The moderating effect of leadership on the relationship between personality and performance.
Yeh, Shu-Chuan Jennifer; Yuan, Kuo-Shu; Chen, Shih-Hua Sarah; Lo, Ying-Ying; Chou, Hsueh-Chih; Huang, Shan; Chiu, Herng-Chia; Wan, Thomas T H
2016-10-01
To examine how personality and leadership influence efficiency in the nursing service environment. Leadership and personality contribute to the success and failure of a unit. However, how they interact to influence performance is still understudied. We used matched pairs sample design to survey 135 head nurses and 1353 registered nurses on validated instruments of demographic characteristics, leadership styles and personality during June and July of 2014. Efficiency was calculated using Data Envelopment Analysis. Tobit regression was used for analysis. High conscientiousness and low neuroticism were significantly associated with higher efficiency. Particularly, under the initiating structure leadership style, high conscientiousness, high extraversion, high agreeableness, high openness and low neuroticism were related to higher efficiency. Openness would improve efficiency under a low consideration leadership style. Most personality traits were related to higher efficiency under the initiating leadership style. Only openness would improve leaders' efficiency under a high initiating structure and a low consideration leadership style. Considering personality as one factor of selecting head nurses, selecting the right person can improve the fit between individuals and organisations, which in turn, improves job performance. Training head nurses to develop better leadership styles in nurses is another way to enhance efficiency. © 2016 John Wiley & Sons Ltd.
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-01-01
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-07-28
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
Efficiency and Effectiveness in Higher Education: Who Is Accountable for What?
ERIC Educational Resources Information Center
Kenny, John
2008-01-01
There is little doubt that the modern university is far different to that of the early 90s and the work of academics has changed considerably over this time driven by the efficiency and accountability agenda. In taking stock of the changes, it needs to be recognised that often the cry for efficiency and accountability has been used as a mechanism…
Resisting Consumerist Rationalities in Higher Vocational Education
ERIC Educational Resources Information Center
Puaca, Goran; Theandersson, Christer; Carlén, Margareta
2017-01-01
Swedish higher education policy is currently moving toward consumption ideals that focus on promoting the efficiency and economic viability of student choices. This paper scrutinizes students' practical considerations when making decisions regarding their education and future occupations and the choice rationalities and motives that these reflect.…
Widening Equity and Retaining Efficiency: Considerations from the IBSA Southern Coalface
ERIC Educational Resources Information Center
Akoojee, Salim; Nkomo, Mokubung
2011-01-01
Access to higher education is a key challenge of the 21st century state. The link between higher education and personal and socio-economic development has intensified the need for ensuring that greater numbers of citizens have expanded access to and have been provided with quality higher education. The article seeks to explore how initiatives for…
Considerations for higher efficiency and productivity in research activities.
Forero, Diego A; Moore, Jason H
2016-01-01
There are several factors that are known to affect research productivity; some of them imply the need for large financial investments and others are related to work styles. There are some articles that provide suggestions for early career scientists (PhD students and postdocs) but few publications are oriented to professors about scientific leadership. As academic mentoring might be useful at all levels of experience, in this note we suggest several key considerations for higher efficiency and productivity in academic and research activities. More research is needed into the main work style features that differentiate highly productive scientists and research groups, as some of them could be innate and others could be transferable. As funding agencies, universities and research centers invest large amounts of money in order to have a better scientific productivity, a deeper understanding of these factors will be of high academic and societal impact.
NASA Astrophysics Data System (ADS)
Boehm, R. F.
1985-09-01
A review of thermodynamic principles is given in an effort to see if these concepts may indicate possibilities for improvements in solar central receiver power plants. Aspects related to rate limitations in cycles, thermodynamic availability of solar radiation, and sink temperature considerations are noted. It appears that considerably higher instantaneous plant efficiencies are possible by raising the maximum temperature and lowering the minimum temperature of the cycles. Of course, many practical engineering problems will have to be solved to realize the promised benefits.
NASA Astrophysics Data System (ADS)
Chen, Jian-Hui; Deng, Hai-Xiao; Gu, Qiang; Li, Dong-Guo; Wang, Dong; Zhang, Meng; Zhao, Zhen-Tang
2009-08-01
Using the recently proposed echo-enabled harmonic generation (EEHG) free-electron laser (FEL) scheme, it is shown that operating the Shanghai deep ultraviolet FEL (SDUV-FEL) with single-stage to higher harmonics is very promising, with higher frequency up-conversion efficiency, higher harmonic selectivity and lower power requirement of the seed laser. The considerations on a proof-of-principle experiment and expected performance in SDUV-FEL are given.
Domestic refrigeration appliances in Poland: Potential for improving energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, S.; Schipper, L.; Lebot, B.
1993-08-01
This report is based on information collected from the main Polish manufacturer of refrigeration appliances. We describe their production facilities, and show that the energy consumption of their models for domestic sale is substantially higher than the average for similar models made in W. Europe. Lack of data and uncertainty about future production costs in Poland limits our evaluation of the cost-effective potential to increase energy efficiency, but it appears likely that considerable improvement would be economic from a societal perspective. Many design options are likely to have a simple payback of less than five years. We found that themore » production facilities are in need of substantial modernization in order to produce higher quality and more efficient appliances. We discuss policy options that could help to build a market for more efficient appliances in Poland and thereby encourage investment to produce such equipment.« less
Schein, Stan; Ahmad, Kareem M
2006-11-01
A rod transmits absorption of a single photon by what appears to be a small reduction in the small number of quanta of neurotransmitter (Q(count)) that it releases within the integration period ( approximately 0.1 s) of a rod bipolar dendrite. Due to the quantal and stochastic nature of release, discrete distributions of Q(count) for darkness versus one isomerization of rhodopsin (R*) overlap. We suggested that release must be regular to narrow these distributions, reduce overlap, reduce the rate of false positives, and increase transmission efficiency (the fraction of R* events that are identified as light). Unsurprisingly, higher quantal release rates (Q(rates)) yield higher efficiencies. Focusing here on the effect of small changes in Q(rate), we find that a slightly higher Q(rate) yields greatly reduced efficiency, due to a necessarily fixed quantal-count threshold. To stabilize efficiency in the face of drift in Q(rate), the dendrite needs to regulate the biochemical realization of its quantal-count threshold with respect to its Q(count). These considerations reveal the mathematical role of calcium-based negative feedback and suggest a helpful role for spontaneous R*. In addition, to stabilize efficiency in the face of drift in degree of regularity, efficiency should be approximately 50%, similar to measurements.
ERIC Educational Resources Information Center
Norris, Graeme, Ed.
Research progress by member institutions is reviewed with regard to university administration, computing, committees, libraries, and student welfare. Consideration is given to effectiveness and efficiency, management information, management by objectives, periodic review of objectives, strategy, and analytic resource allocation. Two research…
Fuel Cell Auxiliary Power Study Volume 1: RASER Task Order 5
NASA Technical Reports Server (NTRS)
Mak, Audie; Meier, John
2007-01-01
This study evaluated the feasibility of a hybrid solid oxide fuel cell (SOFC) auxiliary power unit (APU) and the impact in a 90-passenger More-Electric Regional Jet application. The study established realistic hybrid SOFC APU system weight and system efficiencies, and evaluated the impact on the aircraft total weight, fuel burn, and emissions from the main engine and the APU during cruise, landing and take-off (LTO) cycle, and at the gate. Although the SOFC APU may be heavier than the current conventional APU, its weight disadvantage can be offset by fuel savings in the higher SOFC APU system efficiencies against the main engine bleed and extraction during cruise. The higher SOFC APU system efficiency compared to the conventional APU on the ground can also provide considerable fuel saving and emissions reduction, particularly at the gate, but is limited by the fuel cell stack thermal fatigue characteristic.
NASA Technical Reports Server (NTRS)
Sorensen, E
1940-01-01
The conventional axial blowers operate on the high-pressure principle. One drawback of this type of blower is the relatively low pressure head, which one attempts to overcome with axial blowers producing very high pressure at a given circumferential speed. The Schicht constant-pressure blower affords pressure ratios considerably higher than those of axial blowers of conventional design with approximately the same efficiency.
Multistage remote sensing: toward an annual national inventory
Raymond L. Czaplewski
1999-01-01
Remote sensing can improve efficiency of statistical information. Landsat data can identify and map a few broad categories of forest cover and land use. However, more-detailed information requires a sample of higher-resolution imagery, which costs less than field data but considerably more than Landsat data. A national remote sensing program would be a major...
Optimal translational swimming of a sphere at low Reynolds number.
Felderhof, B U; Jones, R B
2014-08-01
Swimming velocity and rate of dissipation of a sphere with surface distortions are discussed on the basis of the Stokes equations of low-Reynolds-number hydrodynamics. At first the surface distortions are assumed to cause an irrotational axisymmetric flow pattern. The efficiency of swimming is optimized within this class of flows. Subsequently, more general axisymmetric polar flows with vorticity are considered. This leads to a considerably higher maximum efficiency. An additional measure of swimming performance is proposed based on the energy consumption for given amplitude of stroke.
Slow-light-enhanced upconversion for photovoltaic applications in one-dimensional photonic crystals.
Johnson, Craig M; Reece, Peter J; Conibeer, Gavin J
2011-10-15
We present an approach to realizing enhanced upconversion efficiency in erbium (Er)-doped photonic crystals. Slow-light-mode pumping of the first Er excited state transition can result in enhanced emission from higher-energy levels that may lead to finite subbandgap external quantum efficiency in crystalline silicon solar cells. Using a straightforward electromagnetic model, we calculate potential field enhancements of more than 18× within he slow-light mode of a one-dimensional photonic crystal and discuss design trade-offs and considerations for photovoltaics.
USE Efficiency: an innovative educational programme for energy efficiency in buildings
NASA Astrophysics Data System (ADS)
Papadopoulos, Theofilos A.; Christoforidis, Georgios C.; Papagiannis, Grigoris K.
2017-10-01
Power engineers are expected to play a pivotal role in transforming buildings into smart and energy-efficient structures, which is necessary since buildings are responsible for a considerable amount of the total energy consumption. To fulfil this role, a holistic approach in education is required, tackling subjects traditionally related to other engineering disciplines. In this context, USE Efficiency is an inter-institutional and interdisciplinary educational programme implemented in nine European Universities targeting energy efficiency in buildings. The educational programme effectively links professors, students, engineers and industry experts, creating a unique learning environment. The scope of the paper is to present the methodology and the general framework followed in the USE Efficiency programme. The proposed methodology can be adopted for the design and implementation of educational programmes on energy efficiency and sustainable development in higher education. End-of-course survey results showed positive feedback from the participating students, indicating the success of the programme.
Stoks, Robby; Swillen, Ine; De Block, Marjan
2012-09-01
1. To better predict effects of climate change and predation risk on prey animals and ecosystems, we need studies documenting not only latitudinal patterns in growth rate but also growth plasticity to temperature and predation risk and the underlying proximate mechanisms: behaviour (food intake) and digestive physiology (growth efficiency). The mechanistic underpinnings of predator-induced growth increases remain especially poorly understood. 2. We reared larvae from replicated northern and southern populations of the damselfly Ischnura elegans in a common garden experiment manipulating temperature and predation risk and quantified growth rate, food intake and growth efficiency. 3. The predator-induced and temperature-induced growth accelerations were the same at both latitudes, despite considerably faster growth rates in the southern populations. While the higher growth rates in the southern populations and the high rearing temperature were driven by both an increased food intake and a higher growth efficiency, the higher growth rates under predation risk were completely driven by a higher growth efficiency, despite a lowered food intake. 4. The emerging pattern that higher growth rates associated with latitude, temperature and predation risk were all (partly or completely) mediated by a higher growth efficiency has two major implications. First, it indicates that energy allocation trade-offs and the associated physiological costs play a major role both in shaping large-scale geographic variation in growth rates and in shaping the extent and direction of growth rate plasticity. Secondly, it suggests that the efficiency of energy transfer in aquatic food chains, where damselfly larvae are important intermediate predators, will be higher in southern populations, at higher temperatures and under predation risk. This may eventually contribute to the lengthening of food chains under these conditions and highlights that the prey identity may determine the influence of predation risk on food chain length. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Devaraj, Srikant; Patel, Pankaj C
Although variation in-patient outcomes based on hospitals' geographic location has been studied, altitude of hospitals above sea level may also affect patient outcomes. Possibly, because of negative physical and psychological effects of altitude on hospital employees, hospital efficiency may decline at higher altitudes. Greater focus on hospital efficiency, despite decreasing efficiency at higher altitudes, could increase demands on hospital employees and further deteriorate patient outcomes. Using data envelopment analysis on a sample of 840 hospital-year observations representing 95,504 patients with acute myocardial infarction (AMI) in the United States, and controlling for patient, hospital, and county characteristics and controlling for hospital, state, and year fixed effects, we find support for the negative association between hospital altitude and efficiency; for 1 percentage point increase in efficiency and every 1,000 feet increase in altitude above the sea level, the mortality of patients with AMI increases by 0.66 percentage points. The findings have implications for hospital performance at increasing geographic elevation and introduces to the literature the notion of "health economics of elevation," to suggest that elevation of a hospital may be an important criterion for consideration for policy makers and insurance firms.
High purity silica reflecting heat shield development
NASA Technical Reports Server (NTRS)
Congdon, W.
1974-01-01
A reflecting heat shield composed of fused silica in which the scattering results from the refractive index mismatch between silica particles and the voids introduced during the fabrication process is developed. Major considerations and conclusions of the development are: the best material to use is Type A, which is capable of ultra-high-purity and which does not show the 0.243 micrometer absorption band; the reflection efficiency of fused silica is decreased at higher temperatures due to the bathochromic shift of the ultraviolet cut-off; for a given silica material, over the wavelength region and particle sizes tested, the monodisperse particle size configurations produce higher reflectances than continuous particle size configurations; and the smaller monodisperse particle size configurations give higher reflectance than the larger ones. A reflecting silica configuration that is an efficient reflector of shock layer radiation at high ablation temperatures is achieved by tailoring the matrix for optimum scattering and using an ultra-high-purity material.
ERIC Educational Resources Information Center
Hansen, Arthur G.
1975-01-01
Stresses faced by higher education as a result of both student and social criticism are examined and related to the specific role the physical plant department plays in the changing environment. The interface between the physical plant administrator and the chief executive officer is explored, and consideration is given to what each expects of the…
NASA Astrophysics Data System (ADS)
Dragan, Laurentiu; Watt, Stephen M.
Computer algebra in scientific computation squarely faces the dilemma of natural mathematical expression versus efficiency. While higher-order programming constructs and parametric polymorphism provide a natural and expressive language for mathematical abstractions, they can come at a considerable cost. We investigate how deeply nested type constructions may be optimized to achieve performance similar to that of hand-tuned code written in lower-level languages.
Measuring the Cost of Quality in Higher Education: A Faculty Perspective
ERIC Educational Resources Information Center
Ruhupatty, LeRoy; Maguad, Ben A.
2015-01-01
Most critical activities in colleges and universities are driven by financial considerations. It is thus important that revenues are found to support these activities or ways identified to streamline costs. One way to cut cost is to improve the efficiency of schools to address the issue of poor quality. In this paper, the cost of poor quality in…
Cycling efficiency and energy cost of walking in young and older adults.
Gaesser, Glenn A; Tucker, Wesley J; Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S
2018-02-01
To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg -1 ·m -1 ), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg -1 ·m -1 ) and 65-69 yr (2.20 ± 0.28 J·kg -1 ·m -1 ) age groups, but was significantly ( P < 0.03) higher in the ≥70 yr (2.37 ± 0.33 J·kg -1 ·m -1 ) age group. For subjects >60 yr, net Cw was significantly correlated with age ( R 2 = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.
NASA Astrophysics Data System (ADS)
Siokis, Fotios M.
2018-06-01
We explore the evolution of the informational efficiency for specific instruments of the U.S. money, bond and stock exchange markets, prior and after the outbreak of the Great Recession. We utilize the permutation entropy and the complexity-entropy causality plane to rank the time series and measure the degree of informational efficiency. We find that after the credit crunch and the collapse of Lehman Brothers the efficiency level of specific money market instruments' yield falls considerably. This is an evidence of less uncertainty included in predicting the related yields throughout the financial disarray. Similar trend is depicted in the indices of the stock exchange markets but efficiency remains in much higher levels. On the other hand, bond market instruments maintained their efficiency levels even after the outbreak of the crisis, which could be interpreted into greater randomness and less predictability of their yields.
Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence
Schuler, Benjamin; Lipman, Everett A.; Steinbach, Peter J.; Kumke, Michael; Eaton, William A.
2005-01-01
To determine whether Förster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Förster theory, with polyproline treated as a rigid rod. At donor–acceptor distances much less than the Förster radius R0, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Förster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor–acceptor distances. PMID:15699337
Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang
2016-06-01
The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 3 2010-10-01 2010-10-01 false Physician or treating practitioner authorization and consideration of clinical efficiency and value of items. 414.420 Section 414.420 Public Health... practitioner authorization and consideration of clinical efficiency and value of items. (a) Prescription for a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 3 2011-10-01 2011-10-01 false Physician or treating practitioner authorization and consideration of clinical efficiency and value of items. 414.420 Section 414.420 Public Health... practitioner authorization and consideration of clinical efficiency and value of items. (a) Prescription for a...
Current-flow efficiency of networks
NASA Astrophysics Data System (ADS)
Liu, Kai; Yan, Xiaoyong
2018-02-01
Many real-world networks, from infrastructure networks to social and communication networks, can be formulated as flow networks. How to realistically measure the transport efficiency of these networks is of fundamental importance. The shortest-path-based efficiency measurement has limitations, as it assumes that flow travels only along those shortest paths. Here, we propose a new metric named current-flow efficiency, in which we calculate the average reciprocal effective resistance between all pairs of nodes in the network. This metric takes the multipath effect into consideration and is more suitable for measuring the efficiency of many real-world flow equilibrium networks. Moreover, this metric can handle a disconnected graph and can thus be used to identify critical nodes and edges from the efficiency-loss perspective. We further analyze how the topological structure affects the current-flow efficiency of networks based on some model and real-world networks. Our results enable a better understanding of flow networks and shed light on the design and improvement of such networks with higher transport efficiency.
Conceptual design of a high real-estate gradient cavity for a SRF ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng
2017-10-01
The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).
Conceptual design of a high real-estate gradient cavity for a SRF ERL
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...
2017-07-19
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
Evaluation of AlsubxGasub1-xsubAs solar cells
NASA Technical Reports Server (NTRS)
Loo, R. Y.; Kamath, G. S.; Knechtli, R. C.; Narayanan, A.; Li, S. S.
1985-01-01
Single junction GaAs solar cells have already attained an efficiency of 19% AMO which could potentially be increased to approx 20%, with some optimization. To achieve the higher efficiency the concept of multibandgap solar cells which utilizes a wider region of the solar spectrum should be sed. One of the materials for fabricating the top cell in a multibandgap solar cell is AlGaAs because it is compatible with GaAs in bandgap and lattice match. This is a very important consideration from the materials technology point of view, and the viability of this approach is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fraas, A.P.
1971-08-01
The facts of fuel supply limitations, environmental quality demands, and spiraling electric generating costs strongly favor development of electric power plants that simultaneously run at higher efficiency, i.e., higher temperature, use to advantage clean fuels, and have as low a capital cost as possible. Both fuel supply and thermal pollution considerations that are becoming progressively more important strongly favor the development of a higher temperature, and more efficient, thermodynamic cycle for electric power plants. About 200,000 hr of operation of boiling potassium systems, including over 15,000 hr of potassium vapor turbine operation under the space power plant program, suggest thatmore » a potassium vapor topping cycle with a turbine inlet temperature of approximately 1500/sup 0/F merits consideration. A design study has been carried out to indicate the size, cost, and development problems of the new types of equipment required. The results indicate that a potassium vapor cycle superimposed on a conventional 1050/sup 0/F steam cycle would give an overall thermal efficiency of about 54% as compared to only 40% from a conventional steam cycle. Thus the proposed system would have a fuel consumption only 75% and a heat rejection rate only 50% that of a conventional plant. The system requires clean fuel, and takes advantage of the present trend toward eliminating SO/sub 2/, NO/sub x/ and ash emissions. Surprisingly, at first sight, the assessment at this stage shows that the capital cost may be less than that of a conventional plant. The main reason for this is use of pressurized combustion, which leads to a much smaller combustor, and thin tube walls to contain potassium at about the same pressure.« less
Dong, Hao; Bi, Jun; Xia, Guang-Li; Zhou, Xun-Bo; Chen, Yu-Hai
2014-08-01
High-yield winter wheat cultivar Jimai 22 was used to study effects of irrigation and planting patterns on water consumption characteristics and photosynthetic characteristics of winter wheat in field from 2009 to 2011. Three different planting patterns (uniform row, wide-narrow row and furrow) and four irrigation schedules (W0, no irrigation; W1, irrigation at jointing stage; W2, irrigations at jointing and anthesis stages; W3, irrigation at jointing, anthesis and milking stages. Each irrigation rate was 60 mm) were designed in the experiment. Results showed that, with the increasing of irrigation amount, flag leaf area, net photosynthesis rate, maximum photochemical efficiency and actual light transformation efficiency at late growth stages of winter wheat increased. Compared with W0 treatment, the other irrigation treatments had higher grain yields, but lower water use efficiencies. Under the same irrigation condition, the flag leaf net photosynthesis, maximum photochemical efficiency and actual light transformation efficiency were much higher in furrow pattern. Grain yields of winter wheat under furrow pattern and W2 treatment were significantly higher than that of the other treatments. Taking grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages might be the optimal water-saving and planting mode for the winter wheat production in North China Plain.
ERIC Educational Resources Information Center
Daniel, Clarence H.
This handbook explains planned preventive maintenance program, which is an operational system of maintenance designed to increase the effectiveness of the maintenance staff and the use of maintenance funds through efficient scheduling of inspections and follow-through of work to be performed. Sections are included for the chief administrative…
ERIC Educational Resources Information Center
Fryling, Meg
2010-01-01
Enterprise Research Planning (ERP) software is advertised as the product that will "run the enterprise", improving data access and accuracy as well as enhancing business process efficiency. Unfortunately, organizations often make implementation decisions with little consideration for the maintenance phase of an ERP, resulting in significant…
ERIC Educational Resources Information Center
Jones, David R.
The history of universities in their social context is not a merely antiquarian study; it is the soundest basis for consideration of the contemporary university and its problems. The most frequent debate, that of the ivory tower, is really a question of the form and efficiency of the university's articulation with society at large. The…
High-temperature, high-power-density thermionic energy conversion for space
NASA Technical Reports Server (NTRS)
Morris, J. F.
1977-01-01
Theoretic converter outputs and efficiencies indicate the need to consider thermionic energy conversion (TEC) with greater power densities and higher temperatures within reasonable limits for space missions. Converter-output power density, voltage, and efficiency as functions of current density were determined for 1400-to-2000 K emitters with 725-to-1000 K collectors. The results encourage utilization of TEC with hotter-than-1650 K emitters and greater-than-6W sq cm outputs to attain better efficiencies, greater voltages, and higher waste-heat-rejection temperatures for multihundred-kilowatt space-power applications. For example, 1800 K, 30 A sq cm TEC operation for NEP compared with the 1650 K, 5 A/sq cm case should allow much lower radiation weights, substantially fewer and/or smaller emitter heat pipes, significantly reduced reactor and shield-related weights, many fewer converters and associated current-collecting bus bars, less power conditioning, and lower transmission losses. Integration of these effects should yield considerably reduced NEP specific weights.
Study on immobilization of marine oil-degrading bacteria by carrier of algae materials.
Zhang, Yiran; Gao, Wei; Lin, Faxiang; Han, Bin; He, Changfei; Li, Qian; Gao, Xiangxing; Cui, Zhisong; Sun, Chengjun; Zheng, Li
2018-05-18
This study investigated the immobilizations with of bacteria two kinds of algal materials, Enteromorpha residue and kelp residue. The lipophilicity of them were compared by diesel absorption rates. The immobilization efficiency of Bacillus sp. E3 was measured to evaluate whether these carriers would satisfy the requirement for biodegradation of oil spills. The bacteria were immobilized through adsorption with the sterilized and non-sterilized carriers to compare the differences between the two treatments. Oil degradation rates were determined using gravimetric and GC-MS methods. Results showed the absorption rates of Enteromorpha residue and kelp residue for diesel were 411 and 273% respectively and remained approximately 105 and 120% after 2 h of erosion in simulated seawater system. After immobilized of Bacillus sp. E3, the oil degradation rates of them were higher than 65% after 21 days biodegradations. GC-MS analysis showed that two immobilizations degraded higher than 70% of the total alkane and the total PAHs, whereas the free bacteria degraded 63% of the total alkane and 66% the total PAHs. And the bacteria immobilized with the carriers degraded more HMW-alkanes and HMW-PAHs than the free bacteria. The bacteria immobilized by non-sterilized kelp residue showed a considerably higher degradation rate than that using sterilized kelp residue. A considerably higher cells absorption rate of immobilization was obtained when using kelp residue, and the preparation of immobilization was low cost and highly efficient. The experiments show the two algae materials, especially the kelp residue, present potential application in bioremediation of marine oil spills.
Policies to Enhance Prescribing Efficiency in Europe: Findings and Future Implications
Godman, Brian; Shrank, William; Andersen, Morten; Berg, Christian; Bishop, Iain; Burkhardt, Thomas; Garuoliene, Kristina; Herholz, Harald; Joppi, Roberta; Kalaba, Marija; Laius, Ott; Lonsdale, Julie; Malmström, Rickard E.; Martikainen, Jaana E.; Samaluk, Vita; Sermet, Catherine; Schwabe, Ulrich; Teixeira, Inês; Tilson, Lesley; Tulunay, F. Cankat; Vlahović-Palčevski, Vera; Wendykowska, Kamila; Wettermark, Bjorn; Zara, Corinne; Gustafsson, Lars L.
2010-01-01
Introduction: European countries need to learn from each other to address unsustainable increases in pharmaceutical expenditures. Objective: To assess the influence of the many supply and demand-side initiatives introduced across Europe to enhance prescribing efficiency in ambulatory care. As a result provide future guidance to countries. Methods: Cross national retrospective observational study of utilization (DDDs – defined daily doses) and expenditure (Euros and local currency) of proton pump inhibitors (PPIs) and statins among 19 European countries and regions principally from 2001 to 2007. Demand-side measures categorized under the “4Es” – education engineering, economics, and enforcement. Results: Instigating supply side initiatives to lower the price of generics combined with demand-side measures to enhance their prescribing is important to maximize prescribing efficiency. Just addressing one component will limit potential efficiency gains. The influence of demand-side reforms appears additive, with multiple initiatives typically having a greater influence on increasing prescribing efficiency than single measures apart from potentially “enforcement.” There are also appreciable differences in expenditure (€/1000 inhabitants/year) between countries. Countries that have not introduced multiple demand side measures to counteract commercial pressures to enhance the prescribing of generics have seen considerably higher expenditures than those that have instigated a range of measures. Conclusions: There are considerable opportunities for European countries to enhance their prescribing efficiency, with countries already learning from each other. The 4E methodology allows European countries to concisely capture the range of current demand-side measures and plan for the future knowing that initiatives can be additive to further enhance their prescribing efficiency. PMID:21833180
Low-Cost, High-Performance Hall Thruster Support System
NASA Technical Reports Server (NTRS)
Hesterman, Bryce
2015-01-01
Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.
Stärk, Katharina DC; Regula, Gertraud; Hernandez, Jorge; Knopf, Lea; Fuchs, Klemens; Morris, Roger S; Davies, Peter
2006-01-01
Background Emerging animal and zoonotic diseases and increasing international trade have resulted in an increased demand for veterinary surveillance systems. However, human and financial resources available to support government veterinary services are becoming more and more limited in many countries world-wide. Intuitively, issues that present higher risks merit higher priority for surveillance resources as investments will yield higher benefit-cost ratios. The rapid rate of acceptance of this core concept of risk-based surveillance has outpaced the development of its theoretical and practical bases. Discussion The principal objectives of risk-based veterinary surveillance are to identify surveillance needs to protect the health of livestock and consumers, to set priorities, and to allocate resources effectively and efficiently. An important goal is to achieve a higher benefit-cost ratio with existing or reduced resources. We propose to define risk-based surveillance systems as those that apply risk assessment methods in different steps of traditional surveillance design for early detection and management of diseases or hazards. In risk-based designs, public health, economic and trade consequences of diseases play an important role in selection of diseases or hazards. Furthermore, certain strata of the population of interest have a higher probability to be sampled for detection of diseases or hazards. Evaluation of risk-based surveillance systems shall prove that the efficacy of risk-based systems is equal or higher than traditional systems; however, the efficiency (benefit-cost ratio) shall be higher in risk-based surveillance systems. Summary Risk-based surveillance considerations are useful to support both strategic and operational decision making. This article highlights applications of risk-based surveillance systems in the veterinary field including food safety. Examples are provided for risk-based hazard selection, risk-based selection of sampling strata as well as sample size calculation based on risk considerations. PMID:16507106
A high-efficiency high-power-generation system for automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, M.; Boules, N.; Henry, R.
This paper presents a new scheme for the efficient generation of high electric power demanded for future automobiles. The new system consists of a permanent-magnet (PM) alternator having high-energy MAGNEQUENCH (MQ) magnets and split winding and a novel electronic voltage-regulation scheme. A proof-of-concept system, capable of providing 100/250 A (idle/cruising) at 14 V, has been built and tested in the laboratory with encouraging results. This high output is provided at 15--20 percentage points higher efficiencies than conventional automotive alternators, which translates into considerable fuel economy savings. The system is 8 dB quieter and has a rotor inertia of only 2/3more » that of an equivalent production alternator, thus allowing for a belt drive without excessive slippage.« less
A high-efficiency, high power generation system for automobiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, M.; Boules, N.; Henry, R.
The paper presents a new scheme for the efficient generation of high electric power, demands for future automobiles. The new system, consists of a permanent magnet (PM) alternator having high energy MAGNEQUENCH (MQ) magnets and split winding; and a novel electronic voltage regulation scheme. A proof of concept system, capable of providing 100/250 A (idle/cruising) at 14 V, has been built and tested in the laboratory with encouraging results. This high output is provided at 15--20 percentage points higher efficiencies than conventional automotive alternators, which translates into considerable fuel economy savings. The system is 8 dB quieter and has amore » rotor inertia of only 2/3 that of an equivalent production alternator, thus allowing for a belt drive without excessive slippage.« less
Estimation of the quantum efficiency of the photodissociation of HbO2 and HbCO
NASA Astrophysics Data System (ADS)
Gisbrecht, A. I.; Mamilov, S. A.; Esman, S. S.; Asimov, M. M.
2016-01-01
The paper presents our results on the study of the efficiency of inter-fractional changes in hemoglobin molecules depending on the laser radiation parameters. The evaluation of the quantum efficiency of light interaction in vivo with oxyhemoglobin (HbO2) and carboxyhemoglobin (HbCO) in the blood at wavelengths for 525 and 605 nm is presented. The photodissociation yield of 11% for HbO2 and 79% for HbCO are measured at the wavelength of 525 nm and 10 % for HbO2 and 76 % for HbCO at a wavelength of 605 nm. Thus, the quantum yield of photodissociation of the HbCO is considerably higher, which ensures high efficiency of photodecomposition of the HbCO in the blood. The obtained results can be used in the clinical phototherapy practice for effective treatment of CO poisoning.
Variation in nitrogen use efficiencies on Dutch dairy farms.
Daatselaar, Co Hg; Reijs, Joan R; Oenema, Jouke; Doornewaard, Gerben J; Aarts, H Frans M
2015-12-01
On dairy farms, the input of nutrients including nitrogen is higher than the output in products such as milk and meat. This causes losses of nitrogen to the environment. One of the indicators for the losses of nitrogen is the nitrogen use efficiency. In the Dutch Minerals Policy Monitoring Program (LMM), many data on nutrients of a few hundred farms are collected which can be processed by the instrument Annual Nutrient Cycle Assessment (ANCA, in Dutch: Kringloopwijzer) in order to provide nitrogen use efficiencies. After dividing the dairy farms (available in the LMM program) according to soil type and in different classes for milk production ha(-1) , it is shown that considerable differences in nitrogen use efficiency exist between farms on the same soil type and with the same level of milk production ha(-1) . This offers opportunities for improvement of the nitrogen use efficiency on many dairy farms. Benchmarking will be a useful first step in this process. © 2015 Society of Chemical Industry.
The p-version of the finite element method in incremental elasto-plastic analysis
NASA Technical Reports Server (NTRS)
Holzer, Stefan M.; Yosibash, Zohar
1993-01-01
Whereas the higher-order versions of the finite elements method (the p- and hp-version) are fairly well established as highly efficient methods for monitoring and controlling the discretization error in linear problems, little has been done to exploit their benefits in elasto-plastic structural analysis. Aspects of incremental elasto-plastic finite element analysis which are particularly amenable to improvements by the p-version is discussed. These theoretical considerations are supported by several numerical experiments. First, an example for which an analytical solution is available is studied. It is demonstrated that the p-version performs very well even in cycles of elasto-plastic loading and unloading, not only as compared to the traditional h-version but also in respect to the exact solution. Finally, an example of considerable practical importance - the analysis of a cold-worked lug - is presented which demonstrates how the modeling tools offered by higher-order finite element techniques can contribute to an improved approximation of practical problems.
Khan, Javid; Gu, Jiuwang; He, Shiman; Li, Xiaohui; Ahmed, Gulzar; Liu, Zhongwu; Akhtar, Muhammad Nadeem; Mai, Wenjie; Wu, Mingmei
2017-07-20
A tri-layered photoelectrode for dye-sensitized solar cells (DSSCs) is assembled using single crystal hollow TiO 2 nanoparticles (HTNPs), sub-micro hollow TiO 2 mesospheres (SHTMSs) and hierarchical TiO 2 microspheres (HTMSs). The bottom layer composed of single crystal hollow TiO 2 nanoparticles serves to absorb dye molecules, harvest light due to its hollow structure and keep a better mechanical contact with FTO conducting glass; the middle layer consisting of sub-micro hollow mesospheres works as a multifunctional layer due to its high dye adsorption ability, strong light trapping and scattering ability and slow recombination rates; and the top layer consisting of hierarchical microspheres enhances light scattering. The DSSCs made of photoanodes with a tripartite-layer structure (Film 4) show a superior photoconversion efficiency (PCE) of 9.24%, which is 7.4% higher than a single layered photoanode composed of HTNPs (Film 1: 8.90%), 4.6% higher than a double layer-based electrode consisting of HTNPs and SHTMSs (Film 2: 9.03%) and 2.6% higher than a double layer-based electrode made of HTNPs and HTMSs (Film 3: 9.11%). The significant improvements in the PCE for tri-layered TiO 2 photoanodes are mainly because of the combined effects of their higher light scattering ability, long electron lifetime, fast electron transport rate, efficient charge collection and a considerable surface area with high dye-loading capability. This study confirms that the facile tri-layered photoanode is an interesting structure for high-efficiency DSSCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mason, N.; Davis, D.C.; Hyde, G.M.
1983-12-01
In this study the solid waste (pomace) from grape and apple juice processing was chemically analyzed to determine high heating value. Grape pomace combustion was simulated at several excess air levels and combustion products were analyzed. Then grape pomace was actually burned in a concentric vortex furnace at several levels of excess air to determine combustion efficiency and to confirm flue gas pollutant characteristics. The results show that apple and grape pomace are chemically similar to wood from the combustion standpoint and that furnace slagging is not a problem because the ash fusion temperatures are considerably higher than combustion temperatures.more » The grape pomace burned at efficiencies of 44 to 61 percent with only low pollution hazard.« less
A flat spectral Faraday filter for sodium lidar.
Yang, Yong; Cheng, Xuewu; Li, Faquan; Hu, Xiong; Lin, Xin; Gong, Shunsheng
2011-04-01
We report a flat spectral Faraday anomalous dispersion optical filter (FS-FADOF) for sodium lidar. The physical and technical considerations for obtaining a FS-FADOF with a 3.5 GHz flat spectral transmission function are presented. It was found that the effective transmission of this filter was much higher (>94%) and more uniform than that of the ultranarrowband FADOF, and therefore were less sensitive to laser-frequency drift. Thus, the FS-FADOF can improve lidar efficiency and precision.
Cd, Fe, and Light Sensitivity: Interrelationships in Cd-Treated Populus
Gáspár, László; Vági, Pál; Záray, Gyula; Fodor, Ferenc; Sárvári, Éva
2011-01-01
Abstract Cadmium is a toxic heavy metal causing iron deficiency in the shoot and light sensitivity of photosynthetic tissues that leads to decreased photosynthetic performance and biomass production. Light intensity had strong impact on both photosynthetic activity and metal accumulation of cadmium-treated plants. At elevated irradiation, cadmium accumulation increased due to the higher dry mass of plants, but its allocation hardly changed. A considerable amount of iron accumulated in the roots, and iron concentration was higher in leaves developed at moderate rather than low irradiation. At the same time, the higher the irradiation the lower the maximal photochemical quantum efficiency. The decreased photochemical efficiency, however, started to recover after a week of Cd treatment at moderate light without substantial change in metal concentrations but following the accumulation of green fluorescent compounds. Both cadmium treatment and higher light caused the accumulation of flavonoids in leaf mesophyll vacuoles/chloroplasts, but accumulation of flavonols, fluorescing at 510 nm, was characteristic to cadmium stress. Therefore, flavonoids, which may act by scavenging reactive radicals, chelating Cd, and shielding against excess irradiation, play an important part in Cd stress tolerance of Populus, and may have special impact on its phytoremediation capacity. PMID:22011338
Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.
Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy
2014-04-01
(-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1974-01-01
End-to-end system considerations involving channel coding and data compression which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft are presented.
High-efficiency silicon solar-cell design and practical barriers
NASA Technical Reports Server (NTRS)
Mokashi, A.
1985-01-01
A numerical evaluation technique is used to study the impact of practical barriers, such as heavy doping effects (Auger recombination, band gap narrowing), surface recombination, shadowing losses and minority-carrier lifetime (Tau), on a high efficiency silicon solar cell performance. Considering a high Tau of 1 ms, efficiency of a silicon solar cell of the hypothetical case is estimated to be around 29%. This is comparable with (detailed balance limit) maximum efficiency of a p-n junction solar cell of 30%. Value of Tau is varied from 1 second to 20 micro. Heavy doping effects, and realizable values of surface recombination velocities and shadowing, are then considered in succession and their influence on cell efficiency is evaluated and quantified. These practical barriers cause the cell efficiency to reduce from the maximum value of 29% to the experimentally achieved value of about 19%. Improvement in open circuit voltage V sub oc is required to achieve cell efficiency greater than 20%. Increased value of Tau reduces reverse saturation current and, hence, improves V sub oc. Control of surface recombination losses becomes critical at higher V sub oc. Substantial improvement in Tau and considerable reduction in surface recombination velocities is essential to achieve cell efficiencies greater than 20%.
Settling of virgin olive oil from horizontal screw solid bowl in static conditions.
Gila, Abraham M; Bejaoui, Mohamed A; Beltrán, Gabriel; Jiménez, Antonio
2017-08-01
This work was aimed to study the clarification efficiency of natural decantation in settling tank on virgin olive oil obtained from a two-ways continuous process. For this purpose, the impurities content of the virgin olive oil were monitored during settling process in settling tank at two different depths. Efficiency of purging system was determined for two days. The experiments were performed at industrial scale during three crop years. During the first minutes of settling was observed an ascent of the smaller organic particles of the oil. Then, most of the virgin olive oil impurities were settled at 300 min, independently of the initial content of virgin olive oil. Finally, oil decantation showed slower rate. Higher clarification values were obtained for those decanter oils with higher impurities content, achieving clarification percentages between of 62.69 and 95.91% at 48 h of settling. The highest settling efficiency was observed for those decanter oils with initial higher impurities content. The purging system used in the settling tanks was not able to remove the most of settled impurities since a considerable amount of the impurities remained in the tank after 48 h, between 13.6 and 71.41% for the studied oils. In the tank purges was observed important oil losses. Therefore, decantation was not an efficient system for oil clarification since its settling capacity varied depending on the initial impurities content and due to the settled impurities can not be removed fully by purging system.
Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany
NASA Astrophysics Data System (ADS)
Steinke, I.; Funk, R.; Busse, J.; Iturri, A.; Kirchen, S.; Leue, M.; Möhler, O.; Schwartz, T.; Schnaiter, M.; Sierau, B.; Toprak, E.; Ullrich, R.; Ulrich, A.; Hoose, C.; Leisner, T.
2016-11-01
Soil dust particles emitted from agricultural areas contain considerable mass fractions of organic material. Also, soil dust particles may act as carriers for potentially ice-active biological particles. In this work, we present ice nucleation experiments conducted in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber. We investigated the ice nucleation efficiency of four types of soil dust from different regions of the world. The results are expressed as ice nucleation active surface site (INAS) densities and presented for the immersion freezing and the deposition nucleation mode. For immersion freezing occurring at 254 K, samples from Argentina, China, and Germany show ice nucleation efficiencies which are by a factor of 10 higher than desert dusts. On average, the difference in ice nucleation efficiencies between agricultural and desert dusts becomes significantly smaller at temperatures below 247 K. In the deposition mode the soil dusts showed higher ice nucleation activity than Arizona Test Dust over a temperature range between 232 and 248 K and humidities RHice up to 125%. INAS densities varied between 109 and 1011 m-2 for these thermodynamic conditions. For one soil dust sample (Argentinian Soil), the effect of treatments with heat was investigated. Heat treatments (383 K) did not affect the ice nucleation efficiency observed at 249 K. This finding presumably excludes proteinaceous ice-nucleating entities as the only source of the increased ice nucleation efficiency.
Efficiency of irrigation water application in sugarcane cultivation in Pakistan.
Watto, Muhammad Arif; Mugera, Amin W
2015-07-01
Diminishing irrigation water supplies are threatening the sustainability of irrigated agriculture in Pakistan. Within the context of dwindling water resources and low agricultural water productivity, it is imperative to improve efficiency in agricultural production and to make efficient use of available water resources. This study employs a non-parametric approach to estimate the extent of technical and irrigation water efficiency in sugarcane cultivation in Pakistan. The mean technical efficiency score is 0.96 for tube-well owners whereas it is 0.94 for water buyers. The mean irrigation water efficiency score is 0.86 for tube-well owners whereas it is 0.72 for water buyers. We find that across all farms, 59% of the tube-well owners and 45% of the water buyers are fully technically efficient, whereas only 36% of the tube-well owners and 30% of the water buyer are fully efficient in irrigation water use. This study finds that sugarcane growers are operating at fairly high technical efficiency levels. But, there is considerable potential to improve irrigation water efficiency. This study proposes expanding the role of agricultural extension services from merely agronomic grounds to guide farmers to undertake cost benefit analysis of the available production technology, would help achieve higher efficiency levels. © 2014 Society of Chemical Industry.
[Are privately owned hospitals more efficient? Results of a survey of the international literature].
Sibbel, R; Nagarajah, B
2012-06-01
In no other European country has the privatisation of hospitals taken such dimensions in the last 15 years as in Germany. Thereby a higher efficiency of private ownership is often assumed as a potential driver. The aim of this study is to analyse the current state of research on the question of whether private hospitals are more efficient, or whether the public ones are just plain worse operators of clinics. As a contribution to answering the relevant question, a systematic review of the international literature on benchmarking the performance of hospitals as a function of ownership on the basis of the efficiency measurement using DEA (data envelopment analysis) was conducted. In the closer analysis 8 studies were accepted; of which 3 refer to the U.S.A., 3 to the German and one to the Taiwanese and South Korean health-care sector. These studies compare private hospital operators with other types of ownership, where they differ considerably in their methodological approaches. 5 studies reveal that public and not-for-profit hospitals are more efficient than those in private ownership. One study concludes the opposite, and 2 could not demonstrate any significant differences between the different hospital ownerships. This result is a surprise taking into consideration the development and discussion in Germany in recent years and in comparison to studies based on alternative approaches to efficiency measurement. The detailed analysis of the studies shows that because of weaknesses and a variety of differences in the methodological structure of the studies a really convincing answer regarding the first question ultimately cannot be derived from the results. Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan
2015-10-01
In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.
Satellite sound broadcasting system study: Mobile considerations
NASA Technical Reports Server (NTRS)
Golshan, Nasser
1990-01-01
Discussed here is the mobile reception part of a study to investigate a satellite sound broadcast system in the UHF or L bands. Existing propagation and reception measurements are used with proper interpretation to evaluate the signaling, coding, and diversity alternatives suitable for the system. Signal attenuation in streets shadowed by buildings appear to be around 29 db, considerably higher than the 10 db adopted by CCIR. With the marriage of proper technologies, an LMSS class satellite can provide substantial direct satellite audio broadcast capability in UHF or L bands for high quality mobile and portable indoor reception by low cost radio receivers. This scheme requires terrestrial repeaters for satisfactory mobile reception in urban areas. A specialized bandwidth efficient spread spectrum signalling technique is particularly suitable for the terrestrial repeaters.
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masnavi, Majid; Nakajima, Mitsuo; Hotta, Eiki
Extreme ultraviolet (EUV) discharge-based lamps for EUV lithography need to generate extremely high power in the narrow spectrum band of 13.5{+-}0.135 nm. A simplified collisional-radiative model and radiative transfer solution for an isotropic medium were utilized to investigate the wavelength-integrated light outputs in tin (Sn) plasma. Detailed calculations using the Hebrew University-Lawrence Livermore atomic code were employed for determination of necessary atomic data of the Sn{sup 4+} to Sn{sup 13+} charge states. The result of model is compared with experimental spectra from a Sn-based discharge-produced plasma. The analysis reveals that considerably larger efficiency compared to the so-called efficiency of amore » black-body radiator is formed for the electron density {approx_equal}10{sup 18} cm{sup -3}. For higher electron density, the spectral efficiency of Sn plasma reduces due to the saturation of resonance transitions.« less
NASA Astrophysics Data System (ADS)
Feng, Cheng; Zhang, Yijun; Qian, Yunsheng; Wang, Ziheng; Liu, Jian; Chang, Benkang; Shi, Feng; Jiao, Gangcheng
2018-04-01
A theoretical emission model for AlxGa1-xAs/GaAs cathode with complex structure based on photon-enhanced thermionic emission is developed by utilizing one-dimensional steady-state continuity equations. The cathode structure comprises a graded-composition AlxGa1-xAs window layer and an exponential-doping GaAs absorber layer. In the deduced model, the physical properties changing with the Al composition are taken into consideration. Simulated current-voltage characteristics are presented and some important factors affecting the conversion efficiency are also illustrated. Compared with the graded-composition and uniform-doping cathode structure, and the uniform-composition and uniform-doping cathode structure, the graded-composition and exponential-doping cathode structure can effectively improve the conversion efficiency, which is ascribed to the twofold built-in electric fields. More strikingly, this graded bandgap structure is especially suitable for photon-enhanced thermionic emission devices since a higher conversion efficiency can be achieved at a lower temperature.
Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.
Kubitzki, Marcus B; de Groot, Bert L
2007-06-15
Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of the system staying at a reference temperature, T(0). This selective excitation along with the replica framework permits efficient approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas, thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving as references.
Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping
NASA Astrophysics Data System (ADS)
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.
2017-05-01
Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.
Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Schwam
2012-12-15
This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less
Miao, Zhidong; Liu, Dake; Gong, Chen
2017-10-01
Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.
A simple and fast representation space for classifying complex time series
NASA Astrophysics Data System (ADS)
Zunino, Luciano; Olivares, Felipe; Bariviera, Aurelio F.; Rosso, Osvaldo A.
2017-03-01
In the context of time series analysis considerable effort has been directed towards the implementation of efficient discriminating statistical quantifiers. Very recently, a simple and fast representation space has been introduced, namely the number of turning points versus the Abbe value. It is able to separate time series from stationary and non-stationary processes with long-range dependences. In this work we show that this bidimensional approach is useful for distinguishing complex time series: different sets of financial and physiological data are efficiently discriminated. Additionally, a multiscale generalization that takes into account the multiple time scales often involved in complex systems has been also proposed. This multiscale analysis is essential to reach a higher discriminative power between physiological time series in health and disease.
NASA Technical Reports Server (NTRS)
Hals, F. A.
1981-01-01
Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.
Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin
This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less
NASA Astrophysics Data System (ADS)
Feltz, N.; Gaspart, F.; Vanclooster, M.
2015-12-01
In order to save agricultural water, the famous FAO's "more crop per drop" has been taken literally in many arid or semi-arid places around the world and policies that aim improving "efficiencies" (irrigation efficiency…) have been implemented, often leading to the promotion of water saving technologies. In 1865, studying coal consumption, W.S. Jevons highlighted that improving coal use efficiency could, as a paradox, lead to higher global coal use. Many economists later extended this idea to resource saving technologies in general, showing that, due to the "rebound effect", the adoption of more efficient technologies, in terms of use of resources, could lead to a higher global consumption of this resource if this adoption didn't go with adjustment measures. Regarding these considerations, the emerging question is to which extent water saving technologies (i.e. that aim improving water related efficiencies) are appropriate to save water at large scale. Our study addresses this question through the analysis of the conversion from surface to drip irrigation in Triffa's irrigated perimeter (Morocco). We aim addressing this question using the detailed analysis of two data sets. First, available data were collected for every farm within the study area from the local administrations. Second, interviews were conducted with farmers to complete the dataset and to characterize their behavior. This allowed assessing water related efficiencies at farm scale. Subsequently, models were implemented to link efficiencies with general attributes and thereby identify the main drivers of water related efficiencies in the study area. Finally, these models were used to upscale farm-scale assessment to the perimeter scale. Our results show that, under current conditions, moving from surface to drip irrigation leads to higher global water withdrawal. However, the aforementioned "rebound effect" does not allow explaining the higher pressure because of contextual specificities. Deeper analysis suggests that economic but also social and psychological issues need to be considered in this transition process. To fully achieve the expected results from moving to drip irrigation, those issues must be dealt with and the transition to drip irrigation must go hand in hand with stewardship programs and appropriate farmers capacity building.
Economic efficiency versus social equality? The U.S. liberal model versus the European social model.
Navarro, Vicente; Schmitt, John
2005-01-01
This article begins by challenging the widely held view in neoliberal discourse that there is a necessary trade-off between higher efficiency and lower reduction of inequalities: the article empirically shows that the liberal, U.S. model has been less efficient economically (slower economic growth, higher unemployment) than the social model in existence in the European Union and in the majority of its member states. Based on the data presented, the authors criticize the adoption of features of the liberal model (such as deregulation of their labor markets, reduction of public social expenditures) by some European governments. The second section analyzes the causes for the slowdown of economic growth and the increase of unemployment in the European Union--that is, the application of monetarist and neoliberal policies in the institutional frame of the European Union, including the Stability Pact, the objectives and modus operandi of the European Central Bank, and the very limited resources available to the European Commission for stimulating and distributive functions. The third section details the reasons for these developments, including (besides historical considerations) the enormous influence of financial capital in the E.U. institutions and the very limited democracy. Proposals for change are included.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1974-01-01
End-to-end system considerations involving channel coding and data compression are reported which could drastically improve the efficiency in communicating pictorial information from future planetary spacecraft. In addition to presenting new and potentially significant system considerations, this report attempts to fill a need for a comprehensive tutorial which makes much of this very subject accessible to readers whose disciplines lie outside of communication theory.
