NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuels consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.
1977-01-01
Development criteria and recommendations for coal feed system selections that include supporting data are presented. Considered are the areas of coal feed coasts, coal feed system reliability, and the interaction of the feed system with the conversion process.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, S.C.; Hamilton, L.D.
This paper describes health and environmental impacts of coal-fired electric power plants. Effects on man, agriculture, and natural ecosystems are considered. These effects may result from direct impacts or exposures via air, water, and food chains. The paper is organized by geographical extent of effect. Occupational health impacts and local environmental effects such as noise and solid waste leachate are treated first. Then, regional effects of air pollution, including acid rain, are analyzed. Finally, potential global impacts are examined. Occupational health concerns considered include exposure to noise, dust, asbestos, mercury, and combustion products, and resulting injury and disease. Local effectsmore » considered include noise; air and water emissions of coal storage piles, solid waste operations, and cooling systems. Air pollution, once an acute local problem, is now a regional concern. Acute and chronic direct health effects are considered. Special attention is given to potential effects of radionuclides in coal and of acid rain. Finally, potential global impacts associated with carbon dioxide emissions are considered. 88 references, 9 tables.« less
Coal resources of the eastern regions of Russia for power plants of the Asian super ring
NASA Astrophysics Data System (ADS)
Sokolov, Aleksander; Takaishvili, Liudmila
2018-01-01
The eastern regions of Russia have a substantial potential for expansion of steaming coal production. The majority of coal deposits in the eastern regions are located close enough to the objects of the Asian super ring. The large coal reserves make it possible to consider it as a reliable fuel source for power plants for a long-term horizon. The coal reserves suitable for using at power plants of the Asian super ring are estimated in the paper by subject of the federation of the eastern regions for operating and new coal producers. The coal deposits of the eastern regions that are promising for the construction of power plants of the Asian super ring are presented. The paper describes both the coal deposits of the eastern regions that are considered in the projects for power plant construction and included in the program documents and the coal deposits that are not included in the program documents. The coal reserves of these deposits and the possible volumes of its production are estimated. The key qualitative coal characteristics of the deposits: heating value, and ash, sulfur, moisture content are presented. The mining-geological and hydrological conditions for deposit development are briefly characterized. The coals of the eastern regions are showed to contain valuable accompanying elements. It is noted that the creation of industrial clusters on the basis of the coal deposits is the most effective from the standpoints of the economy and ecology. The favorable and restraining factors in development of the described coal deposits are estimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shea, Q.
2006-07-15
Quin Shea explores the need for power generated with coal and the advanced technologies that will generate that power more efficiently and cleanly in the future. The article considers the air and waste challenges of using coal, including progress toward reducing emissions of SO{sub 2}, NOx, and mercury; efforts to address CO{sub 2}, including voluntary programs like the Climate Challenge, Power Partners, and the Asia-Pacific Partnership on Clean Development and Climate; and the regulation and beneficial use of coal-combustion byproducts (e.g., fly ash, bottom ash, flue gas desulfurization materials, boiler slag). 17 refs.
Impact of Coal Mining on Self-Rated Health among Appalachian Residents
Woolley, Shannon M.; Bear, Todd M.; Balmert, Lauren C.; Talbott, Evelyn O.; Buchanich, Jeanine M.
2015-01-01
Objective. To determine the impact of coal mining, measured as the number of coal mining-related facilities nearby one's residence or employment in an occupation directly related to coal mining, on self-rated health in Appalachia. Methods. Unadjusted and adjusted ordinal logistic regression models calculated odds ratio estimates and associated 95% confidence intervals for the probability of having an excellent self-rated health response versus another response. Covariates considered in the analyses included number of coal mining-related facilities nearby one's residence and employment in an occupation directly related to coal mining, as well as potential confounders age, sex, BMI, smoking status, income, and education. Results. The number of coal mining facilities near the respondent's residence was not a statistically significant predictor of self-rated health. Employment in a coal-related occupation was a statistically significant predictor of self-rated health univariably; however, after adjusting for potential confounders, it was no longer a significant predictor. Conclusions. Self-rated health does not seem to be associated with residential proximity to coal mining facilities or employment in the coal industry. Future research should consider additional measures for the impact of coal mining. PMID:26240577
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.
A big picture look at big coal: Teaching students to link societal and environmental issues
NASA Astrophysics Data System (ADS)
Sojka, S. L.
2014-12-01
The environmental impact of coal mining and burning of coal is evident and generally easy to understand. However, students often struggle to understand the social impacts of coal mining. A jigsaw activity culminating in a mock town hall meeting helps students link social, economic and environmental impacts of coal mining. Students are divided into four groups and assigned the task of researching the environmental, social, economic or health impacts of coal mining in West Virginia. When students have completed the research, they are assigned a role for the town hall. Roles include local community members, direct employees of the coal industry, business owners from industries related to coal mining, and environmentalists. One student from each research area is assigned to each role, forcing students to consider environmental, social, health and economic aspects of coal mining in choosing an appropriate position for their role. Students have 30 minutes to prepare their positions and then present for 2-5 minutes in the simulated town hall. We then have open class discussion and review the positions. Finally, students are required to write a letter to the editor of the local paper. The specific topic for the town hall and letters can be varied based on current events and could include new regulations on power plants, mine safety, government funding of alternative energy supplies or a range of other topics. This approach forces students to consider all aspects of the issue. In addition, because students have to assume a role, they are more aware of the direct impact that coal mining has on individuals' lives.
Coal and peat in the sub-Saharan region of Africa: alternative energy options?
Weaver, J.N.; Landis, E.R.
1990-01-01
Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author
NASA Technical Reports Server (NTRS)
Miller, D. R.
1978-01-01
Economic feasibility of methanol or methyl fuel produced from coal using existing technology is discussed. Other factors considered include environmental, safety, toxicity, transportation, so storage, ease of burning, and retrofitting of present boilers. Demonstrations of its uses as a boiler fuel and as a turbine fuel are cited.
A study of industrial hydrogen and syngas supply systems
NASA Technical Reports Server (NTRS)
Amos, W. J.; Solomon, J.; Eliezer, K. F.
1979-01-01
The potential and incentives required for supplying hydrogen and syngas feedstocks to the U.S. chemical industry from coal gasification systems were evaluated. Future hydrogen and syngas demand for chemical manufacture was estimated by geographic area and projected economics for hydrogen and syngas manufacture was estimated with geographic area of manufacture and plant size as parameters. Natural gas, oil and coal feedstocks were considered. Problem areas presently affecting the commercial feasibility of coal gasification discussed include the impact of potential process improvements, factors involved in financing coal gasification plants, regulatory barriers affecting coal gasification, coal mining/transportation, air quality regulations, and competitive feedstock pricing barriers. The potential for making coal gasification the least costly H2 and syngas supply option. Options to stimulate coal gasification system development are discussed.
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.
Cogeneration Technology Alternatives Study (CTAS). Volume 4: Energy conversion systems
NASA Technical Reports Server (NTRS)
Brown, D. H.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. The advanced and commercially available cogeneration energy conversion systems studied in CTAS are fined together with their performance, capital costs, and the research and developments required to bring them to this level of performance.
Molnia, Carol L.; Biewick, Laura; Blake, Dorsey; Tewalt, Susan J.; Carter, M. Devereaux; Gaskill, Charlie
1997-01-01
The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), Geological Survey of Wyoming, and U.S. Bureau of Mines (USBM), has produced an estimate of the amount of available coal in an area about 35 miles south of Gillette, Wyo., where the Wyodak coal bed is, in places, more than 100 ft thick. Available coal is the quantity of the total coal resource that is accessible for mine development under current regulatory, land-use, and technologic constraints. This first western coal availability study, of the Hilight 7 1/2-minute quadrangle, indicates that approximately 60 percent (2.7 billion short tons) of the total 4.4 billion tons of coal in-place in the quadrangle is available for development. (There has been no commercial mining in the Hilight quadrangle.) Approximately 67 percent (1.9 billion tons) of the Main Wyodak coal bed is considered available. All tonnage measurements in this report are given in short tons. Coal-development considerations in the quadrangle include dwellings, railroads, pipelines, power lines, wildlife habitat (eagles), alluvial valley floors, cemeteries, and the Hilight oil and gas field and gas plant. Some of these considerations could be mitigated so that surface mining of the coal may proceed; others could not be mitigated and would preclude mining in their vicinity. Other technological constraints that influence the availability of the coal include overburden thickness, coal beds too thin, and areas of clinker.
Coal fly ash as a resource for rare earth elements.
Franus, Wojciech; Wiatros-Motyka, Małgorzata M; Wdowin, Magdalena
2015-06-01
Rare earth elements (REE) have been recognised as critical raw materials, crucial for many clean technologies. As the gap between their global demand and supply increases, the search for their alternative resources becomes more and more important, especially for the countries which depend highly on their import. Coal fly ash (CFA), which when not utilised is considered waste, has been regarded as the possible source of many elements, including REE. Due to the increase in the energy demand, CFA production is expected to grow, making research into the use of this material a necessity. As Poland is the second biggest coal consumer in the European Union, the authors have studied different coal fly ashes from ten Polish power plants for their rare earth element content. All the fly ashes have a broadly similar distribution of rear earth elements, with light REE being dominant. Most of the samples have REE content relatively high and according to Seredin and Dai (Int J Coal Geol 94: 67-93, 2012) classification can be considered promising REE raw materials.
High temperature alkali corrosion of ceramics in coal gas: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.
1994-12-31
There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and highmore » efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.« less
Management of local economic and ecological system of coal processing company
NASA Astrophysics Data System (ADS)
Kiseleva, T. V.; Mikhailov, V. G.; Karasev, V. A.
2016-10-01
The management issues of local ecological and economic system of coal processing company - coal processing plant - are considered in the article. The objectives of the research are the identification and the analysis of local ecological and economic system (coal processing company) performance and the proposals for improving the mechanism to support the management decision aimed at improving its environmental safety. The data on the structure of run-of-mine coal processing products are shown. The analysis of main ecological and economic indicators of coal processing enterprises, characterizing the state of its environmental safety, is done. The main result of the study is the development of proposals to improve the efficiency of local enterprise ecological and economic system management, including technical, technological and business measures. The results of the study can be recommended to industrial enterprises to improve their ecological and economic efficiency.
DOE studies on coal-to-liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-07-01
The US DOE National Energy Technology Laboratory has issued reports that examine the feasibility of coal-to-liquids (CTL) facilities, both general and site specific, which are available at www.netl.gov/energy-analyses/ref-shelf.html. The US Department of Defence has been investigating use of Fischer-Tropsch fuels. Congress is considering various CTL proposals while the private sector is building pilot plants and performing feasibility studies for proposed plants. The article includes a table listing 14 coal-to-liquids plants under consideration. The private sector has formed the coal-to-liquids coalition (www.futurecoalfuels.org). The article mentions other CTL projects in South Africa, China, Indonesia, the Philippines and New Zealand. 1 tab.
Economic assessment of coal-burning locomotives: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurrymore » as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.« less
Environmental feasibility study for gasoline from coal in New Athens, Illinois
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-09-01
Appendix 2 consists mostly of base line ecology of the proposed site in St. Clair County, southwestern Illinois including air quality, geology, stratigraphy, soils, climates, etc. Socio-economic factors are also considered. The environmental impact is considered. (LTN)
Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes
NASA Technical Reports Server (NTRS)
Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.
An evaluation of the efficacy of various coal combustion models for predicting char burnout
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Josh; Goshayeshi, Babak; Sutherland, James C.
Coal combustion is comprised of several subprocesses including devolatilization and heterogeneous reactions of the coal char with O 2, CO 2, H 2O and potentially several other species. Much effort has been put forth to develop models for these processes which vary widely in both complexity and computational cost. This work investigates the efficacy of models for devolatilization and char reactions at either end of the complexity and cost spectrums for a range of particle sizes and furnace temperatures and across coal types. The overlap of simulated devolatilization and char consumption is also examined. In the gas phase, a detailedmore » kinetics model based on a reduced version of the GRI 3.0 mechanism is used. The Char Conversion Kinetics and an n th-order Langmuir-Hinshelwood models are considered for char oxidation. The Chemical Percolation and Devolatilization and a two-step model are considered for devolatilization. Results indicate that high-fidelity models perform better at representing particle temperature and mass data across a wide range of O 2 concentrations as well as coal types. A significant overlap in devolatilization and char consumption is observed for both char chemistry and devolatilization models.« less
An evaluation of the efficacy of various coal combustion models for predicting char burnout
McConnell, Josh; Goshayeshi, Babak; Sutherland, James C.
2016-11-22
Coal combustion is comprised of several subprocesses including devolatilization and heterogeneous reactions of the coal char with O 2, CO 2, H 2O and potentially several other species. Much effort has been put forth to develop models for these processes which vary widely in both complexity and computational cost. This work investigates the efficacy of models for devolatilization and char reactions at either end of the complexity and cost spectrums for a range of particle sizes and furnace temperatures and across coal types. The overlap of simulated devolatilization and char consumption is also examined. In the gas phase, a detailedmore » kinetics model based on a reduced version of the GRI 3.0 mechanism is used. The Char Conversion Kinetics and an n th-order Langmuir-Hinshelwood models are considered for char oxidation. The Chemical Percolation and Devolatilization and a two-step model are considered for devolatilization. Results indicate that high-fidelity models perform better at representing particle temperature and mass data across a wide range of O 2 concentrations as well as coal types. A significant overlap in devolatilization and char consumption is observed for both char chemistry and devolatilization models.« less
Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working
NASA Astrophysics Data System (ADS)
Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana
2017-11-01
Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.
Economic effects of western Federal land-use restrictions on U.S. coal markets
Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.
1991-01-01
Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.
NASA Astrophysics Data System (ADS)
Kataka, M. O.; Matiane, A. R.; Odhiambo, B. D. O.
2018-01-01
Spontaneous combustion of coal is a major hazard associated with the coal mining industry over centuries. It also a major cause of underground fires in South African collieries and in opencast operations, spoil heaps and stockpiles. Spontaneous combustion incidents are manifested in all major aspects of coal mining namely, underground mining, surface mining, including during sea-borne transportation, storage and waste disposal. Previous studies indicate that there are various factors (both intrinsic and extrinsic) that influence the spontaneous combustion of coals. This paper characterizes highly reactive coal from the Vryheid coalfields and less reactive coal from at Venda-Pafuri coalfield, to identify and delineate some intrinsic coal parameters that are considered to be most critical in terms of heat 'generation' and relationships between the two coals types by tracing their similarities and differences in their spontaneous combustion parameters. Various tests were carried out to characterize these coals in terms of their intrinsic properties, namely: ultimate, proximate, petrographic analysis and Glasser spontaneous tests. The ultimate and proximate analysis showed that spontaneous coal has high contents of carbon, oxygen, and volatile matter as compared to non-spontaneous coal, making it more susceptible to spontaneous combustion. Non-spontaneous coal has higher ash content than the spontaneous coal. Furthermore, the petrographic analysis showed that spontaneous coal has high total reactivity compared to the non-spontaneous coal. Results from Glasser spontaneous test indicate that spontaneous coal absorbs more oxygen than non-spontaneous coal, which explains why spontaneous coal is more susceptible to spontaneous combustion. High reactive coal has low values of critical self-heating temperature (CSHT), indicating that this coal has potential of spontaneous ignition.
Dreesen, Roland; Bossiroy, Dominique; Dusar, Michiel; Flores, R.M.; Verkaeren, Paul; Whateley, M. K. G.; Spears, D.A.
1995-01-01
The Westphalian C strata found in the northeastern part of the former Belgian coal district (Campine Basin), which is part of an extensive northwest European paralic coal basin, are considered. The thickness and lateral continuity of the Westphalian C coal seams vary considerably stratigraphically and areally. Sedimentological facies analysis of borehole cores indicates that the deposition of Westphalian C coal-bearing strata was controlled by fluvial depositional systems whose architectures were ruled by local subsidence rates. The local subsidence rates may be related to major faults, which were intermittently reactivated during deposition. Lateral changes in coal seam groups are also reflected by marked variations of their seismic signatures. Westphalian C fluvial depositional systems include moderate to low sinuosity braided and anastomosed river systems. Stable tectonic conditions on upthrown, fault-bounded platforms favoured deposition by braided rivers and the associated development of relatively thick, laterally continuous coal seams in raised mires. In contrast, rapidly subsiding downthrown fault blocks favoured aggradation, probably by anastomosed rivers and the development of relatively thin, highly discontinuous coal seams in topogenous mires.
Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions.
Venkatesh, Aranya; Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott
2012-09-18
Regulations monitoring SO(2), NO(X), mercury, and other metal emissions in the U.S. will likely result in coal plant retirement in the near-term. Life cycle assessment studies have previously estimated the environmental benefits of displacing coal with natural gas for electricity generation, by comparing systems that consist of individual natural gas and coal power plants. However, such system comparisons may not be appropriate to analyze impacts of coal plant retirement in existing power fleets. To meet this limitation, simplified economic dispatch models for PJM, MISO, and ERCOT regions are developed in this study to examine changes in regional power plant dispatch that occur when coal power plants are retired. These models estimate the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs, with cheaper plants being dispatched first. Five scenarios of coal plant retirement are considered: retiring top CO(2) emitters, top NO(X) emitters, top SO(2) emitters, small and inefficient plants, and old and inefficient plants. Changes in fuel use, life cycle greenhouse gas emissions (including uncertainty), and SO(2) and NO(X) emissions are estimated. Life cycle GHG emissions were found to decrease by less than 4% in almost all scenarios modeled. In addition, changes in marginal damage costs due to SO(2), and NO(X) emissions are estimated using the county level marginal damage costs reported in the Air Pollution Emissions Experiments and Policy (APEEP) model, which are a proxy for measuring regional impacts of SO(2) and NO(X) emissions. Results suggest that location specific parameters should be considered within environmental policy frameworks targeting coal plant retirement, to account for regional variability in the benefits of reducing the impact of SO(2) and NO(X) emissions.
Technique for predicting ground-water discharge to surface coal mines and resulting changes in head
Weiss, L.S.; Galloway, D.L.; Ishii, Audrey L.
1986-01-01
Changes in seepage flux and head (groundwater level) from groundwater drainage into a surface coal mine can be predicted by a technique that considers drainage from the unsaturated zone. The user applies site-specific data to precalculated head and seepage-flux profiles. Groundwater flow through hypothetical aquifer cross sections was simulated using the U.S. Geological Survey finite-difference model, VS2D, which considers variably saturated two-dimensional flow. Conceptual models considered were (1) drainage to a first cut, and (2) drainage to multiple cuts, which includes drainage effects of an area surface mine. Dimensionless head and seepage flux profiles from 246 simulations are presented. Step-by-step instructions and examples are presented. Users are required to know aquifer characteristics and to estimate size and timing of the mine operation at a proposed site. Calculated groundwater drainage to the mine is from one excavated face only. First cut considers confined and unconfined aquifers of a wide range of permeabilities; multiple cuts considers unconfined aquifers of higher permeabilities only. The technique, developed for Illinois coal-mining regions that use area surface mining and evaluated with an actual field example, will be useful in assessing potential hydrologic impacts of mining. Application is limited to hydrogeologic settings and mine operations similar to those considered. Fracture flow, recharge, and leakage are nor considered. (USGS)
Occupational safety and health implications of increased coal utilization.
Bridbord, K; Costello, J; Gamble, J; Groce, D; Hutchison, M; Jones, W; Merchant, J; Ortmeyer, C; Reger, R; Wagner, W L
1979-01-01
An area of major concern in considering increased coal production and utilization is the health and safety of increased numbers of workers who mine, process, or utilize coal. Hazards related to mining activities in the past have been especially serious, resulting in many mine related accidental deaths, disabling injuries, and disability and death from chronic lung disease. Underground coal mines are clearly less safe than surface mines. Over one-third of currently employed underground miners experience chronic lung disease. Other stresses include noise and extremes of heat and cold. Newly emphasized technologies of the use of diesel powered mining equipment and the use of longwall mining techniques may be associated with serious health effects. Workers at coal-fired power plants are also potentially at risk of occupational diseases. Occupational safety and health aspects of coal mining are understood well enough today to justify implementing necessary and technically feasible and available control measures to minimize potential problems associated with increased coal production and use in the future. Increased emphasis on safety and health training for inexperienced coal miners expected to enter the work force is clearly needed. The recently enacted Federal Mine Safety and Health Act of 1977 will provide impetus for increased control over hazards in coal mining. PMID:540621
Henry, M.E.; Finn, T.M.
2003-01-01
The Total Petroleum System approach was used to estimate undiscovered gas potential of the Wasatch Plateau and Castle Valley, central Utah. The Ferron Coal/Wasatch Plateau Total Petroleum System was geologically defined and subdivided into seven assessment units, six of which were formally evaluated. Geologic data considered in defining the assessment unit boundaries included thermal maturity, coal presence and thickness, overburden thickness, and faulting intensity. Historical production data were also used to estimate volumes of gas from undrilled areas. The one conventional assessment unit includes almost the entire area of the petroleum system and is characterized by known accumulations that occur in structural or combination traps in sandstone reservoirs. The estimated undiscovered conventional producible gas that may be added to reserves of this unit ranges from a low (F95) of 14.8 billion cubic feet (BCFG) [419 million cubic meters (Mm3)] of gas to a high (F5) of 82 BCFG [2321 Mm3] and a mean value of 39.9 BCFG [1130 Mm3]. Continuous gas accumulations are those in which the entire assessment unit is considered to be gas-charged. Within these assessment units, there may be wells drilled that are not economic successes but all are expected to contain gas. Coalbed gas is in this continuous category. Mean estimates of undiscovered gas for the five continuous assessment units are: (1) Northern Coal Fairway/Drunkards Wash-752.3 BCFG [21,323 Mm3]; (2) Central Coal Fairway/Buzzard Bench-536.7 BCFG [15,194 Mm3]; (3) Southern Coal Fairway-152.6 BCFG [4320 Mm3]; (4) Deep (6000 feet plus) Coal and Sandstone-59.1 BCFG [1673 Mm3]; (5) Southern Coal Outcrop-10.6 BCFG [300 Mm3]; and Joes Valley and Musinia Grabens-not assessed.The mean estimate of undiscovered gas for the entire TPS is 1551.2 BCFG [43,914 Mm3]. There is a 95% chance that at least 855.7 BCFG [24,225 Mm3] and a 5% chance that at least 2504 BCFG [70,888 Mm3] of undiscovered producible gas remain in the TPS. ?? 2003 Published by Elsevier B.V.
Fishman, Neil S.; Turner, Christine E.; Peterson, Fred
2013-01-01
The presence of discrete minerals associated with coal—whether (1) detrital or authigenic constituents of the coals or in thin mudstone or siltstone units interbedded with coals, or (2) authigenic phases that formed along cleats—might influence its utilization as an energy resource. The build-up of sintered ash deposits on the surfaces of heat exchangers in coal-fired power plants, due to the alteration of minerals during combustion of the coal, can seriously affect the functioning of the boiler and enhance corrosion of combustion equipment. In particular, the presence of sodium in coals has been considered a key factor in the fouling of boilers; however, other elements (such as calcium or magnesium) and the amount of discrete minerals burned with coal can also play a significant role in the inefficiency of and damage to boilers. Previous studies of the quality of coals in the Cretaceous (Campanian) Blackhawk Formation of the Wasatch Plateau, Utah, revealed that the sodium content of the coals varied across the region. To better understand the origin and distribution of sodium in these coals, petrologic studies were undertaken within a sedimentological framework to evaluate the timing and geochemical constraints on the emplacement of sodium-bearing minerals, particularly analcime, which previously had been identified in coals in the Blackhawk Formation. Further, the study was broadened to include not just coals in the Blackhawk Formation from various localities across the Wasatch Plateau, but also sandstones interbedded with the coals as well as sandstones in the underlying Star Point Sandstone. The alteration history of the sandstones in both formations was considered a key component of this study because it records the nature and timing of fluids passing through them and the associated precipitation of sodium-bearing minerals; thus, the alteration history could place constraints on the distribution and timing of sodium mineralization in the interbedded or overlying Blackhawk coals. Although some preliminary results were previously presented at scientific meetings, the petrologic and geochemical data have not been fully compiled and reported. The purpose of this report is to present the methods of data acquisition and the results of petrologic and isotopic analyses on coal and sandstone samples from the Blackhawk Formation as well as sandstones of the underlying Star Point Sandstone.
