional supersonic boundary layer. The experiments were conducted at the low nose supersonic wind tunnel T-325 of ITAM at Mach numbers M=2 - 4. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The influence of flow parameters, such as the Mach number, unit Reynolds number, angle of attack, level of perturbations on the transitions to turbulence are on the consideration. Transition Reynolds numbers are obtained. Analysis of all obtained data allow to determine reliable value of Retr of swept wing supersonic boundary layer, that especially important at consideration of experiments fulfilled at different flow conditions in different wind tunnels.
Gene therapy for cancer: regulatory considerations for approval.
Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K
2015-12-01
The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.
Gene therapy for cancer: regulatory considerations for approval
Husain, S R; Han, J; Au, P; Shannon, K; Puri, R K
2015-01-01
The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA. PMID:26584531
De La Torre, Amanda R; Roberts, David R; Aitken, Sally N
2014-01-01
The maintenance of species boundaries despite interspecific gene flow has been a continuous source of interest in evolutionary biology. Many hybridizing species have porous genomes with regions impermeable to introgression, conferring reproductive barriers between species. We used ecological niche modelling to study the glacial and postglacial recolonization patterns between the widely hybridizing spruce species Picea glauca and P. engelmannii in western North America. Genome-wide estimates of admixture based on a panel of 311 candidate gene single nucleotide polymorphisms (SNP) from 290 genes were used to assess levels of admixture and introgression and to identify loci putatively involved in adaptive differences or reproductive barriers between species. Our palaeoclimatic modelling suggests that these two closely related species have a long history of hybridization and introgression, dating to at least 21 000 years ago, yet species integrity is maintained by a combination of strong environmental selection and reduced current interspecific gene flow. Twenty loci showed evidence of divergent selection, including six loci that were both Fst outliers and associated with climatic gradients, and fourteen loci that were either outliers or showed associations with climate. These included genes responsible for carbohydrate metabolism, signal transduction and transcription factors. PMID:24597663
Rau, D; Rodriguez, M; Rapposelli, E; Murgia, M L; Papa, R; Brown, A H D; Attene, G
2016-12-01
Nuclear and chloroplast markers and phenotypic characters were integrated to analyse the population genetic structure of wild cardoon, Cynara cardunculus var. sylvestris, the ancestor of cultivated globe artichoke, Cynara cardunculus var. scolymus on the island of Sardinia, Italy. The spatial scale ranged from a few metres to ∼200km. Wild cardoon appears to be genetically fragmented, with significant genetic divergence at various scales, indicating that gene flow is insufficient to counterbalance the effects of genetic drift or founder effects. Divergence between populations was higher for chloroplast (40%) than for nuclear markers (15%), suggesting that gene flow via seed was lower than via pollen. Two main genetic groups were detected; these correlated with differences in flowering time, capitula size, glossiness, and anthocyanin pigmentation. A complex population structure of wild cardoon emerged over small spatial scales, likely resulting from the interplay between gene dispersal, colonisation history and selective forces. Indeed, Sardinia appears to be a 'hybrid zone' of different gene pools. The island has unique diverse germplasm that has originated from hybridisation among different gene pools. The sampling of seeds from a few plants but from many sites is suggested as the best strategy to harvest the genetic diversity of wild cardoon. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Streamflow characteristics and trends along Soldier Creek, Northeast Kansas
Juracek, Kyle E.
2017-08-16
Historical data for six selected U.S. Geological Survey streamgages along Soldier Creek in northeast Kansas were used in an assessment of streamflow characteristics and trends. This information is required by the Prairie Band Potawatomi Nation for the effective management of tribal water resources, including drought contingency planning. Streamflow data for the period of record at each streamgage were used to assess annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow.Annual mean streamflows along Soldier Creek were characterized by substantial year-to-year variability with no pronounced long-term trends. On average, annual mean base flow accounted for about 20 percent of annual mean streamflow. Mean monthly flows followed a general seasonal pattern that included peak values in spring and low values in winter. Annual peak flows, which were characterized by considerable year-to-year variability, were most likely to occur in May and June and least likely to occur during November through February. With the exception of a weak yet statistically significant increasing trend at the Soldier Creek near Topeka, Kansas, streamgage, there were no pronounced long-term trends in annual peak flows. Annual 1-day, 30-day, and 90-day mean minimum flows were characterized by considerable year-to-year variability with no pronounced long-term trend. During an extreme drought, as was the case in the mid-1950s, there may be zero flow in Soldier Creek continuously for a period of one to several months.
Illegal gene flow from transgenic creeping bentgrass: the saga continues.
Snow, Allison A
2012-10-01
Ecologists have paid close attention to environmental effects that fitness-enhancing transgenes might have following crop-to-wild gene flow (e.g. Snow et al. 2003). For some crops, gene flow also can lead to legal problems,especially when government agencies have not approved transgenic events for unrestricted environmental release.Creeping bentgrass (Agrostis stolonifera), a common turf grass used in golf courses, is the focus of both areas of concern. In 2002, prior to expected deregulation (still pending), The Scotts Company planted creeping bentgrass with transgenic resistance to the herbicide glyphosate,also known as RoundUp, on 162 ha in a designated control area in central Oregon (Fig. 1).Despite efforts to restrict gene flow, wind-dispersed pollen carried transgenes to florets of local A. stolonifera and A. gigantea as far as 14 km away, and to sentinel plants placed as far as 21 km away (Watrud et al. 2004).Then, in August 2003, a strong wind event moved transgenic seeds from wind rows of cut bentgrass into nearby areas. The company’s efforts to kill all transgenic survivors in the area failed: feral glyphosate-resistant populations of A. stolonifera were found by Reichman et al.(2006), and 62% of 585 bentgrass plants had the telltale CP4 EPSPS transgene in 2006 (Zapiola et al. 2008; Fig. 2).Now, in this issue, the story gets even more interesting as Zapiola & Mallory-Smith (2012) describe a transgenic,intergeneric hybrid produced on a feral, transgenic creeping bentgrass plant that received pollen from Polypogon monspeliensis (rabbitfoot grass). Their finding raises a host of new questions about the prevalence and fitness of intergeneric hybrids, as well as how to evaluate the full extent of gene flow from transgenic crops.
Genetic connectivity of the moth pollinated tree Glionnetia sericea in a highly fragmented habitat.
Finger, Aline; Kaiser-Bunbury, Christopher N; Kettle, Chris J; Valentin, Terence; Ghazoul, Jaboury
2014-01-01
Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow.
Genetic Connectivity of the Moth Pollinated Tree Glionnetia sericea in a Highly Fragmented Habitat
Finger, Aline; Valentin, Terence; Ghazoul, Jaboury
2014-01-01
Long-distance gene flow is thought to be one prerequisite for the persistence of plant species in fragmented environments. Human influences have led to severe fragmentation of native habitats in the Seychelles islands, with many species surviving only in small and isolated populations. The endangered Seychelles endemic tree Glionnetia sericea is restricted to altitudes between 450 m and 900 m where the native forest vegetation has been largely lost and replaced with exotic invasives over the last 200 years. This study explores the genetic and ecological consequences of population fragmentation in this species by analysing patterns of genetic diversity in a sample of adults, juveniles and seeds, and by using controlled pollination experiments. Our results show no decrease in genetic diversity and no increase in genetic structuring from adult to juvenile cohorts. Despite significant inbreeding in some populations, there is no evidence of higher inbreeding in juvenile cohorts relative to adults. A Bayesian structure analysis and a tentative paternity analysis indicate extensive historical and contemporary gene flow among remnant populations. Pollination experiments and a paternity analysis show that Glionnetia sericea is self-compatible. Nevertheless, outcrossing is present with 7% of mating events resulting from pollen transfer between populations. Artificial pollination provided no evidence for pollen limitation in isolated populations. The highly mobile and specialized hawkmoth pollinators (Agrius convolvuli and Cenophodes tamsi; Sphingidae) appear to promote extensive gene flow, thus mitigating the potential negative ecological and genetic effects of habitat fragmentation in this species. We conclude that contemporary gene flow is sufficient to maintain genetic connectivity in this rare and restricted Seychelles endemic, in contrast to other island endemic tree species with limited contemporary gene flow. PMID:25347541
Cinget, Benjamin; Gérardi, Sébastien; Beaulieu, Jean; Bousquet, Jean
2015-01-01
The phylogeographic structure and postglacial history of balsam fir (Abies balsamea), a transcontinental North American boreal conifer, was inferred using mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) markers. Genetic structure among 107 populations (mtDNA data) and 75 populations (cpDNA data) was analyzed using Bayesian and genetic distance approaches. Population differentiation was high for mtDNA (dispersed by seeds only), but also for cpDNA (dispersed by seeds and pollen), indicating that pollen gene flow is more restricted in balsam fir than in other boreal conifers. Low cpDNA gene flow in balsam fir may relate to low pollen production due to the inherent biology of the species and populations being decimated by recurrent spruce budworm epidemics, and/or to low dispersal of pollen grains due to their peculiar structural properties. Accordingly, a phylogeographic structure was detected using both mtDNA and cpDNA markers and population structure analyses supported the existence of at least five genetically distinct glacial lineages in central and eastern North America. Four of these would originate from glacial refugia located south of the Laurentide ice sheet, while the last one would have persisted in the northern Labrador region. As expected due to reduced pollen-mediated gene flow, congruence between the geographic distribution of mtDNA and cpDNA lineages was higher than in other North American conifers. However, concordance was not complete, reflecting that restricted but nonetheless detectable cpDNA gene flow among glacial lineages occurred during the Holocene. As a result, new cpDNA and mtDNA genome combinations indicative of cytoplasmic genome capture were observed. PMID:25849816
Consequences of gene flow between oilseed rape (Brassica napus) and its relatives.
Liu, Yongbo; Wei, Wei; Ma, Keping; Li, Junsheng; Liang, Yuyong; Darmency, Henri
2013-10-01
Numerous studies have focused on the probability of occurrence of gene flow between transgenic crops and their wild relatives and the likelihood of transgene escape, which should be assessed before the commercial release of transgenic crops. This review paper focuses on this issue for oilseed rape, Brassica napus L., a species that produces huge numbers of pollen grains and seeds. We analyze separately the distinct steps of gene flow: (1) pollen and seeds as vectors of gene flow; (2) spontaneous hybridization; (3) hybrid behavior, fitness cost due to hybridization and mechanisms of introgression; (4) and fitness benefit due to transgenes (e.g. herbicide resistance and Bt toxin). Some physical, biological and molecular means of transgene containment are also described. Although hybrids and first generation progeny are difficult to identify in fields and non-crop habitats, the literature shows that transgenes could readily introgress into Brassica rapa, Brassica juncea and Brassica oleracea, while introgression is expected to be rare with Brassica nigra, Hirschfeldia incana and Raphanus raphanistrum. The hybrids grow well but produce less seed than their wild parent. The difference declines with increasing generations. However, there is large uncertainty about the evolution of chromosome numbers and recombination, and many parameters of life history traits of hybrids and progeny are not determined with satisfactory confidence to build generic models capable to really cover the wide diversity of situations. We show that more studies are needed to strengthen and organize biological knowledge, which is a necessary prerequisite for model simulations to assess the practical and evolutionary outputs of introgression, and to provide guidelines for gene flow management. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Response variables for evaluation of the effectiveness of conservation corridors.
Gregory, Andrew J; Beier, Paul
2014-06-01
Many studies have evaluated effectiveness of corridors by measuring species presence in and movement through small structural corridors. However, few studies have assessed whether these response variables are adequate for assessing whether the conservation goals of the corridors have been achieved or considered the costs or lag times involved in measuring the response variables. We examined 4 response variables-presence of the focal species in the corridor, interpatch movement via the corridor, gene flow, and patch occupancy--with respect to 3 criteria--relevance to conservation goals, lag time (fewest generations at which a positive response to the corridor might be evident with a particular variable), and the cost of a study when applying a particular variable. The presence variable had the least relevance to conservation goals, no lag time advantage compared with interpatch movement, and only a moderate cost advantage over interpatch movement or gene flow. Movement of individual animals between patches was the most appropriate response variable for a corridor intended to provide seasonal migration, but it was not an appropriate response variable for corridor dwellers, and for passage species it was only moderately relevant to the goals of gene flow, demographic rescue, and recolonization. Response variables related to gene flow provided a good trade-off among cost, relevance to conservation goals, and lag time. Nonetheless, the lag time of 10-20 generations means that evaluation of conservation corridors cannot occur until a few decades after a corridor has been established. Response variables related to occupancy were most relevant to conservation goals, but the lag time and costs to detect corridor effects on occupancy were much greater than the lag time and costs to detect corridor effects on gene flow. © 2014 Society for Conservation Biology.
Du, Fang K; Petit, Rémy J; Liu, Jian Quan
2009-04-01
Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations (G(ST) = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers (G(ST) = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.
Pereira, Ricardo J; Martínez-Solano, Iñigo; Buckley, David
2016-04-01
Ecological models predict that, in the face of climate change, taxa occupying steep altitudinal gradients will shift their distributions, leading to the contraction or extinction of the high-elevation (cold-adapted) taxa. However, hybridization between ecomorphologically divergent taxa commonly occurs in nature and may lead to alternative evolutionary outcomes, such as genetic merger or gene flow at specific genes. We evaluate this hypothesis by studying patterns of divergence and gene flow across three replicate contact zones between high- and low-elevation ecomorphs of the fire salamander (Salamandra salamandra) that have experienced altitudinal range shifts over the current postglacial period. Strong population structure with high genetic divergence in mitochondrial DNA suggests that vicariant evolution has occurred over several glacial-interglacial cycles and that it has led to cryptic differentiation within ecomorphs. In current parapatric boundaries, we do not find evidence for local extinction and replacement upon postglacial expansion. Instead, parapatric taxa recurrently show discordance between mitochondrial and nuclear markers, suggesting nuclear-mediated gene flow across contact zones. Isolation with migration models support this hypothesis by showing significant gene flow across all five parapatric boundaries. Together, our results suggest that, while some genomic regions, such as the mitochondria, may follow morphologic species traits and retreat to isolated mountain tops, other genomic regions, such as nuclear markers, may flow across parapatric boundaries, sometimes leading to a complete genetic merger. We show that despite high ecologic and morphologic divergence over prolonged periods of time, hybridization allows for evolutionary outcomes alternative to extinction and replacement of taxa in response to climate change. © 2016 John Wiley & Sons Ltd.
Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea
Giles, Emily C; Saenz-Agudelo, Pablo; Hussey, Nigel E; Ravasi, Timothy; Berumen, Michael L
2015-01-01
A main goal of population geneticists is to study patterns of gene flow to gain a better understanding of the population structure in a given organism. To date most efforts have been focused on studying gene flow at either broad scales to identify barriers to gene flow and isolation by distance or at fine spatial scales in order to gain inferences regarding reproduction and local dispersal. Few studies have measured connectivity at multiple spatial scales and have utilized novel tools to test the influence of both environment and geography on shaping gene flow in an organism. Here a seascape genetics approach was used to gain insight regarding geographic and ecological barriers to gene flow of a common reef sponge, Stylissa carteri in the Red Sea. Furthermore, a small-scale (<1 km) analysis was also conducted to infer reproductive potential in this organism. At the broad scale, we found that sponge connectivity is not structured by geography alone, but rather, genetic isolation in the southern Red Sea correlates strongly with environmental heterogeneity. At the scale of a 50-m transect, spatial autocorrelation analyses and estimates of full-siblings revealed that there is no deviation from random mating. However, at slightly larger scales (100–200 m) encompassing multiple transects at a given site, a greater proportion of full-siblings was found within sites versus among sites in a given location suggesting that mating and/or dispersal are constrained to some extent at this spatial scale. This study adds to the growing body of literature suggesting that environmental and ecological variables play a major role in the genetic structure of marine invertebrate populations. PMID:26257865
Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N
2015-05-01
The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An optofluidic approach for gold nanoprobes based-cancer theranostics
NASA Astrophysics Data System (ADS)
Panwar, Nishtha; Song, Peiyi; Yang, Chengbin; Yong, Ken-Tye; Tjin, Swee Chuan
2017-02-01
Suppression of overexpressed gene mutations in cancer cells through RNA interference (RNAi) technique is a therapeutically effective modality for oncogene silencing. In general, transfection agent is needed for siRNA delivery. Also, it is a tedious and time consuming process to analyze the gene transfection using current conventional flow cytometry systems and commercially available transfection kits. Therefore, there are two urgent challenges that we need to address for understanding and real time monitoring the delivery of siRNA to cancer cells more effectively. One, nontoxic, biocompatible and stable non-viral transfection agents need to be developed and investigated for gene delivery in cancer cells. Two, new, portable optofluidic methods need to be engineered for determining the transfection efficiency of the nanoformulation in real time. First, we demonstrate the feasibility of using gold nanorods (AuNRs) as nanoprobes for the delivery of Interleukin-8 (IL-8) siRNA in a pancreatic cancer cell line- MiaPaCa-2. An optimum ratio of 10:1 for the AuNRs-siRNA nanoformulation required for efficient loading has been experimentally determined. Promising transfection rates (≈88%) of the nanoprobe-assisted gene delivery are quantified by flow cytometry and fluorescence imaging, which are higher than the commercial control, Oligofectamine. The excellent gene knockdown performance (over 81%) of the proposed model support in vivo trials for RNAi-based cancer theranostics. In addition to cancer theranostics, our nanoprobe combination can be also applied for disease outbreak monitoring like MERS. Second, we present an optical fiber-integrated microfluidic chip that utilizes simple hydrodynamic and optical setups for miniaturized on-chip flow cytometry. The chip provides a powerful and convenient tool to quantitatively determine the siRNA transfection into cancer cells without using bulky flow cytometer. These studies outline the role of AuNRs as potential non-viral gene delivery vehicles, and their suitability for microfluidics-based lab-on-chip flow cytometry applications.