Ermakova, N V
2003-01-01
This article contains results of the comparative study of the functional state of respiratory and cardiovascular systems of almost healthy students (man) of age 19-22, inhabitants of mountain and plain regions of Latin America during their adaptation to the conditions of middle Russia. We have established that there are reliable distinctions in the functional state of cardio-respiratory system of students from mountain and plain regions of Latin America. So for representatives of mountain regions of LA were typical higher indicators of vital capacity, permeability of large and medium bronchial tubes, stroke volume, lower indicators of heart rate, systolic arterial pressure, myocard tension index, but higher coefficient of myocard efficiency than for inhabitants the plain. Considerable distinctions have been observed also in the intercommunication between different indicators. There have been marked considerable correlation connections between small bronchial tubes permeability and cardiovascular system indicators for plain inhabitants. For mountain regions inhabitants almost every indicator of bronchial tubes permeability correlate reliably with vital capacity, but didn't correlate with hemodynamics indicators.
NASA Astrophysics Data System (ADS)
Sagui, Celeste; Pedersen, Lee G.; Darden, Thomas A.
2004-01-01
The accurate simulation of biologically active macromolecules faces serious limitations that originate in the treatment of electrostatics in the empirical force fields. The current use of "partial charges" is a significant source of errors, since these vary widely with different conformations. By contrast, the molecular electrostatic potential (MEP) obtained through the use of a distributed multipole moment description, has been shown to converge to the quantum MEP outside the van der Waals surface, when higher order multipoles are used. However, in spite of the considerable improvement to the representation of the electronic cloud, higher order multipoles are not part of current classical biomolecular force fields due to the excessive computational cost. In this paper we present an efficient formalism for the treatment of higher order multipoles in Cartesian tensor formalism. The Ewald "direct sum" is evaluated through a McMurchie-Davidson formalism [L. McMurchie and E. Davidson, J. Comput. Phys. 26, 218 (1978)]. The "reciprocal sum" has been implemented in three different ways: using an Ewald scheme, a particle mesh Ewald (PME) method, and a multigrid-based approach. We find that even though the use of the McMurchie-Davidson formalism considerably reduces the cost of the calculation with respect to the standard matrix implementation of multipole interactions, the calculation in direct space remains expensive. When most of the calculation is moved to reciprocal space via the PME method, the cost of a calculation where all multipolar interactions (up to hexadecapole-hexadecapole) are included is only about 8.5 times more expensive than a regular AMBER 7 [D. A. Pearlman et al., Comput. Phys. Commun. 91, 1 (1995)] implementation with only charge-charge interactions. The multigrid implementation is slower but shows very promising results for parallelization. It provides a natural way to interface with continuous, Gaussian-based electrostatics in the future. It is hoped that this new formalism will facilitate the systematic implementation of higher order multipoles in classical biomolecular force fields.
Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Chen, Shen-Yi
2015-06-01
Carbonized rice husk (CRH) is a promising material to separate oil from water owing to its abundance, low-cost, and environmentally benign characteristics. However, CRH's performance is somewhat limited by its similar surface charge to that of oil, leading to repulsive interactions. To improve the separation efficiency of CRH, CRH was modified via impregnation with a cationic biocompatible polymer, polyethlyenimine (PEI) to form PEI-CRH. The modified sample exhibits a remarkably higher (10-50 times) oil/water (O/W) separation efficiency than that of the unmodified one. Small PEI-CRH particles (about 64 μm) are found to adsorb oil droplets faster and larger quantities than bigger particles (about 113 and 288 μm). PEI-CRH exhibits higher separation efficiency at high temperatures owing to the destabilization of the emulsion. It is also found that the oil adsorption mechanism involves a chemical interaction between PEI-CRH and oil droplets. The addition of NaCl considerably improves the separation efficiency, while the addition of a cationic surfactant has the opposite effect. In acidic emulsions, PEI-CRH adsorbs more oil than in neutral or basic conditions owing to favorable attractive forces between oil droplets and the surface of PEI-CRH. PEI-CRH can be easily regenerated by washing with ethanol. These promising features of PEI-CRH indicate that PEI-CRH could be an efficient and low-cost adsorbent for the O/W separation applications.
Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Kabtamu, Daniel Manaye; Chen, Jian-Yu; Chang, Yu-Chung; Wang, Chen-Hao
2017-02-01
A simple, green, novel, time-efficient, and potentially cost-effective water activation method was employed to enhance the electrochemical activity of graphite felt (GF) electrodes for vanadium redox flow batteries (VRFBs). The GF electrode prepared with a water vapor injection time of 5 min at 700 °C exhibits the highest electrochemical activity for the VO2+/VO2+ couple among all the tested electrodes. This is attributed to the small, controlled amount of water vapor that was introduced producing high contents of oxygen-containing functional groups, such as sbnd OH groups, on the surface of the GF fibers, which are known to be electrochemically active sites for vanadium redox reactions. Charge-discharge tests further confirm that only 5 min of GF water activation is required to improve the efficiency of the VRFB cell. The average coulombic efficiency, voltage efficiency, and energy efficiency are 95.06%, 87.42%, and 83.10%, respectively, at a current density of 50 mA cm-2. These voltage and energy efficiencies are determined to be considerably higher than those of VRFB cells assembled using heat-treated GF electrodes without water activation and pristine GF electrodes.
NASA Astrophysics Data System (ADS)
Li, Y. Z.; Ran, G. Z.; Zhao, W. Q.; Qin, G. G.
2008-08-01
An organic light-emitting diode (OLED) with an n-Si-anode usually has an efficiency evidently lower than the OLED with the same structure with a p-Si-anode due to insufficient hole injection from the n-Si anode compared with the p-Si-anode. In this study, we find that introducing Au as generation centres with a suitable concentration into the n+-Si anode can enhance hole injection to match electron injection and then considerably promote the power efficiency. With optimizing Au generation centre concentration in the n+-Si anode, the OLED with a structure of n+-Si: Au/NPB/AlQ/Sm/Au reaches a highest power efficiency of 1.0 lm W-1, evidently higher than the reported highest power efficiency of 0.2 lm W-1 for its p-Si-anode counterpart. Furthermore, when the electron injection is enhanced by adopting BPhen:Cs2CO3 partly instead of AlQ as the electron transport material, and the Au generation centre concentration in the n+-Si anode is promoted correspondingly, then a highest power efficiency of 1.8 lm W-1 is reached. The role of Au generation centres in the n+-Si anode is discussed.
Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery.
Lallana, Enrique; Rios de la Rosa, Julio M; Tirella, Annalisa; Pelliccia, Maria; Gennari, Arianna; Stratford, Ian J; Puri, Sanyogitta; Ashford, Marianne; Tirelli, Nicola
2017-07-03
Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time successfully delivered mRNA with chitosan/HA nanoparticles.
Rehman, Fahad; Medley, Gareth J D; Bandulasena, Hemaka; Zimmerman, William B J
2015-02-01
Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min. The highest improvement of 55% was observed at the flow rates of 60, 90 and 100l/min respectively. Standard oxygen transfer rate and efficiency were also calculated. Both standard oxygen transfer rate and efficiency were found to be considerably higher under oscillatory air flow conditions compared to steady state airflow. The bubble size distributions and bubble densities were measured using an acoustic bubble spectrometer and confirmed production of monodisperse bubbles with approximately 100 μm diameters with fluidic oscillation. The higher number density of microbubbles under oscillatory flow indicated the effect of the fluidic oscillation in microbubble production. Visual observations and dissolved oxygen measurements suggested that the bubble cloud generated by the fluidic oscillator was sufficient enough to provide good mixing and to maintain uniform aerobic conditions. Overall, improved mass transfer coefficients, mixing efficiency and energy efficiency of the novel microbubble generation method could offer significant savings to the water treatment plants as well as reduction in the carbon footprint. Copyright © 2014 Elsevier Inc. All rights reserved.
Efficiency equations of the railgun
NASA Astrophysics Data System (ADS)
Sadedin, D. R.
1984-03-01
The feasibility of an employment of railguns for large scale applications, such as space launching, will ultimately be determined by efficiency considerations. The present investigation is concerned with the calculation of the efficiencies for constant current railguns. Elementary considerations are discussed, taking into account a simple condition for high efficiency, the magnetic field of the rails, and the acceleration force on the projectile. The loss in a portion of the rails is considered along with rail loss comparisons, applications to the segmented gun, rail losses related to the constant resistance per unit length, efficiency expressions, and arc, or muzzle voltage energy.
Gleason, Sean M; Westoby, Mark; Jansen, Steven; Choat, Brendan; Hacke, Uwe G; Pratt, Robert B; Bhaskar, Radika; Brodribb, Tim J; Bucci, Sandra J; Cao, Kun-Fang; Cochard, Hervé; Delzon, Sylvain; Domec, Jean-Christophe; Fan, Ze-Xin; Feild, Taylor S; Jacobsen, Anna L; Johnson, Daniel M; Lens, Frederic; Maherali, Hafiz; Martínez-Vilalta, Jordi; Mayr, Stefan; McCulloh, Katherine A; Mencuccini, Maurizio; Mitchell, Patrick J; Morris, Hugh; Nardini, Andrea; Pittermann, Jarmila; Plavcová, Lenka; Schreiber, Stefan G; Sperry, John S; Wright, Ian J; Zanne, Amy E
2016-01-01
The evolution of lignified xylem allowed for the efficient transport of water under tension, but also exposed the vascular network to the risk of gas emboli and the spread of gas between xylem conduits, thus impeding sap transport to the leaves. A well-known hypothesis proposes that the safety of xylem (its ability to resist embolism formation and spread) should trade off against xylem efficiency (its capacity to transport water). We tested this safety-efficiency hypothesis in branch xylem across 335 angiosperm and 89 gymnosperm species. Safety was considered at three levels: the xylem water potentials where 12%, 50% and 88% of maximal conductivity are lost. Although correlations between safety and efficiency were weak (r(2) < 0.086), no species had high efficiency and high safety, supporting the idea for a safety-efficiency tradeoff. However, many species had low efficiency and low safety. Species with low efficiency and low safety were weakly associated (r(2) < 0.02 in most cases) with higher wood density, lower leaf- to sapwood-area and shorter stature. There appears to be no persuasive explanation for the considerable number of species with both low efficiency and low safety. These species represent a real challenge for understanding the evolution of xylem. No claim to US government works. New Phytologist © 2015 New Phytologist Trust.
Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang
2017-06-29
Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.
SSL Pricing and Efficacy Trend Analysis for Utility Program Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuenge, Jason R.
2013-10-01
An LED lamp or luminaire can generally be found that matches or exceeds the efficacy of benchmark technologies in a given product category, and LED products continue to expand into ever-higher lumen output niches. However, the price premium for LED continues to pose a barrier to adoption in many applications, in spite of expected savings from reduced energy use and maintenance. Other factors—such as dimmability and quality of light—can also present challenges. The appropriate type, timing, and magnitude of energy efficiency activities will vary from organization to organization based on local variables and the method of evaluation. A number ofmore » factors merit consideration when prioritizing activities for development. Category-specific projections for pricing and efficacy are provided herein to assist in efficiency program planning efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, S.; Sites, J.R.
A Kaufman-type broad beam ion source, used for sputtering and etching purposes, has been operated with Ar, Kr,O/sub 2/ and N/sub 2/ gas inputs over a wide range of beam energies (200-1200 eV) and gas flow rates (1-10 sccm). The maximum ion beam current density for each gas saturates at about 2.5 mA/sq. cm. as gas flow is increased. The discharge threshold voltage necessary to produce a beam and the beam efficiency (beam current/molecular current), however, varied considerably. Kr had the lowest threshold and highest efficiency, Ar next, then N/sub 2/ and O/sub 2/. The ion beam current varied onlymore » weakly with beam energy for low gas flow rates, but showed a factor of two increase when the gas flow was higher.« less
Solid state d.c. power controller design philosophies and their evaluation.
NASA Technical Reports Server (NTRS)
Maus, L. G.; Williams, D. E.
1972-01-01
Evaluation of remote power controllers (RPC), which has enhanced knowledge of the capabilities of various design philosophies and has indicated certain limitations that RPC's exhibit. Additionally, this activity has clearly emphasized that certain RPC design parameters merit further consideration in development. The major design parameters to be analyzed in more detail are the rates of change of the rise and fall times of the output current. The major reason why transient voltages and currents should be reduced is the minimization of the reverse collector-to-emitter voltage. The requirement for higher bus voltage coupled with the present problem of improving the efficiency of power control points out the urgent need for improvement and advancement of higher current, voltage, and gain power semiconductors.
Irreversible Brownian Heat Engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2017-10-01
We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.
Efficient, deep-blue TADF-emitters for OLED display applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Volz, Daniel; Baumann, Thomas
2016-09-01
Currently, the mobile display market is strongly shifting towards AMOLED technology, in order to enable curved and flexible displays. This leads to a growing demand for highly efficient OLED emitters to reduce the power consumption and increase display resolution at the same time. While highly efficient green and red OLEDs already found their place in commercial OLED-displays, the lack of efficient blue emitters is still an issue. Consequently, the active area for blue is considerably larger than for green and red pixels, to make up for the lower efficiency. We intend to close this efficiency-gap with novel emitters based on thermally activated delayed fluorescence (TADF) technology. Compared to state-of-the-art fluorescent dopants, the efficiency of TADF-emitters is up to four times higher. At the same time, it is possible to design them in a way to maintain deep blue emission, i.e. CIE y < 0.2. These aspects are relevant to produce efficient high resolution AMOLED displays. Apart from these direct customer benefits, our TADF technology does not contain any rare elements, which allows for the fabrication of sustainable OLED technology. In this work, we highlight one of our recently developed blue TADF materials. Basic material properties as well as first device results are discussed. In a bottom-emitting device, a CIEx/CIEy coordinate of (0.16/0.17) was achieved with efficiency values close to 20% EQE.
Wang, Chen; Ouyang, Jun; Ye, De-Kai; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua
2012-08-07
Fluorescence analysis has proved to be a powerful detection technique for achieving single molecule analysis. However, it usually requires the labeling of targets with bright fluorescent tags since most chemicals and biomolecules lack fluorescence. Conventional fluorescence labeling methods require a considerable quantity of biomolecule samples, long reaction times and extensive chromatographic purification procedures. Herein, a micro/nanofluidics device integrating a nanochannel in a microfluidics chip has been designed and fabricated, which achieves rapid protein concentration, fluorescence labeling, and efficient purification of product in a miniaturized and continuous manner. As a demonstration, labeling of the proteins bovine serum albumin (BSA) and IgG with fluorescein isothiocyanate (FITC) is presented. Compared to conventional methods, the present micro/nanofluidics device performs about 10(4)-10(6) times faster BSA labeling with 1.6 times higher yields due to the efficient nanoconfinement effect, improved mass, and heat transfer in the chip device. The results demonstrate that the present micro/nanofluidics device promises rapid and facile fluorescence labeling of small amount of reagents such as proteins, nucleic acids and other biomolecules with high efficiency.
KOZAI, Toyoki
2013-01-01
Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS. This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS. It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed. PMID:24334509
Efficient cascade multiple heterojunction organic solar cells with inverted structure
NASA Astrophysics Data System (ADS)
Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai
2018-05-01
In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.
Kozai, Toyoki
2013-01-01
Extensive research has recently been conducted on plant factory with artificial light, which is one type of closed plant production system (CPPS) consisting of a thermally insulated and airtight structure, a multi-tier system with lighting devices, air conditioners and fans, a CO2 supply unit, a nutrient solution supply unit, and an environment control unit. One of the research outcomes is the concept of resource use efficiency (RUE) of CPPS.This paper reviews the characteristics of the CPPS compared with those of the greenhouse, mainly from the viewpoint of RUE, which is defined as the ratio of the amount of the resource fixed or held in plants to the amount of the resource supplied to the CPPS.It is shown that the use efficiencies of water, CO2 and light energy are considerably higher in the CPPS than those in the greenhouse. On the other hand, there is much more room for improving the light and electric energy use efficiencies of CPPS. Challenging issues for CPPS and RUE are also discussed.
Flow Cell Design for Effective Biosensing
Pike, Douglas J.; Kapur, Nikil; Millner, Paul A.; Stewart, Douglas I.
2013-01-01
The efficiency of three different biosensor flow cells is reported. All three flow cells featured a central channel that expands in the vicinity of the sensing element to provide the same diameter active region, but the rate of channel expansion and contraction varied between the designs. For each cell the rate at which the analyte concentration in the sensor chamber responds to a change in the influent analyte concentration was determined numerically using a finite element model and experimentally using a flow-fluorescence technique. Reduced flow cell efficiency with increasing flow rates was observed for all three designs and was related to the increased importance of diffusion relative to advection, with efficiency being limited by the development of regions of recirculating flow (eddies). However, the onset of eddy development occurred at higher flow rates for the design with the most gradual channel expansion, producing a considerably more efficient flow cell across the range of flow rates considered in this study. It is recommended that biosensor flow cells be designed to minimize the tendency towards, and be operated under conditions that prevent the development of flow recirculation. PMID:23344373
NASA Astrophysics Data System (ADS)
Ameen, M. Yoosuf; Shamjid, P.; Abhijith, T.; Reddy, V. S.
2018-01-01
Polymer solar cells were fabricated with solution-processed transition metal oxides, MoO3 and V2O5 as anode buffer layers (ABLs). The optimized device with V2O5 ABL exhibited considerably higher power conversion efficiency (PCE) compared to the devices based on MoO3 and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) ABLs. The space charge limited current measurements and impedance spectroscopy results of hole-only devices revealed that V2O5 provided a very low charge transfer resistance and high hole mobility, facilitating efficient hole transfer from the active layer to the ITO anode. More importantly, incorporation of V2O5 as ABL resulted in substantial improvement in device stability compared to MoO3 and PEDOT:PSS based devices. Unencapsulated PEDOT:PSS-based devices stored at a relative humidity of 45% have shown complete failure within 96 h. Whereas, MoO3 and V2O5 based devices stored in similar conditions retained 22% and 80% of their initial PCEs after 96 h. Significantly higher stability of the V2O5-based device is ascribed to the reduction in degradation of the anode/active layer interface, as evident from the electrical measurements.
Dähring, H; Grandke, J; Teichgräber, U; Hilger, I
2015-12-01
Heterogeneous magnetic nanoparticle (MNP) distributions within tumors can cause regions of temperature under dosage and reduce the therapeutic efficiency. Here, micro-computed tomography (CT) imaging was used as a tool to determine the MNP distribution in vivo. The therapeutic success was evaluated based on tumor volume and temperature distribution. Tumor-bearing mice were intratumorally injected with iron oxide particles. MNP distribution was assessed by micro-CT with a low radiation dose protocol. MNPs were clearly visible, and the exact distribution to nontumor structures was detected by micro-CT. Knowledge of the intratumoral MNP distribution allowed the generation of higher temperatures within the tumor and led to higher temperature values after exposure to an alternating magnetic field (AMF). Consequently, the tumor size after 28 days was reduced to 14 and 73 % of the initial tumor volume for the MNP/AMF/CT and MNP/AMF groups, respectively. The MNP distribution pattern mainly governed the generated temperature spots in the tumor. Knowing the MNP distribution enabled individualized hyperthermia treatment and improved the overall therapeutic efficiency.
Favrot, Scott D.; Kwak, Thomas J.
2016-01-01
Potamodromy (i.e., migration entirely in freshwater) is a common life history strategy of North American lotic fishes, and efficient sampling methods for potamodromous fishes are needed to formulate conservation and management decisions. Many potamodromous fishes inhabit medium-sized rivers and are mobile during spawning migrations, which complicates sampling with conventional gears (e.g., nets and electrofishing). We compared the efficiency of a passive migration technique (resistance board weirs) and an active technique (prepositioned areal electrofishers; [PAEs]) for sampling migrating potamodromous fishes in Valley River, a southern Appalachian Mountain river, from March through July 2006 and 2007. A total of 35 fish species from 10 families were collected, 32 species by PAE and 19 species by weir. Species richness and diversity were higher for PAE catch, and species dominance (i.e., proportion of assemblage composed of the three most abundant species) was higher for weir catch. Prepositioned areal electrofisher catch by number was considerably higher than weir catch, but biomass was lower for PAE catch. Weir catch decreased following the spawning migration, while PAEs continued to collect fish. Sampling bias associated with water velocity was detected for PAEs, but not weirs, and neither gear demonstrated depth bias in wadeable reaches. Mean fish mortality from PAEs was five times greater than that from weirs. Catch efficiency and composition comparisons indicated that weirs were effective at documenting migration chronology, sampling nocturnal migration, and yielding samples unbiased by water velocity or habitat, with low mortality. Prepositioned areal electrofishers are an appropriate sampling technique for seasonal fish occupancy objectives, while weirs are more suitable for quantitatively describing spawning migrations. Our comparative results may guide fisheries scientists in selecting an appropriate sampling gear and regime for research, monitoring, conservation, and management of potamodromous fishes.
A linear-dendritic cationic vector for efficient DNA grasp and delivery.
Yang, Bin; Sun, Yun-xia; Yi, Wen-jie; Yang, Juan; Liu, Chen-wei; Cheng, Han; Feng, Jun; Zhang, Xian-zheng; Zhuo, Ren-xi
2012-07-01
This paper presents an attempt to design an efficient and biocompatible cationic gene vector via structural optimization that favors the efficient utilization of amine groups for DNA condensation. To this end, a linear-dendritic block copolymer of methoxyl-poly(ethylene glycol)-dendritic polyglycerol-graft-tris(2-aminoethyl)amine (mPEG-DPG-g-TAEA) was prepared with specially designed multiple functions including strong DNA affinity, endosomal buffering and expected serum-tolerance. Based on the transfection in serum-free and serum-conditioned media, the influences of the polymer structures including the degree of polymerization of DPG and TAEA substitution degree were explored. As compared to polyethylenimine (M(w)=5 kDa) (PEI5k) with similar molecular weight and higher amine density, mPEG-DPG-g-TAEA displayed comparably high DNA affinity due to the special linear-dendritic architecture. Consequently, at very low N/P ratio, mPEG-DPG-g-TAEA vectors could mediate efficient in vitro luciferase expression at levels that are comparable with or even superior to the commercially available Lipofectamine™ 2000, while being apparently higher than PEI5k. The designed vectors exhibit considerably higher cell biocompatibility and better resistance against bovine serum albumin adsorption than PEI5k. The stability of the complexes on coincubation with heparin was found to be largely dependent on the polymer structure. As concluded from the comparative transfection study in the absence/presence of chloroquine, it is likely that the polycation itself could produce endosomal buffering. This linear-dendritic vector shows promising potential for the application of gene delivery. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fernandez, Elena; Fuentes, Rosa; Belendez, Augusto; Pascual, Inmaculada
2016-01-01
Holographic transmission gratings with a spatial frequency of 2658 lines/mm and reflection gratings with a spatial frequency of 4553 lines/mm were stored in a polyvinyl alcohol (PVA)/acrylamide (AA) based photopolymer. This material can reach diffraction efficiencies close to 100% for spatial frequencies about 1000 lines/mm. However, for higher spatial frequencies, the diffraction efficiency decreases considerably as the spatial frequency increases. To enhance the material response at high spatial frequencies, a chain transfer agent, the 4,4’-azobis (4-cyanopentanoic acid), ACPA, is added to the composition of the material. Different concentrations of ACPA are incorporated into the main composition of the photopolymer to find the concentration value that provides the highest diffraction efficiency. Moreover, the refractive index modulation and the optical thickness of the transmission and reflection gratings were obtained, evaluated and compared to procure more information about the influence of the ACPA on them. PMID:28773322
A new method of efficient heat transfer and storage at very high temperatures
NASA Technical Reports Server (NTRS)
Shaw, D.; Bruckner, A. P.; Hertzberg, A.
1980-01-01
A unique, high temperature (1000-2000 K) continuously operating capacitive heat exchanger system is described. The system transfers heat from a combustion or solar furnace to a working gas by means of a circulating high temperature molten refractory. A uniform aggregate of beads of a glass-like refractory is injected into the furnace volume. The aggregate is melted and piped to a heat exchanger where it is sprayed through a counter-flowing, high pressure working gas. The refractory droplets transfer their heat to the gas, undergoing a phase change into the solid bead state. The resulting high temperature gas is used to drive a suitable high efficiency heat engine. The solidified refractory beads are delivered back to the furnace and melted to continue the cycle. This approach avoids the important temperature limitations of conventional tube-type heat exchangers, giving rise to the potential of converting heat energy into useful work at considerably higher efficiencies than currently attainable and of storing energy at high thermodynamic potential.
Temporal Control and Hand Movement Efficiency in Skilled Music Performance
Goebl, Werner; Palmer, Caroline
2013-01-01
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946
Song, Heli; Liu, Qingyun; Xie, Yongshu
2018-02-15
As a promising low-cost solar energy conversion technique, dye-sensitized solar cells have undergone spectacular development since 1991. For practical applications, improvement of power conversion efficiency has always been one of the major research topics. Porphyrins are outstanding sensitizers endowed with strong sunlight harvesting ability in the visible region and multiple reaction sites available for functionalization. However, judicious molecular design in consideration of light-harvest, energy levels, operational dynamics, adsorption geometry and suppression of back reactions is specifically required for achieving excellent photovoltaic performance. This feature article highlights some of the recently developed porphyrin sensitizers, especially focusing on the systematic dye structure optimization approach in combination with coadsorption and cosensitization methods in pursuing higher efficiencies. Herein, we expect to provide more insights into the structure-performance correlation and molecular engineering strategies in a stepwise manner.
Novel narrow-host-range vectors for direct cloning of foreign DNA in Pseudomonas.
Boivin, R; Bellemare, G; Dion, P
1994-01-01
Narrow-host-range vectors, based on an indigenous replicon and containing a multiple cloning site, have been constructed in a Pseudomonas host capable of growth on unusual substrates. The new cloning vectors yield sufficient amounts of DNA for preparative purposes and belong to an incompatibility group different from that of the incP and incQ broad-host-range vectors. One of these vectors, named pDB47F, was used to clone, directly in Pseudomonas, DNA fragments from Agrobacterium, Pseudomonas, and Rhizobium. A clone containing Agrobacterium and KmR gene sequences was transformed with a higher efficiency than an RSF1010-derived vector (by as much as 1250-fold) in four out of five Pseudomonas strains tested. The considerable efficiency obtained with this system makes possible the direct cloning and phenotypic selection of foreign DNA in Pseudomonas.
Efficient Reformulation of the Thermoelastic Higher-order Theory for Fgms
NASA Technical Reports Server (NTRS)
Bansal, Yogesh; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) are characterized by spatially variable microstructures which are introduced to satisfy given performance requirements. The microstructural gradation gives rise to continuously or discretely changing material properties which complicate FGM analysis. Various techniques have been developed during the past several decades for analyzing traditional composites and many of these have been adapted for the analysis of FGMs. Most of the available techniques use the so-called uncoupled approach in order to analyze graded structures. These techniques ignore the effect of microstructural gradation by employing specific spatial material property variations that are either assumed or obtained by local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural gradation into consideration and does not ignore the local-global interaction of the spatially variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the original higher-order theory for two-dimensional elastic problems is developed and validated. The use of the local-global conductivity and local-global stiffness matrix approach is made in order to reduce the number of equations involved. In this approach, surface-averaged quantities are the primary variables which replace volume-averaged quantities employed in the original formulation. The reformulation decreases the size of the global conductivity and stiffness matrices by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical problems are analyzed in order to validate the accuracy of the reformulated theory through comparison with analytical and finite-element solutions. The presented results illustrate the efficiency of the reformulation and its advantages in analyzing functionally graded materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunderson, C.A.; Norby, R.J.
1991-05-01
A critical consideration in evaluating forest response to rising atmospheric CO{sub 2} is whether the enhancement of net photosynthesis (P{sub N}) by elevated CO{sub 2} can be sustained over the long term. There are reports of declining enhancement of P{sub N} with duration of exposure to elevated CO{sub 2}, associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have beenmore » exposed continuously to CO{sub 2} enrichment during the last two growing seasons. The three CO{sub 2} treatment levels were: ambient, ambient +150, and ambient +300 {mu}L/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO{sub 2} levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO{sub 2} enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO{sub 2}, but instantaneous water use efficiency (P{sub N}/transpiration) increased significantly with CO{sub 2}. Analysis of P{sub N} versus internal CO{sub 2} concentration indicated no significant treatment differences in carboxylation efficiency, CO{sub 2}-saturated P{sub N}, or CO{sub 2} compensation point. There was no evidence of a downward acclimation of photosynthesis to CO{sub 2} enrichment in this system.« less
Single-step controlled-NOT logic from any exchange interaction
NASA Astrophysics Data System (ADS)
Galiautdinov, Andrei
2007-11-01
A self-contained approach to studying the unitary evolution of coupled qubits is introduced, capable of addressing a variety of physical systems described by exchange Hamiltonians containing Rabi terms. The method automatically determines both the Weyl chamber steering trajectory and the accompanying local rotations. Particular attention is paid to the case of anisotropic exchange with tracking controls, which is solved analytically. It is shown that, if computational subspace is well isolated, any exchange interaction can always generate high fidelity, single-step controlled-NOT (CNOT) logic, provided that both qubits can be individually manipulated. The results are then applied to superconducting qubit architectures, for which several CNOT gate implementations are identified. The paper concludes with consideration of two CNOT gate designs having high efficiency and operating with no significant leakage to higher-lying noncomputational states.
Integrated high-order surface diffraction gratings for diode lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotarev, V V; Leshko, A Yu; Pikhtin, N A
2015-12-31
High-order surface diffraction gratings acting as a distributed Bragg reflector (DBR) in mesa stripe semiconductor lasers (λ = 1030 nm) have been studied theoretically and experimentally. Higher order interfering radiation modes (IRMs), which propagate off the plane of the waveguide, have been shown to have a crucial effect on the reflection and transmission spectra of the DBR. The decrease in the reflectivity of the DBR in response to the increase in the diffraction efficiency of these modes may reach 80% and more. According to theoretical analysis results, the intensity of the higher order IRMs is determined by the geometry ofmore » the DBR groove profile. Experimental data demonstrate that the noncavity modes are responsible for parasitic light leakage losses in the laser cavity. It has been shown that, in the case of nonoptimal geometry of the grating groove profile, the overall external differential quantum efficiency of the parasitic laser emission may exceed 45%, which is more than half of the laser output power. The optimal geometry of the DBR groove profile is trapezoidal, with the smallest possible lower base. Experimental evidence has been presented that this geometry considerably reduces the power of the higher order IRMs and minimises the parasitic light leakage loss. (lasers)« less
Ishikawa, Mai; Shiono, Yoshihito; Koseki, Takuya
2017-12-01
An α-l-rhamnosidase-encoding gene from Aspergillus oryzae, which belongs to the glycoside hydrolase family 78, was cloned and expressed in Pichia pastoris. SDS-PAGE of the purified recombinant α-l-rhamnosidase protein revealed smeared bands with apparent molecular mass of 90-130 kDa. After N-deglycosylation, the recombinant enzyme showed a molecular mass of 70 kDa. The enzyme exhibited optimal activity at a pH of 5.0 and a temperature of 70 °C. Specific activity of the enzyme was higher toward hesperidin than toward naringin, which consist of α-1,6 and α-1,2 linkages, respectively. The activity was also higher toward hesperidin than toward rutin, which consist of 7-O- and 3-O-glycosyl linkages of flavonoids, respectively. Kinetic analysis of the enzyme showed that the Michaelis constant (K m ) was lowest toward rutin, moderate toward naringin, and higher toward p-nitrophenyl-α-l-rhamnopyranoside and hesperidin. Its high catalytic efficiency (k cat /K m ) toward rutin was results of its low K m value while its high catalytic efficiency toward hesperidin was results of a considerably high k cat value. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Chang, Shu Hao; Yeh, Jhy Wei; Chein, Hung Min; Hsu, Li Yeh; Chi, Kai Hsien; Chang, Moo Been
2008-08-01
Catalytic destruction has been applied to control polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) emissions from different facilities. The cost of carbon-based catalysts is considerably lower than that of the metal oxide or zeolite-based catalysts used in the selective catalytic reduction (SCR) system. In this study, destruction and adsorption efficiencies of PCDD/Fs achieved with Cu/C and Fe/C catalysts from flue gas streams of a metal smelting plant (MSP) and a large-scale municipal waste incinerator (MWI), respectively, are evaluated via the pilot-scale catalytic reactor system (PCRS). The results indicate that Cu and Fe catalysts supported on carbon surface are capable of decomposing and adsorbing PCDD/ Fs from gas streams. In the testing sources of MSP and MWI, the PCDD/F removal efficiencies achieved with Cu/C catalyst at 250 degrees C reach 96%, however, the destruction efficiencies are negative (-1,390% and -112%, respectively) due to significant PCDD/F formation on catalyst promoted by copper. In addition, Fe/C catalyst is of higher removal and destruction efficiencies compared with Cu/C catalyst in both testing sources. The removal efficiencies of PCDD/Fs achieved with Fe/C catalyst are 97 and 94% for MSP and MWI, respectively, whereas the destruction efficiencies are both higher than 70%. Decrease of PCDD/F destruction efficiency and increase of adsorption efficiency with increasing chlorination of dioxin congeners is also observed in the test via three-layer Fe/C catalyst. Furthermore, the mass of 2,3,7,8-PCDD/Fs retained on catalyst decreases on the order of first to third layer of catalyst. Each gram Fe/C catalyst in first layer adsorbs 10.9, 6.91, and 3.04 ng 2,3,7,8-PCDD/Fs in 100 min testing duration as the operating temperature is controlled at 150, 200, and 250 degrees C, respectively.
Selective removal of arsenic and monovalent ions from brackish water reverse osmosis concentrate.
Xu, Pei; Capito, Marissa; Cath, Tzahi Y
2013-09-15
Concentrate disposal and management is a considerable challenge for the implementation of desalination technologies, especially for inland applications where concentrate disposal options are limited. This study has focused on selective removal of arsenic and monovalent ions from brackish groundwater reverse osmosis (RO) concentrate for beneficial use and safe environmental disposal using in situ and pre-formed hydrous ferric oxides/hydroxides adsorption, and electrodialysis (ED) with monovalent permselective membranes. Coagulation with ferric salts is highly efficient at removing arsenic from RO concentrate to meet a drinking water standard of 10 μg/L. The chemical demand for ferric chloride however is much lower than ferric sulfate as coagulant. An alternative method using ferric sludge from surface water treatment plant is demonstrated as an efficient adsorbent to remove arsenic from RO concentrate, providing a promising low cost, "waste treat waste" approach. The monovalent permselective anion exchange membranes exhibit high selectivity in removing monovalent anions over di- and multi-valent anions. The transport of sulfate and phosphate through the anion exchange membranes was negligible over a broad range of electrical current density. However, the transport of divalent cations such as calcium and magnesium increases through monovalent permselective cation exchange membranes with increasing current density. Higher overall salt concentration reduction is achieved around limiting current density while higher normalized salt removal rate in terms of mass of salt per membrane area and applied energy is attained at lower current density because the energy unitization efficiency decreases at higher current density. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alam, Md. Ferdous; Sazidy, Ahmad Sharif; Kabir, Asif; Mridha, Gowtam; Litu, Nazmul Alam; Rahman, Md. Ashiqur
2017-06-01
The present study aimed to evaluate the feasibility of coconut coir pads, jute fiber pads and sackcloth pads as alternative pad materials. Experimental measurements were conducted and the experimental data were quantitative. The experimental work mainly focused on the effects of different types and thicknesses of evaporative cooling pads by using forced draft fan while changing the environmental conditions. Experiments are conducted in a specifically constructed test chamber having dimensions of 12'X8'X8', using a number of cooling pads (36"X26") with a variable thickness parameters of the evaporative cooling pads i.e., 50, 75 and 100 mm. Moreover, the experimental work involved the measurement of environmental parameters such as temperature, relative humidity, air velocity, water mass flow rate and pressure drops at different times during the day. Experiments were conducted at three different water mass flow rates (0.25 kgs-1, 0.40 kgs-1 & 0.55 kgs-1) and three different air velocities (3.6 ms-1, 4.6 ms-1& 5.6 ms-1). There was a significant difference between evaporative cooling pad types and cooling efficiency. The coconut coir pads yielded maximum cooling efficiency of 85%, whereas other pads yielded the following maximum cooling efficiency: jute fiber pads 78% and sackcloth 69% for higher air velocity and minimum mass flow rate. It is found that the maximum reduction in temperature between cooling pad inlet and outlet is 4°C with a considerable increase in humidity. With the increase of pad thickness there was an increment of cooling efficiency. The results obtained for environmental factors, indicated that there was a significant difference between environmental factors and cooling efficiency. In terms of the effect of air velocity on saturation efficiency and pressure drop, higher air velocity decreases saturation efficiency and increases pressure drop across the wetted pad for maximum flow rate. Convective heat transfer co-efficient has an almost linear relationship with air Velocity. Water consumption or evaporation rate increases with the increase in air velocity. Finally, the present study indicated that the coconut coir pads perform better than the other evaporative cooling pads and have higher potential as wetted-pad material. The outcomes of this study can provide an effective and low-cost solution in the form of evaporative cooling system, especially in an agricultural country like Bangladesh.
Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili
2016-01-01
Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm−2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies. PMID:27243374
Electrochemical sulfide removal and caustic recovery from spent caustic streams.
Vaiopoulou, Eleni; Provijn, Thomas; Prévoteau, Antonin; Pikaar, Ilje; Rabaey, Korneel
2016-04-01
Spent caustic streams (SCS) are produced during alkaline scrubbing of sulfide containing sour gases. Conventional methods mainly involve considerable chemical dosing or energy expenditures entailing high cost but limited benefits. Here we propose an electrochemical treatment approach involving anodic sulfide oxidation preferentially to sulfur coupled to cathodic caustic recovery using a two-compartment electrochemical system. Batch experiments showed sulfide removal efficiencies of 84 ± 4% with concomitant 57 ± 4% efficient caustic production in the catholyte at a final concentration of 6.4 ± 0.1 wt% NaOH (1.6 M) at an applied current density of 100 A m(-2). Subsequent long-term continuous experiments showed that stable cell voltages (i.e. 2.7 ± 0.1 V) as well as constant sulfide removal efficiencies of 67 ± 5% at a loading rate of 47 g(S) L(-1) h(-1) were achieved over a period of 77 days. Caustic was produced at industrially relevant strengths for scrubbing (i.e. 5.1 ± 0.9 wt% NaOH) at current efficiencies of 96 ± 2%. Current density between 0 and 200 A m(-2) and sulfide loading rates of 50-200 g(S) L(-1) d(-1) were tested. The higher the current density the more oxidized the sulfur species produced and the higher the sulfide oxidation. On the contrary, high loading rate resulted in a reduction of sulfide oxidation efficiency. The results obtained in this study together with engineering calculations show that the proposed process could represent a cost-effective approach for sodium and sulfur recovery from SCS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogen production from coal using a nuclear heat source
NASA Technical Reports Server (NTRS)
Quade, R. N.
1976-01-01
A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.
Romaní, Aloia; Pereira, Filipa; Johansson, Björn; Domingues, Lucília
2015-03-01
In this work, Saccharomyces cerevisiae strains PE-2 and CAT-1, commonly used in the Brazilian fuel ethanol industry, were engineered for xylose fermentation, where the first fermented xylose faster than the latter, but also produced considerable amounts of xylitol. An engineered PE-2 strain (MEC1121) efficiently consumed xylose in presence of inhibitors both in synthetic and corn-cob hydrolysates. Interestingly, the S. cerevisiae MEC1121 consumed xylose and glucose simultaneously, while a CEN.PK based strain consumed glucose and xylose sequentially. Deletion of the aldose reductase GRE3 lowered xylitol production to undetectable levels and increased xylose consumption rate which led to higher final ethanol concentrations. Fermentation of corn-cob hydrolysate using this strain, MEC1133, resulted in an ethanol yield of 0.47 g/g of total sugars which is 92% of the theoretical yield. Copyright © 2014 Elsevier Ltd. All rights reserved.
Appropriate uses and considerations for online surveying in human dimensions research
Sexton, Natalie R.; Miller, Holly M.; Dietsch, Alia M.
2011-01-01
Online surveying has gained attention in recent years for its applicability to human dimensions research as an efficient and inexpensive data-collection method; however, online surveying is not a panacea. In this article, we provide some guidelines for alleviating or avoiding the criticisms and pitfalls suggested of online survey methods and explore two case studies demonstrating different approaches to online surveying. The first was a mixed-mode study of visitors to 52 participating National Wildlife Refuges. The response rate was 72%, with over half of respondents completing the survey online, resulting in cost-savings and efficiencies that would not have otherwise been realized. The second highlighted an online-only approach targeting specialized users of satellite imagery. Through branching and skipping, the online mode allowed flexibilities in administration impractical in a mail survey. The response rate of 53% was higher than typical for online surveys. Both case studies provide examples of appropriate uses of online surveying.
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Chadel, Asma; Moustafa Bouzaki, Mohammed; Aillerie, Michel; Benyoucef, Boumediene; Charles, Jean-Pierre
2017-11-01
Performances of ZnO/ZnS/CZTSSe polycrystalline thin film solar cells (Copper Zinc Tin Sulphur Selenium-solar cell) were simulated for different thicknesses of the absorber and ZnS buffer layers. Simulations were performed with SCAPS (Solar Cell Capacitance Simulator) software, starting with actual parameters available from industrial data for commercial cells processing. The influences of the thickness of the various layers in the structure of the solar cell and the gap profile of the CZTSSe absorber layer on the performance of the solar cell were studied in detail. Through considerations of recent works, we discuss possible routes to enhance the performance of CZTSSe solar cells towards a higher efficiency level. Thus, we found that for one specific thickness of the absorber layer, the efficiency of the CZTSSe solar cell can be increased when a ZnS layer replaces the usual CdS buffer layer. On the other hand, the efficiency of the solar cell can be also improved when the absorber layer presents a grad-gap. In this case, the maximum efficiency for the CZTSSe cell was found equal to 13.73%.
Effects of recent energy system changes on CO2 projections for the United States.
Lenox, Carol S; Loughlin, Daniel H
2017-09-21
Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.
Environmental efficiency of energy, materials, and emissions.
Yagi, Michiyuki; Fujii, Hidemichi; Hoang, Vincent; Managi, Shunsuke
2015-09-15
This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
2D and 3D impellers of centrifugal compressors - advantages, shortcomings and fields of application
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Reksrin, A.; Drozdov, A.
2017-08-01
The simplified equations are presented for calculation of inlet dimensions and velocity values for impellers with three-dimensional blades located in axial and radial part of an impeller (3D impeller) and with two-dimensional blades in radial part (2D). Considerations concerning loss coefficients of 3D and 2D impellers at different design flow rate coefficients are given. The tendency of reduction of potential advantages of 3D impellers at medium and small design flow rate coefficients is shown. The data on high-efficiency compressors and stages with 2D impellers coefficients designed by the authors are presented. The reached efficiency level of 88 - 90% makes further increase of efficiency by the application of 3D impellers doubtful. CFD-analysis of stage candidates with medium flow rate coefficient with 3D and 2D impellers revealed specific problems. In some cases the constructive advantage of a 2D impeller is smaller hub ratio. It makes possible the reaching of higher efficiency. From other side, there is a positive tendency of gas turbine drive RPM increase. 3D impellers have no alternative for stages with high flow rate coefficients matching high-speed drive.
An efficient numerical model for multicomponent compressible flow in fractured porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2014-12-01
An efficient and accurate numerical model for multicomponent compressible single-phase flow in fractured media is presented. The discrete-fracture approach is used to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross flow equilibrium in the fractures. This will allow large matrix elements in the neighborhood of the fractures and considerable speed up of the algorithm. We use an implicit finite volume (FV) scheme to solve the species mass balance equation in the fractures. This step avoids the use of Courant-Freidricks-Levy (CFL) condition and contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix. Four numerical examples are presented to demonstrate the robustness and efficiency of the proposed model. We show that the combination of the fracture cross-flow equilibrium and the implicit composition calculation in the fractures increase the computational speed 20-130 times in 2D. In 3D, one may expect even a higher computational efficiency.
Xu, Ting-Ting; Bai, Zhong-Zhong; Wang, Li-Juan; He, Bing-Fang
2010-01-01
The low-energy nitrogen ion beam implantation technique was used in the breeding of mutant D(-)-lactic-acid-producing strains. The wild strain Sporolactobacillus sp. DX12 was mutated by an N(+) ion beam with energy of 10keV and doses ranging from 0.4 x 10(15) to 6.60 x 10(15) ions/cm(2). Combined with an efficient screening method, an efficient mutant Y2-8 was selected after two times N(+) ion beam implantation. By using the mutant Y2-8, 121.6g/l of D-lactic acid was produced with the molar yields of 162.1% to the glucose. The yield of D-lactic acid by strain Y2-8 was 198.8% higher than the wild strain. Determination of anaerobic metabolism by Biolog MT2 was used to analyze the activities of the concerned enzymes in the lactic acid metabolic pathway. The results showed that the activities of the key enzymes responded on the substrates such as 6-phosphofructokinase, pyruvate kinase, and D-lactate dehydrogenase were considerably higher in the mutants than the wild strain. These might be affected by ion beam implantation.
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods.
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation.
Modeling weakly-ionized plasmas in magnetic field: A new computationally-efficient approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parent, Bernard, E-mail: parent@pusan.ac.kr; Macheret, Sergey O.; Shneider, Mikhail N.
2015-11-01
Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant.more » This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.« less
Efficiency determination of an electrostatic lunar dust collector by discrete element method
NASA Astrophysics Data System (ADS)
Afshar-Mohajer, Nima; Wu, Chang-Yu; Sorloaica-Hickman, Nicoleta
2012-07-01
Lunar grains become charged by the sun's radiation in the tenuous atmosphere of the moon. This leads to lunar dust levitation and particle deposition which often create serious problems in the costly system deployed in lunar exploration. In this study, an electrostatic lunar dust collector (ELDC) is proposed to address the issue and the discrete element method (DEM) is used to investigate the effects of electrical particle-particle interactions, non-uniformity of the electrostatic field, and characteristics of the ELDC. The simulations on 20-μm-sized lunar particles reveal the electrical particle-particle interactions of the dust particles within the ELDC plates require 29% higher electrostatic field strength than that without the interactions for 100% collection efficiency. For the given ELDC geometry, consideration of non-uniformity of the electrostatic field along with electrical interactions between particles on the same ELDC geometry leads to a higher requirement of ˜3.5 kV/m to ensure 100% particle collection. Notably, such an electrostatic field is about 103 times less than required for electrodynamic self-cleaning methods. Finally, it is shown for a "half-size" system that the DEM model predicts greater collection efficiency than the Eulerian-based model at all voltages less than required for 100% efficiency. Halving the ELDC dimensions boosts the particle concentration inside the ELDC, as well as the resulting field strength for a given voltage. Though a lunar photovoltaic system was the subject, the results of this study are useful for evaluation of any system for collecting charged particles in other high vacuum environment using an electrostatic field.
Improvement of automatic fish feeder machine design
NASA Astrophysics Data System (ADS)
Chui Wei, How; Salleh, S. M.; Ezree, Abdullah Mohd; Zaman, I.; Hatta, M. H.; Zain, B. A. Md; Mahzan, S.; Rahman, M. N. A.; Mahmud, W. A. W.
2017-10-01
Nation Plan of action for management of fishing is target to achieve an efficient, equitable and transparent management of fishing capacity in marine capture fisheries by 2018. However, several factors influence the fishery production and efficiency of marine system such as automatic fish feeder machine could be taken in consideration. Two latest fish feeder machines have been chosen as the reference for this study. Based on the observation, it has found that the both machine was made with heavy structure, low water and temperature resistance materials. This research’s objective is to develop the automatic feeder machine to increase the efficiency of fish feeding. The experiment has conducted to testing the new design of machine. The new machine with maximum storage of 5 kg and functioning with two DC motors. This machine able to distribute 500 grams of pellets within 90 seconds and longest distance of 4.7 meter. The higher speed could reduce time needed and increase the distance as well. The minimum speed range for both motor is 110 and 120 with same full speed range of 255.
Nibel, Olga; Rojek, Tomasz; Schmidt, Thomas J; Gubler, Lorenz
2017-07-10
All-vanadium redox flow batteries (VRBs) have attracted considerable interest as promising energy-storage devices that can allow the efficient utilization of renewable energy sources. The membrane, which separates the porous electrodes in a redox flow cell, is one of the key components in VRBs. High rates of crossover of vanadium ions and water through the membrane impair the efficiency and capacity of a VRB. Thus, membranes with low permeation rate of vanadium species and water are required, also characterized by low resistance and stability in the VRB environment. Here, we present a new design concept for amphoteric ion-exchange membranes, based on radiation-induced grafting of vinylpyridine into an ethylene tetrafluoroethylene base film and a two-step functionalization to introduce cationic and anionic exchange sites, respectively. During long-term cycling, redox flow cells containing these membranes showed higher efficiency, less pronounced electrolyte imbalance, and significantly reduced capacity decay compared to the cells with the benchmark material Nafion 117. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru
2014-05-30
The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Barriers to Building Energy Efficiency (BEE) promotion: A transaction costs perspective
NASA Astrophysics Data System (ADS)
Qian Kun, Queena
Worldwide, buildings account for a surprisingly high 40% of global energy consumption, and the resulting carbon footprint significantly exceeds that of all forms of transportation combined. Large and attractive opportunities exist to reduce buildings' energy use at lower costs and higher returns than in other sectors. This thesis analyzes the concerns of the market stakeholders, mainly real estate developers and end-users, in terms of transaction costs as they make decisions about investing in Building Energy Efficiency (BEE). It provides a detailed analysis of the current situation and future prospects for BEE adoption by the market's stakeholders. It delineates the market and lays out the economic and institutional barriers to the large-scale deployment of energy-efficient building techniques. The aim of this research is to investigate the barriers raised by transaction costs that hinder market stakeholders from investing in BEES. It explains interactions among stakeholders in general and in the specific case of Hong Kong as they consider transaction costs. It focuses on the influence of transaction costs on the decision-making of the stakeholders during the entire process of real estate development. The objectives are: 1) To establish an analytical framework for understanding the barriers to BEE investment with consideration of transaction costs; 2) To build a theoretical game model of decision making among the BEE market stakeholders; 3) To study the empirical data from questionnaire surveys of building designers and from focused interviews with real estate developers in Hong Kong; 4) To triangulate the study's empirical findings with those of the theoretical model and analytical framework. The study shows that a coherent institutional framework needs to be established to ensure that the design and implementation of BEE policies acknowledge the concerns of market stakeholders by taking transaction costs into consideration. Regulatory and incentive options should be integrated into BEE policies to minimize efficiency gaps and to realize a sizeable increase in the number of energy-efficient buildings in the next decades. Specifically, the analysis shows that a thorough understanding of the transaction costs borne by particular stakeholders could improve the energy efficiency of buildings, even without improvements in currently available technology.