NASA Astrophysics Data System (ADS)
Sadykov, Raman; Kiponievich Ogay, Evgeniy; Royer, Jean-Jacques; Zhapbasbayev, Uzak; Panfilova, Irina
2015-04-01
Coal Bed Methane (CBM) is gas stored in coal layers. It can be extracted from wells after hydraulic fracturing and/or solvent injection, and secondary recovery techniques such as CO2 injection. Karaganda Basin is a very favorable candidate region to develop CBM production for the following reasons: (i) Huge gas potential; (ii) Available technologies for extracting and commercializing the gas produced by CBM methods; (iii) Experience in degassing during underground mining operations for safety reasons; (iv) Local needs in energy for producing electricity for the industrial and domestic market. The objectives of this work are to model the Taldykuduk block coal layers and their properties focusing on Coal Bed Methane production. It is motivated by the availability of large coal bed methane resources in Karaganda coal basin which includes 4 300 Bm3 equivalent 2 billion tons of coal (B = billion = 109) with gas content 15-25 m3/t of coal (for comparison San Juan basin (USA) has < 20 m3/t). The CBM reserves estimations are about: Saransk block, 26.3 Bm3 and Taldykuduk block, 23.5 Bm3. Methane (CH4) can be considered as an environmentally-friendly fuel compared to coal. Actually, the methane extracted during mining is released in the atmosphere, collecting it for recovering energy will reduce CO2 equivalent emissions by 36 Mt, good news regarding climate warming issues. The exploitation method will be based on a EOR technology consisting in injecting CO2 which replaces methane in pores because it has a higher adsorption capacity than CH4; exploiting CBM by CO2 injection provides thus a safe way to sequestrate CO2 in adsorbed form. The 3D geological model was built on Gocad/Skua using the following available data set: 926 wells and large area (7 x 12 km). No seismic data; coal type and chemical components (S, ash, …); unreliable available cross-section & maps due to old acquisition; quality mature coal; complex heterogeneous fractures network reported on geological cross sections; and utilization issues of the water extracted in the early stages of exploitation. The resulting 3D faulted model which includes more than 100 of faults will be further used to simulate the secondary recovery of methane by injecting CO2. The simulation will be carried out on a flow simulator assuming a two phase dimensionless formulation of CBM production in a double porosity model considering two domains: the matrix (m) and the fracture (f) for which the initial and boundary conditions are different. The resulting comprehensive 3D models had helped in better understanding the tectonic structures of the region, especially the relationships between the fault systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David A. Tillman; Dao Duong; Bruce Miller
2009-07-15
Chlorine is a significant source of corrosion and deposition, both from coal and from biomass, and in PF boilers. This investigation was designed to highlight the potential for corrosion risks associated with once-through units and advanced cycles. The research took the form of a detailed literature investigation to evaluate chlorine in solid fuels: coals of various ranks and origins, biomass fuels of a variety of types, petroleum cokes, and blends of the above. The investigation focused upon an extensive literature review of documents dating back to 1991. The focus is strictly corrosion and deposition. To address the deposition and corrosionmore » issues, this review evaluates the following considerations: concentrations of chlorine in available solid fuels including various coals and biomass fuels, forms of chlorine in those fuels, and reactions - including reactivities - of chlorine in such fuels. The assessment includes consideration of alkali metals and alkali earth elements as they react with, and to, the chlorine and other elements (e.g., sulfur) in the fuel and in the gaseous products of combustion. The assessment also includes other factors of combustion: for example, combustion conditions including excess O{sub 2} and combustion temperatures. It also considers analyses conducted at all levels: theoretical calculations, bench scale laboratory data and experiments, pilot plant experiments, and full scale plant experience. Case studies and plant surveys form a significant consideration in this review. The result of this investigation focuses upon the concentrations of chlorine acceptable in coals burned exclusively, in coals burned with biomass, and in biomass cofired with coal. Values are posited based upon type of fuel and combustion technology. Values are also posited based upon both first principles and field experience. 86 refs., 8 figs., 7 tabs.« less
NASA Astrophysics Data System (ADS)
Wang, Yang; Zhu, Yanming; Liu, Yu; Chen, Shangbin
2018-04-01
Shale gas and coalbed methane (CBM) are both considered unconventional natural gas and are becoming increasingly important energy resources. In coal-bearing strata, coal and shale are vertically adjacent as coal and shale are continuously deposited. Research on the reservoir characteristics of coal-shale sedimentary sequences is important for CBM and coal-bearing shale gas exploration. In this study, a total of 71 samples were collected, including coal samples (total organic carbon (TOC) content >40%), carbonaceous shale samples (TOC content: 6%-10%), and shale samples (TOC content <6%). Combining techniques of field emission scanning electron microscopy (FE-SEM), x-ray diffraction, high-pressure mercury intrusion porosimetry, and methane adsorption, experiments were employed to characterize unconventional gas reservoirs in coal-bearing strata. The results indicate that in the coal-shale sedimentary sequence, the proportion of shale is the highest at 74% and that of carbonaceous shale and coal are 14% and 12%, respectively. The porosity of all measured samples demonstrates a good positive relationship with TOC content. Clay and quartz also have a great effect on the porosity of shale samples. According to the FE-SEM image technique, nanoscale pores in the organic matter of coal samples are much more developed compared with shale samples. For shales with low TOC, inorganic minerals provide more pores than organic matter. In addition, TOC content has a positive relationship with methane adsorption capacity, and the adsorption capacity of coal samples is more sensitive than the shale samples to temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Some say beauty is in the eye of the beholder, but when United Coal purchased the assets of White Mountain Mining in late 2005, the attractiveness of the acquired assets did not require much debate. Whilst the Pocahontas Coal reserves included in the acquisition were very desirable for producing coke, the East Gulf preparation plant was in poor condition. In order to minimize cost, maintenance and manpower whilst increasing production, the circuits in the existing plant were modified and the Barvoy Vessel was replaced with a single, pump fed, 30-inch Krebs HM cyclone. A spiral circuit was added as weremore » screen bowl centrifuges. Finally the plant was given a structural upgrade and a new siding was installed. With the East Gulf restoration project complete, the United Coal Co. (UCC) and Pocahontas Coal are now considering expanding the Affinity complex. 2 figs., 6 photos.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-11-15
The study examines both existing and emerging regulatory frameworks in order to determine which type of regulations that would be most effective at promoting clean coal technology adoption in development Asia Pacific Economic Co-operation (APEC) economies and would be practical to implement. regulations targeting air emissions; regulations targeting water use; and regulations concerning coal combustion by-products. When considering the potential effect of existing and new environmental regulations on the adoption of clean coal the analysis of technologies was organised into three categories: environmental control technologies; high efficiency coal combustion technologies; and carbon dioxide capture and storage (CCS). To target themore » recommendations towards APEC economies that would benefit the most from this analysis, the study focused on developing and transition APEC economies that are expected to rely on coal for a large part of their future generating capacity. These economies include China, Indonesia, the Philippines, the Russian Federation, Thailand, and Vietnam. ACARP provided funding to this study, under Project C15078. 10 figs., 14 tabs., 10 apps.« less
Coal gasifier cogeneration powerplant project
NASA Technical Reports Server (NTRS)
Shure, L. I.; Bloomfield, H. S.
1980-01-01
Industrial cogeneration and utility pr systems were analyzed and a conceptual design study was conducted to evaluate the economic feasibility of a coal gasifier power plant for NASA Lewis Research Center. Site location, plant size, and electric power demand were considered in criteria developed for screening and selecting candidates that could use a wide variety of coals, including that from Ohio. A fluidized bed gasifier concept was chosen as the baseline design and key components of the powerplant were technically assessed. No barriers to environmental acceptability are foreseen. If funded, the powerplant will not only meet the needs of the research center, but will reduce the commercial risk for utilities and industries by fully verifying and demonstrating the technology, thus accelerating commercialization.
Methane Content Estimation in DuongHuy Coal Mine
NASA Astrophysics Data System (ADS)
Nguyen, Van Thinh; Mijał, Waldemar; Dang, Vu Chi; Nguyen, Thi Tuyet Mai
2018-03-01
Methane hazard has always been considered for underground coal mining as it can lead to methane explosion. In Quang Ninh province, several coal mines such as Mạo Khe coal mine, Khe Cham coal mine, especially Duong Huy mine that have high methane content. Experimental data to examine contents of methane bearing coal seams at different depths are not similar in Duong coal mine. In order to ensure safety, this report has been undertaken to determine a pattern of changing methane contents of coal seams at different exploitation depths in Duong Huy underground coal mine.
NASA Astrophysics Data System (ADS)
Yan, Yulong; Yang, Chao; Peng, Lin; Li, Rumei; Bai, Huiling
2016-10-01
Face the large electricity demand, thermal power generation still derives the main way of electricity supply in China, account for 78.19% of total electricity production in 2013. Three types of thermal power plants, including coal-fired power plant, coal gangue-fired power plant and biomass-fired power plant, were chosen to survey the source profile, chemical reactivity and emission factor of VOCs during the thermal power generation. The most abundant compounds generated during coal- and coal gangue-fired power generation were 1-Butene, Styrene, n-Hexane and Ethylene, while biomass-fired power generation were Propene, 1-Butenen, Ethyne and Ethylene. The ratios of B/T during thermal power generation in this study was 0.8-2.6, which could be consider as the characteristics of coal and biomass burning. The field tested VOCs emission factor from coal-, coal gangue- and biomass-fired power plant was determined to be 0.88, 0.38 and 3.49 g/GJ, or showed as 0.023, 0.005 and 0.057 g/kg, with the amount of VOCs emission was 44.07, 0.08, 0.45 Gg in 2013, respectively. The statistical results of previous emission inventory, which calculated the VOCs emission used previous emission factor, may overestimate the emission amount of VOCs from thermal power generation in China.
Luppens, James A.; Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Rohrbacher, Timothy J.; Ellis, Margaret S.
2008-01-01
The Gillette coalfield, within the Powder River Basin in east-central Wyoming, is the most prolific coalfield in the United States. In 2006, production from the coalfield totaled over 431 million short tons of coal, which represented over 37 percent of the Nation's total yearly production. The Anderson and Canyon coal beds in the Gillette coalfield contain some of the largest deposits of low-sulfur subbituminous coal in the world. By utilizing the abundance of new data from recent coalbed methane development in the Powder River Basin, this study represents the most comprehensive evaluation of coal resources and reserves in the Gillette coalfield to date. Eleven coal beds were evaluated to determine the in-place coal resources. Six of the eleven coal beds were evaluated for reserve potential given current technology, economic factors, and restrictions to mining. These restrictions included the presence of railroads, a Federal interstate highway, cities, a gas plant, and alluvial valley floors. Other restrictions, such as thickness of overburden, thickness of coal beds, and areas of burned coal were also considered. The total original coal resource in the Gillette coalfield for all eleven coal beds assessed, and no restrictions applied, was calculated to be 201 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 164 billion short tons (81 percent of the original coal resource). Recoverable coal, which is the portion of available coal remaining after subtracting mining and processing losses, was determined for a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 77 billion short tons of coal were calculated (48 percent of the original coal resource). Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Gillette coalfield is10.1 billion short tons of coal (6 percent of the original resource total) for the 6 coal beds evaluated.
Bostick, N.H.; Daws, T.A.
1994-01-01
Basic research on coal and oil shale led to automated pyrolysis analysis of petroleum source rocks; most widely used is the Rock-Eval equipment. In order to interpret Rock-Eval analyses in relation to traditional coal data, we analyzed 142 commercial coals with diverse rank, age, maceral and sulfur contents, for most regions of the United States. We compared the Rock-Eval data with traditional industrial coal data, including volatile matter, calorific value, hydrogen and oxygen content, free swelling index, and vitrinite reflectance. We found: (1) there is a close relationship between Tmax and vitrinite reflectance in the ranges 420-590??C Tmax and 0.4-3%Romax of most coals. (2) A close relationship between Tmax and volatile matter (%VM) extends through the entire sample range, including low-rank samples with 35-70% VM, a range where %VM is not considered to be a useful rank parameter. (3) TOC of medium- and high-rank coals is seriously under-measured by Rock-Eval; TOC of low-rank coals (less than 0.8%Romax) is close to "dry basis" carbon from ultimate analysis. (4) The direct relationships between oxygen index (OI) and %O and between hydrogen index (HI) and %H are clear, though only broadly defined. However, there is virtually no band of concentrated data points on the HI versus OI pseudo-Van Krevelen diagram comparable to the "development line" on the H/C versus O/C diagram. (5) There are systematic relationships between Rock-Eval and industrial coal parameters such as calorific value and FSI, but much standardization would be needed before Rock-Eval could find a place in the coal industry. Tests with blends of coal and quartz sand and with various loads of coal alone showed that the amount of organic matter in the Rock-Eval load greatly influences results. Total load in the crucible, if largely inert, plays a small role, however. Increasing absolute or relative coal content causes under-evaluation of Rock-Eval TOC and over-rating of hydrogen. Blends of several coals yielded hydrogen and oxygen indexes related proportionally to the properties of the individual coals, but Tmax is not raised by addition of high-rank coal until over 40% is added. ?? 1994.
Conceptual design of thermal energy storage systems for near-term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.
1980-01-01
Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.
Hower, J.C.; Ruppert, L.F.; Williams, D.A.
2002-01-01
The Duckmantian-aged Amos coal bed is a thin (<51 cm) coal bed that occurs in lobate southwest-trending pods separated by thin sandstones in the Western Kentucky coalfield. The coal bed, which is comprised of up to two benches and a rider coal, is low in ash yield (<6%) and sulfur content (<1%). The coal tends to be thin (<40 cm), but it was heavily mined in the 1980s because it could be combusted as mined. Geochemical analysis of the Amos coal bed shows higher concentrations of B and Ge than other Western Kentucky coal beds. High total B concentrations as well as high B/Be, both considered to be indicators of marine environments, increase toward the top of the coal bed. Most of the B values for the Amos samples range from 66 to 103 ppm (whole coal basis) indicating deposition in a brackish environment. High Ge concentrations in coals have been considered to be a function of seam thickness and proximity to the top and bottom of the coal bed. Thin coals, such as the Amos, are dominated by the coal bed margins and, therefore, have a tendency to have relatively high Ge concentrations. In the case of the Amos coal bed, the lower bench has a higher Ge content, suggesting that the substrate was a more important source of Ge than the roof rock. ?? 2002 Elsevier Science B.V. All rights reserved.
Proceedings of the conference on Coal Feeding Systems
NASA Technical Reports Server (NTRS)
1977-01-01
Development of coal feed systems for coal gasification, fluidized bed combustion, and magnetohydrodynamic applications is discussed. Process operations experience, energy conversion efficiency, and environment effects are among the factors considered.
Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology
NASA Astrophysics Data System (ADS)
Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey
2017-11-01
The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.
Kim, Bo-Hyun; Walton, Gabriel; Larson, Mark K.; Berry, Steve
2018-01-01
Characterizing a coal from an engineering perspective for design of mining excavations is critical in order to prevent fatalities, as underground coal mines are often developed in highly stressed ground conditions. Coal pillar bursts involve the sudden expulsion of coal and rock into the mine opening. These events occur when relatively high stresses in a coal pillar, left for support in underground workings, exceed the pillar’s load capacity causing the pillar to rupture without warning. This process may be influenced by cleating, which is a type of joint system that can be found in coal rock masses. As such, it is important to consider the anisotropy of coal mechanical behavior. Additionally, if coal is expected to fail in a brittle manner, then behavior changes, such as the transition from extensional to shear failure, have to be considered and reflected in the adopted failure criteria. It must be anticipated that a different failure mechanism occurs as the confinement level increases and conditions for tensile failure are prevented or strongly diminished. The anisotropy and confinement dependency of coal behavior previously mentioned merit extensive investigation. In this study, a total of 84 samples obtained from a Utah coal mine were investigated by conducting both unconfined and triaxial compressive tests. The results showed that the confining pressure dictated not only the peak compressive strength but also the brittleness as a function of the major to the minor principal stress ratio. Additionally, an s-shaped brittle failure criterion was fitted to the results, showing the development of confinement-dependent strength. Moreover, these mechanical characteristics were found to be strongly anisotropic, which was associated with the orientation of the cleats relative to the loading direction. PMID:29780272
Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun; ...
2017-01-30
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianran; Rutqvist, Jonny; Liu, Weiqun
An effective and safe operation for sequestration of CO 2 in coal seams requires a clear understanding of injection-induced coupled hydromechanical processes such as the evolution of pore pressure, permeability, and induced caprock deformation. In this study, CO 2 injection into coal seams was studied using a coupled flow-deformation model with a new stress-dependent porosity and permeability model that considers CO 2 -induced coal softening. Based on triaxial compression tests of coal samples extracted from the site of the first series of enhanced coalbed methane field tests in China, a softening phenomenon that a substantial (one-order-of-magnitude) decrease of Young's modulusmore » and an increase of Poisson's ratio with adsorbed CO 2 content was observed. Such softening was considered in the numerical simulation through an exponential relation between elastic properties (Young's modulus and Poisson's ratio) and CO 2 pressure considering that CO 2 content is proportional to the CO 2 pressure. Our results of the numerical simulation show that the softening of the coal strongly affects the CO 2 sequestration performance, first by impeding injectivity and stored volume (cumulative injection) during the first week of injection, and thereafter by softening mediated rebound in permeability that tends to increase injectivity and storage over the longer term. A sensitivity study shows that stronger CO 2 -induced coal softening and higher CO 2 injection pressure contribute synergistically to increase a significant increase of CO 2 injectivity and adsorption, but also result in larger caprock deformations and uplift. This study demonstrates the importance of considering the CO 2 -induced softening when analyzing the performance and environmental impact of CO 2 -sequestration operations in unminable coal seams.« less
Future trends in electrical energy generation economics in the United States
NASA Technical Reports Server (NTRS)
Schmitt, R. W.; Fox, G. R.; Shah, R. P.; Stewart, P. J.; Vermilyea, D. A.
1977-01-01
Developments related to the economics of coal-fired systems in the U.S. are mainly considered. The historical background of the U.S. electric generation industry is examined and the U.S. electrical generation characteristics in the year 1975 are considered. It is pointed out that coal-fired power plants are presently the largest source of electrical energy generation in the U.S. Questions concerning the availability and quality of coal are investigated. Currently there are plans for converting some 50 large oil and gas-fired generating plants to coal, and it is expected that coal will be the fuel used in almost all fossil-fired base load additions to generating capacity. Aspects of advanced energy conversion from coal are discussed, taking into account the performance and economic potential of the energy conversion systems.
Synfuels and the energy transition
NASA Astrophysics Data System (ADS)
Balzhiser, R. E.
1981-08-01
Various synfuel options and their impact on the electric utility industry are discussed. The energy transition for the U.S.A. is seen as moving from natural fluid fuels to solid fuels and renewable energy resources. The key to this transition is electrification, which can encompass both nuclear and renewable resources, centralized and dispersed technologies. It is shown that the fraction of total energy converted to electricity has risen steadily for the past 30 years, reaching 33% last year. The abundance and cost of production of the various fossil energy resources, including natural gas, heavy oil, oil shale, and coal are considered. EPRI analyses indicate that an integrated-combined-cycle power plant could be competitive with conventional coal plant technology. These plants would use only half the water of current coal-fired plants, would meet tighter sulfur emission standards, and would produce a vitreous ash that is less leachable than the ash from today's coal plants. Solvent-refined coal processes, currently being developed in the U.S.A. are a second approach to converting coal to liquid fuels. It is pointed out, however, that synfuels will complement, not replace, other sources of energy in the continued electrification of the U.S.A.
Uncertainty in coal property valuation in West Virginia: A case study
Hohn, M.E.; McDowell, R.R.
2001-01-01
Interpolated grids of coal bed thickness are being considered for use in a proposed method for taxation of coal in the state of West Virginia (United States). To assess the origin and magnitude of possible inaccuracies in calculated coal tonnage, we used conditional simulation to generate equiprobable realizations of net coal thickness for two coals on a 7 1/2 min topographic quadrangle, and a third coal in a second quadrangle. Coals differed in average thickness and proportion of original coal that had been removed by erosion; all three coals crop out in the study area. Coal tonnage was calculated for each realization and for each interpolated grid for actual and artificial property parcels, and differences were summarized as graphs of percent difference between tonnage calculated from the grid and average tonnage from simulations. Coal in individual parcels was considered minable for valuation purposes if average thickness in each parcel exceeded 30 inches. Results of this study show that over 75% of the parcels are classified correctly as minable or unminable based on interpolation grids of coal bed thickness. Although between 80 and 90% of the tonnages differ by less than 20% between interpolated values and simulated values, a nonlinear conditional bias might exist in estimation of coal tonnage from interpolated thickness, such that tonnage is underestimated where coal is thin, and overestimated where coal is thick. The largest percent differences occur for parcels that are small in area, although because of the small quantities of coal in question, bias is small on an absolute scale for these parcels. For a given parcel size, maximum apparent overestimation of coal tonnage occurs in parcels with an average coal bed thickness near the minable cutoff of 30 in. Conditional bias in tonnage for parcels having a coal thickness exceeding the cutoff by 10 in. or more is constant for two of the three coals studied, and increases slightly with average thickness for the third coal. ?? 2001 International Association for Mathematical Geology.
Review and update of the applications of organic petrology: Part 1, geological applications
Suárez-Ruiz, Isabel; Flores, Deolinda; Mendonça Filho, João Graciano; Hackley, Paul C.
2012-01-01
Organic petrology developed as coal petrology at the beginning of the 20th century dedicated mainly to the study of coals because of their utilization in industry. Coal petrology was then considered a branch of coal science. Later, with the development of specialized nomenclature, classification of coal components, and the standardization and improvement of analytical (microscopical) methods, this discipline expanded in interests and name, becoming organic petrology. Organic petrology carries a broader context, being as well a tool applied in the study of dispersed organic matter in sedimentary rocks due to its importance in exploration for fossil fuel resources. At present, organic petrology is a discipline widely recognized for its role in fundamental and applied research with respect to both coal utilization and in geosciences. Throughout the 20th century several important monographs have been published on the discipline of organic petrology, including “Stach's textbook of coal petrology” (1st edition 1935, 2nd 1975, 3rd 1982), updated as the more general “Organic petrology” by Taylor et al. (1998). More recently, the text “Applied coal petrology: the role of petrology in coal utilization” was published by Suárez-Ruiz and Crelling (2008). This review is the first in a two-part review series that describes and updates the role of organic petrology in geosciences. A second part complementing this one and focused on the applications of organic petrology to other scientific fields will follow.
NASA Astrophysics Data System (ADS)
1980-07-01
In most of the processes, a portion of the potassium seed material is converted to a compound not containing sulfur. The potassium in this form can, when injected upstream of the MHD channel, capture the sulfur released during the combustion of coal and eliminate the need for flue gas desulfurization equipment. Criteria considered in the evaluation included cost, state of development, seed loss, power requirements, availability, durability, key component risk, environmental impact, safety, controllability, and impurities buildup.
The radiological impact of electricity generation by U.K. coal and nuclear systems.
Robson, A
1984-05-01
Radiological impact is discussed for U.K. coal and nuclear power cycles under normal operation. The type having the greater impact depends on the radiological basis of the comparison, the particular nuclear reactor system considered and whether or not the whole fuel cycle, especially irradiated nuclear fule reprocessing , is included in the analysis. More importantly, the various impacts are shown to be generally acceptable in an absolute sense i.e. exposures are less than and usually low in comparison with radiological safety guidelines and everyday natural radiation exposures.
Nephelometry and turbidimetry to assess concentration and dispersion of coal dust in mines
NASA Astrophysics Data System (ADS)
Yushchenko, VP; Legky, VN; Demidov, DE
2018-03-01
The article considers the model of the optical instrument to measure coal dust concentration in mines based on the turbidimetric and nephelometric methods. The calculated data on the intensity of transmitted and scattered waves depending on coal dust concentration and on the size of coal dust particles are presented.
Coprocessing of plastics with coal and petroleum resid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, H.; Curtis, C.W.
1995-12-31
Waste plastics have become an increasing problem in the United States since land filling is no longer considered a feasible disposal method. Since plastics are petroleum-derived materials, coprocessing then with coal to produce transportation fuels is a feasible alternative. In this study, catalytic coprocessing reactions were performed using Blind Canyon bituminous coal, Manji petroleum resid, and waste plastics. Model polymers including polystyrene, low density polyethylene (LDPE) and polyethylene tereplithalare (PET) were selected because they represent a substantial portion of the waste plastics generated in the United States. Coprocessing reactions of coal, resid, and polymer as well as reactions of individualmore » components and combinations of two components were performed at 430{degrees}C for one hour with an initial H{sub 2} pressure of 8.5 MPa introduced at ambient temperature with presulfided NiMo/Al{sub 2}O{sub 3} as catalyst. Coprocessing all three materials resulted in a substantial improvement in the total conversion compared to the coal plus polymer reaction and slightly less conversion than the resid plus polymer combinations.« less
Assessment of coal geology, resources, and reserves in the northern Wyoming Powder River Basin
Scott, David C.; Haacke, Jon E.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Rohrbacher, Timothy J.
2010-01-01
The abundance of new borehole data from recent coal bed natural gas development in the Powder River Basin was utilized by the U.S. Geological Survey for the most comprehensive evaluation to date of coal resources and reserves in the Northern Wyoming Powder River Basin assessment area. It is the second area within the Powder River Basin to be assessed as part of a regional coal assessment program; the first was an evaluation of coal resources and reserves in the Gillette coal field, adjacent to and south of the Northern Wyoming Powder River Basin assessment area. There are no active coal mines in the Northern Wyoming Powder River Basin assessment area at present. However, more than 100 million short tons of coal were produced from the Sheridan coal field between the years 1887 and 2000, which represents most of the coal production within the northwestern part of the Northern Wyoming Powder River Basin assessment area. A total of 33 coal beds were identified during the present study, 24 of which were modeled and evaluated to determine in-place coal resources. Given current technology, economic factors, and restrictions to mining, seven of the beds were evaluated for potential reserves. The restrictions included railroads, a Federal interstate highway, urban areas, and alluvial valley floors. Other restrictions, such as depth, thickness of coal beds, mined-out areas, and areas of burned coal, were also considered. The total original coal resource in the Northern Wyoming Powder River Basin assessment area for all 24 coal beds assessed, with no restrictions applied, was calculated to be 285 billion short tons. Available coal resources, which are part of the original coal resource that is accessible for potential mine development after subtracting all restrictions, are about 263 billion short tons (92.3 percent of the original coal resource). Recoverable coal, which is that portion of available coal remaining after subtracting mining and processing losses, was determined for seven coal beds with a stripping ratio of 10:1 or less. After mining and processing losses were subtracted, a total of 50 billion short tons of recoverable coal was calculated. Coal reserves are the portion of the recoverable coal that can be mined, processed, and marketed at a profit at the time of the economic evaluation. With a discounted cash flow at 8 percent rate of return, the coal reserves estimate for the Northern Wyoming Powder River Basin assessment area is 1.5 billion short tons of coal (1 percent of the original resource total) for the seven coal beds evaluated.
Supplementing Conservation Practices with Alternative Energy Sources.
ERIC Educational Resources Information Center
Kraetsch, Gayla A.
1981-01-01
Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.
Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less
Iavarone, Salvatore; Smith, Sean T.; Smith, Philip J.; ...
2017-06-03
Oxy-coal combustion is an emerging low-cost “clean coal” technology for emissions reduction and Carbon Capture and Sequestration (CCS). The use of Computational Fluid Dynamics (CFD) tools is crucial for the development of cost-effective oxy-fuel technologies and the minimization of environmental concerns at industrial scale. The coupling of detailed chemistry models and CFD simulations is still challenging, especially for large-scale plants, because of the high computational efforts required. The development of scale-bridging models is therefore necessary, to find a good compromise between computational efforts and the physical-chemical modeling precision. This paper presents a procedure for scale-bridging modeling of coal devolatilization, inmore » the presence of experimental error, that puts emphasis on the thermodynamic aspect of devolatilization, namely the final volatile yield of coal, rather than kinetics. The procedure consists of an engineering approach based on dataset consistency and Bayesian methodology including Gaussian-Process Regression (GPR). Experimental data from devolatilization tests carried out in an oxy-coal entrained flow reactor were considered and CFD simulations of the reactor were performed. Jointly evaluating experiments and simulations, a novel yield model was validated against the data via consistency analysis. In parallel, a Gaussian-Process Regression was performed, to improve the understanding of the uncertainty associated to the devolatilization, based on the experimental measurements. Potential model forms that could predict yield during devolatilization were obtained. The set of model forms obtained via GPR includes the yield model that was proven to be consistent with the data. Finally, the overall procedure has resulted in a novel yield model for coal devolatilization and in a valuable evaluation of uncertainty in the data, in the model form, and in the model parameters.« less
Capturing the emerging market for climate-friendly technologies: opportunities for Ohio
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-11-15
This paper briefly describes the factors driving the growing demand for climate-friendly technologies, some of the key existing companies, organizations, and resources in Ohio, and the potential for Ohio to become a leading supplier of climate solutions. These solutions include a new generation of lower-emitting coal technologies, components for wind turbines, and the feedstocks and facilities to produce biofuels. Several public-private partnerships and initiatives have been established in Ohio. These efforts have encouraged the development of numerous federal- and state-funded projects and attracted major private investments in two increasingly strategic sectors of the Ohio economy: clean-coal technology and alternative energymore » technology, with a focus on fuel cells. Several major clean-coal projects have been recently initiated in Ohio. In April 2006, the Public Utilities Commission of Ohio approved American Electric Power's (AEP) plan to build a 600 MW clean-coal plant along the Ohio River in Meigs County. The plant will use Integrated Gasification Combined Cycle (IGCC) technology which makes it easier to capture carbon dioxide for sequestration. Three other potential coal gasification facilities are being considered in Ohio: a combination IGCC and synthetic natural gas plant in Allen County by Global Energy/Lima Energy; a coal-to-fuels facility in Lawrence County by Baard Energy, and a coal-to-fuels facility in Scioto County by CME North American Merchant Energy. The paper concludes with recommendations for how Ohio can capitalize on these emerging opportunities. These recommendations include focusing and coordinating state funding of climate technology programs, promoting the development of climate-related industry clusters, and exploring export opportunities to states and countries with existing carbon constraints.« less
Phytotoxicity assessment of a methanolic coal dust extract in Lemna minor.