Bester-van der Merwe, Aletta E; Bitalo, Daphne; Cuevas, Juan M; Ovenden, Jennifer; Hernández, Sebastián; da Silva, Charlene; McCord, Meaghen; Roodt-Wilding, Rouvay
2017-01-01
The tope shark (Galeorhinus galeus Linnaeus, 1758) is a temperate, coastal hound shark found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of Galeorhinus galeus was determined across the entire Southern Hemisphere, where the species is heavily targeted by commercial fisheries, as well as locally, along the South African coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (ND2) gene. Across the Southern Hemisphere, three geographically distinct clades were recovered, including one from South America (Argentina, Chile), one from Africa (all the South African collections) and an Australia-New Zealand clade. Nuclear data revealed significant population subdivisions (FST = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks across ocean basins. Marked population connectivity was however evident across the Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statistics and multivariate analysis supported moderate to high gene flow across the Atlantic/Indian Ocean boundary (FST = 0.035 to 0.044, p<0.05), with exception of samples from Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and Bayesian clustering analysis indicated admixture in all sampling populations, decreasing from west to east, corroborating possible restriction to gene flow across regional oceanographic barriers. Mitochondrial sequence data recovered seven haplotypes (h = 0.216, π = 0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at least one private haplotype for each sampling location except Port Elizabeth. As with many other coastal shark species with cosmopolitan distribution, this study confirms the lack of both historical dispersal and inter-oceanic gene flow while also implicating contemporary factors such as oceanic currents and thermal fronts to drive local genetic structure of G. galeus on a smaller spatial scale.
Cuevas, Juan M.; Ovenden, Jennifer; Hernández, Sebastián; da Silva, Charlene; McCord, Meaghen; Roodt-Wilding, Rouvay
2017-01-01
The tope shark (Galeorhinus galeus Linnaeus, 1758) is a temperate, coastal hound shark found in the Atlantic and Indo-Pacific oceans. In this study, the population structure of Galeorhinus galeus was determined across the entire Southern Hemisphere, where the species is heavily targeted by commercial fisheries, as well as locally, along the South African coastline. Analysis was conducted on a total of 185 samples using 19 microsatellite markers and a 671 bp fragment of the NADH dehydrogenase subunit 2 (ND2) gene. Across the Southern Hemisphere, three geographically distinct clades were recovered, including one from South America (Argentina, Chile), one from Africa (all the South African collections) and an Australia-New Zealand clade. Nuclear data revealed significant population subdivisions (FST = 0.192 to 0.376, p<0.05) indicating limited gene flow for tope sharks across ocean basins. Marked population connectivity was however evident across the Indian Ocean based on Bayesian clustering analysis. More locally in South Africa, F-statistics and multivariate analysis supported moderate to high gene flow across the Atlantic/Indian Ocean boundary (FST = 0.035 to 0.044, p<0.05), with exception of samples from Struisbaai and Port Elizabeth which differed significantly from the rest. Discriminant and Bayesian clustering analysis indicated admixture in all sampling populations, decreasing from west to east, corroborating possible restriction to gene flow across regional oceanographic barriers. Mitochondrial sequence data recovered seven haplotypes (h = 0.216, π = 0.001) for South Africa, with one major haplotype shared by 87% of the individuals and at least one private haplotype for each sampling location except Port Elizabeth. As with many other coastal shark species with cosmopolitan distribution, this study confirms the lack of both historical dispersal and inter-oceanic gene flow while also implicating contemporary factors such as oceanic currents and thermal fronts to drive local genetic structure of G. galeus on a smaller spatial scale. PMID:28880905
Massive Hydrothermal Flows of Fluids and Heat: Earth Constraints and Ocean World Considerations
NASA Astrophysics Data System (ADS)
Fisher, A. T.
2018-05-01
This presentation reviews the hydrogeologic nature of Earth's ocean crust and evidence for massive flows of low-temperature (≤70°C), seafloor hydrothermal circulation through ridge flanks, including the influence of crustal relief and crustal faults.
40 CFR 420.01 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...
40 CFR 420.01 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...
40 CFR 420.01 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...
40 CFR 420.01 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... treatment system including schematic diagrams showing the major treatment system components and flow rates... request for consideration of alternative effluent limitations is to include: (i) A schematic diagram of... waters entering the treatment facility; discharge and recycle flow rates for each water source and each...
NASA Astrophysics Data System (ADS)
Eremin, A. V.; Kudinov, V. A.; Stefanyuk, E. V.; Kudinov, I. V.
2018-03-01
By using the modified Fourier law’s formula considering the relaxation of heat flow and temperature gradient, a mathematical model of the local non-equilibrium process of plate heating with ultrashort laser pulses was developed. The research showed that consideration of non-locality results in the delayed plate heat up irrespective of the laser radiation flow intensity. It was also shown that in consideration of the relaxation phenomena, the boundary conditions may not be fulfilled immediately – they may be set only within a definite range of the initial time.
PIÑEYRO-NELSON, A; VAN HEERWAARDEN, J; PERALES, H R; SERRATOS-HERNÁNDEZ, J A; RANGEL, A; HUFFORD, M B; GEPTS, P; GARAY-ARROYO, A; RIVERA-BUSTAMANTE, R; ÁLVAREZ-BUYLLA, E R
2009-01-01
A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same region in 2003 and 2004 could not confirm the existence of transgenes, thereby casting doubt on the earlier results. These two studies were based on different sampling and analytical procedures and are thus hard to compare. Here, we present new molecular data for this region that confirm the presence of transgenes in three of 23 localities sampled in 2001. Transgene sequences were not detected in samples taken in 2002 from nine localities, while directed samples taken in 2004 from two of the positive 2001 localities were again found to contain transgenic sequences. These findings suggest the persistence or re-introduction of transgenes up until 2004 in this area. We address variability in recombinant sequence detection by analyzing the consistency of current molecular assays. We also present theoretical results on the limitations of estimating the probability of transgene detection in samples taken from landraces. The inclusion of a limited number of female gametes and, more importantly, aggregated transgene distributions may significantly lower detection probabilities. Our analytical and sampling considerations help explain discrepancies among different detection efforts, including the one presented here, and provide considerations for the establishment of monitoring protocols to detect the presence of transgenes among structured populations of landraces. PMID:19143938
Piñeyro-Nelson, A; Van Heerwaarden, J; Perales, H R; Serratos-Hernández, J A; Rangel, A; Hufford, M B; Gepts, P; Garay-Arroyo, A; Rivera-Bustamante, R; Alvarez-Buylla, E R
2009-02-01
A possible consequence of planting genetically modified organisms (GMOs) in centres of crop origin is unintended gene flow into traditional landraces. In 2001, a study reported the presence of the transgenic 35S promoter in maize landraces sampled in 2000 from the Sierra Juarez of Oaxaca, Mexico. Analysis of a large sample taken from the same region in 2003 and 2004 could not confirm the existence of transgenes, thereby casting doubt on the earlier results. These two studies were based on different sampling and analytical procedures and are thus hard to compare. Here, we present new molecular data for this region that confirm the presence of transgenes in three of 23 localities sampled in 2001. Transgene sequences were not detected in samples taken in 2002 from nine localities, while directed samples taken in 2004 from two of the positive 2001 localities were again found to contain transgenic sequences. These findings suggest the persistence or re-introduction of transgenes up until 2004 in this area. We address variability in recombinant sequence detection by analyzing the consistency of current molecular assays. We also present theoretical results on the limitations of estimating the probability of transgene detection in samples taken from landraces. The inclusion of a limited number of female gametes and, more importantly, aggregated transgene distributions may significantly lower detection probabilities. Our analytical and sampling considerations help explain discrepancies among different detection efforts, including the one presented here, and provide considerations for the establishment of monitoring protocols to detect the presence of transgenes among structured populations of landraces.
Cao, Zengguo; Wang, Hualei; Wang, Lina; Li, Ling; Jin, Hongli; Xu, Changping; Feng, Na; Wang, Jianzhong; Li, Qian; Zhao, Yongkun; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu
2016-01-01
West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 10(2) copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 10(1.5) TCID50/ml and 10(1.33) TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.
Production of engineered long-life and male sterile Pelargonium plants
2012-01-01
Background Pelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively. Results The pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3–4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis. Conclusion The chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers. PMID:22935247
Production of engineered long-life and male sterile Pelargonium plants.
García-Sogo, Begoña; Pineda, Benito; Roque, Edelín; Antón, Teresa; Atarés, Alejandro; Borja, Marisé; Beltrán, José Pío; Moreno, Vicente; Cañas, Luis Antonio
2012-08-31
Pelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively. The pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3-4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis. The chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers.
Towards the theory of pollinator-mediated gene flow.
Cresswell, James E
2003-01-01
I present a new exposition of a model of gene flow by animal-mediated pollination between a source population and a sink population. The model's parameters describe two elements: (i) the expected portion of the source's paternity that extends to the sink population; and (ii) the dilution of this portion by within-sink pollinations. The model is termed the portion-dilution model (PDM). The PDM is a parametric restatement of the conventional view of animal-mediated pollination. In principle, it can be applied to plant species in general. I formulate a theoretical value of the portion parameter that maximizes gene flow and prescribe this as a benchmark against which to judge the performance of real systems. Existing foraging theory can be used in solving part of the PDM, but a theory for source-to-sink transitions by pollinators is currently elusive. PMID:12831465
1993-01-27
Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of
Incorrectly predicted genes in rice?
Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio
2004-05-26
Between one third and one half of the proposed rice genes appear to have no homologs in other species, including Arabidopsis. Compositional considerations, and a comparison of curated rice sequences with ex novo predictions, suggest that many or most of the putative genes without homologs may be false positive predictions, i.e., sequences that are never translated into functional proteins in vivo.
Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells.
Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic
2015-08-12
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.
Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells
Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic
2015-01-01
A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954
Population history of the Dniester-Carpathians: evidence from Alu markers.
Varzari, Alexander; Stephan, Wolfgang; Stepanov, Vadim; Raicu, Florina; Cojocaru, Radu; Roschin, Yuri; Glavce, Cristiana; Dergachev, Valentin; Spiridonova, Maria; Schmidt, Horst D; Weiss, Elisabeth
2007-01-01
The area between the Dniester and the eastern Carpathian mountain range is at a geographical crossroads between eastern Europe and the Balkans. Little is known about the genetics of the population of this region. We performed an analysis of 12 binary autosomal markers in samples from six Dniester-Carpathian populations: two Moldavian, one Romanian, one Ukrainian and two Gagauz populations. The results were compared with gene frequency data from culturally and linguistically related populations from Southeast Europe and Central Asia. Small genetic differences were found among southeastern European populations (in particular those of the Dniester-Carpathian region). The observed homogeneity suggests either a very recent common ancestry of all southeastern European populations or strong gene flow between them. Despite this low level of differentiation, tree reconstruction and principle component analyses allowed a distinction between Balkan-Carpathian (Macedonians, Romanians, Moldavians, Ukrainians and Gagauzes) and eastern Mediterranean (Turks, Greeks and Albanians) population groups. The genetic affinities among Dniester-Carpathian and southeastern European populations do not reflect their linguistic relationships. The results indicate that the ethnic and genetic differentiations occurred in these regions to a considerable extent independently of each other. In particular, Gagauzes, a Turkic-speaking population, show closer affinities to their geographical neighbors than to other Turkic populations.
Ye, Roy R; Peterson, Drew R; Seemann, Frauke; Kitamura, Shin-Ichi; Lee, J S; Lau, Terrance C K; Tsui, Stephen K W; Au, Doris W T
2017-12-01
Many anthropogenic pollutants in coastal marine environments can induce immune impairments in wild fish and reduce their survival fitness. There is a pressing need to establish sensitive and high throughput in vivo tools to systematically evaluate the immunosuppressive effects of contaminants in marine teleosts. This study reviewed a battery of in vivo immune function detection technologies established for different biological hierarchies at molecular (immune function pathways and genes by next generation sequencing (NGS)), cellular (leukocytes profiles by flow cytometry), tissues/organ system (whole adult histo-array), and organism (host resistance assays (HRAs)) levels, to assess the immune competence of marine medaka Oryzias melastigma. This approach enables a holistic assessment of fish immune competence under different chemical exposure or environmental scenarios. The data obtained will also be useful to unravel the underlying immunotoxic mechanisms. Intriguingly, NGS analysis of hepatic immune gene expression profiles (male > female) are in support of the bacterial HRA findings, in which infection-induced mortality was consistently higher in females than in males. As such, reproductive stages and gender-specific responses must be taken into consideration when assessing the risk of immunotoxicants in the aquatic environment. The distinct phenotypic sexual dimorphism and short generation time (3 months) of marine medaka offer additional advantages for sex-related immunotoxicological investigation.
Reid, K; Hoareau, T B; Graves, J E; Potts, W M; dos Santos, S M R; Klopper, A W; Bloomer, P
2016-01-01
The combination of oceanographic barriers and habitat heterogeneity are known to reduce connectivity and leave specific genetic signatures in the demographic history of marine species. However, barriers to gene flow in the marine environment are almost never impermeable which inevitably allows secondary contact to occur. In this study, eight sampling sites (five along the South African coastline, one each in Angola, Senegal and Portugal) were chosen to examine the population genetic structure and phylogeographic history of the cosmopolitan bluefish (Pomatomus saltatrix), distributed across a large South-east Atlantic upwelling zone. Molecular analyses were applied to mtDNA cytochrome b, intron AM2B1 and 15 microsatellite loci. We detected uncharacteristically high genetic differentiation (FST 0.15–0.20; P<0.001) between the fish sampled from South Africa and the other sites, strongly influenced by five outlier microsatellite loci located in conserved intergenic regions. In addition, differentiation among the remaining East Atlantic sites was detected, although mtDNA indicated past isolation with subsequent secondary contact between these East Atlantic populations. We further identified secondary contact, with unidirectional gene flow from South Africa to Angola. The directional contact is likely explained by a combination of the northward flowing offshore current and endogenous incompatibilities restricting integration of certain regions of the genome and limiting gene flow to the south. The results confirm that the dynamic system associated with the Benguela current upwelling zone influences species distributions and population processes in the South-east Atlantic. PMID:27436525
Reid, K; Hoareau, T B; Graves, J E; Potts, W M; Dos Santos, S M R; Klopper, A W; Bloomer, P
2016-11-01
The combination of oceanographic barriers and habitat heterogeneity are known to reduce connectivity and leave specific genetic signatures in the demographic history of marine species. However, barriers to gene flow in the marine environment are almost never impermeable which inevitably allows secondary contact to occur. In this study, eight sampling sites (five along the South African coastline, one each in Angola, Senegal and Portugal) were chosen to examine the population genetic structure and phylogeographic history of the cosmopolitan bluefish (Pomatomus saltatrix), distributed across a large South-east Atlantic upwelling zone. Molecular analyses were applied to mtDNA cytochrome b, intron AM2B1 and 15 microsatellite loci. We detected uncharacteristically high genetic differentiation (F ST 0.15-0.20; P<0.001) between the fish sampled from South Africa and the other sites, strongly influenced by five outlier microsatellite loci located in conserved intergenic regions. In addition, differentiation among the remaining East Atlantic sites was detected, although mtDNA indicated past isolation with subsequent secondary contact between these East Atlantic populations. We further identified secondary contact, with unidirectional gene flow from South Africa to Angola. The directional contact is likely explained by a combination of the northward flowing offshore current and endogenous incompatibilities restricting integration of certain regions of the genome and limiting gene flow to the south. The results confirm that the dynamic system associated with the Benguela current upwelling zone influences species distributions and population processes in the South-east Atlantic.
Li, You; Cooper, Steven J. B.; Lancaster, Melanie L.; Packer, Jasmin G.; Carthew, Susan M.
2016-01-01
Genetic connectivity is a key factor for maintaining the persistence of populations in fragmented landscapes. In highly modified landscapes such us peri-urban areas, organisms’ dispersal among fragmented habitat patches can be reduced due to the surrounding matrix, leading to subsequent decreased gene flow and increased potential extinction risk in isolated sub-populations. However, few studies have compared within species how dispersal/gene flow varies between regions and among different forms of matrix that might be encountered. In the current study, we investigated gene flow and dispersal in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus) in a heavily modified peri-urban landscape in South Australia, Australia. We used 14 microsatellite markers to genotype 254 individuals which were sampled from 15 sites. Analyses revealed significant genetic structure. Our analyses also indicated that dispersal was mostly limited to neighbouring sites. Comparisons of these results with analyses of a different population of the same species revealed that gene flow/dispersal was more limited in this peri-urban landscape than in a pine plantation landscape approximately 400 km to the south-east. These findings increase our understanding of how the nature of fragmentation can lead to profound differences in levels of genetic connectivity among populations of the same species. PMID:27096952
Cahill, James A; Soares, André E R; Green, Richard E; Shapiro, Beth
2016-07-19
Understanding when species diverged aids in identifying the drivers of speciation, but the end of gene flow between populations can be difficult to ascertain from genetic data. We explore the use of pairwise sequential Markovian coalescent (PSMC) modelling to infer the timing of divergence between species and populations. PSMC plots generated using artificial hybrid genomes show rapid increases in effective population size at the time when the two parent lineages diverge, and this approach has been used previously to infer divergence between human lineages. We show that, even without high coverage or phased input data, PSMC can detect the end of significant gene flow between populations by comparing the PSMC output from artificial hybrids to the output of simulations with known demographic histories. We then apply PSMC to detect divergence times among lineages within two real datasets: great apes and bears within the genus Ursus Our results confirm most previously proposed divergence times for these lineages, and suggest that gene flow between recently diverged lineages may have been common among bears and great apes, including up to one million years of continued gene flow between chimpanzees and bonobos after the formation of the Congo River.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).