Actinomadura Species: Laboratory Maintenance and Ribosome Engineering.
Dhakal, Dipesh; Chung, Nguyen Thanh; Rayamajhi, Vijay; Sohng, Jae Kyung
2017-02-06
Actinomadura spp. are aerobic, Gram-positive, catalase-positive, non-acid fast, non-motile actinomycetes. Some species of Actinomadura are associated with opportunistic infections in humans. However, many bioactive compounds with pharmaceutical applications can be isolated from various Actinomadura spp. This unit includes general protocols for the laboratory maintenance of Actinomadura spp., including growth in liquid medium, growth on solid agar, long-term storage, and generation of a higher producing strain by ribosome engineering. Actinomadura hibisca P157-2 is used as a prototype for explaining the considerations for efficient laboratory maintenance of Actinomadura spp. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Optomechanical trampoline resonators.
Kleckner, Dustin; Pepper, Brian; Jeffrey, Evan; Sonin, Petro; Thon, Susanna M; Bouwmeester, Dirk
2011-09-26
We report on the development of optomechanical "trampoline" resonators composed of a tiny SiO(2)/Ta(2)O(5) dielectric mirror on a silicon nitride micro-resonator. We observe optical finesses of up to 4 × 10(4) and mechanical quality factors as high as 9 × 10(5) in relatively massive (~100 ng) and low frequency (10-200 kHz) devices. This results in a photon-phonon coupling efficiency considerably higher than previous Fabry-Perot-type optomechanical systems. These devices are well suited to ultra-sensitive force detection, ground-state optical cooling experiments, and demonstrations of quantum dynamics for such systems. © 2011 Optical Society of America
Trimethylamine (TMA) biofiltration and transformation in biofilters.
Ding, Ying; Shi, Ji-Yan; Wu, Wei-Xiang; Yin, Jun; Chen, Ying-Xu
2007-05-08
Bioremoval of trimethylamine (TMA) in two three-stage biofilters packed with compost (A) and sludge (B), respectively, was investigated. Both biofilters were operated with an influent TMA concentration of 19.2-57.2mgm(-3) for 67 days. Results showed that all of the inlet TMA could be removed by both biofilters. However, removal efficiency and transformation of TMA in each section of both biofilters was different. In the Introduction section, TMA removal efficiency and maximum elimination capacity of the compost medium were greater than those of sludge medium under higher inlet TMA concentration. In comparison with biofilter A, considerably higher NH(3) concentrations in effluent of all three sections in biofilter B were observed after day 19. Although, NO(2)(-)-N concentration in each section of biofilter A was relatively lower, NO(3)(-)-N content in each section of biofilter A increased after day 26, especially in the Materials and method section which increased remarkably due to a lesser amount of TMA and higher ammonia oxidation and nitrification in compost medium. In contrast, neither NO(2)(-)-N nor NO(3)(-)-N were detected in either section of biofilter B at any time throughout the course of the experiment. The cumulative results indicated that compost is more favorable for the growth of TMA-degrading and nitrifying bacteria as compared to the sludge and could be a highly suitable packing material for biodegradation and transformation of TMA.
Saqib, Mohd; Khatri, Rahul; Singh, Bindu; Gupta, Ananya; Kumar, Arvind; Bhaskar, Sangeeta
2016-12-01
BCG, the only approved vaccine protects against severe form of childhood tuberculosis but its protective efficacy wanes in adolescence. BCG has reduced the incidence of infant TB considerably in endemic areas; therefore prime-boost strategy is the most realistic measure for control of tuberculosis in near future. Mycobacterium indicus pranii (MIP) shares significant antigenic repertoire with Mtb and BCG and has been shown to impart significant protection in animal models of tuberculosis. In this study, MIP was given as a booster to BCG vaccine which enhanced the BCG mediated immune response, resulting in higher protection. MIP booster via aerosol route was found to be more effective in protection than subcutaneous route of booster immunization. Pro-inflammatory cytokines like IFN-γ, IL-12 and IL-17 were induced at higher level in infected lungs of 'BCG-MIP' group both at mRNA expression level and in secretory form when compared with 'only BCG' group. BCG-MIP groups had increased frequency of multifunctional T cells with high MFI for IFN-γ and TNF-α in Mtb infected mice. Our data demonstrate for the first time, potential application of MIP as a booster to BCG vaccine for efficient protection against tuberculosis. This could be very cost effective strategy for efficient control of tuberculosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Perez, Catan S.; Guevara, S.R.; Marvin-DiPasquale, M.; Magnavacca, C.; Cohen, I.M.; Arribere, M.
2007-01-01
Methodological considerations on the determination of benthic methyl-mercury (CH3Hg) production potentials were investigated on lake sediment, using 197Hg radiotracer. Three methods to arrest bacterial activity were compared: flash freezing, thermal sterilization, and ??-irradiation. Flash freezing showed similar CH3Hg recoveries as thermal sterilization, which was both 50% higher than the recoveries obtained with ??-ray irradiation. No additional radiolabel was recovered in kill-control samples after an additional 24 or 65 h of incubation, suggesting that all treatments were effective at arresting Hg(II)-methylating bacterial activity, and that the initial recoveries are likely due to non-methylated 197Hg(II) carry-over in the organic extraction and/or [197Hg]CH3Hg produced via abiotic reactions. Two CH3Hg extraction methods from sediment were compared: (a) direct extraction into toluene after sediment leaching with CuSO4 and HCl and (b) the same extraction with an additional back-extraction step to thiosulphate. Similar information was obtained with both methods, but the low efficiency observed and the extra work associated with the back-extraction procedure represent significant disadvantages, even tough the direct extraction involves higher Hg(II) carry over. ?? 2007 Elsevier Ltd. All rights reserved.
High-speed architecture for the decoding of trellis-coded modulation
NASA Technical Reports Server (NTRS)
Osborne, William P.
1992-01-01
Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.
2003 NASA Seal/Secondary Air System Workshop. Volume 1
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)
2004-01-01
The following reports were included in the 2003 NASA Seal/Secondary Air System Workshop:Low Emissions Alternative Power (LEAP); Overview of NASA Glenn Seal Developments; NASA Ultra Efficient Engine Technology Project Overview; Development of Higher Temperature Abradable Seals for Industrial Gas Turbines; High Misalignment Carbon Seals for the Fan Drive Gear System Technologies; Compliant Foil Seal Investigations; Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts; Controls Considerations for Turbine Active Clearance Control; Non-Contacting Finger Seal Developments and Design Considerations; Effect of Flow-Induced Radial Load on Brush Seal/Rotor Contact Mechanics; Seal Developments at Flowserve Corporation; Investigations of High Pressure Acoustic Waves in Resonators With Seal-Like Features; Numerical Investigations of High Pressure Acoustic Waves in Resonators; Feltmetal Seal Material Through-Flow; "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions; High Temperature Propulsion System Structural Seals for Future Space Launch Vehicles; Advanced Control Surface Seal Development for Future Space Vehicles; High Temperature Metallic Seal Development for Aero Propulsion and Gas Turbine Applications; and BrazeFoil Honeycomb.
NASA Astrophysics Data System (ADS)
Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.
2006-09-01
Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.
2013-01-01
Background In recent years, there has been growing interest in measuring the efficiency of hospitals in Iran and several studies have been conducted on the topic. The main objective of this paper was to review studies in the field of hospital efficiency and examine the estimated technical efficiency (TE) of Iranian hospitals. Methods Persian and English databases were searched for studies related to measuring hospital efficiency in Iran. Ordinary least squares (OLS) regression models were applied for statistical analysis. The PRISMA guidelines were followed in the search process. Results A total of 43 efficiency scores from 29 studies were retrieved and used to approach the research question. Data envelopment analysis was the principal frontier efficiency method in the estimation of efficiency scores. The pooled estimate of mean TE was 0.846 (±0.134). There was a considerable variation in the efficiency scores between the different studies performed in Iran. There were no differences in efficiency scores between data envelopment analysis (DEA) and stochastic frontier analysis (SFA) techniques. The reviewed studies are generally similar and suffer from similar methodological deficiencies, such as no adjustment for case mix and quality of care differences. The results of OLS regression revealed that studies that included more variables and more heterogeneous hospitals generally reported higher TE. Larger sample size was associated with reporting lower TE. Conclusions The features of frontier-based techniques had a profound impact on the efficiency scores among Iranian hospital studies. These studies suffer from major methodological deficiencies and were of sub-optimal quality, limiting their validity and reliability. It is suggested that improving data collection and processing in Iranian hospital databases may have a substantial impact on promoting the quality of research in this field. PMID:23945011
Design, Development, and Testing of a Water Vapor Exchanger for Spacecraft Life Support Systems
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Micka, Daniel J.; Chepko, Ariane B.; Rule, Kyle C.; Anderson, Molly S.
2016-01-01
Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Maximizing the use of regenerative systems and conserving water are critical considerations. This paper describes the design, development, and testing of an innovative water vapor exchanger (WVX) that can minimize the amount of water absorbed in, and vented from, regenerative CO2 removal systems. Key design requirements for the WVX are high air flow capacity (suitable for a crew of six), very high water recovery, and very low pressure losses. We developed fabrication and assembly methods that enable high-efficiency mass transfer in a uniform and stable array of Nafion tubes. We also developed analysis and design methods to compute mass transfer and pressure losses. We built and tested subscale units sized for flow rates of 2 and 5 cu ft/min (3.4–8.5 cu m/hr). Durability testing demonstrated that a stable core geometry was sustained over many humid/dry cycles. Pressure losses were very low (less than 0.5 in. H2O (125 Pa) total) and met requirements at prototypical flow rates. We measured water recovery efficiency across a range of flow rates and humidity levels that simulate the range of possible cabin conditions. We measured water recovery efficiencies in the range of 80 to 90%, with the best efficiency at lower flow rates and higher cabin humidity levels. We compared performance of the WVX with similar units built using an unstructured Nafion tube bundle. The WVX achieves higher water recovery efficiency with nearly an order of magnitude lower pressure drop than unstructured tube bundles. These results show that the WVX provides uniform flow through flow channels for both the humid and dry streams and can meet requirements for service on future exploration spacecraft. The WVX technology will be best suited for long-duration exploration vehicles that require regenerative CO2 removal systems while needing to conserve water.
Motor/generator and electronic control considerations for energy storage flywheels
NASA Technical Reports Server (NTRS)
Nola, F. J.
1984-01-01
A spacecraft electric power supply system is described. Requirements of the system are to accelerate a momentum wheel to a fixed maximum speed when solar energy is available and to maintain a constant voltage on the spacecraft bus under varying loads when solar energy is not available. Candidate motor types, pulse width modulated current control systems, and efficiency considerations are discussed. In addition, the Lunar Roving Vehicle motors are described along with their respective efficiencies.
Exploring the influence of context and policy on health district productivity in Cambodia.
Ensor, Tim; So, Sovannarith; Witter, Sophie
2016-01-01
Cambodia has been reconstructing its economy and health sector since the end of conflict in the 1990s. There have been gains in life expectancy and increased health expenditure, but Cambodia still lags behind neighbours One factor which may contribute is the efficiency of public health services. This article aims to understand variations in efficiency and the extent to which changes in efficiency are associated with key health policies that have been introduced to strengthen access to health services over the past decade. The analysis makes use of data envelopment analysis (DEA) to measure relative efficiency and changes in productivity and regression analysis to assess the association with the implementation of health policies. Data on 28 operational districts were obtained for 2008-11, focussing on the five provinces selected to represent a range of conditions in Cambodia. DEA was used to calculate efficiency scores assuming constant and variable returns to scale and Malmquist indices to measure productivity changes over time. This analysis was combined with qualitative findings from 17 key informant interviews and 19 in-depth interviews with managers and staff in the same provinces. The DEA results suggest great variation in the efficiency scores and trends of scores of public health services in the five provinces. Starting points were significantly different, but three of the five provinces have improved efficiency considerably over the period. Higher efficiency is associated with more densely populated areas. Areas with health equity funds in Special Operating Agency (SOA) and non-SOA areas are associated with higher efficiency. The same effect is not found in areas only operating voucher schemes. We find that the efficiency score increased by 0.12 the year any of the policies was introduced. This is the first study published on health district productivity in Cambodia. It is one of the few studies in the region to consider the impact of health policy changes on health sector efficiency. The results suggest that the recent health financing reforms have been effective, singly and in combination. This analysis could be extended nationwide and used for targeting of new initiatives. The finding of an association between recent policy interventions and improved productivity of public health services is relevant for other countries planning similar health sector reforms.
NASA Astrophysics Data System (ADS)
Malm, Joakim; Bryngfors, Leif; Mörner, Lise-Lotte
2016-09-01
Supplemental Instruction (SI) can be an efficient way of improving student success in difficult courses. Here, a study is made on SI attached to difficult first-year engineering courses. The results show that both the percentage of students passing a difficult first-year engineering course, and scores on the course exams are considerably higher for students attending SI, compared to students not attending. The study also shows that a higher percentage of female students attend SI, compared to male students. However, both genders seem to benefit to the same degree as a result of attending SI meetings. Also all students, independent of prior academic ability, benefit from attending SI. A qualitative study suggests that SI meetings provide elements important for understanding course material, which are missing from other scheduled learning opportunities in the courses.
Raising of Operating a Motor Vehicle Effects on Environment in Winter
NASA Astrophysics Data System (ADS)
Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.
2016-08-01
Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.
Gao, Yan; Sun, Dezhi; Dang, Yan; Lei, Yuqing; Ji, Jiayang; Lv, Tingwei; Bian, Rui; Xiao, Zhihui; Yan, Liangming; Holmes, Dawn E
2017-05-01
Methanogenic treatment of municipal solid waste (MSW) incineration leachate can be hindered by high concentrations of refractory organic matter and humification of compounds in the leachate. In an attempt to overcome some of these impediments, microbial electrolysis cells (MECs) were incorporated into anaerobic digesters (ADMECs). COD removal efficiencies and methane production were 8.7% and 44.3% higher in ADMECs than in controls, and ADMEC reactors recovered more readily from souring caused by high organic loading rates. The degradation rate of large macromolecules was substantially higher (96% vs 81%) in ADMEC than control effluent, suggesting that MECs stimulated degradation of refractory organic matter and reduced humification. Exoelectrogenic bacteria and microorganisms known to form syntrophic partnerships were enriched in ADMECs. These results show that ADMECs were more effective at treatment of MSW incineration leachate, and should be taken into consideration when designing future treatment facilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ahmed, Ahmed Khaled Abdella; Shi, Xiaonan; Hua, Likun; Manzueta, Leidy; Qing, Weihua; Marhaba, Taha; Zhang, Wen
2018-05-23
Nanobubbles (NBs) hold promise in green and sustainable engineering applications in diverse fields (e.g., water/wastewater treatment, food processing, medical applications, and agriculture). This study investigated the effects of four types of NBs on seed germination and plant growth. Air, oxygen, nitrogen, and carbon dioxide NBs were generated and dispersed in tap water. Different plants, including lettuce, carrot, fava bean, and tomato, were used in germination and growth tests. The seeds in water-containing NBs exhibited 6-25% higher germination rates. Especially, nitrogen NBs exhibited considerable effects in the seed germination, whereas air and carbon dioxide NBs did not significantly promote germination. The growth of stem length and diameter, leave number, and leave width were promoted by NBs (except air). Furthermore, the promotion effect was primarily ascribed to the generation of exogenous reactive oxygen species by NBs and higher efficiency of nutrient fixation or utilization.
NASA Technical Reports Server (NTRS)
Zettle, Eugene V; Mark, Herman
1953-01-01
The design principle of injecting liquid fuel at more than one axial station in an annual turbojet combustor was investigated. Fuel was injected into the combustor as much as 5 inches downstream of the primary fuel injectors. Many fuel-injection configurations were examined and the performance results are presented for 11 configurations that best demonstrate the trends in performance obtained. The performance investigations were made at a constant combustor-inlet pressure of 15 inches of mercury absolute and at air flows up to 70 percent higher than values typical of current design practice. At these higher air flows, staging the fuel introduction improved the combustion efficiency considerably over that obtained in the combustor when no fuel staging was employed. At air flows currently encountered in turbojet engines, fuel staging was of minor value. Radial temperature distribution seemed relatively unaffected by the location of fuel-injection stations.
The role of primary and secondary air on wood combustion in cookstoves
NASA Astrophysics Data System (ADS)
Kirch, Thomas; Birzer, Cristian H.; Medwell, Paul R.; Holden, Liam
2018-03-01
A two-stage solid fuel research furnace was used to examine the claim that through forced draught greater mixing and more complete combustion could be achieved. By varying the primary air (PA) and secondary air (SA) flow the influence on the combustion process was investigated. In the first part of the combustion, when the release of volatile compounds predominates, the variation of neither PA nor SA had a significant influence. In the second part when mainly char is oxidised an increase in both PA and SA lead to a rising nominal combustion efficiency (?)), with a greater impact observed with SA. Furthermore higher air flows caused the heat transfer, to a pot above the furnace, to decline. Therefore forced draught does lead to greater mixing and mitigation of emissions, but in the presented configuration a trade-off between a higher NCE and a lower heat transfer needs consideration.
Zha, L-Y; Xu, Z-R; Wang, M-Q; Gu, L-Y
2008-04-01
This study was conducted to determine whether chromium nanoparticle (CrNano) exhibited higher absorption efficiency and possessed unique absorption mechanism in comparison to chromium picolinate (CrPic) and chromium chloride (CrCl(3)), as was postulated by previous reports. Twenty-one-day-old Caco-2 cell monolayers grown on semipermeable membranes in Snapwell tissue culture bichambers were incubated with CrNano, CrPic or CrCl(3) to examine their transport and uptake respectively. In the concentration range of 0.2-20 micromol/l, transport of CrNano, CrPic and CrCl(3) across Caco-2 monolayers both in apical-to-basolateral and basolateral-to-apical direction was concentration-, and time-dependent, and temperature independent. The apparent permeability coefficient (P(app)) of CrNano was between 5.89 and 7.92 x 10(-6) cm/s and that of CrPic and CrCl(3) was between 3.52 and 5.31 x 10(-6) cm/s and between 0.97 and 1.37 x 10(-6) cm/s respectively. Uptake of CrNano, CrPic and CrCl(3) by both apical and basolateral membranes was concentration- and time-dependent. Uptake of CrNano by apical membrane was significantly (p < 0.05) decreased when the incubation temperature was reduced from 37 degrees C to 4 degrees C. The transport efficiency of CrNano, CrPic and CrCl(3) after incubation for 120 min at 37 degrees C was 15.83% +/- 0.76%, 9.08% +/- 0.25% and 2.11% +/- 0.53% respectively. The uptake efficiency of CrNano, CrPic and CrCl(3) was 10.08% +/- 0.76%, 4.73% +/- 0.60% and 0.88% +/- 0.08% respectively. It was concluded that the epithelial transport of CrNano, CrPic and CrCl(3) across the Caco-2 cell monolayers was mainly via passive transport pathways. In addition, CrNano exhibited considerably higher absorption efficiency than both CrPic and CrCl(3) in Caco-2 cell monolayers.
NASA Astrophysics Data System (ADS)
Mori, Y.; Suetsugu, A.; Matsumoto, Y.; Fujihara, A.; Suyama, K.; Miyamoto, T.
2012-12-01
Soil structure is heterogeneous with cracks or macropores allowing bypass flow, which may lead to applied chemicals avoiding interaction with soil particles or the contaminated area. We investigated the bioremediation efficiency of oil-contaminated soils by applying suction at the bottom of soil columns during bioremediation. Unsaturated flow conditions were investigated so as to avoid bypass flow and achieve sufficient dispersion of chemicals in the soil column. The boundary conditions at the bottom of the soil columns were 0 kPa and -3 kPa, and were applied to a volcanic ash soil with and without macropores. Unsaturated flow was achieved with -3 kPa and an injection rate of 1/10 of the saturated hydraulic conductivity. The resultant biological activities of the effluent increased dramatically in the unsaturated flow with macropores condition. Unsaturated conditions prevented bypass flow and allowed dispersion of the injected nutrients. Unsaturated flow achieved 60-80% of saturation, which enhanced biological activity in the soil column. Remediation results were better for unsaturated conditions because of higher biological activity. Moreover, unsaturated flow with macropores achieved uniform remediation efficiency from upper through lower positions in the column. Finally, taking the applied solution volume into consideration, unsaturated flow with -3 kPa achieved 10 times higher efficiency when compared with conventional saturated flow application. These results suggest that effective use of nutrients or remediation chemicals is possible by avoiding bypass flow and enhancing biological activity using relatively simple and inexpensive techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diercks, David R., E-mail: ddiercks@mines.edu; Gorman, Brian P.; Kirchhofer, Rita
2013-11-14
The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At themore » lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.« less
Use of tin-117m to study the role of tin in the direct labeling of proteins with rhenium-188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadachova, E.; Mirzadeh, S.; Knapp, F.F. Jr.
1996-05-01
Sn-117m provided an opportunity to study the effect of [Sn(II)] on the complexation of carrier-free Re-188, radiolabeling efficiency and incorporation of Sn into reduced IgG. Endogenous thiols of the IgG were exposed using dithiothreitol. Reduction of Re-188 was achieved with SnCl{sub 2} [spiked with Sn-117m(II)] in either gluconate(Glu) or citrate(Cit) buffer at pH=4.2. Concentration of Sn(II) varied from 5x10{sup -4} to 1 mg per mg protein. Complexation of reduced Re-188 was monitored by ITLC-SG, and protein was monitored by HPLC. Complexation of Re-188 at [Sn(II)]=5x10{sup -4} mg was higher in Cit (20%) than in Glu (10%); at 5x10{sup -2} mgmore » - 50% in both buffers; and at 1 mg - higher in Glu (95%) than in Cit (60%). The efficiency of protein labeling was considerably higher in Glu than in Cit for the entire range of [Sn(II)]. Experiments with Sn-117m demonstrated that the absolute amount of Sn(II) associated with protein increased with increasing [Sn(II)], and distinct saturation levels were found for both Glu and Cit. Saturation levels were 6.4 and 33 {mu}g of Sn/mg of protein for Flu and Cit, respectively (19 and 48% incorporation). For all [Sn(II)] studied, the amount of Sn bound to the protein was 5-10 times higher in Cit than in Glu. In summary, Glu seems to release Re for transchelation to the protein more readily than Cit. Simultaneously, it complexes Sn(II) more efficiently than Cit thus preventing competition between Re and Sn for thiol groups. These data provide additional insights into the mechanism of direct labeling of proteins with carrier-free Re-188 as well as into the choice of supporting ligand for direct labeling.« less
This presentation provides information about major new source review (NSR), including recent improvement changes and court rulings, flexible air permits rule, significant deterioration rules, and energy efficiency considerations.
Donovan, Lisa A; Dudley, Susan A; Rosenthal, David M; Ludwig, Fulco
2007-05-01
Plant water-use efficiency (WUE) is expected to affect plant fitness and thus be under natural selection in arid habitats. Although many natural population studies have assessed plant WUE, only a few related WUE to fitness. The further determination of whether selection on WUE is direct or indirect through functionally related traits has yielded no consistent results. For natural populations of two desert annual sunflowers, Helianthus anomalus and H. deserticola, we used phenotypic selection analysis with vegetative biomass as the proxy for fitness to test (1) whether there was direct and indirect selection on WUE (carbon isotope ratio) and related traits (leaf N, area, succulence) and (2) whether direct selection was consistent with hypothesized drought/dehydration escape and avoidance strategies. There was direct selection for lower WUE in mesic and dry H. anomalus populations, consistent with dehydration escape, even though it is the longer lived of the two species. For mesic H. anomalus, direct selection favored lower WUE and higher N, suggesting that plants may be "wasting water" to increase N delivery via the transpiration stream. For the shorter lived H. deserticola in the direr habitat, there was indirect selection for lower WUE, inconsistent with drought escape. There was also direct selection for higher leaf N, succulence and leaf size. There was no direct selection for higher WUE consistent with dehydration avoidance in either species. Thus, in these natural populations of two desert dune species higher fitness was associated with some combination direct and indirect selection for lower WUE, higher leaf N and larger leaf size. Our understanding of the adaptive value of plant ecophysiological traits will benefit from further consideration of related traits such as leaf nitrogen and more tests in natural populations.
NASA Astrophysics Data System (ADS)
Monavarian, M.; Rashidi, A.; Aragon, A. A.; Nami, M.; Oh, S. H.; DenBaars, S. P.; Feezell, D.
2018-05-01
InGaN/GaN light-emitting diodes (LEDs) with large modulation bandwidths are desirable for visible-light communication. Along with modulation speed, the consideration of the internal quantum efficiency (IQE) under operating conditions is also important. Here, we report the modulation characteristics of semipolar (20 2 ¯ 1 ¯ ) InGaN/GaN (LEDs) with single-quantum well (SQW) and multiple-quantum-well (MQW) active regions grown on free-standing semipolar GaN substrates with peak internal quantum efficiencies (IQEs) of 0.93 and 0.73, respectively. The MQW LEDs exhibit on average about 40-80% higher modulation bandwidth, reaching 1.5 GHz at 13 kA/cm2, but about 27% lower peak IQE than the SQW LEDs. We extract the differential carrier lifetimes (DLTs), RC parasitics, and carrier escape lifetimes and discuss their role in the bandwidth and IQE characteristics. A coulomb-enhanced capture process is shown to rapidly reduce the DLT of the MQW LED at high current densities. Auger recombination is also shown to play little role in increasing the speed of the LEDs. Finally, we investigate the trade-offs between the bandwidth and efficiency and introduce the bandwidth-IQE product as a potential figure of merit for optimizing speed and efficiency in InGaN/GaN LEDs.
Pourazari, Fereshteh; Andersson, Mariette; Weih, Martin
2018-01-01
Breeding for improved crop quality traits can affect non-target traits related to growth and resource use, and these effects may vary in different cultivation conditions (e. g., greenhouse vs. field). The objectives of this study are to investigate the growth and whole-plant nitrogen (N) economy of two genetically modified (GM) potato lines compared to their non-GM parental varieties and when grown in different cultivation conditions. A high-amylose GM potato line and its parent were grown under field and greenhouse conditions for one growing season in Sweden; and a GM oil potato line and its parent were grown in greenhouse conditions only. Tuber yield, above ground biomass, N uptake efficiency and other plant N economy traits were assessed. In both cultivation conditions, the GM lines produced between 1.5 and two times more tubers as compared with their parents. In the greenhouse, fresh tuber yield and N uptake efficiency were unaffected by the genetic modifications, but the GM-lines produced less tuber biomass per plant-internal N compared to their parents. In the field, the fresh tuber yield was 40% greater in the high-amylose line as compared with its parent; the greater fresh tuber yield in the high-amylose GM line was accomplished by higher water allocation to the harvested tubers, and associated with increased N recovery from soil (+20%), N uptake efficiency (+53%), tuber N content (+20%), and N accumulation (+120%) compared with the non-GM parent. The cultivation conditions influenced the yield and N economy. For example, the final fresh above-ground plant biomass and N pool were considerably higher in the greenhouse conditions, whilst the tuber yield was higher in the field conditions. In conclusion, the genetic modification inducing high accumulation of amylose in potato tubers affected several non-target traits related to plant N economy, and increased the plant N uptake and accumulation efficiency of the field-grown plants. Due to strongly increased plant N accumulation compared to the parental variety, the cultivation of the high-amylose line is expected to require higher N fertilization rates. However, starch productivity per unit land area or soil N still is expected to be higher in the high-amylose line. PMID:29599796
NASA Astrophysics Data System (ADS)
Ito, Akihiko; Nishina, Kazuya; Reyer, Christopher P. O.; François, Louis; Henrot, Alexandra-Jane; Munhoven, Guy; Jacquemin, Ingrid; Tian, Hanqin; Yang, Jia; Pan, Shufen; Morfopoulos, Catherine; Betts, Richard; Hickler, Thomas; Steinkamp, Jörg; Ostberg, Sebastian; Schaphoff, Sibyll; Ciais, Philippe; Chang, Jinfeng; Rafique, Rashid; Zeng, Ning; Zhao, Fang
2017-08-01
Simulating vegetation photosynthetic productivity (or gross primary production, GPP) is a critical feature of the biome models used for impact assessments of climate change. We conducted a benchmarking of global GPP simulated by eight biome models participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a) with four meteorological forcing datasets (30 simulations), using independent GPP estimates and recent satellite data of solar-induced chlorophyll fluorescence as a proxy of GPP. The simulated global terrestrial GPP ranged from 98 to 141 Pg C yr-1 (1981-2000 mean); considerable inter-model and inter-data differences were found. Major features of spatial distribution and seasonal change of GPP were captured by each model, showing good agreement with the benchmarking data. All simulations showed incremental trends of annual GPP, seasonal-cycle amplitude, radiation-use efficiency, and water-use efficiency, mainly caused by the CO2 fertilization effect. The incremental slopes were higher than those obtained by remote sensing studies, but comparable with those by recent atmospheric observation. Apparent differences were found in the relationship between GPP and incoming solar radiation, for which forcing data differed considerably. The simulated GPP trends co-varied with a vegetation structural parameter, leaf area index, at model-dependent strengths, implying the importance of constraining canopy properties. In terms of extreme events, GPP anomalies associated with a historical El Niño event and large volcanic eruption were not consistently simulated in the model experiments due to deficiencies in both forcing data and parameterized environmental responsiveness. Although the benchmarking demonstrated the overall advancement of contemporary biome models, further refinements are required, for example, for solar radiation data and vegetation canopy schemes.
Design Considerations | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
NASA Astrophysics Data System (ADS)
Rajesh, Kallarakkal Ramakrishnan; Paudel, Keshab; Johnson, Brian; Hallani, Rawad; Anthony, John; Ostroverkhova, Oksana
2015-01-01
We explored relationships between photophysical processes and solar cell characteristics in solution-processable bulk heterojunctions (BHJs), in particular: (1) polymer donor:fullerene acceptor:small-molecule (SM) nonfullerene acceptor, (2) polymer donor:SM donor:SM nonfullerene acceptor, and (3) SM donor:SM nonfullerene or fullerene acceptor. Addition of a nonfullerene SM acceptor to "efficient" polymer:fullerene BHJs led to a reduction in power conversion efficiency (PCE), mostly due to decreased charge photogeneration efficiency and increased disorder. By contrast, addition of an SM donor to "inefficient" polymer:SM nonfullerene acceptor BHJs led to a factor of two to three improvement in the PCE, due to improved charge photogeneration efficiency and transport. In most blends, exciplex formation was observed and correlated with a reduced short-circuit current (Jsc) without negatively impacting the open-circuit voltage (Voc). A factor of ˜5 higher PCE was observed in SM donor:fullerene acceptor BHJs as compared to SMBHJs with the same SM donor but nonfullerene acceptor, due to enhanced charge carrier photogeneration in the blend with fullerene. Our study revealed that the HOMO and LUMO energies of molecules comprising a blend are not reliable parameters for predicting Voc of the blend, and an understanding of the photophysics is necessary for interpreting solar cell characteristics and improving the molecular design of BHJs.
NASA Technical Reports Server (NTRS)
Brent, J. A.; Clemmons, D. R.
1974-01-01
An experimental investigation was conducted with an 0.8 hub/tip ratio, single-stage, axial flow compressor to determine the potential of tandem-airfoil blading for improving the efficiency and stable operating range of compressor stages. The investigation included testing of a baseline stage with single-airfoil blading and two tandem-blade stages. The overall performance of the baseline stage and the tandem-blade stage with a 20-80% loading split was considerably below the design prediction. The other tandem-blade stage, which had a rotor with a 50-50% loading split, came within 4.5% of the design pressure rise (delta P(bar)/P(bar) sub 1) and matched the design stage efficiency. The baseline stage with single-airfoil blading, which was designed to account for the actual rotor inlet velocity profile and the effects of axial velocity ratio and secondary flow, achieved the design predicted performance. The corresponding tandem-blade stage (50-50% loading split in both blade rows) slightly exceeded the design pressure rise but was 1.5 percentage points low in efficiency. The tandem rotors tested during both phases demonstrated higher pressure rise and efficiency than the corresponding single-airfoil rotor, with identical inlet and exit airfoil angles.
Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants.
Supekar, Sarang D; Skerlos, Steven J
2015-10-20
This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3-22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3-7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.
Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping
2018-04-27
Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr 3 ) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr 3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr 3 PeLEDs realized an improvement in maximum luminescence ranging from ∼2348 to ∼7660 cd m -2 (∼226% enhancement) and current efficiency from 1.65 to 3.08 cd A -1 (∼86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr 3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.
NASA Astrophysics Data System (ADS)
Meng, Yan; Wu, Xiaoyan; Xiong, Ziyang; Lin, Chunyan; Xiong, Zuhong; Blount, Ethan; Chen, Ping
2018-04-01
Compared to organic-inorganic hybrid metal halide perovskites, all-inorganic cesium lead halides (e.g, CsPbBr3) hold greater promise in being emissive materials for light-emitting diodes owing to their superior optoelectronic properties as well as their higher stabilities. However, there is still considerable potential for breakthroughs in the current efficiency of CsPbBr3 perovskite light-emitting diodes (PeLEDs). Electrode quenching is one of the main problems limiting the current efficiency of PeLEDs when poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is used as the hole injection layer. In this work, electrode quenching control was realized via incorporating Au NPs into PEDOT:PSS. As a result, the CsPbBr3 PeLEDs realized an improvement in maximum luminescence ranging from ˜2348 to ˜7660 cd m-2 (˜226% enhancement) and current efficiency from 1.65 to 3.08 cd A-1 (˜86% enhancement). Such substantial enhancement of the electroluminescent performance can be attributed to effective electrode quenching control at the PEDOT:PSS/CsPbBr3 perovskite interface via the combined effects of local surface plasma resonance coupling and enhanced hole transportation in the PEDOT:PSS layer by Au nanoparticles.
Ceretta, María Belén; Durruty, Ignacio; Orozco, Ana Micaela Ferro; González, Jorge Froilán; Wolski, Erika Alejandra
2018-05-01
This work reports on the biodegradation of textile wastewater by three alternative microbial treatments. A bacterial consortium, isolated from a dyeing factory, showed significant efficacy in decolourizing wastewater (77.6 ± 3.0%); the decolourization rate was 5.80 ± 0.31 mg of azo dye·L -1 ·h -1 , without the addition of an ancillary carbon source (W). The degradation was 52% (measured as COD removal) and the products of the treatment showed low biodegradability (COD/BOD 5 = 4.2). When glucose was added to the wastewater, (W + G): the decolourization efficiency increased to 87.24 ± 2.5% and the decolourization rate significantly improved (25.67 ± 3.62 mg·L -1 ·h -1 ), although the COD removal efficiency was only 44%. Finally, the addition of starch (W + S) showed both a similar decolourization rate and efficiency to the W treatment, but a higher COD removal efficiency (72%). In addition, the biodegradability of the treated wastewater was considerably improved (COD/BOD 5 = 1.2) when starch was present. The toxicity of the degradation products was tested on Lactuca sativa seeds. In all treatments, toxicity was reduced with respect to the untreated wastewater. The W + S treatment gave the best performance.
Liang, Liang; Yu, Fangke; An, Yiran; Liu, Mengmeng; Zhou, Minghua
2017-01-01
A composite graphite felt (GF) modified with transition metal was fabricated and used as cathode in heterogeneous electro-Fenton (EF) for methyl orange (MO) degradation. Characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the morphology and surface physicochemical properties of the cathodes after modification were observed considerably changed. After loading metals, the current response became higher, the accumulation of H 2 O 2 and the degradation efficiency of MO were improved. Under the same conditions, GF-Co had the highest catalytic activity for electro-reduction of O 2 to H 2 O 2 and MO degradation. At pH 3, 99 % of MO degradation efficiency was obtained using GF-Co after 120 min treatment and even at initial pH 9, 82 % of that was obtained. TOC removal efficiency reached 93.8 % using GF-Co at pH 3 after 120 min treatment while that was 12.3 % using GF. After ten-time runs, the mineralization ratio of the GF-Co was still 89.5 %, suggesting that GF-Co was very promising for wastewater treatment. The addition of isopropanol proved that · OH played an important role in degradation of MO.
A wind tunnel test of newly developed personal bioaerosol samplers.
Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung
2012-07-01
In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.
Feed efficiency and the microbiota of the alimentary tract
USDA-ARS?s Scientific Manuscript database
There is considerable variation in the efficiency that cattle convert feed for maintenance and product (body weight gain, milk, and conceptus). Both intake and gain are polygenic traits and to better understand factors that contribute to variation in feed efficiency more defined phenotypes are need...
FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES
This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...
Macrae, J C; Smith, J S; Dewey, P J; Brewer, A C; Brown, D S; Walker, A
1985-07-01
Three experiments were conducted with sheep given spring-harvested dried grass (SHG) and autumn-harvested dried grass (AHG). The first was a calorimetric trial to determine the metabolizable energy (ME) content of each grass and the efficiency with which sheep utilize their extra ME intakes above the maintenance level of intake. The second examined the relative amounts of extra non-ammonia-nitrogen (NAN) and individual amino acids absorbed from the small intestine per unit extra ME intake as the level of feeding was raised from energy equilibrium (M) to approximately 1.5 M. The third was a further calorimetric trial to investigate the effect of an abomasal infusion of 30 g casein/d on the efficiency of utilization of AHG. The ME content of the SHG (11.8 MJ/kg dry matter (DM] was higher than that of AHG (10.0 MJ/kg DM). The efficiency of utilization of ME for productive purposes (i.e. above the M level of intake; kf) was higher when given SHG (kf 0.54 between M and 2 M) than when given AHG (kf 0.43 between M and 2 M). As the level of intake of each grass was raised from M to 1.5 M there was a greater increment in the amounts of NAN (P less than 0.001) and the total amino acid (P less than 0.05) absorbed from the small intestines when sheep were given the SHG (NAN absorption, SHG 5.4 g/d, AHG 1.5 g/d, SED 0.54; total amino acid absorption SHG 31.5 g/d, AHG 14.3 g/d, SED 5.24). Infusion of 30 g casein/d per abomasum of sheep given AHG at M and 1.5 M levels of intake increased (P less than 0.05) the efficiency of utilization of the herbage from kf 0.45 to kf 0.57. Consideration is given to the possibility that the higher efficiency of utilization of ME in sheep given SHG may be related to the amounts of extra glucogenic amino acids absorbed from the small intestine which provide extra reducing equivalents (NADPH) and glycerol phosphate necessary for the conversion of acetate into fatty acids.
A proposal for antiparallel acceleration of positrons using CEBAF
NASA Astrophysics Data System (ADS)
Tiefenback, M.; Wojtsekhowski, B.
2018-05-01
We present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e- acceleration and counter clockwise e+ acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increased energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.
Cai, Xiaojun; Jin, Rongrong; Wang, Jiali; Yue, Dong; Jiang, Qian; Wu, Yao; Gu, Zhongwei
2016-03-09
Polymeric vectors have shown great promise in the development of safe and efficient gene delivery systems; however, only a few have been developed in clinical settings due to poor transport across multiple physiological barriers. To address this issue and promote clinical translocation of polymeric vectors, a new type of polymeric vector, bioreducible fluorinated peptide dendrimers (BFPDs), was designed and synthesized by reversible cross-linking of fluorinated low generation peptide dendrimers. Through masterly integration all of the features of reversible cross-linking, fluorination, and polyhedral oligomeric silsesquioxane (POSS) core-based peptide dendrimers, this novel vector exhibited lots of unique features, including (i) inactive surface to resist protein interactions; (ii) virus-mimicking surface topography to augment cellular uptake; (iii) fluorination-mediated efficient cellular uptake, endosome escape, cytoplasm trafficking, and nuclear entry, and (iv) disulfide-cleavage-mediated polyplex disassembly and DNA release that allows efficient DNA transcription. Noteworthy, all of these features are functionally important and can synergistically facilitate DNA transport from solution to the nucleus. As a consequences, BFPDs showed excellent gene transfection efficiency in several cell lines (∼95% in HEK293 cells) and superior biocompatibility compared with polyethylenimine (PEI). Meanwhile BFPDs provided excellent serum resistance in gene delivery. More importantly, BFPDs offer considerable in vivo gene transfection efficiency (in muscular tissues and in HepG2 tumor xenografts), which was approximately 77-fold higher than that of PEI in luciferase activity. These results suggest bioreducible fluorinated peptide dendrimers are a new class of highly efficient and safe gene delivery vectors and should be used in clinical settings.
NASA Astrophysics Data System (ADS)
Aliberti, P.; Feng, Y.; Takeda, Y.; Shrestha, S. K.; Green, M. A.; Conibeer, G.
2010-11-01
Theoretical efficiencies of a hot carrier solar cell considering indium nitride as the absorber material have been calculated in this work. In a hot carrier solar cell highly energetic carriers are extracted from the device before thermalisation, allowing higher efficiencies in comparison to conventional solar cells. Previous reports on efficiency calculations approached the problem using two different theoretical frameworks, the particle conservation (PC) model or the impact ionization model, which are only valid in particular extreme conditions. In addition an ideal absorber material with the approximation of parabolic bands has always been considered in the past. Such assumptions give an overestimation of the efficiency limits and results can only be considered indicative. In this report the real properties of wurtzite bulk InN absorber have been taken into account for the calculation, including the actual dispersion relation and absorbance. A new hybrid model that considers particle balance and energy balance at the same time has been implemented. Effects of actual impact ionization (II) and Auger recombination (AR) lifetimes have been included in the calculations for the first time, considering the real InN band structure and thermalisation rates. It has been observed that II-AR mechanisms are useful for cell operation in particular conditions, allowing energy redistribution of hot carriers. A maximum efficiency of 43.6% has been found for 1000 suns, assuming thermalisation constants of 100 ps and ideal blackbody absorption. This value of efficiency is considerably lower than values previously calculated adopting PC or II-AR models.
Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com; State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001; Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com
2016-08-15
The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process wasmore » simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.« less
Predator Persistence through Variability of Resource Productivity in Tritrophic Systems.
Soudijn, Floor H; de Roos, André M
2017-12-01
The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population. With increasing variability in productivity and starvation mortality in the juvenile prey, the prey availability increases in the size range preferred by the predator. The positive effect of prey mortality on the trophic transfer efficiency depends on the biologically realistic consideration of body size-dependent and food-dependent functions for growth and reproduction in our model. Our findings show that variability may promote the trophic transfer efficiency, indicating that environmental variability may sustain species at higher trophic levels in natural ecosystems.
NASA Astrophysics Data System (ADS)
Stapel, D.; Brox, O.; Benninghoven, A.
1999-02-01
The influence of primary ion energy, mass and composition on sputtering and secondary ion emission of arachidic acid Langmuir-Blodgett mono- and multilayers, deposited on gold substrates, has been investigated. Ga +, Ar +, 129Xe+ and SF 5+ in the energy range 5-25 keV were used as primary ions. Yields Y, damage cross-sections σ, and ion formation efficiencies E have been determined for selected secondary ions, characterizing the molecular overlayer, the overlayer substrate interface and the substrate. We found a strong influence of layer thickness and of primary ion energy, mass and composition on Y, σ and E. Information depth increases with increasing ion energy and decreasing mass of primary ions, being higher for SF 5+ than for Xe +. Y, σ and E increase with increasing primary ion mass. They are considerably higher for a molecular (SF 5+) than for atomic ions of comparable mass ( 129Xe+). The experimental results supply information on the extension of impact cascades, generated in different substrate materials by different primary ion species and different energies. They demonstrate that in analytical SIMS application information depths can be minimized and yields and ion formation efficiencies can be maximized by the use of molecular primary ions.
Dorzolamide Loaded Niosomal Vesicles: Comparison of Passive and Remote Loading Methods
Hashemi Dehaghi, Mohadeseh; Haeri, Azadeh; Keshvari, Hamid; Abbasian, Zahra; Dadashzadeh, Simin
2017-01-01
Glaucoma is a common progressive eye disorder and the treatment strategies will benefit from nanoparticulate delivery systems with high drug loading and sustained delivery of intraocular pressure lowering agents. Niosomes have been reported as a novel approach to improve drug low corneal penetration and bioavailability characteristics. Along with this, poor entrapment efficiency of hydrophilic drug in niosomal formulation remains as a major formulation challenge. Taking this perspective into consideration, dorzolamide niosomes were prepared employing two different loading methodologies (passive and remote loading methods) and the effects of various formulation variables (lipid to drug ratio, cholesterol percentage, drug concentration, freeze/thaw cycles, TPGS content, and external and internal buffer molarity and pH) on encapsulation efficiency were assessed. Encapsulation of dorzolamide within niosomes increased remarkably by the incorporation of higher cholesterol percentage as well as increasing the total lipid concentration. Remote loading method showed higher efficacy for drug entrapment compared to passive loading technique. Incorporation of TPGS in bilayer led to decrease in EE; however, retarded drug release rate. Scanning electron microscopy (SEM) studies confirmed homogeneous particle distribution, and spherical shape with smooth surface. In conclusion, the highest encapsulation can be obtained using phosphate gradient method and 50% cholesterol in Span 60 niosomal formulation. PMID:28979296
NASA Astrophysics Data System (ADS)
Cacabelos, Eva; Engelen, Aschwin H.; Mejia, Astrid; Arenas, Francisco
2012-08-01
Seagrasses are important habitat-formers and facilitator species that form the basis of complex ecosystems in estuaries throughout the world. However, general worldwide declines in seagrass beds have been reported with (invading) bloom-forming seaweeds, which threaten to displace the seagrasses and change the ecosystem fundamentally. We compared the functioning of the community with the intertidal seagrass Nanozostera noltii as the only macrophyte, in a mixed status with the invasive drift seaweed Gracilaria vermiculophylla and with only G. vermiculophylla as macrophyte. These assemblages represent different phases of seaweed invasion. Assemblage functioning was assessed as the metabolic state of the system based on carbon dioxide and oxygen metabolism during submerged and emerged conditions. Across all assemblages production rates were much higher during submerged than during emerged conditions. Assemblage productivity increased from monospecific N. noltii, through mixed to monospecific assemblages of G. vermiculophylla. However, the photosynthetic efficiency at low light intensities (α) of N. noltii assemblages was higher than those dominated by G. vermiculophylla. Metabolic performance patterns were mainly caused by increasing macrophyte biomass from N. noltii to G. vermiculophylla dominated assemblages. Therefore, with the shift from N. noltii to G. vermiculophylla domination, it is likely that these communities will become less efficient, but their productivity will increase considerably.
Considerations on the Optimal and Efficient Processing of Information-Bearing Signals
ERIC Educational Resources Information Center
Harms, Herbert Andrew
2013-01-01
Noise is a fundamental hurdle that impedes the processing of information-bearing signals, specifically the extraction of salient information. Processing that is both optimal and efficient is desired; optimality ensures the extracted information has the highest fidelity allowed by the noise, while efficiency ensures limited resource usage. Optimal…
A Formal Messaging Notation for Alaskan Aviation Data
NASA Technical Reports Server (NTRS)
Rios, Joseph L.
2015-01-01
Data exchange is an increasingly important aspect of the National Airspace System. While many data communication channels have become more capable of sending and receiving data at higher throughput rates, there is still a need to use communication channels efficiently with limited throughput. The limitation can be based on technological issues, financial considerations, or both. This paper provides a complete description of several important aviation weather data in Abstract Syntax Notation format. By doing so, data providers can take advantage of Abstract Syntax Notation's ability to encode data in a highly compressed format. When data such as pilot weather reports, surface weather observations, and various weather predictions are compressed in such a manner, it allows for the efficient use of throughput-limited communication channels. This paper provides details on the Abstract Syntax Notation One (ASN.1) implementation for Alaskan aviation data, and demonstrates its use on real-world aviation weather data samples as Alaska has sparse terrestrial data infrastructure and data are often sent via relatively costly satellite channels.
Pulse tube cryocoolers for industrial applications
NASA Astrophysics Data System (ADS)
Martin, J. L.; Martin, C. M.
2002-05-01
Stirling-type, high frequency pulse tube cryocoolers have received considerable interest in the past decade due to their high reliability, low vibration, and high efficiency. Most of the previous development of Stirling-type pulse tube cryocoolers has focused on relatively small machines with cooling powers in the range of 5 W at 80 K. In this paper, we discuss the extension of Stirling-type pulse tube cryocoolers to higher capacities for industrial applications. Mesoscopic Devices is currently developing a family of pulse tube cryocoolers with capacities ranging from 10 W at 80 K to over 1300 W at 80 K. Each of these machines uses a 50 or 60 Hz moving magnet linear compressor, inertance tube phase shift network, and either in-line or coaxial pulse tube expanders. With input powers of up to 20 kW, these large cryocoolers require different heat exchanger and regenerator designs to efficiently exchange heat with the load and environment. Design and construction techniques for the expander and heat exchangers are discussed.
NASA Astrophysics Data System (ADS)
Lin, Yu; He, Rong; Sun, Liping; Yang, Yushan; Li, Wenqing; Sun, Fei
2016-12-01
Gold-based nanocrystals have attracted considerable attention for drug delivery and biological applications due to their distinct shapes. However, overcoming biological barriers is a hard and inevitable problem, which restricts medical applications of nanomaterials in vivo. Seeking for an efficient transportation to penetrate biological barriers is a common need. There are three barriers: blood-testis barrier, blood-placenta barrier, and blood-brain barrier. Here, we pay close attention to the blood-testis barrier. We found that the pentacle gold-copper alloy nanocrystals not only could enter GC-2 cells in vitro in a short time, but also could overcome the blood-testis barrier and enter male germ cells in vivo. Furthermore, we demonstrated that the entrance efficiency would become much higher in the development stages. The results also suggested that the pentacle gold-copper alloy nanocrystals could easier enter to germ cells in the pathological condition. This system could be a new method for theranostics in the reproductive system.
Optimization of composite sandwich cover panels subjected to compressive loadings
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1991-01-01
An analysis and design method is presented for the design of composite sandwich cover panels that includes transverse shear effects and damage tolerance considerations. This method is incorporated into an optimization program called SANDOP (SANDwich OPtimization). SANDOP is used in the present study to design optimized composite sandwich cover panels for transport aircraft wing applications as a demonstration of its capabilities. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to identical constraints. Results indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and plus or minus 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density.