Coronado-Posada, Nadia; Cabarcas-Montalvo, Maria; Olivero-Verbel, Jesus
2013-09-01
Coal mining generates negative effects on environment, human health, hydrodynamics of mining areas and biodiversity. However, the impacts of this activity are less known in plants. Lemna minor is one of the most commonly used plants in aquatic toxicity tests due to its ubiquitous distribution in ponds and lakes, culture conditions and the free-floating habitat that exposes it to hydrophobic as well as dissolved compounds. The goal of this research was to evaluate the effects of a methanolic coal dust extract on L. minor. Macrophytes were exposed to six different concentrations of coal extract (from 7.81 to 250 mg/L) for 5 days, following the OECD test guideline 221. The coal extract had a half inhibitory concentration (IC50) of 99.66 (184.95-54.59) mg/L for the number of fronds. Several signs of toxicity such as chlorosis, reduction in the size of the fronds, abscission of fronds and roots, and the presence of necrotic tissues were observed at concentrations lower than the IC50. Preliminary Gas Chromatography-Mass Spectrometry analysis of the coal dust extract revealed the presence of several compounds, including, among others, alkanes, carboxylic acids and polycyclic aromatic hydrocarbons (PAHs), these lasts, may be responsible for some of the observed effects. These results demonstrated that coal dust has phytotoxic effects and should not be considered as an inert material. Copyright © 2013 Elsevier Inc. All rights reserved.
Global Development of Commercial Underground Coal Gasification
NASA Astrophysics Data System (ADS)
Blinderman, M. S.
2017-07-01
Global development of Underground Coal Gasification (UCG) is considered here in light of latest trends of energy markets and environmental regulations in the countries that have been traditional proponents of UCG. The latest period of UCG development triggered by initial success of the Chinchilla UCG project (1997-2006) has been characterized by preponderance of privately and share-market funded developments. The deceleration of UCG commercialization has been in part caused by recent significant decrease of world oil, gas and coal prices. Another substantial factor was lack of necessary regulations governing extraction and conversion of coal by UCG method in the jurisdictions where the UCG projects were proposed and developed. Along with these objective causes there seem to have been more subjective and technical reasons for a slowdown or cancelation of several significant UCG projects, including low efficiency, poor environmental performance, and inability to demonstrate technology at a sufficient scale and/or at a competitive cost. Latest proposals for UCG projects are briefly reviewed.
Economic Benefit of Coal Utilization/Conversion at Air Force Bases: Screening Study
1989-08-01
fire-tLbe) boilers that are small enough to be shipped by rail. The field-erected units are larger, water- tube boilers. The pulverized coal-fired and...circulating FBC boilers considered are field-erected, water- tube boilers. Pollution control technology costs were considered to a limited extent. All...Coal/H 0 mix (S/MBtu) = 3.00 OPTIONS Cal/oil mix (S/MBtu) 3.50 Soot blower multiplier = 0.0 Tube bank mod multiplier = 1.0 Primary fuel is 1 Bottom ash
Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants
NASA Technical Reports Server (NTRS)
Owens, W.; Berg, R.; Murthy, R.; Patten, J.
1981-01-01
A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.
Identification of potential concerns associated with FDOT use of ammoniated coal fly ash.
DOT National Transportation Integrated Search
2012-12-01
The objectives of this project include a careful examination of the issues surrounding high ammonia content in cement due to the use of ammoniated fly ash. The researchers will gather information from published material and consider policies and prac...
Technology could deliver 90% Hg reduction from coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maize, K.
2009-07-15
Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.
Assessment of a satellite power system and six alternative technologies
NASA Technical Reports Server (NTRS)
Wolsko, T.; Whitfield, R.; Samsa, M.; Habegger, L. S.; Levine, E.; Tanzman, E.
1981-01-01
The satellite power system is assessed in comparison to six alternative technologies. The alternatives are: central-station terrestrial photovoltaic systems, conventional coal-fired power plants, coal-gasification/combined-cycle power plants, light water reactor power plants, liquid-metal fast-breeder reactors, and fusion. The comparison is made regarding issues of cost and performance, health and safety, environmental effects, resources, socio-economic factors, and institutional issues. The criteria for selecting the issues and the alternative technologies are given, and the methodology of the comparison is discussed. Brief descriptions of each of the technologies considered are included.
Chesnut, D.R.
1997-01-01
Stratigraphic analysis of Lower and Middle Pennsylvanian rocks of part of the Central Appalachian Basin reveals two orders of cycles and one overall trend in the vertical sequence of coal-bearing rocks. The smallest order cycle, the coal-clastic cycle, begins at the top of a major-resource coal bed and is composed of a vertical sequence of shale, siltstone, sandstone, seat rock, and overlying coal, which, in turn, is overlain by the next coal-clastic sequence. The average duration of the coal-clastic cycle has been calculated to be about 0.4 m.y. The major marine-transgression cycle is composed of five to seven coal-clastic cycles and is distinguished by the occurrence of widespread, relatively thick (generally thicker than 5 m) marine strata at its base. The duration of this cycle has been calculated to be about 2.5 m.y. The Breathitt coarsening-upward trend describes the general upward coarsening of the Middle Pennsylvanian part of the Breathitt Group. The Breathitt Group includes eight major marine-transgression cycles, and was deposited during a period of approximately 20 m.y. The average duration of coal-clastic cycles is of the same order of magnitude (105 year) as the Milankovitch orbital-eccentricity cycles, and matches the 0.4 m.y. second-order eccentricity cycle (Long Earth-Eccentricity cycle). These orbital periodicities are thought to modulate glacial stages and glacio-eustatic levels. The calculated periodicities of the coal-clastic cycles can be used as evidence for glacio-eustatic control of the coal-bearing rocks of the Appalachian Basin. The 2.5-m.y. periodicity of the major marine-transgression cycle does not match any known orbital or tectonic cycle; the cause of this cycle is unknown, but it might represent episodic thrusting in the orogen, propagation of intraplate stresses, or an unidentified orbital cycle. The Breathitt coarsening-upward trend is interpreted to represent the increasing intensity and proximity of the Alleghenian Orogeny. Previously, tectonic subsidence of the basin was considered to be the dominant control on deposition of the coal-bearing rocks of the basin. However, new calculations show that eustatic rates are more significant than averaged subsidence rates for the Pennsylvanian Appalachian Basin. Accordingly, sea-level changes are considered to be a dominant control on coastal sedimentation during the Pennsylvanian. However, tectonic subsidence created the accomodation space for preservation of various orders of cyclic sedimentation; the preserved order of cycles was dependent upon the rate of subsidence from basin margin to axis.
Important fossil source contribution to brown carbon in Beijing during winter
NASA Astrophysics Data System (ADS)
Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan
2017-03-01
Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.
Important fossil source contribution to brown carbon in Beijing during winter
Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan
2017-01-01
Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources. PMID:28266611
A Basic Study on Optimal Investment of Power Sources Considering Environmental Measures
NASA Astrophysics Data System (ADS)
Kato, Moritoshi; Zhou, Yicheng
This paper focuses on economic evaluations of a coal-fired thermal power station with a carbon dioxide capture and storage unit (CCS) by which an existing coal-fired thermal power station (COAL) is replaced. Decision makers decide to construct CCS considering both of contrary elements; one is waiting more favorable conditions such as a higher value of carbon credits which CCS has, another is reducing opportunity costs due to delay of construction of CCS. New methods using a real option approach are proposed. Firstly we calculate an economic value of CCS as an American coal option with dividend considering carbon emission costs of COAL as opportunity costs. Secondly we evaluate construction time of CCS using binominal decision tree taking into account the options. Numerical examples show that a real option value of CCS is from 28% to 44% of sales revenue, which are higher than net present values due to a value on waiting for more favorable conditions. And they also show that an earlier construction is exercised and the value becomes lower, the more challenging the benchmark of carbon emissions is or the higher the change rate of maintenance cost of COAL becomes. An effect of a lifetime of power stations is also analyzed.
State of the art of biological processes for coal gasification wastewater treatment.
Zhao, Qian; Liu, Yu
2016-01-01
The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salama, A.; Mikhail, M.
Comprehensive software packages have been developed at the Western Research Centre as tools to help coal preparation engineers analyze, evaluate, and control coal cleaning processes. The COal Preparation Software package (COPS) performs three functions: (1) data handling and manipulation, (2) data analysis, including the generation of washability data, performance evaluation and prediction, density and size modeling, evaluation of density and size partition characteristics and attrition curves, and (3) generation of graphics output. The Separation ChARacteristics Estimation software packages (SCARE) are developed to balance raw density or size separation data. The cases of density and size separation data are considered. Themore » generated balanced data can take the balanced or normalized forms. The scaled form is desirable for direct determination of the partition functions (curves). The raw and generated separation data are displayed in tabular and/or graphical forms. The computer softwares described in this paper are valuable tools for coal preparation plant engineers and operators for evaluating process performance, adjusting plant parameters, and balancing raw density or size separation data. These packages have been applied very successfully in many projects carried out by WRC for the Canadian coal preparation industry. The software packages are designed to run on a personal computer (PC).« less
Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai
2018-04-01
Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.
Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto
2014-01-01
Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.
Pre-feasibility study for construction of a commercial coal hydrogenation plant
NASA Astrophysics Data System (ADS)
Hahn, W.; Wilhelm, H.; Kleinhueckelkotten, H.; Schmedeshagen, B.
1982-11-01
The technical problems, a suitable site and the unsatisfactory economics hinder the realization of a commercial coal liquefaction plant in Germany were identified. It is found that a plant for hydrogenation of coal and heavy oil according to the updated bergius-Pier process can be built. The improvement of acceptable reactor loading and increase of product yield was considered. The infrastructure aspects of a site for the plant which covers 300 hectars as well as eventually existing atmospheric pollution conditions in the environment are also considered.
Improving Competitiveness of U.S. Coal Dialogue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokkinos, Angelos
The Improving Competitiveness of U.S. Coal Dialogue held in September 2017 explored a broad range of technical developments that have the potential to improve U.S. coal competitiveness in domestic and overseas markets. The workshop is one in a series of events hosted by DOE to gather expert input on challenges and opportunities for reviving the coal economy. This event brought together coal industry experts to review developments in a broad range of technical areas such as conventional physical (e.g. dense-medium) technologies, and dry coal treatments; thermal, chemical, and bio-oxidation coal upgrading technologies; coal blending; and applications for ultrafine coal andmore » waste streams. The workshop was organized to focus on three main discussion topics: Challenges and Opportunities for Improving U.S. Coal Competitiveness in Overseas Markets, Mineral Processing, and Technologies to Expand the Market Reach of Coal Products. In each session, invited experts delivered presentations to help frame the subsequent group discussion. Throughout the discussions, participants described many possible areas of research and development (R&D) in which DOE involvement could help to produce significant outcomes. In addition, participants discussed a number of open questions—those that the industry has raised or investigated but not yet resolved. In discussing the three topics, the participants suggested potential areas of research and issues for further investigation. As summarized in Table ES-1, these crosscutting suggestions centered on combustion technologies, coal quality, coal processing, environmental issues, and other issues. The discussions at this workshop will serve as an input that DOE considers in developing initiatives that can be pursued by government and industry. This workshop generated strategies that described core research concepts, identified implementation steps, estimated benefits, clarified roles of government and industry, and outlined next steps. While more work is needed, each of these initiatives, included in the sections that follow, details new ideas to increase efficiency and reduce carbon emissions. DOE will integrate the results of this workshop with ongoing research work at the National Laboratories as well as other relevant data sources. This combined information will be used to develop a comprehensive strategy for capitalizing on the opportunity for U.S. coal and mineral competitiveness.« less
Stripping-coal deposits on lower Lignite Creek, Nenana coal field, Alaska
Wahrhaftig, Clyde; Birman, Joseph H.
1954-01-01
Stripping-coal reserves in an area of about 9.4 square miles extending from the Nenana River about 6 miles up the valley of Lignite Creek are estimated to amount to about 95, 000, 000 tons. The stripping-coal reserves are located in the lower and middle members of the Tertiary coal-bearing formation. Five continuous beds in the middle member range in thickness from 5 to 30 feet, and a discontinuous bed at the base of the lower member is about 60 feet thick. Analyses of outcrop samples, as received at the laboratory, show a heating content of 7,500--8,200 Btu, an ash content of 6 to 14 percent, and a moisture content of 25 percent. The reserve estimate is based on a maximum thickness of overburden of 200 feet. Coal below the level of Lignite Creek or its major tributaries was not considered as it was assumed that stripping would be by hydraulic methods. Uncertainties regarding the position of the coal outcrops and the extent of burning of the coal beds are the basis for a recommendation that, where possible, the stripping reserves be tested by drilling. Overburden consists largely of weakly consolidated sandstone and includes some coarse gravel and a few boulders 20 feet or more in diameter. Water for hydraulic mining can be obtained from the Nenana River. Lignite Creek does not appear to be a dependable source. Disposal of debris may affect the channel of the Nenana River causing damage to railroads and structures. Landslides are common in the valley of Lignite Creek and will affect mining operations and transportation routes.
Inventing pollution: coal, smoke, and culture in Britain since 1800
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Thorsheim
2006-07-01
Peter Throsheim explains that, for much of the nineteenth century, few people in Britain even considered coal smoke to be pollution. To them, pollution meant miasma: invisible gases generated by decomposing plant and animal matter. Far from viewing coal smoke as pollution, most people considered smoke to be a valuable disinfectant, for its carbon and sulfur were thought capable of rendering miasma harmless. The book examines the radically new understanding of pollution that emerged in the late nineteenth century, one that centered not on organic decay but on coal combustion. This change, it is argued, gave birth to the smoke-abatementmore » movement and to new ways of thinking about the relationships among humanity, technology, and the environment.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... hydrofluoropolyether. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel... maintenance shall not be considered an emergency generator. Emergency equipment means any auxiliary fossil... fed to the kiln. Feed does not include the fuels used in the kiln to produce heat to form the clinker...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. This extension gives... Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust Monitors. In response...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... Wright Area Coal Final Environmental Impact Statement That Includes Four Federal Coal Lease- by... Statement (EIS) for the Wright Area Coal project that contains four Federal coal Lease-by-Applications (LBAs), and by this notice announces the availability of the Wright Area Coal Final EIS for review. DATES: To...
Interpreting wireline measurements in coal beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, D.J.
1991-06-01
When logging coal seams with wireline tools, the interpretation method needed to evaluate the coals is different from that used for conventional oil and gas reservoirs. Wireline logs identify coals easily. For an evaluation, the contribution of each coal component on the raw measurements must be considered. This paper will discuss how each log measurement is affected by each component. The components of a coal will be identified as the mineral matter, macerals, moisture content, rank, gas content, and cleat porosity. The measurements illustrated are from the resistivity, litho-density, neutron, sonic, dielectric, and geochemical tools. Once the coal component effectsmore » have been determined, an interpretation of the logs can be made. This paper will illustrate how to use these corrected logs in a coal evaluation.« less
Technical devices of powered roof support for the top coal caving as automation objects
NASA Astrophysics Data System (ADS)
Nikitenko, M. S.; Kizilov, S. A.; Nikolaev, P. I.; Kuznetsov, I. S.
2018-05-01
In the paper technical devices for the top coal caving as automation objects in the composition of the longwall mining complex (LTCC) are considered. The proposed concept for automation of the top coal caving process allows caving efficiency to be ensured, coal dilution to be prevented, conveyor overloading to be prevented, the shearer service personnel to be unloaded, the influence of the “human factor” to be reduced.
Zhang, Yingyu; Shao, Wei; Zhang, Mengjia; Li, Hejun; Yin, Shijiu; Xu, Yingjun
2016-07-01
Mining has been historically considered as a naturally high-risk industry worldwide. Deaths caused by coal mine accidents are more than the sum of all other accidents in China. Statistics of 320 coal mine accidents in Shandong province show that all accidents contain indicators of "unsafe conditions of the rules and regulations" with a frequency of 1590, accounting for 74.3% of the total frequency of 2140. "Unsafe behaviors of the operator" is another important contributory factor, which mainly includes "operator error" and "venturing into dangerous places." A systems analysis approach was applied by using structural equation modeling (SEM) to examine the interactions between the contributory factors of coal mine accidents. The analysis of results leads to three conclusions. (i) "Unsafe conditions of the rules and regulations," affect the "unsafe behaviors of the operator," "unsafe conditions of the equipment," and "unsafe conditions of the environment." (ii) The three influencing factors of coal mine accidents (with the frequency of effect relation in descending order) are "lack of safety education and training," "rules and regulations of safety production responsibility," and "rules and regulations of supervision and inspection." (iii) The three influenced factors (with the frequency in descending order) of coal mine accidents are "venturing into dangerous places," "poor workplace environment," and "operator error." Copyright © 2016 Elsevier Ltd. All rights reserved.
Study on systems based on coal and natural gas for producing dimethyl ether
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, L.; Hu, S.Y.; Chen, D.J.
2009-04-15
China is a coal-dependent country and will remain so for a long time. Dimethyl ether (DME), a potential substitute for liquid fuel, is a kind of clean diesel motor fuel. The production of DME from coal is meaningful and is studied in this article. Considering the C/H ratios of coal and natural gas (NG), the cofeed (coal and NG) system (CFS), which does not contain the water gas shift process, is studied. It can reduce CO{sub 2} emission and increase the conversion rate of carbon, producing more DME. The CFS is simulated and compared with the coal-based and NG-based systemsmore » with different recycling ratios. The part of the exhaust gas that is not recycled is burned, producing electricity. On the basis of the simulation results, the thermal efficiency, economic index, and CO{sub 2} emission ratio are calculated separately. The CFS with a 100% recycling ratio has the best comprehensive evaluation index, while the energy, economy, and environment were considered at the same time.« less
Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Stricker, Gary D.; Ochs, Allan M.; Schuenemeyer, John H.
1998-01-01
The National Coal Resource Assessment of the Wyodak-Anderson coal zone includes reports on the geology, stratigraphy, quality, and quantity of coal. The calculation of resources is only one aspect of the assessment. Without thorough documentation of the coal resource study and the methods used, the results of our study could be misinterpreted. The task of calculating coal resources included many steps, the use of several commercial software programs, and the incorporation of custom programs. The methods used for calculating coal resources for the Wyodak-Anderson coal zone vary slightly from the methods used in other study areas, and by other workers in the National Coal Resource Assessment. The Wyodak-Anderson coal zone includes up to 10 coal beds in any given location. The net coal thickness of the zone at each data point location was calculated by summing the thickness of all of the coal beds that were greater than 2.5 ft thick. The amount of interburden is not addressed or reported in this coal resource assessment. The amount of overburden reported is the amount of rock above the stratigraphically highest coal bed in the zone. The resource numbers reported do not include coal within mine or lease areas, in areas containing mapped Wyodak-Anderson clinker, or in areas where the coal is extrapolated to be less than 2.5 ft thick. The resources of the Wyodak-Anderson coal zone are reported in Ellis and others (1998). A general description of how the resources were calculated is included in that report. The purpose of this report is to document in more detail some of the parameters and methods used, define our spatial data, compare resources calculated using different grid options and calculation methods, and explain the application of confidence limits to the resource calculation.
NASA Astrophysics Data System (ADS)
Feng, Qing; Lu, Li
2018-01-01
In the process of coal mining, destruction and pollution of groundwater in has reached an imminent time, and groundwater is not only related to the ecological environment, but also affect the health of human life. Similarly, coal and water conflict is still one of the world's problems in large scale coal mining regions. Based on this, this paper presents a dynamic multi-objective optimization model to deal with the conflict of the coal and water in the coal group with multiple subordinate collieries and arrive at a comprehensive arrangement to achieve environmentally friendly coal mining strategy. Through calculation, this paper draws the output of each subordinate coal mine. And on this basis, we continue to adjust the environmental protection parameters to compare the coal production at different collieries at different stages under different attitude of the government. At last, the paper conclude that, in either case, it is the first arrangement to give priority to the production of low-drainage, high-yield coal mines.
NASA Astrophysics Data System (ADS)
Ctvrtnickova, T.; Mateo, M. P.; Yañez, A.; Nicolas, G.
2011-04-01
Presented work brings results of Laser-Induced Breakdown Spectroscopy (LIBS) and Thermo-Mechanical Analysis (TMA) of coals and coal blends used in coal fired power plants all over Spain. Several coal specimens, its blends and corresponding laboratory ash were analyzed by mentioned techniques and results were compared to standard laboratory methods. The indices of slagging, which predict the tendency of coal ash deposition on the boiler walls, were determined by means of standard chemical analysis, LIBS and TMA. The optimal coal suitable to be blended with the problematic national lignite coal was suggested in order to diminish the slagging problems. Used techniques were evaluated based on the precision, acquisition time, extension and quality of information they could provide. Finally, the applicability of LIBS and TMA to the successful calculation of slagging indices is discussed and their substitution of time-consuming and instrumentally difficult standard methods is considered.
Leaching behavior of rare earth elements in Fort Union lignite coals of North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laudal, Daniel A.; Benson, Steven A.; Addleman, Raymond Shane
Rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including those previously mined in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from amore » single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This paper details the results of a study on characterization of North Dakota lignite and lignite-related feedstocks as an assessment of their feasibility for rare earth element recovery. The abundance, distribution and modes of occurrence of the rare earth elements in the samples collected were determined in this initial study to inform the selection of appropriate extraction and concentration methods to recover the rare earth elements. Materials investigated include the lignite coals, clay-rich sediments associated with the coal seams, and materials associated with a lignite beneficiation system and power plant. The results show that high rare earth element levels exist both in lignite coals and associated sediments. The form of the rare earth elements in the clay materials is primarily as ultra-fine mineral grains. In the lignite coals, approximately 80-95% of the rare earths content is organically associated, primarily as coordination complexes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-14
This report consists of reference material taken from Erie Mining Company project files and includes the following: (1) Investigation of the Main Coal Producing Fields in the United States: This report identifies potential coal fiels for gasifier feedstock and factors influencing coal selection. The report analyzes coal fields located in five separate regions of the United States. Three design coals are discussed and lab reports have been included. Also included are cost considerations for selected coals and preliminary cost data and transportation routing. (2) Analysis of Test Coals Received at Erie Mining Company: Rosebud, Clarion, and Clarion-Brookfield-Kittaning coal samples weremore » received and analyzed at Erie Mining Company. The screen analysis indicated the severe decrepitation of the Rosebud western coal. (3) Criteria for Gasifier Coal: In this study, BCI states that gasifier feed should have the following characteristics: (1) the ratio between the upper and lower size for coal should be 3:1; (2) coal fines should not exceed 10%; (3) coal grading limits which can be handled are maximum range 3'' x 1'', minimum range - 1 1/2'' x 1/2''.« less
Zhi, Guorui; Zhang, Yayun; Sun, Jianzhong; Cheng, Miaomiao; Dang, Hongyan; Liu, Shijie; Yang, Junchao; Zhang, Yuzhe; Xue, Zhigang; Li, Shuyuan; Meng, Fan
2017-04-01
Burning coal for winter heating has been considered a major contributor to northern China's winter haze, with the district heating boilers holding the balance. However a decade of intensive efforts on district heating boilers brought few improvements to northern China's winter air quality, arousing a speculation that the household heating stoves mainly in rural area rather than the district heating boilers mainly in urban area dominate coal emissions in winter. This implies an extreme underestimation of rural household coal consumption by the China Energy Statistical Yearbooks (CESYs), although direct evidence supporting this speculation is lacking. A village energy survey campaign was launched to gather the firsthand information on household coal consumption in the rural areas of two cities, Baoding (in Hebei province) and Beijing (the capital of China). The survey data show that the rural raw coal consumption in Baoding (5.04 × 10 3 kt) was approximately 6.5 times the value listed in the official CESY 2013 and exceeded the rural total of whole Hebei Province (4668 kt), revealing a huge amount of raw coal missing from the current statistical system. More importantly, rural emissions of particulate matter (PM) and SO 2 from raw coal, which had never been included in widely distributing environmental statistical reports, were found higher than those from industrial and urban household sectors in the two cities in 2013, which highlights the importance of rural coal burning in creating northern China's heavy haze and helps to explain why a number of modeling predictions on ambient pollutant concentrations based on normal emission inventories were more bias-prone in winter season than in other seasons. We therefore recommend placing greater emphasis on the "missing" rural raw coal to help China in its long-term ambition to achieve clean air in the context of rapid economic development. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 302.6 - Notification requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... transportation of coal and coal ash (including fly ash, bottom ash, and boiler slags), including the dumping and... coal and coal ash, including fly ash, bottom ash, and boiler slags. (d) Except for releases of..., chromium, copper, lead, nickel, selenium, silver, thallium, or zinc is not required if the mean diameter of...
Advanced Coal-Based Power Generations
NASA Technical Reports Server (NTRS)
Robson, F. L.
1982-01-01
Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Kux, H. J. H.; Valeriano, D. D. M.
1982-01-01
The coal mining district in southeastern Santa Catarina State is considered one of the most polluted areas of Brazil. The author has identified significant preliminary results on the application of MSS-LANDSAT digital data to monitor the coal refuse areas and its environmental consequences in this region.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-26
... Environmental Assessment (EA) to consider leasing Federal coal in response to lease application ALES-55199 for.... A mine plan scenario will be prepared for the Federal coal resource as an analytical tool to inform... Prepare a Resource Management Plan Amendment and Associated Environmental Assessment for Coal Lease by...
Method of gas emission control for safe working of flat gassy coal seams
NASA Astrophysics Data System (ADS)
Vinogradov, E. A.; Yaroshenko, V. V.; Kislicyn, M. S.