Gaiotto, F A; Grattapaglia, D; Vencovsky, R
2003-01-01
We report a detailed analysis of the population genetic structure, mating system, and gene flow of heart of palm (Euterpe edulis Mart.-Arecaceae) in central Brazil. This palm is considered a keystone species because it supplies fruits for birds and rodents all year and is intensively harvested for culinary purposes. Two populations of this palm tree were examined, using 18 microsatellite loci. The species displays a predominantly outcrossed mating system (tm = 0.94), with a probability of full sibship greater than 70% within open-pollinated families. The following estimates of interpopulation genetic variation were calculated and found significant: FIT = 0.17, FIS = 0.12, FST = 0.06, and RST = 0.07. This low but significant level of interpopulation genetic variation indicates high levels of gene flow. Two adult trees were identified as likely seed parents (P > 99.9%) of juveniles located at a distance of 22 km. Gene flow over such distances has not been reported before for tropical tree species. The establishment and management of in situ genetic reserves or ex situ conservation and breeding populations for E. edulis should contemplate the collection of several hundreds open-pollinated maternal families from relatively few distant populations to maximize the genetic sampling of a larger number of pollen parents.
Social interactions predict genetic diversification: an experimental manipulation in shorebirds.
Cunningham, Charles; Parra, Jorge E; Coals, Lucy; Beltrán, Marcela; Zefania, Sama; Székely, Tamás
2018-01-01
Mating strategy and social behavior influence gene flow and hence affect levels of genetic differentiation and potentially speciation. Previous genetic analyses of closely related plovers Charadrius spp. found strikingly different population genetic structure in Madagascar: Kittlitz's plovers are spatially homogenous whereas white-fronted plovers have well segregated and geographically distinct populations. Here, we test the hypotheses that Kittlitz's plovers are spatially interconnected and have extensive social interactions that facilitate gene flow, whereas white-fronted plovers are spatially discrete and have limited social interactions. By experimentally removing mates from breeding pairs and observing the movements of mate-searching plovers in both species, we compare the spatial behavior of Kittlitz's and white-fronted plovers within a breeding season. The behavior of experimental birds was largely consistent with expectations: Kittlitz's plovers travelled further, sought new mates in larger areas, and interacted with more individuals than white-fronted plovers, however there was no difference in breeding dispersal. These results suggest that mating strategies, through spatial behavior and social interactions, are predictors of gene flow and thus genetic differentiation and speciation. Our study highlights the importance of using social behavior to understand gene flow. However, further work is needed to investigate the relative importance of social structure, as well as intra- and inter-season dispersal, in influencing the genetic structures of populations.
Dutta, Trishna; Sharma, Sandeep; Maldonado, Jesús E.; Panwar, Hemendra Singh; Seidensticker, John
2015-01-01
Sloth bears (Melursus ursinus) are endemic to the Indian subcontinent. As a result of continued habitat loss and degradation over the past century, sloth bear populations have been in steady decline and now exist only in isolated or fragmented habitat across the entire range. We investigated the genetic connectivity of the sloth bear meta-population in five tiger reserves in the Satpura-Maikal landscape of central India. We used noninvasively collected fecal and hair samples to obtain genotypic information using a panel of seven polymorphic loci. Out of 194 field collected samples, we identified 55 individuals in this meta-population. We found that this meta-population has moderate genetic variation, and is subdivided into two genetic clusters. Further, we identified five first-generation migrants and signatures of contemporary gene flow. We found evidence of sloth bears in the corridor between the Kanha and Pench Tiger Reserves, and our results suggest that habitat connectivity and corridors play an important role in maintaining gene flow in this meta-population. These corridors face several anthropogenic and infrastructure development threats that have the potential to sever ongoing gene flow, if policies to protect them are not put into action immediately. PMID:25945939
Rai, Kedar N; Jain, Subodh K
1982-06-01
Pollen and seed dispersal patterns were analyzed in both natural and experimental populations of Avena barbata. Localized estimates of gene flow rates and plant densities gave estimates of neighborhood size in the range of 40 to 400 plants; the estimates of mean rate and distance of gene flow seemed to vary widely due to variable wind direction, rodent activity, microsite heterogeneity, etc. The relative sizes of neighborhoods in several populations were correlated with the patchy distribution of different genotypes (scored for lemma color and leaf sheath hairiness) within short distances, but patch sizes had a wide range among different sites. Highly localized gene flow patterns seemed to account for the observed pattern of highly patchy variation even when the dispersal curves for both pollen and seed were platykurtic in many cases. Measures of the stability of patches in terms of their size, dispersion in space and genetic structure in time are needed in order to sort out the relative roles of founder effects, random drift (due to small neighborhood size), and highly localized selection. However, our observations suggest that many variables and stochastic processes are involved in such studies so as to allow only weak inference about the underlying role of natural selection, drift and factors of population regulatien.
Speciation has a spatial scale that depends on levels of gene flow.
Kisel, Yael; Barraclough, Timothy G
2010-03-01
Area is generally assumed to affect speciation rates, but work on the spatial context of speciation has focused mostly on patterns of range overlap between emerging species rather than on questions of geographical scale. A variety of geographical theories of speciation predict that the probability of speciation occurring within a given region should (1) increase with the size of the region and (2) increase as the spatial extent of intraspecific gene flow becomes smaller. Using a survey of speciation events on isolated oceanic islands for a broad range of taxa, we find evidence for both predictions. The probability of in situ speciation scales with island area in bats, carnivorous mammals, birds, flowering plants, lizards, butterflies and moths, and snails. Ferns are an exception to these findings, but they exhibit high frequencies of polyploid and hybrid speciation, which are expected to be scale independent. Furthermore, the minimum island size for speciation correlates across groups with the strength of intraspecific gene flow, as is estimated from a meta-analysis of published population genetic studies. These results indicate a general geographical model of speciation rates that are dependent on both area and gene flow. The spatial scale of population divergence is an important but neglected determinant of broad-scale diversity patterns.
Konijnendijk, Nellie; Shikano, Takahito; Daneels, Dorien; Volckaert, Filip A M; Raeymaekers, Joost A M
2015-09-01
Local adaptation is often obvious when gene flow is impeded, such as observed at large spatial scales and across strong ecological contrasts. However, it becomes less certain at small scales such as between adjacent populations or across weak ecological contrasts, when gene flow is strong. While studies on genomic adaptation tend to focus on the former, less is known about the genomic targets of natural selection in the latter situation. In this study, we investigate genomic adaptation in populations of the three-spined stickleback Gasterosteus aculeatus L. across a small-scale ecological transition with salinities ranging from brackish to fresh. Adaptation to salinity has been repeatedly demonstrated in this species. A genome scan based on 87 microsatellite markers revealed only few signatures of selection, likely owing to the constraints that homogenizing gene flow puts on adaptive divergence. However, the detected loci appear repeatedly as targets of selection in similar studies of genomic adaptation in the three-spined stickleback. We conclude that the signature of genomic selection in the face of strong gene flow is weak, yet detectable. We argue that the range of studies of genomic divergence should be extended to include more systems characterized by limited geographical and ecological isolation, which is often a realistic setting in nature.
The evolution of recombination rates in finite populations during ecological speciation.
Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan
2016-10-26
Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).
Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Arni; Räsänen, Katja
2013-09-01
Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments - favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.
Millet, Antoine; Kristjánsson, Bjarni K; Einarsson, Árni; Räsänen, Katja
2013-01-01
Eco-evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow. PMID:24223263
USDA-ARS?s Scientific Manuscript database
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module discusses the hydrologic considerations that apply to land application of wastes. These are precipitation, infiltration and percolation, evapotranspiration, runoff, and groundwater. Climatic considerations that relate to wastewater storage are also discussed. Particular emphasis is given to wastewater flow, precipitation, evaporation,…
NPY family genes respond negatively to alternative feedstuffs in channel catfish diets
USDA-ARS?s Scientific Manuscript database
Of considerable importance in fish nutrition is the development of aquafeeds using alternative dietary ingredients which will allow aquaculture to grow globally, without putting excessive pressure on natural fisheries or adding considerable cost to production, while also addressing and maintaining t...
Targeting fumonisin biosynthetic genes
USDA-ARS?s Scientific Manuscript database
The fungus Fusarium is an agricultural problem because it can cause disease on most crop plants and can contaminate crops with mycotoxins. There is considerable variation in the presence/absence and genomic location of gene clusters responsible for synthesis of mycotoxins and other secondary metabol...
Frequent gene flow blurred taxonomic boundaries of sections in Lilium L. (Liliaceae)
Liu, Shih-Hui; Chiang, Tzen-Yuh
2017-01-01
Gene flow between species may last a long time in plants. Reticulation inevitably causes difficulties in phylogenetic reconstruction. In this study, we looked into the genetic divergence and phylogeny of 20 Lilium species based on multilocus analyses of 8 genes of chloroplast DNA (cpDNA), the internally transcribed nuclear ribosomal DNA (nrITS) spacer and 20 loci extracted from the expressed sequence tag (EST) libraries of L. longiflorum Thunb. and L. formosanum Wallace. The phylogeny based on the combined data of the maternally inherited cpDNA and nrITS was largely consistent with the taxonomy of Lilium sections. This phylogeny was deemed the hypothetical species tree and uncovered three groups, i.e., Cluster A consisting of 4 taxa from the sections Pseudolirium and Liriotypus, Cluster B consisting of the 4 taxa from the sections Leucolirion, Archelirion and Daurolirion, and Cluster C comprising 10 taxa mostly from the sections Martagon and Sinomartagon. In contrast, systematic inconsistency occurred across the EST loci, with up to 19 genes (95%) displaying tree topologies deviating from the hypothetical species tree. The phylogenetic incongruence was likely attributable to the frequent genetic exchanges between species/sections, as indicated by the high levels of genetic recombination and the IMa analyses with the EST loci. Nevertheless, multilocus analysis could provide complementary information among the loci on the species split and the extent of gene flow between the species. In conclusion, this study not only detected frequent gene flow among Lilium sections that resulted in phylogenetic incongruence but also reconstructed a hypothetical species tree that gave insights into the nature of the complex relationships among Lilium species. PMID:28841664
Hou, Yan; Lou, Anru
2011-01-01
Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations.
Hou, Yan; Lou, Anru
2011-01-01
Aims Rhodiola dumulosa (Crassulaceae) is a perennial diploid species found in high-montane areas. It is distributed in fragmented populations across northern, central and northwestern China. In this study, we aimed to (i) measure the genetic diversity of this species and that of its populations; (ii) describe the genetic structure of these populations across the entire distribution range in China; and (iii) evaluate the extent of gene flow among the naturally fragmented populations. Methods Samples from 1089 individuals within 35 populations of R. dumulosa were collected, covering as much of the entire distribution range of this species within China as possible. Population genetic diversity and structure were analyzed using AFLP molecular markers. Gene flow among populations was estimated according to the level of population differentiation. Important Findings The total genetic diversity of R. dumulosa was high but decreased with increasing altitude. Population-structure analysis indicated that the most closely related populations were geographically restricted and occurred in close proximity to each other. A significant isolation-by-distance pattern, caused by the naturally fragmented population distribution, was observed. At least two distinct gene pools were found in the 35 sampled populations, one composed of populations in northern China and the other composed of populations in central and northwestern China. The calculation of Nei's gene diversity index revealed that the genetic diversity in the northern China pool (0.1972) was lower than that in the central and northwestern China pool (0.2216). The populations were significantly isolated, and gene flow was restricted throughout the entire distribution. However, gene flow among populations on the same mountain appears to be unrestricted, as indicated by the weak genetic isolation among these populations. PMID:21909437
Review of coaxial flow gas core nuclear rocket fluid mechanics
NASA Technical Reports Server (NTRS)
Weinstein, H.
1976-01-01
Almost all of the fluid mechanics research associated with the coaxial flow gas core reactor ended abruptly with the interruption of NASA's space nuclear program because of policy and budgetary considerations in 1973. An overview of program accomplishments is presented through a review of the experiments conducted and the analyses performed. Areas are indicated where additional research is required for a fuller understanding of cavity flow and of the factors which influence cold and hot flow containment. A bibliography is included with graphic material.
NASA Astrophysics Data System (ADS)
CAO, Lihua; LIN, Aqiang; LI, Yong; XIAO, Bin
2017-07-01
Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam turbine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-averaged N-S equations and standard k- ɛ turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30° to 40°, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effective enthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.
Pneumatic fracturing of low permeability media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuring, J.R.
1996-08-01
Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.
USDA-ARS?s Scientific Manuscript database
Increased use of genetically engineered crops in agriculture has raised concerns over pollinator-mediated gene flow between transgenic and conventional agricultural varieties. This study evaluated whether contracted migratory beekeeping practices influence transgenic pollen flow among spatially iso...
Replacing and Additive Horizontal Gene Transfer in Streptococcus
Choi, Sang Chul; Rasmussen, Matthew D.; Hubisz, Melissa J.; Gronau, Ilan; Stanhope, Michael J.; Siepel, Adam
2012-01-01
The prominent role of Horizontal Gene Transfer (HGT) in the evolution of bacteria is now well documented, but few studies have differentiated between evolutionary events that predominantly cause genes in one lineage to be replaced by homologs from another lineage (“replacing HGT”) and events that result in the addition of substantial new genomic material (“additive HGT”). Here in, we make use of the distinct phylogenetic signatures of replacing and additive HGTs in a genome-wide study of the important human pathogen Streptococcus pyogenes (SPY) and its close relatives S. dysgalactiae subspecies equisimilis (SDE) and S. dysgalactiae subspecies dysgalactiae (SDD). Using recently developed statistical models and computational methods, we find evidence for abundant gene flow of both kinds within each of the SPY and SDE clades and of reduced levels of exchange between SPY and SDD. In addition, our analysis strongly supports a pronounced asymmetry in SPY–SDE gene flow, favoring the SPY-to-SDE direction. This finding is of particular interest in light of the recent increase in virulence of pathogenic SDE. We find much stronger evidence for SPY–SDE gene flow among replacing than among additive transfers, suggesting a primary influence from homologous recombination between co-occurring SPY and SDE cells in human hosts. Putative virulence genes are correlated with transfer events, but this correlation is found to be driven by additive, not replacing, HGTs. The genes affected by additive HGTs are enriched for functions having to do with transposition, recombination, and DNA integration, consistent with previous findings, whereas replacing HGTs seen to influence a more diverse set of genes. Additive transfers are also found to be associated with evidence of positive selection. These findings shed new light on the manner in which HGT has shaped pathogenic bacterial genomes. PMID:22617954
Navigating the Interface Between Landscape Genetics and Landscape Genomics.
Storfer, Andrew; Patton, Austin; Fraik, Alexandra K
2018-01-01
As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used.
Navigating the Interface Between Landscape Genetics and Landscape Genomics
Storfer, Andrew; Patton, Austin; Fraik, Alexandra K.
2018-01-01
As next-generation sequencing data become increasingly available for non-model organisms, a shift has occurred in the focus of studies of the geographic distribution of genetic variation. Whereas landscape genetics studies primarily focus on testing the effects of landscape variables on gene flow and genetic population structure, landscape genomics studies focus on detecting candidate genes under selection that indicate possible local adaptation. Navigating the transition between landscape genomics and landscape genetics can be challenging. The number of molecular markers analyzed has shifted from what used to be a few dozen loci to thousands of loci and even full genomes. Although genome scale data can be separated into sets of neutral loci for analyses of gene flow and population structure and putative loci under selection for inference of local adaptation, there are inherent differences in the questions that are addressed in the two study frameworks. We discuss these differences and their implications for study design, marker choice and downstream analysis methods. Similar to the rapid proliferation of analysis methods in the early development of landscape genetics, new analytical methods for detection of selection in landscape genomics studies are burgeoning. We focus on genome scan methods for detection of selection, and in particular, outlier differentiation methods and genetic-environment association tests because they are the most widely used. Use of genome scan methods requires an understanding of the potential mismatches between the biology of a species and assumptions inherent in analytical methods used, which can lead to high false positive rates of detected loci under selection. Key to choosing appropriate genome scan methods is an understanding of the underlying demographic structure of study populations, and such data can be obtained using neutral loci from the generated genome-wide data or prior knowledge of a species' phylogeographic history. To this end, we summarize recent simulation studies that test the power and accuracy of genome scan methods under a variety of demographic scenarios and sampling designs. We conclude with a discussion of additional considerations for future method development, and a summary of methods that show promise for landscape genomics studies but are not yet widely used. PMID:29593776
Tricho-hepato-enteric syndrome with novel SKIV2L gene mutations
Hiejima, Eitaro; Yasumi, Takahiro; Nakase, Hiroshi; Matsuura, Minoru; Honzawa, Yusuke; Higuchi, Hirokazu; Okafuji, Ikuo; Yorifuji, Tohru; Tanaka, Takayuki; Izawa, Kazushi; Kawai, Tomoki; Nishikomori, Ryuta; Heike, Toshio
2017-01-01
Abstract Rationale: Tricho-hepato-enteric syndrome (THES) is a rare disorder caused by mutations in the TTC37 or SKIV2L genes and characterized by chronic diarrhea, liver disease, hair abnormalities, and high mortality in early childhood due to severe infection or liver cirrhosis. Patient concerns: The patient is the second child of three siblings born to non-consanguineous healthy Japanese parents. She had intrauterine growth retardation and was delivered at 33 weeks of gestation due to placental abruption. She presented with watery diarrhea, elevated levels of liver enzymes, multiple episodes of recurrent bacterial infection, and mild mental retardation. She had facial dysmorphism, including prominent forehead and hypertelorism, and had woolly hair without trichorrhexis nodosa. Diagnosis: Clinical features led to consideration of THES. Novel compound heterozygous nonsense mutations, c.1420G>T (p.Q474∗) and c.3262G>T (p.E1088∗), in the SKIV2L gene were identified in the patient, and decreased levels of SKIV2L protein expression were revealed by flow cytometry and confirmed by western blot analysis using patient peripheral blood mononuclear cells (PBMCs). Interventions: Total parenteral nutrition was required from day 30 to day 100. Trimethoprim-sulfamethoxazole prophylaxis was started at the age of 7 years after multiple episodes of bacterial pneumonia and otitis media. Outcomes: Chronic diarrhea persisted for more than 10 years, but the symptoms gradually improved with age. At the age of 13 years, she started a normal diet in combination with oral nutritional supplementation and her height and weight were just below the 3rd percentile for healthy individuals. She developed secondary sex characteristics, and menarche occurred at the age of 12 years. Facial dysmorphism, including prominent forehead and hypertelorism, and woolly hair without trichorrhexis nodosa became noticeable as she matured. Lessons: Physicians must be aware of THES when they encounter a patient with infantile diarrhea, hair abnormalities, immune deficiency, mental retardation, and liver disease. Moreover, flow cytometric detection of SKIV2L protein in PBMCs may facilitate early diagnosis. PMID:29145277
Dual-plane ultrasound flow measurements in liquid metals
NASA Astrophysics Data System (ADS)
Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen
2013-05-01
An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.