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Zhaoqi; Li, Jianlong; Gang, Chencheng; Zhang, Yanzhen; Odeh, Inakwu; Qi, Jiaguo
2017-05-01
The carbon use efficiency (CUE) of grassland, a ratio of net primary production (NPP) to gross primary productivity (GPP), is an important index representing the capacity of plants to transfer carbon from the atmosphere to terrestrial biomass. In this study, we used the Moderate Resolution Imaging Spectroradiometer (MODIS) data to calculate the global grassland CUE, and explore the spatiotemporal dynamic of global grassland CUE from 2000 to 2013 to discuss the response to climate variations. The results showed that the average annual CUE of different grassland types follows an order of: open shrublands > non-woody grasslands > closed shrublands > woody savannas > savannas. The higher grassland CUE mainly occurred in the regions with cold and dry climate. By contrast, the regions with the lower grassland CUE were mostly in warm and wet environments. Moreover, the CUE exhibited a globally positive correlation with precipitation and a negative correlation with temperature. Therefore, the grassland CUE has considerable spatial variation associated with grassland type, geographical location and climate change.
Dosselli, Ryan; Ruiz-González, Rubén; Moret, Francesca; Agnolon, Valentina; Compagnin, Chiara; Mognato, Maddalena; Sella, Valentina; Agut, Montserrat; Nonell, Santi; Gobbo, Marina; Reddi, Elena
2014-02-27
Cationic antimicrobial peptides (CAMPs) and photodynamic therapy (PDT) are attractive tools to combat infectious diseases and to stem further development of antibiotic resistance. In an attempt to increase the efficiency of bacteria inactivation, we conjugated a PDT photosensitizer, cationic or neutral porphyrin, to a CAMP, buforin or magainin. The neutral and hydrophobic porphyrin, which is not photoactive per se against Gram-negative bacteria, efficiently photoinactivated Escherichia coli after conjugation to either buforin or magainin. Conjugation to magainin resulted in the considerable strengthening of the cationic and hydrophilic porphyrin's interaction with the bacterial cells, as shown by the higher bacteria photoinactivation activity retained after washing the bacterial suspension. The porphyrin-peptide conjugates also exhibited strong interaction capability as well as photoactivity toward eukaryotic cells, namely, human fibroblasts. These findings suggest that these CAMPs have the potential to carry drugs and other types of cargo inside mammalian cells similar to cell-penetrating peptides.
NASA Astrophysics Data System (ADS)
Last, Isidore; Jortner, Joshua
2001-12-01
The ionization and Coulomb explosion of homonuclear Dn and Tn (n=959-8007) and heteronuclear (D2O)n and (T2O)n (n=459-2171) clusters in very intense (I=5×1014-5×1018 W cm-2) laser fields is studied using classical dynamics simulations. The efficiency of the d+d and d+t nuclear fusion driven by the Coulomb explosion (NFDCE) is explored. The d+d NFDCE of (D2O)n heteronuclear clusters is enhanced by energetic and kinematic effects for D+, while for (T2O)n heteronuclear clusters the kinetic energy of T+ is dominated by energetic effects. The cluster size dependence of the fusion reaction yield has been established. The heteronuclear clusters provide considerably higher d+d and d+t fusion reaction yields than the homonuclear clusters of the same size. The clusters consisting of both D and T atoms can provide highly efficient d+t fusion reactions.
Experimental results of superimposing 9.9 GHz extraordinary mode microwaves on 2.45 GHz ECRIS plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishiokada, Takuya, E-mail: nishiokada@nf.eie.eng.osaka-u.ac.jp; Nagaya, Tomoki; Hagino, Shogo
2016-02-15
Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection aremore » investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.« less
Planetary-scale surface water detection from space
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.
2017-12-01
Accurate, efficient and high-resolution methods of surface water detection are needed for a better water management. Datasets on surface water extent and dynamics are crucial for a better understanding of natural and human-made processes, and as an input data for hydrological and hydraulic models. In spite of considerable progress in the harmonization of freely available satellite data, producing accurate and efficient higher-level surface water data products remains very challenging. This presentation will provide an overview of existing methods for surface water extent and change detection from multitemporal and multi-sensor satellite imagery. An algorithm to detect surface water changes from multi-temporal satellite imagery will be demonstrated as well as its open-source implementation (http://aqua-monitor.deltares.nl). This algorithm was used to estimate global surface water changes at high spatial resolution. These changes include climate change, land reclamation, reservoir construction/decommissioning, erosion/accretion, and many other. This presentation will demonstrate how open satellite data and open platforms such as Google Earth Engine have helped with this research.
NASA Astrophysics Data System (ADS)
Guo, Wei; Li, Junmei; Sheikhi, Moheb; Jiang, Jie’an; Yang, Zhenhai; Li, Hongwei; Guo, Shiping; Sheng, Jiang; Sun, Jie; Bo, Baoxue; Ye, Jichun
2018-06-01
Light extraction and current injection are two important considerations in the development of high efficiency light-emitting-diodes (LEDs), but usually cannot be satisfied simultaneously in nanostructure patterned devices. In this work, we investigated near-UV LEDs with nanopillar and nanohole patterns to improve light extraction efficiency. Photoluminescence (PL) intensities were enhanced by 8.0 and 4.1 times for nanopillar and nanohole LEDs compared to that of planar LED. Nanopillar LED exhibits higher PL emission than that of the nanohole LED, attributing to a convex shape sidewall for more effective outward light scattering, and reduction of quantum-confined-stark-effect owing to strain relaxation. However, nanopillar LED exhibits lower electroluminescence intensity than the nanohole sample, which calls for further optimization in carrier distributions. Experimental results were further supported by near-field electric field simulations. This work demonstrates the difference in optical and electrical behaviors between the nanopillar and nanohole LEDs, paving the way for detailed understanding on luminescence extraction mechanisms of nanostructure patterned UV emitters.
Nishiokada, Takuya; Nagaya, Tomoki; Hagino, Shogo; Otsuka, Takuro; Muramatsu, Masayuki; Sato, Fuminobu; Kitagawa, Atsushi; Kato, Yushi
2016-02-01
Efficient production of multicharged ions has been investigated on the tandem-type ECRIS in Osaka University. According to the consideration of the accessibility conditions of microwaves to resonance and cutoff regions, it was suggested that the upper hybrid resonance (UHR) heating contributed to enhancement of ion beam intensity. In order to enhance multicharged ion beams efficiently, injecting higher frequency microwave with extraordinary (X-mode) toward UHR region has been tried. In this study, 2.45 GHz frequency microwaves are used for conventional ECR discharge, and 9.9 GHz frequency microwaves with X-mode are superimposed for UHR heating. The effects of additive microwave injection are investigated experimentally in terms of plasma parameters and electron energy distribution function (EEDF) measured by Langmuir probe and ion beam current. As the results show, it is confirmed that the electrons in the high energy region are affected by 9.9 GHz X-mode microwave injection from the detailed analysis of EEDF.
Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?
Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S
2016-01-01
Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selective emitter solar cell formation by NH3 plasma nitridation and single diffusion
NASA Astrophysics Data System (ADS)
Wu, Yung-Hsien; Chen, Lun-Lun; Wu, Jia-Rong; Wu, Min-Lin
2010-01-01
A new and simple process for fabricating a selective emitter solar cell has been proposed. Lightly and heavily doped emitters could be concurrently formed after a single POCl3 diffusion step through the selective formation of SiNx, which serves as the diffusion barrier and can be grown by NH3 plasma nitridation of the Si surface. The desired phosphorus depth profile for the lightly and heavily doped region verifies the eligibility of this process. From the electrical characterization, the selective emitter solar cell fabricated by this process manifests a higher absolute conversion efficiency than a conventional one by 0.5%. It is the enhanced response to the short wavelength light and the reduced surface recombination that causes the considerable improvement in conversion efficiency which is beneficial to further hold the competitive advantage for solar cell manufacturers. Most importantly, the proposed process can be fully integrated into the conventional solar cell process in a mass-production laboratory.
Liang, Zhihua; Das, Atreyee; Beerman, Daniel; Hu, Zhiqiang
2010-06-01
Biomass characteristics and microbial community diversity between a submerged membrane bioreactor with mixed liquor recirculation (MLE/MBR) and a membrane bioreactor with the addition of integrated fixed biofilm medium (IFMBR) were compared for organic carbon and nitrogen removal from wastewater. The two bench-scale MBRs were continuously operated in parallel at a hydraulic retention time (HRT) of 24h and solids retention time (SRT) of 20d. Both MBRs demonstrated good COD removal efficiencies (>97.7%) at incremental inflow organic loading rates. The total nitrogen removal efficiencies were 67% for MLE/MBR and 41% for IFMBR. The recirculation of mixed liquor from aerobic zone to anoxic zone in the MLE/MBR resulted in higher microbial activities of heterotrophic (46.96mgO(2)/gVSSh) and autotrophic bacteria (30.37mgO(2)/gVSSh) in the MLE/MBR compared to those from IFMBR. Terminal Restriction Fragment Length Polymorphism analysis indicated that the higher nitrifying activities were correlated with more diversity of nitrifying bacterial populations in the MLE/MBR. Membrane fouling due to bacterial growth was evident in both the reactors. Even though the trans-membrane pressure and flux profiles of MLE/MBR and IFMBR were different, the patterns of total membrane resistance changes had no considerable difference under the same operating conditions. The results suggest that metabolic selection via alternating anoxic/aerobic processes has the potential of having higher bacterial activities and improved nutrient removal in MBR systems. Copyright 2010 Elsevier Ltd. All rights reserved.
Dynamics of the inlet system of a four-stroke engine
NASA Technical Reports Server (NTRS)
Boden, R H; Schecter, Harry
1944-01-01
Tests were run on a single-cylinder and a multicylinder four-stroke engine in order to determine the effect of the dynamics of the inlet system upon indicated mean effective pressure. Tests on the single-cylinder engine were made at various speeds, inlet valve timings, and inlet pipe lengths. These tests indicated that the indicated mean effective pressure could be raised considerably at any one speed by the use of a suitably long inlet pipe. Tests at other speeds with this length of pipe showed higher indicated mean effective pressure than with a very short pipe, although not so high as could be obtained with the pipe length adjusted for each speed. A general relation was discovered between optimum time of inlet valve closing and pipe length; namely, that longer pipes require later inlet valve closing in order to be fully effective. Tests were also made on three cylinders connected to a single pipe. With this arrangement, increased volumetric efficiency at low speed was obtainable by using a long pipe, but only with a sacrifice of volumetric efficiency at high speed. Volumetric efficiency at high speed was progressively lower as the pipe length was increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beerbower, J.R.; Olson, E.C.; Hotton, N. III
1992-01-01
Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fibermore » tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.« less
Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.
Biswas, Rana; Timmons, Erik
2013-09-09
A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.
Pricing American Asian options with higher moments in the underlying distribution
NASA Astrophysics Data System (ADS)
Lo, Keng-Hsin; Wang, Kehluh; Hsu, Ming-Feng
2009-01-01
We develop a modified Edgeworth binomial model with higher moment consideration for pricing American Asian options. With lognormal underlying distribution for benchmark comparison, our algorithm is as precise as that of Chalasani et al. [P. Chalasani, S. Jha, F. Egriboyun, A. Varikooty, A refined binomial lattice for pricing American Asian options, Rev. Derivatives Res. 3 (1) (1999) 85-105] if the number of the time steps increases. If the underlying distribution displays negative skewness and leptokurtosis as often observed for stock index returns, our estimates can work better than those in Chalasani et al. [P. Chalasani, S. Jha, F. Egriboyun, A. Varikooty, A refined binomial lattice for pricing American Asian options, Rev. Derivatives Res. 3 (1) (1999) 85-105] and are very similar to the benchmarks in Hull and White [J. Hull, A. White, Efficient procedures for valuing European and American path-dependent options, J. Derivatives 1 (Fall) (1993) 21-31]. The numerical analysis shows that our modified Edgeworth binomial model can value American Asian options with greater accuracy and speed given higher moments in their underlying distribution.
Powder Materials and Energy Efficiency in Transportation: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Marquis, Fernand D. S.
2012-03-01
The transportation industry accounts for one quarter of global energy use and has by far the largest share of global oil consumption. It used 51.5% of the oil worldwide in 2003. Mobility projections show that it is expected to triple by 2050 with associated energy use. Considerable achievements recently have been obtained in the development of powder and powder-processed metallic alloys, metal matrix composites, intermetallics, and carbon fiber composites. These achievements have resulted in their introduction to the transportation industry in a wide variety of transportation components with significant impact on energy efficiency. A significant number of nano, nanostructured, and nanohybrid materials systems have been deployed. Others, some of them incorporating carbon nanotubes and graphene, are under research and development and exhibit considerable potential. Airplane redesign using a materials and functional systems integration approach was used resulting in considerable system improvements and energy efficiency. It is expected that this materials and functional systems integration soon will be adopted in the design and manufacture of other advanced aircrafts and extended to the automotive industry and then to the marine transportation industry. The opportunities for the development and application of new powder materials in the transportation industry are extensive, with considerable potential to impact energy utilization. However, significant challenges need to be overcome in several critical areas.
ON THE RADIO AND OPTICAL LUMINOSITY EVOLUTION OF QUASARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singal, J.; Petrosian, V.; Lawrence, A.
2011-12-20
We calculate simultaneously the radio and optical luminosity evolutions of quasars, and the distribution in radio loudness R defined as the ratio of radio and optical luminosities, using a flux-limited data set containing 636 quasars with radio and optical fluxes from White et al. We first note that when dealing with multi-variate data it is imperative to first determine the true correlations among the variables, not those introduced by the observational selection effects, before obtaining the individual distributions of the variables. We use the methods developed by Efron and Petrosian which are designed to obtain unbiased correlations, distributions, and evolutionmore » with redshift from a data set truncated due to observational biases. It is found that the population of quasars exhibits strong positive correlation between the radio and optical luminosities. With this correlation, whether intrinsic or observationally induced accounted for, we find that there is a strong luminosity evolution with redshift in both wavebands, with significantly higher radio than optical evolution. We conclude that the luminosity evolution obtained by arbitrarily separating the sources into radio-loud (R > 10) and radio-quiet (R < 10) populations introduces significant biases that skew the result considerably. We also construct the local radio and optical luminosity functions and the density evolution. Finally, we consider the distribution of the radio-loudness parameter R obtained from careful treatment of the selection effects and luminosity evolutions with that obtained from the raw data without such considerations. We find a significant difference between the two distributions and no clear sign of bi-modality in the true distribution for the range of R values considered. Our results indicate therefore, somewhat surprisingly, that there is no critical switch in the efficiency of the production of disk outflows/jets between very radio-quiet and very radio-loud quasars, but rather a smooth transition. Also, this efficiency seems higher for the high-redshift and more luminous sources in the sample considered.« less
Efficiency control of dietary pesticide intake reduction by human biomonitoring.
Göen, Thomas; Schmidt, Lukas; Lichtensteiger, Walter; Schlumpf, Margret
2017-03-01
In spite of food safety controls for pesticide residues, a conventional diet still leads to a noticeable exposure of the general population to several pesticides. In a pilot study the response of exposure reduction by organic diet intervention on the urinary levels of pesticide metabolites was investigated. In the study two adult individuals were kept on a conventional diet for 11days and morning urine voids were collected at the last four days of the period. Afterwards, the participants switched to exclusively organic food intake for 18days and likewise morning urine samples were collected at the last four days of this period. In the urine samples six pyrethroid metabolites, six dialkylphosphates, four phenolic parameter for organophosphate pesticides and carbamates, 6-chloronicotinic acid (ClNA) as parameter for neonicotinoid insecticides, seven phenoxy herbicides, glyphosate and its metabolite AMPA were quantified using gas chromatographic mass spectrometric methods. Generally, the comparative analyses revealed greater shares as well as higher levels of the parameters in the samples taken during the common diet period compared to the organic diet period. Considerable decrease of the levels was found for almost all pyrethroid metabolites, dialkyphosphates and phenoxy herbicids, as well as for the phenolic metabolites 4-nitrophenol and 3,5,6-trichloropyridinol. In contrast, higher values were found for the organic diet period for ClNA and the metabolite of coumaphos in one of the volunteers. The present study confirms the results of former studies which indicated that an organic diet intervention results in considerable lower exposure to organophosphate pesticides and pyrethroids. It also verifies the former experience that monitoring of urinary parameters for non-persistent pesticides permits a reliable efficiency control of short-time effects by dietary interventions. Additionally to former studies, the results of the present study highlight the need of an extension of the parameter spectrum to all prominent pesticide groups. Copyright © 2016 Elsevier GmbH. All rights reserved.
Layout and cabling considerations for a large communications antenna array
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.
1993-01-01
Layout considerations for a large deep space communications antenna array are discussed. A fractal geometry for the antenna layout is described that provides optimal packing of antenna elements, efficient cable routing, and logical division of the array into identical sub-arrays.
NASA Astrophysics Data System (ADS)
Huang, Hai-Bo; Wang, Yu; Cai, Feng-Ying; Jiao, Wen-Bin; Zhang, Ning; Liu, Cheng; Cao, Hai-Lei; Lü, Jian
2017-12-01
A family of new CdS@SAC composite materials was successfully prepared through the deposition of as-synthesized CdS nanomaterials on various lotus-seedpod-derived activated carbon (SAC) materials. The SAC supports derived at different activation temperatures exhibited considerably large surface areas and various microstructures that were responsible for the enhanced photocatalytic performance of CdS@SAC composite materials towards the photodegradation of rhodamine B (RhB) under visible irradiation. The best-performing CdS@SAC-800 showed excellent photocatalytic activity with a rate constant of ca. 2.40×10–2 min–1, which was approximately 13 times higher than that of the CdS precursor. Moreover, the estimated band gap energy of CdS@SAC-800 (1.99 eV) was significantly lower than that of the CdS precursor (2.22 eV), which suggested considerable strength of interface contact between the CdS and carbon support, as well as efficient light harvesting capacity of the composite material. Further photocatalytic study indicated that the SAC supports enhanced synergistically the accessibility of organic substrates, the efficiency of solar energy harvesting, as well as the separation of photogenerated electrons and holes in this system. Improved photocatalytic activity of the composite materials was largely due to the increased generation of active species such as h+, OH•, O2•‑ etc. This work provides a facile and low-cost pathway to fabricate composite photocatalysts for viable degradation of organic pollutants.
NASA Astrophysics Data System (ADS)
Song, Hai-Qing; Li, Rui-Quan; Duan, Shun; Yu, Bingran; Zhao, Hong; Chen, Da-Fu; Xu, Fu-Jian
2015-03-01
Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications.Polypeptide-based degradable polyplexes attracted considerable attention in drug delivery systems. Polysaccharides including cyclodextrin (CD), dextran, and chitosan (CS) were readily grafted with cationic poly(aspartic acid)s (PAsps). To further enhance the transfection performances of PAsp-based polyplexes, herein, different types of ligand (folic acid, FA)-functionalized degradable polyplexes were proposed based on the PAsp-grafted chitosan-cyclodextrin conjugate (CCPE), where multiple β-CDs were tied on a CS chain. The FA-functionalized CCPE (i.e., CCPE-FA) was obtained via a host-guest interaction between the CD units of CCPE and the adamantane (Ad) species of Ad-modified FA (Ad-FA). The resulting CCPE/pDNA, CCPE-FA/pDNA, and ternary CCPE-FA/CCPE/pDNA (prepared by layer-by-layer assembly) polyplexes were investigated in detail using different cell lines. The CCPE-based polyplexes displayed much higher transfection efficiencies than the CS-based polyplexes reported earlier by us. The ternary polyplexes of CCPE-FA/CCPE/pDNA produced excellent gene transfection abilities in the folate receptor (FR)-positive tumor cells. This work would provide a promising means to produce highly efficient polyplexes for future gene therapy applications. Electronic supplementary information (ESI) available: 1H NMR assay, synthetic route of Ad-FA, AFM images and cellular internalization rate can be found in ESI. See DOI: 10.1039/c4nr07515c
Digital voice recording: An efficient alternative for data collection
Mark A. Rumble; Thomas M. Juntti; Thomas W. Bonnot; Joshua J. Millspaugh
2009-01-01
Study designs are usually constrained by logistical and budgetary considerations that can affect the depth and breadth of the research. Little attention has been paid to increasing the efficiency of data recording. Digital voice recording and translation may offer improved efficiency of field personnel. Using this technology, we increased our data collection by 55...
Social Efficiency Splintered: Multiple Meanings Instead of the Hegemony of One
ERIC Educational Resources Information Center
Null, J. Wesley
2004-01-01
"Social efficiency" is one of the most popular phrases in the fields of curriculum and educational history, but it often has been used without careful consideration of the various historical interpretations associated with it. This article challenges contemporary usage of "social efficiency" by explicating primary source documents from the early…
Navier-Stokes and viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Vandalsem, William R.
1989-01-01
Some considerations toward developing numerical procedures for simulating viscous compressible flows are discussed. Both Navier-Stokes and boundary layer field methods are considered. Because efficient viscous-inviscid interaction methods have been difficult to extend to complex 3-D flow simulations, Navier-Stokes procedures are more frequently being utilized even though they require considerably more work per grid point. It would seem a mistake, however, not to make use of the more efficient approximate methods in those regions in which they are clearly valid. Ideally, a general purpose compressible flow solver that can optionally take advantage of approximate solution methods would suffice, both to improve accuracy and efficiency. Some potentially useful steps toward this goal are described: a generalized 3-D boundary layer formulation and the fortified Navier-Stokes procedure.
Large scale prop-fan structural design study. Volume 1: Initial concepts
NASA Technical Reports Server (NTRS)
Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.
1988-01-01
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.
Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7
NASA Technical Reports Server (NTRS)
Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.
1988-01-01
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.
Purchasing factor concentrates in the 21st century through competitive tendering.
Hay, C R M
2013-09-01
The increasing intensity of treatment, the widespread adoption of factor VIII and IX prophylaxis and increasing usage over the past decade have led to haemophilia becoming an almost uniquely expensive condition to treat. The average adult with severe haemophilia A in the UK used 250,000 IU of factor VIII in 2011/2012, at a cost in excess of £ 100,000 p.a. The cost to the end-user may be considerably higher than this for some US patients supplied by home care companies with high on-costs. This has led to a high level of administrative scrutiny of treatment and an imperative to procure clotting factor concentrates more efficiently and collectively. National procurement schemes have run successfully in various countries and will become commoner. The UK system of procurement is described. This system, following EU procurement rules, evaluated products technically and by price. The price of bioequivalent products was determined by reverse e-auction. Considerable cost reductions were achieved whilst retaining all suppliers and maintaining a degree of prescribing freedom. Elements of this system could be more widely applied. © 2013 John Wiley & Sons Ltd.
Testing CuO nanowires as a novel X-ray to electron converter for gas-filled radiation detectors
NASA Astrophysics Data System (ADS)
Zarei, H.; Saramad, S.; Razaghi, S.
2017-10-01
Nanowires, due to their special physical properties and also high surface to volume ratio, can have considerable applications in designing and development of novel nanodevices. For the radiation shielding, higher absorption coefficient of nanostructures in comparison to bulk ones is an advantage. In gas detectors, designing a proper converter that absorbs higher energy of gamma and X-rays and convert it to more free electrons is one of the major problems. Since the nanowires have higher surface to volume ratio in comparison to the bulk one, so it is expected that by optimizing the thickness, the generated electrons can have higher chance to escape from the surface. In this work, the random CuO nanowires with diameter of 40 nm are deposited on thin glass slide. This nanostructure with different thicknesses are tested by plastic and CsI scintillators by X-ray tube with HVs in the range of 16 to 25 kV. The results show that for the same thickness, the CuO nanowires can release electrons six times more than the bulk ones and for the same energy the optimum QE of nanoconverter can be three times greater than the bulk converter. This novel nanoconverter with higher detection efficiency can have applications in high energy physics, medical imaging and also astronomy.
Lee, Won-Heong; Jin, Yong-Su
2017-03-10
Although simultaneous saccharification and fermentation (SSF) of cellulosic biomass can offer efficient hydrolysis of cellulose through alleviating feed-back inhibition of cellulases by glucose, supplementation of β-glucosidase is necessary because most fermenting microorganisms cannot utilize cellobiose. Previously, we observed that SSF of cellulose by an engineered Saccharomyces cerevisiae expressing a cellobiose transporter (CDT-1) and an intracellular β-glucosidase (GH1-1) without β-glucosidase could not be performed as efficiently as the traditional SSF with extracellular β-glucosidase. However, we improved the ethanol production from SSF of cellulose by employing a further engineered S. cerevisiae expressing a mutant cellobiose transporter [CDT-1 (F213L) exhibiting higher V MAX than CDT-1] and GH1-1 in this study. Furthermore, limitation of cellobiose formation by reducing the amounts of cellulases mixture in SSF could lead the further engineered strain to produce ethanol considerably better than the parental strain with β-glucosidase. Probably, better production of ethanol by the further engineered strain seemed to be due to a higher affinity to cellobiose, which might be attributed to not only 2-times lower Monod constant (K S ) for cellobiose than K S of the parental strain for glucose but also 5-times lower K S than Michaelis-Menten constant (K M ) of the extracellular β-glucosidase for glucose. Our results suggest that modification of the cellobiose transporter in the engineered yeast to transport lower level of cellobiose enables a more efficient SSF for producing ethanol from cellulose. Copyright © 2017 Elsevier B.V. All rights reserved.
Light-activated endosomal escape using upconversion nanoparticles for enhanced delivery of drugs
NASA Astrophysics Data System (ADS)
Gnanasammandhan, Muthu Kumara; Bansal, Akshaya; Zhang, Yong
2013-02-01
Nanoparticle-based delivery of drugs has gained a lot of prominence recently but the main problem hampering efficient delivery of payload is the clearing or degradation of nanoparticles by endosomes. Various strategies have been used to overcome this issue and one such effective solution is Photochemical Internalization (PCI). This technique involves the activation of certain photosensitizing compounds by light, which accumulate specifically in the membranes of endocytic vesicles. The activated photosensitizers induce the formation of reactive oxygen species which in turn induces localized disruption of endosomal membranes. But the drawback of this technique is that it needs blue light for activation and hence confined to be used only in in-vitro systems due to the poor tissue penetration of blue light. Here, we report the use of Upconversion nanoparticles (UCNs) as a transducer for activation of the photosensitizer, TPPS 2a. NIR light has good tissue penetrating ability and thus enables PCI in greater depths. Highly monodisperse, uniformly-sized, sub-100 nm, biocompatible upconversion nanoparticles were synthesized with a mesoporous silica coating. These UCNs activated TPPS 2a efficiently in solution and in cells. Paclitaxel, an anti-cancer drug was used as a model drug and was loaded into the mesoporous silica coating. B16F0 cells transfected with drug-loaded UCNs and irradiated with NIR showed significantly higher nanoparticle uptake and in turn higher cell death caused by the delivered drug. This technique can be used to enhance the delivery of any therapeutic molecule and thus increase the therapeutic efficiency considerably.
NASA Astrophysics Data System (ADS)
Iskin, Ibrahim
Energy efficiency stands out with its potential to address a number of challenges that today's electric utilities face, including increasing and changing electricity demand, shrinking operating capacity, and decreasing system reliability and flexibility. Being the least cost and least risky alternative, the share of energy efficiency programs in utilities' energy portfolios has been on the rise since the 1980s, and their increasing importance is expected to continue in the future. Despite holding great promise, the ability to determine and invest in only the most promising program alternatives plays a key role in the successful use of energy efficiency as a utility-wide resource. This issue becomes even more significant considering the availability of a vast number of potential energy efficiency programs, the rapidly changing business environment, and the existence of multiple stakeholders. This dissertation introduces hierarchical decision modeling as the framework for energy efficiency program planning in electric utilities. The model focuses on the assessment of emerging energy efficiency programs and proposes to bridge the gap between technology screening and cost/benefit evaluation practices. This approach is expected to identify emerging technology alternatives which have the highest potential to pass cost/benefit ratio testing procedures and contribute to the effectiveness of decision practices in energy efficiency program planning. The model also incorporates rank order analysis and sensitivity analysis for testing the robustness of results from different stakeholder perspectives and future uncertainties in an attempt to enable more informed decision-making practices. The model was applied to the case of 13 high priority emerging energy efficiency program alternatives identified in the Pacific Northwest, U.S.A. The results of this study reveal that energy savings potential is the most important program management consideration in selecting emerging energy efficiency programs. Market dissemination potential and program development and implementation potential are the second and third most important, whereas ancillary benefits potential is the least important program management consideration. The results imply that program value considerations, comprised of energy savings potential and ancillary benefits potential; and program feasibility considerations, comprised of program development and implementation potential and market dissemination potential, have almost equal impacts on assessment of emerging energy efficiency programs. Considering the overwhelming number of value-focused studies and the few feasibility-focused studies in the literature, this finding clearly shows that feasibility-focused studies are greatly understudied. The hierarchical decision model developed in this dissertation is generalizable. Thus, other utilities or power systems can adopt the research steps employed in this study as guidelines and conduct similar assessment studies on emerging energy efficiency programs of their interest.
Luo, Jie; Qi, Shihua; Gu, X W Sophie; Wang, Jinji; Xie, Xianming
2016-05-01
Previous studies have shown that phytoremediation usually requires soil amendments, such as chelates, to mobilize low bioavailability heavy metals for better plant absorption and, consequently, for remediation efficiency. A total dry biomass of 3.39 and 0.0138 kg per plant was produced by a phytoremediator, Eucalyptus globulus, and a nitrogen fixing crop, Cicer arietinum (chickpea), respectively. The accumulation of Pb in E. globulus and chickpea reached 1170.61 and 1.33 mg per plant (700 and 324 mg kg(-1)), respectively, under an ethylene diamine tetraacetic acid (EDTA) treatment, which was a five and sixfold increase over the value in untreated experiments, respectively. EDTA enhanced the phytoremediation efficiency and increased the heavy metal concentration in the soil solution. In pot experiments, approximately 27 % of the initial Pb leached from the spiked soil after EDTA and 25 mm artificial precipitation additions into soil without plants, which was considerably larger than the value under the same conditions without EDTA application (7 %). E. globulus planted in a mixed culture had higher water use efficiency than monocultures of either species in field experiments, and E. globulus intercepted almost all of the artificial precipitation in the pot experiments. This study demonstrates that E. globulus can maximize the potential of EDTA for improving the phytoremediation efficiency and minimizing its negative effects to the environment simultaneously by absorbing the metal-rich leachate, especially in a mixed culture of E. globulus and chickpeas.
Study of reverse Brayton cryocooler with Helium-Neon mixture for HTS cable
NASA Astrophysics Data System (ADS)
Dhillon, A. K.; Ghosh, P.
2017-12-01
As observed in the earlier studies, helium is more efficient than neon as a refrigerant in a reverse Brayton cryocooler (RBC) from the thermodynamic point of view. However, the lower molecular weight of helium leads to higher refrigerant inventory as compared to neon. Thus, helium is suitable to realize the high thermodynamic efficiency of RBC whereas neon is appropriate for the compactness of the RBC. A binary mixture of helium and neon can be used to achieve high thermodynamic efficiency in the compact reverse Brayton cycle (RBC) based cryocooler. In this paper, an attempt has been made to analyze the thermodynamic performance of the RBC with a binary mixture of helium and neon as the working fluid to provide 1 kW cooling load for high temperature superconductor (HTS) power cables working with a temperature range of 50 K to 70 K. The basic RBC is simulated using Aspen HYSYS V8.6®, a commercial process simulator. Sizing of each component based on the optimized process parameters for each refrigerant is performed based on a computer code developed using Engineering Equation Solver (EES-V9.1). The recommendation is provided for the optimum mixture composition of the refrigerant based on the trade-off factors like thermodynamic efficiency such as the exergy efficiency and equipment considerations. The outcome of this study may be useful for recommending a suitable refrigerant for the RBC operating at a temperature level of 50 K to 70 K.
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
Optimal layout design of obstacles for panic evacuation using differential evolution
NASA Astrophysics Data System (ADS)
Zhao, Yongxiang; Li, Meifang; Lu, Xin; Tian, Lijun; Yu, Zhiyong; Huang, Kai; Wang, Yana; Li, Ting
2017-01-01
To improve the pedestrian outflow in panic situations by suitably placing an obstacle in front of the exit, it is vital to understand the physical mechanism behind the evacuation efficiency enhancement. In this paper, a robust differential evolution is firstly employed to optimize the geometrical parameters of different shaped obstacles in order to achieve an optimal evacuation efficiency. Moreover, it is found that all the geometrical parameters of obstacles could markedly influence the evacuation efficiency of pedestrians, and the best way for achieving an optimal pedestrian outflow is to slightly shift the obstacle from the center of the exit which is consistent with findings of extant literature. Most importantly, by analyzing the profiles of density, velocity and specific flow, as well as the spatial distribution of crowd pressure, we have proven that placing an obstacle in panic situations does not reduce or absorb the pressure in the region of exit, on the contrary, promotes the pressure to a much higher level, hence the physical mechanism behind the evacuation efficiency enhancement is not a pressure decrease in the region of exit, but a significant reduction of high density region by effective separation in space which finally causes the increasing of escape speed and evacuation outflow. Finally, it is clearly demonstrated that the panel-like obstacle is considerably more robust and stable than the pillar-like obstacle to guarantee the enhancement of evacuation efficiency under different initial pedestrian distributions, different initial crowd densities as well as different desired velocities.
Impact of crystal orientation on the modulation bandwidth of InGaN/GaN light-emitting diodes
NASA Astrophysics Data System (ADS)
Monavarian, M.; Rashidi, A.; Aragon, A. A.; Oh, S. H.; Rishinaramangalam, A. K.; DenBaars, S. P.; Feezell, D.
2018-01-01
High-speed InGaN/GaN blue light-emitting diodes (LEDs) are needed for future gigabit-per-second visible-light communication systems. Large LED modulation bandwidths are typically achieved at high current densities, with reports close to 1 GHz bandwidth at current densities ranging from 5 to 10 kA/cm2. However, the internal quantum efficiency (IQE) of InGaN/GaN LEDs is quite low at high current densities due to the well-known efficiency droop phenomenon. Here, we show experimentally that nonpolar and semipolar orientations of GaN enable higher modulation bandwidths at low current densities where the IQE is expected to be higher and power dissipation is lower. We experimentally compare the modulation bandwidth vs. current density for LEDs on nonpolar (10 1 ¯ 0 ), semipolar (20 2 ¯ 1 ¯) , and polar (" separators="|0001 ) orientations. In agreement with wavefunction overlap considerations, the experimental results indicate a higher modulation bandwidth for the nonpolar and semipolar LEDs, especially at relatively low current densities. At 500 A/cm2, the nonpolar LED has a 3 dB bandwidth of ˜1 GHz, while the semipolar and polar LEDs exhibit bandwidths of 260 MHz and 75 MHz, respectively. A lower carrier density for a given current density is extracted from the RF measurements for the nonpolar and semipolar LEDs, consistent with the higher wavefunction overlaps in these orientations. At large current densities, the bandwidth of the polar LED approaches that of the nonpolar and semipolar LEDs due to coulomb screening of the polarization field. The results support using nonpolar and semipolar orientations to achieve high-speed LEDs at low current densities.
NASA Astrophysics Data System (ADS)
Kruger, Nimrod; Manor, Assaf; Kurtulik, Matej; Sabapathy, Tamilarasan; Rotschild, Carmel
2017-04-01
While single-junction photovoltaics (PV's) are considered limited in conversion efficiency according to the Shockley-Queisser limit, concepts such as solar thermo-photovoltaics aim to harness lost heat and overcome this barrier. We claim the novel concept of Thermally Enhanced Photoluminescence (TEPL) as an easier route to achieve this goal. Here we present a practical TEPL device where a thermally insulated photo-luminescent (PL) absorber, acts as a mediator between a photovoltaic cell and the sun. This high temperature absorber emits blue-shifted PL at constant flux, then coupled to a high band gap PV cell. This scheme promotes PV conversion efficiencies, under ideal conditions, higher than 62% at temperatures lower than 1300K. Moreover, for a PV and absorber band-gaps of 1.45eV (GaAs PV's) and 1.1eV respectively, under practical conditions, solar concentration of 1000 suns, and moderate thermal insulation; the conversion efficiencies potentially exceed 46%. Some of these practical conditions belong to the realm of optical design; including high photon recycling (PR) and absorber external quantum efficiency (EQE). High EQE values, a product of the internal QE of the active PL materials and the extraction efficiency of each photon (determined by the absorber geometry and interfaces), have successfully been reached by experts in laser cooling technology. PR is the part of emitted low energy photons (in relation to the PV band-gap) that are reabsorbed and consequently reemitted with above band-gap energies. PV back-reflector reflectivity, also successfully achieved by those who design the cutting edge high efficiency PV cells, plays a major role here.
Benefits of Efficient Windows | Efficient Windows Collaborative
Foundry Foundry New Construction Windows Window Selection Tool Selection Process Design Guidance Installation Replacement Windows Window Selection Tool Assessing Options Selection Process Design Guidance Installation Understanding Windows Benefits Design Considerations Measuring Performance Performance Standards
49 CFR 1.82 - The Federal Aviation Administration.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., with due consideration of safety, capacity, efficiency, environmental compatibility and sustainability... connections to surface transportation, and other efforts to increase the environmental sustainability of the... improve airport safety, efficiency, and sustainability; (13) Exercising the final authority for carrying...
49 CFR 1.82 - The Federal Aviation Administration.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., with due consideration of safety, capacity, efficiency, environmental compatibility and sustainability... connections to surface transportation, and other efforts to increase the environmental sustainability of the... improve airport safety, efficiency, and sustainability; (13) Exercising the final authority for carrying...
49 CFR 1.82 - The Federal Aviation Administration.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., with due consideration of safety, capacity, efficiency, environmental compatibility and sustainability... connections to surface transportation, and other efforts to increase the environmental sustainability of the... improve airport safety, efficiency, and sustainability; (13) Exercising the final authority for carrying...
Motor efficiency: compare apples to apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keinz, J.R.
1982-08-01
The efficiency differences between electric motors are now a significant cost consideration for many companies, but evaluating motor efficiency is not as straightforward as it should be. The buyer must look beyond the manufacturer's designated efficiency, which is too generalized, and the results of independent tests, which vary because of the difficulty in establishing standard conditions. Manufacturers may be following established testing procedures, but not labeling in accordance with the standards. Manufacturers should also supply efficiency versus load-curve data. (DCK)
Pinho, Micaela Moreira; Pinto Borges, Ana
Activity was undertaken to develop a Prioritization Scoring Index for Portugal and Bulgaria that weights the importance given to ethical rationing principles that should guide decisions at the bedside. Data from two random samples of 355 Portuguese and 298 Bulgarian members of the public were collected from an online questionnaire. Questions asked about the level of importance given to specific issues related to patient's prioritization criteria. Responses were analyzed quantitatively with the SPSS. In the process of selecting the patient to treat, Portuguese and Bulgarian respondents seem unanimous in giving greater importance to (i) the treatment outcomes, (ii) the severity of illness, (iii) children, and (iv) patients' fragility. In general, Portuguese and Bulgarian respondents allocate more than 50% of the prioritization weight to equity considerations, approximately 35% to efficiency considerations, and 5% to lottery selection. Even so, Bulgarian respondents rate highly the equity and less the efficiency consideration than Portuguese respondents. Although the pursuit of efficiency seems to be valued by respondents, their major concern seems to be with the reduction of inequalities in health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar; Wei, Max; Letschert, Virginie
2015-10-01
Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with emissions and growth projections, moving to efficient room air conditioning (~30% more efficient than current technology) in parallel with low-GWP refrigerants in room air conditioning could avoid up to ~25 billion tonnes of CO2 in 2030, ~33 billion in 2040, and ~40 billion in 2050, i.e. cumulative savings up to 98 billion tonnes of CO2 by 2050. Therefore, superefficient room ACs using low-GWP refrigerants merit serious consideration to maximize peak load reduction and GHG savings.« less
NASA Astrophysics Data System (ADS)
Cheng, Lin; Wang, Rui
2012-01-01
Surface-modified carbon nanotubes (CNTs) and nano-Ce-Zr mixed oxides (CZO) were prepared and employed initially as supports of H3PW12O40 (HPW) for NOx adsorption-decomposition. Both CNTs and nano-CZO are favorable supports for HPW. After loading with HPW, the NOx adsorption efficiency increases, especially for HPW/CZO in which the highest adsorption efficiency can achieve 98% at the HPW loading of 70%, much higher than that of single HPW. NOx adsorption efficiency can be influenced considerably by catalyst preparing conditions, in particularly, ethyl alcohol is superior to water as solvent for HPW loading onto CNTs; the -OH containing CNTs shows better promotion effect on the adsorption of NOx than that containing -COOH when using absolute ethyl alcohol as solvent; mechanical grinding method is superior to incipient impregnation method in loading HPW onto the support of CZO. For both catalysts of HPW/CNTs and HPW/CZO, with the increase of HPW loading, the NOx adsorption efficiency tends to reach a peak value before dropping down. Heated from 150°C to 450°C at a rate of 50°C/min, the adsorbed NO was found to decompose into N2, O2 and N2O, and yields of N2 being 21.8% and 27.3%, respectively for HPW/CNTs and HPW/CZO were obtained.
Cutting efficiency of diamond burs operated with electric high-speed dental handpiece on zirconia.
Nakamura, Keisuke; Katsuda, Yusuke; Ankyu, Shuhei; Harada, Akio; Tenkumo, Taichi; Kanno, Taro; Niwano, Yoshimi; Egusa, Hiroshi; Milleding, Percy; Örtengren, Ulf
2015-10-01
Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations. © 2015 Eur J Oral Sci.
In-Situ Optical Imaging of Carrier Transport in Multilayer Solar Cells
2008-06-01
5 1. Efficiency Considerations....................................................... 5 2. Construction...improved efficiency solar cells. The need to move forward on these improvements is driven by the increasing price of oil and other traditional fuels...any improvement in material in a high efficiency multi-junction cell can be difficult to mathematically model, and much effort is involved in
Economic efficiency and risk character of fire management programs, Northern Rocky Mountains
Thomas J. Mills; Frederick W. Bratten
1988-01-01
Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...
UF6 breeder reactor power plants for electric power generation
NASA Technical Reports Server (NTRS)
Rust, J. H.; Clement, J. D.; Hohl, F.
1976-01-01
The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.
A proposal for antiparallel acceleration of positrons using CEBAF
Tiefenback, M.; Wojtsekhowski, B.
2018-05-01
Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less
A proposal for antiparallel acceleration of positrons using CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiefenback, M.; Wojtsekhowski, B.
Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less
A programmable power processor for a 25-kW power module
NASA Technical Reports Server (NTRS)
Lanier, R., Jr.; Kapustka, R. E.; Bush, J. R., Jr.
1979-01-01
A discussion of the power processor for an electrical power system for a 25-kW Power Module that could support the Space Shuttle program during the 1980's and 1990's and which could be a stepping stone to future large space power systems is presented. Trades that led to the selection of a microprocessor-controlled power processor are briefly discussed. Emphasis is given to the power processing equipment that uses a microprocessor to provide versatility that allows multiple use and to provide for future growth by reprogramming output voltage to a higher level (to 120 V from 30 V). Efficiency data from a breadboard programmable power processor are presented, and component selection and design considerations are also discussed.
Saccharopolyspora Species: Laboratory Maintenance and Enhanced Production of Secondary Metabolites.
Dhakal, Dipesh; Pokhrel, Anaya Raj; Jha, Amit Kumar; Thuan, Nguyen Huy; Sohng, Jae Kyung
2017-02-06
Saccharopolyspora spp. are aerobic, Gram-positive, non-acid-fast, and non-motile actinomycetes. Various species of the genus Saccharopolyspora have been reported with an ability to produce various bioactive compounds for pharmaceutical and agricultural uses. This unit includes general protocols for the laboratory maintenance of Saccharopolyspora species, including growth in liquid medium, growth on solid agar, long-term storage, and generation of a higher producer strain by mutagenesis. Saccharopolyspora spinosa ATCC 49460 is used as a prototype for explaining the considerations for efficient laboratory maintenance of Saccharopolyspora spp. Saccharopolyspora spinosa is a producer of spinosad, a prominent insecticide with selective activity against various insects. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Geppert, H; Denkmayr, T; Sponar, S; Lemmel, H; Hasegawa, Y
2014-11-01
For precise measurements with polarised neutrons high efficient spin-manipulation is required. We developed several neutron optical elements suitable for a new sophisticated setup, i.e., DC spin-turners and Larmor-accelerators which diminish thermal disturbances and depolarisation considerably. The gain in performance is exploited demonstrating violation of a Bell-like inequality for a spin-path entangled single-neutron state. The obtained value of [Formula: see text], which is much higher than previous measurements by neutron interferometry, is [Formula: see text] above the limit of S =2 predicted by contextual hidden variable theories. The new setup is more flexible referring to state preparation and analysis, therefore new, more precise measurements can be carried out.
Deng, Xingjuan; Chen, Ji; Shuai, Jie
2009-08-01
For the purpose of improving the efficiency of aphasia rehabilitation training, artificial intelligence-scheduling function is added in the aphasia rehabilitation software, and the software's performance is improved. With the characteristics of aphasia patient's voice as well as with the need of artificial intelligence-scheduling functions under consideration, the present authors have designed a set of endpoint detection algorithm. It determines the reference endpoints, then extracts every word and ensures the reasonable segmentation points between consonants and vowels, using the reference endpoints. The results of experiments show that the algorithm is able to attain the objects of detection at a higher accuracy rate. Therefore, it is applicable to the detection of endpoint on aphasia-patient's voice.
Low Conductivity Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.
Schmitz, Rolf; Schnabel, Karina; von Soosten, Dirk; Meyer, Ulrich; Spiekers, Hubert; Rehage, Jürgen; Dänicke, Sven
2018-04-01
The aim of this study was to investigate the effects of different energy supplies from roughage and concentrates on performance, health and energy efficiency during early lactation. For this purpose an experiment was conducted containing 64 pluriparous German Holstein cows from 3 weeks prepartum until 16 weeks postpartum. During dry period all cows received an equal dry cow ration. After calving, cows were assigned in a 2 × 2 factorial arrangement to one of four groups, receiving either a moderate (MR, 6.0 MJ NE L ) or a high (HR, 6.4 MJ NE L ) energy concentration in roughage and furthermore moderate (MC, 150 g/kg energy-corrected milk (ECM)) or high amounts of concentrates (HC, 250 g/kg ECM) on dry matter (DM) basis, which were allocated from an automatic feeding system. Higher allocation of concentrates resulted in an increase of DM intake at expense of roughage intake. HC cows had a higher milk yield than MC cows, whereas ECM was higher in HR cows due to a decrease of milk fat yield in MR groups. Energy balance and body condition score were elevated in HC cows, but no differences occurred in development of subclinical ketosis. Furthermore, energy efficiency variables were lower in HC groups because the greater energy intake was not associated with a considerable elevation of milk yield. Consistency of faeces did not indicate digestive disorders in any of the treatment groups although the faecal manure score was significantly lower in HR groups. Our results underline the importance of a high energy uptake from roughage, which can contribute to an adequate performance and beneficial efficiency, especially at lower amounts of concentrates in ration. Feeding concentrates on an average amount of 9.4 kg/d compared to 6.4 kg/d on DM basis improved the energy balance in our trial, but without consequences for metabolic blood variables and general health of the cows.
Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS
Rocca, Maria A.; Leavitt, Victoria M.; Dackovic, Jelena; Mesaros, Sarlota; Drulovic, Jelena; DeLuca, John; Filippi, Massimo
2014-01-01
Objective: Based on the theories of brain reserve and cognitive reserve, we investigated whether larger maximal lifetime brain growth (MLBG) and/or greater lifetime intellectual enrichment protect against cognitive decline over time. Methods: Forty patients with multiple sclerosis (MS) underwent baseline and 4.5-year follow-up evaluations of cognitive efficiency (Symbol Digit Modalities Test, Paced Auditory Serial Addition Task) and memory (Selective Reminding Test, Spatial Recall Test). Baseline and follow-up MRIs quantified disease progression: percentage brain volume change (cerebral atrophy), percentage change in T2 lesion volume. MLBG (brain reserve) was estimated with intracranial volume; intellectual enrichment (cognitive reserve) was estimated with vocabulary. We performed repeated-measures analyses of covariance to investigate whether larger MLBG and/or greater intellectual enrichment moderate/attenuate cognitive decline over time, controlling for disease progression. Results: Patients with MS declined in cognitive efficiency and memory (p < 0.001). MLBG moderated decline in cognitive efficiency (p = 0.031, ηp2 = 0.122), with larger MLBG protecting against decline. MLBG did not moderate memory decline (p = 0.234, ηp2 = 0.039). Intellectual enrichment moderated decline in cognitive efficiency (p = 0.031, ηp2 = 0.126) and memory (p = 0.037, ηp2 = 0.115), with greater intellectual enrichment protecting against decline. MS disease progression was more negatively associated with change in cognitive efficiency and memory among patients with lower vs higher MLBG and intellectual enrichment. Conclusion: We provide longitudinal support for theories of brain reserve and cognitive reserve in MS. Larger MLBG protects against decline in cognitive efficiency, and greater intellectual enrichment protects against decline in cognitive efficiency and memory. Consideration of these protective factors should improve prediction of future cognitive decline in patients with MS. PMID:24748670
The fee-for-service shift to bundled payments: financial considerations for hospitals.
Scamperle, Keely
2013-01-01
Skyrocketing health care costs are forcing payers to demand delivery efficiencies that preserve and promote quality care while reducing costs. Hospitals are challenged to meet the pressure from payers to deliver value and outcome-based health care while preserving sufficient financial margins. The fee-for-service (FFS) model with its perverse incentives to incur high-volume services is no longer, if ever, sufficient to ensure quality, cost-efficient health care. In response, payers have sought to force the issue through accelerated efforts to bundle payments to providers. It is theorized that by tying together providers throughout the continuum or episode of care for a patient, efficiencies in delivery inclusive of cost reductions will be obtained. This article examines the bundled payment models and the financial considerations for hospital facility providers.
Mühlbauer, V; Teupen, S
2014-01-01
The Federal Joint Committee and the Institute for Quality and Efficiency in Health Care have become important players in the German health care system, not only since the benefit assessment of pharmaceuticals and the Act on the Reform of the Market for Medicinal Products (AMNOG) were established. However, the manifold tasks and duties these institutions have besides the benefit assessment of pharmaceuticals is less known, just as the role the patient's representatives play. The function and structure of the Federal Joint Committee and the Institute for Quality and Efficiency in Health Care as well as their collaboration in consideration of patient involvement will be explained in this article. © Georg Thieme Verlag KG Stuttgart · New York.
Performance mapping of a 30 cm engineering model thruster
NASA Technical Reports Server (NTRS)
Poeschel, R. L.; Vahrenkamp, R. P.
1975-01-01
A 30 cm thruster representative of the engineering model design has been tested over a wide range of operating parameters to document performance characteristics such as electrical and propellant efficiencies, double ion and beam divergence thrust loss, component equilibrium temperatures, operational stability, etc. Data obtained show that optimum power throttling, in terms of maximum thruster efficiency, is not highly sensitive to parameter selection. Consequently, considerations of stability, discharge chamber erosion, thrust losses, etc. can be made the determining factors for parameter selection in power throttling operations. Options in parameter selection based on these considerations are discussed.
ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts.