2017-10-01
The main problems at intensive flat gassy coal seam longwall mining are considered. For example, mine Kotinskaja JSC “SUEK-Kuzbass” shows that when conducting the work on the gassy coal seams, methane emission control by means of ventilation, degassing and insulated drain of methane-air mixture is not effective and stable enough. It is not always possible to remove the coal production restrictions by the gas factor, which leads to financial losses because of incomplete using of longwall equipment and the reduction of the technical and economic indicators of mining. To solve the problems, the authors used a complex method that includes the compilation and analysis of the theory and practice of intensive flat gassy coal seam longwall mining. Based on the results of field and numerical researches, the effect of parameters of technological schemes on efficiency of methane emission control on longwall panels, the non-linear dependence of the permissible according to gas factor longwall productivity on parameters of technological schemes, ventilation and degassing during intensive mining flat gassy coal seams was established. The number of recommendations on the choice of the location and the size of the intermediate section of coal heading to control gassing in the mining extracted area, and guidelines for choosing the parameters of ventilation of extracted area with the help of two air supply entries and removal of isolated methane-air mixture are presented in the paper. The technological scheme, using intermediate entry for fresh air intake, ensuring effective management gassing and allowing one to refuse from drilling wells from the surface to the mined-out space for mining gas-bearing coal seams, was developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-12-01
The coal gasification plant will occupy a 43-acre site, known as the Riverside Site, located along the Delaware River next to Port Richmond between the Betsy Ross and Benjamin Franklin Bridges. The cleared site was previously used for industrial purposes and has a G-2 industrial zoning. Adverse impacts during the construction phase of the project are not expected to be significantly different than those occurring during any major industrial construction project. During operation of the coal gasification facility, specific mitigative measures have been designed into the facility to avoid adverse environmental impacts wherever possible. In addition to these extensive engineeringmore » safeguards, elaborate monitoring and control instrumentation shall be used. The GKT entrained bed, oxygen-blown gasification process provided by Krupp/Koppers was selected because it is a commercially proven system and because of its positive environmental characteristics such as its ability to gasify many coal types and the fact that it does not produce tars, phenols, or ammonia. During gasification of the coal, pollutants such as heavy metals in the coal are concentrated into the slag and ash. None of these pollutants are found in the product gas. The facility will produce 250 tpd of non-hazardous slag and fly ash. The combined slag and fly ash will occupy 347 cubic yards per day of landfill volume. Available haulers and landfills have been identified.A sophisticated health and safety program will include appropriate monitoring instruments for CO, H/sub 2/, H/sub 2/S, polynuclear aromatic hydrocarbons, organic compounds, and coal dust. Air emissions from operation of the coal gasification plant are not considered significant. Dust control systems have been designed into the facility to minimize fugitive dust emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Larson; Robert Williams; Thomas Kreutz
2012-03-11
The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, V.N.; Ackman, T.E.; Soong, Yee
The looming global energy and environmental crises underscore a pressing need for the revision of current energy policies. The dominating albeit somewhat optimistic public perception is that hundreds of years worth of coal available for power generation will offset the decline of oil and gas reserves. Although use of coal accounts for half of U.S. electricity generation and for a quarter of world energy consumption, it has been perceived until recently as unwelcomed by environmentalists and legislators. For coal power generation to be properly considered, CO2 and other greenhouse gas (GHG) generation and deposition must be addressed to assuage globalmore » climate change concerns. Capturing and sequestering CO2 emissions is one of the principal modes of carbon management. Herein we will suggest a novel process that includes capturing GHG in abundant materials, which can be facilitated by controlled sequential heating and cooling of these solids. By taking advantage of the properties of waste materials generated during coal production and the exhaust heat generated by the power plants, such an approach permits the integration of the entire CO2 cycle, from generation to deposition. Coupling coal extraction/preparation with power generation facilities would improve the economics of “zero-emission” power plants due to the proximity of all the involved facilities.« less
Energy 83. Revised and Expanded.
ERIC Educational Resources Information Center
Lord, John, Ed.
Energy 80 is an energy education program for middle/junior high school students. This document is a booklet of energy topics designed for student use in the program. Topics considered in this booklet include: forms of energy; energy rules; solar energy; food energy; fossil fuels; coal; oil and gas production and consumption; nuclear fission;…
Current experiences in applied underground coal gasification
NASA Astrophysics Data System (ADS)
Peters, Justyn
2010-05-01
The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is set to become the leading producer of cleaner liquid fuels and other associated products. UCG has now been developed to a point where the commercialisation of the process is no longer questioned, the economics of the process are compelling, and is now seen as a method that resolves energy security for countries that have access to deep coal previously thought to have no economic value.
Influence of coal particles on ignition delay times of methane-air mixture
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Tropin, D. A.
2018-03-01
The results of numerical investigation of the ignition of a stoichiometric methane-air mixture in the presence of carbon particles with diameters of 20-52 μm in the temperature range 950-1150 K and pressures of 1.5-2.0 MPa are presented. The calculated data of the ignition delay times of coal particles in the coal particles/air mixture and of the ignition delay times of methane and coal particles in the methane/coal particles /air mixture are compared with the experimental ones. A satisfactory agreement of the data on the coal particles ignition delay times and methane ignition delay times in all the mixtures considered is shown.
Coal database for Cook Inlet and North Slope, Alaska
Stricker, Gary D.; Spear, Brianne D.; Sprowl, Jennifer M.; Dietrich, John D.; McCauley, Michael I.; Kinney, Scott A.
2011-01-01
This database is a compilation of published and nonconfidential unpublished coal data from Alaska. Although coal occurs in isolated areas throughout Alaska, this study includes data only from the Cook Inlet and North Slope areas. The data include entries from and interpretations of oil and gas well logs, coal-core geophysical logs (such as density, gamma, and resistivity), seismic shot hole lithology descriptions, measured coal sections, and isolated coal outcrops.
NASA Astrophysics Data System (ADS)
Yang, Yong-bin; Zhang, Yan; Zhong, Qiang; Jiang, Tao; Li, Qian; Xu, Bin
The occurrence of different ringing behaviors in oxidized pellet kiln for two kinds of coal (A and B) with similar properties, is difficult to explain based on the relationship between kiln ringing and coal properties. In this paper, the interaction of coal ash with pellet scrap powder was considered by studying the cohering behavior of powders consisting of them. The results showed that the cohering briquette strength of pellet scrap powder increased considerably when mixed with a small amount of coal ash; a maximum could be reached when the mass percent ratio of coal ash was 1.5%; the strength of powder mixed with coal B ash was always higher in same firing system. This obviously illustrated that coal B caused a more serious ringing problem. The relevant mechanism was that the stronger reactivity of coal B ash made cohering briquette have a more perfect crystallization and a more compact structure.
Royal Society, Discussion on New Coal Chemistry, London, England, May 21, 22, 1980, Proceedings
NASA Astrophysics Data System (ADS)
1981-03-01
A discussion of new coal chemistry is presented. The chemical and physical structure of coal is examined in the first section, including structural studies of coal extracts, metal and metal complexes in coal and coal microporosity. The second section presents new advances in applied coal technology. The development of liquid fuels and chemicals from coal is given especial emphasis, with papers on the Sasol Synthol process, the Shell-Koppers gasification process, liquefaction and gasification in Germany, the Solvent Refined Coal process, the Exxon Donor Solvent liquefaction process and the Mobil Methanol-to-Gasoline process. Finally, some developments that will be part of the future of coal chemistry in the year 2000 are examined in the third section, including coal-based chemical complexes and the use of coal as an alternative source to oil for chemical feedstocks.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... hearings on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust, Including... miners' exposure to respirable coal mine dust by revising the Agency's existing standards on miners...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
... 1219-AB64 Lowering Miners' Exposure to Respirable Coal Mine Dust, Including Continuous Personal Dust... comment period on the proposed rule addressing Lowering Miners' Exposure to Respirable Coal Mine Dust...), MSHA published a proposed rule, Lowering Miners' Exposure to Respirable Coal Mine Dust, Including...
Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology.
Liu, Guijian; Niu, Zhiyuan; Van Niekerk, Daniel; Xue, Jian; Zheng, Liugen
2008-01-01
Coal may become more important as an energy source in the 21st century, and coal contains large quantities of organic and inorganic matter. When coal burns chemical and physical changes take place, and many toxic compounds are formed and emitted. Polycyclic aromatic hydrocarbons (PAHs) are among those compounds formed and are considered to pose potential health hazards because some PAHs are known carcinogens. Based on their toxicology, 16 PAHs are considered as priority pollutants by the USEPA. More attention must be given to the various methods of extraction and analysis of PAH from coal or coal products to accurately explain and determine the species of PAHs. The influences of the extraction time, solvents, and methods for PAH identification are important. In the future, more methods and influences will be studied more carefully and widely. PAHs are environmental pollutants, are highly lipid soluble, and can be absorbed by the lungs, gut, and skin of mammals because they are associated with fine particles from coal combustion. More attention is being given to PAHs because of their carcinogenic and mutagenic action. We suggest that when using a coal stove indoors, a chimney should be used; the particles and gas containing PAHs should be released outdoors to reduce the health hazard, especially in Southwest China. During coal utilization processes, such as coal combustion and pyrolysis, PAHs released may be divided into two categories according to their formation pathways: one pathway is derived from complex chemical reactions and the other is from free PAHs transferred from the original coal. The formation and emission of PAHs is a complex physical and chemical process that has received considerable attention in recent years. It is suggested that the formation mechanisms of PAHs will be an increasingly important topic for researchers to find methods for controlling emissions during coal combustion.
NASA Astrophysics Data System (ADS)
Godyń, Katarzyna
2016-09-01
As regards the exploitation of hard coal seams, the near-fault zones and faults themselves are considered to be particularly dangerous areas, which is due to a high probability of the occurrence of gasogeodynamic phenomena. Tectonic dislocations running across a seam have a destructive impact on coal. Degradation of the coal structure, particularly visible in the microscale, is reflected in the coal's strength or gas properties. Such "structurally altered" coal is characterized by the presence of numerous fracturings, crushed areas, or dislocations of some of its fragments, and sometimes even the total destruction of the original structure. The present paper provides a detailed analysis and description of near-fault coal obtained from selected seams of the Upper Silesian Coal Basin, completed due to the application of optical methods. Both the type and the degree of changes in the structure of such coal were identified. On this basis, the author attempted to systematize the nomenclature used in relation to selected Upper Silesian hard coal seams, which, in turn, resulted in a proposed classification of the "altered structures" of the near-fault coal.
Forecast of long term coal supply and mining conditions: Model documentation and results
NASA Technical Reports Server (NTRS)
1980-01-01
A coal industry model was developed to support the Jet Propulsion Laboratory in its investigation of advanced underground coal extraction systems. The model documentation includes the programming for the coal mining cost models and an accompanying users' manual, and a guide to reading model output. The methodology used in assembling the transportation, demand, and coal reserve components of the model are also described. Results presented for 1986 and 2000, include projections of coal production patterns and marginal prices, differentiated by coal sulfur content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.
Flores, Romeo M.; Stricker, Gary D.; Papasin, Ramon F.; Pendon, Ronaldo R.; del Rosario, Rogelio A.; Malapitan, Ruel T.; Pastor, Michael S.; Altomea, Elmer A.; Cuaresma, Federico; Malapitan, Armando S.; Mortos, Benjamin R.; Tilos, Elizabeth N.
2006-01-01
Introduction: The Republic of the Philippines has some 19 coal districts that contain coal deposits ranging from Eocene to Pleistocene in age. These coal districts include: (1) Catanduanes (Eocene); (2) Cebu, Zamboanga Sibuguey, Bukidnon, Maguindanao, Sarangani, and Surigao (Oligocene to Miocene); (3) Batan Island, Masbate, Semirara (including Mindoro), and Quezon-Polilio (lower-upper Miocene); (4) Davao, Negros, and Sorsogon (middle-upper Miocene); (5) Cotabato (lower Miocene-lower Pliocene), Cagayan-Isabella, and Quirino (upper Miocene-Pliocene); (6) Sultan Kudarat (upper Miocene-Pleistocene); and (7) Samar-Leyte (lower Pliocene-Pleistocene). In general, coal rank is directly related to the age of the deposits - for example, the Eocene coal is semi-anthracite and the Pliocene-Pleistocene coal is lignite. Total coal resources in these 19 coal districts, which are compiled by the Geothermal and Coal Resources Development Division (GCRDD) of the Department of Energy of the Philippines, are estimated at a minimum of 2,268.4 million metric tonnes (MMT) (approximately 2.3 billion metric tones). The largest resource (550 MMT) is the subbituminous coal in the Semirara (including Mindoro) coal district, and the smallest (0.7 MMT) is the lignite-subbituminous coal in the Quirino coal district. The combined lignite and subbituminous coal resources, using the classification by GCRDD and including Semirara and Surigao coal districts, are about 1,899.2 MMT, which make up about 84 percent of the total coal resources of the Philippines. The remaining resources are composed of bituminous and semi-anthracite coal. The subbituminous coal of Semirara Island in the Mindoro- Semirara coal district (fig. 2) is known to contain coalbed methane (CBM), with the coal being comparable in gas content and adsorption isotherms to the coal of the Paleocene Fort Union Formation in the Powder River Basin in Wyoming, USA (Flores and others, 2005). As a consequence, the presence of CBM in the Semirara coal led to the present study of determining the adsorption isotherms, or gas (CBM) holding or storage capacity, of coal beds of various ages from selected coal districts in the Philippines. Samples for the study were collected from the Batan Island, Catanduanes, Cagayan-Isabella, Cebu, Negros, Samar, Semirara, Cotabato, Surigao, and Malangas coalfield of the Zamboanga Sibuguey coal districts by five field geology teams from the GCRDD.
Kolak, Jonathan J.; Burruss, Robert A.
2005-01-01
Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.
NASA Astrophysics Data System (ADS)
Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket
2015-04-01
Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents and the feedstock quantity (i.e. coal), the pressure, the gasification and the combustion temperatures. The performance indicators included the composition and the energy content of the product gas as well as the carbon and energy efficiency achieved under each operational scenario. Different operational scenarios for every model configuration facilitated the cross-comparison among different configurations. The proximate and ultimate analysis data for the coal seams modelled were taken from a number of candidate UCG sites (Durucan et al., 2014) .The model findings were validated using the results of field trials reported in the literature. It was found that, increased gasification temperature leads to higher H2 and CO quantities in the product gas. Moreover, CH4 and CO2 concentrations increased as reaction pressure increased, while the CH4 quantity reached its highest value at the highest operational pressure, when combined with the lowest gasification temperature. The simulation models developed can be used to design and validate experimental UCG studies and offer significant advantages in terms of time and resource savings. As the UCG process consists of interrelated stages and a number of diverse phenomena, therefore, the gasification designs developed could act as the basis for an integrated UCG model tailored to the needs of a UCG pilot plant.
Combustion of Coal/Oil/Water Slurries
NASA Technical Reports Server (NTRS)
Kushida, R. O.
1982-01-01
Proposed test setup would measure combustion performance of new fuels by rapidly heating a droplet of coal/oil/water mixture and recording resulting explosion. Such mixtures are being considered as petroleum substitutes in oil-fired furnaces.
Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao
2014-01-01
Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186
Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao
2014-01-01
Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.
Ellis, Margaret S.; Gunther, Gregory L.; Flores, Romeo M.; Ochs, Allen M.; Stricker, Gary D.; Roberts, Steven B.; Taber, Thomas T.; Bader, Lisa R.; Schuenemeyer, John H.
1998-01-01
The National Coal Resource Assessment (NCRA) project by the U.S. Geological Survey is designed to assess US coal with the greatest potential for development in the next 20 to 30 years. Coal in the Wyodak-Anderson (WA) coal zone in the Powder River Basin of Wyoming and Montana is plentiful, clean, and compliant with EPA emissions standards. This coal is considered to be very desirable for development for use in electric power generation. The purpose of this NCRA study was to compile all available data relating to the Wyodak- Anderson coal, correlate the beds that make up the WA coal zone, create digital files pertaining to the study area and the WA coal, and produce a variety of reports on various aspects of the assessed coal unit. This report contains preliminary calculations of coal resources for the WA coal zone and is one of many products of the NCRA study. Coal resource calculations in this report were produced using both public and confidential data from many sources. The data was manipulated using a variety of commercially available software programs and several custom programs. A general description of the steps involved in producing the resource calculations is described in this report.
Assessment of coal geology, resources, and reserves in the Montana Powder River Basin
Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.; Luppens, James A.; Pierce, Paul E.; Gunderson, Jay A.
2013-01-01
The purpose of this report is to summarize geology, coal resources, and coal reserves in the Montana Powder River Basin assessment area in southeastern Montana. This report represents the fourth assessment area within the Powder River Basin to be evaluated in the continuing U.S. Geological Survey regional coal assessment program. There are four active coal mines in the Montana Powder River Basin assessment area: the Spring Creek and Decker Mines, both near Decker; the Rosebud Mine, near Colstrip; and the Absaloka Mine, west of Colstrip. During 2011, coal production from these four mines totaled approximately 36 million short tons. A fifth mine, the Big Sky, had significant production from 1969-2003; however, it is no longer in production and has since been reclaimed. Total coal production from all five mines in the Montana Powder River Basin assessment area from 1968 to 2011 was approximately 1.4 billion short tons. The Rosebud/Knobloch coal bed near Colstrip and the Anderson, Dietz 2, and Dietz 3 coal beds near Decker contain the largest deposits of surface minable, low-sulfur, subbituminous coal currently being mined in the assessment area. A total of 26 coal beds were identified during this assessment, 18 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Montana Powder River Basin assessment area for the 18 coal beds assessed was calculated to be 215 billion short tons. Available coal resources, which are part of the original coal resource remaining after subtracting restrictions and areas of burned coal, are about 162 billion short tons. Restrictions included railroads, Federal interstate highways, urban areas, alluvial valley floors, state parks, national forests, and mined-out areas. It was determined that 10 of the 18 coal beds had sufficient areal extent and thickness to be evaluated for recoverable surface resources ([Roland (Baker), Smith, Anderson, Dietz 2, Dietz 3, Canyon, Werner/Cook, Pawnee, Rosebud/Knobloch, and Flowers-Goodale]). These 10 coal beds total about 151 billion short tons of the 162 billion short tons of available resource; however, after applying a strip ratio of 10:1 or less, only 39 billion short tons remains of the 151 billion short tons. After mining and processing losses are subtracted from the 39 billion short tons, 35 billion short tons of coal were considered as a recoverable resource. Coal reserves (economically recoverable coal) are the portion of the recoverable coal resource that can be mined, processed, and marketed at a profit at the time of the economic evaluation. The surface coal reserve estimate for the 10 coal beds evaluated for the Montana Powder River assessment area is 13 billion short tons. It was also determined that about 42 billion short tons of underground coal resource exists in the Montana Powder River Basin assessment area; about 34 billion short tons (80 percent) are within 500-1,000 feet of the land surface and another 8 billion short tons are 1,000-2,000 feet beneath the land surface.
Assessment of coal geology, resources, and reserves in the Southwestern Powder River Basin, Wyoming
Osmonson, Lee M.; Scott, David C.; Haacke, Jon E.; Luppens, James A.; Pierce, Paul E.
2011-01-01
A total of 37 coal beds were identified during this assessment, 23 of which were modeled and evaluated to determine in-place coal resources. The total original coal resource in the Southwestern Powder River Basin assessment area for these 23 coal beds, with no restrictions applied was calculated to be 369 billion short tons. Available coal resources, which are part of the original resource that is accessible for potential mine development after subtracting all restrictions, are about 341 billion short tons (92.4 percent of the total original resource). Approximately 61 percent are at depths between 1,000 and 2,000 ft, with a modeled price of about $30 per short ton. Therefore, the majority of coal resources in the South-western Powder River Basin assessment area are considered sub-economic.
NASA Technical Reports Server (NTRS)
Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.
1976-01-01
Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.
North Branch Potomac River Basin mine drainage study. Phase I. Baseline survey. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-05-06
This baseline survey of the mine drainage and related water resources of the North Branch Potomac River Basin established the extent, magnitude, and effects of coal mine drainage pollution. Alternative abatement and reclamation solutions were considered. The study included an analysis of socioeconomic and environmental conditions as related to the mine drainage problem.
Flores, R.M.; Blanchard, L.F.; Sanchez, J.D.; Marley, W.E.; Muldoon, W.J.
1984-01-01
Considers the paleogeographic controls affecting the accumulation of coals in delta-barrier-island complexes. Progradation, lateral shifting, and abandonment of these complexes created four major landward-thinning tongues.-from Authors
NASA Astrophysics Data System (ADS)
Basarygin, Maksim
2017-11-01
In this article the subject of enhancement of operating efficiency of the central coal-preparation plant of OOO "MMK-UGOL" is encompassed. Modern trends in the development of technologies and equipment for coal beneficiation are due to the following requirements: improving competitiveness of coal products, improvement of quality of marketable products, reduction of coal production cost, environmental requirements: polluting emission abatement, prepared coal saving, improvement of the effectiveness of resource conservation; complex mechanization and beneficiation process automation. In the article the contemporary problems of raw coal benefication under current conditions of the increased dilution of withdrawable coals with rock fractions are considered. Comparative analysis of efficiency of application of modern concentrating equipment under the conditions of the CCPP of OOO "MMK-UGOL" is carried out on the basis of research works. Particular attention is paid to dehydration of produced coal concentrate with content of volatile agents of more than 35.0% and content of fine-dispersed particles in flotation concentrate of more than 50.0%. Comparative analysis of the coal concentrate dehydration technologies is conducted.
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Gabov, V. V.; Zadkov, D. A.; Le, T. B.
2018-03-01
This paper analyzes the processes of removing coal from the area of its dislodging and loading the disintegrated mass onto face conveyors by auger heads of shearer-loader machines. The loading process is assumed to consist of four subprocesses: dislodging coal, removal of the disintegrated mass by auger blades from the crushing area, passive transportation of the disintegrated mass, and forming the load flow on the bearing surface of a face conveyor. Each of the considered subprocesses is different in its physical nature, the number of factors influencing it, and can be complex or multifactor. Possibilities of improving the efficiency of loading coal onto a face conveyor are addressed. The selected criteria of loading efficiency are load rate, specific energy consumption, and coal size reduction. Efficiency is improved by reducing the resistance to movement of the disintegrated mass during loading by increasing the area of the loading window section and the volume of the loading area on the conveyor, as well as by coordination of intensity of flows related to the considered processes in local areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neufeld, R. D.; Bern, J.; Erdogan, H.
1979-11-15
Activities are underway to investigate basic phenomena that would assist demonstration and commercial sized coal conversion facilities in the environmentally acceptable disposal of process solid waste residuals. The approach taken is to consider only those residuals coming from the conversion technology itself, i.e. from gasification, liquefaction, and hot-clean-up steps as well as residuals from the wastewater treatment train. Residuals from the coal mining and coal grinding steps will not be considered in detail since those materials are being handled in some manner in the private sector. Laboratory evalations have been conducted on solid waste samples of fly ash from anmore » existing Capman gasifier. ASTM-A and EPA-EP leaching procedures have been completed on sieved size fractions of the above wastes. Data indicate that smaller size fractions pose greater contamination potential than do larger size particles with a transition zone occurring at particle sizes of about 0.05 inches in diameter. Ames testing of such residuals is reported. Similar studies are under way with samples of H-Coal solid waste residuals.« less
Effect of multiphase radiation on coal combustion in a pulverized coal jet flame
NASA Astrophysics Data System (ADS)
Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.
2017-08-01
The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO2, H2O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.
2007-08-15
In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio,more » cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.« less
NASA Astrophysics Data System (ADS)
Brylina, O. G.; Osintsev, K. V.; Prikhodko, YU S.; Savosteenko, N. V.
2018-03-01
The article considers the issues of energy technological complexes economy increase on the existing techniques of water-coal suspensions preparation and burning basis due to application of highly effective control systems of electric drives and neurocontrol. The automated control system structure for the main boiler components is given. The electric drive structure is disclosed by the example of pumps (for transfer of coal-water mash and / or suspension). A system for controlling and diagnosing a heat and power complex based on a multi-zone regulator is proposed. The possibility of using neural networks for implementing the control algorithms outlined in the article is considered.
Performance potential of the coal strip mining in the east of Russia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheskidov, V.I.
2007-07-15
The potentialities of the leading mining districts in Russia to improve coal production by strip mining are analyzed. The operational issues of the Erunakovskiy (Kuzbass), Kansko-Achinskiy and South Yakutia territorial production complexes are considered.
Development of coal-feeding systems at the Morgantown Energy Research Center
NASA Technical Reports Server (NTRS)
Hobday, J. M.
1977-01-01
Systems for feeding crushed and pulverized coal into coal conversion reactor vessels are described. Pneumatic methods for feeding pulverized coal, slurry feeders, and coal pumps, methods for steam pickup, and a method for drying a water-coal slurry in a steam fluidized bed subsequent to feeding the coal into a reactor vessel are included.
Borehole hydraulic coal mining system analysis
NASA Technical Reports Server (NTRS)
Floyd, E. L.
1977-01-01
The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.
Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en; ...
2016-08-01
In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO 2 and H 2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolutionmore » of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O 2/N 2 and O 2/CO 2 atmospheres .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaddix, Christopher R.; Niu, Yanqing; Hui, Shi'en
In this formation of nano-particles during coal char combustion, the vaporization of inorganic components in char and the subsequent homogeneous particle nucleation, heterogeneous condensation, coagulation, and coalescence play decisive roles. Furthermore, conventional measurements cannot provide detailed information on the dynamics of nano-particle formation and evolution, In this study, a sophisticated intrinsic char kinetics model that considers ash effects (including ash film formation, ash dilution, and ash vaporization acting in tandem), both oxidation and gasification by CO 2 and H 2O, homogeneous particle nucleation, heterogeneous vapor condensation, coagulation, and and coalescence mechanisms is developed and used to compare the temporal evolutionmore » of the number and size of nano-particles during coal char particle combustion as a function of char particle size, ash content, and oxygen content in O 2/N 2 and O 2/CO 2 atmospheres .« less
NASA Astrophysics Data System (ADS)
Stewart, B. W.; Capo, R. C.; Hedin, B. C.; Wallrich, I. L. R.; Hedin, R. S.