The fine-scale genetic structure of the two-spotted spider mite in a commercial greenhouse.
Uesugi, R; Kunimoto, Y; Osakabe, Mh
2009-02-01
The fine-scale genetic structure of Tetranychus urticae Koch was studied to estimate local gene flow within a rose tree habitat in a commercial greenhouse using seven microsatellite markers. Two beds of rose trees with different population densities were selected and 18 consecutive quadrats of 1.2 m length were sequentially established in each bed. Heterozygote deficiency was positive within quadrats, which was most likely a result of the Wahlund effect because the mites usually form small breeding colonies. Low population density and frequent inbreeding could also accelerate genetic differentiation among the breeding colonies. A short-range (2.4-3.6 m) positive autocorrelation and clear genetic cline among quadrat populations was detected within a bed. This suggests that gene flow was limited to a short range even if population density was substantially increased. Therefore, large-scale dispersal such as aerial dispersal contributed very little to gene flow in the greenhouse.
Lam, Tommy Tsan-Yuk; Ip, Hon S.; Ghedin, Elodie; Wentworth, David E.; Halpin, Rebecca A.; Stockwell, Timothy B.; Spiro, David J.; Dusek, Robert J.; Bortner, James B.; Hoskins, Jenny; Bales, Bradley D.; Yparraguirre, Dan R.; Holmes, Edward C.
2012-01-01
Despite the importance of migratory birds in the ecology and evolution of avian influenza virus (AIV), there is a lack of information on the patterns of AIV spread at the intra-continental scale. We applied a variety of statistical phylogeographic techniques to a plethora of viral genome sequence data to determine the strength, pattern and determinants of gene flow in AIV sampled from wild birds in North America. These analyses revealed a clear isolation-by-distance of AIV among sampling localities. In addition, we show that phylogeographic models incorporating information on the avian flyway of sampling proved a better fit to the observed sequence data than those specifying homogeneous or random rates of gene flow among localities. In sum, these data strongly suggest that the intra-continental spread of AIV by migratory birds is subject to major ecological barriers, including spatial distance and avian flyway.
Glennon, Kelsey L.; Cron, Glynis V.
2016-01-01
Premise of the study: Microsatellites were developed for the widespread Helichrysum odoratissimum (Asteraceae) to estimate gene flow across diploid populations and to test if gene flow occurs among other closely related lineages within this genus. Methods and Results: Ten primer pairs were developed and tested using populations across South Africa; however, only seven primer pairs were polymorphic for the target species. The seven polymorphic primers amplified di- and trinucleotide repeats with up to 16 alleles per locus among 125 diploid individuals used for analyses. Conclusions: These markers can be used to estimate gene flow among populations of known ploidy level of H. odoratissimum to test evolutionary hypotheses. Furthermore, these markers amplify successfully in other Helichrysum species, including the other three taxonomic Group 4 species, and therefore can be used to inform taxonomic work on these species. PMID:27213125
Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale
Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire
2013-01-01
Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges. PMID:23630596
Highly Multiplexed, Single Cell Transcriptomic Analysis of T-Cells by Microfluidic PCR.
Dominguez, Maria; Roederer, Mario; Chattopadhyay, Pratip K
2017-01-01
Recently, technologies have been developed to measure expression of 96 (or more) mRNA transcripts at once from a single cell. Here we describe methods and important considerations for use of Fluidigm's BioMark platform for multiplexed single cell gene expression. We describe how to qualify primer/probes, select genes to examine in 96-parameter panels, perform the reverse transcription/cDNA synthesis step, and operate the instrument. In addition, we describe data analysis considerations. This technology has enormous value for characterizing the heterogeneity of T-cells, thereby providing a useful tool for immune monitoring.
Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster
NASA Astrophysics Data System (ADS)
Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer
2002-10-01
Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.
GENE EXPRESSION CHANGES IN MOUSE BLADDER TISSUE IN RESPONSE TO INORGANIC ARSENIC
Chronic human exposures to high arsenic concentrations are associated with lung, skin, and bladder cancer. Considerable controversy exists concerning arsenic mode of action and low dose extrapolation. This investigation was designed to identify dose-response changes in gene expre...
Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field.
Geng, Tao; Zhan, Yihong; Lu, Chang
2012-01-01
Electroporation is one of the most widely used physical methods to deliver exogenous nucleic acids into cells with high efficiency and low toxicity. Conventional electroporation systems typically require expensive pulse generators to provide short electrical pulses at high voltage. In this work, we demonstrate a flow-through electroporation method for continuous transfection of cells based on disposable chips, a syringe pump, and a low-cost power supply that provides a constant voltage. We successfully transfect cells using either DC or AC voltage with high flow rates (ranging from 40 µl/min to 20 ml/min) and high efficiency (up to 75%). We also enable the entire cell membrane to be uniformly permeabilized and dramatically improve gene delivery by inducing complex migrations of cells during the flow.
Arthropod genomic resources for the 21st century
USDA-ARS?s Scientific Manuscript database
Genome references are foundational for high quality entomological research today. Species, sub populations and taxonomy are defined by gene flow and genome sequences. Gene content in arthropods is often directly reflective of life history, for example, diet and symbiont related gene loss is observed...
Mitochondrial introgression and complex biogeographic history of the genus Picea.
Ran, Jin-Hua; Shen, Ting-Ting; Liu, Wen-Juan; Wang, Pei-Pei; Wang, Xiao-Quan
2015-12-01
Biogeographic history of plants is much more complex in the Northern Hemisphere than in the Southern Hemisphere due to that both the Bering and the North Atlantic land bridges contributed to floristic exchanges in the Cenozoic, which led to hybridization between congeneric species from different continents. It would be interesting to know how intercontinental gene flow and introgression have affected plant phylogenetic reconstruction and biogeographic inference. In this study, we reinvestigated the phylogenetic and biogeographic history of Picea, a main component of the Northern Hemisphere forest with many species that originated from recent radiation, using two chloroplast (cp), one mitochondrial (mt) and three single-copy nuclear gene markers. The generated gene trees are topologically highly discordant and the geographically closely related species generally show a close affinity of mtDNA rather than cp- or nuclear DNA, suggesting that inter- and intra-continental gene flow and mtDNA introgression might have occurred commonly. However, all gene trees resolved Picea breweriana as the basal-most lineage, which, together with fossil evidence, supports the North American origin hypothesis for the genus. Both dispersal and vicariance have played important roles in the evolution of Picea, and the Bering Land Bridge could have mediated the "North America to Eurasia" dispersal at least two times during the Miocene and Pliocene. Our study again demonstrates the importance of applying data from three genomes for a clear understanding of evolutionary histories in the pine family. Any markers from a single genome alone will not reveal a clear picture of the phylogenetic relationships among closely related congeneric species. In particular, mtDNA markers should be cautiously used, considering that introgression of the maternally inherited mtDNA with a lower rate of gene flow (by seeds) could have occurred much more frequently than that of the paternally inherited cpDNA with a higher rate of gene flow (by pollen) in Pinaceae. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy
2018-01-01
Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Akira, E-mail: akubota@whoi.edu; Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; Stegeman, John J.
2011-06-15
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). We previously reported a sensitive and useful endpoint of TCDD developmental toxicity in zebrafish, namely a decrease in blood flow in the dorsal midbrain, but downstream genes involved in the effect are not known. The present study addressed the role of zebrafish cytochrome P450 1C (CYP1C) genes in association with a decrease in mesencephalic vein (MsV) blood flow. The CYP1C subfamily was recently discovered in fish and includes the paralogues CYP1C1 and CYP1C2, both of which are induced viamore » AHR2 in zebrafish embryos. We used morpholino antisense oligonucleotides (MO or morpholino) to block initiation of translation of the target genes. TCDD-induced mRNA expression of CYP1Cs and a decrease in MsV blood flow were both blocked by gene knockdown of AHR2. Gene knockdown of CYP1C1 by two different morpholinos and CYP1C2 by two different morpholinos, but not by their 5 nucleotide-mismatch controls, was effective in blocking reduced MsV blood flow caused by TCDD. The same CYP1C-MOs prevented reduction of blood flow in the MsV caused by {beta}-naphthoflavone (BNF), representing another class of AHR agonists. Whole-mount in situ hybridization revealed that mRNA expression of CYP1C1 and CYP1C2 was induced by TCDD most strongly in branchiogenic primordia and pectoral fin buds. In situ hybridization using head transverse sections showed that TCDD increased the expression of both CYP1Cs in endothelial cells of blood vessels, including the MsV. These results indicate a potential role of CYP1C1 and CYP1C2 in the local circulation failure induced by AHR2 activation in the dorsal midbrain of the zebrafish embryo. - Research Highlights: > We examine the roles of zebrafish CYP1C1 and CYP1C2 in TCDD developmental toxicity. > TCDD induces mRNA expression of both CYP1Cs in the mesencephalic vein. > Knockdown of each CYP1C prevents mesencephalic circulation failure by TCDD. > Induced CYP1Cs are involved in reduction of mesencephalic vein blood flow by TCDD.« less
USDA-ARS?s Scientific Manuscript database
Recent developments in spectrally encoded microspheres (SEMs)-based technologies provide high multiplexing possibilities. Most SEMs-based assays required a flow cytometer with sophisticated fluidics and optics. The new imaging superparamagnetic SEMs-based platform transports SEMs with considerably ...
Gas exchange across the air-sea interface
NASA Astrophysics Data System (ADS)
Hasse, L.; Liss, P. S.
1980-10-01
The physics of gas exchange at the air-sea interface are reviewed. In order to describe the transfer of gases in the liquid near the boundary, a molecular plus eddy diffusivity concept is used, which has been found useful for smooth flow over solid surfaces. From consideration of the boundary conditions, a similar dependence of eddy diffusivity on distance from the interface can be derived for the flow beneath a gas/liquid interface, at least in the absence of waves. The influence of waves is then discussed. It is evident from scale considerations that the effect of gravity waves is small. It is known from wind tunnel work that capillary waves enhance gas transfer considerably. The existing hypotheses are apparently not sufficient to explain the observations. Examination of field data is even more frustrating since the data do not show the expected increase of gas exchange with wind speed.
Tabachnick, W J
1992-05-01
Seven Colorado populations of the bluetongue virus vector Culicoides varipennis (Coquillett) were analyzed for genetic variation at 19-21 isozyme loci. Permanent populations, which overwinter as larvae, showed little temporal genetic change at 19 loci. PGD and MDH showed seasonal changes in gene frequencies, attributable to selection at two permanent populations. Two temporary populations showed low heterozygosity compared with permanent populations. Independent estimates of gene flow, calculated using FST and the private allele method, were Nm* = 2.15 and 6.95, respectively. Colorado C. variipennis permanent populations showed high levels of gene flow which prevented significant genetic differentiation due to genetic drift. Temporary populations showed significant gene frequency differences from nearby permanent populations due to the "founder effect" associated with chance colonization.
Determination of chitin content in fungal cell wall: an alternative flow cytometric method.
Costa-de-Oliveira, Sofia; Silva, Ana P; Miranda, Isabel M; Salvador, Alexandre; Azevedo, Maria M; Munro, Carol A; Rodrigues, Acácio G; Pina-Vaz, Cidália
2013-03-01
The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted GlycosylPhosphatidylInositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi. Copyright © 2013 International Society for Advancement of Cytometry.
The importance of the specific Z-DNA structure and polyamines in carcinogenesis: fact or fiction.
Juranic, Z; Kidric, M; Tomin, R; Juranić, I; Spuzić, I; Petrović, J
1991-08-01
In this work some aspects of carcinogenesis are given. The importance of the emergence of Z or H DNA structure in the gene, or in the flanking gene sequences for the gene deletion and unusual gene recombination, is discussed. Some considerations on the role of selective pressure (of polyamines, of Mg2+, of the various levels of topoisomerase II, and of ATP) in the process of oncogene amplification, are given too.
Sun, Zhonglou; Pan, Tao; Wang, Hui; Pang, Mujia; Zhang, Baowei
2016-01-01
Great rivers were generally looked at as the geographical barrier to gene flow for many taxonomic groups. The Yangtze River is the third largest river in the world, and flows across South China and into the East China Sea. Up until now, few studies have been carried out to evaluate its effect as a geographical barrier. In this study, we attempted to determine the barrier effect of the Yangtze River on the tufted deer ( Elaphodus cephalophus ) using the molecular ecology approach. Using mitochondrial DNA control region (CR) sequences and 13 nuclear microsatellite loci, we explored the genetic structure and gene flow in two adjacent tufted deer populations (Dabashan and Wulingshan populations), which are separated by the Yangtze River. Results indicated that there are high genetic diversity levels in the two populations, but no distinguishable haplotype group or potential genetic cluster was detected which corresponded to specific geographical population. At the same time, high gene flow was observed between Wulingshan and Dabashan populations. The tufted deer populations experienced population decrease from 0.3 to 0.09 Ma BP, then followed by a distinct population increase. A strong signal of recent population decline ( T = 4,396 years) was detected in the Wulingshan population by a Markov-Switching Vector Autoregressions(MSVAR) process population demography analysis. The results indicated that the Yangtze River may not act as an effective barrier to gene flow in the tufted deer. Finally, we surmised that the population demography of the tufted deer was likely affected by Pleistocene climate fluctuations and ancient human activities.
Speciation with gene flow in equids despite extensive chromosomal plasticity
Jónsson, Hákon; Seguin-Orlando, Andaine; Ginolhac, Aurélien; Petersen, Lillian; Fumagalli, Matteo; Albrechtsen, Anders; Petersen, Bent; Vilstrup, Julia T.; Lear, Teri; Myka, Jennifer Leigh; Lundquist, Judith; Miller, Donald C.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Stagegaard, Julia; Strauss, Günter; Bertelsen, Mads Frost; Antczak, Douglas F.; Bailey, Ernest; Nielsen, Rasmus; Willerslev, Eske; Orlando, Ludovic
2014-01-01
Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0–4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1–3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation. PMID:25453089
Jin, Wenfei; Wang, Sijia; Wang, Haifeng; Jin, Li; Xu, Shuhua
2012-01-01
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genome-wide empirical and simulated data, that the approach based on the distribution of chromosomal segments of distinct ancestry (CSDAs) was more powerful than that based on the distribution of individual ancestry proportions. Analysis of 1,890 African Americans showed that a continuous gene flow model, in which the African American population continuously received gene flow from European populations over about 14 generations, best explained the admixture dynamics of African Americans among several putative models. Interestingly, we observed that some African Americans had much more European ancestry than the simulated samples, indicating substructures of local ancestries in African Americans that could have been caused by individuals from some particular lineages having repeatedly admixed with people of European ancestry. In contrast, the admixture dynamics of Mexicans could be explained by a gradual admixture model in which the Mexican population continuously received gene flow from both European and Amerindian populations over about 24 generations. Our results also indicated that recent gene flows from Sub-Saharan Africans have contributed to the gene pool of Middle Eastern populations such as Mozabite, Bedouin, and Palestinian. In summary, this study not only provides approaches to explore population admixture dynamics, but also advances our understanding on population history of African Americans, Mexicans, and Middle Eastern populations. PMID:23103229
Speciation with gene flow in equids despite extensive chromosomal plasticity.
Jónsson, Hákon; Schubert, Mikkel; Seguin-Orlando, Andaine; Ginolhac, Aurélien; Petersen, Lillian; Fumagalli, Matteo; Albrechtsen, Anders; Petersen, Bent; Korneliussen, Thorfinn S; Vilstrup, Julia T; Lear, Teri; Myka, Jennifer Leigh; Lundquist, Judith; Miller, Donald C; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Stagegaard, Julia; Strauss, Günter; Bertelsen, Mads Frost; Sicheritz-Ponten, Thomas; Antczak, Douglas F; Bailey, Ernest; Nielsen, Rasmus; Willerslev, Eske; Orlando, Ludovic
2014-12-30
Horses, asses, and zebras belong to a single genus, Equus, which emerged 4.0-4.5 Mya. Although the equine fossil record represents a textbook example of evolution, the succession of events that gave rise to the diversity of species existing today remains unclear. Here we present six genomes from each living species of asses and zebras. This completes the set of genomes available for all extant species in the genus, which was hitherto represented only by the horse and the domestic donkey. In addition, we used a museum specimen to characterize the genome of the quagga zebra, which was driven to extinction in the early 1900s. We scan the genomes for lineage-specific adaptations and identify 48 genes that have evolved under positive selection and are involved in olfaction, immune response, development, locomotion, and behavior. Our extensive genome dataset reveals a highly dynamic demographic history with synchronous expansions and collapses on different continents during the last 400 ky after major climatic events. We show that the earliest speciation occurred with gene flow in Northern America, and that the ancestor of present-day asses and zebras dispersed into the Old World 2.1-3.4 Mya. Strikingly, we also find evidence for gene flow involving three contemporary equine species despite chromosomal numbers varying from 16 pairs to 31 pairs. These findings challenge the claim that the accumulation of chromosomal rearrangements drive complete reproductive isolation, and promote equids as a fundamental model for understanding the interplay between chromosomal structure, gene flow, and, ultimately, speciation.