Wang, Xinchen; Yu, Jimmy C; Chen, Yilin; Wu, Ling; Fu, Xianzhi
2006-04-01
Mesoporous nanocrystalline TiO2-xNx and TiO2-xNx/ZrO2 visible-light photocatalysts have been prepared by a sol-gel method. The photocatalysts were characterized by XRD, N2 adsorption-desorption, TEM, XPS, UV/Vis, and IR spectroscopy. The photocatalytic activity of the samples was evaluated by the decomposition of ethylene in air under visible light (lambda > 450 nm) illumination. Results revealed that nitrogen was doped into the lattice of TiO2 by the thermal treatment of NH3-adsorbed TiO2 hydrous gels, converting the TiO2 into a visible-light responsive catalyst. The introduction of ZrO2 into TiO2-xNx considerably inhibits the undesirable crystal growth during calcination. Consequently, the ZrO2-modified TiO2-xNx displays higher porosity, higher specific surface area, and an improved thermal stability over the corresponding unmodified TiO2-xNx samples.
Alternative Fuels Data Center: Electricity
efficiency. Using electricity to power vehicles can have significant energy security and emissions benefits . Icon of an information sign. Basics Find information about using electricity as a vehicle fuel Considerations Explore the benefits and considerations of using electricity as a vehicle fuel. Icon of a fueling
Pneumatic fracturing of low permeability media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuring, J.R.
1996-08-01
Pneumatic fracturing of soils to enhance the removal and treatment of dense nonaqueous phase liquids is described. The process involves gas injection at a pressure exceeding the natural stresses and at a flow rate exceeding the permeability of the formation. The paper outlines geologic considerations, advantages and disadvantages, general technology considerations, low permeability media considerations, commercial availability, efficiency, and costs. Five case histories of remediation using pneumatic fracturing are briefly summarized. 11 refs., 2 figs., 1 tab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodson, Elke L.; Brown, Maxwell; Cohen, Stuart
We study the impact of achieving technology innovation goals, representing significant technology cost reductions and performance improvements, in both the electric power and end-use sectors by comparing outputs from four energy-economic models through the year 2050. We harmonize model input assumptions and then compare results in scenarios that vary natural gas prices, technology cost and performance metrics, and the implementation of a representative national electricity sector carbon dioxide (CO 2) policy. Achieving the representative technology innovation goals decreases CO 2 emissions in all models, regardless of natural gas price, due to increased energy efficiency and low-carbon generation becoming more costmore » competitive. For the models that include domestic natural gas markets, achieving the technology innovation goals lowers wholesale electricity prices, but this effect diminishes as projected natural gas prices increase. Higher natural gas prices lead to higher wholesale electricity prices but fewer coal capacity retirements. Some of the models include energy efficiency improvements as part of achieving the high-technology goals. Absent these energy efficiency improvements, low-cost electricity facilitates greater electricity consumption. The effect of implementing a representative electricity sector CO 2 policy differs considerably depending on the cost and performance of generating and end-use technologies. The CO 2 policy influences electric sector evolution in the cases with reference technology assumptions but has little to no influence in the cases that achieve the technology innovation goals. This outcome implies that meeting the representative technology innovation goals achieves a generation mix with similar CO 2 emissions to the representative CO 2 policy but with smaller increases to wholesale electricity prices. Finally, higher natural gas prices, achieving the representative technology innovation goals, and the combination of the two, increases the amount of renewable generation that is cost-effective to build and operate while slowing the growth of natural-gas fired generation, which is the predominant generation type in 2050 under reference conditions.« less
Nature of ground and electronic excited states of higher acenes
Yang, Yang; Yang, Weitao
2016-01-01
Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690
Status and prospects in higher alcohols synthesis from syngas.
Luk, Ho Ting; Mondelli, Cecilia; Ferré, Daniel Curulla; Stewart, Joseph A; Pérez-Ramírez, Javier
2017-03-06
Higher alcohols are important compounds with widespread applications in the chemical, pharmaceutical and energy sectors. Currently, they are mainly produced by sugar fermentation (ethanol and isobutanol) or hydration of petroleum-derived alkenes (heavier alcohols), but their direct synthesis from syngas (CO + H 2 ) would comprise a more environmentally-friendly, versatile and economical alternative. Research efforts in this reaction, initiated in the 1930s, have fluctuated along with the oil price and have considerably increased in the last decade due to the interest to exploit shale gas and renewable resources to obtain the gaseous feedstock. Nevertheless, no catalytic system reported to date has performed sufficiently well to justify an industrial implementation. Since the design of an efficient catalyst would strongly benefit from the establishment of synthesis-structure-function relationships and a deeper understanding of the reaction mechanism, this review comprehensively overviews syngas-based higher alcohols synthesis in three main sections, highlighting the advances recently made and the challenges that remain open and stimulate upcoming research activities. The first part critically summarises the formulations and methods applied in the preparation of the four main classes of materials, i.e., Rh-based, Mo-based, modified Fischer-Tropsch and modified methanol synthesis catalysts. The second overviews the molecular-level insights derived from microkinetic and theoretical studies, drawing links to the mechanisms of Fischer-Tropsch and methanol syntheses. Finally, concepts proposed to improve the efficiency of reactors and separation units as well as to utilise CO 2 and recycle side-products in the process are described in the third section.
Dejmek, Annika; Zendehrokh, Nooreldin; Tomaszewska, Malgorzata; Edsjö, Anders
2013-07-01
Personalized oncology requires molecular analysis of tumor cells. Several studies have demonstrated that cytological material is suitable for DNA analysis, but to the authors' knowledge there are no systematic studies comparing how the yield and quality of extracted DNA is affected by the various techniques used for the preparation of cytological material. DNA yield and quality were compared using cultured human lung cancer cells subjected to different preparation techniques used in routine cytology, including fixation, mounting medium, and staining. The results were compared with the outcome of epidermal growth factor receptor (EGFR) genotyping of 66 clinical cytological samples using the same DNA preparation protocol. All tested protocol combinations resulted in fragment lengths of at least 388 base pairs. The mounting agent EcoMount resulted in higher yields than traditional xylene-based medium. Spray and ethanol fixation resulted in both a higher yield and better DNA quality than air drying. In liquid-based cytology (LBC) methods, CytoLyt solution resulted in a 5-fold higher yield than CytoRich Red. Papanicolaou staining provided twice the yield of hematoxylin and eosin staining in both liquid-based preparations. Genotyping outcome and quality control values from the clinical EGFR genotyping demonstrated a sufficient amount and amplifiability of DNA in both spray-fixed and air-dried cytological samples. Reliable clinical genotyping can be performed using all tested methods. However, in the cell line experiments, spray- or ethanol-fixed, Papanicolaou-stained slides provided the best results in terms of yield and fragment length. In LBC, the DNA recovery efficiency of the preserving medium may differ considerably, which should be taken into consideration when introducing LBC. Cancer (Cancer Cytopathol) 2013;121:344-353. © 2013 American Cancer Society. © 2013 American Cancer Society.
Staff Efficiency Trends Among Pediatric Hospices, 2002–2011
Cozad, Melanie J.; Lindley, Lisa C.; Mixer, Sandra J.
2016-01-01
Delivering care for children at end of life often takes considerable time and effort by the hospice staff. The purpose of this study was to examine trends in staff technical efficiency among California pediatric hospice providers from 2002 and 2011. PMID:27265950
Integrated butanol recovery for an advanced biofuel: current state and prospects.
Xue, Chuang; Zhao, Jing-Bo; Chen, Li-Jie; Bai, Feng-Wu; Yang, Shang-Tian; Sun, Jian-Xin
2014-04-01
Butanol has recently gained increasing interest due to escalating prices in petroleum fuels and concerns on the energy crisis. However, the butanol production cost with conventional acetone-butanol-ethanol fermentation by Clostridium spp. was higher than that of petrochemical processes due to the low butanol titer, yield, and productivity in bioprocesses. In particular, a low butanol titer usually leads to an extremely high recovery cost. Conventional biobutanol recovery by distillation is an energy-intensive process, which has largely restricted the economic production of biobutanol. This article thus reviews the latest studies on butanol recovery techniques including gas stripping, liquid-liquid extraction, adsorption, and membrane-based techniques, which can be used for in situ recovery of inhibitory products to enhance butanol production. The productivity of the fermentation system is improved efficiently using the in situ recovery technology; however, the recovered butanol titer remains low due to the limitations from each one of these recovery technologies, especially when the feed butanol concentration is lower than 1 % (w/v). Therefore, several innovative multi-stage hybrid processes have been proposed and are discussed in this review. These hybrid processes including two-stage gas stripping and multi-stage pervaporation have high butanol selectivity, considerably higher energy and production efficiency, and should outperform the conventional processes using single separation step or method. The development of these new integrated processes will give a momentum for the sustainable production of industrial biobutanol.
NASA Technical Reports Server (NTRS)
Raghavan, V.
1992-01-01
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.
An Indian scenario on renewable and sustainable energy sources with emphasis on algae.
Hemaiswarya, S; Raja, Rathinam; Carvalho, Isabel S; Ravikumar, R; Zambare, Vasudeo; Barh, Debmalya
2012-12-01
India is the fifth largest primary energy consumer and fourth largest petroleum consumer after USA, China, and Japan. Despite the global economic crisis, India's economy is expected to grow at 6 to 8 %/year. There is an extreme dependence on petroleum products with considerable risks and environmental issues. Petroleum-derived transport fuels are of limited availability and contribute to global warming, making renewable biofuel as the best alternative. The focus on biogas and biomass-based energy, such as bioethanol and biohydrogen, will enhance cost-effectiveness and provide an opportunity for the rural community. Among all energy sources, microalgae have received, so far, more attention due to their facile adaptability to grow in the photobioreactors or open ponds, high yields, and multiple applications. Microalgae can produce a substantial amount of triacylglycerols as a storage lipid under photooxidative stress or other adverse environmental conditions. In addition to renewable biofuels, they can provide different types of high-value bioproducts added to their advantages, such as higher photosynthetic efficiency, higher biomass production, and faster growth compared to any other energy crops. The viability of first-generation biofuels production is, however, questionable because of the conflict with food supply. In the future, biofuels should ideally create the environmental, economic, and social benefits to the communities and reflect energy efficiency so as to plan a road map for the industry to produce third-generation biofuels.
PEG-detachable lipid-polymer hybrid nanoparticle for delivery of chemotherapy drugs to cancer cells.
Du, Jiang-bo; Song, Yan-feng; Ye, Wei-liang; Cheng, Ying; Cui, Han; Liu, Dao-zhou; Liu, Miao; Zhang, Bang-le; Zhou, Si-yuan
2014-08-01
The experiment aimed to increase the drug-delivery efficiency of poly-lactic-co-glycolic acid (PLGA) nanoparticles. Lipid-polymer hybrid nanoparticles (LPNs-1) were prepared using PLGA as a hydrophobic core and FA-PEG-hyd-DSPE as an amphiphilic shell. Uniform and spherical nanoparticles with an average size of 185 nm were obtained using the emulsification solvent evaporation method. The results indicated that LPNs-1 showed higher drug loading compared with naked PLGA nanoparticles (NNPs). Drug release from LPNs-1 was faster in an acidic environment than in a neutral environment. LPNs-1 showed higher cytotoxicity on KB cells, A549 cells, MDA-MB-231 cells, and MDA-MB-231/ADR cells compared with free doxorubicin (DOX) and NNPs. The results also showed that, compared with free DOX and NNPs, LPNs-1 delivered more DOX to the nuclear of KB cells and MDA-MB-231/ADR cells. LPNs-1 induced apoptosis in KB cells and MDA-MB-231/ADR cells in a dose-dependent manner. The above data indicated that DOX-loaded LPNs-1 could kill not only normal tumor cells but also drug-resistant tumor cells. These results indicated that modification of PLGA nanoparticles with FA-PEG-hyd-DSPE could considerably increase the drug-delivery efficiency and LPNs-1 had potential in the delivery of chemotherapeutic agents in the treatment of cancer.
Mathauer, Inke; Nicolle, Emmanuelle
2011-10-01
Administrative costs are an important spending category in total health insurance expenditure. Yet, they have rarely been a topic outside the US and there is no cross-country comparison available. This paper provides a global overview and analysis of administrative costs for social security schemes (SSS) and private health insurance schemes (PHI). The analysis is based on data of the World Health Organization (WHO) National Health Accounts (NHA) and the Organisation for Economic Cooperation and Development (OECD) System of Health Accounts (SHA). These are the only worldwide databases on health expenditure data. Further data was retrieved from a literature search. Administrative costs are presented as a share of total health insurance costs. Data is available for 58 countries. In high-income OECD countries, the average SSS administrative costs are 4.2%. Average PHI administrative costs are about three times higher. The shares are much higher for low- and middle-income countries. However, considerable variations across and within countries over time are revealed. Seven explanatory factors are explored to explain the variations: health financing system aspects, administrative activities undertaken, insurance design aspects, context factors, reporting format, accounting methods, and management and administrative efficiency measures. More detailed reporting of administrative costs would enhance comparability and provide benchmarks. Improved administrative efficiency could free resources to expand coverage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Lab-scale study on the application of In-Adit-Sulfate-Reducing System for AMD control.
Ji, S W; Kim, S J
2008-12-30
In a study of the 29 operating passive systems for acid mine drainage (AMD) treatment, 19 systems showed various performance problems. Some systems showed very low efficiency even without visible leakage or overflow. Though systems show fairly good efficiency in metal removal (mainly iron) and pH control, sulfate removal rates were very low which indicates the possibility of very poor sulfate reductions by Sulfate Reducing Bacteria (SRB). As an alternative method, In-Adit-Sulfate-Reducing System (IASRS), the method of placing the SAPS inside the adit, to have temperature constant at about 15 degrees C, was suggested. Lab-scale model experiments of IASRS were carried out. The models 1 and 2 were run at 15 degrees C and 25 degrees C, respectively. The model 1 contained about a half of COD in the beginning of the operation than that of model 2. Metal removal ratios were higher than 90% in both systems. Both systems showed the sulfate removal ratios of 23% and 27%, respectively, which were still considerably low, even though higher than those of presently operating systems. However, since the synthetic AMD used was very low in pH (2.8) and very high in sulfate concentration, if some suggested modifications were applied to the standard design, it is presumed that the sulfate removal ratio would have increased.
ERIC Educational Resources Information Center
Worth, Michael J., Ed.
This volume offers 36 papers on higher education fundraising. Major topics treated are the development function, foundations of fund raising, annual giving, major gifts, campaigns, corporate and foundation support, special constituencies, managing development programs, special considerations for institutions, and special considerations for the…
Rueedi, J; Cronin, A A; Moon, B; Wolf, L; Hoetzl, H
2005-01-01
In Europe, large volumes of public water supply come from urban aquifers and so efficient urban water management and decision tools are essential to maintain quality of life both in terms of health, personal freedom and environment. In the United Kingdom, this issue gained increased importance with the last year's low volumes of groundwater replenishment that resulted in increased water shortages all over the country. An urban water volume and quality model (UVQ) was applied to a suburb of Doncaster (United Kingdom) to assess the current water supply system and to compare it with new potential scenarios of water management. The initial results show considerable changes in both water and solute fluxes for some scenarios and rather limited changes for others. Changing impermeable roads and paved areas to permeable areas, for example, would lead to higher infiltration rates that may be welcome from a water resources viewpoint but less so from a water quality point of view due to high concentrations of heavy metals. The biggest impact on water quality and quantity leaving the system through sewer, storm water and infiltration system was clearly obtained by re-using grey water from kitchen, bathroom and laundry for irrigation and toilet flush. The testing of this strategy led to lower volumes and higher concentrations of sewerage, a considerable decrease in water consumption and an increase in groundwater recharge. The scenarios were tested neither in terms of costs nor social acceptance for either water supplier or user.
Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar
The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization can potentially lead to embrittlement of structural alloys in SC-CO 2 Brayton cycle. An important consideration in regards to corrosion is that the temperatures can vary widely across the various sections of the SC-CO 2 Brayton cycle, from room temperature to 750°C, with even higher temperatures being desirable for higher efficiencies. Thus the extent of corrosion and corrosion mechanisms in various components and SC-CO 2 Brayton cycle will be different, requiring a judicious selection of materials for different sections of the cycle. The goal of this project was to address materials corrosion-related challenges, identify appropriate materials, and advance the body of scientific knowledge in the area of high temperature SC-CO 2 corrosion. The focus was on corrosion of materials in SC-CO 2 environment in the temperature range of 450°C to 750°C at a pressure of 2900 psi for exposure duration for up to 1000 hours. The Table below lists the materials tested in the project. The materials were selected based on their high temperature strength, their code certification status, commercial availabilities, and their prior or current usage in the nuclear reactor industry. Additionally, pure Fe, Fe-12%Cr, and Ni-22%Cr were investigated as simple model materials to more clearly understand corrosion mechanisms. This first phase of the project involved testing in research grade SC-CO 2 (99.999% purity). Specially designed autoclaves with high fidelity temperature, pressure, and flow control capabilities were built or modified for this project.« less
Yang, Weichun; Tian, Shunqi; Tang, Qiongzhi; Chai, Liyuan; Wang, Haiying
2017-06-15
A reclaimable adsorbent of fungus hyphae-supported alumina (FHSA) bio-nanocomposites was developed, characterized and applied in fluoride removal from water. This adsorbent can be fast assembled and disassemble reversibly, promising efficient reclamation and high accessible surface area for fluoride adsorption. Adsorption experiments demonstrate that the FHSA performed well over a considerable wide pH range of 3-10 with high fluoride removal efficiencies (>66.3%). The adsorption capacity was 105.60mgg -1 for FHSA, much higher than that for the alumina nanoparticles (50.55mgg -1 ) and pure fungus hyphae (22.47mgg -1 ). The adsorption capacity calculated by the pure content of alumina in the FHSA is 340.27mgg -1 of alumina. Kinetics data reveal that the fluoride adsorption process on the FHSA was fast, nearly 90% fluoride adsorption can be achieved within 40min. The fluoride adsorption on the FHSA is mainly due to the surface complexes formation of fluoride with AlOH and the attraction between protonated NH 2 and fluoride through hydrogen bonding. Findings demonstrate that the FHSA has potential applicability in fluoride removal due to its strong fluoride adsorbility and the easy reclamation by its fast reversible assembly and disassembly feature. Copyright © 2017 Elsevier Inc. All rights reserved.
Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang
2015-05-05
To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.
NASA Astrophysics Data System (ADS)
Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua
2018-04-01
Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.
NASA Astrophysics Data System (ADS)
Liu, Zhiyong; Sun, Bo; Liu, Xingyue; Han, Jinghui; Ye, Haibo; Shi, Tielin; Tang, Zirong; Liao, Guanglan
2018-06-01
Metal halide perovskite solar cells (PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr3 as light absorber, accompanied by using Cu-phthalocyanine (CuPc) as hole transport material (HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.[Figure not available: see fulltext.
Promoted decomposition of NOx in automotive diesel-like exhausts by electro-catalytic honeycombs.
Huang, Ta-Jen; Chiang, De-Yi; Shih, Chi; Lee, Cheng-Chin; Mao, Chih-Wei; Wang, Bo-Chung
2015-03-17
NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations. Thus, exhaust gas recirculation (EGR) has been used extensively, which reduces fuel efficiency and increases particulate emission considerably. Our results show that the electro-catalytic honeycomb (ECH) promotes the decomposition of NOx to nitrogen and oxygen, without consuming reagents or other resources. NOx can be converted to nitrogen and oxygen almost completely. The ECHs are shown to effectively remove NOx from gasoline-fueled diesel-like exhausts. A very high NO concentration is preferred in the engine exhaust, especially during engine cold-start. Promoted NOx decomposition (PND) technology for real-world automotive applications is established in this study by using the ECH. With PND, EGR is no longer needed. Diesel-like engines can therefore achieve superior fuel efficiency, and all major automotive pollutants can be easily treated due to high concentration of oxygen in the diesel-like exhausts, leading to zero pollution.
Fathollahi, Mostafa; Rostamizadeh, Shahnaz; Amani, Ali M
2018-01-01
The present study has developed an efficient and eco-friendly protocol for the synthesis of aryl-14-H-dibenzo[a,j] xanthenes through a one-pot condensation reaction of 2-naphthol and arylaldehydes in aqueous media using the nanocatalytic MCM-41-SO3H under ultrasonic illumination. Using SEM and XRD analyses, MCM-41-SO3H nanoparticles were characterized. Therefore, for high magnification, taking the SEM image, the mesoporous surface of MCM-41-SO3H nanoparticles coated with gold for 2 minutes was characterized. Moreover, at a scan rate of 0.02° (2θ)/sec, XRD analysis from 1.5° (2θ) to 10.0° (2θ) was performed. For our considered sample, some well-ordered XRD patterns with one main peak as well as three minor peaks equal to those of MCM-41 materials were observed. The suggested route demonstrates very promising properties like higher yields, decrease in the time of reaction (5-10 min), mild and straightforward conditions, low level of toxicity, and inclusion of a cost-efficient and ecofriendly catalyst having considerable reusability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric
AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles electricity to improve fuel efficiency. Pre-Owned Vehicles Learn about buying and selling pre-owned and plug-in electric vehicles. Learn more about the benefits and considerations of electricity as a
Nikiforou, Constantinos; Nikolopoulos, Dimosthenis; Manetas, Yiannis
2011-12-15
Recent evidence indicates that winter-red leaf phenotypes in the mastic tree (Pistacia lentiscus) are more vulnerable to chronic photoinhibition during the cold season relative to winter-green phenotypes occurring in the same high light environment. This was judged by limitations in the maximum quantum yield of photosystem II (PSII), found in previous studies. In this investigation, we asked whether corresponding limitations in leaf gas exchange and carboxylation reactions could also be manifested. During the cold ("red") season, net CO₂ assimilation rates (A) and stomatal conductances (g(s)) in the red phenotype were considerably lower than in the green phenotype, while leaf internal CO₂ concentration (Ci) was higher. The differences were abolished in the "green" period of the year, the dry summer included. Analysis of A versus Ci curves indicated that CO₂ assimilation during winter in the red phenotype was limited by Rubisco content and/or activity rather than stomatal conductance. Leaf nitrogen levels in the red phenotype were considerably lower during the red-leaf period. Consequently, we suggest that the inherently low leaf nitrogen levels are linked to the low net photosynthetic rates of the red plants through a decrease in Rubisco content. Accordingly, the reduced capacity of the carboxylation reactions to act as photosynthetic electron sinks may explain the corresponding loss of PSII photon trapping efficiency, which cannot be fully alleviated by the screening effect of the accumulated anthocyanins. Copyright © 2011 Elsevier GmbH. All rights reserved.
Vertically Emitting Indium Phosphide Nanowire Lasers.
Xu, Wei-Zong; Ren, Fang-Fang; Jevtics, Dimitars; Hurtado, Antonio; Li, Li; Gao, Qian; Ye, Jiandong; Wang, Fan; Guilhabert, Benoit; Fu, Lan; Lu, Hai; Zhang, Rong; Tan, Hark Hoe; Dawson, Martin D; Jagadish, Chennupati
2018-06-13
Semiconductor nanowire (NW) lasers have attracted considerable research effort given their excellent promise for nanoscale photonic sources. However, NW lasers currently exhibit poor directionality and high threshold gain, issues critically limiting their prospects for on-chip light sources with extremely reduced footprint and efficient power consumption. Here, we propose a new design and experimentally demonstrate a vertically emitting indium phosphide (InP) NW laser structure showing high emission directionality and reduced energy requirements for operation. The structure of the laser combines an InP NW integrated in a cat's eye (CE) antenna. Thanks to the antenna guidance with broken asymmetry, strong focusing ability, and high Q-factor, the designed InP CE-NW lasers exhibit a higher degree of polarization, narrower emission angle, enhanced internal quantum efficiency, and reduced lasing threshold. Hence, this NW laser-antenna system provides a very promising approach toward the achievement of high-performance nanoscale lasers, with excellent prospects for use as highly localized light sources in present and future integrated nanophotonics systems for applications in advanced sensing, high-resolution imaging, and quantum communications.
Optimization of composite sandwich cover panels subjected to compressive loadings
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1991-01-01
An analysis and design method is presented for the design of composite sandwich cover panels that include the transverse shear effects and damage tolerance considerations. This method is incorporated into a sandwich optimization computer program entitled SANDOP. As a demonstration of its capabilities, SANDOP is used in the present study to design optimized composite sandwich cover panels for for transport aircraft wing applications. The results of this design study indicate that optimized composite sandwich cover panels have approximately the same structural efficiency as stiffened composite cover panels designed to satisfy individual constraints. The results also indicate that inplane stiffness requirements have a large effect on the weight of these composite sandwich cover panels at higher load levels. Increasing the maximum allowable strain and the upper percentage limit of the 0 degree and +/- 45 degree plies can yield significant weight savings. The results show that the structural efficiency of these optimized composite sandwich cover panels is relatively insensitive to changes in core density. Thus, core density should be chosen by criteria other than minimum weight (e.g., damage tolerance, ease of manufacture, etc.).
Evaluation of Supply Chain Efficiency Based on a Novel Network of Data Envelopment Analysis Model
NASA Astrophysics Data System (ADS)
Fu, Li Fang; Meng, Jun; Liu, Ying
2015-12-01
Performance evaluation of supply chain (SC) is a vital topic in SC management and inherently complex problems with multilayered internal linkages and activities of multiple entities. Recently, various Network Data Envelopment Analysis (NDEA) models, which opened the “black box” of conventional DEA, were developed and applied to evaluate the complex SC with a multilayer network structure. However, most of them are input or output oriented models which cannot take into consideration the nonproportional changes of inputs and outputs simultaneously. This paper extends the Slack-based measure (SBM) model to a nonradial, nonoriented network model named as U-NSBM with the presence of undesirable outputs in the SC. A numerical example is presented to demonstrate the applicability of the model in quantifying the efficiency and ranking the supply chain performance. By comparing with the CCR and U-SBM models, it is shown that the proposed model has higher distinguishing ability and gives feasible solution in the presence of undesirable outputs. Meanwhile, it provides more insights for decision makers about the source of inefficiency as well as the guidance to improve the SC performance.
Efficiency of Calamintha officinalis essential oil as preservative in two topical product types.
Nostro, A; Cannatelli, M A; Morelli, I; Musolino, A D; Scuderi, F; Pizzimenti, F; Alonzo, V
2004-01-01
To verify the efficiency of Calamintha officinalis essential oil as natural preservative in two current formulations. The 1.0 and 2.0% (v/v) C. officinalis essential oil was assayed for its preservative activity in two product types (cream and shampoo). The microbial challenge test was performed following the standards proposed by the European Pharmacopoeia Commission (E.P.) concerning topical preparations using standard micro-organisms and in addition wild strains, either in single or mixed cultures were used. The results clearly demonstrated that the C. officinalis essential oil at 2.0% concentration reduced the microbial inoculum satisfying the criterion A of the E.P. in the cream formulation and the criterion B in the shampoo formulation. Standard and wild strains showed a behaviour similar, both in cream and in shampoo formulation, with no significant difference (gerarchic variance, P > 0.05). C. officinalis essential oil confirmed its preservative properties but at higher concentration than that shown in previous studies on cetomacrogol cream. The nature of the formulation in which an essential oil is incorporated as preservative could have considerable effect on its efficacy.
Energy Efficient Engine Program: Technology Benefit/Cost Study, Volume II
NASA Technical Reports Server (NTRS)
Gray, D. E.; Gardner, W. B.
1983-01-01
The Benefit/Cost Study portion of the NASA-sponsored Energy Efficient Engine Component Development and Integration program was successful in achieving its objectives: identification of air transport propulsion system technology requirements for the years 2000 and 2010, and formulation of programs for developing these technologies. It is projected that the advanced technologies identified, when developed to a state of readiness, will provide future commercial and military turbofan engines with significant savings in fuel consumption and related operating costs. These benefits are significant and far from exhausted. The potential savings translate into billions of dollars in annual savings for the airlines. Analyses indicate that a significant portion of the overall savings is attributed to aerodynamic and structure advancements. Another important consideration in acquiring these benefits is developing a viable reference technology base that will permit engines to operate at substantially higher overall pressure ratios and bypass ratios. Results have pointed the direction for future research and a comprehensive program plan for achieving this was formulated. The next major step is initiating the program effort that will convert the advanced technologies into the expected benefits.
Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V.
2016-07-15
It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.
Thermophotovoltaic Energy Conversion for Space Applications
NASA Astrophysics Data System (ADS)
Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.
2006-01-01
Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.
NASA Technical Reports Server (NTRS)
Betz, A
1944-01-01
Improvements, however, have been attained which permit a shortening of the structure without any impairment of the efficiency. The axial supercharger has a better efficiency and a simpler design than the radial supercharger. The relatively narrow range in which it operates satisfactorily should not be a very disturbing factor for practical flight problems. The length of this type of supercharger may be reduced considerably if some impairment in the efficiency is permitted.
Pakhomova, I V; Aĭvazian, T A; Zaĭtsev, V P; Gusakova, E V; Molina, L P
2008-01-01
It was established that use of autogenous training makes possible to increase efficiency of the therapy, leading to considerable more evident improvement of somatic and psychotic state, decrease of pain syndrome. Predictors of efficiency of autogenous training were marked out. Indications for use the method in medical rehabilitation of patients with irritable colon syndrome with constipation dominance were elaborated.
Key techniques for space-based solar pumped semiconductor lasers
NASA Astrophysics Data System (ADS)
He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua
2014-12-01
In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.
Bias-free lateral terahertz emitters—A simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granzner, R., E-mail: ralf.granzner@tu-ilmenau.de; Schwierz, F.; Polyakov, V. M.
2015-07-28
The design and performance of bias-free InN-based THz emitters that exploit lateral photocurrents is studied by means of numerical simulations. We use a drift-diffusion model with adjusted carrier temperatures and mobilities. The applicability of this approach is demonstrated by a comparison with results from Monte-Carlo simulations. We consider a simple but robust lateral emitter concept using metal stripes with two different thicknesses with one of them being thin enough to be transparent for THz radiation. This arrangement can be easily multiplexed and the efficiency of this concept has already been demonstrated by experiment for GaAs substrates. In the present study,more » we consider InN, which is known to be an efficient photo-Dember emitter because of its superior transport properties. Our main focus is on the impact of the emitter design on the emission efficiency assuming different operation principles. Both the lateral photo-Dember (LPD) effect and built-in lateral field effects are considered. The appropriate choice of the metal stripe and window geometry as well as the impact of surface Fermi level pinning are investigated in detail, and design guidelines for efficient large area emitters using multiplexed structures are provided. We find that InN LPD emitters do not suffer from Fermi level pinning at the InN surface. The optimum emission efficiency is found for LPD emitter structures having 200 nm wide illumination windows and mask stripes. Emitter structures in which lateral electric fields are induced by the metal mask contacts can have a considerably higher efficiency than pure LPD emitters. In the best case, the THz emission of such structures is increased by one order of magnitude. Their optimum window size is 1 μm without the necessity of a partially transparent set of mask stripes.« less
Energy-Efficient Design for Florida Educational Facilities.
ERIC Educational Resources Information Center
Florida Solar Energy Center, Cape Canaveral.
This manual provides a detailed simulation analysis of a variety of energy conservation measures (ECMs) with the intent of giving educational facility design teams in Florida a basis for decision making. The manual's three sections cover energy efficiency design considerations that appear throughout the following design processes: schematic…
This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. When water is recovered from a saline source, a brine conc...
Assessing UAS mounted imaging sensors for the evaluation of Zea mays nitrogen status.
USDA-ARS?s Scientific Manuscript database
Improved efficiency of Nitrogen (N) fertilizer applications is an important environmental and economic issue for the agricultural community. Considerable research for improving Nitrogen Use Efficiency (NUE) has focused on optimal timing and rate N applications. Remote sensing techniques can detect t...
Molecular bulk heterojunctions: an emerging approach to organic solar cells.
Roncali, Jean
2009-11-17
The predicted exhaustion of fossil energy resources and the pressure of environmental constraints are stimulating an intensification of research on renewable energy sources, in particular, on the photovoltaic conversion of solar energy. In this context, organic solar cells are attracting increasing interest that is motivated by the possibility of fabricating large-area, lightweight, and flexible devices using simple techniques with low environmental impact. Organic solar cells are based on a heterojunction resulting from the contact of a donor (D) and an acceptor (A) material. Absorption of solar photons creates excitons, Coulombically bound electron-hole pairs, which diffuse to the D/A interface, where they are dissociated into free holes and electrons by the electric field. D/A heterojunctions can be created with two types of architectures, namely, bilayer heterojunction and bulk heterojunction (BHJ) solar cells. BHJ cells combine the advantages of easier fabrication and higher conversion efficiency due to the considerably extended D/A interface. Until now, the development of BHJ solar cells has been essentially based on the use of soluble pi-conjugated polymers as donor material. Intensive interdisciplinary research carried out in the past 10 years has led to an increase in the conversion efficiency of BHJ cells from 0.10 to more than 5.0%. These investigations have progressively established regioregular poly(3-hexylthiophene) (P3HT) as the standard donor material for BHJ solar cells, owing to a useful combination of optical and charge-transport properties. However, besides the limit imposed to the maximum conversion efficiency by its intrinsic electronic properties, P3HT and more generally polymers pose several problems related to the control of their structure, molecular weight, polydispersity, and purification. In this context, recent years have seen the emergence of an alternative approach based on the replacement of polydisperse polymers by soluble, conjugated single molecules as donor materials in BHJ cells. In fact, molecular donors present specific advantages in terms of structural definition, synthesis, and purification. In this Account, we present a brief survey of recent work in this nascent field of new single-molecule donors in organic solar cells. Various series of three-dimensional donors built by the attachment of different kinds of conjugated branches on a central node, including silicon, twisted bithiophene, triphenylamine, and borondipyrromethene (BODIPY), are discussed in relation to the performances of the resulting solar cells. Furthermore, it is shown that the concept of a molecular donor with internal charge transfer leads at the same time to improved light-harvesting properties, red-shifted photoresponse, and a higher open-circuit voltage, resulting in a considerable increase of conversion efficiency, up to values now approaching 3%. These results show that soluble molecular donors can lead to BHJ cells that combine high conversion efficiency with the distinct advantages of working with single molecules, including structural definition, synthesis, purification, and reproducibility.
Boyle, Seán; Petch, Jeremy; Batt, Kathy; Durand-Zaleski, Isabelle; Thomson, Sarah
2018-02-01
The main driver of higher spending on health care in the US is believed to be substantially higher fees paid to US physicians in comparison with other countries. We aim to compare physician incomes in radiology and oncology considering differences in relation to fees paid, physician capacity and volume of services provided in five countries: the United States, Canada, Australia, France and the United Kingdom. The fee for a consultation with a specialist in oncology varies threefold across countries, and more than fourfold for chemotherapy. There is also a three to fourfold variation in fees for ultrasound and CT scans. Physician earnings in the US are greater than in other countries in both oncology and radiology, more than three times higher than in the UK; Canadian oncologists and radiologists earn considerably more than their European counterparts. Although challenging, benchmarking earnings and fees for similar health care activities across countries, and understanding the factors that explain any differences, can provide valuable insights for policy makers trying to enhance efficiency and quality in service delivery, especially in the face of rising care costs. Copyright © 2017 Elsevier B.V. All rights reserved.
Yeruva, Dileep Kumar; Shanthi Sravan, J; Butti, Sai Kishore; Annie Modestra, J; Venkata Mohan, S
2018-05-01
In the present study, three bio-electrochemical treatment systems (BET) were designed with variations in cathode electrode placement [air exposed (BET1), partially submerged (BET2) and fully submerged (BET3)] to evaluate azo-dye based wastewater treatment at three dye loading concentrations (50, 250 and 500 mg L -1 ). Highest dye decolorization (94.5 ± 0.4%) and COD removal (62.2 ± 0.8%) efficiencies were observed in BET3 (fully submerged electrodes) followed by BET1 and BET2, while bioelectrogenic activity was highest in BET1 followed by BET2 and BET3. It was observed that competition among electron acceptors (electrode, dye molecules and intermediates) critically regulated the fate of bio-electrogenesis to be higher in BET1 and dye removal higher in BET3. Maximum half-cell potentials in BET3 depict higher electron acceptance by electrodes utilized for dye degradation. Study infers that spatial positioning of electrodes in BET3 is more suitable towards dye remediation, which can be considered for scaling-up/designing a treatment plant for large-scale industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Javadi, Mohammad; Alizadeh, Saba; Khosravi, Yusef; Abdi, Yaser
2016-11-04
The integration of fast electron transport and large effective surface area is critical to attaining higher gains in the nanostructured photovoltaic devices. Here, we report facilitated electron transport in the quasi-two-dimensional (Q2D) porous TiO 2 . Liquid electrolyte dye-sensitized solar cells were prepared by utilizing photoanodes based on the Q2D porous substructures. Due to electron confinement in a microscale porous medium, directional diffusion toward collecting electrode is induced into the electron transport. Our measurements based on the photocurrent and photovoltage time-of-flight transients show that at higher Fermi levels, the electron diffusion coefficient in the Q2D porous TiO 2 is about one order of magnitude higher when compared with the conventional layer of porous TiO 2 . The results show that microstructuring of the porous TiO 2 leads to an approximately threefold improvement in the electron diffusion length. Such a modification may considerably affects the electrical functionality of moderate or low performance dye-sensitized solar cells for which the internal gain or collection efficiency is typically low. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.
1983-01-01
Metallic vapor lasers of Na2 and Li2 are examined as solar energy converters. The absorbed photons cause transitions to vibrational-rotational levels in an upper electronic state. With broad band absorption the resultant levels can have quantum numbers considerably higher than the upper lasing level. The excited molecule then relaxes to the upper lasing level which is one of the lower vibrational levels in the upper electronic state. The relaxation occurs from collisions, provided the molecule is not quenched into the ground level electronic state. Lasing occurs with a transition to a vibrational level in the lower electronic state. Rough estimates of solar power efficiencies are 1 percent for Na2 and probably a similar figure for Li2. The nondissociative lasers from a family distinct from materials which dissociate to yield an excited atom.
Deciphering Molecular Mechanisms of Interface Buildup and Stability in Porous Si/Eumelanin Hybrids
Pinna, Elisa; Melis, Claudio; Antidormi, Aleandro; Cardia, Roberto; Sechi, Elisa; Cappellini, Giancarlo; Colombo, Luciano
2017-01-01
Porous Si/eumelanin hybrids are a novel class of organic–inorganic hybrid materials that hold considerable promise for photovoltaic applications. Current progress toward device setup is, however, hindered by photocurrent stability issues, which require a detailed understanding of the mechanisms underlying the buildup and consolidation of the eumelanin–silicon interface. Herein we report an integrated experimental and computational study aimed at probing interface stability via surface modification and eumelanin manipulation, and at modeling the organic–inorganic interface via formation of a 5,6-dihydroxyindole (DHI) tetramer and its adhesion to silicon. The results indicated that mild silicon oxidation increases photocurrent stability via enhancement of the DHI–surface interaction, and that higher oxidation states in DHI oligomers create more favorable conditions for the efficient adhesion of growing eumelanin. PMID:28753933
2000-02-01
Pharmacy costs are outpacing other healthcare expenditures, with psychotropic medications accounting for 16% to 25% of the total pharmacy costs. Managed care organizations (MCOs) can be expected to exert considerable pressure to control such costs. Avenues for cost containment include changing the management and spending decisions of MCOs, influencing physician prescribing patterns, encouraging economically efficient pharmacy policies and procedures, and controlling patient access to prescription drugs. From the cost standpoint of an MCO, briefer approaches to treating depressed patients are desirable. The MCOs prefer a limited number of psychotherapeutic sessions, rapid titration and prescription of higher dosage levels of appropriate drugs, and a longer continuation phase of pharmacological treatment to avert a relapse.
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.
Public hospital resource allocations in El Salvador: accounting for the case mix of patients.
Fiedler, J L; Schmidt, R M; Wight, J B
1998-09-01
National hospitals in developing countries command a disproportionate share of medical care budgets, justified on the grounds that they have a more difficult patient case mix and higher occupancy rates than decentralized district hospitals or clinics. This paper empirically tests the hypothesis by developing direct measures of the severity of patient illness, hospital case-mix and a resource intensity index for each of El Salvador's public hospitals. Based on an analysis of inpatient care staffing requirements, national hospitals are found to receive funding far in excess of what case-mix and case-load considerations would warrant. The findings suggest that significant system-wide efficiency gains can be realized by allocating hospital budgets on the bases of performance-related criteria which incorporate the case-mix approach developed here.
Raynor, P C; Kim, B G; Ramachandran, G; Strommen, M R; Horns, J H; Streifel, A J
2008-02-01
Synthetic filters made from fibers carrying electrostatic charges and fiberglass filters that do not carry electrostatic charges are both utilized commonly in heating, ventilating, and air-conditioning (HVAC) systems. The pressure drop and efficiency of a bank of fiberglass filters and a bank of electrostatically charged synthetic filters were measured repeatedly for 13 weeks in operating HVAC systems at a hospital. Additionally, the efficiency with which new and used fiberglass and synthetic filters collected culturable biological particles was measured in a test apparatus. Pressure drop measurements adjusted to equivalent flows indicated that the synthetic filters operated with a pressure drop less than half that of the fiberglass filters throughout the test. When measured using total ambient particles, synthetic filter efficiency decreased during the test period for all particle diameters. For particles 0.7-1.0 mum in diameter, efficiency decreased from 92% to 44%. It is hypothesized that this reduction in collection efficiency may be due to charge shielding. Efficiency did not change significantly for the fiberglass filters during the test period. However, when measured using culturable biological particles in the ambient air, efficiency was essentially the same for new filters and filters used for 13 weeks in the hospital for both the synthetic and fiberglass filters. It is hypothesized that the lack of efficiency reduction for culturable particles may be due to their having higher charge than non-biological particles, allowing them to overcome the effects of charge shielding. The type of particles requiring capture may be an important consideration when comparing the relative performance of electrostatically charged synthetic and fiberglass filters. Electrostatically charged synthetic filters with high initial efficiency can frequently replace traditional fiberglass filters with lower efficiency in HVAC systems because properly designed synthetic filters offer less resistance to air flow. Although the efficiency of charged synthetic filters at collecting non-biological particles declined substantially with use, the efficiency of these filters at collecting biological particles remained steady. These findings suggest that the merits of electrostatically charged synthetic HVAC filters relative to fiberglass filters may be more pronounced if collection of biological particles is of primary concern.
NASA Astrophysics Data System (ADS)
Klementich, Eloisa Y.
2011-12-01
Purpose. The purpose of this research was to identify whether a relationship exists between state energy-efficiency policy and innovation in the State of California and to shed light on the impact that energy-efficiency policy can have on supporting statewide economic development goals. Theoretical Framework. The theoretical framework drew from foundations in neoclassical economic theory, technology change theory, and new growth theory. Together these theories formed the basis to describe the impacts caused by the innovations within the market economy. Under this framework, policy-generated innovations are viewed to be translated into efficiency and productivity that propel economic benefits. Methodological Considerations. This study examined various economic indices and efficiency attainment indices affecting four home appliances regulated under Title 20's energy-efficiency standard established by the California Energy Commission, Warren Alquist Act. The multiple regression analysis performed provided an understanding of the relationship between the products regulated, the regulation standard, and the policy as it relates to energy-efficiency regulation. Findings. There is enough evidence to show that strategies embedded in the Warren Alquist Act, Title 20 do drive innovation. Three of the four product categories tested showed statistical significance in the policy standard resulting in an industry efficiency improvement. Conclusively, the consumption of electricity per capita in California has positively diverged over a 35-year period from national trends, even though California had mirrored the nation in income and family size during the same period, the only clear case of divergence is the state's action toward a different energy policy. Conclusions and Recommendations. California's regulations propelled manufacturers to reach higher efficiency levels not otherwise pursued by market forces. The California effort included alliances all working together to make the change financially feasible as well as increasing efficiency levels. The success of the policy is based on the attainment of regulation standards, economic growth within the energy-efficiency industry, and energy-efficiency business savings. The key to the policy was its ability to "level the playing field" for manufacturers who could then choose the technology and design that best fit their products and compliance levels while at the same time lowering the cost of production.
The Efficiency of Higher Education Institutions in England Revisited: Comparing Alternative Measures
ERIC Educational Resources Information Center
Johnes, Geraint; Tone, Kaoru
2017-01-01
Data envelopment analysis (DEA) has often been used to evaluate efficiency in the context of higher education institutions. Yet there are numerous alternative non-parametric measures of efficiency available. This paper compares efficiency scores obtained for institutions of higher education in England, 2013-2014, using three different methods: the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano; LEAP - Laboratorio Energia Ambiente Piacenza, Via Bixio 27, 29100 Piacenza; Vigano, Federico, E-mail: federico.vigano@polimi.it
Highlights: > The amount of waste available for energy recovery is significantly higher than the Unsorted Residual Waste (URW). > Its energy potential is always higher than the complement to 100% of the Source Separation Level (SSL). > Increasing SSL has marginal effects on the potential for energy recovery. > Variations in the composition of the waste fed to WtE plants affect only marginally their performances. > A large WtE plant with a treatment capacity some times higher than a small plant achieves electric efficiency appreciably higher. - Abstract: This article is part of a set of six coordinated papersmore » reporting the main findings of a research project carried out by five Italian universities on 'Material and energy recovery in Integrated Waste Management Systems (IWMS)'. An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa).« less
NASA Astrophysics Data System (ADS)
Yin, Xin; Xie, Xueyao; Song, Lixin; Zhai, Jifeng; Du, Pingfan; Xiong, Jie
2018-05-01
Highly flexible ZrO2/C nanofibers (NFs) coated with Ag nanoparticles (NPs) have been fabricated by a combination of electrospinning, carbonization and hydrothermal treatment. The obtained Ag@ZrO2/C NFs serve as low-cost counter electrodes (CEs) for flexible dye-sensitized solar cells (FDSSCs). A considerable power conversion efficiency of 4.77% is achieved, which is 27.9% higher than the η of ZrO2/C NFs CEs (3.73%) and reaches about 90% of that of Pt CE (5.26%). It can be ascribed to the fact that the introduction of Ag NPs provides a large number of accessible reaction sites for electrolyte ions to rapidly participate in the I3-/I- reaction. Moreover, the Ag NPs can produce synergistic effect with ZrO2/C NFs to further enhance transport capacity and electro-catalytic activity of the Ag@ZrO2/C film. Therefore, the considerable performance together with characteristics of simple preparation, low cost and flexibility suggests the Ag@ZrO2/C film can be promising candidate for the future generation of FDSSC.
Comparison of lossless compression techniques for prepress color images
NASA Astrophysics Data System (ADS)
Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.
1998-12-01
In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.
Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-Fenton catalyst.
Zhao, Binxia; Mele, Giuseppe; Pio, Iolanda; Li, Jun; Palmisano, Leonardo; Vasapollo, Giuseppe
2010-04-15
Photocatalytic degradation of 4-nitrophenol was investigated using Fe-doped (1, 3, 5 and 8 wt.% Fe) TiO(2) catalysts under UV light irradiation in aqueous dispersions in the presence of H(2)O(2). Photocatalysts with the lowest Fe content (1%) showed a considerably better behavior with respect to the unloaded TiO(2) and the catalysts with higher Fe contents. Photocatalytic degradation was studied under different conditions such as amounts of 1% Fe-TiO(2) catalyst, H(2)O(2) dose and initial pH of 4-NP solution. The results indicated that about 67.53% total organic carbon of a solution containing 20 mg L(-1) 4-NP was removed at pH 6.17 by using 4.9 mM of H(2)O(2) and 0.4 g L(-1) of the catalyst in a 2-L batch photo-reactor, the complete degradation of 4-NP occurring after 60 min. It was also observed that catalytic behavior could be reproduced in consecutive experiments without a considerable decrease of the UV/Fe-TiO(2)/H(2)O(2) process efficiency. 2009 Elsevier B.V. All rights reserved.
Degradation of the chlorophenoxyacetic herbicide 2,4-D by plasma-ozonation system.
Bradu, C; Magureanu, M; Parvulescu, V I
2017-08-15
A novel advanced oxidation process based on the combination of ozonation with non-thermal plasma generated in a pulsed corona discharge was developed for the oxidative degradation of recalcitrant organic pollutants in water. The pulsed corona discharge in contact with liquid, operated in oxygen, produced 3.5mgL -1 ozone, which was subsequently introduced in the ozonation reactor. The solution to be treated was continuously circulated between the plasma reactor and the ozonation reactor. The system was tested for the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and considerably improved performance as compared to ozonation alone, both with respect to the removal of the target compound and to mineralization. The apparent reaction rate constant for 2,4-D removal was 0.195min -1 , more than two times higher than the value obtained in ozonation experiments. The mineralization reached more than 90% after 60min treatment and the chlorine balance confirms the absence of quantifiable amounts of chlorinated by-products. The energy efficiency was considerably enhanced by shortening the duration of the discharge pulses, which opens the way for further optimization of the electrical circuit design. Copyright © 2017 Elsevier B.V. All rights reserved.
Increasing the Efficiency of the One Room School.
ERIC Educational Resources Information Center
Berg, Paul
The one room school is a challenging educational setting for both teacher and student. Isolation of the school, limited availability of educational resources, and the demanding role of the school as the only formal educational institution within the community are conditions which make classroom efficiency an important consideration for the…
Genome-wide association study for feed efficiency traits using SNP and haplotype models
USDA-ARS?s Scientific Manuscript database
Feed costs comprise the majority of variable expenses in beef cattle systems making feed efficiency an important economic consideration within the beef industry. Due to the expense of recording individual feed intake phenotypes, a genomic-enabled approach could be advantageous towards improving this...
SPATIALLY-BALANCED SAMPLING OF NATURAL RESOURCES IN THE PRESENCE OF FRAME IMPERFECTIONS
The spatial distribution of a natural resource is an important consideration in designing an efficient survey or monitoring program for the resource. Generally, samples that are more or less evenly dispersed over the extent of the resource will be more efficient than simple rando...
Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter.