2016-12-01
Abandoned coal mine discharges are a serious threat to ground and surface waters due to their high metal content and often high acidity. However, these discharges represent a potential source of rare earth elements (REE), many of which are considered to be critical resources. Trace element data from 18 coal mine drainage (CMD) sites within the Appalachian Basin suggest CMD is enriched in total REE by 1-4 orders of magnitude relative to concentrations expected in unaffected surface or ground waters. When normalized to the North American Shale Composite (NASC), the discharges generally show a pattern of enrichment in the middle REE, including several identified as critical resources (Nd, Eu, Dy, Tb). In contrast, shale, sandstone and coal samples from Appalachian Basin coal-bearing units have concentrations and patterns similar to NASC, indicating that the REE in CMD are fractionated during interaction with rock in the mine pool. The highest total REE contents (up to 2800 mg/L) are found in low-pH discharges (acid mine drainage, or AMD). A precipitous drop in REE concentration in CMD with pH ≥6.6 suggests adsorption or precipitation of REE in the mine pool at circumneutral pH. Precipitated solids from 21 CMD active and passive treatment sites in the Appalachian Basin, including Fe oxy-hydroxides, Ca-Mg lime slurries, and Si- and Al-rich precipitates, are enriched in total REE content relative to the average CMD discharges by about four orders of magnitude. Similar REE trends in the discharges and precipitates, including MREE enrichment, suggest minimal fractionation of REE during precipitation; direct comparisons over multiple seasonal cycles are needed to confirm this. Although the data are limited, Al-rich precipitates generally have high REE concentrations, while those in iron oxy-hydroxides tend to be lower. Based on the area of mined coal in the Appalachian Basin, estimated infiltration rates, and the mean REE flux from discharges analyzed in this study and that of Cravotta and Brady (2015, Appl. Geochem. 62, 108-130), we estimate that coal mine drainage outflows in this region generate approximately 450 metric tons of dissolved REE per year, a portion of which could be targeted for resource recovery during CMD treatment.
CO2 Capture and Storage in Coal Gasification Projects
NASA Astrophysics Data System (ADS)
Rao, Anand B.; Phadke, Pranav C.
2017-07-01
In response to the global climate change problem, the world community today is in search for an effective means of carbon mitigation. India is a major developing economy and the economic growth is driven by ever-increasing consumption of energy. Coal is the only fossil fuel that is available in abundance in India and contributes to the major share of the total primary energy supply (TPES) in the country. Owing to the large unmet demand for affordable energy, primarily driven by the need for infrastructure development and increasing incomes and aspirations of people, as well as the energy security concerns, India is expected to have continued dependence on coal. Coal is not only the backbone of the electric power generation, but many major industries like cement, iron and steel, bricks, fertilizers also consume large quantities of coal. India has very low carbon emissions (˜ 1.5 tCO2 per capita) as compared to the world average (4.7 tCO2 per capita) and the developed world (11.2 tCO2 per capita). Although the aggregate emissions of the country are increasing with the rising population and fossil energy use, India has a very little contribution to the historical GHG accumulation in the atmosphere linked to the climate change problem. However, a large fraction of the Indian society is vulnerable to the impacts of climate change - due to its geographical location, large dependence on monsoon-based agriculture and limited technical, financial and institutional capacity. Today, India holds a large potential to offer cost-effective carbon mitigation to tackle the climate change problem. Carbon Capture and Storage (CCS) is the process of extraction of Carbon Dioxide (CO2) from industrial and energy related sources, transport to storage locations and long-term isolation from the atmosphere. It is a technology that has been developed in recent times and is considered as a bridging technology as we move towards carbon-neutral energy sources in response to the growing concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.
JEDI Coal Model | Jobs and Economic Development Impact Models | NREL
Coal Model JEDI Coal Model The Jobs and Economic Development Impacts (JEDI) Coal Model allow users to estimate economic development impacts from coal projects and includes default information that can
NASA Astrophysics Data System (ADS)
Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat
2017-04-01
Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters. Permeability was measured by air permeameter. Results confirmed that there is a correspondence between the high permeability and the low magnetic susceptibility values of production zones. Importantly also were found relation of the coal envelope type between only shales coal framing or only sandstone coal framing that most likely led to different stress profiles. In addition, we briefly describe potential of other types of unconventional resources in Kazakhstan, such as shale oil, tight gas and shale gas, where this integrated approach could be useful to apply in the future.
ERIC Educational Resources Information Center
Bryant, Reba; And Others
This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…
NASA Astrophysics Data System (ADS)
East, J. A., II
2016-12-01
The U.S. Geological Survey's (USGS) Eastern Energy Resources Science Center (EERSC) has an ongoing project which has mapped coal chemistry and stratigraphy since 1977. Over the years, the USGS has collected various forms of coal data and archived that data into the National Coal Resources Data System (NCRDS) database. NCRDS is a repository that houses data from the major coal basins in the United States and includes information on location, seam thickness, coal rank, geologic age, geographic region, geologic province, coalfield, and characteristics of the coal or lithology for that data point. These data points can be linked to the US Coal Quality Database (COALQUAL) to include ultimate, proximate, major, minor and trace-element data. Although coal is an inexpensive energy provider, the United States has shifted away from coal usage recently and branched out into other forms of non-renewable and renewable energy because of environmental concerns. NCRDS's primary method of data capture has been USGS field work coupled with cooperative agreements with state geological agencies and universities doing coal-related research. These agreements are on competitive five-year cycles that have evolved into larger scope research efforts including solid fuel resources such as coal-bed methane, shale gas and oil. Recently these efforts have expanded to include environmental impacts of the use of fossil fuels, which has allowed the USGS to enter into agreements with states for the Geologic CO2 Storage Resources Assessment as required by the Energy Independence and Security Act. In 2016 they expanded into research areas to include geothermal, conventional and unconventional oil and gas. The NCRDS and COALQUAL databases are now online for the public to use, and are in the process of being updated to include new data for other energy resources. Along with this expansion of scope, the database name will change to the National Energy Resources Data System (NERDS) in FY 2017.
Hubbert's Peak, The Coal Question, and Climate Change
NASA Astrophysics Data System (ADS)
Rutledge, D.
2008-12-01
The United Nations Intergovernmental Panel on Climate Change (IPCC) makes projections in terms of scenarios that include estimates of oil, gas, and coal production. These scenarios are defined in the Special Report on Emissions Scenarios or SRES (Nakicenovic et al., 2000). It is striking how different these scenarios are. For example, total oil production from 2005 to 2100 in the scenarios varies by 5:1 (Appendix SRES Version 1.1). Because production in some of the scenarios has not peaked by 2100, this ratio would be comparable to 10:1 if the years after 2100 were considered. The IPCC says "... the resultant 40 SRES scenarios together encompass the current range of uncertainties of future GHG [greenhouse gas] emissions arising from different characteristics of these models ..." (Nakicenovic et al., 2000, Summary for Policy Makers). This uncertainty is important for climate modeling, because it is larger than the likely range for the temperature sensitivity, which the IPCC gives as 2.3:1 (Gerard Meehl et al., 2007, the Fourth Assessment Report, Chapter 10, Global Climate Projections, p. 799). The uncertainty indicates that we could improve climate modeling if we could make a better estimate of future oil, gas, and coal production. We start by considering the two major fossil-fuel regions with substantial exhaustion, US oil and British coal. It turns out that simple normal and logistic curve fits to the cumulative production for these regions give quite stable projections for the ultimate production. By ultimate production, we mean total production, past and future. For US oil, the range for the fits for the ultimate is 1.15:1 (225- 258 billion barrels) for the period starting in 1956, when King Hubbert made his prediction of the peak year of US oil production. For UK coal, the range is 1.26:1 for the period starting in 1905, at the time of a Royal Commission on coal supplies. We extend this approach to find fits for world oil and gas production, and by a regional analysis, for world coal production. For world oil and gas production, the fit for the ultimate is 640Gtoe (billion metric tons of oil equivalent). This is somewhat larger than the sum of cumulative production and reserves, 580Gtoe. Because future discoveries are not included in the reserves, it is to be expected that our fit would be larger. On the other hand, there have been large increases in OPEC reserves that have not been subject to outside audit, so it is not clear how close the two numbers should be. For world coal, the sum of the fits for regional ultimate production is 660Gt (billion metric tons). This is considerably less than the sum of cumulative production and reserves, 1,100Gt, but it is consistent with the British experience, where until recently, reserves were a large multiple of future production. The projection is that we will have consumed half of the ultimate world oil, gas, and coal production by 2019. This means that the current intense development of alternative sources of energy can be justified independently of climate considerations. When these projections are converted to carbon equivalents, the projected future emissions from burning oil, gas, and coal from 2005 on are 520GtC. The projected emissions for the 2005-2100 period are smaller than for any of the 40 SRES scenarios. This suggests that future scenarios should take exhaustion into account. These projections, if correct, are good news for climate change.
Direct firing of coal for power production
NASA Technical Reports Server (NTRS)
Papay, L. T.
1978-01-01
The use of new technology and advanced emission control hardware to reduce emissions from the direct combustion of coal to produce electricity in California is considered. The technical feasibilty of a demonstration project on an existing 81-MW boiler is demonstrated.
Geomorphology of coal seam fires
NASA Astrophysics Data System (ADS)
Kuenzer, Claudia; Stracher, Glenn B.
2012-02-01
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.
Assessment of mercury health risks to adults from coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipfert, F.W.; Moskowitz, P.D.; Fthenakis, V.M.
1994-05-01
The U.S. Environmental Protection Agency (EPA) is preparing, for the U.S. Congress, a report evaluating the need to regulate mercury (Hg) emissions from electric utilities. This study, to be completed in 1995, will have important health and economic implications. In support of these efforts, the U.S. Department of Energy, Office of Fossil Energy, sponsored a risk assessment project at Brookhaven National Laboratory (BNL) to evaluate methylmercury (MeHg) hazards independently. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1000 MW{sub e} coal-fired power plant were estimated using probabilistic risk assessment techniques. The approach drawsmore » on the extant knowledge in each of the important steps in the calculation chain from emissions to health effects. Estimated results at key points in the chain were compared with actual measurements to help validate the modeled estimates. Two cases were considered: the baseline case (no local impacts), and the impact case (maximum local power-plant impact). The BNL study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Many implicit and explicit sources of uncertainty exist in this analysis. Those that appear to be most in need of improvement include data on doses and responses for potentially sensitive subpopulations (e.g., fetal exposures). Rather than considering hypothetical situations, it would also be preferable to assess the risks associated with actual coal-fired power plants and the nearby sensitive water bodies and susceptible subpopulations. Finally, annual total Hg emissions from coal burning and from other anthropogenic sources are still uncertain; this makes it difficult to estimate the effects of U.S. coal burning on global Hg concentration levels, especially over the long term.« less
How much water is required for coal power generation: An analysis of gray and blue water footprints.
Ma, Xiaotian; Yang, Donglu; Shen, Xiaoxu; Zhai, Yijie; Zhang, Ruirui; Hong, Jinglan
2018-04-28
Although water resource shortage is closely connected with coal-based electricity generation, relevant water footprint analyses remain limited. This study aims to address this limitation by conducting a water footprint analysis of coal-based electricity generation in China for the first time to inform decision-makers about how freshwater consumption and wastewater discharge can be reduced. In China, 1 kWh of electricity supply obtained 1.78 × 10 -3 m 3 of gray water footprint in 2015, and the value is 1.3 times the blue water footprint score of 1.35 × 10 -3 m 3 /kWh. Although water footprint of 1 kWh of electricity supply decreased, the national total gray water footprint increased significantly from 2006 to 2015 with increase in power generating capacity. An opposite trend was observed for blue water footprint. Indirect processes dominated the influence of gray water footprint, whereas direct freshwater consumption contributed 63.6% to blue water footprint. Ameliorating key processes, including transportation, direct freshwater consumption, direct air emissions, and coal washing could thus bring substantial environmental benefits. Moreover, phosphorus, mercury, hexavalent chromium, arsenic, COD, and BOD 5 were key substances of gray water footprint. Results indicated that the combination of railway and water transportation should be prioritized. The targeted transition toward high coal washing rate and pithead power plant development provides a possibility to relieve environmental burdens, but constraints on water resources in coal production sites have to be considered. Copyright © 2018 Elsevier B.V. All rights reserved.
Kolak, J.J.; Burruss, R.C.
2006-01-01
Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.
Organic coal-water fuel: Problems and advances (Review)
NASA Astrophysics Data System (ADS)
Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.
2016-10-01
The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas concentration could help in providing the lacking experimental information.
Final safety assessment of Coal Tar as used in cosmetics.
2008-01-01
Coal Tar is a semisolid by-product obtained in the destructive distillation of bituminous coal, which functions in cosmetic products as a cosmetic biocide and denaturant--antidandruff agent is also listed as a function, but this is considered an over-the-counter (OTC) drug use. Coal Tar is a nearly black, viscous liquid, heavier than water, with a naphthalene-like odor and a sharp burning taste, produced in cooking ovens as a by-product in the manufacture of coke. Crude Coal Tar is composed of 48% hydrocarbons, 42% carbon, and 10% water. In 2002, Coal Tar was reported to the Food and Drug Administration (FDA) to be used in four formulations, all of which appear to be OTC drug products. Coal Tar is monographed by the FDA as Category I (safe and effective) OTC drug ingredient for use in the treatment of dandruff, seborrhoea, and psoriasis. Coal Tar is absorbed through the skin of animals and humans and is systemically distributed. In short-term studies, mice fed a diet containing Coal Tar found it unpalatable, but no adverse effects were reported other than weight loss; rats injected with Coal Tar experienced malaise in one study and decreased water intake and increased liver weights in another; rabbits injected with Coal Tar residue experienced eating avoidance, respiratory difficulty, sneezing, and weight loss. In a subchronic neurotoxicity study using mice, a mixture of phenols, cresols, and xylenols at concentrations approximately equal to those expected in Coal Tar extracts produced regionally selective effects, with a rank order of corpus striatum > cerebellum > cerebral cortex. Coal Tar applied to the backs of guinea pigs increases epidermal thickness. Painting female rabbits with tar decreases the absolute and relative weights of the ovaries and decreased the number of interstitial cells in the ovary. Four therapeutic Coal Tar preparations used in the treatment of psoriasis were mutagenic in the Ames assay. Urine and blood from patients treated with Coal Tar were genotoxic in bacterial assays. Coal Tar was genotoxic in a mammalian genotoxicity assay and induced DNA adducts in various tissue types. Chronic exposure of mice to Coal Tar significantly decreased survival and liver neoplasms were seen in a significant dose-related trend; in other studies using mice lung tumors and perianal skin cancers were found. Coal Tar was comedogenic in three small clinical studies. Folliculitis is associated with the prolonged use of some tars. Several published reports describe cases of contact sensitivity to Coal Tar. Polycyclic aromatic hydrocarbons, which make up Coal Tar, are photosensitizers and cause phototoxicity by an oxygen-dependent mechanism. A retrospective study of the reproductive toxicity of Coal Tar in humans compared exposed women to controls and found little difference in spontaneous abortion and congenital disorders. Cancer epidemiology studies of patients who have received Coal Tar therapy of one form or other have failed to link treatment with an increase in the risk of cancer. Although the Cosmetic Ingredient Review (CIR) Expert Panel believes that Coal Tar use as an antidandruff ingredient in OTC drug preparations is adequately addressed by the FDA regulations, the Panel also believes that the appropriate concentration of use of Coal Tar in cosmetic formulations should be that level that does not have a biological effect in the user. Additional data needed to make a safety assessment include product types in which Coal Tar is used (other than as an OTC drug ingredient), use concentrations, and the maximum concentration that does not induce a biological effect in users.
Thermal surface characteristics of coal fires 1 results of in-situ measurements
NASA Astrophysics Data System (ADS)
Zhang, Jianzhong; Kuenzer, Claudia
2007-12-01
Natural underground coal fires are fires in coal seams occurring subsurface. The fires are ignited through a process named spontaneous combustion, which occurs based on a natural reaction but is usually triggered through human interaction. Coal mining activities expose coal to the air. This leads to the exothermal oxidation of the carbon in the coal with the air's oxygen to CO 2 and - under certain circumstances - to spontaneous combustion. Coal fires occur in many countries world wide - however, currently the Chinese coal mining industry faces the biggest problems with coal fires. Coal fires destroy the valuable resource coal and furthermore lead to many environmental degradation phenomena such as the deterioration of surrounding vegetation, land subsidence and the emission of toxic gasses (CO, N 2O). They additionally contribute to the emission of green house relevant gasses such as CO 2 and CH 4 to the atmosphere. In this paper we present thermal characteristics of coal fires as measured in-situ during a field campaign to the Wuda coal fire area in south-central Inner Mongolia, China. Thermal characteristics include temperature anomaly measurements at the surface, spatial surface temperature profiles of fire areas and unaffected background areas, diurnal temperature profiles, and temperature measurements inside of coal fire induced cracks in the overlying bedrock. For all the measurements the effects of uneven solar heating through influences of slope and aspect are considered. Our findings show that coal fires result in strong or subtle thermal surface anomalies. Especially the latter can easily be influenced by heating of the surrounding background material through solar influences. Temperature variation of background rocks with different albedo, slope, aspect or vegetation cover can substantially influence the detectability of thermal anomalies. In the worst case coal fire related thermal anomalies can be completely masked by solar patterns during the daytime. Thus, night-time analysis is the most suitable for thermal anomaly mapping of underground coal fires, although this is not always feasible. The heat of underground coal fires only progresses very slowly through conduction in the rock material. Anomalies of coal fires completely covered by solid unfractured bedrock are very weak and were only measured during the night. The thermal pattern of underground coal fires manifested on the surface during the daytime is thus the pattern of cracks and vents, which occur due to the volume loss underground and which support radiation and convective energy transport of hot gasses. Inside coal fire temperatures can hardly be measured and can only be recorded if the glowing coal is exposed through a wider crack in the overlaying bedrock. Direct coal fire temperatures measured ranged between 233 °C and 854 °C. The results presented can substantially support the planning of thermal mapping campaigns, analyses of coal fire thermal anomalies in remotely sensed data, and can provide initial and boundary conditions for coal fire related numerical modeling. In a second paper named "Thermal Characteristics of Coal Fires 2: results of measurements on simulated coal fires" [ Zhang J., Kuenzer C., Tetzlaff A., Oettl D., Zhukov B., Wagner W., 2007. Thermal Characteristics of Coal Fires 2: Result of measurements on simulated coal fires. Accepted for publication at Journal of Applied Geophysics. doi:10.1016/j.jappgeo.2007.08.003] we report about thermal characteristics of simulated coal fires simulated under simplified conditions. The simulated set up allowed us to measure even more parameters under undisturbed conditions — especially inside fire temperatures. Furthermore we could demonstrate the differences between open surface coal fires and covered underground coal fires. Thermal signals of coal fires in near range thermal remotely sensed imagery from an observing tower and from an airplane are presented and discussed.
Progress on coal-derived fuels for aviation systems
NASA Technical Reports Server (NTRS)
Witcofski, R. D.
1978-01-01
The results of engineering studies of coal-derived aviation fuels and their potential application to the air transportation system are presented. Synthetic aviation kerosene (SYN. JET-A), liquid methane (LCH4) and liquid hydrogen (LH2) appear to be the most promising coal-derived fuels. Aircraft configurations fueled with LH2, their fuel systems, and their ground requirements at the airport are identified. Energy efficiency, transportation hazards, and costs are among the factors considered. It is indicated that LCH4 is the most energy efficient to produce, and provides the most efficient utilization of coal resources and the least expensive ticket as well.
Size distribution of rare earth elements in coal ash
Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.
2015-01-01
Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported.
Effect of cavitation on the properties of coal-tar pitch as studied by gas-liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
M.I. Baikenov; T.B. Omarbekov; S.K. Amerkhanova
2008-02-15
The applicability of the cavitation-wave effect to coal-tar pitch processing is considered. The results of the GLC analysis of the test material before and after rotor-pulsation cavitation treatment are given. The organic matter of coal-tar pitch was found to degrade upon cavitation; as a result of this, the yields of light and medium fractions considerably increased. 5 refs., 2 figs., 4 tabs.
Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof
2016-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG reactors. Fault reactivation resulting from fault shear and normal displacements is discussed under consideration of potentially induced seismicity. Here, the coupled simulation results indicate that seismic hazard during UCG operation remains negligible with a seismic moment magnitude of MW < 3.
Hettinger, Robert D.; Roberts, L.N.R.; Biewick, L.R.H.; Kirschbaum, M.A.
1996-01-01
EXECUTIVE SUMMARY This report on the coal resources of the Kaiparowits Plateau, Utah is a contribution to the U.S. Geological Survey's (USGS) 'National Coal Resource Assessment' (NCRA), a five year effort to identify and characterize the coal beds and coal zones that could potentially provide the fuel for the Nation's coal-derived energy during the first quarter of the twenty-first century. For purposes of the NCRA study, the Nation is divided into regions. Teams of geoscientists, knowledgeable about each region, are developing the data bases and assessing the coal within each region. The five major coal-producing regions of the United States under investigation are: (1) the Appalachian Basin; (2) the Illinois Basin; (3) the Gulf of Mexico Coastal Plain; (4) the Powder River Basin and the Northern Great Plains; and (5) the Rocky Mountains and the Colorado Plateau. Six areas containing coal deposits in the Rocky Mountain and Colorado Plateau Region have been designated as high priority because of their potential for development. This report on the coal resources of the Kaiparowits Plateau is the first of the six to be completed. The coal quantities reported in this study are entirely 'resources' and represent, as accurately as the data allow, all the coal in the ground in beds greater than one foot thick. These resources are qualified and subdivided by thickness of coal beds, depth to the coal, distance from known data points, and inclination (dip) of the beds. The USGS has not attempted to estimate coal 'reserves' for this region. Reserves are that subset of the resource that could be economically produced at the present time. The coal resources are differentiated into 'identified' and 'hypothetical' following the standard classification system of the USGS (Wood and others, 1983). Identified resources are those within three miles of a measured thickness value, and hypothetical resources are further than three miles from a data point. Coal beds in the Kaiparowits Plateau are laterally discontinuous relative to many other coal bearing regions of the United States. That is, they end more abruptly and are more likely to fragment or split into thinner beds. Because of these characteristics, the data from approximately 160 drill holes and 40 measured sections available for use in this study are not sufficient to determine what proportion of the resources is technologically and economically recoverable. The Kaiparowits Plateau contains an original resource of 62 billion short tons of coal in the ground. Original resource is defined to include all coal beds greater than one foot thick in the area studied. None of the resource is recoverable by surface mining. However, the total resource figure must be regarded with caution because it does not reflect geologic, technological, land-use, and environmental restrictions that may affect the availability and the recoverability of the coal. At least 32 billion tons of coal are unlikely to be mined in the foreseeable future because the coal beds are either too deep, too thin to mine, inclined at more than 12?, or in beds that are too thick to be completely recovered in underground mining. The estimated balance of 30 billion tons of coal resources does not reflect land use or environmental restrictions, does not account for coal that would be bypassed due to mining of adjacent coal beds, does not consider the amount of coal that must remain in the ground for roof support, and does not take into consideration the continuity of beds for mining. Although all of these factors will reduce the amount of coal that could be recovered, there is not sufficient data available to estimate recoverable coal resources. For purposes of comparison, studies of coal resources in the eastern United States have determined that less than 10 percent of the original coal resource, in the areas studied, could be mined economically at today's prices (Rohrbacher and others, 1994).
Huang, Zaixing; Sednek, Christine; Urynowicz, Michael A; Guo, Hongguang; Wang, Qiurong; Fallgren, Paul; Jin, Song; Jin, Yan; Igwe, Uche; Li, Shengpin
2017-09-18
Isotopic studies have shown that many of the world's coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming.Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.
Huang, Weiqing; Fan, Hongbo; Qiu, Yongfu; Cheng, Zhiyu; Qian, Yu
2016-02-15
Haze weather has become a serious environmental pollution problem which occurs in many Chinese cities. One of the most critical factors for the formation of haze weather is the exhausts of coal combustion, thus it is meaningful to figure out the causation mechanism between urban haze and the exhausts of coal combustion. Based on above considerations, the fault tree analysis (FAT) approach was employed for the causation mechanism of urban haze in Beijing by considering the risk events related with the exhausts of coal combustion for the first time. Using this approach, firstly the fault tree of the urban haze causation system connecting with coal combustion exhausts was established; consequently the risk events were discussed and identified; then, the minimal cut sets were successfully determined using Boolean algebra; finally, the structure, probability and critical importance degree analysis of the risk events were completed for the qualitative and quantitative assessment. The study results proved that the FTA was an effective and simple tool for the causation mechanism analysis and risk management of urban haze in China. Copyright © 2015 Elsevier B.V. All rights reserved.
30 CFR 736.22 - Contents of a Federal program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 736.22 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE..., the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological... of coal exploration and surface coal mining and reclamation operations more stringent than those...
Distribution of a suite of elements including arsenic and mercury in Alabama coal
Goldhaber, Martin B.; Bigelow, R.C.; Hatch, J.R.; Pashin, J.C.
2000-01-01
Arsenic and other elements are unusually abundant in Alabama coal. This conclusion is based on chemical analyses of coal in the U.S. Geological Survey's National Coal Resources Data System (NCRDS; Bragg and others, 1994). According to NCRDS data, the average concentration of arsenic in Alabama coal (72 ppm) is three times higher than is the average for all U.S. coal (24 ppm). Of the U.S. coal analyses for arsenic that are at least 3 standard deviations above the mean, approximately 90% are from the coal fields of Alabama. Figure 1 contrasts the abundance of arsenic in coal of the Warrior field of Alabama (histogram C) with that of coal of the Powder River Basin, Wyoming (histogram A), and the Eastern Interior Province including the Illinois Basin and nearby areas (histogram B). The Warrior field is by far the largest in Alabama. On the histogram, the large 'tail' of very high values (> 200 ppm) in the Warrior coal contrasts with the other two regions that have very few analyses greater than 200 ppm.
Coal burning issues. [Book - monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, A.E.S.
1980-01-01
The results of the scoping phase of an interdisciplinary assessment of the impact of the increased use of coal are reported in this monograph. Subject areas include: coal availability and coal mining; an energetics analysis of coal quality; coal transportation; coal burning technology; synthetic fuels from coal; technological innovations; water resources; atmospheric pollution; air pollution dispersion modeling; atmospheric modifications; solid waste and trace element impacts; agriculture; health effects of air pollution resulting from coal combustion; quantitative public policy assessments; financing capacity growth and coal conversions in the electric utility industry; coal and the states - a public choice perspective; andmore » federal regulatory and legal aspects.« less
Pelletizing/reslurrying as a means of distributing and firing clean coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkle, H.N.; Raghavan, J.K.; Smit, F.J.
1991-11-21
The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less
Fast and safe gas detection from underground coal fire by drone fly over.
Dunnington, Lucila; Nakagawa, Masami
2017-10-01
Underground coal fires start naturally or as a result of human activities. Besides burning away the important non-renewable energy resource and causing financial losses, burning coal seams emit carbon dioxide, carbon monoxide, sulfur oxide and methane, and is a leading cause of smog, acid rain, global warming, and air toxins. In the U.S. alone, the combined cost of coal-fire remediation projects that have been completed, budgeted, or projected by the U.S. Department of the Interior's Office of Surface Mining Remediation and Enforcement (OSM), exceeds $1 billion. It is estimated that these fires generate as much as 3% of the world's annual carbon dioxide emissions and consume as much as 5% of its minable coal. Considering the magnitude of environmental impact and economic loss caused by burning underground coal seams, we have developed a new, safe, reliable surface measurement of coal fire gases to assess the nature of underground coal fires. We use a drone mounted with gas sensors. Drone collected gas concentration data provides a safe alternative for evaluating the rank of a burning coal seam. In this study, a new method of determining coal rank by gas ratios is developed. Coal rank is valuable for defining parameters of a coal seam such as burn temperature, burn rate, and volume of burning seam. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coal-bed methane potential in Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campen, E.