Waterhouse, Matthew D; Erb, Liesl P; Beever, Erik A; Russello, Michael A
2018-06-01
The ecological effects of climate change have been shown in most major taxonomic groups; however, the evolutionary consequences are less well-documented. Adaptation to new climatic conditions offers a potential long-term mechanism for species to maintain viability in rapidly changing environments, but mammalian examples remain scarce. The American pika (Ochotona princeps) has been impacted by recent climate-associated extirpations and range-wide reductions in population sizes, establishing it as a sentinel mammalian species for climate change. To investigate evidence for local adaptation and reconstruct patterns of genomic diversity and gene flow across rapidly changing environments, we used a space-for-time design and restriction site-associated DNA sequencing to genotype American pikas along two steep elevational gradients at 30,966 SNPs and employed independent outlier detection methods that scanned for genotype-environment associations. We identified 338 outlier SNPs detected by two separate analyses and/or replicated in both transects, several of which were annotated to genes involved in metabolic function and oxygen transport. Additionally, we found evidence of directional gene flow primarily downslope from high-elevation populations, along with reduced gene flow at outlier loci. If this trend continues, elevational range contractions in American pikas will likely be from local extirpation rather than upward movement of low-elevation individuals; this, in turn, could limit the potential for adaptation within this landscape. These findings are of particular relevance for future conservation and management of American pikas and other elevationally restricted, thermally sensitive species. © 2018 John Wiley & Sons Ltd.
Bacles, C F E; Ennos, R A
2008-10-01
Paternity analysis based on microsatellite marker genotyping was used to infer contemporary genetic connectivity by pollen of three population remnants of the wind-pollinated, wind-dispersed tree Fraxinus excelsior, in a deforested Scottish landscape. By deterministically accounting for genotyping error and comparing a range of assignment methods, individual-based paternity assignments were used to derive population-level estimates of gene flow. Pollen immigration into a 300 ha landscape represents between 43 and 68% of effective pollination, mostly depending on assignment method. Individual male reproductive success is unequal, with 31 of 48 trees fertilizing one seed or more, but only three trees fertilizing more than ten seeds. Spatial analysis suggests a fat-tailed pollen dispersal curve with 85% of detected pollination occurring within 100 m, and 15% spreading between 300 and 1900 m from the source. Identification of immigrating pollen sourced from two neighbouring remnants indicates further effective dispersal at 2900 m. Pollen exchange among remnants is driven by population size rather than geographic distance, with larger remnants acting predominantly as pollen donors, and smaller remnants as pollen recipients. Enhanced wind dispersal of pollen in a barren landscape ensures that the seed produced within the catchment includes genetic material from a wide geographic area. However, gene flow estimates based on analysis of non-dispersed seeds were shown to underestimate realized gene immigration into the remnants by a factor of two suggesting that predictive landscape conservation requires integrated estimates of post-recruitment gene flow occurring via both pollen and seed.
Liu, Lin; Liu, Chaoxiang; Zheng, Jiayu; Huang, Xu; Wang, Zhen; Liu, Yuhong; Zhu, Gefu
2013-05-01
This paper investigated the efficiency of two vertical flow constructed wetlands characterized by volcanic (CW1) and zeolite (CW2) respectively, at removing three common antibiotics (ciprofloxacin HCl, oxytetracycline HCl, and sulfamethazine) and tetracycline resistance (tet) genes (tetM, tetO, and tetW) from swine wastewater. The result indicated that the two systems could significantly reduce the wastewater antibiotics content, and elimination rates were in the following sequence: oxytetracycline HCl>ciprofloxacin HCl>sulfamethazine. The zeolite-medium system was superior to that of the volcanic-medium system vis-à-vis removal, perhaps because of the differing pH values and average pore sizes of the respective media. A higher concentration of antibiotics accumulated in the soil than in the media and vegetation, indicating that soil plays the main role in antibiotics removal from wastewater in vertical flow constructed wetlands. The characteristics of the wetland medium may also affect the antibiotic resistance gene removal capability of the system; the total absolute abundances of three tet genes and of 16S rRNA were reduced by 50% in CW1, and by almost one order of magnitude in CW2. However, the relative abundances of target tet genes tended to increase following CW1 treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Polymer as Permeability Modifier in Porous Media
NASA Astrophysics Data System (ADS)
Parsa, S.; Weitz, D.
2017-12-01
Polymer flow through porous media is of particular interest in applications such as enhanced oil recovery and ground water remediation. We measure the effects of polymer flow on the permeability and local velocity distribution of a single phase flow in 3D micromodel of porous media using confocal microscopy and bulk permeability measurement. Our measurements show considerable reduction in permeability and increased velocity fluctuations with fluid velocities being diverted in some pores after polymer flow. We also find that the average velocity in the medium at constant imposed flow rate scales with the inverse square root of permeability.
Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann
2018-02-01
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials.
Gándara, Carolina; Affleck, Valerie; Stoll, Elizabeth Ann
2018-01-01
Lentiviral vectors are used in laboratories around the world for in vivo and ex vivo delivery of gene therapies, and increasingly clinical investigation as well as preclinical applications. The third-generation lentiviral vector system has many advantages, including high packaging capacity, stable gene expression in both dividing and post-mitotic cells, and low immunogenicity in the recipient organism. Yet, the manufacture of these vectors is challenging, especially at high titers required for direct use in vivo, and further challenges are presented by the process of translating preclinical gene therapies toward manufacture of products for clinical investigation. The goals of this paper are to report the protocol for manufacturing high-titer third-generation lentivirus for preclinical testing and to provide detailed information on considerations for translating preclinical viral vector manufacture toward scaled-up platforms and processes in order to make gene therapies under Good Manufacturing Practice that are suitable for clinical trials. PMID:29212357
van der Meer, Martin H.; Hobbs, Jean-Paul A.; Jones, Geoffrey P.; van Herwerden, Lynne
2012-01-01
Marine protected areas (MPAs) are increasingly being advocated and implemented to protect biodiversity on coral reefs. Networks of appropriately sized and spaced reserves can capture a high proportion of species diversity, with gene flow among reserves presumed to promote long term resilience of populations to spatially variable threats. However, numerically rare small range species distributed among isolated locations appear to be at particular risk of extinction and the likely benefits of MPA networks are uncertain. Here we use mitochondrial and microsatellite data to infer evolutionary and contemporary gene flow among isolated locations as well as levels of self-replenishment within locations of the endemic anemonefish Amphiprion mccullochi, restricted to three MPA offshore reefs in subtropical East Australia. We infer high levels of gene flow and genetic diversity among locations over evolutionary time, but limited contemporary gene flow amongst locations and high levels of self-replenishment (68 to 84%) within locations over contemporary time. While long distance dispersal explained the species’ integrity in the past, high levels of self-replenishment suggest locations are predominantly maintained by local replenishment. Should local extinction occur, contemporary rescue effects through large scale connectivity are unlikely. For isolated islands with large numbers of endemic species, and high local replenishment, there is a high premium on local species-specific management actions. PMID:23185398
Mallory-Smith, Carol Ann
2017-01-01
The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment. PMID:28257488
Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents.
Hurtado, L A; Lutz, R A; Vrijenhoek, R C
2004-09-01
Population genetic and phylogenetic analyses of mitochondrial COI from five deep-sea hydrothermal vent annelids provided insights into their dispersal modes and barriers to gene flow. These polychaetes inhabit vent fields located along the East Pacific Rise (EPR) and Galapagos Rift (GAR), where hundreds to thousands of kilometers can separate island-like populations. Long-distance dispersal occurs via larval stages, but larval life histories differ among these taxa. Mitochondrial gene flow between populations of Riftia pachyptila, a siboglinid worm with neutrally buoyant lecithothrophic larvae, is diminished across the Easter Microplate region, which lies at the boundary of Indo-Pacific and Antarctic deep-sea provinces. Populations of the siboglinid Tevnia jerichonana are similarly subdivided. Oasisia alvinae is not found on the southern EPR, but northern EPR populations of this siboglinid are subdivided across the Rivera Fracture Zone. Mitochondrial gene flow of Alvinella pompejana, an alvinellid with large negatively buoyant lecithotrophic eggs and arrested embryonic development, is unimpeded across the Easter Microplate region. Gene flow in the polynoid Branchipolynoe symmytilida also is unimpeded across the Easter Microplate region. However, A. pompejana populations are subdivided across the equator, whereas B. symmitilida populations are subdivided between the EPR and GAR axes. The present findings are compared with similar evidence from codistributed species of annelids, molluscs and crustaceans to identify potential dispersal filters in these eastern Pacific ridge systems.
Santos, Alesandro S; Cazetta, Eliana; Dodonov, Pavel; Faria, Deborah; Gaiotto, Fernanda A
2016-09-01
Habitat loss represents one of the main threats to tropical forests, which have reached extremely high rates of species extinction. Forest loss negatively impacts biodiversity, affecting ecological (e.g., seed dispersal) and genetic (e.g., genetic diversity and structure) processes. Therefore, understanding how deforestation influences genetic resources is strategic for conservation. Our aim was to empirically evaluate the effects of landscape-scale forest reduction on the spatial genetic structure and gene flow of Euterpe edulis Mart (Arecaceae), a palm tree considered a keystone resource for many vertebrate species. This study was carried out in nine forest remnants in the Atlantic Forest, northeastern Brazil, located in landscapes within a gradient of forest cover (19-83%). We collected leaves of 246 adults and 271 seedlings and performed genotyping using microsatellite markers. Our results showed that the palm populations had low spatial genetic structure, indicating that forest reduction did not influence this genetic parameter for neither seedlings nor adults. However, forest loss decreased the gene flow distance, which may negatively affect the genetic diversity of future generations by increasing the risk of local extinction of this keystone palm. For efficient strategies of genetic variability conservation and maintenance of gene flow in E. edulis , we recommend the maintenance of landscapes with intermediary to high levels of forest cover, that is, forest cover above 40%.
Zapiola, María Luz; Mallory-Smith, Carol Ann
2017-01-01
The planting of 162 ha of transgenic glyphosate-resistant creeping bentgrass (Agrostis stolonifera) near Madras, OR, USA, allowed a unique opportunity to study gene flow over time from a perennial outcrossing species at the landscape level. While conducting a four year in situ survey, we collected panicles and leaf tissue samples from creeping bentgrass and its sexually compatible species. Seeds from the panicles were planted, and seedlings were tested in the greenhouse for expression of the transgene. Gene flow via pollen was found in all four years, at frequencies of 0.004 to 2.805%. Chloroplast markers, in combination with internal transcribed spacer nuclear sequence analysis, were used to aid in identification of transgenic interspecific and intergeneric hybrid seedlings found during the testing and of established plants that could not be positively identified in the field. Interspecific transgenic hybrids produced on redtop (Agrostis gigantea) plants in situ were identified three of the four years and one intergeneric transgenic creeping bentgrass x rabbitfoot grass (Polypogon monspeliensis) hybrid was identified in 2005. In addition, we confirmed a non-transgenic creeping bentgrass x redtop hybrid in situ, demonstrating that interspecific hybrids have established in the environment outside production fields. Results of this study should be considered for deregulation of transgenic events, studies of population dynamics, and prediction of gene flow in the environment.
Gibson, A K; Hood, M E; Giraud, T
2012-06-01
Closely related species coexisting in sympatry provide critical insight into the mechanisms underlying speciation and the maintenance of genetic divergence. Selfing may promote reproductive isolation by facilitating local adaptation, causing reduced hybrid fitness in parental environments. Here, we propose a novel mechanism by which selfing can further impair interspecific gene flow: selfing may act to ensure that nonhybrid progeny systematically co-occur whenever hybrid genotypes are produced. Under a competition arena, the fitness differentials between nonhybrid and hybrid progeny are then magnified, preventing development of interspecific hybrids. We investigate whether this "sibling competition arena" can explain the coexistence in sympatry of closely related species of the plant fungal pathogens (Microbotryum) causing anther-smut disease. The probabilities of intrapromycelial mating (automixis), outcrossing, and sibling competition were manipulated in artificial inoculations to evaluate their contribution to reproductive isolation. We report that both intrapromycelial selfing and sibling competition significantly reduced rates of hybrid infection beyond that expected based solely upon selfing rates and noncompetitive fitness differentials between hybrid and nonhybrid progeny. Our results thus suggest that selfing and a sibling competition arena can combine to constitute a barrier to gene flow and diminish selection for additional barriers to gene flow in sympatry. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.
Ruiz-González, Aritz; Gurrutxaga, Mikel; Cushman, Samuel A; Madeira, María José; Randi, Ettore; Gómez-Moliner, Benjamin J
2014-01-01
Coherent ecological networks (EN) composed of core areas linked by ecological corridors are being developed worldwide with the goal of promoting landscape connectivity and biodiversity conservation. However, empirical assessment of the performance of EN designs is critical to evaluate the utility of these networks to mitigate effects of habitat loss and fragmentation. Landscape genetics provides a particularly valuable framework to address the question of functional connectivity by providing a direct means to investigate the effects of landscape structure on gene flow. The goals of this study are (1) to evaluate the landscape features that drive gene flow of an EN target species (European pine marten), and (2) evaluate the optimality of a regional EN design in providing connectivity for this species within the Basque Country (North Spain). Using partial Mantel tests in a reciprocal causal modeling framework we competed 59 alternative models, including isolation by distance and the regional EN. Our analysis indicated that the regional EN was among the most supported resistance models for the pine marten, but was not the best supported model. Gene flow of pine marten in northern Spain is facilitated by natural vegetation, and is resisted by anthropogenic landcover types and roads. Our results suggest that the regional EN design being implemented in the Basque Country will effectively facilitate gene flow of forest dwelling species at regional scale.
Admixture and gene flow from Russia in the recovering Northern European brown bear (Ursus arctos).
Kopatz, Alexander; Eiken, Hans Geir; Aspi, Jouni; Kojola, Ilpo; Tobiassen, Camilla; Tirronen, Konstantin F; Danilov, Pjotr I; Hagen, Snorre B
2014-01-01
Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest a continuous bear population in Finland and Russian Karelia, separated from Scandinavia.
Robinson, Stacie J.; Samuel, Michael D.; Rolley, Robert E.; Shelton, Paul
2013-01-01
Animal movement across the landscape plays a critical role in the ecology of infectious wildlife diseases. Dispersing animals can spread pathogens between infected areas and naïve populations. While tracking free-ranging animals over the geographic scales relevant to landscape-level disease management is challenging, landscape features that influence gene flow among wildlife populations may also influence the contact rates and disease spread between populations. We used spatial diffusion and barriers to white-tailed deer gene flow, identified through landscape genetics, to model the distribution of chronic wasting disease (CWD) in the infected region of southern Wisconsin and northern Illinois, USA. Our generalized linear model showed that risk of CWD infection declined exponentially with distance from current outbreaks, and inclusion of gene flow barriers dramatically improved fit and predictive power of the model. Our results indicate that CWD is spreading across the Midwestern landscape from these two endemic foci, but spread is strongly influenced by highways and rivers that also reduce deer gene flow. We used our model to plot a risk map, providing important information for CWD management by identifying likely routes of disease spread and providing a tool for prioritizing disease monitoring and containment efforts. The current analysis may serve as a framework for modeling future disease risk drawing on genetic information to investigate barriers to spread and extending management and monitoring beyond currently affected regions.
Hoyle, Martin; Cresswell, James E
2007-09-07
We present a spatially implicit analytical model of forager movement, designed to address a simple scenario common in nature. We assume minimal depression of patch resources, and discrete foraging bouts, during which foragers fill to capacity. The model is particularly suitable for foragers that search systematically, foragers that deplete resources in a patch only incrementally, and for sit-and-wait foragers, where harvesting does not affect the rate of arrival of forage. Drawing on the theory of job search from microeconomics, we estimate the expected number of patches visited as a function of just two variables: the coefficient of variation of the rate of energy gain among patches, and the ratio of the expected time exploiting a randomly chosen patch and the expected time travelling between patches. We then consider the forager as a pollinator and apply our model to estimate gene flow. Under model assumptions, an upper bound for animal-mediated gene flow between natural plant populations is approximately proportional to the probability that the animal rejects a plant population. In addition, an upper bound for animal-mediated gene flow in any animal-pollinated agricultural crop from a genetically modified (GM) to a non-GM field is approximately proportional to the proportion of fields that are GM and the probability that the animal rejects a field.
Admixture and Gene Flow from Russia in the Recovering Northern European Brown Bear (Ursus arctos)
Kopatz, Alexander; Eiken, Hans Geir; Aspi, Jouni; Kojola, Ilpo; Tobiassen, Camilla; Tirronen, Konstantin F.; Danilov, Pjotr I.; Hagen, Snorre B.
2014-01-01
Large carnivores were persecuted to near extinction during the last centuries, but have now recovered in some countries. It has been proposed earlier that the recovery of the Northern European brown bear is supported by migration from Russia. We tested this hypothesis by obtaining for the first time continuous sampling of the whole Finnish bear population, which is located centrally between the Russian and Scandinavian bear populations. The Finnish population is assumed to experience high gene flow from Russian Karelia. If so, no or a low degree of genetic differentiation between Finnish and Russian bears could be expected. We have genotyped bears extensively from all over Finland using 12 validated microsatellite markers and compared their genetic composition to bears from Russian Karelia, Sweden, and Norway. Our fine masked investigation identified two overlapping genetic clusters structured by isolation-by-distance in Finland (pairwise FST = 0.025). One cluster included Russian bears, and migration analyses showed a high number of migrants from Russia into Finland, providing evidence of eastern gene flow as an important driver during recovery. In comparison, both clusters excluded bears from Sweden and Norway, and we found no migrants from Finland in either country, indicating that eastern gene flow was probably not important for the population recovery in Scandinavia. Our analyses on different spatial scales suggest a continuous bear population in Finland and Russian Karelia, separated from Scandinavia. PMID:24839968
Cane Creek flood-flow characteristics at State Route 30 near Spencer, Tennessee
Gamble, Charles R.