Sung, Kwangjae; Lee, Dong Kyu 'Roy'; Kim, Hwangnam
2018-05-26
The reliable and accurate indoor pedestrian positioning is one of the biggest challenges for location-based systems and applications. Most pedestrian positioning systems have drift error and large bias due to low-cost inertial sensors and random motions of human being, as well as unpredictable and time-varying radio-frequency (RF) signals used for position determination. To solve this problem, many indoor positioning approaches that integrate the user's motion estimated by dead reckoning (DR) method and the location data obtained by RSS fingerprinting through Bayesian filter, such as the Kalman filter (KF), unscented Kalman filter (UKF), and particle filter (PF), have recently been proposed to achieve higher positioning accuracy in indoor environments. Among Bayesian filtering methods, PF is the most popular integrating approach and can provide the best localization performance. However, since PF uses a large number of particles for the high performance, it can lead to considerable computational cost. This paper presents an indoor positioning system implemented on a smartphone, which uses simple dead reckoning (DR), RSS fingerprinting using iBeacon and machine learning scheme, and improved KF. The core of the system is the enhanced KF called a sigma-point Kalman particle filter (SKPF), which localize the user leveraging both the unscented transform of UKF and the weighting method of PF. The SKPF algorithm proposed in this study is used to provide the enhanced positioning accuracy by fusing positional data obtained from both DR and fingerprinting with uncertainty. The SKPF algorithm can achieve better positioning accuracy than KF and UKF and comparable performance compared to PF, and it can provide higher computational efficiency compared with PF. iBeacon in our positioning system is used for energy-efficient localization and RSS fingerprinting. We aim to design the localization scheme that can realize the high positioning accuracy, computational efficiency, and energy efficiency through the SKPF and iBeacon indoors. Empirical experiments in real environments show that the use of the SKPF algorithm and iBeacon in our indoor localization scheme can achieve very satisfactory performance in terms of localization accuracy, computational cost, and energy efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Kevin L. Kenney; William A. Smith
Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less
Yang, Fu; Kamarudin, Muhammad Akmal; Zhang, PuTao; Kapil, Gaurav; Ma, Tingli; Hayase, Shuzi
2018-05-04
Perovskite solar cells have attracted considerable attention owing to easy and low-cost solution manufacturing process with high power conversion efficiency. However, the fabrication process is usually performed inside glovebox to avoid the moisture, as organometallic halide perovskite is easily dissolved in water. In this study, we propose one-step fabrication of high-quality MAPbI3 perovskite films in 50 % RH humid ambient air by using diethyl ether as an anti-solvent and methanol as an additive into this anti-solvent. Because of the existence of methanol, the water molecules can be efficiently removed from the gaps of perovskite precursors and the perovskite film formation can be slightly controlled leading to pinhole-free and low roughness film. Concurrently, methanol can modify a proper DMSO ratio in the intermediate perovskite phase to regulate perovskite formation. Planar solar cells fabricated by using this method exhibited the best efficiency of 16.4 % with a reduced current density-voltage hysteresis. This efficiency value is approximately 160 % higher than the devices fabrication by using only diethyl ether treatment. From the impedance measurement, it is also found that the recombination reaction has been suppressed when the device prepared with additive anti-solvent way. This method presents a new path for controlling the growth and morphology of perovskite films in the humid climates and uncontrolled laboratories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kluckova, Katarina; Zobalova, Renata; Goodwin, Jacob; Tilly, David; Stursa, Jan; Pecinova, Alena; Philimonenko, Anatoly; Hozak, Pavel; Banerjee, Jaideep; Ledvina, Miroslav; Sen, Chandan K.; Houstek, Josef; Coster, Mark J.
2011-01-01
Abstract Aims A plausible strategy to reduce tumor progress is the inhibition of angiogenesis. Therefore, agents that efficiently suppress angiogenesis can be used for tumor suppression. We tested the antiangiogenic potential of a mitochondrially targeted analog of α-tocopheryl succinate (MitoVES), a compound with high propensity to induce apoptosis. Results MitoVES was found to efficiently kill proliferating endothelial cells (ECs) but not contact-arrested ECs or ECs deficient in mitochondrial DNA, and suppressed angiogenesis in vitro by inducing accumulation of reactive oxygen species and induction of apoptosis in proliferating/angiogenic ECs. Resistance of arrested ECs was ascribed, at least in part, to the lower mitochondrial inner transmembrane potential compared with the proliferating ECs, thus resulting in the lower level of mitochondrial uptake of MitoVES. Shorter-chain homologs of MitoVES were less efficient in angiogenesis inhibition, thus suggesting a molecular mechanism of its activity. Finally, MitoVES was found to suppress HER2-positive breast carcinomas in a transgenic mouse as well as inhibit tumor angiogenesis. The antiangiogenic efficacy of MitoVES was corroborated by its inhibitory activity on wound healing in vivo. Innovation and Conclusion We conclude that MitoVES, a mitochondrially targeted analog of α-tocopheryl succinate, is an efficient antiangiogenic agent of potential clinical relevance, exerting considerably higher activity than its untargeted counterpart. MitoVES may be helpful against cancer but may compromise wound healing. Antioxid. Redox Signal. 15, 2923–2935. PMID:21902599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Shaista; Sharif, Rehana; Ghani, Sheeba
This paper demonstrates the facile synthesis of high performance silver-polypyrrole-multiwall carbon nanotubes (Ag-PPy-FMWCNTS) nanocomposites via electrodeposition method on stainless steel substrate and its application as a low cost counter electrode (CE) for the precious platinum (Pt) free DSSC. The nanocomposites were characterized by variety of techniques such as Fourier transforms infrared (FTIR), X-ray diffraction, Scanning electron microscope (SEM), cyclic voltammetry (CV) and Four probe technique respectively. The cyclic voltammetry and Tafel polymerization measurements of Ag-PPy-FMWCNTS nanocomposites CE reveal the favorable electrocatalytic activity and low charge transfer resistance R{sub ct}(2.50 Ω cm{sup 2}) for I{sub 3}{sup −}/I{sup −} redox solution. Themore » four probe studies showed the large electrical conductivity (226S cm{sup −1}) of Ag-PPy-FMWCNTS nanocomposite. The DSSC assembled with Ag-PPy-FMWCNTS nanocomposites CE display the considerable short circuit current density (13.95 mA cm{sup −2}) and acceptable solar to electrical conversion efficiency of 7.6%, which is higher to the efficiency of DSSC with thermally decomposed Pt reference electrode 7.1%. The excellent conversion efficiency, rapid charge transfer in combination with low cost and simple fabrication method of Ag-PPy-FMWCNTS nanocomposites can be exploited as an efficient and potential candidate to replace the Pt CE for large scale production of DSSC.« less
Possibility study of gasifier with axial circulating flue gas for reducing Tar
NASA Astrophysics Data System (ADS)
Poowadin, T.; Polsongkram, M.; Khantikomol, P.
2018-01-01
This present research article aims to study the possibility of gasification by axial core flue gas circulating kiln and find the efficiency of syngas production. An axial core flue gas circulating tube was installed in the center of the updraft gasifier in purposing of tar reducing. In the present study, the eucalyptus wood chip 4, 8, and 10 kg with the moisture content 16% were examined. Several type-K thermocouples were employed to measure the temperatures at preheat, combustion, reduction, pyrolysis, drying, and gas outlet zone. The results showed that the temperatures in the combustion and the reduction zone of the kiln with the axial core flue gas recirculating were lower than the kiln without the core owing to installing the core would reduce the combustion zone area in biomass burning. Obviously, the temperature in the pyrolysis and drying zone were nearly the same as both with and without the core. In consideration of syngas components, it was found that CO production from the gasifier with the core was higher than the gasifier without the core about 25%. Other gases, however, were almost same. The syngas production efficiency obtained from the gasifier with the core decreased with increasing the mass of biomass. It showed that the highest efficiency was 30% at 4 kg supplying biomass. In comparison, the efficiencies of both the kilns with and without the core were not different. For liquid product, the amount of liquid decreased about 47.23% comparing with the gasifier without the core.
The Internal Efficiency in Higher Education: An Analysis Based on Economies of Scope
ERIC Educational Resources Information Center
Gang, Cheng; Keming, Wu
2008-01-01
Among the studies of the internal efficiency in higher education, most have focused on the scale of university (the economies of scale), but little on internal operating efficiency in higher education, especially on the combined efficiency of outputs (the economies of scope). There are few theoretical discussions or experimental research on…
Decision Making for Chinese Students to Receive Their Higher Education in the U.S.
ERIC Educational Resources Information Center
Chao, Chiangnan
2016-01-01
This study examines Chinese students' decision making considerations for coming to the U.S. for their higher education. Due to the large number of Chinese students in the U.S, it is an interesting topic for educators and researchers to explore the decision making considerations Chinese students choose for studying abroad. International student…
Thermal barrier coatings (TBC's) for high heat flux thrust chambers
NASA Astrophysics Data System (ADS)
Bradley, Christopher M.
The last 30 years materials engineers have been under continual pressure to develop materials with a greater temperature potential or to produce configurations that can be effectively cooled or otherwise protected at elevated temperature conditions. Turbines and thrust chambers produce some of the harshest service conditions for materials which lead to the challenges engineers face in order to increase the efficiencies of current technologies due to the energy crisis that the world is facing. The key tasks for the future of gas turbines are to increase overall efficiencies to meet energy demands of a growing world population and reduce the harmful emissions to protect the environment. Airfoils or blades tend to be the limiting factor when it comes to the performance of the turbine because of their complex design making them difficult to cool as well as limitations of their thermal properties. Key tasks for space transportation it to lower costs while increasing operational efficiency and reliability of our space launchers. The important factor to take into consideration is the rocket nozzle design. The design of the rocket nozzle or thrust chamber has to take into account many constraints including external loads, heat transfer, transients, and the fluid dynamics of expanded hot gases. Turbine engines can have increased efficiencies if the inlet temperature for combustion is higher, increased compressor capacity and lighter weight materials. In order to push for higher temperatures, engineers need to come up with a way to compensate for increased temperatures because material systems that are being used are either at or near their useful properties limit. Before thermal barrier coatings were applied to hot-section components, material alloy systems were able to withstand the service conditions necessary. But, with the increased demand for performance, higher temperatures and pressures have become too much for those alloy systems. Controlled chemistry of hot-section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.
Homing pigeons (Columba livia) modulate wingbeat characteristics as a function of route familiarity.
Taylor, Lucy A; Portugal, Steven J; Biro, Dora
2017-08-15
Mechanisms of avian navigation have received considerable attention, but whether different navigational strategies are accompanied by different flight characteristics is unknown. Managing energy expenditure is critical for survival; therefore, understanding how flight characteristics, and hence energy allocation, potentially change with birds' familiarity with a navigational task could provide key insights into the costs of orientation. We addressed this question by examining changes in the wingbeat characteristics and airspeed of homing pigeons ( Columba livia ) as they learned a homing task. Twenty-one pigeons were released 20 times individually either 3.85 or 7.06 km from home. Birds were equipped with 5 Hz GPS trackers and 200 Hz tri-axial accelerometers. We found that, as the birds' route efficiency increased during the first six releases, their median peak-to-peak dorsal body (DB) acceleration and median DB amplitude also increased. This, in turn, led to higher airspeeds, suggesting that birds fly slower when traversing unfamiliar terrain. By contrast, after route efficiency stabilised, birds exhibited increasing wingbeat frequencies, which did not result in further increases in speed. Overall, higher wind support was also associated with lower wingbeat frequencies and increased DB amplitude. Our study suggests that the cost of early flights from an unfamiliar location may be higher than subsequent flights because of both inefficient routes (increased distance) and lower airspeeds (increased time). Furthermore, the results indicate, for the first time, that birds modulate their wingbeat characteristics as a function of navigational knowledge, and suggest that flight characteristics may be used as 'signatures' of birds' route familiarity. © 2017. Published by The Company of Biologists Ltd.
Fixed-bed adsorption study of methylene blue onto pyrolytic tire char
NASA Astrophysics Data System (ADS)
Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis
2016-04-01
In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.
Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo
2016-09-01
Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat. Copyright © 2016. Published by Elsevier Masson SAS.
Credit Enhancement Overview Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Financing Solutions Working Group
2014-01-01
Provides considerations for state and local policymakers and energy efficiency program administrators designing and implementing successful credit enhancement strategies for residential and commercial buildings.
Bioanalytical method transfer considerations of chromatographic-based assays.
Williard, Clark V
2016-07-01
Bioanalysis is an important part of the modern drug development process. The business practice of outsourcing and transferring bioanalytical methods from laboratory to laboratory has increasingly become a crucial strategy for successful and efficient delivery of therapies to the market. This chapter discusses important considerations when transferring various types of chromatographic-based assays in today's pharmaceutical research and development environment.
Combining people, processes, and technology.
Fishman, Julia
2017-06-01
Julia Fishman, managing director and vice-President, Clinical Strategy, at TeleTracking Technologies, discusses the in-use benefits of patient, staff, and asset tracking and flow technologies, arguing that their effective deployment across an NHS under considerable pressure on many fronts can free up more time to care, bring considerable cost and wider efficiencies, and help to address the perennial issue of 'bed blocking'.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-21
.... EERE-2011-BT-STD-0031] RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment... meeting and availability of the Framework Document pertaining to the development of energy conservation... to and the issues presented by these equipment types, and in consideration of the travel schedules of...
Comparative Review of a Dozen National Energy Plans: Focus on Renewable and Efficient Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, J.; James, T. L.
2009-03-01
Dozens of groups have submitted energy, environmental, and economic recovery plans for consideration by the Obama administration and the 111th Congress. This report provides a comparative analysis of 12 national proposals, focusing especially on energy efficiency (EE) and renewable energy (RE) market and policy issues.
A Comparative Review of a Dozen National Energy Plans. Focus on Renewable and Efficient Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, Jeffrey; James, Ted L.
2009-03-01
Dozens of groups have submitted energy, environmental, and economic recovery plans for consideration by the Obama administration and the 111th Congress. This report provides a comparative analysis of 12 national proposals, focusing especially on energy efficiency (EE) and renewable energy (RE) market and policy issues.
Ben W. Twight
1995-01-01
This paper argues that short term competitive contracting and "partnerships" with low bidders cannot produce the quality or efficiency that highly socialized normatively guided career organizations, both public and private, can produce. High quality maximum efficiency production requires highly socialized primary group types of organizations, guided by a...
Evaluation on the Efficiency of Biomass Power Generation Industry in China
Sun, Dong; Guo, Sen
2014-01-01
As a developing country with large population, China is facing the problems of energy resource shortage and growing environmental pollution arising from the coal-dominated energy structure. Biomass energy, as a kind of renewable energy with the characteristics of being easy to store and friendly to environment, has become the focus of China's energy development in the future. Affected by the advanced power generation technology and diversified geography environment, the biomass power generation projects show new features in recent years. Hence, it is necessary to evaluate the efficiency of biomass power generation industry by employing proper method with the consideration of new features. In this paper, the regional difference as a new feature of biomass power generation industry is taken into consideration, and the AR model is employed to modify the zero-weight issue when using data envelopment analysis (DEA) method to evaluate the efficiency of biomass power generation industry. 30 biomass power generation enterprises in China are selected as the sample, and the efficiency evaluation is performed. The result can provide some insights into the sustainable development of biomass power generation industry in China. PMID:25093209
ERIC Educational Resources Information Center
Breier, Mignonne
2010-01-01
While the role of financial considerations in higher education student dropout is being recognized increasingly, the dominant international literature fails to reflect the extent of socio-economic deprivation among students in countries where many people live below the poverty datum line. This article draws on a study of student retention and…
Efficiency Considerations in Low Pressure Turbines
NASA Technical Reports Server (NTRS)
2010-01-01
Issues & Topics Discussed: a) Aviation Week reported shortfall In LPT efficiency due to the application of "high lift airfoils". b) Progress in the design technologies in LPTs during the last 20 years: 1) Application of RANS based CFD codes. 2) Integration of recent experimental data and modeling of LPT airfoil specific flows into design methods. c) Opportunities to further enhance LPT efficiency for commercial aviation and military transport application and to impact emissions, noise, weight & cost.
Evaluation of safety of hypobaric decompressions and EVA from positions of probabilistic theory
NASA Astrophysics Data System (ADS)
Nikolaev, V. P.
Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.
Particulate removal processes and hydraulics of porous gravel media filters
NASA Astrophysics Data System (ADS)
Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.
2013-12-01
Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal clogging processes of gravel filters and are a considerable improvement on the inflow/outflow data most often available to monitor removal efficiency and clogging. Sub-section of the MRI derived geometry showing gravel (grey), pore space (blue), deposited particles (red) for 1) prior to clogging and 2) after clogging. The pore network skeleton (green) provided a reference point for comparing pore diameter change with clogging.
NASA Astrophysics Data System (ADS)
Botero, Sergio
2002-01-01
Energy markets today in Latin America and worldwide are being restructured from monopolies, either state-owned or privately-owned, to be more openly competitive and incorporate more participation from the private sector. Thus, the schemes that were formerly developed to foster end use energy efficiency are no longer applicable because they were based on mandatory regulations made with political decisions, without sufficiently considering economic feasibility. A consensus exists that the only way energy efficiency could survive in this new paradigm is by being market oriented, giving better services, and additional options to users. However; there is very little information on what end users prefer, and which options would most satisfy customers. Using Colombia as a case study, this research determines and categorizes the energy efficiency business options for large energy end users that can freely participate in the competitive energy market. The energy efficiency market is understood as a market of services aiming to increase efficiency in energy use. These services can be grouped into seven business options. A survey, following the descriptive method, was sent to energy end users in order to determine their preferences for specific energy efficiency business options, as well as the decision-making criteria taken into account for such options. This data was categorized in ten industry groups. As a conclusion, energy efficiency providers should adapt not only to the economic activity or processes of each customer, but also to the potential business options. It was also found that not all industries consider performance contracting as their most preferred option, as a matter of fact, some industries show much higher preference for conventional business options. Among end users, the divergence in option preferences contrasted with the convergence in decision-making criteria. The decision-making criteria "cost-benefit ratio" overwhelmed all other criterion. End users appear to chose a specific energy efficiency option based mostly on obtaining better economic returns, giving low consideration to other criterion that feature differences among the energy efficiency options.
Tracking wildlife by satellite: Current systems and performance
Harris, Richard B.; Fancy, Steven G.; Douglas, David C.; Garner, Gerald W.; Amstrup, Steven C.; McCabe, Thomas R.; Pank, Larry F.
1990-01-01
Since 1984, the U.S. Fish and Wildlife Service has used the Argos Data Collection and Location System (DCLS) and Tiros-N series satellites to monitor movements and activities of 10 species of large mammals in Alaska and the Rocky Mountain region. Reliability of the entire system was generally high. Data were received from instrumented caribou (Rangifer tarandus) during 91% of 318 possible transmitter-months. Transmitters failed prematurely on 5 of 45 caribou, 2 of 6 muskoxen (Ovibos moschatus), and 1 of 2 gray wolves (Canis lupus). Failure rates were considerably higher for polar (Ursus maritimus) and brown (U. arctos) bears than for caribou (Rangifer tarandus). Efficiency of gathering both locational and sensor data was related to both latitude and topography.Mean error of locations was estimated to be 954 m (median = 543 m) for transmitters on captive animals; 90% of locations were <1,732 m from the true location. Argos's new location class zero processing provided many more locations than normal processing, but mean location error was much higher than locations estimated normally. Locations were biased when animals were at elevations other than those used in Argos's calculations.Long-term and short-term indices of animal activity were developed and evaluated. For several species, the long-term index was correlated with movement patterns and the short-term index was calibrated to specific activity categories (e.g., lying, feeding, walking).Data processing and sampling considerations were evaluated. Algorithms for choosing the most reliable among a series of reported locations were investigated. Applications of satellite telemetry data and problems with lack of independence among locations are discussed.
Harms, H; Zehnder, A J
1994-01-01
Dibenzofuran uptake-associated kinetic parameters of suspended and attached Sphingomonas sp. strain HH19k cells were compared. The suspended cells were studied in a batch system, whereas glass beads in percolated columns were used as the solid support for attached cells. The maximum specific activities of cells in the two systems were the same. The apparent half-maximum uptake rate-associated concentrations (Kt') of attached cells, however, were considerably greater than those of suspended cells and depended on cell density and on percolation velocity. A mathematical model was developed to explain the observed differences in terms of substrate transport to the cells. This model was based on the assumptions that the intrinsic half-maximum uptake rate-associated concentration (Kt) was unchanged and that deviations of Kt' from Kt resulted from the stereometry and the hydrodynamics around the cells. Our calculations showed that (i) diffusion to suspended cells and to single attached cells is efficient and therefore only slightly affects Kt'; (ii) diffusion to cells located on crowded surfaces is considerably lower than that to single attached cells and greatly increases Kt', which depends on the cell density; (iii) the convective-diffusive transport to attached cells that occurs in a percolated column is influenced by the liquid flow and results in dependency of Kt' on the flow rate; and (iv) higher specific affinity of cells correlates with higher susceptibility to diffusion limitation. Properties of the experimental system which limited quantitative proof of exclusively transport-controlled variations of Kt' are discussed. PMID:8085817
Chen, Xiaohua; Gu, Yu; Zhou, Xuefei; Zhang, Yalei
2014-07-01
Recently, anaerobic digestion of lignocellulosic biomass for methane production has attracted considerable attention. However, there is little information regarding methane production from asparagus stem, a typical lignocellulosic biomass, by anaerobic digestion. In this study, alkaline pretreatment of asparagus stem was investigated for its ability to increase hydrolysis rate and methane production and to improve biodegradability (BD). The hydrolysis rate increased with increasing NaOH dose, due to higher removal rates of lignin and hemicelluloses. However, the optimal NaOH dose was 6% (w/w) according to the specific methane production (SMP). Under this condition, the SMP and the technical digestion time of the NaOH-treated asparagus stem were 242.3 mL/g VS and 18 days, which were 38.4% higher and 51.4% shorter than those of the untreated sample, respectively. The BD was improved from 40.1% to 55.4%. These results indicate that alkaline pretreatment could be an efficient method for increasing methane production from asparagus stem. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peroxidase-like activity of apoferritin paired gold clusters for glucose detection.
Jiang, Xin; Sun, Cuiji; Guo, Yi; Nie, Guangjun; Xu, Li
2015-02-15
The discovery and application of noble metal nanoclusters have received considerable attention. In this paper, we reported that apoferritin paired gold clusters (Au-Ft) could efficiently catalyze oxidation of 3.3',5.5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. Compared with natural enzyme, Au-Ft exhibited higher activity near acidic pH and could be used over a wide range of temperatures. Apoferritin nanocage enhanced the reaction activity of substrate TMB by H2O2. The reaction catalyzed by Au-Ft was found to follow a typical Michaelis-Menten kinetics. The kinetic parameters exhibited a lower K(m) value (0.097 mM) and a higher K(cat) value (5.8 × 10(4) s(-1)) for TMB than that of horse radish peroxidase (HRP). Base on these findings, Au-Ft, acting as a peroxidase mimetic, performed enzymatic spectrophotometric analysis of glucose. This system exhibited acceptable reproducibility and high selectivity in biosening, suggesting that it could have promising applications in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel route for the removal of bodily heavy metal lead (II)
NASA Astrophysics Data System (ADS)
Huang, Weirong; Zhang, Penghua; Xu, Hui; Chang, Shengli; He, Yongju; Wang, Fei; Liang, Gaowei
2015-09-01
The lead ion concentration in bile is considerably higher than in blood, and bile is released into the alimentary tract. Thiol-modified SBA-15 administered orally can combine with lead ions in the alimentary tract. In this paper, the in vitro lead absorption of bile was investigated. This thiol-modified SBA-15 material was used in pharmacodynamics studies on rabbits. The result that the lead content in faeces was notably higher indicates that thiol-modified SBA-15 can efficiently remove lead. The mechanism could include the following: thiol-modified SBA-15 material cuts off the heavy metal lead recirculation in the process of bile enterohepatic circulation by chelating the lead in the alimentary tract, causing a certain proportion of lead to be removed by the thiol mesoporous material, and the lead is subsequently egested out of the body in faeces. The results indicate that this material might be a potential non-injection material for the removal bodily heavy metal lead in the alimentary tract. This material may also be a useful means of lead removal, especially for non-acute sub-poisoning symptoms.
Cofiring lignite with hazelnut shell and cotton residue in a pilot-scale fluidized bed combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuhal Gogebakan; Nevin Selcuk
In this study, cofiring of high ash and sulfur content lignite with hazelnut shell and cotton residue was investigated in 0.3 MWt METU Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig in terms of combustion and emission performance of different fuel blends. The results reveal that cofiring of hazelnut shell and cotton residue with lignite increases the combustion efficiency and freeboard temperatures compared to those of lignite firing with limestone addition only. CO{sub 2} emission is not found sensitive to increase in hazelnut shell and cotton residue share in fuel blend. Cofiring lowers SO{sub 2} emissions considerably. Cofiring of hazelnutmore » shell reduces NO and N{sub 2}O emissions; on the contrary, cofiring cotton residue results in higher NO and N{sub 2}O emissions. Higher share of biomass in the fuel blend results in coarser cyclone ash particles. Hazelnut shell and cotton residue can be cofired with high ash and sulfur-containing lignite without operational problems. 32 refs., 12 figs., 11 tabs.« less
NASA Technical Reports Server (NTRS)
Lohr, Gary W.; Williams, Dan; Abbott, Terence; Baxley, Brian; Greco, Adam; Ridgway, Richard
2005-01-01
The Small Aircraft Transportation System Higher Volume Operations (SATS HVO) concept holds the promise for increased efficiency and throughput at many of the nations under-used airports. This concept allows for concurrent operations at uncontrolled airports that under today s procedures are restricted to one arrival or one departure operation at a time, when current-day IFR separation standards are applied. To allow for concurrent operations, SATS HVO proposes several fundamental changes to today's system. These changes include: creation of dedicated airspace, development of new procedures and communications (phraseologies), and assignment of roles and responsibilities for pilots and controllers, among others. These changes would affect operations on the airborne side (pilot) as well as the groundside (controller and air traffic flow process). The focus of this paper is to discuss some of the issues and potential problems that have been considered in the development of the SATS HVO concept, in particular from the ground side perspective. Reasonable solutions to the issues raised here have been proposed by the SATS HVO team, and are discussed in this paper.
In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice
Yoon, Kyong Sup; Ketzis, Jennifer K.; Andrewes, Samuel W.; Wu, Christopher S.; Honraet, Kris; Staljanssens, Dorien; Rossel, Bart; Marshall Clark, J.
2015-01-01
The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp. PMID:26336209
Syngas fermentation in a 100-L pilot scale fermentor: design and process considerations.
Kundiyana, Dimple K; Huhnke, Raymond L; Wilkins, Mark R
2010-05-01
Fermentation of syngas offers several advantages compared to chemical catalysts such as higher specificity of biocatalysts, lower energy costs, and higher carbon efficiency. Scale-up of syngas fermentation from a bench scale to a pilot scale fermentor is a critical step leading to commercialization. The primary objective of this research was to install and commission a pilot scale fermentor, and subsequently scale-up the Clostridium strain P11 fermentation from a 7.5-L fermentor to a pilot scale 100-L fermentor. Initial preparation and fermentations were conducted in strictly anaerobic conditions. The fermentation system was maintained in a batch mode with continuous syngas supply. The effect of anaerobic fermentation in a pilot scale fermentor was evaluated. In addition, the impact of improving the syngas mass transfer coefficient on the utilization and product formation was studied. Results indicate a six fold improvement in ethanol concentration compared to serum bottle fermentation, and formation of other compounds such as isopropyl alcohol, acetic acid and butanol, which are of commercial importance. (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.
Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon
2016-02-01
V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.
Life cycle assessment: Existing building retrofit versus replacement
NASA Astrophysics Data System (ADS)
Darabi, Nura
The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.
Simple Myths and Basic Maths about Greening Irrigation
NASA Astrophysics Data System (ADS)
Dionisio Pérez-Blanco, C.; Gómez, C. Mario
2014-05-01
Managing water is a very complex societal issue that needs to involve legal, environmental, technological, financial and political considerations that are difficult to co-ordinate in an effective manner. This complexity and the lack of an agreed assessment framework have often implied that political decisions, largely driven by transaction costs (especially the bargaining costs required to come to an acceptable agreement with all the parties involved), have overshadowed and prevailed over other considerations. As a result, (financially) expensive solutions such as irrigation modernization programmes have been preferred to their inexpensive alternatives to save water, such as quotas or pricing policies. However, greening the economy is mostly about improving water governance and not only about putting the existing resource saving technical alternatives into practice. Focusing on the second and forgetting the first risks finishing with a highly efficient use of water services at the level of each individual user but with an unsustainable amount of water use for the entire economy. This might be happening already in many places with the modernization of irrigated agriculture, the world's largest water user and the one offering the most promising water saving opportunities. In spite of high expectations, costly modern irrigation techniques seem not to be contributing to reduce water scarcity and increase drought resiliency. In fact, according to the little evidence available, in some areas they are resulting in higher water use. Building on basic economic principles this study aims to show the conditions under which this apparently paradoxical outcome, known as the Jevons' Paradox, might appear. This basic model is expected to serve as guidance for assessing the actual outcomes of increasing irrigation efficiency and to discuss the changes in water governance that would be required for this to make a real contribution to sustainable water management.
Khanum, Shahnaz Adeeb; Hussain, Mujahid; Kausar, Rehana
2007-12-01
A study was undertaken to look into the reproductive performance of female Dwarf goats reared under traditional conditions at NIAB Farm, Faisalabad, Pakistan. The serum progesterone profile was used to monitor various reproductive parameters (length of postpartum period, resumption of cyclicity, gestation period, prepartum period, parturition) in two lots of goats. Litter size, birth weight of kids and kidding interval were also observed. Most of the animals conceived within 15-59 days of postpartum period. All the does conceived at first or second estrus. During gestation period, higher levels of progesterone were maintained with wide variations falling in the range of 3-13 ng ml(-1). However, a few days before parturition a decline was noticed at 6+/-0.9 days and it reached to the basal level of 0.1 ng ml(-1) after the completion of parturition process. The length of gestation period was found to be 145.8+/-5 days in the first lot and 145.2+/-4 days in the second lot. A very short kidding interval (203.7+/-46 days) and considerably bigger litter size (1.8+/-0.8) was observed. All the parturitions were normal and a considerable weight gain (8.2+/-0.3 kg) of mothers was recorded during pregnancy. The initial birth weight of kids was averaged as 2.1+/-0.5 kg in the first and 1.6+/-0.2 kg in the second lot. It was concluded that Dwarf goat has short gestation length, postpartum period and kidding interval along with multiple births being common. Due to these factors, its reproductive efficiency can be exploited for efficient goat meat production.
Effects of Natural and Experimental Drought on Growth and Water Use Efficiency in Amazon trees
NASA Astrophysics Data System (ADS)
Vadeboncoeur, M. A.; Brum, M., Jr.; Oliveira, R. S.; Moutinho, V. H. P.; Flores, C. F.; Llerena, C. A.; Palace, M. W.; Asbjornsen, H.
2016-12-01
Severe regional droughts in the Amazon basin, mostly associated with El Nino events, have attracted considerable attention over the past decade, especially with regard to their effects on tree mortality, vulnerability to fire, and changes in the terrestrial budgets of carbon, water, and energy. Understanding the complex responses of forest ecosystems to such droughts is key to predicting how these globally critical forest ecosystems will respond to a changing climate with higher temperatures and greater precipitation variability. Though tree rings are not formed by all tropical tree species, they offer a unique retrospective approach for investigating patterns of climatic responses in both carbon cycling (primary production inferred from diameter growth) and water cycling (water use efficiency calculated from stable C isotope ratios). We sampled increment cores from 40 tree species at the Tapajos National Forest in Brazil, as well as the Cocha Cashu Biological Station in Peru, for an isotopic dendrochronological investigation into the effects of past droughts on the growth and water-use efficiency of canopy and mid-story tree species. We found that many but not all trees responded to drought years with periods of reduced growth lasting 2-3 years. Forthcoming data on carbon isotope ratios will allow us to compare the sensitivity of species and sites in terms of water use under drought conditions.
Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker
2014-01-01
Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.
Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neises, Ty; Turchi, Craig
2014-09-01
A comparison of three supercritical CO2 Brayton cycles: the simple cycle, recompression cycle and partial-cooling cycle indicates the partial-cooling cycle is favored for use in concentrating solar power (CSP) systems. Although it displays slightly lower cycle efficiency versus the recompression cycle, the partial-cooling cycle is estimated to have lower total recuperator size, as well as a lower maximum s-CO2 temperature in the high-temperature recuperator. Both of these effects reduce recuperator cost. Furthermore, the partial-cooling cycle provides a larger temperature differential across the turbine, which translates into a smaller, more cost-effective thermal energy storage system. The temperature drop across the turbinemore » (and by extension, across a thermal storage system) for the partial-cooling cycle is estimated to be 23% to 35% larger compared to the recompression cycle of equal recuperator conductance between 5 and 15 MW/K. This reduces the size and cost of the thermal storage system. Simulations by NREL and Abengoa Solar indicate the partial-cooling cycle results in a lower LCOE compared with the recompression cycle, despite the former's slightly lower cycle efficiency. Advantages of the recompression cycle include higher thermal efficiency and potential for a smaller precooler. The overall impact favors the use of a partial-cooling cycle for CSP compared to the more commonly analyzed recompression cycle.« less
NASA Astrophysics Data System (ADS)
Chilakapaty, Ankit Paul
The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.
Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J.; Grimm, Volker
2014-01-01
Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2′,4,4′,55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears. PMID:25101837
Simulation of double-pass stimulated Raman backscattering
NASA Astrophysics Data System (ADS)
Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.
2018-04-01
Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.
Excited hydrogen bonds in the molecular mechanism of muscle contraction.
Bespalova, S V; Tolpygo, K B
1991-11-21
The mechanism of muscle contraction is considered. The hydrolysis of an ATP molecule is assumed to produce the excitation of hydrogen bonds A--H...B between electronegative atoms A and B, which are contained in the myosin head and actin filament. This excitation energy epsilon f depends on the interatomic distance AB = R and generates the tractive force f = -delta epsilon f/delta R, that makes atoms AB approach each other. The swing of the myosin head results in macroscopic mutual displacement of actin and myosin polymers. The motion of the actin filament under the action of this force is studied. The conditions under which a considerable portion of the excitation energy converts into the potential tension energy of the actin filament are analysed, and the probability of higher muscle efficiency existence is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honghong Shan; Jianfang Zhang; Guohe Que
The physical-chemical properties and catalytic cracking behaviors of Gudao VR and Gudao VRDS VR were studied. The properties are structural parameters show that the C/H, Mw, R{sub A}, f{sub A} values and nitrogen, sulfur, nickel, resin contents of the Gudao VRDS VR are obviously lower than those of Gudao VR, and that the content of saturates of Gudao VRDS VR are considerably higher than that of Gudao VR. The catalytic cracking experiments of Gudao VRDS VR in laboratory scale show that VRDS VR has good cracking behaviour. The research and industry scale results indicate that the VRDS process using Gudaomore » VR as feedstock is a kind of high efficiency hydrotreating process, and that VRDS-FCC complex technology can realize the deep processing of the crude, increase the light oil yields and enhance the economical profit of the enterprise.« less
Design of a lamella settler for biomass recycling in continuous ethanol fermentation process.
Tabera, J; Iznaola, M A
1989-04-20
The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.
Cryptography in the Bounded-Quantum-Storage Model
NASA Astrophysics Data System (ADS)
Schaffner, Christian
2007-09-01
This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.
NASA Astrophysics Data System (ADS)
Tahir, Mohamad Zamhari; Nawi, Mohd Nasrun Mohd; Rajemi, Mohamad Farizal
2016-08-01
Energy demand and consumption in buildings will rise rapidly in the near future because of several social economics factors and this situation occurs not only in developed countries but also in developing countries such as Malaysia. There is demand towards building with energy efficiency features at this time, however most of the current buildings types are still being constructed with conventional designs, thus contribute to inefficient of energy consumption during the operation stage of the building. This paper presents the concept and the application of Value Management (VM) approach and its potential to improve consideration of energy efficiency within pre-construction process. Based on the relevant literatures, VM has provides an efficient and effective delivery system to fulfill the objectives and client's requirements. Generally in this paper, VM is discussed and scrutinized with reference to previous studies to see how these concepts contribute to better optimize the energy consumption in a building by seeking the best value energy efficiency through the design and construction process. This paper will not draw any conclusion but rather a preliminary research to propose the most energy efficiency measures to reliably accomplish a function that will meet the client's needs, desires and expectations. For further research in future, simple quantitative industry survey and VM workshops will be conducted to validate and further improve the research.
Energy efficiency in California laboratory-type facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, E.; Bell, G.; Sartor, D.
The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less
ERIC Educational Resources Information Center
Rose, Michael T.; Crossan, Angus N.; Kennedy, Ivan R.
2008-01-01
Consideration of the property of action is proposed to provide a more meaningful definition of efficient energy use and sustainable production in ecosystems. Action has physical dimensions similar to angular momentum, its magnitude varying with mass, spatial configuration and relative motion. In this article, the relationship of action to…
ERIC Educational Resources Information Center
Hsiung, C. -M.
2010-01-01
The present study conducts an experimental investigation to compare the efficiency of the cooperative learning method with that of the traditional learning method. A total of 42 engineering students are randomly assigned to the two learning conditions and are formed into mixed-ability groups comprising three team members. In addition to the…
High efficiency klystron for the SPS application
NASA Technical Reports Server (NTRS)
Larue, A. D.
1980-01-01
The enhancement of klystron efficiency through the use of collector depression, that is by recovering energy from the spent electron beam after microwave amplification, was investigated. Design considerations included noise, harmonics, cooling, and service life. The mod anode, to be employed for beam control, and the depressed collector, used in spent electron beam energy recovery, are described.
Samuel Glass; Vladimir Kochkin; S. Drumheller; Lance Barta
2015-01-01
Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB)...
ERIC Educational Resources Information Center
Chappie, David Alexander
The primary problem was concerned with the uses of hypnosis and waking suggestions as means of improving reading efficiency. A second problem concerned rectifying research design inadequacies related to hypnosis experiments. The procedure used pretest scores secured for rate, comprehension, and vocabulary. Subjects were placed in experimental and…
Silicon solar cell efficiency improvement: Status and outlook
NASA Technical Reports Server (NTRS)
Wolf, M.
1985-01-01
Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required.
NASA Astrophysics Data System (ADS)
Richter, E.
1984-09-01
The work deals with the design and analysis study for the conceptual design of an economical high efficiency ac motor based on permanent magnets. The design and trade off studies have covered the material considerations, the design tradeoff options as well as transient and steady state performance considerations, and other options. The baseline comparison is the high efficiency induction motor. The permanent magnet (PM) motor must fit into the same frame size and surpass the induction motor on a life cost basis that includes 2.5 years of operation at a 50% duty cycle. It is shown that a motor based upon ferrite magnets does meet the objectives of the program in ratings of up to 25 hp. A 7.5 motor design is carried through the conceptual design stage.
Aerodynamic Heat-Power Engine Operating on a Closed Cycle
NASA Technical Reports Server (NTRS)
Ackeret, J.; Keller, D. C.
1942-01-01
Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.
NASA Astrophysics Data System (ADS)
Kuetemeyer, K.; Lucas-Hahn, A.; Petersen, B.; Hassel, P.; Lemme, E.; Niemann, H.; Heisterkamp, A.
2010-02-01
Cloning of several mammalian species has been achieved by somatic cell nuclear transfer over the last decade. However, this method still results in very low efficiencies originating from biological and technical aspects. The highly-invasive mechanical enucleation belongs to the technical aspects and requires considerable micromanipulation skill. In this paper, we present a novel non-invasive method for combined oocyte imaging and automated functional enucleation using femtosecond (fs) laser pulses. After three-dimensional imaging of Hoechst-labeled porcine oocytes by multiphoton microscopy, our self-developed software automatically determined the metaphase plate position and shape. Subsequent irradiation of this volume with the very same laser at higher pulse energies in the low-density-plasma regime was used for metaphase plate ablation. We show that functional fs laser-based enucleation of porcine oocytes completely inhibited further embryonic development while maintaining intact oocyte morphology. In contrast, non-irradiated oocytes were able to develop to the blastocyst stage without significant differences to control oocytes. Our results indicate that fs laser systems offer great potential for oocyte imaging and enucleation as a fast, easy to use and reliable tool which may improve the efficiency of somatic cell clone production.
Charcoal versus LPG grilling: A carbon-footprint comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Eric, E-mail: ejohnson@ecosite.co.u
2009-11-15
Undoubtedly, grilling is popular. Britons fire up their barbeques some 60 million times a year, consuming many thousands of tonnes of fuel. In milder climates consumption is even higher, and in the developing world, charcoal continues to be an essential cooking fuel. So it is worth comparing the carbon footprints of the two major grill types, charcoal and LPG, and that was the purpose of the study this paper documents. Charcoal and LPG grill systems were defined, and their carbon footprints were calculated for a base case and for some plausible variations to that base case. In the base case,more » the charcoal grilling footprint of 998 kg CO{sub 2}e is almost three times as large as that for LPG grilling, 349 kg CO{sub 2}e. The relationship is robust under all plausible sensitivities. The overwhelming factors are that as a fuel, LPG is dramatically more efficient than charcoal in its production and considerably more efficient in cooking. Secondary factors are: use of firelighters, which LPG does not need; LPG's use of a heavier, more complicated grill; and LPG's use of cylinders that charcoal does not need.« less
HyPlane for Space Tourism and Business Transportation
NASA Astrophysics Data System (ADS)
Savino, R.
In the present work a preliminary study on a small hypersonic airplane for a long duration space tourism mission is presented. It is also consistent with a point-to-point medium range (5000-6000 km) hypersonic trip, in the frame of the "urgent business travel" market segment. The main ideas is to transfer technological solutions developed for aeronautical and space atmospheric re-entry systems to the design of such a hypersonic airplane. A winged vehicle characterized by high aerodynamic efficiency and able to manoeuvre along the flight path, in all aerodynamic regimes encountered, is taken into consideration. Rocket-Based Combined Cycle and Turbine-Based Combined Cycle engines are investigated to ensure higher performances in terms of flight duration and range. Different flight-paths are also considered, including sub-orbital parabolic trajectories and steady state hypersonic cruise. The former, in particular, takes advantage of the high aerodynamic efficiency during the unpowered phase, in combination with a periodic engine actuation, to guarantee a long duration oscillating flight path. These trajectories offer Space tourists the opportunity of extended missions, characterized by repeated periods of low-gravity at altitudes high enough to ensure a wide view of the Earth from Space.
Kumar, M Dinesh; Tamilarasan, K; Kaliappan, S; Banu, J Rajesh; Rajkumar, M; Kim, Sang Hyoun
2018-05-01
The present study aimed to increase the disintegration potential of marine macroalgae, (Ulva reticulata) through chemo mechanical pretreatment (CMP) in an energy efficient manner. By combining surfactant with disperser, the specific energy input was considerably reduced from 437.1 kJ/kg TS to 264.9 kJ/kg TS to achieve 10.7% liquefaction. A disperser rpm (10,000), pretreatment time (30 min) and tween 80 dosage (21.6 mg/L) were considered as an optimum for effective liquefaction of algal biomass. CMP was designated as an appropriate pretreatment resulting in a higher soluble organic release 1250 mg/L, respectively. Anaerobic fermentation results revealed that the volatile fatty acid (VFA) concentration was doubled (782 mg/L) in CMP when compared to mechanical pretreatment (MP) (345 mg/L). CMP pretreated algal biomass was considered as the suitable for biohydrogen production with highest H 2 yield of about 63 mL H 2 /g COD than (MP) (45 mL H 2 /g COD) and control (10 mL H 2 /g COD). Copyright © 2018 Elsevier Ltd. All rights reserved.
Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males
Pace, Simona; Pergola, Carlo; Dehm, Friederike; Rossi, Antonietta; Gerstmeier, Jana; Troisi, Fabiana; Pein, Helmut; Schaible, Anja M.; Weinigel, Christina; Rummler, Silke; Northoff, Hinnak; Laufer, Stefan; Maier, Thorsten J.; Rådmark, Olof; Samuelsson, Bengt; Sautebin, Lidia
2017-01-01
Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO–activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor–induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development. PMID:28737505
Shrestha, Sadhana; Haramoto, Eiji; Malla, Rabin; Nishida, Kei
2015-03-01
Shallow groundwater is the main water source among many alternatives in the Kathmandu Valley, Nepal, which has a rapidly growing population and intermittent piped water supply. Although human pathogens are detected in groundwater, its health effects are unclear. We estimated risk of diarrhoea from shallow groundwater use using quantitative microbial risk assessment. Escherichia coli, Giardia cyst and Cryptosporidium oocyst levels were analysed in dug and tube wells samples. E. coli concentrations were converted to those of enteropathogenic E. coli (EPEC). Risks from EPEC in dug wells and from Cryptosporidium and Giardia in both dug and tube wells were higher than the acceptable limit (<10⁻⁴ infections/person-year) for both drinking and bathing exposures. Risk from protozoan enteropathogens increased the total risk 10,000 times, indicating that ignoring protozoans could lead to serious risk underestimation. Bathing exposure considerably increased risk, indicating that it is an important pathway. Point-of-use (POU) water treatment decreased the risk six-fold and decreased risk overestimation. Because removal efficiency of POU water treatment has the largest impact on total risk, increasing the coverage and efficiency of POU water treatment could be a practical risk management strategy in the Kathmandu Valley and similar settings.
Kim, Boram; Bel, Thomas; Bourdoncle, Pascal; Dimare, Jocelyne; Troesch, Stéphane; Molle, Pascal
2018-01-01
Sustainable treatment and management of fecal sludge in rural areas require adapted solutions. Rustic and simple operating processes such as sludge treatment reed beds (STRB) have been increasingly considered for this purpose. The biggest full scale (2,600 m 2 of STRB) septage treatment unit in France had been built in Nègrepelisse with the final objectives of reusing treated sludge and leachates for agriculture spreading and tree irrigation, respectively. The aim of this investigation was to validate the treatment chain of this installation. The obtained field data showed firstly that the overall removal efficiencies of STRB were satisfactory and stable. Removal rates higher than 98% for chemical oxygen demand and suspended solids and a 95% for Kjeldahl nitrogen represented so far a beneficial septage treatment by STRB. The highlighted necessity of a suitable complementary leachate treatment (before tree irrigation) justified the presence of the second stage of vertical flow constructed wetland. The sludge deposit drying and mineralization efficiencies were on the right track. According to hydrotextural diagram analysis, surface deposit was however found to have high deformability probably due to the youth of the installation. An in-depth understanding of STRB system needs continuous long-term studies.
Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang
2017-12-01
At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.
NASA Astrophysics Data System (ADS)
Sathyamoorthy, K.; Vinothkumar, P.; Irshad Ahamed, J.; Murali Manohar, P.; Priya, M.; Liu, Jinghe
2018-04-01
Single crystals of organometallic (DL)-trithioureatartrato-O1,O2,O3-cadmium(II) (TUDLC) have been grown from methanol solution by using the slow evaporation of solvent growth technique. The lattice structure and crystalline perfection have been determined by carrying out single crystal X-ray diffraction and high resolution X-ray diffraction measurements. The grown crystal was characterized thermally and mechanically by carrying out thermo-gravimetric and micro hardness measurements. The linear and nonlinear optical characterizations were made by carrying out optical transmittance, surface laser damage threshold, particle size-dependent second harmonic generation (SHG) efficiency and photo conductivity measurements. The grown crystal was electrically characterized by carrying out frequency-dependent dielectric measurements. Chemical etching study was also carried out and the dislocation density was estimated. Results obtained in the present study indicate that the grown TUDLC crystal is optically transparent with lower cut-off wavelength 304 nm, mechanically soft, thermally stable up to 101 °C and NLO active with SHG efficiency 2.13 (in KDP unit). The grown crystal is found to have considerably large size, good crystalline perfection, large specific heat capacity, higher surface laser damage threshold and negative photoconductivity.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zong, Lanlan; Guan, Zhongjie; Li, Qiuye; Yang, Jianjun
2018-02-01
An economic and effective Pt-based alloy cocatalyst has attracted considerable attention due to their excellent catalytic activity and reducing Pt usage. In this study, PtNi alloy cocatalyst was successfully decorated on the g-C3N4/GO hybrid photocatalyst via a facile chemical reduction method. The Eosin Y-sensitized g-C3N4/PtNi/GO-0.5% composite photocatalyst yields about 1.54 and 1178 times higher hydrogen evolution rate than the Eosin Y-sensitized g-C3N4/Pt/GO-0.5% and g-C3N4/Ni/GO-0.5% samples, respectively. Mechanism of enhanced performance for the g-C3N4/PtNi/GO composite was also investigated by different characterization, such as photoluminescence, transient photocurrent response, and TEM. These results indicated that enhanced charge separation efficiency and more reactive sites are responsible for the improved hydrogen evolution performance due to the positive synergetic effect between Pt and Ni. This study suggests that PtNi alloy can be used as an economic and effective cocatalyst for hydrogen evolution reaction. [Figure not available: see fulltext.
Design of Contact Electrodes for Semiconductor Nanowire Solar Energy Harvesting Devices.
Lin, Tzuging; Ramadurgam, Sarath; Yang, Chen
2017-04-12
Transparent, low-resistive contacts are critical for efficient solar energy harvesting devices. It is important to reconsider the material choices and electrode design as devices move from 2D films to 1D nanostructures. In this paper, we study the effectiveness of indium tin oxide (ITO) and metals, such as Ag and Cu, as contacts in 2D and 1D systems. Although ITO has been studied extensively and developed into an effective transparent contact for 2D devices, our results show that effectiveness does not translate to 1D systems. Particularly with consideration of resistance requirement, nanowires with metal shells as contacts enable better absorption within the semiconductor as compared to ITO. Furthermore, there is a strong dependence of contact performance on the semiconductor band gap and diameter of nanowires. We found that metal contacts outperform ITO for nanowire devices, regardless of the sheet resistance constraint, in the regime of diameters less than 100 nm and band-gaps greater than 1 eV. These metal shells optimized for best absorption are significantly thinner than ITO, which enables for the design of devices with high nanowire number density and consequently higher device efficiencies.
Achieving energy efficiency during collective communications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundriyal, Vaibhav; Sosonkina, Masha; Zhang, Zhao
2012-09-13
Energy consumption has become a major design constraint in modern computing systems. With the advent of petaflops architectures, power-efficient software stacks have become imperative for scalability. Techniques such as dynamic voltage and frequency scaling (called DVFS) and CPU clock modulation (called throttling) are often used to reduce the power consumption of the compute nodes. To avoid significant performance losses, these techniques should be used judiciously during parallel application execution. For example, its communication phases may be good candidates to apply the DVFS and CPU throttling without incurring a considerable performance loss. They are often considered as indivisible operations although littlemore » attention is being devoted to the energy saving potential of their algorithmic steps. In this work, two important collective communication operations, all-to-all and allgather, are investigated as to their augmentation with energy saving strategies on the per-call basis. The experiments prove the viability of such a fine-grain approach. They also validate a theoretical power consumption estimate for multicore nodes proposed here. While keeping the performance loss low, the obtained energy savings were always significantly higher than those achieved when DVFS or throttling were switched on across the entire application run« less
Terry, Tracy J.; Stack, T. Daniel P.