1991-06-01
Montana's coal resources are the second largest of the US, with coal underlying approximately 35% of the state. These resources are estimated at 478 billion tons. Associated coal-bed methane resources are estimated to be 14 tcf. The coals of Montana range from Jurassic to early Tertiary in age and from lignite to low-volatile bituminous in rank. Thickness, rank, maceral composition, and proximate and ultimate analyses all vary vertically and laterally. The state contains eight major coal resource areas. A large percentage of Montana's coal consists of the Paleocene Fort Union lignites of eastern Montana, generally considered of too low amore » rank to contain significant methane resources. Most of the state's other coal deposits are higher in rank and contain many recorded methane shows. During Cretaceous and Tertiary times, regressive-transgressive cycles resulted in numerous coal-bearing sequences. Major marine regressions allowed the formation of large peat swamps followed by transgressions which covered the swamps with impervious marine shales, preventing the already forming methane from escaping. About 75% of Montana's coal is less than 1,000 ft below the ground's surface, making it ideal for methane production. Associated water appears to be fresh, eliminating environmental problems. Pipelines are near to most of the major coal deposits. Exploration for coal-bed methane in Montana is still in its infancy but at this time shows commercial promise.« less
Evaluation of ERDA-sponsored coal feed system development
NASA Technical Reports Server (NTRS)
Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.
1977-01-01
Coal feeders were evaluated based upon criteria such as technical feasibility, performance (i.e. ability to meet process requirements), projected life cycle costs, and projected development cost. An initial set of feeders was selected based on the feeders' cost savings potential compared with baseline lockhopper systems. Additional feeders were considered for selection based on: (1) increasing the probability of successful feeder development; (2) application to specific processes; and (3) technical merit. A coal feeder development program is outlined.
NASA Astrophysics Data System (ADS)
de Azevedo, S. C.; Reyes, C.; Singh, R. P.
2016-12-01
Coal fired power plants are the sources of atmospheric pollution and poor air quality in many parts of the world especially in India and China. The greenhouse emissions from the coal fired power plants are considered as threat to the climate and human health. About 572 coal fired power plants (up to 2012) are operational, especially in the mid and eastern parts of US. We have analyzed satellite measured carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2), ozone (O3) and meteorological parameters for the period 2003-2015. In this study, we have considered 30 power plants, covering 10 x10surrounding area and over 11 regions of US in a grid of about 50 x50 to 60 x60. In general, most of the coal fired power plants show a decreasing trend of CO, whereas NO2 follow a similar trend over the power plants located in the eastern parts. Our analysis shows that the clean air act is strictly followed by the coal fired power plants in the eastern US compared to power plants located in the mid and western parts. The CH4 concentrations over the eastern parts show higher concentrations compared to mid and western regions in the period 2003-2015. Higher concentrations and seasonal variability of greenhouse gases is dependent on the prevailing meteorological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetincelik, M.
1979-09-01
The known occurrences of hard (bituminous) coal in Turkey are very limited. Total resources are estimated to be 1,500,000,000 metric tons of which 205,000,000 tons are considered to be technically and economically recoverable at the present time. Tertiary lignite deposits are found extensively throughout Turkey. Total resources of lignite are estimated to be about 5,140,000,000 metric tons of which 2,740,000,000 tons are considered to be recoverable. In 1978, Turkey completely nationalized its coal industry whereby the government was authorized to take over all private mines. As a result of this, a major increase in coal production is expected based onmore » a new energy policy. Turkish Coal Enterprises (TKI), a state-owned organization, is now in control of the entire coal industry. TKI was established by law in 1957 and has its headquarters in Ankara. The gradually changing structure of Turkey's national economy from agriculture to increased industrialization has been accompanied by a rise in energy requirements. However, the lack of recent industrial expansion and the decline in the national economy has been due to the shortage of energy. A new energy plan developed for the country has established that, in the future, lignite will be used in far greater proportions for electricity generation (burned in captive plants). The nationalization of Turkey's lignite mines is expected to ensure a coordinated and effective means of meeting the demand.« less
Fossil Energy organization restructured
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Department of Energy has restructured its fossil energy organization to accommodate increases in activity and visibility of the President's $2.5 billion clean coal technology initiative. The realignment also includes changes in the coal research and development program and in supporting staff functions. In the coal program, changes in the organization include the establishment of two associate deputy assistant secretaries, both reporting to the deputy Assistant Secretary for Coal Technology. One associate deputy assistant secretary will oversee the Clean Coal Technology Program. A second associate deputy assistant secretary will manage the coal research and development program. An organizational chart illustratesmore » the new fossil energy headquarters organization.« less
A Course in Fundamentals of Coal Utilization and Conversion Processes.
ERIC Educational Resources Information Center
Radovic, Ljubisa R.
1985-01-01
Describes the content, objectives, and requirements for a one-semester (30 20-hour sessions) graduate engineering course at the University of Concepcion, Chile. Major course topics include: structure and properties of coal; coal pyrolysis and carbonization; coal liquefaction; coal combustion and gasification; and economic and environmental…
Full cost accounting for the life cycle of coal.
Epstein, Paul R; Buonocore, Jonathan J; Eckerle, Kevin; Hendryx, Michael; Stout Iii, Benjamin M; Heinberg, Richard; Clapp, Richard W; May, Beverly; Reinhart, Nancy L; Ahern, Melissa M; Doshi, Samir K; Glustrom, Leslie
2011-02-01
Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world. © 2011 New York Academy of Sciences.
Skin cancer in patients with psoriasis treated with coal tar. A 25-year follow-up study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittelkow, M.R.; Perry, H.O.; Muller, S.A.
1981-08-01
For many years, crude coal tar has been used for the treatment of psoriasis. The possible carcinogenic effect of crude coal tar and ultraviolet (UV) radiation (Goeckerman regimen), considered individually or in combination, has been of some concern to physicians. A 25-year follow-up study was completed on 280 patients with psoriasis who were hospitalized and treated with crude coal tar and UV radiation at the Mayo Clinic, Rochester, Minn, during the years 1950 through 1954. The results of this study suggest that the incidence of skin cancer is not appreciably increased above the expected incidence for the general population whenmore » patients are treated with coal tar ointments. It seems that the Goeckerman regimen (topical crude coal tar combined with UV radiation) can be used with minimal risk for skin cancer in the treatment of psoriasis.« less
Early opportunities of CO₂ geological storage deployment in coal chemical industry in China
Wei, Ning; Li, Xiaochun; Liu, Shengnan; ...
2014-12-31
Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugur Cevik; Nevzat Damla; Bahadir Koz
A radiological characterization of soil samples around the Afsin-Elbistan coal-fired thermal power plant in the Mediterranean region of Turkey was carried out. Moreover, activity concentrations and chemical analyses of coal samples used in this power plant and fly ash and slag samples originating from coal combustion were measured. For this purpose, coal, fly ash, slag, and soil samples were collected from this region. The analysis shows that the samples include relevant natural radionuclides such as {sup 226}Ra, {sup 232}Th and {sup 40}K. The mean activity concentrations of {sup 226}Ra, {sup 232}Th, and {sup 40}K were 167, 44, and 404 Bq.kg{supmore » -1}, respectively. Obtained values shows that the average radium equivalent activity, air-absorbed dose rate, annual effective dose, and external hazard index for all samples are 258 Bq.kg{sup -1}, 121 nGy.h{sup -1}, 148 {mu}Sv.y{sup -1}, and 0.7, respectively. The environmental effect of natural radionuclides caused by coal-fired power plants was considered to be negligible because the Ra{sub eq} values of the measured samples are generally lower than the limit value of 370 Bq.kg{sup -1}, equivalent to a gamma dose of 1.5 mSv.y{sup -1}. A comparison of the concentrations obtained in this work with other parts of the world indicates that the radioactivity content of the samples is not significantly different. 20 refs., 1 fig., 5 tabs.« less
Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective
NASA Astrophysics Data System (ADS)
Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha
2017-07-01
Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.
A burner for plasma-coal starting of a boiler
NASA Astrophysics Data System (ADS)
Peregudov, V. S.
2008-04-01
Advanced schemes of a plasma-coal burner with single-and two-stage chambers for thermochemical preparation of fuel are described. The factors causing it becoming contaminated with slag during oil-free starting of a boiler are considered, and methods for preventing this phenomenon are pointed out.
Solid Waste from the Operation and Decommissioning of Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss
This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.
The Concept of Resource Use Efficiency as a Theoretical Basis for Promising Coal Mining Technologies
NASA Astrophysics Data System (ADS)
Mikhalchenko, Vadim
2017-11-01
The article is devoted to solving one of the most relevant problems of the coal mining industry - its high resource use efficiency, which results in high environmental and economic costs of operating enterprises. It is shown that it is the high resource use efficiency of traditional, historically developed coal production systems that generates a conflict between indicators of economic efficiency and indicators of resistance to uncertainty and variability of market environment parameters. The traditional technological paradigm of exploitation of coal deposits also predetermines high, technology-driven, economic risks. The solution is shown and a real example of the problem solution is considered.
Coal resources available for development; a methodology and pilot study
Eggleston, Jane R.; Carter, M. Devereux; Cobb, James C.
1990-01-01
Coal accounts for a major portion of our Nation's energy supply in projections for the future. A demonstrated reserve base of more than 475 billion short tons, as the Department of Energy currently estimates, indicates that, on the basis of today's rate of consumption, the United States has enough coal to meet projected energy needs for almost 200 years. However, the traditional procedures used for estimating the demonstrated reserve base do not account for many environmental and technological restrictions placed on coal mining. A new methodology has been developed to determine the quantity of coal that might actually be available for mining under current and foreseeable conditions. This methodology is unique in its approach, because it applies restrictions to the coal resource before it is mined. Previous methodologies incorporated restrictions into the recovery factor (a percentage), which was then globally applied to the reserve (minable coal) tonnage to derive a recoverable coal tonnage. None of the previous methodologies define the restrictions and their area and amount of impact specifically. Because these restrictions and their impacts are defined in this new methodology, it is possible to achieve more accurate and specific assessments of available resources. This methodology has been tested in a cooperative project between the U.S. Geological Survey and the Kentucky Geological Survey on the Matewan 7.5-minute quadrangle in eastern Kentucky. Pertinent geologic, mining, land-use, and technological data were collected, assimilated, and plotted. The National Coal Resources Data System was used as the repository for data, and its geographic information system software was applied to these data to eliminate restricted coal and quantify that which is available for mining. This methodology does not consider recovery factors or the economic factors that would be considered by a company before mining. Results of the pilot study indicate that, of the estimated original 986.5 million short tons of coal resources in Kentucky's Matewan quadrangle, 13 percent has been mined, 2 percent is restricted by land-use considerations, and 23 percent is restricted by technological considerations. This leaves an estimated 62 percent of the original resource, or approximately 612 million short tons available for mining. However, only 44 percent of this available coal (266 million short tons) will meet current Environmental Protection Agency new-source performance standards for sulfur emissions from electric generating plants in the United States. In addition, coal tonnage lost during mining and cleaning would further reduce the amount of coal actually arriving at the market.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkle, H.N.; Raghavan, J.K.; Smit, F.J.
1991-11-21
The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less
Barker, Charles E.; Biewick, Laura R.; Warwick, Peter D.; SanFilipo, John R.
2000-01-01
Strong economic controls on the viability of coalbed methane (CBM) prospects make coal geometry and coal property maps key elements in identifying sweet spots and production fairways. Therefore, this study seeks to identify the apparent prospective areas for CBM exploration in the Wilcox Group (Paleocene-Eocene) lignite and coalbeds by mapping net coal thickness, depth to coal, and coal rank (vitrinite reflectance). Economic factors are not considered in this CBM prospects study. Given the comparatively extensive gas pipeline and other production infrastructure development in the Gulf Coast Region, these factors seem less a control compared to other areas. However, open leasable public lands are minimal or nonexistent in the Gulf Coast region and access to the CBM prospects could be a problem.
A Course in Coal Science and Technology.
ERIC Educational Resources Information Center
Wheelock, T. D.
1978-01-01
This course introduces graduate students and advanced undergraduates to coal science and technology. Topics include: (1) the nature and occurrence of coal, (2) its chemical and physical characteristics, (3) methods of cleaning and preparing coal, and (4) processes for converting coal into clean solid, liquid, and gaseous fuels, as well as coke.…
Status report: USGS coal assessment of the Powder River, Wyoming
Luppens, James A.; Rohrbacher, Timothy J.; Haacke, Jon E.; Scott, David C.; Osmonson, Lee M.
2006-01-01
Summary: This publication reports on the status of the current coal assessment of the Powder River Basin (PRB) in Wyoming and Montana. This slide program was presented at the Energy Information Agency's 2006 EIA Energy Outlook and Modeling Conference in Washington, DC, on March 27, 2006. The PRB coal assessment will be the first USGS coal assessment to include estimates of both regional coal resources and reserves for an entire coal basin. Extensive CBM and additional oil and gas development, especially in the Gillette coal field, have provided an unprecedented amount of down-hole geological data. Approximately 10,000 new data points have been added to the PRB database since the last assessment (2002) which will provide a more robust evaluation of the single most productive U.S. coal basin. The Gillette coal field assessment, including the mining economic evaluation, is planned for completion by the end of 2006. The geologic portion of the coal assessment work will shift to the northern and northwestern portions of the PRB before the end of 2006 while the Gillette engineering studies are finalized.
Tribological Properties Of Coal Slurries
NASA Technical Reports Server (NTRS)
Fusaro, Robert L.; Schrubens, Dale L.
1988-01-01
Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.
Mountaintop removal and valley filling (MTR/VF) is a method of coal mining used in the Central Appalachians. Despite regulations requiring that potential mpacts to stream function be considered in determining compensatory mitigation associated with permitted fill activities, asse...
Power from Coal. A Student Handbook Recommended for Upper Elementary and Middle Grades.
ERIC Educational Resources Information Center
National Coal Association, Washington, DC.
The contributions of coal as an important energy source are reviewed in this booklet for teachers. It provides background information on coal, activities for classroom use, and an answer key for all the exercises. The introductory section includes information on: (1) coal and electricity; (2) reasons for using coal; (3) methods for extracting…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... the South Gillette Area West Coal Creek Coal Lease-by-Application, Wyoming AGENCY: Bureau of Land... Decision (ROD) for the West Coal Creek Coal Lease-by- Application (LBA) included in the South Gillette Area Coal Lease Applications Final Environmental Impact Statement (EIS). ADDRESSES: The document is...
Calcium chloride: A new solution for frozen coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boley, D.G.
Few situations can strike more terror into the hearts of utility and industrial powerplant managers than the arrival of hopper cars loaded with solidly frozen coal. If the cars aren't emptied and returned to the railroad, usually within about 48 hours, demurrage (the equipment-detention charge) begins and can quickly rise to $50 or more per day per car. All to frequently, the hasty solution is to assign $16/hr workers the task of manually breaking up the frozen coal, using techniques that the mining industry considered obsolete 50 years ago. A CaCl/sub 2/ system represents a small investment. Either in drymore » or liquid form, the chemical is inexpensive and is consumed only when it is needed. The essential equipment, which is easy to operate and maintain, consists primarily of a storage tank, a pump, the necessary piping or hose, and either a fixed or portable spray applicator. A flowmeter will monitor the application rate, and the tank may be optionally heated. Application cost, including labor, for CaCl/sub 2/ is usually between $2.65 and $3.25 per treated ton. This is approximately half the cost of energy, per ton of coal, consumed by a thaw shed. In an emergency, when railcar demurrage costs are building at $50 or more per day per car, CaCl/sub 2/ is not only an inexpensive solution; it is possibly the only practical answer to the frozen-coal problem (see box, below). When used by itself, CaCl/sub 2/ minimizes the cost and frustration of unloading frozen coal because labor, equipment, chemical, energy, and maintenance costs are all held in tight control. When used to complement mechanical and/or thermal techniques, it increases unloading capacity, thereby improving productivity and helping to control all costs of cold-weather coal handling.« less
Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H.
2010-01-01
In Brazil economically important coal deposits occur in the southern part of the Paran?? Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Paran?? Basin.In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapu??, Barro Branco and Treviso seams).Seam thicknesses range from 1.70 to 2.39. m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapu?? seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapu?? seam has the highest inertinite content (33.8. vol%). Liptinite mean values range from 7.8. vol% (Barro Branco seam) to 22.5. vol% (Irapu?? seam).Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (>50wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the predominance of quartz and kaolinite (also pyrite). Gypsum, gibbsite, jarosite and calcite were also identified in some samples. Feldspar was noted but is rare. The major element distribution in the three seams (coal basis) is dominated by SiO2 (31.3wt.%, mean value), Al2O3 (14.5wt.%, mean value) and Fe2O3 (6.9 wt.%, mean value). Considering the concentrations of trace elements that are of potential environmental hazards the Barro Branco, Bonito and Irapu?? seams (coal base) are significantly enriched in Co (15.7ppm), Cr (54.5ppm), Li (59.3ppm), Mn (150.4ppm), Pb (58.0ppm) and V (99.6ppm), when compared to average trace elements contents reported for U. S. coals.Hierarchical cluster analysis identified, based on similarity levels, three groups of major elements and seven groups of trace elements. Applying discriminant analyses using trace and major element distribution, it could be demonstrated that the three seams from Santa Catarina show distinct populations in the discriminant analyses plots, and also differ from the coals of Rio Grande do Sul analyzed in a previous study. ?? 2010 Elsevier B.V.
The World Coal Quality Inventory: A status report
Tewalt, S.J.; Willett, J.C.; Finkelman, R.B.
2005-01-01
National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hower, J.C.; Trinkle, E.J.; Pollock, J.D.
The Middle Pennsylvanian Breathitt Formation coals beds in the central portion of the Eastern Kentucky coal field exhibit changes in lithology, petrology, and chemistry that can be attributed to temporal continuity in the depositional systems. The study interval within northern Perry and Knott Counties includes coals from the Taylor coal bed at the base of the Magoffin marine member upward through the Hazard No. 8 (Francis) coal bed.
Proceedings of GeoTech 85: Personal computers in geology conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the papers given at a conference which considered the use of microprocessors in the exploration of petroleum and natural gas deposits. Topics covered at the conference included seismic surveys, geochemistry, expert systems, artificial intelligence, data base management systems, a portable exploration work station, open pit planning on a microcomputer, well logging, fracture analysis, production scheduling of open pit mines, resistivity logging, and coal washability.
Petersen, Abdul M; Haigh, Kate; Görgens, Johann F
2014-01-01
Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh
Akhtar, A.; Kosanke, R.M.
2000-01-01
Thirty-two core samples of Permian Gondwana coal from three coal beds of borehole GDH-38, Barapukuria Coal Basin, Dinajpur, the north-northwestern part of Bangladesh, have been collected for palynological analysis. All samples except one yielded palynomorphs and some samples contain well-preserved and abundant palynomorphs of the gymnospermal and cryptogamic groups that are considered to be useful for future correlation studies. The lower coal bed (331.6-372.5 m) can easily be differentiated from the upper two coal beds by the presence of Alisporites, Cordaitina, Corisaccites, Hamiapollenites, Leuckisporites, Nuskoisporites, Tumoripollenites, Vestgisporites and Vittatina. It is difficult to palynologically differentiate the middle (198.1-208 m) and upper (162.3-172.9 m) coal beds as they contain a very limited number of specimens by which they can be identified. The middle bed is distinguished by the presence of Microbaculispora and Weylandites and the upper bed by the presence of a single taxon Acanthotriletes. Some of the vesiculate or saccate taxa extracted from these coal beds are typical of those occurring in Permian strata of Gondwana in India, South Africa, South America, Russia, Australia and Antarctica. They are thought to be derived from Glossopteris flora, which is characterised by an abundance of Pteridospermic plants of the gymnosperm group. ?? 2000 Elsevier Science Limited. All rights reserved.
CO2 sequestration potential of Charqueadas coal field in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, V; Santarosa, C; Crandall, D
2013-02-01
Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seamin the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontif?cia Universidade Cat?lica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.more » The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61?2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure.« less
Method for reducing NOx during combustion of coal in a burner
Zhou, Bing [Cranbury, NJ; Parasher, Sukesh [Lawrenceville, NJ; Hare, Jeffrey J [Provo, UT; Harding, N Stanley [North Salt Lake, UT; Black, Stephanie E [Sandy, UT; Johnson, Kenneth R [Highland, UT
2008-04-15
An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.
Mountaintop removal and valley filling (MTR/VF) is a method of coal mining used in the Central Appalachians. Regulations require that potential impacts to stream functions must be considered when determining the compensatory mitigation necessary for replacing aquatic resources un...
30 CFR 206.257 - Valuation standards for ad valorem leases.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., were not part of the total consideration paid for the purchase of coal production. (c)(1) The value of... with the lessee for sales, purchases, or other dispositions of like-quality coal produced in the area... following factors shall be considered: Price, time of execution, duration, market or markets served, terms...
Characterization of Malaysian coals for carbon dioxide sequestration
NASA Astrophysics Data System (ADS)
Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.
2016-06-01
Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.
Large-eddy simulation of pulverized coal swirl jet flame
NASA Astrophysics Data System (ADS)
Muto, Masaya; Watanabe, Hiroaki; Kurose, Ryoichi; Komori, Satoru; Balusamy, Saravanan; Hochgreb, Simone
2013-11-01
Coal is an important energy resource for future demand for electricity, as coal reserves are much more abundant than those of other fossil fuels. In pulverized coal fired power plants, it is very important to improve the technology for the control of environmental pollutants such as nitrogen oxide, sulfur oxide and ash particles including unburned carbon. In order to achieve these requirements, understanding the pulverized coal combustion mechanism is necessary. However, the combustion process of the pulverized coal is not well clarified so far since pulverized coal combustion is a complicated phenomenon in which the maximum flame temperature exceeds 1500 degrees Celsius and some substances which can hardly be measured, for example, radical species and highly reactive solid particles are included. Accordingly, development of new combustion furnaces and burners requires high cost and takes a long period. In this study, a large-eddy simulation (LES) is applied to a pulverized coal combustion field and the results will be compared with the experiment. The results show that present LES can capture the general feature of the pulverized coal swirl jet flame.
Environmental Inventory: Little South Fork Cumberland River.
1981-11-01
coal and clay shale. The contact between the Mississippian strata (Pennington Formation ) and...these formations include the Barren Fork coal bed and the Stearns coal zone. In addition to these there are several unnamed coal beds. Number and...Cindy Cliff, Coal Cliff, Sand Cliff and Balls Cliff are being mined by the Greenwood Land and Mining Company of Somerset and Parkers Lake, Kentucky
The national coal-resources data system of the U.S. geological survey
Carter, M.D.
1976-01-01
The National Coal Resources Data System (NCRDS) was designed by the U.S. Geological Survey (USGS) to meet the increasing demands for rapid retrieval of information on coal location, quantity, quality, and accessibility. An interactive conversational query system devised by the USGS retrieves information from the data bank through a standard computer terminal. The system is being developed in two phases. Phase I, which currently is available on a limited basis, contains published areal resource and chemical data. The primary objective of this phase is to retrieve, calculate, and tabulate coal-resource data by area on a local, regional, or national scale. Factors available for retrieval include: state, county, quadrangle, township, coal field, coal bed, formation, geologic age, source and reliability of data, and coal-bed rank, thickness, overburden, and tonnage, or any combinations of variables. In addition, the chemical data items include individual values for proximate and ultimate analyses, BTU value, and several other physical and chemical tests. Information will be validated and deleted or updated as needed. Phase II is being developed to store, retrieve, and manipulate basic point source coal data (e.g., field observations, drill-hole logs), including geodetic location; bed thickness; depth of burial; moisture; ash; sulfur; major-, minor-, and trace-element content; heat value; and characteristics of overburden, roof rocks, and floor rocks. The computer system may be used to generate interactively structure-contour or isoline maps of the physical and chemical characteristics of a coal bed or to calculate coal resources. ?? 1976.
Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J.M.K.
2009-01-01
Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.
Coal bed sequestration of carbon dioxide
Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.
2001-01-01
Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.
Application of Coal Thermal Treatment Technology for Oil-Free Firing of Boilers
NASA Astrophysics Data System (ADS)
Aliyarov, B.; Mergalimova, A.; Zhalmagambetova, U.
2018-04-01
The theoretical and practical introduction of this kind of firing boiler units in coal thermal power plants is considered in the article. The results of an experimental study of three types of coals are presented in order to obtain the required gaseous fuel. The aim of the study is to develop a new, economically and ecologically more acceptable method for firing boilers at thermal power plants, which is able to exclude the use of expensive and inconvenient fuel oil. The tasks of the experiment are to develop a technological scheme of kindling of boilers at thermal power plants, using as a type of ignition fuel volatile combustible substances released during the heating of coal, and to investigate three types of coal for the suitability of obtaining gaseous fuels, in sufficient volume and with the required heat of combustion. The research methods include the analysis of technical and scientific-methodological literature on the problem of the present study, the study of the experience of scientists of other countries, the full-scale experiment on the production of volatile combustible substances. During the full-scale experiment, the coal of 3 fields of Kazakhstan has been studied: Shubarkul, Maikuben and Saryadyr. The analysis has been performed and the choice of the most convenient technology for boiler kindling and maintenance of steady burning of the torch has been made according to the proposed method, as well as the corresponding technological scheme has been developed. As a result of the experiment, it can be stated that from coal in the process of its heating (without access to oxygen), it is possible to obtain a sufficient amount of combustible volatile substances. The released gaseous fuel has the necessary parameters and is quite capable of replacing an expensive fuel oil. The resulting gaseous fuel is quite convenient to use and environmentally cleaner. The piloting scheme developed as a result of the experiment can be introduced in pulverized-coal thermal power plants, as a result of which they become single-fuel.
Characterization and Recovery of Rare Earths from Coal and By-Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granite, Evan J.; Roth, Elliot; Alvin, Mary Anne
Coal is a precious resource, both in the United States and around the world. The United States has a 250-year supply of coal, and generates between 30 - 40% of its electricity through coal combustion. Approximately 1 Gt of coal has been mined annually in the US, although the 2015 total will likely be closer to 900 Mt (http://www.eia.gov/coal/production/quarterly/). Most of the coal is burned for power generation, but substantial quantities are also employed in the manufacture of steel, chemicals, and activated carbons. Coal has a positive impact upon many industries, including mining, power, rail transportation, manufacturing, chemical, steel, activatedmore » carbon, and fuels. Everything that is in the earth’s crust is also present within coal to some extent, and the challenge is always to utilize abundant domestic coal in clean and environmentally friendly manners. In the case of the rare earths, these valuable and extraordinarily useful elements are present within the abundant coal and coal by-products produced domestically and world-wide. These materials include the coals, as well as the combustion by-products such as ashes, coal preparation wastes, gasification slags, and mining by-products. All of these materials can be viewed as potential sources of rare earth elements. Most of the common inorganic lanthanide compounds, such as the phosphates found in coal, have very high melting, boiling, and thermal decomposition temperatures, allowing them to concentrate in combustion and gasification by-products. Furthermore, rare earths have been found in interesting concentrations in the strata above and below certain coal seams. Much of the recent research on coal utilization in the United States has focused upon the capture of pollutants such as acid gases, particulates, and mercury, and the greenhouse gas carbon dioxide. The possible recovery of rare earth and other critical elements from abundant coal and by-products is an exciting new research area, representing a dramatic paradigm shift for coal.« less
Mechanical properties of reconstituted Australian black coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasinge, D.; Ranjith, P.G.; Choi, S.K.