1983-01-01
The Tennessee Department of Transportation has constructed a new bridge and approaches on State Route 30 over Cane Creek near Spencer, Tennessee. The old bridge and its approaches were fairly low, permitting considerable flow over the road during high floods. The new bridge and its approaches are considerably higher, causing different flow conditions at the site. Analysis of the effects of the new bridge, as compared to the old bridge, on floods of the magnitude of the May 27, 1973, flood is presented. The May 27, 1973, flood was greater than a 100-year flood. Analysis of the 50- and 100-year floods for the new bridge are also presented. Results of the study indicate that the new construction will increase the water-surface elevation for a flood equal to the May 27, 1973, flood by approximately 1 foot upstream from bridge. (USGS)
Spatiotemporal Responses of Groundwater Flow and Aquifer-River Exchanges to Flood Events
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Schilling, Keith
2018-03-01
Rapidly rising river stages induced by flood events lead to considerable river water infiltration into aquifers and carry surface-borne solutes into hyporheic zones which are widely recognized as an important place for the biogeochemical activity. Existing studies for surface-groundwater exchanges induced by flood events usually limit to a river-aquifer cross section that is perpendicular to river channels, and neglect groundwater flow in parallel with river channels. In this study, surface-groundwater exchanges to a flood event are investigated with specific considerations of unconfined flow in direction that is in parallel with river channels. The groundwater flow is described by a two-dimensional Boussinesq equation and the flood event is described by a diffusive-type flood wave. Analytical solutions are derived and tested using the numerical solution. The results indicate that river water infiltrates into aquifers quickly during flood events, and mostly returns to the river within a short period of time after the flood event. However, the rest river water will stay in aquifers for a long period of time. The residual river water not only flows back to rivers but also flows to downstream aquifers. The one-dimensional model of neglecting flow in the direction parallel with river channels will overestimate heads and discharge in upstream aquifers. The return flow induced by the flood event has a power law form with time and has a significant impact on the base flow recession at early times. The solution can match the observed hydraulic heads in riparian zone wells of Iowa during flood events.
Genetic diversity of Casearia sylvestris populations in remnants of the Atlantic Forest.
Araujo, F L; Siqueira, M V B M; Grando, C; Viana, J P G; Pinheiro, J B; Alves-Pereira, A; Campos, J B; Brancalion, P H S; Zucchi, M I
2017-01-23
Guaçatonga (Casearia sylvestris) is a native plant of the Atlantic Forest, with high medicinal potential and relevance for reforestation programs. The aim of this study was to characterize, with microsatellite markers, two populations of C. sylvestris from remaining areas of the Atlantic Forest in the State of São Paulo. High allelic variation was found in both populations (N A = 101 and 117; A R = 12.5 and 14.4), although with high endogamy coefficients (f = 0.640 and 0.363). Estimates of genetic structure suggested the presence of considerable genetic divergence between the populations (F ST = 0.103); however, there was no spatial genetic structure within the populations. Genetic divergence may have occurred due to decreased gene flow between the fragmented populations as the result of deforestation. The results of this study demonstrate the importance of genetic diversity and its characterization in native plants within remaining forest areas for the management and restoration of such areas.
Nonlinear response of ultrasound contrast agent microbubbles: From fundamentals to applications
NASA Astrophysics Data System (ADS)
Teng, Xu-Dong; Guo, Xia-Sheng; Tu, Juan; Zhang, Dong
2016-12-01
Modelling and biomedical applications of ultrasound contrast agent (UCA) microbubbles have attracted a great deal of attention. In this review, we summarize a series of researches done in our group, including (i) the development of an all-in-one solution of characterizing coated bubble parameters based on the light scattering technique and flow cytometry; (ii) a novel bubble dynamic model that takes into consideration both nonlinear shell elasticity and viscosity to eliminate the dependences of bubble shell parameters on bubble size; (iii) the evaluation of UCA inertial cavitation threshold and its relationship with shell parameters; and (iv) the investigations of transfection efficiency and the reduction of cytotoxicity in gene delivery facilitated by UCAs excited by ultrasound exposures. Projects supported by the National Natural Science Foundation of China (Grant Nos. 81127901, 81227004, 11374155, 11274170, 11274176, 11474001, 11474161, 11474166, and 11674173), the National High-Technology Research and Development Program, China (Grant No. 2012AA022702), and Qing Lan Project of Jiangsu Province, China.
Odour dialects among wild mammals.
Kean, Eleanor Freya; Bruford, Michael William; Russo, Isa-Rita M; Müller, Carsten Theodor; Chadwick, Elizabeth Anna
2017-10-19
Across multiple taxa, population structure and dynamics depend on effective signalling between individuals. Among mammals, chemical communication is arguably the most important sense, underpinning mate choice, parental care, territoriality and even disease transmission. There is a growing body of evidence that odours signal genetic information that may confer considerable benefits including inbreeding avoidance and nepotism. To date, however, there has been no clear evidence that odours encode population-level information in wild mammals. Here we demonstrate for the first time the existence of 'odour dialects' in genetically distinct mammalian subpopulations across a large geographical scale. We found that otters, Lutra lutra, from across the United Kingdom possess sex and biogeography-specific odours. Subpopulations with the most distinctive odour profiles are also the most genetically diverse but not the most genetically differentiated. Furthermore, geographic distance between individuals does not explain regional odour differences, refuting other potential explanations such as group odour sharing behaviour. Differences in the language of odours between subpopulations have the potential to affect individual interactions, which could impact reproduction and gene-flow.
Rostgaard Nielsen, Lene; Brandes, Ursula; Dahl Kjaer, Erik; Fjellheim, Siri
2016-06-01
Cytisus scoparius is a global invasive species that affects local flora and fauna at the intercontinental level. Its natural distribution spans across Europe, but seeds have also been moved among countries, mixing plants of native and non-native genetic origins. Hybridization between the introduced and native gene pool is likely to threaten both the native gene pool and the local flora. In this study, we address the potential threat of invasive C. scoparius to local gene pools in vulnerable heathlands. We used nuclear single nucleotide polymorphic (SNP) and simple sequence repeat (SSR) markers together with plastid SSR and indel markers to investigate the level and direction of gene flow between invasive and native heathland C. scoparius. Analyses of population structures confirmed the presence of two gene pools: one native and the other invasive. The nuclear genome of the native types was highly introgressed with the invasive genome, and we observed advanced-generation hybrids, suggesting that hybridization has been occurring for several generations. There is asymmetrical gene flow from the invasive to the native gene pool, which can be attributed to higher fecundity in the invasive individuals, measured by the number of flowers and seed pods. Strong spatial genetic structure in plastid markers and weaker structure in nuclear markers suggest that seeds spread over relatively short distances and that gene flow over longer distances is mainly facilitated by pollen dispersal. We further show that the growth habits of heathland plants become more vigorous with increased introgression from the invaders. Implications of the findings are discussed in relation to future management of invading C. scoparius. © 2016 John Wiley & Sons Ltd.
Silencing of meiosis-critical genes for engineering male sterility in plants
USDA-ARS?s Scientific Manuscript database
Engineering sterile traits in plants through the tissue-specific expression of a cytotoxic gene provides an effective way for containing transgene flow; however, the microbial origin of cytotoxic genes has raised concerns. In an attempt to develop a safe alternative, we have chosen the meiosis-crit...
Gene Flow Among Different Teosinte Taxa and Into the Domesticated Maize Gene Pool
USDA-ARS?s Scientific Manuscript database
Maize (Zea mays ssp. mays) was domesticated from one wild species ancestor, the Balsas teosinte (Zea mays ssp. parviglumis) about 9000 years ago. Higher levels of gene diversity are found in teosinte taxa compared to maize following domestication and selection bottlenecks. Diversity in maize can b...
Gene exchange between cultivated crops and wild species has gained significance in recent years because of concerns regarding the potential for gene flow between genetically modified (GM) crops and their domesticated and wild relatives. As part of our ecological effects of gene ...
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1988-01-01
The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.
Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids.
Shivrain, Vinod K; Burgos, Nilda R; Gealy, David R; Sales, Marites A; Smith, Kenneth L
2009-10-01
Gene transfer from weeds to crops could produce weedy individuals that might impact upon the evolutionary dynamics of weedy populations, the persistence of escaped genes in agroecosystems and approaches to weed management and containment of transgenic crops. The present aim was to quantify the gene flowrate from weedy red rice to cultivated rice, and evaluate the morphology, phenology and fecundity of resulting hybrids. Field experiments were conducted at Stuttgart and Rohwer, Arkansas, USA. Twelve red rice accessions and an imazethapyr-resistant rice (Imi-R; Clearfield) were used. Hybrids between Imi-R rice x red rice were 138-150 cm tall and flowered 1-5 days later than the rice parent, regardless of the red rice parent. Hybrids produced 20-50% more seed than the rice parent, but had equivalent seed production to the majority of red rice parents. Seeds of all hybrids were red, pubescent and dehisced at maturity. For the majority of hybrids, seed germination was higher than that of the red rice parent. The gene flowrate from red rice to rice was 0.01-0.2% and differed by red rice biotype. The hybrids had higher fecundity and potential competitive ability than the rice parent, and in some cases also the red rice parent. Red rice plants are vectors of gene flow back to cultivated rice and other weedy populations. The progeny of red rice hybrids from cultivated rice mother plants have higher chances of persistence than those from red rice mother plants. Gene flow mitigation strategies should consider this scenario. Copyright 2009 Society of Chemical Industry.
Beyond public perceptions of gene technology: community participation in public policy in Australia.
Dietrich, Heather; Schibeci, Renato
2003-10-01
Public policy assumptions, which view "the public" as passive consumers, are deeply flawed. "The public" are, in fact, active citizens, who constitute the innovation end of the seamless web of relationships, running from research and development laboratory to shop, hospital or farm, or local neighborhood. "The public" do not receive the impact of technology; they are the impact, in that they determine with gene technology (GT) developers and sellers what happens to the technology in our society. In doing so, they, or more rightly we, exercise particular, contextual knowledges and actions. We suggest that it is the ignorance of this aspect of innovation in policy processes that produces the distrust and resentment that we found in our interviews with "publics" interested in gene technology. This is consistent with Beck's description of the deep structural states of risk and fear in modern advanced societies with respect to new technologies, such as gene technology. Only policy processes that recognize the particular, local and contextual knowledges of "the public", which co-construct innovation, can achieve deep, social structural consideration of gene technology. And only such a deep consideration can avoid the polarized attitudes and deep suspicions that we have seen arise in places such as Britain. Such consideration needs the type of processes that involve active consultation and inclusion of "the public" in government and commercial innovation, the so-called deliberative and inclusionary processes (DIPs), such as consensus conferences and citizen juries. We suggest some measures that could be tried in Australia, which would take us further down the path of participation toward technological citizenship.
A last stand in the Po valley: genetic structure and gene flow patterns in Ulmus minor and U. pumila
Bertolasi, B.; Leonarduzzi, C.; Piotti, A.; Leonardi, S.; Zago, L.; Gui, L.; Gorian, F.; Vanetti, I.; Binelli, G.
2015-01-01
Background and Aims Ulmus minor has been severely affected by Dutch elm disease (DED). The introduction into Europe of the exotic Ulmus pumila, highly tolerant to DED, has resulted in it widely replacing native U. minor populations. Morphological and genetic evidence of hybridization has been reported, and thus there is a need for assessment of interspecific gene flow patterns in natural populations. This work therefore aimed at studying pollen gene flow in a remnant U. minor stand surrounded by trees of both species scattered across an agricultural landscape. Methods All trees from a small natural stand (350 in number) and the surrounding agricultural area within a 5-km radius (89) were genotyped at six microsatellite loci. Trees were morphologically characterized as U. minor, U. pumila or intermediate phenotypes, and morphological identification was compared with Bayesian clustering of genotypes. For paternity analysis, seeds were collected in two consecutive years from 20 and 28 mother trees. Maximum likelihood paternity assignment was used to elucidate intra- and interspecific gene flow patterns. Key Results Genetic structure analyses indicated the presence of two genetic clusters only partially matching the morphological identification. The paternity analysis results were consistent between the two consecutive years of sampling and showed high pollen immigration rates (∼0·80) and mean pollination distances (∼3 km), and a skewed distribution of reproductive success. Few intercluster pollinations and putative hybrid individuals were found. Conclusions Pollen gene flow is not impeded in the fragmented agricultural landscape investigated. High pollen immigration and extensive pollen dispersal distances are probably counteracting the potential loss of genetic variation caused by isolation. Some evidence was also found that U. minor and U. pumila can hybridize when in sympatry. Although hybridization might have beneficial effects on both species, remnant U. minor populations represent a valuable source of genetic diversity that needs to be preserved. PMID:25725008
Rollins, Lee Ann; Svedin, Nina; Pryke, Sarah R; Griffith, Simon C
2012-01-01
The effect of separation by biogeographic features followed by secondary contact can blur taxonomic boundaries and produce complex genetic signatures. We analyzed population structure and gene flow across the range of the long-tailed finch (Poephila acuticauda) in northern Australia (1) to test the hypothesis that Ord Arid Intrusion acted as the causative barrier that led to divergence of P. acuticauda subspecies, (2) to determine whether genetic data support the presence of a gradual cline across the range or a sudden shift, both of which have been suggested based on morphological data, and (3) to estimate levels of contemporary gene flow within this species complex. We collected samples from 302 individuals from 10 localities. Analyses of 12 microsatellite loci and sequence data from 333 base pairs of the mitochondrial control region were used to estimate population structure and gene flow, using analysis of molecular variance (AMOVA), haplotype network analysis, frequency statistics, and clustering methods. Mitochondrial sequence data indicated the presence of three genetic groups (regions) across the range of P. acuticauda. Genetic diversity was highest in the east and lowest in the west. The Ord Arid Intrusion appears to have functioned as a biogeographic barrier in the past, according to mtDNA evidence presented here and evidence from previous studies. The absence of isolation by distance between adjacent regions and the lack of population genetic structure of mtDNA within regions indicates that genetic changes across the range of P. acuticauda subspecies are characterized by discrete breaks between regions. While microsatellite data indicate a complete absence of genetic structure across this species’ range, it appears unlikely that this results from high levels of gene flow. Mitochondrial data do not support the presence of contemporary gene flow across the range of this species. PMID:22833795
Mitsui, Yuki; Setoguchi, Hiroaki
2012-12-28
Understanding demographic histories, such as divergence time, patterns of gene flow, and population size changes, in ecologically diverging lineages provide implications for the process and maintenance of population differentiation by ecological adaptation. This study addressed the demographic histories in two independently derived lineages of flood-resistant riparian plants and their non-riparian relatives [Ainsliaea linearis (riparian) and A. apiculata (non-riparian); A. oblonga (riparian) and A. macroclinidioides (non-riparian); Asteraceae] using an isolation-with-migration (IM) model based on variation at 10 nuclear DNA loci. The highest posterior probabilities of the divergence time parameters were estimated to be ca. 25,000 years ago for A. linearis and A. apiculata and ca. 9000 years ago for A. oblonga and A. macroclinidioides, although the confidence intervals of the parameters had broad ranges. The likelihood ratio tests detected evidence of historical gene flow between both riparian/non-riparian species pairs. The riparian populations showed lower levels of genetic diversity and a significant reduction in effective population sizes compared to the non-riparian populations and their ancestral populations. This study showed the recent origins of flood-resistant riparian plants, which are remarkable examples of plant ecological adaptation. The recent divergence and genetic signatures of historical gene flow among riparian/non-riparian species implied that they underwent morphological and ecological differentiation within short evolutionary timescales and have maintained their species boundaries in the face of gene flow. Comparative analyses of adaptive divergence in two sets of riparian/non-riparian lineages suggested that strong natural selection by flooding had frequently reduced the genetic diversity and size of riparian populations through genetic drift, possibly leading to fixation of adaptive traits in riparian populations. The two sets of riparian/non-riparian lineages showed contrasting patterns of gene flow and genetic differentiation, implying that each lineage showed different degrees of reproductive isolation and that they had experienced unique evolutionary and demographic histories in the process of adaptive divergence.
Ngeve, Magdalene N; Van der Stocken, Tom; Menemenlis, Dimitris; Koedam, Nico; Triest, Ludwig
2016-01-01
Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise.
Ngeve, Magdalene N.; Van der Stocken, Tom; Menemenlis, Dimitris; Koedam, Nico; Triest, Ludwig
2016-01-01
Mangroves are seafaring taxa through their hydrochorous propagules that have the potential to disperse over long distances. Therefore, investigating their patterns of gene flow provides insights on the processes involved in the spatial genetic structuring of populations. The coastline of Cameroon has a particular geomorphological history and coastal hydrology with complex contemporary patterns of ocean currents, which we hypothesize to have effects on the spatial configuration and composition of present-day mangroves within its spans. A total of 982 trees were sampled from 33 transects (11 sites) in 4 estuaries. Using 11 polymorphic SSR markers, we investigated genetic diversity and structure of Rhizophora racemosa, a widespread species in the region. Genetic diversity was low to moderate and genetic differentiation between nearly all population pairs was significant. Bayesian clustering analysis, PCoA, estimates of contemporary migration rates and identification of barriers to gene flow were used and complemented with estimated dispersal trajectories of hourly released virtual propagules, using high-resolution surface current from a mesoscale and tide-resolving ocean simulation. These indicate that the Cameroon Volcanic Line (CVL) is not a present-day barrier to gene flow. Rather, the Inter-Bioko-Cameroon (IBC) corridor, formed due to sea level rise, allows for connectivity between two mangrove areas that were isolated during glacial times by the CVL. Genetic data and numerical ocean simulations indicated that an oceanic convergence zone near the Cameroon Estuary complex (CEC) presents a strong barrier to gene flow, resulting in genetic discontinuities between the mangrove areas on either side. This convergence did not result in higher genetic diversity at the CEC as we had hypothesized. In conclusion, the genetic structure of Rhizophora racemosa is maintained by the contrasting effects of the contemporary oceanic convergence and historical climate change-induced sea level rise. PMID:26964094
Canovas, Fernando; Ferreira Costa, Joana; Serrão, Ester A.; Pearson, Gareth A.