2009-01-01
Considerable attention has been devoted to the immobilization of discrete epoxidation catalysts onto solid supports due to the possible benefits of site isolation such as increased catalyst stability, catalyst recycling, and product separation. A synthetic metal-template/metal-exchange method to imprint a covalently attached bis-1,10-phenanthroline coordination environment onto high-surface area, mesoporous SBA-15 silica is reported herein along with the epoxidation reactivity once reloaded with manganese. Comparisons of this imprinted material with material synthesized by random grafting of the ligand show that the template method creates more reproducible, solution-like bis-1,10-phenanthroline coordination at a variety of ligand loadings. Olefin epoxidation with peracetic acid shows the imprinted manganese catalysts have improved product selectivity for epoxides, greater substrate scope, more efficient use of oxidant, and higher reactivity than their homogeneous or grafted analogues independent of ligand loading. The randomly grafted manganese catalysts, however, show reactivity that varies with ligand loading while the homogeneous analogue degrades trisubstituted olefins and produces trans-epoxide products from cis-olefins. Efficient recycling behavior of the templated catalysts is also possible. PMID:18351763
McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S
2017-04-26
A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Kevin L. Kenney; Christopher T. Wright
Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements inmore » quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.« less
Assessment of total efficiency in adiabatic engines
NASA Astrophysics Data System (ADS)
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
NASA Astrophysics Data System (ADS)
Xu, Guoqiang; Zhang, Haochun; Xie, Ming; Jin, Yan
2017-10-01
Thermal harvesting devices based on transformation optics, which can manipulate the heat flux concentration significantly through rational arrangements of the conductivities, have attracted considerable interest owing to several great potential applications of the technique for high-efficiency thermal conversion and collection. However, quantitative studies on the geometrical effects, particularly wedge angles, on the harvesting behaviors are rare. In this paper, we adopt wedge structure-based thermal harvesting schemes, and focus on the effects of the geometrical parameters including the radii ratios and wedge angles on the harvesting performance. The temperature deformations at the boundaries of the compressional region and temperature gradients for the different schemes with varying design parameters are investigated. Moreover, a concept for temperature stabilization was derived to evaluate the fluctuation in the energy distributions. In addition, the effects of interface thermal resistances have been investigated. Considering the changes in the radii ratios and wedge angles, we proposed a modification of the harvesting efficiency to quantitatively assess the concentration performance, which was verified through random tests and previously fabricated devices. In general, this study indicates that a smaller radii ratio contributes to a better harvesting behavior, but causes larger perturbations in the thermal profiles owing to a larger heat loss. We also find that a smaller wedge angle is beneficial to ensuring a higher concentration efficiency with less energy perturbations. These findings can be used to guide the improvement of a thermal concentrator with a high efficiency in reference to its potential applications as novel heat storage, thermal sensors, solar cells, and thermoelectric devices.
Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo
2013-07-01
Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T D
1983-01-01
The French Intensive approach to truck gardening has the potential to provide substantially higher yields and lower per acre costs than do conventional farming techniques. It was the intent of this grant to show that there is the potential to accomplish the gains that the French Intensive method has to offer. It is obvious that locally grown food can greatly reduce transportation energy costs but when there is the consideration of higher efficiencies there will also be energy cost reductions due to lower fertilizer and pesticide useage. As with any farming technique, there is a substantial time interval for completemore » soil recovery after there have been made substantial soil modifications. There were major crop improvements even though there was such a short time since the soil had been greatly disturbed. It was also the intent of this grant to accomplish two other major objectives: first, the garden was managed under organic techniques which meant that there were no chemical fertilizers or synthetic pesticides to be used. Second, the garden was constructed so that a handicapped person in a wheelchair could manage and have a higher degree of self sufficiency with the garden. As an overall result, I would say that the garden has taken the first step of success and each year should become better.« less
Optical aberrations induced by subclinical decentrations of the ablation pattern
NASA Astrophysics Data System (ADS)
Mrochen, Michael; Kaemmerer, Maik; Riedel, Peter; Mierdel, Peter; Krinke, Hans-Eberhard; Seiler, Theo
2000-06-01
Purpose: The aim of this work was to study the effect of currently used ablation profiles along with eccentric ablations on the increase of higher order aberrations observed after PRK. Material and Methods: The optical aberrations of 10 eyes were tested before and after PRK. Refractive surgery was performed using a ArF-excimer laser system. In all cases, the ablation zone was 6 mm or larger. The spherical equivalent of the correction was ranging from -2.5 D to -6.0 D. The measured wavefront error was compared to numerical simulations done with the reduced eye model and currently used ablation profiles as well as compared with experimental results obtained from ablation on PMMA balls. Results: The aberration measurements result in a considerable change of the spherical- and coma-like wavefront errors. This result was in good correlation with the numerical simulations and the experimental results. Furthermore, it has been derived that the major contribution on the induced higher order aberrations are a result of the small decentration (less than 1.0 mm) of the ablation zone. Conclusions: Higher order spherical- and coma-like aberrations after PRK are mainly determined by the decentration of the ablation zone during laser refractive surgery. However, future laser systems should use efficient eye-tracking systems and aspherical ablation profiles to overcome this problem.
Influence of multidroplet size distribution on icing collection efficiency
NASA Technical Reports Server (NTRS)
Chang, H.-P.; Kimble, K. R.; Frost, W.; Shaw, R. J.
1983-01-01
Calculation of collection efficiencies of two-dimensional airfoils for a monodispersed droplet icing cloud and a multidispersed droplet is carried out. Comparison is made with the experimental results reported in the NACA Technical Note series. The results of the study show considerably improved agreement with experiment when multidroplet size distributions are employed. The study then investigates the effect of collection efficiency on airborne particle droplet size sampling instruments. The biased effect introduced due to sampling from different collection volumes is predicted.
Energy Efficiency Building Code for Commercial Buildings in Sri Lanka
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, John; Greenberg, Steve; Rubinstein, Francis
2000-09-30
1.1.1 To encourage energy efficient design or retrofit of commercial buildings so that they may be constructed, operated, and maintained in a manner that reduces the use of energy without constraining the building function, the comfort, health, or the productivity of the occupants and with appropriate regard for economic considerations. 1.1.2 To provide criterion and minimum standards for energy efficiency in the design or retrofit of commercial buildings and provide methods for determining compliance with them. 1.1.3 To encourage energy efficient designs that exceed these criterion and minimum standards.
Encouraging the use of generic medicines: implications for transition economies.
King, Derek R; Kanavos, Panos
2002-08-01
Generic drugs have a key role to play in the efficient allocation of financial resources for pharmaceutical medicines. Policies implemented in the countries with a high rate of generic drug use, such as Canada, Denmark, Germany, the Netherlands, the United Kingdom, and the United States, are reviewed, with consideration of the market structures that facilitate strong competition. Savings in these countries are realized through increases in the volume of generic drugs used and the frequently significant differences in the price between generic medicines and branded originator medicines. Their policy tools include the mix of supply-side measures and demand-side measures that are relevant for generic promotion and higher generic use. On the supply-side, key policy measures include generic drug marketing regulation that facilitates market entry soon after patent expiration, reference pricing, the pricing of branded originator products, and the degree of price competition in pharmaceutical markets. On the demand-side, measures typically encompass influencing prescribing and dispensing patterns as well as introducing a co-payment structure for consumers/patients that takes into consideration the difference in cost between branded and generic medicines. Quality of generic medicines is a pre-condition for all other measures discussed to take effect. The paper concludes by offering a list of policy options for decision-makers in Central and Eastern European economies in transition.
NASA Technical Reports Server (NTRS)
Onions, R. K.
1994-01-01
The degassing of the Earth during accretion is constrained by Pu-U-I-Xe systematics. Degassing was much more efficient during the first 100-200 Ma than subsequently, and it was more complete for Xe than for the lighter gases. More than 90 percent of the degassed Xe escaped from the atmosphere during this period. The combination of fractional degassing of melts and rare gas escape from the atmosphere is able to explain the deficit of terrestrial Xe as a simple consequence of this early degassing history. By the time Xe was quantitatively retained in the atmosphere, the abundances of Kr and the lighter gases in the Earth's interior were similar to or higher than the present-day atmospheric abundances. Subsequent transfer of these lighter rare gases into the atmosphere requires a high rate of post-accretion degassing and melt production. Considerations of Pu-U-Xe systematics suggest that relatively rapid post-accretion degassing was continued to ca. 4.1-4.2 Ga. The present-day degassing history of the Earth is investigated through consideration of rare gas isotope abundances. Although the Earth is a highly degassed body, depleted in rare gases by many orders of magnitude relative to their solar abundances, it is at the present-day losing primordial rare gases which were trapped at the time of accretion.
Considerations on propeller efficiency
NASA Technical Reports Server (NTRS)
Betz, A
1928-01-01
The propeller cannot be considered alone, but the mutual interference between propeller and airplane must be considered. These difficulties are so great when the joint action of propeller and airplane is considered, that the aerodynamic laboratory at Gottingen originally abandoned the idea of applying the efficiency conception of the test results. These difficulties and the methods by which they are overcome are outlined in this report.
SOLVE II: A Technique to Improve Efficiency and Solve Problems in Hardwood Sawmills
Edward L. Adams; Daniel E. Dunmire
1977-01-01
The squeeze between rising costs and product values is getting tighter for sawmill managers. So, they are taking a closer took at the efficiency of their sawmills by making a complete analysis of their milling situation. Such an analysis requires considerable time and expense. To aid the manager with this task, the USDA Forest Service's Northeastern Forest...
Electric motor/controller design tradeoffs for noise, weight, and efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, N.L.; Brown, G.W.
1994-12-31
It is common for an AUV [Autonomous Underwater Vehicle] designer to be put in the position of a subsystem hardware integrator. In the case of electric motors and controllers this may be more by necessity than choice because a suitable subsystems supplier cannot be found. As a result, motors and controllers are purchased from various manufacturers who may optimize the design of each part but hold system performance secondary in importance. Unlike hydraulics, an electric motor/controller system presents significant opportunities to improve noise, weight, and efficiency. But, these opportunities can best be recognized by a single source who not onlymore » understands the technology but has the ability to implement them in the development and manufacture of the product. An analysis is presented which explains the various design considerations of noise, weight and efficiency of electric motors and controllers for submersible AUV`s. In concert with the design considerations, their interrelationships are discussed as to how they affect each other in the overall optimization of the system. In conclusion, a matrix is created which shows how the resultant system parameters of noise, weight, and efficiency may be ``traded off`` to tailor the best overall system for the application. 1 ref.« less
Efficiency of muscle contraction. The chemimechanic equilibrium
NASA Astrophysics Data System (ADS)
Becker, E. W.
1991-10-01
Although muscle contraction is one of the principal themes of biological research, the exact mechanism whereby the chemical free energy of ATP hydrolysis is converted into mechanical work remains elusive. The high thermodynamic efficiency of the process, above all, is difficult to explain on the basis of present theories. A model of the elementary effect in muscle contraction is proposed which aims at high thermodynamic efficiency based on an approximate equilibrium between chemical and mechanical forces throughout the transfer of free energy. The experimental results described in the literature support the assumption that chemimechanic equilibrium is approximated by a free energy transfer system based on the binding of divalent metal ions to the myosin light chains. Muscle contraction demonstrated without light chains is expected to proceed with a considerably lower efficiency. Free energy transfer systems based on the binding of ions to proteins seem to be widespread in the cell. By establishing an approximate chemimechanic equilibrium, they could facilitate biological reactions considerably and save large amounts of free energy. The concept of chemimechanic equilibrium is seen as a supplementation to the concept of chemiosmotic equilibrium introduced for the membrane transport by P. Mitchell.
Modulation aware cluster size optimisation in wireless sensor networks
NASA Astrophysics Data System (ADS)
Sriram Naik, M.; Kumar, Vinay
2017-07-01
Wireless sensor networks (WSNs) play a great role because of their numerous advantages to the mankind. The main challenge with WSNs is the energy efficiency. In this paper, we have focused on the energy minimisation with the help of cluster size optimisation along with consideration of modulation effect when the nodes are not able to communicate using baseband communication technique. Cluster size optimisations is important technique to improve the performance of WSNs. It provides improvement in energy efficiency, network scalability, network lifetime and latency. We have proposed analytical expression for cluster size optimisation using traditional sensing model of nodes for square sensing field with consideration of modulation effects. Energy minimisation can be achieved by changing the modulation schemes such as BPSK, 16-QAM, QPSK, 64-QAM, etc., so we are considering the effect of different modulation techniques in the cluster formation. The nodes in the sensing fields are random and uniformly deployed. It is also observed that placement of base station at centre of scenario enables very less number of modulation schemes to work in energy efficient manner but when base station placed at the corner of the sensing field, it enable large number of modulation schemes to work in energy efficient manner.
Gelli, Aulo; Cavallero, Andrea; Minervini, Licia; Mirabile, Mariana; Molinas, Luca; de la Mothe, Marc Regnault
2011-12-01
School feeding is a popular intervention that has been used to support the education, health and nutrition of school children. Although the benefits of school feeding are well documented, the evidence on the costs of such programs is remarkably thin. Address the need for systematic estimates of the cost of different school feeding modalities, and of the determinants of the considerable cost variation among countries. WFP project data, including expenditures and number of schoolchildren covered, were collected for 78 projects in 62 countries through project reports and validated through WFP Country Office records. Yearly project costs per schoolchild were standardized over a set number of feeding days and the amount of energy provided by the average ration. Output metrics, such as tonnage, calories, and micronutrient content, were used to assess the cost-efficiency of the different delivery mechanisms. The standardized yearly average school feeding cost per child, not including school-level costs, was US$48. The yearly costs per child were lowest at US$23 for biscuit programs reaching school-going children and highest at US$75 for take-home rations programs reaching families of schoolgoing children. The average cost of programs combining on-site meals with extra take-home rations for children from vulnerable households was US$61. Commodity costs were on average 58% of total costs and were highest for biscuit and take-home rations programs (71% and 68%, respectively). Fortified biscuits provided the most cost-efficient option in terms of micronutrient delivery, whereas take-home rations were more cost-efficient in terms of food quantities delivered. Both costs and effects should be considered carefully when designing school feeding interventions. The average costs of school feeding estimated here are higher than those found in earlier studies but fall within the range of costs previously reported. Because this analysis does not include school-level costs, these findings highlight the higher nontransfer costs for programs delivering cooked meals in schools than for other school feeding modalities. The benchmarks presented here reflect the centralized WFP implementation model, which is not always relevant in terms of government school feeding programs, particularly those procuring within national boundaries using "home-grown" approaches.
Essays on regulation, institutions, and industrial organization
NASA Astrophysics Data System (ADS)
Bergara, Mario Esteban
Essay I develops a comparative institutional analysis of network access price regulation and "light-handed" regulation. While the former is a specific-agency-based arrangement with higher political influence, the latter is a court-based system. Consequently, the main trade-off between both frameworks reflects the merits of having efficient political and judicial institutions. Price regulation is superior when distributional concerns are irrelevant and information asymmetries are lower. Poorly functioning political systems and high welfare costs of raising funds make price regulation less attractive. Light regulation is more attractive when potential rents are smaller, the monopolist is more risk averse, the judicial system is more efficient, and the threat of government intervention is more credible. The possibility of private transfers makes price regulation more advantageous. Higher information asymmetries among firms makes light-handed regulation more attractive. The main results are consistent with a plausible interpretation of the drastic deregulatory process in New Zealand. Essay II studies the preliminary effects of the deregulation of direct access in the New Zealand's electricity market. A slight improvement in quality standards and an overall efficiency increase took place after two years of deregulation. Retailers were able to successfully enter in large demand, dense areas, with a large proportion of industrial and commercial users, where incumbents were not distributing electricity efficiently. Pricing policies appears to be influenced by market forces (associated to economic and demographic characteristics) as expected in a light regulatory framework. Essay III focuses on the possibility of endogenous sunk costs and the introduction of new products. Firms that exert some monopoly power in one market and introduce a new good whose demand is determined by a broader set of consumers might be forced to change their competing strategies. If the new product is a "quality" good, the resulting competitive process may include advertising outlays, affecting the degree of competition in the old market. In the Uruguayan private banking sector, larger institutions pursued more aggressive advertising strategies to maintain or improve their market positions than smaller firms. Market power in the financial intermediation market has considerably declined after the introduction of new products in the early nineties.
Process and design considerations for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Rohati, A.; Rai-Choudhury, P.
1985-01-01
This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.
Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng
2016-03-21
Perovskite solar cells (PSCs) with organic small molecules as hole transport materials (HTMs) have attracted considerable attention due to their power conversion efficiencies as high as 20%. In the present work, three new spiro-type hole transport materials with spiro-cores, i.e. Spiro-F1, Spiro-F2 and Spiro-F3, are investigated by using density functional theory combined with the Marcus theory and Einstein relation. Based on the calculated and experimental highest occupied molecular orbital (HOMO) levels of 30 reference molecules, an empirical equation, which can predict the HOMO levels of hole transport materials accurately, is proposed. Moreover, a simplified method, in which the hole transport pathways are simplified to be one-dimensional, is presented and adopted to qualitatively compare the molecular hole mobilities. The calculated results show that the perovskite solar cells with the new hole transport materials can have higher open-circuit voltages due to the lower HOMO levels of Spiro-F1 (-5.31 eV), Spiro-F2 (-5.42 eV) and Spiro-F3 (-5.10 eV) compared with that of Spiro-OMeTAD (-5.09 eV). Furthermore, the hole mobilities of Spiro-F1 (1.75 × 10(-2) cm(2) V(-1) s(-1)) and Spiro-F3 (7.59 × 10(-3) cm(2) V(-1) s(-1)) are 3.1 and 1.4 times that of Spiro-OMeTAD (5.65 × 10(-3) cm(2) V(-1) s(-1)) respectively, due to small reorganization energies and large transfer integrals. Interestingly, the stability properties of Spiro-F1 and Spiro-F2 are shown to be comparable to that of Spiro-OMeTAD, and the dimers of Spiro-F2 and Spiro-F3 possess better stability than that of Spiro-OMeTAD. Taking into consideration the appropriate HOMO level, improved hole mobility and enhanced stability, Spiro-F1 and Spiro-F3 may become the most promising alternatives to Spiro-OMeTAD. The present work offers a new design strategy and reliable calculation methods towards the development of excellent organic small molecules as HTMs for highly efficient and stable PSCs.
Time-varying value of electric energy efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mims, Natalie A.; Eckman, Tom; Goldman, Charles
Electric energy efficiency resources save energy and may reduce peak demand. Historically, quantification of energy efficiency benefits has largely focused on the economic value of energy savings during the first year and lifetime of the installed measures. Due in part to the lack of publicly available research on end-use load shapes (i.e., the hourly or seasonal timing of electricity savings) and energy savings shapes, consideration of the impact of energy efficiency on peak demand reduction (i.e., capacity savings) has been more limited. End-use load research and the hourly valuation of efficiency savings are used for a variety of electricity planningmore » functions, including load forecasting, demand-side management and evaluation, capacity and demand response planning, long-term resource planning, renewable energy integration, assessing potential grid modernization investments, establishing rates and pricing, and customer service. This study reviews existing literature on the time-varying value of energy efficiency savings, provides examples in four geographically diverse locations of how consideration of the time-varying value of efficiency savings impacts the calculation of power system benefits, and identifies future research needs to enhance the consideration of the time-varying value of energy efficiency in cost-effectiveness screening analysis. Findings from this study include: -The time-varying value of individual energy efficiency measures varies across the locations studied because of the physical and operational characteristics of the individual utility system (e.g., summer or winter peaking, load factor, reserve margin) as well as the time periods during which savings from measures occur. -Across the four locations studied, some of the largest capacity benefits from energy efficiency are derived from the deferral of transmission and distribution system infrastructure upgrades. However, the deferred cost of such upgrades also exhibited the greatest range in value of all the components of avoided costs across the locations studied. -Of the five energy efficiency measures studied, those targeting residential air conditioning in summer-peaking electric systems have the most significant added value when the total time-varying value is considered. -The increased use of rooftop solar systems, storage, and demand response, and the addition of electric vehicles and other major new electricity-consuming end uses are anticipated to significantly alter the load shape of many utility systems in the future. Data used to estimate the impact of energy efficiency measures on electric system peak demands will need to be updated periodically to accurately reflect the value of savings as system load shapes change. -Publicly available components of electric system costs avoided through energy efficiency are not uniform across states and utilities. Inclusion or exclusion of these components and differences in their value affect estimates of the time-varying value of energy efficiency. -Publicly available data on end-use load and energy savings shapes are limited, are concentrated regionally, and should be expanded.« less
Data Envelopment Analysis and Its Application to the Measurement of Efficiency in Higher Education
ERIC Educational Resources Information Center
Johnes, Jill
2006-01-01
The purpose of this paper is to examine the possibility of measuring efficiency in the context of higher education. The paper begins by exploring the advantages and drawbacks of the various methods for measuring efficiency in the higher education context. The ease with which data envelopment analysis (DEA) can handle multiple inputs and multiple…
Gao, Ying Z.; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X.; Yang, Hai J.
2013-01-01
Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and “real” WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems. PMID:24058632
Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J
2013-01-01
Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.
TU-A-201-02: Treatment Site-Specific Considerations for Clinical IGRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wijesooriya, K.
2016-06-15
Recent years have seen a widespread proliferation of available in-room image guidance systems for radiation therapy target localization with many centers having multiple in-room options. In this session, available imaging systems for in-room IGRT will be reviewed highlighting the main differences in workflow efficiency, targeting accuracy and image quality as it relates to target visualization. Decision-making strategies for integrating these tools into clinical image guidance protocols that are tailored to specific disease sites like H&N, lung, pelvis, and spine SBRT will be discussed. Learning Objectives: Major system characteristics of a wide range of available in-room imaging systems for IGRT. Advantagesmore » / disadvantages of different systems for site-specific IGRT considerations. Concepts of targeting accuracy and time efficiency in designing clinical imaging protocols.« less
Considerations for human-machine interfaces in tele-operations
NASA Technical Reports Server (NTRS)
Newport, Curt
1991-01-01
Numerous factors impact on the efficiency of tele-operative manipulative work. Generally, these are related to the physical environment of the tele-operator and how he interfaces with robotic control consoles. The capabilities of the operator can be influenced by considerations such as temperature, eye strain, body fatigue, and boredom created by repetitive work tasks. In addition, the successful combination of man and machine will, in part, be determined by the configuration of the visual and physical interfaces available to the teleoperator. The design and operation of system components such as full-scale and mini-master manipulator controllers, servo joysticks, and video monitors will have a direct impact on operational efficiency. As a result, the local environment and the interaction of the operator with the robotic control console have a substantial effect on mission productivity.
Vakalis, Stergios; Moustakas, Konstantinos; Loizidou, Maria
2018-06-01
Waste-to-energy plants have the peculiarity of being considered both as energy production and as waste destruction facilities and this distinction is important for legislative reasons. The efficiency of waste-to-energy plants must be objective and consistent, independently if the focus is the production of energy, the destruction of waste or the recovery/upgrade of materials. With the introduction of polygeneration technologies, like gasification, the production of energy and the recovery/upgrade of materials, are interconnected. The existing methodology for assessing the efficiency of waste-to-energy plants is the R1 formula, which does not take into consideration the full spectrum of the operations that take place in waste-to-energy plants. This study introduces a novel methodology for assessing the efficiency of waste-to-energy plants and is defined as the 3T method, which stands for 'trapezoidal thermodynamic technique'. The 3T method is an integrated approach for assessing the efficiency of waste-to-energy plants, which takes into consideration not only the production of energy but also the quality of the products. The value that is returned from the 3T method can be placed in a tertiary diagram and the global efficiency map of waste-to-energy plants can be produced. The application of the 3T method showed that the waste-to-energy plants with high combined heat and power efficiency and high recovery of materials are favoured and these outcomes are in accordance with the cascade principle and with the high cogeneration standards that are set by the EU Energy Efficiency Directive.
The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.
Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun
2010-06-15
We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.
Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle
NASA Technical Reports Server (NTRS)
Hall, Eldon W
1944-01-01
A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.
NASA Astrophysics Data System (ADS)
Yang, Shan-Shan; Pang, Ji-Wei; Jin, Xiao-Man; Wu, Zhong-Yang; Yang, Xiao-Yin; Guo, Wan-Qian; Zhao, Zhi-Qing; Ren, Nan-Qi
2018-03-01
Redundant excess sludge production and considerable non-standard wastewater discharge from existing activated sludge processes are facing more and more challenges. The investigations on lower sludge production and higher sewage treatment efficiency are urgently needed. In this study, an anaerobic/anoxic/micro-aerobic/oxic-MBR combining a micro-aerobic starvation sludge holding tank (A2MMBR-M) system is developed. Batch tests on the optimization of the staged dissolved oxygen (DO) in the micro-aerobic, the first oxic, and the second oxic tanks were carried out by a 3-factor and 3-level Box-Behnken design (BBD). The optimal actual values of X1 , X2 , and X3 were DO1 of 0.3-0.5 mg/L, DO2 of 3.5-4.5 mg/L, and DO3 of 3-4 mg/L. After the optimization tests, continuous-flow experiments of anaerobic/anoxic/oxic (AAO) and A2MMBR-M systems were further conducted. Compared to AAO system, a 37.45% reduction in discharged excess sludge in A2MMBR-M system was achieved. The COD, TN, and TP removal efficiencies in A2MMBR-M system were respective 4.06%, 2.68%, and 4.04% higher than AAO system. The A2MMBR-M system is proved a promising wastewater treatment technology possessing enhanced in-situ sludge reduction and improved effluent quality. The staged optimized DO concentrations are the key controlling parameters for the realization of simultaneous in-situ sludge reduction and nutrient removal.
Thermal energy storage. [by means of chemical reactions
NASA Technical Reports Server (NTRS)
Grodzka, P. G.
1975-01-01
The principles involved in thermal energy storage by sensible heat, chemical potential energy, and latent heat of fusion are examined for the purpose of evolving selection criteria for material candidates in the low ( 0 C) and high ( 100 C) temperature ranges. The examination identifies some unresolved theoretical considerations and permits a preliminary formulation of an energy storage theory. A number of candidates in the low and high temperature ranges are presented along with a rating of candidates or potential candidates. A few interesting candidates in the 0 to 100 C region are also included. It is concluded that storage by means of reactions whose reversibility can be controlled either by product removal or by catalytic means appear to offer appreciable advantages over storage with reactions whose reversability cannot be controlled. Among such advantages are listed higher heat storage capacities and more favorable options regarding temperatures of collection, storage, and delivery. Among the disadvantages are lower storage efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, R.; Beiersdorfer, P.; Harris, C. L.
2016-01-21
Charge-exchange collisions of slow Ne 10+ ions with He, Ne, and Ar targets were studied with simultaneous x-ray and cold-target recoil-ion-momentum spectroscopy proving the contribution of several mechanisms to the radiative stabilization of apparent (4,4) doubly excited states for He and Ne targets and of (5,6) states for Ar. In particular, the stabilization efficiency of the mechanism of dynamic auto-transfer to Rydberg states is confirmed. Moreover, we present evidence for direct radiative decays of (4,4) states populated in collisions with He, which is an experimental indication of the population of so-called unnatural-parity states in such collisions. Lastly, these mechanisms leadmore » to the emission of x-rays that have considerably higher energies than those predicted by current spectral models and may explain recent observations of anomalously large x-ray emission from Rydberg levels.« less
Processing of thermionic power on an electrically propelled spacecraft
NASA Technical Reports Server (NTRS)
Macie, T. W.
1973-01-01
A study to define the power processing equipment required between a thermionic reactor and an array of mercury-ion thrusters for a nuclear electric propulsion system is reported. Observations and recommendations that resulted from this study were: (1) the preferred thermionic-fuel-element source voltages are 23 V or higher; (2) transistor characteristics exert a strong effect on power processor mass; (3) the power processor mass could be considerably reduced should the magnetic materials that exhibit low losses at high frequencies, that have a high Curie point, and that can operate at 15 to 20 kG become avaliable; (4) electrical component packaging on the radiator could reduce the area that is sensitive to meteoroid penetration, thereby reducing the meteoroid shielding mass requirement; (5) an experimental model of the power processor design should be built and tested to verify the efficiencies, masses, and all the automatic operational aspects of the design.
Cryogenics for high-energy particle accelerators: highlights from the first fifty years
NASA Astrophysics Data System (ADS)
Lebrun, Ph
2017-02-01
Applied superconductivity has become a key technology for high-energy particle accelerators, allowing to reach higher beam energy while containing size, capital expenditure and operating costs. Large and powerful cryogenic systems are therefore ancillary to low-temperature superconducting accelerator devices - magnets and high-frequency cavities - distributed over multi-kilometre distances and operating generally close to the normal boiling point of helium, but also above 4.2 K in supercritical and down to below 2 K in superfluid. Additionally, low-temperature operation in accelerators may also be required by considerations of ultra-high vacuum, limited stored energy and beam stability. We discuss the rationale for cryogenics in high-energy particle accelerators, review its development over the past half-century and present its outlook in future large projects, with reference to the main engineering domains of cryostat design and heat loads, cooling schemes, efficient power refrigeration and cryogenic fluid management.
Development of a shingle-type solar cell module
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.; Sanchez, L. E.
1978-01-01
The development of a solar cell module, which is suitable for use in place of shingles on the sloping roofs of residental or commercial buildings, is reported. The design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. The shingle solar cell module consists of two basic functional parts: an exposed rigid portion which contains the solar cell assembly, and a semi-flexible portion which is overlapped by the higher courses of the roof installation. Consideration is given to the semi-flexible substrate configuration and solar cell and module-to-module interconnectors. The results of an electrical performance analysis are given and it is noted that high specific power output can be attributed to the efficient packing of the circular cells within the hexagon shape. The shingle should function for at least 15 years, with a specific power output of 98 W/sq w.
A stochastic-dynamic model for global atmospheric mass field statistics
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.; Kalnay-Rivas, E.
1981-01-01
A model that yields the spatial correlation structure of atmospheric mass field forecast errors was developed. The model is governed by the potential vorticity equation forced by random noise. Expansion in spherical harmonics and correlation function was computed analytically using the expansion coefficients. The finite difference equivalent was solved using a fast Poisson solver and the correlation function was computed using stratified sampling of the individual realization of F(omega) and hence of phi(omega). A higher order equation for gamma was derived and solved directly in finite differences by two successive applications of the fast Poisson solver. The methods were compared for accuracy and efficiency and the third method was chosen as clearly superior. The results agree well with the latitude dependence of observed atmospheric correlation data. The value of the parameter c sub o which gives the best fit to the data is close to the value expected from dynamical considerations.
NASA Astrophysics Data System (ADS)
Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun
2016-07-01
Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.
Long-term reactions of plants and macroinvertebrates to extreme floods in floodplain grasslands.
Ilg, Christiane; Dziock, Frank; Foeckler, Francis; Follner, Klaus; Gerisch, Michael; Glaeser, Judith; Rink, Anke; Schanowski, Arno; Scholz, Mathias; Deichner, Oskar; Henle, Klaus
2008-09-01
Extreme summertime flood events are expected to become more frequent in European rivers due to climate change. In temperate areas, where winter floods are common, extreme floods occurring in summer, a period of high physiological activity, may seriously impact floodplain ecosystems. Here we report on the effects of the 2002 extreme summer flood on flora and fauna of the riverine grasslands of the Middle Elbe (Germany), comparing pre- and post-flooding data collected by identical methods. Plants, mollusks, and carabid beetles differed considerably in their response in terms of abundance and diversity. Plants and mollusks, displaying morphological and behavioral adaptations to flooding, showed higher survival rates than the carabid beetles, the adaptation strategies of which were mainly linked to life history. Our results illustrate the complexity of responses of floodplain organisms to extreme flood events. They demonstrate that the efficiency of resistance and resilience strategies is widely dependent on the mode of adaptation.
NASA Astrophysics Data System (ADS)
Zhang, Xue-Song; Yang, Guang-Xi; Jiang, Hong; Liu, Wu-Jun; Ding, Hong-Sheng
2013-01-01
Production of renewable commodity chemicals from bio-oil derived from fast pyrolysis of biomass has received considerable interests, but hindered by the presence of innumerable components in bio-oil. In present work, we proposed and experimentally demonstrated an innovative approach combining atmospheric distillation of bio-oil with co-pyrolysis for mass production of renewable chemicals from biomass, in which no waste was produced. It was estimated that 51.86 wt.% of distillate just containing dozens of separable organic components could be recovered using this approach. Ten protogenetic and three epigenetic compounds in distillate were qualitatively identified by gas chromatography/mass spectrometry and quantified by gas chromatography. Among them, the recovery efficiencies of acetic acid, propanoic acid, and furfural were all higher than 80 wt.%. Formation pathways of the distillate components in this process were explored. This work opens up a fascinating prospect for mass production of chemical feedstock from waste biomass.
Chlorophyll Catabolites – Chemical and Structural Footprints of a Fascinating Biological Phenomenon
Moser, Simone; Müller, Thomas; Oberhuber, Michael; Kräutler, Bernhard
2009-01-01
Twenty years ago, the molecular basis for the seasonal disappearance of chlorophyll was still enigmatic. In the meantime, our knowledge on chlorophyll breakdown has grown considerably. As outlined here, it has been possible to decipher the basic transformations involved in natural chlorophyll breakdown by identification of chlorophyll catabolites in higher plants, and with the help of the synthesis of (putative) catabolic intermediates. In vascular plants, chlorophyll breakdown typically converts the green plant pigments efficiently into colorless and non-fluorescent tetrapyrroles. It involves colored intermediates only fleetingly and in an (elusive) enzyme-bound form. The non-fluorescent chlorophyll catabolites accumulate in the vacuoles of degreened leaves and are considered the products, primarily, of a detoxification process. However, they are effective antioxidants, and may thus also have physiologically beneficial chemical properties.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) PMID:21037946
Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozubal, E.; Herrmann, L.; Deru, M.
2014-09-01
Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less
NASA Astrophysics Data System (ADS)
Bianchi, Thomas S.; Schreiner, Kathryn M.; Smith, Richard W.; Burdige, David J.; Woodard, Stella; Conley, Daniel J.
2016-06-01
Coastal margins play a significant role in the burial of organic matter (OM) on Earth. These margins vary considerably with respect to their efficiency in OM burial and to the amounts and periodicity of their OM delivery, depending in large part on whether they are passive or active margins. In the context of global warming, these coastal regions are expected to experience higher water temperatures, changes in riverine inputs of OM, and sea level rise. Low-oxygen conditions continue to expand around the globe in estuarine regions (i.e., hypoxic zones) and shelf regions (i.e., oxygen minimum zones), which will impact the amounts and sources of OM stored in these regions. In this review, we explore how these changes are impacting the storage of OM and the preservation of sedimentary biomarkers, used as proxies to reconstruct environmental change, in coastal margins.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
System design and integration of the large-scale advanced prop-fan
NASA Technical Reports Server (NTRS)
Huth, B. P.
1986-01-01
In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that blades with thin airfoils and aerodynamic sweep extend the inherent efficiency advantage that turboprop propulsion systems have demonstrated to the higher speed to today's aircraft. Hamilton Standard has designed a 9-foot diameter single-rotation Prop-Fan. It will test the hardware on a static test stand, in low speed and high speed wind tunnels and on a research aircraft. The major objective of this testing is to establish the structural integrity of large scale Prop-Fans of advanced construction, in addition to the evaluation of aerodynamic performance and the aeroacoustic design. The coordination efforts performed to ensure smooth operation and assembly of the Prop-Fan are summarized. A summary of the loads used to size the system components, the methodology used to establish material allowables and a review of the key analytical results are given.
Low thrust chemical orbit to orbit propulsion system propellant management study
NASA Technical Reports Server (NTRS)
Dergance, R. H.; Hamlyn, K. M.; Tegart, J. R.
1981-01-01
Low thrust chemical propulsion systems were sized for transfer of large space systems from LEO to GEO. The influence of propellant combination, tankage and insulation requirements, and propellant management techniques on the LTPS mass and volume were studied. Liquid oxygen combined with hydrogen, methane or kerosene were the propellant combinations. Thrust levels of 445, 2230, and 4450 N were combined with 1, 4 and 8 perigee burn strategies. This matrix of systems was evaluated using multilayer insulation and spray-on-foam insulation systems. Various combinations of toroidal, cylindrical with ellipsoidal domes, and ellipsoidal tank shapes were investigated. Results indicate that low thrust (445 N) and single perigee burn approaches are considerably less efficient than the higher thrust level and multiple burn strategies. A modified propellant settling approach minimized propellant residuals and decreased system complexity, in addition, the toroid/ellipsoidal tank combination was predicted to be shortest.
Lift enhancement by bats' dynamically changing wingspan
Wang, Shizhao; Zhang, Xing; He, Guowei; Liu, Tianshu
2015-01-01
This paper elucidates the aerodynamic role of the dynamically changing wingspan in bat flight. Based on direct numerical simulations of the flow over a slow-flying bat, it is found that the dynamically changing wingspan can significantly enhance the lift. Further, an analysis of flow structures and lift decomposition reveal that the elevated vortex lift associated with the leading-edge vortices intensified by the dynamically changing wingspan considerably contributed to enhancement of the time-averaged lift. The nonlinear interaction between the dynamically changing wing and the vortical structures plays an important role in the lift enhancement of a flying bat in addition to the geometrical effect of changing the lifting-surface area in a flapping cycle. In addition, the dynamically changing wingspan leads to the higher efficiency in terms of generating lift for a given amount of the mechanical energy consumed in flight. PMID:26701882
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Design considerations for large space electric power systems
NASA Technical Reports Server (NTRS)
Renz, D. D.; Finke, R. C.; Stevens, N. J.; Triner, J. E.; Hansen, I. G.
1983-01-01
As power levels of spacecraft rise to the 50 to 100 kW range, it becomes apparent that low voltage (28 V) dc power distribution and management systems will not operate efficiently at these higher power levels. The concept of transforming a solar array voltage at 150 V dc into a 1000 V ac distribution system operating at 20 kHz is examined. The transformation is accomplished with series-resonant inverter by using a rotary transformer to isolate the solar array from the spacecraft. The power can then be distributed in any desired method such as three phase delta to delta. The distribution voltage can be easily transformed to any desired load voltage and operating frequency. The reasons for the voltage limitations on the solar array due to plasma interactions and the many advantages of a high voltage, high frequency at distribution system are discussed.
[Organ allocation system: between efficiency and equity].
Antoine, Corinne
2007-02-15
Despite considerable efforts to promote organ donation and increase the amount of organ retrieval, demand for grafts is increasing and remains much higher then availability. This short supply is noticeable for all organ transplantation whether for heart, lungs, liver or pancreas but mainly for kidneys. The objective of graft allocation and attribution rules is to insure an allocation as fair as possible, to find the best recipient, to take into account the emergency of the need for grafting or the access difficulty for certain patients, and to seek optimal graft usage. These rules are based on the setting up of priority categories for patients whose lives are threatened on a very short-term basis or for those having difficult access to transplantation. This implies the issue of seeking the balance between an allocation as fair as possible and technical constraints associated with organ retrieval, transportation and graft quality preservation.
Towards AI-powered personalization in MOOC learning
NASA Astrophysics Data System (ADS)
Yu, Han; Miao, Chunyan; Leung, Cyril; White, Timothy John
2017-12-01
Massive Open Online Courses (MOOCs) represent a form of large-scale learning that is changing the landscape of higher education. In this paper, we offer a perspective on how advances in artificial intelligence (AI) may enhance learning and research on MOOCs. We focus on emerging AI techniques including how knowledge representation tools can enable students to adjust the sequence of learning to fit their own needs; how optimization techniques can efficiently match community teaching assistants to MOOC mediation tasks to offer personal attention to learners; and how virtual learning companions with human traits such as curiosity and emotions can enhance learning experience on a large scale. These new capabilities will also bring opportunities for educational researchers to analyse students' learning skills and uncover points along learning paths where students with different backgrounds may require different help. Ethical considerations related to the application of AI in MOOC education research are also discussed.
Aerocapture Inflatable Decelerator for Planetary Entry
NASA Technical Reports Server (NTRS)
Reza, Sajjad; Hund, Richard; Kustas, Frank; Willcockson, William; Songer, Jarvis; Brown, Glen
2007-01-01
Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell.
Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel
2014-02-01
Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.
Tanana, Michael; Hallgren, Kevin A; Imel, Zac E; Atkins, David C; Srikumar, Vivek
2016-06-01
Motivational interviewing (MI) is an efficacious treatment for substance use disorders and other problem behaviors. Studies on MI fidelity and mechanisms of change typically use human raters to code therapy sessions, which requires considerable time, training, and financial costs. Natural language processing techniques have recently been utilized for coding MI sessions using machine learning techniques, rather than human coders, and preliminary results have suggested these methods hold promise. The current study extends this previous work by introducing two natural language processing models for automatically coding MI sessions via computer. The two models differ in the way they semantically represent session content, utilizing either 1) simple discrete sentence features (DSF model) and 2) more complex recursive neural networks (RNN model). Utterance- and session-level predictions from these models were compared to ratings provided by human coders using a large sample of MI sessions (N=341 sessions; 78,977 clinician and client talk turns) from 6 MI studies. Results show that the DSF model generally had slightly better performance compared to the RNN model. The DSF model had "good" or higher utterance-level agreement with human coders (Cohen's kappa>0.60) for open and closed questions, affirm, giving information, and follow/neutral (all therapist codes); considerably higher agreement was obtained for session-level indices, and many estimates were competitive with human-to-human agreement. However, there was poor agreement for client change talk, client sustain talk, and therapist MI-inconsistent behaviors. Natural language processing methods provide accurate representations of human derived behavioral codes and could offer substantial improvements to the efficiency and scale in which MI mechanisms of change research and fidelity monitoring are conducted. Copyright © 2016 Elsevier Inc. All rights reserved.
Higher-order time integration of Coulomb collisions in a plasma using Langevin equations
Dimits, A. M.; Cohen, B. I.; Caflisch, R. E.; ...
2013-02-08
The extension of Langevin-equation Monte-Carlo algorithms for Coulomb collisions from the conventional Euler-Maruyama time integration to the next higher order of accuracy, the Milstein scheme, has been developed, implemented, and tested. This extension proceeds via a formulation of the angular scattering directly as stochastic differential equations in the two fixed-frame spherical-coordinate velocity variables. Results from the numerical implementation show the expected improvement [O(Δt) vs. O(Δt 1/2)] in the strong convergence rate both for the speed |v| and angular components of the scattering. An important result is that this improved convergence is achieved for the angular component of the scattering ifmore » and only if the “area-integral” terms in the Milstein scheme are included. The resulting Milstein scheme is of value as a step towards algorithms with both improved accuracy and efficiency. These include both algorithms with improved convergence in the averages (weak convergence) and multi-time-level schemes. The latter have been shown to give a greatly reduced cost for a given overall error level when compared with conventional Monte-Carlo schemes, and their performance is improved considerably when the Milstein algorithm is used for the underlying time advance versus the Euler-Maruyama algorithm. A new method for sampling the area integrals is given which is a simplification of an earlier direct method and which retains high accuracy. Lastly, this method, while being useful in its own right because of its relative simplicity, is also expected to considerably reduce the computational requirements for the direct conditional sampling of the area integrals that is needed for adaptive strong integration.« less
Determinants of generic drug substitution in Switzerland.
Decollogny, Anne; Eggli, Yves; Halfon, Patricia; Lufkin, Thomas M
2011-01-26
Since generic drugs have the same therapeutic effect as the original formulation but at generally lower costs, their use should be more heavily promoted. However, a considerable number of barriers to their wider use have been observed in many countries. The present study examines the influence of patients, physicians and certain characteristics of the generics' market on generic substitution in Switzerland. We used reimbursement claims' data submitted to a large health insurer by insured individuals living in one of Switzerland's three linguistic regions during 2003. All dispensed drugs studied here were substitutable. The outcome (use of a generic or not) was modelled by logistic regression, adjusted for patients' characteristics (gender, age, treatment complexity, substitution groups) and with several variables describing reimbursement incentives (deductible, co-payments) and the generics' market (prices, packaging, co-branded original, number of available generics, etc.). The overall generics' substitution rate for 173,212 dispensed prescriptions was 31%, though this varied considerably across cantons. Poor health status (older patients, complex treatments) was associated with lower generic use. Higher rates were associated with higher out-of-pocket costs, greater price differences between the original and the generic, and with the number of generics on the market, while reformulation and repackaging were associated with lower rates. The substitution rate was 13% lower among hospital physicians. The adoption of the prescribing practices of the canton with the highest substitution rate would increase substitution in other cantons to as much as 26%. Patient health status explained a part of the reluctance to substitute an original formulation by a generic. Economic incentives were efficient, but with a moderate global effect. The huge interregional differences indicated that prescribing behaviours and beliefs are probably the main determinant of generic substitution.
Theodoridis, A; Ragkos, A; Rose, G; Roustemis, D; Arsenos, G
2017-11-16
In this study, the economic values for production and functional traits of dairy sheep are estimated through the application of a profit function model using farm-level technical and economic data. The traits incorporated in the model were milk production, prolificacy, fertility, milking speed, longevity and mastitis occurrence. The economic values for these traits were derived as the approximate partial derivative of the specified profit function. A sensitivity analysis was also conducted in order to examine how potential changes in input and output prices would affect the breeding goal. The estimated economic values of the traits revealed their economic impact on the definition of the breeding goal for the specified production system. Milk production and fertility had the highest economic values (€40.30 and €20.28 per standard genetic deviation (SDa)), while, mastitis only had a low negative value of -0.57 €/SDa. Therefore, breeding for clinical mastitis will have a minor impact on farm profitability because it affects a small proportion of the flock and has low additive variance. The production traits, which include milk production, prolificacy and milking speed, contributed most to the breeding goal (70.0%), but functional traits still had a considerable share (30.0%). The results of this study highlight the importance of the knowledge of economic values of traits in the design of a breeding program. It is also suggested that the production and functional traits under consideration can be categorized as those which can be efficiently treated through genetic improvement (e.g. milk production and fertility) while others would be better dealt with through managerial interventions (e.g. mastitis occurrence). Also, sub-clinical mastitis that affects a higher proportion of flocks could have a higher contribution to breeding goals.
Biological and aerodynamic problems with the flight of animals
NASA Technical Reports Server (NTRS)
Holst, E. V.; Kuchemann, D.
1980-01-01
Biological and aerodynamic considerations related to birds and insects are discussed. A wide field is open for comparative biological, physiological, and aerodynamic investigations. Considerable mathematics related to the flight of animals is presented, including 20 equations. The 15 figures included depict the design of bird and insect wings, diagrams of propulsion efficiency, thrust, lift, and angles of attack and photographs of flapping wing free flying wing only models which were built and flown.
Operational status and current trends in gas turbines for utility applications in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, R.A.
1976-08-16
This investigation was conducted to ascertain the operational status and current trends in gas turbines for electric utility applications in Europe. A number of selected organizations were contacted by letter and personal visits and readily available pertinent literature was reviewed. The impact of business recovery in 1976 and increases in power demand on gas turbine operation and design trends is reflected in the following: annual operating hours on simple cycle gas turbines is very low in favor of more efficient combined cycle or steam plants which comprise part of the present excess reserve capacity; economics indicates the need for highermore » single unit ratings, e.g., in the 100 MW power range; inquiries and discussion of new plants are predominantly for more efficient systems--combined cycles and/or exhaust heat utilization; dual-purpose heat and power plants are getting much more attention; re-powering of existing steam plants is an attractive approach which has been demonstrated and should expand in use; ability to burn (or handle) dirty fuels is important; closed cycle gas turbine plants are receiving renewed consideration because of their good operational experience with dirty fuels including coal, flexibility in supplying varying amounts of heat and power with independent control, low pollution characteristics, ability to use over 80 percent of the heat content in thefuel, and potential for advantageous use in direct cycle, gas cooled nuclear power stations; the broad use of nuclear energy appears inevitable, and the potential advantages of direct cycle gas cooled systems with helium turbines offer incentives of increased efficiency, safety, and lower cost; and component trends are toward higher turbine inlet temperatures (1700 to 2000/sup 0/F) and toward higher compressor pressure ratios and variable geometry. Gas turbines are expected to play an important and continuing role in the utility industry in accordance with its changing requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Briggs, Thomas E; Cho, Kukwon
2011-01-01
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less
Characteristics of High- and Low-Efficiency Hospitals.
Rosko, Michael; Wong, Herbert S; Mutter, Ryan
2017-01-01
We compared performance, operating characteristics, and market environments of low- and high-efficiency hospitals in the 37 states that supplied inpatient data to the Healthcare Cost and Utilization Project from 2006 to 2010. Hospital cost-inefficiency estimates using stochastic frontier analysis were generated. Hospitals were then grouped into the 100 most- and 100 least-efficient hospitals for subsequent analysis. Compared with the least efficient hospitals, high-efficiency hospitals tended to have lower average costs, higher labor productivity, and higher profit margins. The most efficient hospitals tended to be nonteaching, investor-owned, and members of multihospital systems. Hospitals in the high-efficiency group were located in areas with lower health maintenance organization penetration and less competition, and they had a higher share of Medicaid and Medicare admissions. Results of the analysis suggest there are opportunities for public policies to support improved efficiency in the hospital sector.
ERIC Educational Resources Information Center
Agasisti, Tommaso; Johnes, Geraint
2009-01-01
We employ Data Envelopment Analysis to compute the technical efficiency of Italian and English higher education institutions. Our results show that, in relation to the country-specific frontier, institutions in both countries are typically very efficient. However, institutions in England are more efficient than those in Italy when we compare…
A Radial Basis Function Approach to Financial Time Series Analysis
1993-12-01
including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data...collection of practical techniques to address these issues for a modeling methodology . Radial Basis Function networks. These techniques in- clude efficient... methodology often then amounts to a careful consideration of the interplay between model complexity and reliability. These will be recurrent themes
Wang, Zhen; Li, Ru; Yu, Guolin
2017-01-01
In this work, several extended approximately invex vector-valued functions of higher order involving a generalized Jacobian are introduced, and some examples are presented to illustrate their existences. The notions of higher-order (weak) quasi-efficiency with respect to a function are proposed for a multi-objective programming. Under the introduced generalization of higher-order approximate invexities assumptions, we prove that the solutions of generalized vector variational-like inequalities in terms of the generalized Jacobian are the generalized quasi-efficient solutions of nonsmooth multi-objective programming problems. Moreover, the equivalent conditions are presented, namely, a vector critical point is a weakly quasi-efficient solution of higher order with respect to a function.
Peacock, Lisa M; Thomassee, May E; Williams, Valerie L; Young, Amy E
2015-06-01
Office-based surgery is increasingly desired by patients and providers due to ease of access, overall efficiency, reimbursement, and satisfaction. The adoption of office-based surgery requires careful consideration of safety, efficacy, cost, and feasibility within a providers practice. This article reviews the currently available data regarding patient and provider satisfaction as well as practical considerations of staffing, equipment, and supplies. To aid the practitioner, issues of office-based anesthesia and safety with references to currently available national guidelines and protocols are provided. Included is a brief review of billing, coding, and reimbursement. Technical procedural aspects with information and recommendations are summarized.
76 FR 82027 - Shipping Coordinating Committee; Notice of Committee Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
...; --Development of guidelines for use of fiber reinforced plastic (FRP) within ship structures; --Revision of... ships; --Air pollution and energy efficiency; --Reduction of GHG emissions from ships; --Consideration...