2009-07-15
Coal is usually highly heterogeneous. Great variation in properties can exist among samples obtained even at close proximity within the same seam or within the same core sample. This makes it difficult to establish a correlation between uniaxial compressive strength (UCS) and point load index for coal. To overcome this problem, a method for making reconstituted samples for laboratory tests was developed. Samples were made by compacting particles of crushed coal mixed with cement and water. These samples were allowed to cure for four days. UCS and point load tests were performed to measure the geomechanical properties of the reconstitutedmore » coal. After four days curing, the average UCS was found to be approximately 4 MPa. This technical note outlines some experimental results and correlations that were developed to predict the mechanical properties of the reconstituted black coal samples. By reconstituting the samples from crushed coal, it is hoped that the samples will retain the important mechanical and physicochemical properties of coal, including the swelling, fluid transport, and gas sorption properties of coal. The aim is to be able to produce samples that are homogeneous with properties that are highly reproducible, and the reconstituted coal samples can be used for a number of research areas related to coal, including the long-term safe storage of CO{sub 2} in coal seams.« less
NASA Astrophysics Data System (ADS)
Yasar, Özüm; Uslu, Tuncay
2017-12-01
Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.
Cheng, Hongfei; Yang, Jing; Liu, Qinfu; Zhang, Jinshan; Frost, Ray L
2010-11-01
Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant minerals of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm⁻¹ between kaolinite and halloysite. It cannot obviously differentiate the kaolinite and halloysite, leaving alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, gives us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in all range of their spectra, and they also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis. Copyright © 2010 Elsevier B.V. All rights reserved.
IDENTIFICATION AND EMISSION RATES OF MOLECULAR TRACERS IN COAL SMOKE PARTICULATE MATTER. (R823990)
The abundances and distributions of organic constituents in coal smoke particulate matter are dependent on thermal combustion temperature, ventilation, burn time, and coal rank (geologic maturity). Important coal rank indicators from smoke include (1) the decreases in CPIs of ...
78 FR 53135 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... Synfuel data Minor revisions to instructions and definitions Form EIA-7A: Coal Production and Preparation... Production and Preparation Report;'' EIA-8A ``Coal Stocks Report;'' EIA-20 ``Weekly Coal Monitoring Report... environment. EIA surveys are conducted to collect coal market data. The data elements include production...
Early opportunities of CO2 geological storage deployment in coal chemical industry in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Ning; Li, Xiaochun; Liu, Shengnan
2014-11-12
Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sourcesmore » together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less
NASA Technical Reports Server (NTRS)
1975-01-01
The gasification reactions necessary for the production of hydrogen from montana subbituminous coal are presented. The coal composition is given. The gasifier types mentioned include: suspension (entrained) combustion; fluidized bed; and moving bed. Each gasification process is described. The steam-iron process, raw and product gas compositions, gasifier feed quantities, and process efficiency evaluations are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathcart, J.D.
1984-01-01
This bibliography includes reports on coal drilling, geophysical logging projects, and related geologic uses, in the Powder River Basin of Montana and Wyoming. Reports on chemical analyses of Powder River Basin coals, coal quality, methane studies, and geotechnical studies are also included, as are EMRIA (Energy Mineral Rehabilitation Inventory and Analysis) reports on resource and potential reclamation of selected study areas in Montana and Wyoming.
Process for preparing a stabilized coal-water slurry
Givens, E.N.; Kang, D.
1987-06-23
A process is described for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases. 2 figs.
Process for preparing a stabilized coal-water slurry
Givens, Edwin N.; Kang, Doohee
1987-01-01
A process for preparing a stabilized coal particle suspension which includes the steps of providing an aqueous media substantially free of coal oxidizing constituents, reducing, in a nonoxidizing atmosphere, the particle size of the coal to be suspended to a size sufficiently small to permit suspension thereof in the aqueous media and admixing the coal of reduced particle size with the aqueous media to release into the aqueous media coal stabilizing constituents indigenous to and carried by the reduced coal particles in order to form a stabilized coal particle suspension. The coal stabilizing constituents are effective in a nonoxidizing atmosphere to maintain the coal particle suspension at essentially a neutral or alkaline pH. The coal is ground in a nonoxidizing atmosphere such as an inert gaseous atmosphere to reduce the coal to a sufficient particle size and is admixed with an aqueous media that has been purged of oxygen and acid-forming gases.
Analysis of ecological environment impact of coal exploitation and utilization
NASA Astrophysics Data System (ADS)
Zhang, Baoliu; Luo, Hong; Lv, Lianhong; Wang, Jian; Zhang, Baoshi
2018-02-01
Based on the theory of life cycle assessment, the ecological and environmental impacts of coal mining, processing, utilization and transportation will be analyzed, with analysing the status of china’s coal exploitation and utilization as the basis, it will find out the ecological and environmental impact in the development and utilization of coal, mainly consist of ecological impact including land damage, water resource destructionand biodiversity loss, etc., while the environmental impact include air, water, solid waste pollutions. Finally with a summary of the ecological and environmental problems, to propose solutionsand countermeasures to promote the rational development and consumption of coal, as well as to reduce the impact of coal production and consumption on the ecological environment, finally to achieve the coordinated development of energy and the environment.
ASSESSMENT OF PHYSICAL COAL CLEANING PRACTICES FOR SULFUR REMOVAL
The report gives results of a study of the current level of coal cleaning activity in the U.S. n 1983, the U.S. DOE's Energy Information Administration (EIA) expanded coal data collection activities to include information on the extent and type of coal preparation conducted in ea...
30 CFR 700.11 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Noncommercial use does not include the extraction of coal by one unit of an integrated company or other business or nonprofit entity which uses the coal in its own manufacturing or power plants; (2) The extraction... all coal exploration and surface coal mining and reclamation operations, except: (1) The extraction of...
30 CFR 700.11 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Noncommercial use does not include the extraction of coal by one unit of an integrated company or other business or nonprofit entity which uses the coal in its own manufacturing or power plants; (2) The extraction... all coal exploration and surface coal mining and reclamation operations, except: (1) The extraction of...
The directory of US coal and technology export resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-10-01
The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.
Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions.
Hendryx, Michael; Zullig, Keith J
2009-11-01
This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N=235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR=1.22, 95% CI=1.14-1.30), angina or CHD (OR=1.29, 95% CI=1.19-1.39) and heart attack (OR=1.19, 95% CI=1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
McConnell, Josh; Sutherland, James C.
2016-07-09
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less
The effect of model fidelity on prediction of char burnout for single-particle coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Josh; Sutherland, James C.
In this study, practical simulation of industrial-scale coal combustion relies on the ability to accurately capture the dynamics of coal subprocesses while also ensuring the computational cost remains reasonable. The majority of the residence time occurs post-devolatilization, so it is of great importance that a balance between the computational efficiency and accuracy of char combustion models is carefully considered. In this work, we consider the importance of model fidelity during char combustion by comparing combinations of simple and complex gas and particle-phase chemistry models. Detailed kinetics based on the GRI 3.0 mechanism and infinitely-fast chemistry are considered in the gas-phase.more » The Char Conversion Kinetics model and nth-Order Langmuir–Hinshelwood model are considered for char consumption. For devolatilization, the Chemical Percolation and Devolatilization and Kobayashi-Sarofim models are employed. The relative importance of gasification versus oxidation reactions in air and oxyfuel environments is also examined for various coal types. Results are compared to previously published experimental data collected under laminar, single-particle conditions. Calculated particle temperature histories are strongly dependent on the choice of gas phase and char chemistry models, but only weakly dependent on the chosen devolatilization model. Particle mass calculations were found to be very sensitive to the choice of devolatilization model, but only somewhat sensitive to the choice of gas chemistry and char chemistry models. High-fidelity models for devolatilization generally resulted in particle temperature and mass calculations that were closer to experimentally observed values.« less
Freight Calculation Model: A Case Study of Coal Distribution
NASA Astrophysics Data System (ADS)
Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.
2018-03-01
Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.
Pyrolysis of coal, biomass and their blends: performance assessment by thermogravimetric analysis.
Ferrara, Francesca; Orsini, Alessandro; Plaisant, Alberto; Pettinau, Alberto
2014-11-01
With the aim to support the experimental tests in a gasification pilot plant, the thermal decomposition of coal, biomass and their mixtures has been carried out through a thermogravimetric analysis (TGA) and a simplified kinetic analysis. The TGA of pure fuels indicates the low reactivity of South African coal and the relatively high reactivity of Sardinian Sulcis coal during pyrolysis. Among the tested fuels, biomass (stone pine wood chips) is the most reactive one. These results fully confirm those obtained during the experimental tests in the gasification pilot plant. As for the fuel blends, the analysis shows that the synergic effects between the considered coals and biomass are negligible when they are co-pyrolyzed. The results of the analysis confirm that TGA could be very useful to generally predict the gasification performance and to optimize the experimental campaigns in pilot-scale gasification plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manoj, B.; Kunjomana, A. G.
2015-02-01
The results of the structural investigation of three Indian coals showed that, the structural parameters like fa & Lc increased where as interlayer spacing d002 decreased with increase in carbon content, aromaticity and coal rank. These structural parameters change just opposite with increase in volatile matter content. Considering the 'turbostratic' structure for coals, the minimum separation between aromatic lamellae was found to vary between 3.34 to 3.61 A° for these coals. As the aromaticity increased, the interlayer spacing decreased an indication of more graphitization of the sample. Volatile matter and carbon content had a strong influence on the aromaticity, interlayer spacing and stacking height on the sample. The average number of carbon atoms per aromatic lamellae and number of layers in the lamellae was found to be 16-21 and 7-8 for all the samples.
Critical parameters for coarse coal underground slurry haulage systems
NASA Technical Reports Server (NTRS)
Maynard, D. P.
1981-01-01
Factors are identified which must be considered in meeting the requirements of a transportation system for conveying, in a pipeline, the coal mined by a continuous mining machine to a storage location neat the mine entrance or to a coal preparation plant located near the surface. For successful operation, the slurry haulage the system should be designed to operated in the turbulent flow regime at a flow rate at least 30% greater than the deposition velocity (slurry flow rate at which the solid particles tend to settle in the pipe). The capacity of the haulage system should be compatible with the projected coal output. Partical size, solid concentration, density, and viscosity of the suspension are if importance as well as the selection of the pumps, pipes, and valves. The parameters with the greatest effect on system performance ar flow velocity, pressure coal particle size, and solids concentration.
2016-01-01
Provides information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience, including Congress, federal and state agencies, the coal industry, and the general public.
Diagenetic trends of a tertiary low-rank coal series
NASA Astrophysics Data System (ADS)
Boudou, Jean-Paul; Durand, Bernard; Oudin, Jean-Louis
1984-10-01
The Mahakam delta (Kalimantan, Indonesia) coals represent all the evolution stages between freshly-deposited plant/peat material, lignites and bituminous coals. The geochemical techniques used to study this coal series included elemental analysis, extraction of humic compounds, infrared spectroscopy and 13C nuclear magnetic resonance of the total coal. The main mechanisms of early maturation in this series are loss of oxygenated compounds, aromatisation and condensation of the organic matter. These changes, which have already been suggested for other coal series and partially reported for sedimentary organic matter, were confirmed and described in more detail for the Mahakam coal series.
Process for coal liquefaction employing selective coal feed
Hoover, David S.; Givens, Edwin N.
1983-01-01
An improved coal liquefaction process is provided whereby coal conversion is improved and yields of pentane soluble liquefaction products are increased. In this process, selected feed coal is pulverized and slurried with a process derived solvent, passed through a preheater and one or more dissolvers in the presence of hydrogen-rich gases at elevated temperatures and pressures, following which solids, including mineral ash and unconverted coal macerals, are separated from the condensed reactor effluent. The selected feed coals comprise washed coals having a substantial amount of mineral matter, preferably from about 25-75%, by weight, based upon run-of-mine coal, removed with at least 1.0% by weight of pyritic sulfur remaining and exhibiting vitrinite reflectance of less than about 0.70%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.
Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.
Economic baselines for current underground coal mining technology
NASA Technical Reports Server (NTRS)
Mabe, W. B.
1979-01-01
The cost of mining coal using a room pillar mining method with continuous miner and a longwall mining system was calculated. Costs were calculated for the years 1975 and 2000 time periods and are to be used as economic standards against which advanced mining concepts and systems will be compared. Some assumptions were changed and some internal model stored data was altered from the original calculations procedure chosen, to obtain a result that more closely represented what was considered to be a standard mine. Coal seam thicknesses were varied from one and one-half feet to eight feet to obtain the cost of mining coal over a wide range. Geologic conditions were selected that had a minimum impact on the mining productivity.
Rouse, William A.; Houseknecht, David W.
2012-01-01
The Cook Inlet-Susitna region of south-central Alaska contains large quantities of gas-bearing coal of Tertiary age. The U.S. Geological Survey in 2011 completed an assessment of undiscovered, technically recoverable coal-bed gas resources underlying the Cook Inlet-Susitna region based on the total petroleum system (TPS) concept. The Cook Inlet Coal-Bed Gas TPS covers about 9,600,000 acres and comprises the Cook Inlet basin, Matanuska Valley, and Susitna lowland. The TPS contains one assessment unit (AU) that was evaluated for coal-bed gas resources between 1,000 and 6,000 feet in depth over an area of about 8,500,000 acres. Coal beds, which serve as both the source and reservoir for natural gas in the AU, were deposited during Paleocene-Pliocene time in mires associated with a large trunk-tributary fluvial system. Thickness of individual coal beds ranges from a few inches to more than 50 feet, with cumulative coal thickness of more than 800 feet in the western part of the basin. Coal rank ranges from lignite to subbituminous, with vitrinite reflectance values less than 0.6 percent throughout much of the AU. The AU is considered hypothetical because only a few wells in the Matanuska Valley have tested the coal-bed reservoirs, so the use of analog coal-bed gas production data was necessary for this assessment. In order to estimate reserves that might be added in the next 30 years, coal beds of the Upper Fort Union Formation in the Powder River Basin of Wyoming and Montana were selected as the production analog for Tertiary coal beds in the Cook Inlet-Susitna region. Upper Fort Union coal beds have similar rank (lignite to subbituminous), range of thickness, and coal-quality characteristics as coal beds of the Tertiary Kenai Group. By use of this analog, the mean total estimate of undiscovered coal-bed gas in the Tertiary Coal-Bed Gas AU is 4.674 trillion cubic feet (TCF) of gas.
NASA Astrophysics Data System (ADS)
Gu, Hui; Zhu, Hongxia; Cui, Yanfeng; Si, Fengqi; Xue, Rui; Xi, Han; Zhang, Jiayu
2018-06-01
An integrated combustion optimization scheme is proposed for the combined considering the restriction in coal-fired boiler combustion efficiency and outlet NOx emissions. Continuous attribute discretization and reduction techniques are handled as optimization preparation by E-Cluster and C_RED methods, in which the segmentation numbers don't need to be provided in advance and can be continuously adapted with data characters. In order to obtain results of multi-objections with clustering method for mixed data, a modified K-prototypes algorithm is then proposed. This algorithm can be divided into two stages as K-prototypes algorithm for clustering number self-adaptation and clustering for multi-objective optimization, respectively. Field tests were carried out at a 660 MW coal-fired boiler to provide real data as a case study for controllable attribute discretization and reduction in boiler system and obtaining optimization parameters considering [ maxηb, minyNOx ] multi-objective rule.
Contribution of PAHs from coal-tar pavement sealcoat and other sources to 40 U.S. lakes
Van Metre, Peter C.; Mahler, Barbara J.
2010-01-01
Contamination of urban lakes and streams by polycyclic aromatic hydrocarbons (PAHs) has increased in the United States during the past 40 years. We evaluated sources of PAHs in post-1990 sediments in cores from 40 lakes in urban areas across the United States using a contaminant mass-balance receptor model and including as a potential source coal-tar-based (CT) sealcoat, a recently recognized source of urban PAH. Other PAH sources considered included several coal- and vehicle-related sources, wood combustion, and fuel-oil combustion. The four best modeling scenarios all indicate CT sealcoat is the largest PAH source when averaged across all 40 lakes, contributing about one-half of PAH in sediment, followed by vehicle-related sources and coal combustion. PAH concentrations in the lakes were highly correlated with PAH loading from CT sealcoat (Spearman's rho=0.98), and the mean proportional PAH profile for the 40 lakes was highly correlated with the PAH profile for dust from CT-sealed pavement (r=0.95). PAH concentrations and mass and fractional loading from CT sealcoat were significantly greater in the central and eastern United States than in the western United States, reflecting regional differences in use of different sealcoat product types. The model was used to calculate temporal trends in PAH source contributions during the last 40 to 100 years to eight of the 40 lakes. In seven of the lakes, CT sealcoat has been the largest source of PAHs since the 1960s, and in six of those lakes PAH trends are upward. Traffic is the largest source to the eighth lake, located in southern California where use of CT sealcoat is rare.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sansone, M.J.
1979-02-01
On the basis of simple, first approximation calculations, it has been shown that catalytic gasification and hydrogasification are inherently superior to conventional gasification with respect to carbon utilization and thermal efficiency. However, most processes which are directed toward the production of substitute natural gas (SNG) by direct combination of coal with steam at low temperatures (catalytic processes) or with hydrogen (hydrogasification) will require a step for separation of product SNG from a recycle stream. The success or falure of the process could well depend upon the economics of this separation scheme. The energetics for the separation of mixtures of idealmore » gases has been considered in some detail. Minimum energies for complete separation of representative effluent mixtures have been calculated as well as energies for separation into product and recycle streams. The gas mixtures include binary systems of H/sub 2/ and CH/sub 4/ and ternary mixtures of H/sub 2/, CH/sub 4/, and CO. A brief summary of a number of different real separation schemes has also been included. We have arbitrarily divided these into five categories: liquefaction, absorption, adsorption, chemical, and diffusional methods. These separation methods will be screened and the more promising methods examined in more detail in later reports. Finally, a brief mention of alternative coal conversion processes concludes this report.« less
Talbott, Evelyn O; Sharma, Ravi K; Buchanich, Jeanine; Stacy, Shaina L
2015-04-01
Exposures associated with coal mining activities, including diesel fuel exhaust, products used in coal processing, and heavy metals and other forms of particulate matter, may impact the health of nearby residents. We investigated the relationships between county-level circulatory hospitalization rates (CHRs) in coal and non-coal-mining communities of West Virginia, coal production, coal employment, and sociodemographic factors. Direct age-adjusted CHRs were calculated using West Virginia hospitalizations from 2005 to 2009. Spatial regressions were conducted to explore associations between CHR and total, underground, and surface coal production. After adjustment, neither total, nor surface, nor underground coal production was significantly related to rate of hospitalization for circulatory disease. Our findings underscore the significant role sociodemographic and behavioral factors play in the health and well-being of coal mining communities.
NASA Astrophysics Data System (ADS)
Zheng, Kuan; Liu, Jun; Zhang, Jin-fang; Hao, Weihua
2017-01-01
A large number of combustion of coal is easy to lead to the haze weather which has brought a lot of inconveniences and threat to people’s living and health in E&C China, as the dominant power source of China, the coal-fired power generation is one of the main sources to the haze. In this paper, the contribution of the combustion of coal and development of coal-fired power generation to the PM2.5 emissions is summarized based on the analysis of the present situation, the mechanism and the emission source of PM2.5. Considering the peak of carbon emissions and the constraints of atmospheric environment, the quantitative assessment method of PM2.5 by optimizing the development of coal-fired power generation is present. By the computation analysis for different scenarios, it indicates that the optimization scenario, which means the main new-installed coal-fired power generation is distributed in western and northern China, can prevent the PM2.5 effectively for both the load center and coal base regions of China. The results of this paper not only have reference value for the optimized layout of coal-fired power generation in the “13rd fifth-year” power planning, also is of great significance to deal with problems that the atmospheric pollution and climate warming in the future.
Homogeneous catalytic hydrogenations of complex carbonaceous substrates. [16 references
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, J L; Wilcox, W A; Roberts, G L
1976-11-05
Results of homogeneous catalytic hydrogenation of complex unsaturated substrates including coal and coal-derived materials are reported, with organic soluble molecular complexes as catalysts. Among the substrates used were Hvab coal, solvent-refined coal, and COED pyrolysate. The hydrogenations were carried out in an autoclave. The results are summarized in tables.
Zhou, Gang; Xu, Cuicui; Cheng, Weimin; Zhang, Qi; Nie, Wen
2015-01-01
To investigate the difference of surface oxygen element and oxygen-containing functional groups among coal dusts with different metamorphic degrees and their influence on surface wettability, a series of X-ray photoelectron spectroscopy experiments on 6 coal samples are carried out. The result demonstrates that the O/C ratio of coal surface shows an overall increasing trend compared with the result of its elements analysis. As the metamorphic degree increases, the O/C ratio on the surface gradually declines and the hydrophilic groups tend to fall off from coal surface. It could be found that different coals show different surface distributions of carboxyl and hydroxyl which are considered as the greatest promoter to the wettability of coal surface. With the change of metamorphic degree, the distribution of ether group is irregular while the carbonyl distribution keeps stable. In general, as the metamorphic degree goes higher, the content of oxygen-containing polar group tends to reduce. According to the measurement results, the contact angle is negatively related to the content of oxygen element, surface oxygen, and polar groups. In addition, compared with surface oxygen content, the content of oxygen-containing polar group serves as a more reasonable indicator of coal dust wettability. PMID:26257980
Health Implications of Increased Coal Use in the Western States
Guidotti, Tee L.
1979-01-01
The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803
Health implications of increased coal use in the Western States.
Guidotti, T L
1979-07-01
The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report.
30 CFR 77.200 - Surface installations; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND HEALTH MANDATORY SAFETY STANDARDS, SURFACE COAL MINES AND SURFACE WORK AREAS OF UNDERGROUND COAL... other facilities (including custom coal preparation) shall be maintained in good repair to prevent accidents and injuries to employees. ...
Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals
NASA Astrophysics Data System (ADS)
Dong, Yongqiang; Lin, Jianpeng; Chen, Yingmei; Fu, Fengfu; Chi, Yuwu; Chen, Guonan
2014-06-01
Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment.Six coal samples of different ranks have been used to prepare single-layer graphene quantum dots (S-GQDs). After chemical oxidation and a series of centrifugation separation, every coal could be treated into two fractions, namely, CoalA and CoalB. According to the characterization results of TEM, AFM, XRD, Raman and FTIR, CoalA was revealed to be mainly composed of S-GQDs, which have an average height of about 0.5 nm and an average plane dimension of about 10 nm. The obtained S-GQDs showed excitation-dependent fluorescence and excellent electrochemiluminescence. CoalB was found to be some other carbon-based nanomaterials (CNMs), including agglomerated GQDs, graphene oxide, carbon quantum dots and agglomerated carbon nanocrystals. Generally, low-ranked coals might be more suitable for the preparation of S-GQDs. The production yield of S-GQDs from the six investigated coals decreased from 56.30% to 14.66% when the coal rank increased gradually. In contrast, high-ranked coals had high production yield of CoalB and might be more suitable for preparing other CNMs that were contained in CoalB, although those CNMs were difficult to separate from each other in our experiment. Electronic supplementary information (ESI) available: Elemental analysis results of coal samples, FTIR spectra of CoalA and CoalB, ECL responses of CoalA/S2O82-. See DOI: 10.1039/c4nr01482k
Plasma Torch for Plasma Ignition and Combustion of Coal
NASA Astrophysics Data System (ADS)
Ustimenko, Alexandr; Messerle, Vladimir
2015-09-01
Plasma-fuel systems (PFS) have been developed to improve coal combustion efficiency. PFS is a pulverized coal burner equipped with arc plasma torch producing high temperature air stream of 4000 - 6000 K. Plasma activation of coal at the PFS increases the coal reactivity and provides more effective ignition and ecologically friendly incineration of low-rank coal. The main and crucial element of PFS is plasma torch. Simplicity and reliability of the industrial arc plasma torches using cylindrical copper cathode and air as plasma forming gas predestined their application at heat and power engineering for plasma aided coal combustion. Life time of these plasma torches electrodes is critical and usually limited to 200 hours. Considered in this report direct current arc plasma torch has the cathode life significantly exceeded 1000 hours. To ensure the electrodes long life the process of hydrocarbon gas dissociation in the electric arc discharge is used. In accordance to this method atoms and ions of carbon from near-electrode plasma deposit on the active surface of the electrodes and form electrode carbon condensate which operates as ``actual'' electrode. Complex physicochemical investigation showed that deposit consists of nanocarbon material.
Zhi, Guorui; Peng, Conghu; Chen, Yingjun; Liu, Dongyan; Sheng, Guoying; Fu, Jiamo
2009-08-01
The use of coal briquettes and improved stoves by Chinese households has been encouraged by the government as a means of reducing air pollution and health impacts. In this study we have shown that these two improvements also relate to climate change. Our experimental measurements indicate that if all coal were burned as briquettes in improved stoves, particulate matter (PM), organic carbon (OC), and black carbon (BC) could be annually reduced by 63 +/- 12%, 61 +/- 10%, and 98 +/- 1.7%, respectively. Also, the ratio of BC to OC (BC/OC) could be reduced by about 97%, from 0.49 to 0.016, which would make the primary emissions of household coal combustion more optically scattering. Therefore, it is suggested that the government consider the possibility of: (i) phasing out direct burning of bituminous raw-coal-chunks in households; (ii) phasing out simple stoves in households; and, (iii) financially supporting the research, production, and popularization of improved stoves and efficient coal briquettes. These actions may have considerable environmental benefits by reducing emissions and mitigating some of the impacts of household coal burning on the climate. International cooperation is required both technologically and financially to accelerate the emission reduction in the world.