2011-01-01
Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia) population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal) was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients acts to maintain the 3 distinct genetic and morphological taxa within their preferred vertical distribution ranges. On the strength of distributional, genetic, physiological and morphological differences, we propose elevation of F. spiralis var. platycarpus from variety to species level, as F. guiryi. PMID:21695117
NASA Technical Reports Server (NTRS)
Davis, J. E.; Medan, R. T.
1977-01-01
This segment of the POTFAN system is used to generate right hand sides (boundary conditions) of the system of equations associated with the flow field under consideration. These specified flow boundary conditions are encountered in the oblique derivative boundary value problem (boundary value problem of the third kind) and contain the Neumann boundary condition as a special case. Arbitrary angle of attack and/or sideslip and/or rotation rates may be specified, as well as an arbitrary, nonuniform external flow field and the influence of prescribed singularity distributions.
From the Lab Bench: Can cattle meet their nutrient needs on toxic tall fescue pasture?
USDA-ARS?s Scientific Manuscript database
A column is written to provide information on nutrient utilization by cattle grazing toxic endophyte-infected tall fescue. We have considerable knowledge and understanding of ergot alkaloid-induced constriction of blood flow to peripheral tissues, but what about blood flow to other parts of the bod...
Experimental study of turbulence in blade end wall corner region
NASA Technical Reports Server (NTRS)
Raj, R.
1982-01-01
Corner flows and wall pressure fluctuations, design and fabrication of the test model, preliminary resuls on boundary layer, flow visualization, turbulence intensity and spectra measurements are presented. The design consideration and fabrication report on the newly built wind tunnel to be used for subsequent continuation of the research effort is also presented.
Analysis and Design of a Parameterized Protocol Converter.
1985-12-01
availability (Ref. 15:p. 291. According to Gajski et al., (Ref. 181, a data flow model of computation is based on two principles: 34 - Asynchrony - operations...Performance Considerations," PC Tech Journal, pp. 30-47, Sept/Oct 1983. 18. Gajski , D. D. and others, "A Second Opinion on Data Flow Machines and Languages
Leading edge film cooling effects on turbine blade heat transfer
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1995-01-01
An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.
Ziska, Lewis H; Gealy, David R; Tomecek, Martha B; Jackson, Aaron K; Black, Howard L
2012-01-01
Although recent and projected increases in atmospheric carbon dioxide can alter plant phenological development, these changes have not been quantified in terms of floral outcrossing rates or gene transfer. Could differential phenological development in response to rising CO(2) between genetically modified crops and wild, weedy relatives increase the spread of novel genes, potentially altering evolutionary fitness? Here we show that increasing CO(2) from an early 20(th) century concentration (300 µmol mol(-1)) to current (400 µmol mol(-1)) and projected, mid-21(st) century (600 µmol mol(-1)) values, enhanced the flow of genes from wild, weedy rice to the genetically altered, herbicide resistant, cultivated population, with outcrossing increasing from 0.22% to 0.71% from 300 to 600 µmol mol(-1). The increase in outcrossing and gene transfer was associated with differential increases in plant height, as well as greater tiller and panicle production in the wild, relative to the cultivated population. In addition, increasing CO(2) also resulted in a greater synchronicity in flowering times between the two populations. The observed changes reported here resulted in a subsequent increase in rice dedomestication and a greater number of weedy, herbicide-resistant hybrid progeny. Overall, these data suggest that differential phenological responses to rising atmospheric CO(2) could result in enhanced flow of novel genes and greater success of feral plant species in agroecosystems.
Ribeiro, Mariana Antunes; dos Reis, Mariana Bisarro; de Moraes, Leonardo Nazário; Briton-Jones, Christine; Rainho, Cláudia Aparecida; Scarano, Wellerson Rodrigo
2014-11-01
Quantitative real-time RT-PCR (qPCR) has proven to be a valuable molecular technique to quantify gene expression. There are few studies in the literature that describe suitable reference genes to normalize gene expression data. Studies of transcriptionally disruptive toxins, like tetrachlorodibenzo-p-dioxin (TCDD), require careful consideration of reference genes. The present study was designed to validate potential reference genes in human Sertoli cells after exposure to TCDD. 32 candidate reference genes were analyzed to determine their applicability. geNorm and NormFinder softwares were used to obtain an estimation of the expression stability of the 32 genes and to identify the most suitable genes for qPCR data normalization.
An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.
Hu, Jianjun; Zhang, Jin; Chen, Xingling; Lv, Jinhui; Jia, Huixia; Zhao, Shutang; Lu, Mengzhu
2017-01-01
To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar) and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0%) compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture) after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.
A new SNP in cyOsPPDK gene is associated with floury endosperm in Suweon 542.
Wang, Heng; Mo, Young-Jun; Im, Da-Eun; Jang, Seong-Gyu; Ham, Tae-Ho; Lee, Joohyun; Jeung, Ji-Ung; Kwon, Soon-Wook
2018-05-09
Pyruvate orthophosphate dikinase (PPDK) is a component of glycolysis to mediate endosperm energy charge by adjusting the ratio of ATP to ADP and AMP that proposed to balance the flow of carbon into starch, protein, fatty acid and amino acid biosynthesis. However, these were inconsistent with the first report of a T-DNA insertional knockout mutant of the rice PPDK gene (flo4) showed that rice with inactivated PPDK gene failed to produce a opaque seeds. Therefore, the PPDK might have multifaceted functions in grain filling stage, which in some ways might depend on the direction of the reversible catalysis. Suweon 542 is a rice (Oryza sativa L.) mutant developed from Oryza sativa ssp. japonica cv. Namil. Suweon 542 has a milky-white floury endosperm suitable for dry filling, with low starch damage, low grain hardness, and fine flour particle size. The mutant locus on chromosome 5 controls the floury endosperm phenotype of Suweon 542. Fine mapping of this locus is required for efficient breeding of rice germplasm suitable for dry milling. In this study, whole genome of Suweon 542 and Milyang 23 were re-sequenced using Illumina HiSeq 2500. Co-segregation analysis of F 3:4 family populations derived from Suweon 542/Milyang 23 was performed using eight CAPS markers and phenotypic evaluation of the endosperm. The target region was mapped to a 33 kb region and identified to encode cytosolic pyruvate orthophosphate dikinase protein (cyOsPPDK). A G→A SNP in exon 8 of cyOsPPDK resulting in a missense mutation from Gly to Asp at amino acid position 404 was responsible for the floury endosperm of Suweon 542. qRT-PCR experiments revealed that FLO4-4 was expressed to a considerably higher level in Suweon 542 than in Namil during the grain filling stage. Overall, fine mapping of FLO4-4 and candidate gene analysis provided further insight into the floury endosperm of rice, and reveal a novel SNP in cyOsPPDK gene can affect the floury endosperm phenotype through active PPDK gene during grain filling stage.
A proposed naming convention for genes in Rosaceae species
USDA-ARS?s Scientific Manuscript database
In the last few years, a considerable effort has yielded the complete genome sequence of four key Rosaceae species: Apple, Strawberry, Peach, and Pear with more to come. With this genomic information, it is now possible to identify gene family members rapidly and through other genomic technologies,...
New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism
USDA-ARS?s Scientific Manuscript database
Currently available inducibleCre/loxPsystems, despite their considerable utility in gene manipulation, have pitfalls in certain scenarios, such as unsatisfactory recombination rates and deleterious effects on physiology and behavior. To overcome these limitations, we designed a new, inducible gene-t...
ERIC Educational Resources Information Center
Kogan, Cary S.; Cornish, Kim M.
2010-01-01
Fragile X Syndrome is a neurodevelopmental disorder that is caused by the silencing of a single gene on the X chromosome, the Fragile X Mental Retardation 1 ("FMR1") gene. In recent years, the premutation ("carrier") status has received considerable attention and there is now an emerging consensus that despite intellectual functioning being within…
Recent progress and considerations for AAV gene therapies targeting the central nervous system.
Lykken, Erik Allen; Shyng, Charles; Edwards, Reginald James; Rozenberg, Alejandra; Gray, Steven James
2018-05-18
Neurodevelopmental disorders, as a class of diseases, have been particularly difficult to treat even when the underlying cause(s), such as genetic alterations, are understood. What treatments do exist are generally not curative and instead seek to improve quality of life for affected individuals. The advent of gene therapy via gene replacement offers the potential for transformative therapies to slow or even stop disease progression for current patients and perhaps minimize or prevent the appearance of symptoms in future patients. This review focuses on adeno-associated virus (AAV) gene therapies for diseases of the central nervous system. An overview of advances in AAV vector design for therapy is provided, along with a description of current strategies to develop AAV vectors with tailored tropism. Next, progress towards treatment of neurodegenerative diseases is presented at both the pre-clinical and clinical stages, focusing on a few select diseases to highlight broad categories of therapeutic parameters. Special considerations for more challenging cases are then discussed in addition to the immunological aspects of gene therapy. With the promising clinical trial results that have been observed for the latest AAV gene therapies and continued pre-clinical successes, the question is no longer whether a therapy can be developed for certain neurodevelopmental disorders, but rather, how quickly.
Chiari, Ylenia; van der Meijden, Arie; Mucedda, Mauro; Lourenço, João M; Hochkirch, Axel; Veith, Michael
2012-01-01
Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.
Gray-Edwards, Heather L; Regier, Debra S; Shirley, Jamie L; Randle, Ashley N; Salibi, Nouha; Thomas, Sarah E; Latour, Yvonne L; Johnston, Jean; Golas, Gretchen; Maguire, Annie S; Taylor, Amanda R; Sorjonen, Donald C; McCurdy, Victoria J; Christopherson, Peter W; Bradbury, Allison M; Beyers, Ronald J; Johnson, Aime K; Brunson, Brandon L; Cox, Nancy R; Baker, Henry J; Denney, Thomas S; Sena-Esteves, Miguel; Tifft, Cynthia J; Martin, Douglas R
2017-04-05
GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment. Copyright © 2017 The American Society of Gene and Cell Therapy. All rights reserved.
Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps
NASA Astrophysics Data System (ADS)
Polzin, A.-E.; Kabelac, S.; de Vries, B.
2016-09-01
Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.
Physical aspects of computing the flow of a viscous fluid
NASA Technical Reports Server (NTRS)
Mehta, U. B.
1984-01-01
One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.
Landscape genetics of high mountain frog metapopulations
Murphy, M.A.; Dezzani, R.; Pilliod, D.S.; Storfer, A.
2010-01-01
Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a powerful new modelling approach for examining a wide range of both basic and applied questions in landscape genetics.
Noreen, A M E; Niissalo, M A; Lum, S K Y; Webb, E L
2016-12-01
As deforestation and urbanization continue at rapid rates in tropical regions, urban forest patches are essential repositories of biodiversity. However, almost nothing is known about gene flow of forest-dependent tree species in urban landscapes. In this study, we investigated gene flow in the insect-pollinated, wind-dispersed tropical tree Koompassia malaccensis in and among three remnant forest patches in the urbanized landscape of Singapore. We genotyped the vast majority of adults (N=179) and a large number of recruits (N=2103) with 8 highly polymorphic microsatellite markers. Spatial genetic structure of the recruit and adult cohorts was significant, showing routine gene dispersal distances of ~100-400 m. Parentage analysis showed that 97% of recruits were within 100 m of their mother tree, and a high frequency of relatively short-distance pollen dispersal (median ~143-187 m). Despite routine seed and pollen dispersal distances of within a few hundred meters, interpatch gene flow occurred between all patches and was dominated by pollen movement: parentage analysis showed 76 pollen versus 2 seed interpatch dispersal events, and the seedling neighborhood model estimated ~1-6% seed immigration and ~21-46% pollen immigration rates, depending on patch. In addition, the smallest patch (containing five adult K. malaccensis trees) was entirely surrounded by >2.5 km of 'impervious' substrate, yet had the highest proportional pollen and seed immigration estimates of any patch. Hence, contrary to our hypothesis, insect-mediated gene flow persisted across an urban landscape, and several of our results also parallel key findings from insect-pollinated canopy trees sampled in mixed agricultural-forest landscapes.
Ferris, Kathleen G; Barnett, Laryssa L; Blackman, Benjamin K; Willis, John H
2017-01-01
The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects. © 2016 John Wiley & Sons Ltd.
Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama
2012-01-01
Background Mangroves are ecologically important and highly threatened forest communities. Observational and genetic evidence has confirmed the long distance dispersal capacity of water-dispersed mangrove seeds, but less is known about the relative importance of pollen vs. seed gene flow in connecting populations. We analyzed 980 Avicennia germinans for 11 microsatellite loci and 940 Rhizophora mangle for six microsatellite loci and subsampled two non-coding cpDNA regions in order to understand population structure, and gene flow within and among four major estuaries on the Caribbean and Pacific coasts of Panama. Results Both species showed similar rates of outcrossing (t= 0.7 in A. germinans and 0.8 in R. mangle) and strong patterns of spatial genetic structure within estuaries, although A. germinans had greater genetic structure in nuclear and cpDNA markers (7 demes > 4 demes and Sp= 0.02 > 0.002), and much greater cpDNA diversity (Hd= 0.8 > 0.2) than R. mangle. The Central American Isthmus serves as an exceptionally strong barrier to gene flow, with high levels nuclear (FST= 0.3-0.5) and plastid (FST= 0.5-0.8) genetic differentiation observed within each species between coasts and no shared cpDNA haplotypes between species on each coast. Finally, evidence of low ratios of pollen to seed dispersal (r = −0.6 in A. germinans and 7.7 in R. mangle), coupled with the strong observed structure in nuclear and plastid DNA among most estuaries, suggests low levels of gene flow in these mangrove species. Conclusions We conclude that gene dispersal in mangroves is usually limited within estuaries and that coastal geomorphology and rare long distance dispersal events could also influence levels of structure. PMID:23078287
Wood, Dustin A.; Bui, Thuy-Vy D.; Overton, Cory T.; Vandergast, Amy; Casazza, Michael L.; Hull, Joshua M.; Takekawa, John Y.
2016-01-01
Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.
Ravinet, Mark; Yoshida, Kohta; Shigenobu, Shuji; Toyoda, Atsushi; Fujiyama, Asao; Kitano, Jun
2018-05-01
Speciation is a continuous process and analysis of species pairs at different stages of divergence provides insight into how it unfolds. Previous genomic studies on young species pairs have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less known is how localised peaks of differentiation progress to genome-wide divergence during the later stages of speciation in the presence of persistent gene flow. Spanning the speciation continuum, stickleback species pairs are ideal for investigating how genomic divergence builds up during speciation. However, attention has largely focused on young postglacial species pairs, with little knowledge of the genomic signatures of divergence and introgression in older stickleback systems. The Japanese stickleback species pair, composed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late stage of speciation. Divergence likely started well before the end of the last glacial period and crosses between Japan Sea females and Pacific Ocean males result in hybrid male sterility. Here we use coalescent analyses and Approximate Bayesian Computation to show that the two species split approximately 0.68-1 million years ago but that they have continued to exchange genes at a low rate throughout divergence. Population genomic data revealed that, despite gene flow, a high level of genomic differentiation is maintained across the majority of the genome. However, we identified multiple, small regions of introgression, occurring mainly in areas of low recombination rate. Our results demonstrate that a high level of genome-wide divergence can establish in the face of persistent introgression and that gene flow can be localized to small genomic regions at the later stages of speciation with gene flow.
Buchalski, M R; Chaverri, G; Vonhof, M J
2014-02-01
For species characterized by philopatry of both sexes, mate selection represents an important behaviour for inbreeding avoidance, yet the implications for gene flow are rarely quantified. Here, we present evidence of male gamete-mediated gene flow resulting from extra-group mating in Spix's disc-winged bat, Thyroptera tricolor, a species which demonstrates all-offspring philopatry. We used microsatellite and capture-recapture data to characterize social group structure and the distribution of mated pairs at two sites in southwestern Costa Rica over four breeding seasons. Relatedness and genetic spatial autocorrelation analyses indicated strong kinship within groups and over short distances (<50 m), resulting from matrilineal group structure and small roosting home ranges (~0.2 ha). Despite high relatedness among-group members, observed inbreeding coefficients were low (FIS = 0.010 and 0.037). Parentage analysis indicated mothers and offspring belonged to the same social group, while fathers belonged to different groups, separated by large distances (~500 m) when compared to roosting home ranges. Simulated random mating indicated mate choice was not based on intermediate levels of relatedness, and mated pairs were less related than adults within social groups on average. Isolation-by-distance (IBD) models of genetic neighbourhood area based on father-offspring distances provided direct estimates of mean gamete dispersal distances (r^) > 10 roosting home range equivalents. Indirect estimates based on genetic distance provided even larger estimates of r^, indicating direct estimates were biased low. These results suggest extra-group mating reduces the incidence of inbreeding in T. tricolor, and male gamete dispersal facilitates gene flow in lieu of natal dispersal of young. © 2013 John Wiley & Sons Ltd.
Ndiade-Bourobou, D; Hardy, O J; Favreau, B; Moussavou, H; Nzengue, E; Mignot, A; Bouvet, J-M
2010-11-01
We analysed the spatial distribution of genetic diversity to infer gene flow for Baillonella toxisperma Pierre (Moabi), a threatened entomophilous pollinated and animal-dispersed Central African tree, with typically low density (5-7 adults trees/km(2)). Fifteen nuclear and three universal chloroplast microsatellites markers were used to type 247 individuals localized in three contiguous areas with differing past logging intensity. These three areas were within a natural forest block of approximately 2886 km(2) in Gabon. Expected heterozygosity and chloroplast diversity were He(nuc) = 0.570 and H(cp) = 0.761, respectively. F(IS) was only significant in one area (F(IS) = 0.076, P < 0.01) and could be attributed to selfing. For nuclear loci, Bayesian clustering did not detect discrete gene pools within and between the three areas and global differentiation (F(STnuc) = 0.007, P > 0.05) was not significant, suggesting that they are one population. At the level of the whole forest, both nuclear and chloroplast markers revealed a weak correlation between genetic relatedness and spatial distance between individuals: Sp(nuc) = 0.003 and Sp(cp) = 0.015, respectively. The extent of gene flow (σ) was partitioned into global gene flow (σ(g)) from 6.6 to 9.9 km, seed dispersal (σ(s)) from 4.0 to 6.3 km and pollen dispersal (σ(p)) from 9.8 to 10.8 km. These uncommonly high dispersal distances indicate that low-density canopy trees in African rainforests could be connected by extensive gene flow, although, given the current threats facing many seed disperser species in Central Africa, this may no longer be the case. © 2010 Blackwell Publishing Ltd.