ITS opportunities in port operations
DOT National Transportation Integrated Search
1998-08-19
Intelligent Transportation Systems (ITS) reduce congestion and increase safety and efficiency on our streets, highways, railroads, and airways, in an attempt to create an intermodal system which facilitates passenger and cargo transfer. Considerable ...
García-Nicolás, Obdulio; Auray, Gaël; Sautter, Carmen A.; Rappe, Julie C. F.; McCullough, Kenneth C.; Ruggli, Nicolas; Summerfield, Artur
2016-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) represents a macrophage (MØ)-tropic virus which is unable to induce interferon (IFN) type I in its target cells. Nevertheless, infected pigs show a short but prominent systemic IFN alpha (IFN-α) response. A possible explanation for this discrepancy is the ability of plasmacytoid dendritic cells (pDC) to produce IFN-α in response to free PRRSV virions, independent of infection. Here, we show that the highly pathogenic PRRSV genotype 1 strain Lena is unique in not inducing IFN-α production in pDC, contrasting with systemic IFN-α responses found in infected pigs. We also demonstrate efficient pDC stimulation by PRRSV Lena-infected MØ, resulting in a higher IFN-α production than direct stimulation of pDC by PRRSV virions. This response was strain-independent, required integrin-mediated intercellular contact, intact actin filaments in the MØ and was partially inhibited by an inhibitor of neutral sphingomyelinase. Although infected MØ-derived exosomes stimulated pDC, an efficient delivery of the stimulatory component was dependent on a tight contact between pDC and the infected cells. In conclusion, with this mechanism the immune system can efficiently sense PRRSV, resulting in production of considerable quantities of IFN-α. This is adding complexity to the immunopathogenesis of PRRSV infections, as IFN-α should alert the immune system and initiate the induction of adaptive immune responses, a process known to be inefficient during infection of pigs. PMID:27458429
Ataabadi, Mitra; Hoodaji, Mehran; Tahmourespour, Arezoo; Kalbasi, Mahmoud; Abdouss, Majid
2015-01-01
Hexavalent chromium is a mutagen and carcinogen that is of significant concern in water and wastewater. In the present study, magnetite nanoparticles (n-Mag) were investigated as a potential remediation technology for the decontamination of Cr (VI)-contaminated wastewater. Synthesized n-Mag was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET-N2 technology. To screen and optimize the factors affecting Cr (VI) removal efficiency by synthesized nanoparticles, Plackett-Burman (PB) and Taguchi experimental designs were used respectively. The crystalline produced n-Mag was in the size range of 60-70 nm and had a specific surface area (SSA) of 31.55 m(2) g(-1). Results of PB design showed that the most significant factors affecting Cr (VI) removal efficiency were initial Cr (VI) concentration, pH, n-Mag dosage, and temperature. In a pH of 2, 20 mg L(-1) of Cr (VI) concentration, 4 g L(-1)of n-Mag, temperature of 40 °C, 220 rpm of shaking speed, and 60 min of contact time, the complete removal efficiency of Cr (VI) was achieved. Batch experiments revealed that the removal of Cr (VI) by n-Mag was consistent with pseudo-second order reaction kinetics. The competition from common coexisting ions such as NO₃(-), SO₄(2-), and Cl(-) were not considerable, unless in the higher concentration of SO₄(2-). These results indicated that the readily synthesized magnetite nanoparticles have promising applications for the removal of Cr (VI) from aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, J.H.; Davie, R.L.
1961-05-01
Filter tests were conducted to determine the most suitable filter for removing large quantities of aluminum corrosion product (boehmite) from reactor water. Filters tested included the following: wire-wound, sintered filter elements, sintered ceramic fllter elements, cotton stringwound filter elements, felted-cotton filter elements, cation resin, adsorption resin, diatomaceous earth precoat filter, and a wood-cellulose precoat filter. Parameters measured were flow rate, filter-influent and -effluent boehmite concentration, pressure drop, and final filter load. The pressure drop and efficiency of the filters was correlated with boehmite load. Boehmite deposits on filters as a nonporous gelatinous cake, and causes a rapidly increasing pressure drop.more » Tests indicate that the optimum load with filter elements and precoat filters is achieved at a pressure drop of 25 psi. Very little additional load can be obtained by operating to a higher pressure drop. Of the filters tested, the precoat filter snd 40 to 60 mesh cation resin were the more effective in removing boehmite. The efficiency of the precoat filter was in excess of 99%, and the efficiency of the cation resin was for the most part in excess of 95%. For various reasons, the other filters were eliminated from final consideration. The test program and available literature indicated that an element type precoat filter using wood cellulose as the precoat media would be most suitable for the proposed application. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junhua Jiang; Ted Aulich
An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly dependsmore » upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.« less
van der Wegen, M.; Jaffe, B.E.; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.
2013-01-01
Measured bathymetries on 30 year interval over the past 150 years show that San Pablo Bay experienced periods of considerable deposition followed by periods of net erosion. However, the main channel in San Pablo Bay has continuously narrowed. The underlying mechanisms and consequences of this tidal channel evolution are not well understood. The central question of this study is whether tidal channels evolve towards a geometry that leads to more efficient hydraulic conveyance and sediment throughput. We applied a hydrodynamic process-based, numerical model (Delft3D), which was run on 5 San Pablo Bay bathymetries measured between 1856 and 1983. Model results shows increasing energy dissipation levels for lower water flows leading to an approximately 15% lower efficiency in 1983 compared to 1856. During the same period the relative seaward sediment throughput through the San Pablo Bay main channel increased by 10%. A probable explanation is that San Pablo Bay is still affected by the excessive historic sediment supply. Sea level rise and Delta surface water area variations over 150 years have limited effect on the model results. With expected lower sediment concentrations in the watershed and less impact of wind waves due to erosion of the shallow flats, it is possible that energy dissipations levels will decrease again in future decades. Our study suggests that the morphodynamic adaptation time scale to excessive variations in sediment supply to estuaries may be on the order of centuries.
Energy efficient engine high-pressure turbine detailed design report
NASA Technical Reports Server (NTRS)
Thulin, R. D.; Howe, D. C.; Singer, I. D.
1982-01-01
The energy efficient engine high-pressure turbine is a single stage system based on technology advancements in the areas of aerodynamics, structures and materials to achieve high performance, low operating economics and durability commensurate with commercial service requirements. Low loss performance features combined with a low through-flow velocity approach results in a predicted efficiency of 88.8 for a flight propulsion system. Turbine airfoil durability goals are achieved through the use of advanced high-strength and high-temperature capability single crystal materials and effective cooling management. Overall, this design reflects a considerable extension in turbine technology that is applicable to future, energy efficient gas-turbine engines.
NASA Astrophysics Data System (ADS)
Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid
2016-04-01
In Tunisia the amount of water for irrigated agriculture is higher than about 80% of the total resource.The increasing population and the rising food demand, associated to the negative effects of climate change,make it crucial to adopt strategies aiming to improve water use efficiency (WUE). Moreover, the absence of an effective public policy for water management amplifies the imbalance between water supply and its demand. Despite improved irrigation technologies can enhance the efficiency of water distribution systems, to achieve environmental goals it is also necessaryto identify on-farm management strategies accounting for actual crop water requirement. The main objective of the paper was to assess the effects of different on-farm managementstrategies (irrigation scheduling and planting date) on yield and water use efficiency of Potato crop (Solanumtuberosum L.) irrigated with a subsurface drip system, under the semi-arid climate of central Tunisia. Experiments were carried out during three growing seasons (2012, 2014 and 2015) at the High Agronomic Institute of ChottMariem in Sousse, by considering different planting dates and irrigation depths, the latter scheduled according to the climate observed during the season. All the considered treatments received the same pesticide and fertilizer management. Experiments evidenced that the climatic variability characterizing the examined seasons (photoperiod, solar radiation and average temperature) affects considerably the crop phenological stages, and the late sowing shortens the crop cycle.It has also been demonstrated that Leaf Area Index (LAI) and crop yield resulted relatively higher for those treatments receiving larger amounts of seasonal water. Crop yield varied between 16.3 t/ha and 39.1 t/ha, with a trend linearly related to the ratio between the seasonal amount of water supplied (Irrigation, I and Precipitation, P) and the maximum crop evapotranspiration (ETm). The maximum crop yield was in particular obtained for a value of this ratio equal to 1.45. Moreover, when increasing the seasonal pluviometric deficit (P-ETm) and therefore the irrigation depth (I), standard deviations of crop yield tended to decrease, as a consequence ofthe more uniform soil water content in the root zone. In terms of agronomic water use efficiency (AWUE),differences among the investigated treatments varied in a quite narrow range,due to thecombined effects of seasonal precipitation and atmospheric water demand on irrigation depths and crop yield.On the other hand, when considering irrigation water use efficiency (IWUE), more relevant differences between treatments were observed,being the higher values of IWUEgenerally associated to the lower irrigation depths. However, to define the best irrigation management strategy it is necessary, from one side, to consider the availability of water and from the other, to perform aneconomic analysis accounting for the cost of water and the related benefits achievable by the farmer.
2010 Northwest Federal Market Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scanlon, Tim; Sandusky, William F.
The primary intent of this market assessment is to provide insights on the effectiveness of current energy efficiency and renewable energy program offerings available to Federal sites in the region. The level of detail, quality and currency of the data used in this market assessment varies significantly by Federal agency and energy efficiency service provider. Limited access to some Federal sites, limited availability of key points of contact, time/resource constraints, and other considerations limited the total number of Federal agencies and energy efficiency service providers participating in the survey.
NASA Astrophysics Data System (ADS)
Liang, Xiuying; Zhu, Chunyan
2017-11-01
With rising global emphasizes on climate change and sustainable development, how to accelerate the transformation of energy efficiency has become an important question. Designing and implementing energy-efficiency policies for super-efficient products represents an important direction to achieve breakthroughs in the field of energy conservation. On December 31, 2014, China’s National Development and Reform Commission (NDRC) jointly six other ministerial agencies launched China Leading Energy Efficiency Program (LEP), which identifies top efficiency models for selected product categories. LEP sets the highest energy efficiency benchmark. Design of LEP took into consideration of how to best motivate manufacturers to accelerate technical innovation, promote high efficiency products. This paper explains core elements of LEP, such as objectives, selection criteria, implementation method and supportive policies. It also proposes recommendations to further improve LEP through international policy comparison with Japan’s Top Runner Program, U.S. Energy Star Most Efficient, and SEAD Global Efficiency Medal.
Yiotis, Charilaos; Manetas, Yiannis
2010-07-01
A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.
Soman, Soja Saghar; Tinson, Alex
2016-10-01
Camel racing is a popular sport in the Middle East region, where the demand is high for racing camels with higher stamina and endurance. Devising a technique to measure oxidative capacity and endurance in camels should be useful. Mitochondria are highly specialized organelles involved in metabolism in all higher organisms for sustaining life and providing energy for physical functions. The ratio of mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) is often used as an estimate for the metabolic status of the tissue. A greater quantity of mitochondria per unit of tissue translates into greater oxidative capacity and endurance. In this report, we describe a simple, sensitive and efficient real-time PCR assay for the quantification of blood mitochondria in racing camels. The primer sequences selected for the SYBR green-based PCR assay included mitochondrial D-loop region, mitochondrial ATP6ase gene and the nuclear β-actin gene. The assay was validated using two groups of camels comprising racing and dairy camels. The racing camels demonstrated a higher mtDNA/nDNA ratio compared with dairy camels based on the ΔΔCt values, with a higher variability among racing camels. The mean ΔΔCt values of adult and young racing camels did not vary considerably. The findings show that the present assay can be used as an evaluative tool for racing camels. Copyright © 2016 Elsevier Ltd. All rights reserved.
41 CFR 101-30.103-1 - General.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consideration efficiency, economy, and other interests of the Government. (b) The Defense Cataloging and Standardization Act (chapter 145, title 10, U.S. Code) authorizes the Secretary of Defense to develop a single...
Cost Considerations in Nonlinear Finite-Element Computing
NASA Technical Reports Server (NTRS)
Utku, S.; Melosh, R. J.; Islam, M.; Salama, M.
1985-01-01
Conference paper discusses computational requirements for finiteelement analysis using quasi-linear approach to nonlinear problems. Paper evaluates computational efficiency of different computer architecturtural types in terms of relative cost and computing time.
The Efficiency and Effectiveness of Teaching in Higher Education.
ERIC Educational Resources Information Center
Piper, David Warren, Ed.
Twenty papers originally presented at a conference organized by London University on "Efficiency in Teaching Methods in Higher Education" are presented. After an introduction by David Warren Piper, the following papers are included: "Old Prejudices and New Management Tools" (Gerald Fowler); "Efficiency in Higher…
NASA Astrophysics Data System (ADS)
Abdullah, Dahlan; Suwilo, Saib; Tulus; Mawengkang, Herman; Efendi, Syahril
2017-09-01
The higher education system in Indonesia can be considered not only as an important source of developing knowledge in the country, but also could create positive living conditions for the country. Therefore it is not surprising that enrollments in higher education continue to expand. However, the implication of this situation, the Indonesian government is necessarily to support more funds. In the interest of accountability, it is essential to measure the efficiency for this higher institution. Data envelopment analysis (DEA) is a method to evaluate the technical efficiency of production units which have multiple input and output. The higher learning institution considered in this paper is Malikussaleh University located in Lhokseumawe, a city in Aceh province of Indonesia. This paper develops a method to evaluate efficiency for all departments in Malikussaleh University using DEA with bounded output. Accordingly, we present some important differences in efficiency of those departments. Finally we discuss the effort should be done by these departments in order to become efficient.
Some enzymes of carbohydrate metabolism in Mesocestoides corti and Heterakis spumosa.
Dubinský, P; Ruscinová, B; Hetmanski, S L; Arme, C; Turceková, L; Rybos, M
1991-09-01
The activities of selected enzymes of carbohydrate metabolism were measured in tetrathyridia of Mesocestoides corti and in adult females and males of Heterakis spumosa. When the species were compared, only lactate dehydrogenase and phosphoenolpyruvate carboxykinase activities were considerably higher in M. corti. Activities of other enzymes were higher in H. spumosa, with malate dehydrogenase activity being considerably so. In H. spumosa, enzyme activity was higher, and succinate dehydrogenase markedly so in males, when compared with females. Tetrathyridia aged 170 and 210 days show relatively stable malate and lactate dehydrogenase activities, and mice of ICR and BALB/c strains are suitable for the maintenance of tetrathyridia.
NASA Astrophysics Data System (ADS)
Ishihara, Hidetaka
As the worldwide demand for fossil-based fuel increases every day and the fossil reserve continues to be depleted, the need for alternative/renewable energy sources has gained momentum. Electric, hybrid, and hydrogen cars have been at the center of discussion lately among consumers, automobile manufacturers, and politicians, alike. The development of a fuel-cell based engine using hydrogen has been an ambitious research area over the last few decades-ever since Fujishima showed that hydrogen can be generated via the solar-energy driven photo-electrolytic splitting of water. Such solar cells are known as Photo-Electro-Chemical (PEC) solar cells. In order to commercialize this technology, various challenges associated with photo-conversion efficiency, chemical corrosion resistance, and longevity need to be overcome. In general, metal oxide semiconductors such as titanium dioxide (TiO 2, titania) are excellent candidates for PEC solar cells. Titania nanotubes have several advantages, including biocompatibility and higher chemical stability. Nevertheless, they can absorb only 5-7% of the solar spectrum which makes it difficult to achieve the higher photo-conversion efficiency required for successful commercial applications. A two-prong approach was employed to enhance photo-conversion efficiency: 1) surface modification of titania nanotubes using plasma treatment and 2) nano-capping of the titania nanotubes using titanium disilicide. The plasma surface treatment with N2 was found to improve the photo-current efficiency of titania nanotubes by 55%. Similarly, a facile, novel approach of nano-capping titania nanotubes to enhance their photocurrent response was also investigated. Electrochemically anodized titania nanotubes were capped by coating a 25 nm layer of titanium disilicide using RF magnetron sputtering technique. The optical properties of titania nanotubes were not found to change due to the capping; however, a considerable increase (40%) in the photocurrent density was observed for the nano-capped titania nanotubes due to the enhanced charge transfer process. Similarly, another metal oxide semiconductor was investigated tungsten trioxide (WO3), which has a much higher absorption capability (12%) in the solar spectrum. The WO3 porous nanostructures suffered from surface corrosion resulting in a large reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of Indium Tin Oxide (100 nm), the surface corrosion of WO3 porous nanostructures was reduced. A large increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO3 porous nanostructures
NASA Astrophysics Data System (ADS)
Khamukhin, A. A.; Demin, A. Y.; Sonkin, D. M.; Bertoldo, S.; Perona, G.; Kretova, V.
2017-01-01
Crown fires are extremely dangerous as the speed of their distribution is dozen times higher compared to surface fires. Therefore, it is important to classify the fire type as early as possible. A method for forest fires classification exploits their computed acoustic emission spectrum compared with a set of samples of the typical fire acoustic emission spectrum stored in the database. This method implies acquisition acoustic data using Wireless Sensors Networks (WSNs) and their analysis in a central processing and a control center. The paper deals with an algorithm which can be directly implemented on a sensor network node that will allow reducing considerably the network traffic and increasing its efficiency. It is hereby suggested to use the sum of the squares ratio, with regard to amplitudes of low and high frequencies of the wildfire acoustic emission spectrum, as the indicator of a forest fire type. It is shown that the value of the crown fires indicator is several times higher than that of the surface ones. This allows classifying the fire types (crown, surface) in a short time interval and transmitting a fire type indicator code alongside with an alarm signal through the network.
Isaac JoshuaRamesh Lalvani, J; Parthasarathy, M; Dhinesh, B; Annamalai, K
2016-12-01
In this study, the effect of injection pressure on combustion, performance, and emission characteristics of a diesel engine powered with turbulence inducer piston was studied. Engine tests were executed using conventional diesel and 20% blend of adelfa biodiesel [A20]. The results acquired from renewable fuel A20 in the conventional engine showed reduction in brake thermal efficiency being the result of poor air fuel mixing characteristics and the higher viscosity of the tested fuel. This prompted further research aiming at the improvement of turbulence for better air fuel mixing by a novel turbulence inducer piston [TIP]. The investigation was carried out to study the combined effect of injection pressure and turbulence inducer piston. Considerable improvement in the emission characteristics like hydrocarbon, carbon monoxide, smoke was acheived as a result of optimised injection pressure. Nevertheless, the nitrogen oxide emissions were slightly higher than those of the conventional unmodified engine. The engine with turbulence inducer piston shows the scope for reducing the major pollution and thus ensures environmental safety. Copyright © 2015 Elsevier Inc. All rights reserved.
Sex effect on polychlorinated biphenyl concentrations in fish: a synthesis
Madenjian, C.P.
2011-01-01
Polychlorinated biphenyls (PCBs) accumulate in fish primarily via food intake, and therefore, PCBs serve as a chemical tracer for food consumption. Sex differences in PCB concentrations of fish have been attributed to the following three mechanisms: (i) females losing a substantial portion of their PCB body burden during spawning and consequently their PCB concentration is considerably reduced immediately after spawning; (ii) sex differences in habitat utilization leading to sex differences in the PCB concentrations of the prey; and (iii) sex differences in gross growth efficiency, which is defined as growth divided by the amount of food consumption needed to achieve that growth. Based on my analyses and synthesis, mechanisms (i) and (ii) operate in relatively few fish populations, but can lead to mature males having PCB concentrations two to three times higher than mature female PCB concentrations. In contrast, mechanism (iii) operates in all fish populations, but typically, mechanism (iii) results in relatively modest sex differences, with mature males only between 15 and 35% higher in PCB concentration than mature females. In summary, the study of sex differences in PCB concentrations of fish has led to insights into fish behaviour and fish physiology.
In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice.
Yoon, Kyong Sup; Ketzis, Jennifer K; Andrewes, Samuel W; Wu, Christopher S; Honraet, Kris; Staljanssens, Dorien; Rossel, Bart; Marshall Clark, J
2015-09-01
The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.
Alternative Formats to Achieve More Efficient Energy Codes for Commercial Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conover, David R.; Rosenberg, Michael I.; Halverson, Mark A.
2013-01-26
This paper identifies and examines several formats or structures that could be used to create the next generation of more efficient energy codes and standards for commercial buildings. Pacific Northwest National Laboratory (PNNL) is funded by the U.S. Department of Energy’s Building Energy Codes Program (BECP) to provide technical support to the development of ANSI/ASHRAE/IES Standard 90.1. While the majority of PNNL’s ASHRAE Standard 90.1 support focuses on developing and evaluating new requirements, a portion of its work involves consideration of the format of energy standards. In its current working plan, the ASHRAE 90.1 committee has approved an energy goalmore » of 50% improvement in Standard 90.1-2013 relative to Standard 90.1-2004, and will likely be considering higher improvement targets for future versions of the standard. To cost-effectively achieve the 50% goal in manner that can gain stakeholder consensus, formats other than prescriptive must be considered. Alternative formats that include reducing the reliance on prescriptive requirements may make it easier to achieve these aggressive efficiency levels in new codes and standards. The focus on energy code and standard formats is meant to explore approaches to presenting the criteria that will foster compliance, enhance verification, and stimulate innovation while saving energy in buildings. New formats may also make it easier for building designers and owners to design and build the levels of efficiency called for in the new codes and standards. This paper examines a number of potential formats and structures, including prescriptive, performance-based (with sub-formats of performance equivalency and performance targets), capacity constraint-based, and outcome-based. The paper also discusses the pros and cons of each format from the viewpoint of code users and of code enforcers.« less
Yang, Tiankui; Rebsdorf, Morten; Engelrud, Ulrik; Xu, Xuebing
2005-03-09
The aim of the study was to develop an efficient glycerolysis system for the enzymatic production of monoacylglycerols (MAGs) containing polyunsaturated fatty acids. Glycerolysis has been widely applied in industry for the chemical production of food MAGs under high temperature. The enzymatic glycerolysis system at 40-70 degrees C is unfortunately a multiphase system, which leads to the lower reaction efficiency. A tert-butyl alcohol system was developed after careful evaluation and more than 20-fold of the reaction efficiency from this system was obtained compared to the solvent-free system. Novozym 435 was employed as a catalyst in the glycerolysis from the screening. In the batch reaction system with tert-butyl alcohol, temperature higher than 40 degrees C was favored. The glycerol/oil ratio was best in the study with 4.5 while the solvent weight ratio from 1 to 3 had little effect. In general, 60-70% yield can be obtained at 2 h in the stirred tank reactor. The continuous glycerolysis was conducted in a packed bed reactor. MAG yield up to 70% was reached at 30-40 min residence time. The continuous glycerolysis was more sensitive to the amount of tert-butyl alcohol, and in the weight ratio to oil more than 2 was favored. The continuous process was optimized with the assistance of response surface methodology. Optimal conditions for the packed bed reactor after all considerations were recommended as glycerol/oil 4:1 (mol/mol), temperature 40 degrees C, and residence time 45 min. The operation stability study showed that there was no slight reduction of reaction performance at more than 30 days, implying a high feasibility in practical applications.
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
Dynamic Radioisotope Power System Development for Space Explorations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A L
Dynamic power conversion offers the potential to produce radioisotope power systems (RPS) that generate higher power outputs and utilize the Pu-238 radioisotope more efficiently than Radioisotope Thermoelectric Generators (RTG). Additionally, dynamic systems also offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power will be available at the end of the mission when it is needed for both powering the science and transmitting the results. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust and reliable dynamic conversionmore » technology is challenging yet essential to building a suitable generator. Considerations include working within existing handling infrastructure where possible so that development costs can be kept low and integrating dynamic generators into spacecraft, which may be more complex than integration of static systems. Methods of interfacing to and controlling a dynamic generator must be considered and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development and adaption.Dynamic power conversion offers the potential to produce Radioisotope Power Systems (RPS) that generate higher power outputs and utilize the available heat source plutonium fuel more efficiently than Radioisotope Thermoelectric Generators. Additionally, dynamic systems offer the potential of producing generators with significantly reduced power degradation over the course of deep space missions so that more power would be available at the end of the mission, when it is needed most for both powering science instruments and transmitting the resulting data. The development of dynamic generators involves addressing technical issues not typically associated with traditional thermoelectric generators. Developing long-life, robust, and reliable dynamic conversion technology is challenging yet essential to building a suitable flight-ready generator. Considerations include working within existing hardware-handling infrastructure, where possible, so that development costs can be kept low, and integrating dynamic generators into spacecraft, which may be more complex than integration of static thermoelectric systems. Methods of interfacing to and controlling a dynamic generator must also be considered, and new potential failure modes must be taken into account. This paper will address some of the key issues of dynamic RPS design, development, and adaption.« less
GaAs shallow-homojunction solar cells
NASA Technical Reports Server (NTRS)
Fan, J. C. C.
1981-01-01
The feasibility of fabricating space resistant, high efficiency, light weight, low cost GaAs shallow homojunction solar cells for space application is investigated. The material preparation of ultrathin GaAs single crystal layers, and the fabrication of efficient GaAs solar cells on bulk GaAs substrates are discussed. Considerable progress was made in both areas, and conversion efficiency about 16% AMO was obtained using anodic oxide as a single layer antireflection coating. A computer design shows that even better cells can be obtained with double layer antireflection coating. Ultrathin, high efficiency solar cells were obtained from GaAs films prepared by the CLEFT process, with conversion efficiency as high as 17% at AMI from a 10 micrometers thick GaAs film. A organometallic CVD was designed and constructed.
Holograms for power-efficient excitation of optical surface waves
NASA Astrophysics Data System (ADS)
Ignatov, Anton I.; Merzlikin, Alexander M.
2018-02-01
A method for effective excitation of optical surface waves based on holography principles has been proposed. For a particular example of excitation of a plasmonic wave in a dielectric layer on metal the efficiency of proposed volume holograms in the dielectric layer has been analyzed in comparison with optimized periodic gratings in the dielectric layer. Conditions when the holograms are considerably more efficient than the gratings have been found out. In addition, holograms recorded in two iterations have been proposed and studied. Such holograms are substantially more efficient than the optimized periodic gratings for all incidence angles of an exciting Gaussian beam. The proposed method is universal: it can be extended for efficient excitation of different types of optical surface waves and optical waveguide modes.
7 CFR 800.46 - Requirements for obtaining official services.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Surrender of superseded certificates. When a request for official service results in a certificate being... finding of need will be based primarily on a consideration of manpower and efficiency. (c) Special...
7 CFR 800.46 - Requirements for obtaining official services.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Surrender of superseded certificates. When a request for official service results in a certificate being... finding of need will be based primarily on a consideration of manpower and efficiency. (c) Special...
7 CFR 800.46 - Requirements for obtaining official services.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Surrender of superseded certificates. When a request for official service results in a certificate being... finding of need will be based primarily on a consideration of manpower and efficiency. (c) Special...
7 CFR 800.46 - Requirements for obtaining official services.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Surrender of superseded certificates. When a request for official service results in a certificate being... finding of need will be based primarily on a consideration of manpower and efficiency. (c) Special...
7 CFR 800.46 - Requirements for obtaining official services.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Surrender of superseded certificates. When a request for official service results in a certificate being... finding of need will be based primarily on a consideration of manpower and efficiency. (c) Special...
NASA Astrophysics Data System (ADS)
Lee, Chi-Woo; Petrykin, Valery; Kakihana, Masato
2009-01-01
A series of 0.5 mol% Eu 2+-activated Ba 2-xSr xZnS 3 phosphor materials were synthesized using precursors prepared by the polymerizable complex method and their fluorescent properties were studied for the first time. It was found that Sr substitution for Ba leads to the considerable improvement of internal quantum efficiency and emission intensity in these materials compared to Ba 2ZnS 3, while emission peak wavelength exhibits a blue shift from 680 to 660 nm. Rietveld refinement of crystal structure of sample with x=0.7 suggests that Sr ions preferentially occupy one of two Ba sites in this compound. Such a structural re-arrangement might be responsible for the observed quantum efficiency dependence on Sr concentration.
Energy efficient engine: Flight propulsion system preliminary analysis and design
NASA Technical Reports Server (NTRS)
Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.
1980-01-01
The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.
Development of Efficient Authoring Software for e-Learning Contents
NASA Astrophysics Data System (ADS)
Kozono, Kazutake; Teramoto, Akemi; Akiyama, Hidenori
The contents creation in e-Learning system becomes an important problem. The contents of e-Learning should include figure and voice media for a high-level educational effect. However, the use of figure and voice complicates the operation of authoring software considerably. A new authoring software, which can build e-Learning contents efficiently, has been developed to solve this problem. This paper reports development results of the authoring software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Zhengfeng; Feng Yuan; Ying Mingsheng
Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.
Kazemipour, Maryam; Ansari, Mehdi; Tajrobehkar, Shabnam; Majdzadeh, Majdeh; Kermani, Hamed Reihani
2008-01-31
In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of heating were optimized at 15 min and 800 degrees C, respectively, to reach maximum removal efficiency. Removal efficiency was optimized regarding to the initial pH, flow rate, and dose of adsorbent. The maximum removal occurred at pH 6-10, flow rate of 3 mL/min, and 0.1g of the adsorbent. Capacity of carbon sources for removing cations will be considerably decreased in the following times of passing through them. Results showed that the cations studied significantly can be removed by the carbon sources. Efficiency of carbon to remove the cations from real wastewater produced by copper industries was also studied. Finding showed that not only these cations can be removed considerably by the carbon sources noted above, but also removing efficiency are much more in the real samples. These results were in adoption to those obtained by standard mixture synthetic wastewater.
Wang, Man-Li; Fang, Hai-Qing; Tao, Hong-Bing; Cheng, Zhao-Hui; Lin, Xiao-Jun; Cai, Miao; Xu, Chang; Jiang, Shuai
2017-10-01
China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis (DEA) to evaluate the technical efficiency (TE) and productivity of county public hospitals in Eastern, Central, and Western China after the 2012 public hospital reform. Data from 127 county public hospitals (39, 45, and 43 in Eastern, Central, and Western China, respectively) were collected during 2012-2015. Changes of TE and productivity over time were estimated by bootstrapping DEA and bootstrapping Malmquist. The disparities in TE and productivity among public hospitals in the three regions of China were compared by Kruskal-Wallis H test and Mann-Whitney U test. The average bias-corrected TE values for the four-year period were 0.6442, 0.5785, 0.6099, and 0.6094 in Eastern, Central, and Western China, and the entire country respectively, with average non-technical efficiency, low pure technical efficiency (PTE), and high scale efficiency found. Productivity increased by 8.12%, 0.25%, 12.11%, and 11.58% in China and its three regions during 2012-2015, and such increase in productivity resulted from progressive technological changes by 16.42%, 6.32%, 21.08%, and 21.42%, respectively. The TE and PTE of the county hospitals significantly differed among the three regions of China. Eastern and Western China showed significantly higher TE and PTE than Central China. More than 60% of county public hospitals in China and its three areas operated at decreasing return scales. There was a considerable space for TE improvement in county hospitals in China and its three regions. During 2012-2015, the hospitals experienced progressive productivity; however, the PTE changed adversely. Moreover, Central China continuously achieved a significantly lower efficiency score than Eastern and Western China. Decision makers and administrators in China should identify the causes of the observed inefficiencies and take appropriate measures to increase the efficiency of county public hospitals in the three areas of China, especially in Central China.
NASA Astrophysics Data System (ADS)
Messina, F.; Tosco, T.; Sethi, R.
2017-12-01
Colloidal transport and deposition in saturated porous media are phenomena of considerable importance in a large number of natural processes and engineering applications, such as the contaminant and microorganism propagation in aquifer systems, the development of innovative groundwater remediation technologies, air and water filtration, and many others. Therefore, a thorough understanding of particle filtration is essential for predicting the transport and fate of colloids in the subsurface environment. The removal efficiency of a filter is a key aspect for colloid transport in porous media. Several efforts were devoted to derive accurate correlations for the single collector efficiency, one of the key concept in the filtration theory. However, up scaling this parameter to the entire porous medium is still a challenge. The common up-scaling approach assumes the deposition to be independent of the transport history, which means that the collector efficiency is considered uniform along the porous medium. However, previous works showed that this approach is inadequate under unfavorable deposition conditions. This study demonstrates that it is not adequate even in the simplest case of favorable deposition. Computational Fluid Dynamics simulations were run for a simplify porous media geometry, composed of a vertical array of 50 identical spherical collectors. A combination of Lagrangian and Eulerian simulations were performed to analyze the particle transport under a broad range of parameters (i.e., particle size, particle density, water velocity). The results show the limits of the existing models to interpret the experimental data. In fact, the outcome evidenced that when particle deposition is not controlled by Brownian diffusion, non-exponential concentration profiles are retrieved, in contrast with the assumption of uniform efficiency. Moreover, when the deposition mechanisms of sedimentation and interception dominate, the efficiency of the first sphere of the column is significantly higher compared to the others, and then it declines along the array down to an asymptotic value. A more rigorous procedure to evaluate the filtration processes in presence of a series of collectors was developed, and a new correlation for the up-scaled removal efficiency of the entire array was derived and proposed.
Yip, Ngai Yin; Elimelech, Menachem
2014-09-16
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) and higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural → anthropogenic → engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, NY; Elimelech, M
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. This study compares the energy efficiency and power density performance of PRO and RED with simulated technologically available membranes for natural, anthropogenic, and engineered salinity gradients (seawater-river water, desalination brine-wastewater, and synthetic hypersaline solutions, respectively). The analysis shows that PRO can achieve both greater efficiencies (54-56%) andmore » higher power densities (2.4-38 W/m(2)) than RED (18-38% and 0.77-1.2 W/m(2)). The superior efficiency is attributed to the ability of PRO membranes to more effectively utilize the salinity difference to drive water permeation and better suppress the detrimental leakage of salts. On the other hand, the low conductivity of currently available ion exchange membranes impedes RED ion flux and, thus, constrains the power density. Both technologies exhibit a trade-off between efficiency and power density: employing more permeable but less selective membranes can enhance the power density, but undesired entropy production due to uncontrolled mixing increases and some efficiency is sacrificed. When the concentration difference is increased (i.e., natural -> anthropogenic -> engineered salinity gradients), PRO osmotic pressure difference rises proportionally but not so for RED Nernst potential, which has logarithmic dependence on the solution concentration. Because of this inherently different characteristic, RED is unable to take advantage of larger salinity gradients, whereas PRO power density is considerably enhanced. Additionally, high solution concentrations suppress the Donnan exclusion effect of the charged RED membranes, severely reducing the permselectivity and diminishing the energy conversion efficiency. This study indicates that PRO is more suitable to extract energy from a range of salinity gradients, while significant advancements in ion exchange membranes are likely necessary for RED to be competitive with PRO.« less
Cost analysis of routine immunisation in Zambia.
Schütte, Carl; Chansa, Collins; Marinda, Edmore; Guthrie, Teresa A; Banda, Stanley; Nombewu, Zipozihle; Motlogelwa, Katlego; Lervik, Marita; Brenzel, Logan; Kinghorn, Anthony
2015-05-07
This study aimed to inform planning and funding by providing updated, detailed information on total and unit costs of routine immunisation (RI) in Zambia, a GAVI-eligible lower middle-income country with a population of 13 million. The exercise was part of a multi-country study on costs and financing of routine immunisation (EPIC) that utilized a common, ingredients-based approach to costing. Data on inputs, prices and outputs were collected in a stratified, random sample of 51 facilities in nine districts between December 2012 and March 2013 using a pre-tested questionnaire. Shared inputs were allocated to RI costs on the basis of tracing factors developed for the study. A comprehensive set of costs were analysed to obtain total and unit costs, at facility and above-facility levels. The total annual economic cost of RI was $38.16 million, equivalent to approximately 10% of government health spending. Government contributed 83% of finances. Labour accounted for the lion's share (49%) of total costs followed by vaccines (16%) and travel allowances (12%). Analysis of specific activity costs showed that outreach and facility-based services accounted for half of total economic costs. Costs for managing the program at district, provincial and national levels (above-facility costs) represented 24% of total costs. Average unit costs were $7.18 per dose, $59.32 per infant and $65.89 per DPT3 immunised child, with markedly higher unit costs in rural facilities. Analyses suggest that greater efficiency is associated with higher utilisation levels and urban facility type. Total and unit costs, and government's contribution, were considerably higher than previous Zambian estimates and international benchmarks. These findings have substantial implications for planners, efficiency improvement and sustainable financing, particularly as new vaccines are introduced. Variations in immunisation costs at facility level warrant further statistical analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technical Efficiency and Productivity for Higher Education Institutions in Sweden
ERIC Educational Resources Information Center
Andersson, C.; Antelius, J.; Månsson, J.; Sund, K.
2017-01-01
This study investigates technical efficiency and productivity for Swedish higher education institutions (HEIs). One identified problem in previous research concerns adjusting efficiency scores for input quality. This problem is avoided using grades from upper-secondary schools. A second problem concerns heterogeneity with respect to subjects and…
Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors
NASA Astrophysics Data System (ADS)
Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.
2016-12-01
The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasscer, D.S.; Morgan, T.O.; Tosteson, T.R.
1980-12-01
Since 29 January 1980, continuous flow of ocean surface water has been maintained through simulated Ocean Thermal Energy Conversion (OTEC) evaporator tubes in order to determine in situ, long-term effects of microbiofouling on heat exchanger efficiency. The experimental apparatus consists of two aluminum and two titanium modules mounted on a research platform moored at the potential OTEC site off Punta Tuna, Puerto Rico. The fouling resistance (R /SUB f/ ), a relative measure of heat transfer efficiency, is being monitored regularly, and the units have been cleaned four times. Postcleaning fouling rates (dR /SUB f/ /dt) for the aluminum unitsmore » have not changed significantly but are considerably higher than the initial fouling rates. At first, post-cleaning fouling rates for the titanium units were less than for the aluminum units, but this value has been progressively increasing and now all units are fouling at approximately the same rate. Cleaning with manually operated M.A.N. brushes did not reduce R /SUB f/ to zero. On four occasions, flow velocity through the units has been increased. Results from these experiments suggest that initially the fouling layer is easily dislodged from the tube surface but that, with time, it becomes more firmly attached.« less
Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy
Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong
2015-01-01
Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy. PMID:26632249
NASA Astrophysics Data System (ADS)
Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.
2013-12-01
The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.
Knop, J
1980-12-01
Vibrio cholerae neuraminidase (VCN) enhances the immune response of lymphocytes in various systems, such as antigen- and mitogen-induced blastogenesis, mixed lymphocyte culture (MLC) and tumor-cell response. We used macrophage-depleted and reconstituted murine lymph-node T-cells to investigate the effect of VCN on macrophage-T-lymphocyte co-operation in Con-A-induced lymphocyte activation. In unfractionated lymph-node cells VCN enhanced the Con-A-induced lymphocyte activation as measured by 3H-thymidine (3H-dThd) incorporation. Removing macrophages from the cells resulted in a significantly diminished response. In addition the enhancing effect of VCN was greatly reduced. Reconstitution of the lymphocyte cultures with macrophages in increasing numbers and from various sources rstored the lymphocyte response and the enhancing effect of VCN. VCN proved to be most efficient in cultures reconstituted with normal peritoneal macrophages. Some effect was also observed using bone-marrow-derived (BM) macrophages. However, higher numbers of normal PE macrophages in the presence of VCN inhibited lymphocyte activation, and inhibition by thioglycollate-broth-induced macrophages was considerably increased by VCN. These results suggest that VCN acts by increasing the efficiency of macrophage-T lymphocyte interaction.
Variable Complexity Structural Optimization of Shells
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Venkataraman, Satchi
1999-01-01
Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-2110 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition, several modeling issues for the design of shells of revolution were studied.
Variable Complexity Structural Optimization of Shells
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Venkataraman, Satchi
1998-01-01
Structural designers today face both opportunities and challenges in a vast array of available analysis and optimization programs. Some programs such as NASTRAN, are very general, permitting the designer to model any structure, to any degree of accuracy, but often at a higher computational cost. Additionally, such general procedures often do not allow easy implementation of all constraints of interest to the designer. Other programs, based on algebraic expressions used by designers one generation ago, have limited applicability for general structures with modem materials. However, when applicable, they provide easy understanding of design decisions trade-off. Finally, designers can also use specialized programs suitable for designing efficiently a subset of structural problems. For example, PASCO and PANDA2 are panel design codes, which calculate response and estimate failure much more efficiently than general-purpose codes, but are narrowly applicable in terms of geometry and loading. Therefore, the problem of optimizing structures based on simultaneous use of several models and computer programs is a subject of considerable interest. The problem of using several levels of models in optimization has been dubbed variable complexity modeling. Work under NASA grant NAG1-1808 has been concerned with the development of variable complexity modeling strategies with special emphasis on response surface techniques. In addition several modeling issues for the design of shells of revolution were studied.
One-Dimensional Electron Transport Layers for Perovskite Solar Cells
Thakur, Ujwal K.; Kisslinger, Ryan; Shankar, Karthik
2017-01-01
The electron diffusion length (Ln) is smaller than the hole diffusion length (Lp) in many halide perovskite semiconductors meaning that the use of ordered one-dimensional (1D) structures such as nanowires (NWs) and nanotubes (NTs) as electron transport layers (ETLs) is a promising method of achieving high performance halide perovskite solar cells (HPSCs). ETLs consisting of oriented and aligned NWs and NTs offer the potential not merely for improved directional charge transport but also for the enhanced absorption of incoming light and thermodynamically efficient management of photogenerated carrier populations. The ordered architecture of NW/NT arrays affords superior infiltration of a deposited material making them ideal for use in HPSCs. Photoconversion efficiencies (PCEs) as high as 18% have been demonstrated for HPSCs using 1D ETLs. Despite the advantages of 1D ETLs, there are still challenges that need to be overcome to achieve even higher PCEs, such as better methods to eliminate or passivate surface traps, improved understanding of the hetero-interface and optimization of the morphology (i.e., length, diameter, and spacing of NWs/NTs). This review introduces the general considerations of ETLs for HPSCs, deposition techniques used, and the current research and challenges in the field of 1D ETLs for perovskite solar cells. PMID:28468280
NASA Astrophysics Data System (ADS)
Wang, Shuying; Huang, Xiaona; Sun, Haoxuan; Wu, Chunyang
2017-12-01
Inverted planar perovskite solar cells (PSCs), which are regarded as promising devices for new generation of photovoltaic systems, show many advantages, such as low-temperature film formation, low-cost fabrication, and smaller hysteresis compared with those of traditional n-i-p PSCs. As an important carrier transport layer in PSCs, the hole transport layer (HTL) considerably affects the device performance. Therefore, HTL modification becomes one of the most critical issues in improving the performance of PSCs. In this paper, we report an effective and environmentally friendly UV-ozone treatment method to enhance the hydrophilia of reduced graphene oxide (rGO) with its excellent electrical performance. The treated rGO was applied to doped poly(3,4-ethylenedioxythiophene) poly(styrene-sulfonate) (PEDOT:PSS) as HTL material of PSCs. Consequently, the performance of rGO/PEDOT:PSS-doped PSCs was improved significantly, with power conversion efficiency (PCE) of 10.7%, Jsc of 16.75 mA/cm2, Voc of 0.87 V, and FF of 75%. The PCE of this doped PSCs was 27% higher than that of the PSCs with pristine PEDOT:PSS as HTL. This performance was attributed to the excellent surface morphology and optimized hole mobility of the solution-processable rGO-modified PEDOT:PSS.
Efficiency and biotechnological aspects of biogas production from microalgal substrates.
Klassen, Viktor; Blifernez-Klassen, Olga; Wobbe, Lutz; Schlüter, Andreas; Kruse, Olaf; Mussgnug, Jan H
2016-09-20
Photosynthetic organisms like plants and algae can harvest, convert, and store solar energy and thus represent readily available sources for renewable biofuels production on a domestic or industrial scale. Anaerobic digestion (AD) of the organic biomass yields biogas, containing methane and carbon dioxide as major constituents. Combustion of the biogas or purification of the energy-rich methane fraction can be applied to provide electricity or fuel. AD procedures have been applied for several decades with organic waste, animal products, or higher plants and more recently, utilization of photosynthetic algae as substrates have gained considerable research interest. To provide an overview of recent research efforts made to characterize the AD process of microalgal biomass, we present extended summaries of experimentally determined biochemical methane potentials (BMP), biomass pretreatment options and digestion strategies in this article. We conclude that cultivation options, biomass composition and time of harvesting, application of biomass pretreatment strategies, and parameters of the digestion process are all important factors, which can significantly affect the AD process efficiency. The transition from batch to continuous microalgal biomass digestion trials, accompanied by state-of-the-art analytical techniques, is now in demand to refine the assessments of the overall process feasibility. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrasound pre-treatment for anaerobic digestion improvement.
Pérez-Elvira, S; Fdz-Polanco, M; Plaza, F I; Garralón, G; Fdz-Polanco, F
2009-01-01
Prior research indicates that ultrasounds can be used in batch reactors as pre-treatment before anaerobic digestion, but the specific energy required at laboratory-scale is too high. This work evaluates both the continuous ultrasound device performance (efficiency and solubilisation) and the operation of anaerobic digesters continuously fed with sonicated sludge, and presents energy balance considerations. The results of sludge solubilisation after the sonication treatment indicate that, applying identical specific energy, it is better to increase the power than the residence time. Working with secondary sludge, batch biodegradability tests show that by applying 30 kWh/m3 of sludge, it is possible to increase biogas production by 42%. Data from continuous pilot-scale anaerobic reactors (V=100 L) indicate that operating with a conventional HRT=20 d, a reactor fed with pre-treated sludge increases the volatile solids removal and the biogas production by 25 and 37% respectively. Operating with HRT=15 d, the removal efficiency is similar to the obtained with a reactor fed with non-hydrolysed sludge at HTR=20 d, although the specific biogas productivity per volume of reactor is higher for the pretreated sludge. Regarding the energy balance, although for laboratory-scale devices it is negative, full-scale suppliers state a net generation of 3-10 kW per kW of energy used.
Ground-to-space optical power transfer. [using laser propulsion for orbit transfer
NASA Technical Reports Server (NTRS)
Mevers, G. E.; Hayes, C. L.; Soohoo, J. F.; Stubbs, R. M.
1978-01-01
Using laser radiation as the energy input to a rocket, it is possible to consider the transfer of large payloads economically between low initial orbits and higher energy orbits. In this paper we will discuss the results of an investigation to use a ground-based High Energy Laser (HEL) coupled to an adaptive antenna to transmit multi-megawatts of power to a satellite in low-earth orbit. Our investigation included diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming. For these evaluations we developed vertical profile models of atmospheric absorption, strength of optical turbulence (CN2), wind, temperature, and other parameters necessary to calculate system performance. Our atmospheric investigations were performed for CO2, 12C18O2 isotope, CO and DF wavelengths. For all of these considerations, output antenna locations of both sea level and mountain top (3.5 km above sea level) were used. Several adaptive system concepts were evaluated with a multiple source phased array concept being selected. This system uses an adaption technique of phase locking independent laser oscillators. When both system losses and atmospheric effects were assessed, the results predicted an overall power transfer efficiency of slightly greater than 50%.
Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.
2013-01-01
Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.
Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy
NASA Astrophysics Data System (ADS)
Feng, Wei; Chen, Liang; Qin, Ming; Zhou, Xiaojun; Zhang, Qianqian; Miao, Yingke; Qiu, Kexin; Zhang, Yanzhong; He, Chuanglong
2015-12-01
Photothermal cancer therapy has attracted considerable interest for cancer treatment in recent years, but the effective photothermal agents remain to be explored before this strategy can be applied clinically. In this study, we therefore develop flower-like molybdenum disulfide (MoS2) nanoflakes and investigate their potential for photothermal ablation of cancer cells. MoS2 nanoflakes are synthesized via a facile hydrothermal method and then modified with lipoic acid-terminated polyethylene glycol (LA-PEG), endowing the obtained nanoflakes with high colloidal stability and very low cytotoxicity. Upon irradiation with near infrared (NIR) laser at 808 nm, the nanoflakes showed powerful ability of inducing higher temperature, good photothermal stability and high photothermal conversion efficiency. The in vitro photothermal effects of MoS2-PEG nanoflakes with different concentrations were also evaluated under various power densities of NIR 808-nm laser irradiation, and the results indicated that an effective photothermal killing of cancer cells could be achieved by a low concentration of nanoflakes under a low power NIR 808-nm laser irradiation. Furthermore, cancer cell in vivo could be efficiently destroyed via the photothermal effect of MoS2-PEG nanoflakes under the irradiation. These results thus suggest that the MoS2-PEG nanoflakes would be as promising photothermal agents for future photothermal cancer therapy.
Simulating the formation of carbon-rich molecules on an idealized graphitic surface
NASA Astrophysics Data System (ADS)
Marshall, David W.; Sadeghpour, H. R.
2016-01-01
There is accumulating evidence for the presence of complex molecules, including carbon-bearing and organic molecules, in the interstellar medium. Much of this evidence comes to us from studies of chemical composition, photo- and mass spectroscopy in cometary, meteoritic and asteroid samples, indicating a need to better understand the surface chemistry of astrophysical objects. There is also considerable interest in the origins of life-forming and life-sustaining molecules on the Earth. Here, we perform reactive molecular dynamics simulations to probe the formation of carbon-rich molecules and clusters on carbonaceous surfaces resembling dust grains and meteoroids. Our results show that large chains form on graphitic surfaces at low temperatures (100-500 K) and smaller fullerene-like molecules form at higher temperatures (2000-3000 K). The formation is faster on the surface than in the gas at low temperatures but slower at high temperatures as surface interactions prevent small clusters from coagulation. We find that for efficient formation of molecular complexity, mobility about the surface is important and helps to build larger carbon chains on the surface than in the gas phase at low temperatures. Finally, we show that the temperature of the surface strongly determines what kind of structures forms and that low turbulent environments are needed for efficient formation.
Solar-Type Stars with the Suppression of Convection at an Early Stage of Evolution
NASA Astrophysics Data System (ADS)
Oreshina, A. V.; Baturin, V. A.; Ayukov, S. V.; Gorshkov, A. B.
2017-12-01
The evolution of a solar-mass star before and on the main sequence is analyzed in light of the diminished efficiency of convection in the first 500 Myr. A numerical simulation has been performed with the CESAM2k code. It is shown that the suppression of convection in the early stages of evolution leads to a somewhat higher lithium content than that predicted by the classical solar model. In addition, the star's effective temperature decreases. Ignoring this phenomenon may lead to errors in age and mass determinations for young stars (before the main sequence) from standard evolutionary tracks in the temperature-luminosity diagram. At a later stage of evolution, after 500 Myr, the efficiency of convection tends to the solar value. At this stage, the star's inner structure becomes classical; it does not depend on the previous history. On the contrary, the photospheric lithium abundance contains information about the star's past. In other words, there may exist main-sequence solar-mass stars of the same age (above 500 Myr), radius, and luminosity, yet with different photospheric lithium contents. The main results of this work add considerably to the popular method for determining the age of solar-type stars from lithium abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Däubler, J., E-mail: juergen.daeubler@iaf.fraunhofer.de; Passow, T.; Aidam, R.
Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown onmore » metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.« less