Van Doornik, Donald M.; Berejikian, Barry A.; Campbell, Lance A.
2013-01-01
Oncorhynchus mykiss have a diverse array of life history types, and understanding the relationship among types is important for management of the species. Patterns of gene flow between sympatric freshwater resident O. mykiss, commonly known as rainbow trout, and anadromous O. mykiss, commonly known as steelhead, populations are complex and poorly understood. In this study, we attempt to determine the occurrence and pathways of gene flow and the degree of genetic similarity between sympatric resident and anadromous O. mykiss in three river systems, and investigate whether resident O. mykiss are producing anadromous offspring in these rivers, two of which have complete barriers to upstream migration. We found that the population structure of the O. mykiss in these rivers appears to be influenced more by the presence of a barrier to upstream migration than by life history type. The sex ratio of resident O. mykiss located above a barrier, and smolts captured in screw traps was significantly skewed in favor of females, whereas the reverse was true below the barriers, suggesting that male resident O. mykiss readily migrate downstream over the barrier, and that precocious male maturation may be occurring in the anadromous populations. Through paternity analyses, we also provide direct confirmation that resident O. mykiss can produce offspring that become anadromous. Most (89%) of the resident O. mykiss that produced anadromous offspring were males. Our results add to the growing body of evidence that shows that gene flow does readily occur between sympatric resident and anadromous O. mykiss life history types, and indicates that resident O. mykiss populations may be a potential repository of genes for the anadromous life history type. PMID:24224023
Numerical study of a scramjet engine flow field
NASA Technical Reports Server (NTRS)
Drummond, J. P.; Weidner, E. H.
1981-01-01
A computer program has been developed to analyze the turbulent reacting flow field in a two-dimensional scramjet engine configuration. The program numerically solves the full two-dimensional Navier-Stokes and species equations in the engine inlet and combustor, allowing consideration of flow separation and possible inlet-combustor interactions. The current work represents an intermediate step towards development of a three-dimensional program to analyze actual scramjet engine flow fields. Results from the current program are presented that predict the flow field for two inlet-combustor configurations, and comparisons of the program with experiment are given to allow assessment of the modeling that is employed.
Flow visualization techniques in the Airborne Laser Laboratory program
NASA Technical Reports Server (NTRS)
Walterick, R. E.; Vankuren, J. T.
1980-01-01
A turret/fairing assembly for laser applications was designed and tested. Wind tunnel testing was conducted using flow visualization techniques. The techniques used have included the methods of tufting, encapsulated liquid crystals, oil flow, sublimation and schlieren and shadowgraph photography. The results were directly applied to the design of fairing shapes for minimum drag and reduced turret buffet. In addition, the results are of primary importance to the study of light propagation paths in the near flow field of the turret cavity. Results indicate that the flow in the vicinity of the turret is an important factor for consideration in the design of suitable turret/fairing or aero-optic assemblies.
Final Report for research on The Glucose 6-Phosphate Shunt Around the Calvin-Benson Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Thomas D.
In this research, photosynthetic carbon metabolism was studied to identify mechanisms by which plants store energy from sunlight as carbon compounds, especially sugars. Conditions were identified in which carbon appeared to flow backwards from outside the photosynthetic compartment (chloroplast) back into it. A specific gene product was manipulated to make the flow bigger or smaller. Preventing the flow (by eliminating the gene) had little effect on plant growth but increasing the flow, by overexpressing the gene, caused the plants to become extremely sensitive to changes in light. Plants with the gene overexpressed had high rates of cyclic electron flow, themore » photosynthetic electron transport pathway that occurs when plants need more of the energy molecule ATP. These and other observations led us to conclude that a metabolic pathway that is normally turned off because it is counter-productive during photosynthesis, in fact occurs at about 10% of the rate of normal photosynthesis. This creates an inefficiency but may stabilize photosynthesis allowing it to cope with the very large and rapid changes that leaves experience such as the hundred-fold changes in light intensity that can occur in seconds on a partly cloudy day. We also concluded that the back flow of carbon into chloroplasts could be important at high rates of photosynthesis allowing increased rates of starch synthesis. Starch synthesis allows plants to store sugars during the day for use at night. At high rates of photosynthesis starch synthesis becomes very important to protect against end-product inhibition of photosynthesis. This research identified two metabolic pathways that extend the primary carbon fixation pathway called the Calvin-Benson cycle. These pathway extensions are now called the cytosolic bypass and the glucose 6-phosphate shunt. This improvement in our understanding of carbon metabolism of photosynthesis will guide efforts to increase photosynthesis to increase production of food, fuel, and fiber.« less
Phenotypic and Genetic Divergence among Poison Frog Populations in a Mimetic Radiation
Twomey, Evan; Yeager, Justin; Brown, Jason Lee; Morales, Victor; Cummings, Molly; Summers, Kyle
2013-01-01
The evolution of Müllerian mimicry is, paradoxically, associated with high levels of diversity in color and pattern. In a mimetic radiation, different populations of a species evolve to resemble different models, which can lead to speciation. Yet there are circumstances under which initial selection for divergence under mimicry may be reversed. Here we provide evidence for the evolution of extensive phenotypic divergence in a mimetic radiation in Ranitomeya imitator, the mimic poison frog, in Peru. Analyses of color hue (spectral reflectance) and pattern reveal substantial divergence between morphs. However, we also report that there is a “transition-zone” with mixed phenotypes. Analyses of genetic structure using microsatellite variation reveals some differentiation between populations, but this does not strictly correspond to color pattern divergence. Analyses of gene flow between populations suggest that, while historical levels of gene flow were low, recent levels are high in some cases, including substantial gene flow between some color pattern morphs. We discuss possible explanations for these observations. PMID:23405150
Pilot, M; Dahlheim, M E; Hoelzel, A R
2010-01-01
In social species, breeding system and gregarious behavior are key factors influencing the evolution of large-scale population genetic structure. The killer whale is a highly social apex predator showing genetic differentiation in sympatry between populations of foraging specialists (ecotypes), and low levels of genetic diversity overall. Our comparative assessments of kinship, parentage and dispersal reveal high levels of kinship within local populations and ongoing male-mediated gene flow among them, including among ecotypes that are maximally divergent within the mtDNA phylogeny. Dispersal from natal populations was rare, implying that gene flow occurs without dispersal, as a result of reproduction during temporary interactions. Discordance between nuclear and mitochondrial phylogenies was consistent with earlier studies suggesting a stochastic basis for the magnitude of mtDNA differentiation between matrilines. Taken together our results show how the killer whale breeding system, coupled with social, dispersal and foraging behaviour, contributes to the evolution of population genetic structure.
Satizábal, Paula; Mignucci-Giannoni, Antonio A.; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M.; García-Dávila, Carmen R.; Trujillo, Fernando; Caballero, Susana J.
2012-01-01
Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments. PMID:23285054
Frantz, Laurent A F; Schraiber, Joshua G; Madsen, Ole; Megens, Hendrik-Jan; Cagan, Alex; Bosse, Mirte; Paudel, Yogesh; Crooijmans, Richard P M A; Larson, Greger; Groenen, Martien A M
2015-10-01
Traditionally, the process of domestication is assumed to be initiated by humans, involve few individuals and rely on reproductive isolation between wild and domestic forms. We analyzed pig domestication using over 100 genome sequences and tested whether pig domestication followed a traditional linear model or a more complex, reticulate model. We found that the assumptions of traditional models, such as reproductive isolation and strong domestication bottlenecks, are incompatible with the genetic data. In addition, our results show that, despite gene flow, the genomes of domestic pigs have strong signatures of selection at loci that affect behavior and morphology. We argue that recurrent selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created 'islands of domestication' in the genome. Our results have major ramifications for the understanding of animal domestication and suggest that future studies should employ models that do not assume reproductive isolation.
Genetic characterization of Common Eiders breeding in the Yukon-Kuskokwim Delta, Alaska
Sonsthagen, Sarah A.; Talbot, Sandra L.; McCracken, Kevin G.
2007-01-01
We assessed population genetic subdivision among four colonies of Common Eiders (Somateria mollissima v-nigrum) breeding in the Yukon-Kuskokwim Delta (YKD), Alaska, using microsatellite genotypes and DNA sequences with differing modes of inheritance. Significant, albeit low, levels of genetic differentiation were observed between mainland populations and Kigigak Island for nuclear intron lamin A and mitochondrial DNA (mtDNA) control region. Intercolony variation in haplotypic frequencies also was observed at mtDNA. Positive growth signatures assayed from microsatellites, nuclear introns, and mtDNA indicate recent colonization of the YKD, and may explain the low levels of structuring observed. Gene flow estimates based on microsatellites, nuclear introns, and mtDNA suggest asymmetrical gene flow between mainland colonies and Kigigak Island, with more individuals on average dispersing from mainland populations to Kigigak Island than vice versa. The directionality of gene flow observed may be explained by the colonization of the YKD from northern glacial refugia or by YKD metapopulation dynamics.
Sicard, Adrien; Kappel, Christian; Josephs, Emily B.; Lee, Young Wha; Marona, Cindy; Stinchcombe, John R.; Wright, Stephen I.; Lenhard, Michael
2015-01-01
In the Bateson–Dobzhansky–Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles. PMID:26268845
Satizábal, Paula; Mignucci-Giannoni, Antonio A; Duchêne, Sebastián; Caicedo-Herrera, Dalila; Perea-Sicchar, Carlos M; García-Dávila, Carmen R; Trujillo, Fernando; Caballero, Susana J
2012-01-01
Phylogeographic patterns and sex-biased dispersal were studied in riverine populations of West Indian (Trichechus manatus) and Amazonian manatees (T. inunguis) in South America, using 410bp D-loop (Control Region, Mitochondrial DNA) sequences and 15 nuclear microsatellite loci. This multi-locus approach was key to disentangle complex patterns of gene flow among populations. D-loop analyses revealed population structuring among all Colombian rivers for T. manatus, while microsatellite data suggested no structure. Two main populations of T. inunguis separating the Colombian and Peruvian Amazon were supported by analysis of the D-loop and microsatellite data. Overall, we provide molecular evidence for differences in dispersal patterns between sexes, demonstrating male-biased gene flow dispersal in riverine manatees. These results are in contrast with previously reported levels of population structure shown by microsatellite data in marine manatee populations, revealing low habitat restrictions to gene flow in riverine habitats, and more significant dispersal limitations for males in marine environments.
Genomic islands of divergence are not affected by geography of speciation in sunflowers.
Renaut, S; Grassa, C J; Yeaman, S; Moyers, B T; Lai, Z; Kane, N C; Bowers, J E; Burke, J M; Rieseberg, L H
2013-01-01
Genomic studies of speciation often report the presence of highly differentiated genomic regions interspersed within a milieu of weakly diverged loci. The formation of these speciation islands is generally attributed to reduced inter-population gene flow near loci under divergent selection, but few studies have critically evaluated this hypothesis. Here, we report on transcriptome scans among four recently diverged pairs of sunflower (Helianthus) species that vary in the geographical context of speciation. We find that genetic divergence is lower in sympatric and parapatric comparisons, consistent with a role for gene flow in eroding neutral differences. However, genomic islands of divergence are numerous and small in all comparisons, and contrary to expectations, island number and size are not significantly affected by levels of interspecific gene flow. Rather, island formation is strongly associated with reduced recombination rates. Overall, our results indicate that the functional architecture of genomes plays a larger role in shaping genomic divergence than does the geography of speciation.
Effects of Stochastic Traffic Flow Model on Expected System Performance
2012-12-01
NSWC-PCD has made considerable improvements to their pedestrian flow modeling . In addition to the linear paths, the 2011 version now includes...using stochastic paths. 2.2 Linear Paths vs. Stochastic Paths 2.2.1 Linear Paths and Direct Maximum Pd Calculation Modeling pedestrian traffic flow...as a stochastic process begins with the linear path model . Let the detec- tion area be R x C voxels. This creates C 2 total linear paths, path(Cs
Crespo, A; Peydró, A; Dasí, F; Benet, M; Calvete, J J; Revert, F; Aliño, S F
2005-06-01
The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection are efficient and well tolerated, resulting in therapeutic plasma levels of hAAT; (b) hydrodynamic injection mediates a transient inversion of intrahepatic blood flow, with circulatory stasis for a few minutes mainly in pericentral vein sinusoids; (c) transmission electron microscopy shows hydrodynamic injection to promote massive megafluid endocytic vesicles among hepatocytes around the central vein but not in hepatocytes around the periportal vein. We suggest that the mechanism of hydrodynamic liver gene transfer involves transient inversion of intrahepatic flow, sinusoidal blood stasis, and massive fluid endocytic vesicles in pericentral vein hepatocytes.
NASA Astrophysics Data System (ADS)
Gailey, Robert M.
2017-11-01
Water supply wells can act as conduits for vertical flow and contaminant migration between water-bearing strata under common hydrogeologic and well construction conditions. While recognized by some for decades, there is little published data on the magnitude of flows and extent of resulting water quality impacts. Consequently, the issue may not be acknowledged widely enough and the need for better management persists. This is especially true for unconsolidated alluvial groundwater basins that are hydrologically stressed by agricultural activities. Theoretical and practical considerations indicate that significant water volumes can migrate vertically through wells. The flow is often downward, with shallow groundwater, usually poorer in quality, migrating through conduit wells to degrade deeper water quality. Field data from locations in California, USA, are presented in combination with modeling results to illustrate both the prevalence of conditions conducive to intraborehole flow and the resulting impacts to water quality. Suggestions for management of planned wells include better enforcement of current regulations and more detailed consideration of hydrogeologic conditions during design and installation. A potentially greater management challenge is presented by the large number of existing wells. Monitoring for evidence of conduit flow and solute transport in areas of high well density is recommended to identify wells that pose greater risks to water quality. Conduit wells that are discovered may be addressed through approaches that include structural modification and changes in operations.
Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H.; Bierne, Nicolas; Jollivet, Didier
2013-01-01
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33′S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25′S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25′S and 14°S. PMID:24312557
Plouviez, Sophie; Faure, Baptiste; Le Guen, Dominique; Lallier, François H; Bierne, Nicolas; Jollivet, Didier
2013-01-01
Comparative phylogeography of deep-sea hydrothermal vent species has uncovered several genetic breaks between populations inhabiting northern and southern latitudes of the East Pacific Rise. However, the geographic width and position of genetic clines are variable among species. In this report, we further characterize the position and strength of barriers to gene flow between populations of the deep-sea vent mussel Bathymodiolus thermophilus. Eight allozyme loci and DNA sequences of four nuclear genes were added to previously published sequences of the cytochrome c oxidase subunit I gene. Our data confirm the presence of two barriers to gene flow, one located at the Easter Microplate (between 21°33'S and 31°S) recently described as a hybrid zone, and the second positioned between 7°25'S and 14°S with each affecting different loci. Coalescence analysis indicates a single vicariant event at the origin of divergence between clades for all nuclear loci, although the clines are now spatially discordant. We thus hypothesize that the Easter Microplate barrier has recently been relaxed after a long period of isolation and that some genetic clines have escaped the barrier and moved northward where they have subsequently been trapped by a reinforcing barrier to gene flow between 7°25'S and 14°S.
HyDe: a Python Package for Genome-Scale Hybridization Detection.
Blischak, Paul D; Chifman, Julia; Wolfe, Andrea D; Kubatko, Laura S
2018-03-19
The analysis of hybridization and gene flow among closely related taxa is a common goal for researchers studying speciation and phylogeography. Many methods for hybridization detection use simple site pattern frequencies from observed genomic data and compare them to null models that predict an absence of gene flow. The theory underlying the detection of hybridization using these site pattern probabilities exploits the relationship between the coalescent process for gene trees within population trees and the process of mutation along the branches of the gene trees. For certain models, site patterns are predicted to occur in equal frequency (i.e., their difference is 0), producing a set of functions called phylogenetic invariants. In this paper we introduce HyDe, a software package for detecting hybridization using phylogenetic invariants arising under the coalescent model with hybridization. HyDe is written in Python, and can be used interactively or through the command line using pre-packaged scripts. We demonstrate the use of HyDe on simulated data, as well as on two empirical data sets from the literature. We focus in particular on identifying individual hybrids within population samples and on distinguishing between hybrid speciation and gene flow. HyDe is freely available as an open source Python package under the GNU GPL v3 on both GitHub (https://github.com/pblischak/HyDe) and the Python Package Index (PyPI: https://pypi.python.org/pypi/phyde).
Diolistics: incorporating fluorescent dyes into biological samples using a gene gun
O’Brien, John A.; Lummis, Sarah C.R.
2007-01-01
The hand-held gene gun provides a rapid and efficient method of incorporating fluorescent dyes into cells, a technique that is becoming known as diolistics. Transporting fluorescent dyes into cells has, in the past, used predominantly injection or chemical methods. The use of the gene gun, combined with the new generation of fluorescent dyes, circumvents some of the problems of using these methods and also enables the study of cells that have proved difficult traditionally to transfect (e.g. those deep in tissues and/or terminally differentiated); in addition, the use of ion- or metabolite-sensitive dyes provides a route to study cellular mechanisms. Diolistics is also ideal for loading cells with optical nanosensors – nanometre-sized sensors linked to fluorescent probes. Here, we discuss the theoretical considerations of using diolistics, the advantages compared with other methods of inserting dyes into cells and the current uses of the technique, with particular consideration of nanosensors. PMID:17945370