The Effect of a Tectonic Stress Field on Coal and Gas Outbursts
An, Fenghua; Cheng, Yuanping
2014-01-01
Coal and gas outbursts have always been a serious threat to the safe and efficient mining of coal resources. Ground stress (especially the tectonic stress) has a notable effect on the occurrence and distribution of outbursts in the field practice. A numerical model considering the effect of coal gas was established to analyze the outburst danger from the perspective of stress conditions. To evaluate the outburst tendency, the potential energy of yielded coal mass accumulated during an outburst initiation was studied. The results showed that the gas pressure and the strength reduction from the adsorbed gas aggravated the coal mass failure and the ground stress altered by tectonics would affect the plastic zone distribution. To demonstrate the outburst tendency, the ratio of potential energy for the outburst initiation and the energy consumption was used. Increase of coal gas and tectonic stress could enhance the potential energy accumulation ratio, meaning larger outburst tendency. The component of potential energy for outburst initiation indicated that the proportion of elastic energy was increased due to tectonic stress. The elastic energy increase is deduced as the cause for a greater outburst danger in a tectonic area from the perspective of stress conditions. PMID:24991648
Code of Federal Regulations, 2011 CFR
2011-10-01
... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...
Code of Federal Regulations, 2013 CFR
2013-10-01
... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...
Code of Federal Regulations, 2012 CFR
2012-10-01
... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...
Code of Federal Regulations, 2014 CFR
2014-10-01
... operation. (a) Any Federal coal lease or LMU which has not achieved diligent development shall be terminated..., any Federal coal lease included in that LMU shall then be subject to the diligent development and... part, as if the Federal lease had not been included in the LMU. (c) Any Federal coal lease on which...
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Nenad Sarunac; Harun Bilirgen
2005-04-01
This is the ninth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, comparative analyses were performed for lignite and PRB coals to determine how unit performance varies with coal product moisture. Results are given showing how the coal product moisture level and coal rank affect parameters such as boiler efficiency, station service power needed for fans and pulverizers and net unit heat rate. Results are also givenmore » for the effects of coal drying on cooling tower makeup water and comparisons are made between makeup water savings for various times of the year.« less
77 FR 11116 - Sunshine Act Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Jersey Avenue NW., Washington, DC. STATUS: Open. MATTERS TO BE CONSIDERED: The Commission will consider and act upon the following in open session: Secretary of Labor v. Black Beauty Coal Co., Docket No...
Zhang, Jiahua; Ren, D.; Zhu, Y.; Chou, C.-L.; Zeng, R.; Zheng, B.
2004-01-01
Mineralogy, coal chemistry and 21 potentially hazardous trace elements (PHTEs) of 44 coal samples from the Qianxi Fault Depression Area (QFDA) in southwestern Guizhou province, China have been systematically studied. The major minerals in coals studied are quartz, kaolinite, illite, pyrite, calcite, smectite, marcasite and accessory minerals, including rutile, dolomite, siderite, gypsum, chlorite, melanterite, apatite, collophane and florencite. The SiO2 content shows a broad variation (0.8-30.7%). A high SiO2 content in Late Permian coals reflects their enrichment in quartz. The Al2O3 content varies from 0.8% to 13.4%, Fe2O3 from 0.2% to 14.6%, CaO from Al>K>Ti>Na>Mg>Ca>Fe>S. A comparison with World coal averages shows that the Late Permian coals in QFDA are highly enriched in As, Hg, F and U, and are slightly enriched in Mo, Se, Th, V and Zn. The Late Triassic coals in QFDA are highly enriched in As and Hg, and are slightly enriched in Mo, Th and U. The concentrations of As, Hg, Mo, Se, Tl and Zn in the QFDA coal are higher than other Guizhou coal and Liupanshui coal nearby. The QFDA is an area strongly affected by the low-temperature hydrothermal activity during its geologic history (Yanshanian Age, about 189 Ma). The coals in QFDA are enriched in volatile PHTEs, including As, Hg, Se, Sb, Mo, among others. The regions where the coals are enriched in As, Hg and F have been mapped. The regions of coals enriched in volatile PHTEs overlap with the regions of noble metal ore deposits. These coals are located in the cores of anticline and anticlinorium, which are connected with the profound faults through the normal faults. Coals are enriched in volatile PHTEs as a result of the low-temperature hydrothermal activity associated with tectonic faulting. ?? 2003 Elsevier B.V. All rights reserved.
Characterizing coal beds in western Kentucky with the Al-La-Sc coherent triad
Chyi, L.L.; Medlin, J.H.
1996-01-01
Cyclic sedimentation and lateral facies changes make coal bed correlations inconclusive and difficult. This uncertainty can be further complicated if a coal basin has been structurally deformed. Coal macerals can be studied to indicate the nature and degree of coalification. Their use in coal bed correlation, however, is limited. Most of the trace elements and their ratios that have been studied show significant within-bed lateral and stratigraphic variations, and thus are not effective in correlating coal beds regionally. Geochemically coherent groups of elements, such as rare earth elements (REE) and platinum group elements (PGE), appear to be highly differentiated in coal-forming environments. Geochemical coherent elemental triads appear to be useful for coal bed identification or fingerprinting. The best triad which was demonstrated to be effective in coal bed characterization in western Kentucky, is that of Al, La and Sc. These three elements are highly correlated with one another and they can be determined accurately and simultaneously with instrumental neutron activation analysis (INAA). The elemental triad Al-La-Sc is used to identify and fingerprint three key coal beds in western Kentucky: the Springfield (western Kentucky No. 9), the Davis (western Kentucky No. 6), and the Mining City and Dawson Springs are both considered to be the No. 4 coal bed in western Kentucky). Four distinct groupings can be recognized by use of the Al-La-Sc triad. The Dawson Springs coals have the highest Al/(La + Sc) ratios, followed by the Springfield, the Davis and the Mining City. The Mining City coal bed generally has the highest La/Sc ratio. However, the Dawson Springs is not correlated with the Mining City using the triad analysis, even though they have reportedly similar stratigraphic positions in the western Kentucky coal basin. The Al-La-Sc triad appears to be effective in discriminating between the Springfield and the Davis coal beds throughout the entire Illinois Basin. Furthermore, the range of concentration variation of the AL-La-Sc triad suggests individual groupings of the No. 4 coal in western Kentucky. In addition to characterizing these coal beds, the Al-La-Sc triad may be used to confirm stratigraphic correlations.
An update on blast furnace granular coal injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, D.G.; Strayer, T.J.; Bouman, R.W.
1997-12-31
A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke andmore » results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
Final Report of the Advanced Coal Technology Work Group
The Advanced Coal Technology workgroup reported to the Clean Air Act Advisory Committee. This page includes the final report of the Advanced Coal Technology Work Group to the Clean Air Act Advisory Committee.
Literature survey of properties of synfuels derived from coal
NASA Technical Reports Server (NTRS)
Flores, F.
1982-01-01
A literature survey of the properties of synfuels for ground-based turbine applications is presented. The four major concepts for converting coal into liquid fuels (solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction), and the most important concepts for coal gasification (fixed bed, fluidized bed, entrained flow, and underground gasification) are described. Upgrading processes for coal derived liquid fuels are also described. Data presented for liquid fuels derived from various processes, including H-coal, synthoil, solvent refined coal, COED, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Typical composition, and property data is also presented for low and medium-BTU gases derived from the various coal gasification processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauderer, B.; Fleming, E.S.
1991-08-30
This work contains to the final report of the demonstration of an advanced cyclone coal combustor. Titles include: Chronological Description of the Clean Coal Project Tests,'' Statistical Analysis of Operating Data for the Coal Tech Combustor,'' Photographic History of the Project,'' Results of Slag Analysis by PA DER Module 1 Procedure,'' Properties of the Coals Limestone Used in the Test Effort,'' Results of the Solid Waste Sampling Performed on the Coal Tech Combustor by an Independent Contractor During the February 1990 Tests.'' (VC)
Proceedings of the Conference on Coal Use for California
NASA Technical Reports Server (NTRS)
1978-01-01
The papers, statements, and panel session transcriptions that resulted from the conference are presented. The conference brought together approximately 400 specialists, students, interest groups and general public for the examination of technological, institutional, and social issues surrounding coal use for California and the identification of attendant constraints, impediments, advantages, and target opportunities. The expertise of the participants cover a wide range of subject matter that includes systems examination of coal opportunities, energy demand forecasting, environmental aspects of coal use, coal supply and transport, viewpoint of neighboring states, air pollution control, direct firing, coal gasification and liquefaction technologies, economics of coal use, and the regulatory system.
Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendryx, M.; Zullig, K.J.
This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratiosmore » tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.« less
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
"Sticking Together!" Policy Activism from within a UK Coal-Mining Community
ERIC Educational Resources Information Center
Bright, N. Geoffrey
2012-01-01
This article reflects on some aspects of a doctoral ethnographic study of young people disaffected from schooling in a post-industrial space of ruin in a former coal-mining community in England. It considers how their experiences of resistance and refusal of schooling can, in the relational ethos of non-school support settings, come to speak back…
NASA Technical Reports Server (NTRS)
Cukor, P. M.; Chapman, R. A.
1978-01-01
The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.
NASA Astrophysics Data System (ADS)
Tkach, SM; Gavrilov, VL
2017-02-01
It is shown that the process flows of mining, haulage and utilization of coal in the Polar regions in Yakutia feature high quantitative and qualitative loss. In case the process flows are considered as integrated systems aimed at the overall performance efficiency, it is possible to reduce the loss per each individual chain loop. The authors formulate approaches intended to lower total loss of coal in process flows. The geotechnical and organizational solutions are put forward to improve and stabilize quality of fuel used by local fuel and energy industry.
Comparison of metallurgical coke and lignite coke for power generation in Thailand
NASA Astrophysics Data System (ADS)
Ratanakuakangwan, Sudlop; Tangjitsitcharoen, Somkiat
2017-04-01
This paper presents and compares two alternatives of cokes in power generation which are the metallurgical coke with coke oven gas and the coke from lignite under the consideration of the energy and the environment. These alternatives not only consume less fuel due to their higher heat content than conventional coal but also has less SO2 emission. The metallurgical coke and its by-product which is coke oven gas can be obtained from the carbonization process of coking coal. According to high grade coking coal, the result in the energy attitude is not profitable but its sulfur content that directly affects the emission of SO2 is considered to be very low. On the other hand, the coke produced from lignite is known as it is the lowest grade from coal and it causes the high pollution. Regarding to energy profitability, the lignite coke is considered to be much more beneficial than the metallurgical coke in contrast to the environmental concerns. However, the metallurgical coke has the highest heating value. Therefore, a decision making between those choices must be referred to the surrounding circumstances based on energy and environment as well as economic consideration in the further research.
29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 6 2013-07-01 2013-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...
29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 6 2010-07-01 2010-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...
29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 6 2011-07-01 2011-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...
29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 6 2012-07-01 2012-07-01 false Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...
29 CFR 1910.1002 - Coal tar pitch volatiles; interpretation of term.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 6 2014-07-01 2013-07-01 true Coal tar pitch volatiles; interpretation of term. 1910.1002... Hazardous Substances § 1910.1002 Coal tar pitch volatiles; interpretation of term. As used in § 1910.1000 (Table Z-1), coal tar pitch volatiles include the fused polycyclic hydrocarbons which volatilize from the...
2006 SME annual meeting & 7th ICARD, March 26-29, 2006, St. Louis, Missouri. Pre-prints
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-07-01
Subjects covered by the papers include: enhanced coalbed methane through carbon sequestration, application of laser surface coatings for raw coal screen wear resistance enhancement, application of cross-flow teeter-bed separator in the US coal industry, arsenic removal from drinking water, modelling of fire spread along combustibles in a mine entry, coal's role in sustaining society, real time characterisation of frother bubble thin films, diesel emissions, overcoming stress measurements form underground coal amines, dry jigging coal, estimation of roof strata strength, improving screen bowl centrifuge performance, installation of ventilation shaft at a New Mexico coal mine, evaluation of feasibility of CO{sub 2}more » sequestration in deep coal, robot-human control interaction in mining operations, small mine and contractor safety, coal dust explosibility meter, US coal mine fatalities versus age of mine, and water and slurry bulkheads in underground coal mines.« less
Coal Combustion Science quarterly progress report, April--June 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.
1992-09-01
The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less
Xu, Guang-xing; Li, Li-ping; Liu, Feng-ying; Wang, Sheng
2012-06-01
To estimate the associations of psychosocial factors with work-related musculoskeletal disorders (WMSDs), providing scientific evidence for targeted strategies for the prevention of WMSDs in Chinese coal miners. A total of 500 coal miners were consecutively enrolled to this cross-sectional study. The prevalence of WMSDs was assessed using the Standardized Nordic Questionnaire. Logistic regression analyses were conducted to estimate the associations between psychosocial factors and WMSDs. Among coal miners, of 277 coal miners, 61% self-reported WMSDs in a 12-month period. Especially, back pain was the most frequent musculoskeletal symptom. WMSDs were statistically correlated with high job demands (OR = 1.3, 95%CI: 1.3 ∼ 3.5), low job control (OR = 1.6, 95%CI: 1.0 ∼ 2.4), low level of interpersonal relations (OR = 1.9, 95%CI: 1.2 ∼ 3.0) and low job satisfaction (OR = 1.6, 95%CI: 1.0 ∼ 2.4). The results of this study demonstrate psychosocial factors were associated with WMSDs among coal miners, and psychosocial factors be considered for the prevention of WMSDs.
Kansas coal distribution, resources, and potential for coalbed methane
Brady, L.L.
2000-01-01
100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth Kansas has large amounts of bituminous coal both at the surface and in the subsurface of eastern Kansas. Preliminary studies indicate at least 53 billion tons (48 billion MT) of deep coal [>100 ft (>30 m)] determined from 32 different coal beds. Strippable coal resources at a depth < 100 ft (<30 m) total 2.8 billion tons (2.6 billion MT), and this total is determined from 17 coals. Coal beds present in the Cherokee Group (Middle Pennsylvanian) represent most of these coal resource totals. Deep coal beds with the largest resource totals include the Bevier, Mineral, "Aw" (unnamed coal bed), Riverton, and Weir-Pittsburg coals, all within the Cherokee Group. Based on chemical analyses, coals in the southeastern part of the state are generally high volatile A bituminous, whereas coals in the east-central and northeastern part of the state are high-volatile B bituminous coals. The primary concern of coal beds in Kansas for deep mining or development of coalbed methane is the thin nature [<2 ft (0.6 m)] of most coal beds. Present production of coalbed methane is centered mainly in the southern Wilson/northern Montgomery County area of southeastern Kansas where methane is produced from the Mulky, Weir-Pittsburg, and Riverton coals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spackman, W.; Davis, A.; Walker, P. L.
1977-12-01
The Penn State/ERDA Coal Sample Bank was expanded to include 201 new coal samples. A total of 68 characterized coal samples and 115 selected printouts of coal data were supplied upon request to the coal research community. Selected chemical and petrographic properties were statistically analyzed for 119 coal channel samples chosen from the Penn State/ERDA Coal Data Base. Installation of the pressurized laminar flow isotherml reactor has begun. Experiments have continued on the combustion pot; the study of the reactivity of a Koppers Company coke is now complete. Studies show that weight changes associated with preoxidation can be precisely meausredmore » using a TGA apparatus. Water densities determined on 19 coals were lower when measured in the presence of a wetting agent. Study of the effect of reaction temperature on gasification of Saran carbon in air shows one percent platinum loading on Saran carbon increases gasification rates over the entire range of carbon burn-off. Study of the theoretical aspects of combustion of low volatile fuels was resumed. The computer model was expanded to include the effects of heat loss through the furnace walls and its effect on flame temperature profiles. Investigation of the combustion characteristics of coal-oil-water-air fuel mixtures was continued. Only through the use of non-equilibrium experiments can certain important combustion characteristics be studied, and computerized data acquisition is being developed to fully implement such methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-05-01
The new 1984 version of Coal Export Financing is published as a joint effort of the ARC and the U.S. Department of Commerce. It was updated to include information on new trends and developments that have occurred since late 1982 in coal-export financing as a result of the intense price competition from other coal-exporting nations. This includes new information on developments under the Export Trading Company Act of 1982, reverse investments, and barter/countertrade. Information previously provided on political and commercial risk insurance and on governmental assistance has been expanded to reflect the increasing importance of these areas. Any information onmore » banks providing coal-export financing services has been updated, as well as expanded to encompass the entire United States, rather than just the Appalachian region.« less
Process for changing caking coals to noncaking coals
Beeson, Justin L.
1980-01-01
Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.
Dai, S.; Ren, D.; Zhou, Y.; Chou, C.-L.; Wang, X.; Zhao, L.; Zhu, Xudong
2008-01-01
The mineralogy and geochemistry of a superhigh-organic-sulfur (SHOS) coal of Late Permian age from the Yanshan Coalfield, Yunnan Province, southwestern China, have been studied using optical microscope, low-temperature ashing plus X-ray diffraction analysis, scanning electron microscope equipped with energy-dispersive X-ray spectrometer, a sequential chemical extraction procedure, and inductively coupled plasma mass spectrometry. The M9 Coal from the Yanshan Coalfield is a SHOS coal that has a total sulfur content of 10.12%-11.30% and an organic sulfur content of 8.77%-10.30%. The minerals in the coal consist mainly of high-temperature quartz, sanidine, albite, muscovite, illite, pyrite, and trace amounts of kaolinite, plagioclase, akermanite, rutile, and dawsonite. As compared with ordinary worldwide (bituminous coals and anthracite) and Chinese coals, the M9 Coal is remarkably enriched in B (268????g/g), F (841????g/g), V (567????g/g), Cr (329????g/g), Ni (73.9????g/g), Mo (204????g/g), and U (153????g/g). In addition, elements including Se (25.2????g/g), Zr (262????g/g), Nb (20.1????g/g), Cd (2.07????g/g), and Tl (2.03????g/g) are also enriched in the coal. Occurrence of high-temperature quartz, sanidine, muscovite, and illite in the M9 Coal is evidence that there is a volcanic ash component in the coal that was derived from acid volcanic ashes fallen into the swamp during peat accumulation. Occurrence of albite and dawsonite in the coal and strong enrichment of some elements, including F, S, V, Cr, Ni, Mo and U, are attributed to the influence by submarine exhalation which invaded along with seawater into the anoxic peat swamp. Abundances of lithophile elements, including rare earth elements, Nb, Y, Zr, and TiO2, indicate that the silicate minerals in the coal were derived from the northern Vietnam Upland to the south of the basin. ?? 2008 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. Thismore » test was discontinued because of extremely poor performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, H.P.
1980-03-01
Performance tests using an 11 kw single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40 percent by weight micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 hrs at full load and 1400 rpm on all fuels except themore » 40% by weight slurry. This test was discontinued because of extremely poor performance.« less
Sreekanth, J; Cui, Tao; Pickett, Trevor; Rassam, David; Gilfedder, Mat; Barrett, Damian
2018-09-01
Large scale development of coal seam gas (CSG) is occurring in many sedimentary basins around the world including Australia, where commercial production of CSG has started in the Surat and Bowen basins. CSG development often involves extraction of large volumes of water that results in depressurising aquifers that overlie and/or underlie the coal seams thus perturbing their flow regimes. This can potentially impact regional aquifer systems that are used for many purposes such as irrigation, and stock and domestic water. In this study, we adopt a probabilistic approach to quantify the depressurisation of the Gunnedah coal seams and how this impacts fluxes to, and from the overlying Great Artesian Basin (GAB) Pilliga Sandstone aquifer. The proposed method is suitable when effects of a new resource development activity on the regional groundwater balance needs to be assessed and account for large scale uncertainties in the groundwater flow system and proposed activity. The results indicated that the extraction of water and gas from the coal seam could potentially induce additional fluxes from the Pilliga Sandstone to the deeper formations due to lowering pressure heads in the coal seams. The median value of the rise in the maximum flux from the Pilliga Sandstone to the deeper formations is estimated to be 85ML/year, which is considered insignificant as it forms only about 0.29% of the Long Term Annual Average Extraction Limit of 30GL/year from the groundwater management area. The probabilistic simulation of the water balance components indicates only small changes being induced by CSG development that influence interactions of the Pilliga Sandstone with the overlying and underlying formations and with the surface water courses. The current analyses that quantified the potential maximum impacts of resource developments and how they influences the regional water balance, would greatly underpin future management decisions. Copyright © 2018 Elsevier B.V. All rights reserved.
Boiler Briquette Coal versus Raw Coal: Part II-Energy, Greenhouse Gas, and Air Quality Implications.
Zhang, Junfeng; Ge, Su; Bai, Zhipeng
2001-04-01
The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO 2 emission, a 17% reduction in CO emission, a 63% reduction in SO 2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM 2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM 10 . These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM 10 mass emission and a 9-16% increase in fuel cost.
Zhang, J; Ge, S; Bai, Z
2001-04-01
The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost.
Occupational Respiratory Disease
... other particles. Types of occupational respiratory disease include: coal workers’ pneumoconiosis, also known as Black Lung Disease ... include: Dust from things such as wood, cotton, coal, asbestos, silica, and talc. Pesticides, drug or enzyme ...
Advanced Cogeneration Technology Economic Optimization Study (ACTEOS)
NASA Technical Reports Server (NTRS)
Nanda, P.; Ansu, Y.; Manuel, E. H., Jr.; Price, W. G., Jr.
1980-01-01
The advanced cogeneration technology economic optimization study (ACTEOS) was undertaken to extend the results of the cogeneration technology alternatives study (CTAS). Cost comparisons were made between designs involving advanced cogeneration technologies and designs involving either conventional cogeneration technologies or not involving cogeneration. For the specific equipment cost and fuel price assumptions made, it was found that: (1) coal based cogeneration systems offered appreciable cost savings over the no cogeneration case, while systems using coal derived liquids offered no costs savings; and (2) the advanced cogeneration systems provided somewhat larger cost savings than the conventional systems. Among the issues considered in the study included: (1) temporal variations in steam and electric demands; (2) requirements for reliability/standby capacity; (3) availability of discrete equipment sizes; (4) regional variations in fuel and electricity prices; (5) off design system performance; and (6) separate demand and energy charges for purchased electricity.
Coal resource assessments using coal availability and recoverability methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohrbacher, T.J.
1997-12-01
The U.S. Geological Survey (USGS), in conjunction with state geological surveys and other federal agencies, has initiated a study and developed methodology to reassess the nation`s major coal resources. This study differs from previous coal resource assessments of the USGS, U.S. Bureau of Mines, and the Department of Energy`s Energy Information Administration, because this program: (1) Identifies and characterizes the coal beds and coal zones that will provide the bulk of the nation`s coal-derived energy during the first quarter of the twenty-first century; (2) organizes geologic, chemical, environmental, and geographic information in digital format and makes these data available tomore » the public through the Internet or other digital media, such as CD ROMs; (3) includes coal resource availability and coal recoverability analyses for selected areas; (4) provides economic assessments and coal recoverability analyses for selected areas; (5) provides methodology to perform socio-economic impact analysis related to coal mining in specific geographical areas as small as a county.« less
Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion
Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.
2012-01-01
Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United States is the only nation to have collected such detailed information for mercury in both its coal and its utility emissions.
Anomalous Hall conductivity and electronic structures of Si-substituted Mn2CoAl epitaxial films
NASA Astrophysics Data System (ADS)
Arima, K.; Kuroda, F.; Yamada, S.; Fukushima, T.; Oguchi, T.; Hamaya, K.
2018-02-01
We study anomalous Hall conductivity (σAHC) and electronic band structures of Si-substituted Mn2CoAl (Mn2CoAl1 -xSix ). First-principles calculations reveal that the electronic band structure is like a spin-gapless system even after substituting a quaternary element of Si for Al up to x =0.2 in Mn2CoAl1 -xSix . This means that the Si substitution enables the Fermi-level shift without largely changing the electronic structures in Mn2CoAl . By using molecular beam epitaxy techniques, Mn2CoAl1 -xSix epitaxial films can be grown, leading to the systematic control of x (0 ⩽x ⩽0.3 ). In addition to the electrical conductivity, the values of σAHC for the Mn2CoAl1 -xSix films are similar to those in Mn2CoAl films shown in previous reports. We note that a very small σAHC of ˜1.1 S/cm is obtained for x = 0.225, and the sign of σAHC is changed from positive to negative at around x = 0.25. We discuss the origin of the sign reversal of σAHC as a consequence of the Fermi-level shift in Mn2CoAl . Considering the presence of the structural disorder in the Mn2CoAl1 -xSix films, we can conclude that the small value and sign reversal of σAHC are not related to the characteristics of spin-gapless semiconductors.
NASA Astrophysics Data System (ADS)
Tong, Yindong; Eichhorst, Terry; Olson, Michael R.; Rutter, Andrew P.; Shafer, Martin M.; Wang, Xuejun; Schauer, James J.
2014-03-01
In this study, we examined the heterogeneous reduction of Hg(II) on the coal fly ash samples and synthetic aerosols under different light conditions in a controlled laboratory reactor. Three types of coal fly ashes were studied: a high carbon fly ash from a stoker boiler, a low carbon/low sulfate fly ash from a pulverized coal combustor burning low sulfur coal, and a high sulfate fly ash from a pulverized coal combustor burning high sulfur coal. The rate of Hg(II) reduction on the three diverse fly ash samples was found to be relatively fast with an average half-life of 1.6 h under clear sky atmospheric conditions (under the irradiance of 1000 W/m2). The reduction rate in the low sulfate/low carbon fly ash was approximately 1.5 times faster than with the other coal fly ash samples. Synthetic aerosols made of carbon black and levoglucosan produced Hg(II) reduction rates similar to coal fly ashes. However, aerosols composed of adipic acid resulted in reduction rates that were 3-5 times faster. The sensitivity of adipic acid reduction to light source wavelength was found to be greater than for the coal fly ash and other synthetic aerosols. Aerosols made from the water extracts of coal fly ash samples produced reduction rates equal to or slightly higher than with the native fly ash suggesting that the soluble components of fly ash play a significant role in the reduction mechanism. The measured reduction rates are likely important in the chemical processing of mercury in power plant plumes and potentially in the atmosphere and should be considered for incorporation in atmospheric transport models that are used to understand the fate of atmospheric mercury.
NASA Technical Reports Server (NTRS)
Anderson, G. R., II
1981-01-01
The feasibility of utilizing a sensitized pick to discriminate between cutting coal and roof material during the longwall mining process was investigated. A conventional longwall mining pick was instrumented and cutting force magnitudes were determined for a variety of materials, including Illinois #6 coal, shale type materials, and synthetic coal/shale materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hur, Tae-Bong; Fazio, James; Romanov, Vyacheslav
Due to increasing atmospheric CO2 concentrations causing the global energy and environmental crises, geological sequestration of carbon dioxide is now being actively considered as an attractive option to mitigate greenhouse gas emissions. One of the important strategies is to use deep unminable coal seams, for those generally contain significant quantities of coal bed methane that can be recovered by CO2 injection through enhanced coal bed natural gas production, as a method to safely store CO2. It has been well known that the adsorbing CO2 molecules introduce structural deformation, such as distortion, shrinkage, or swelling, of the adsorbent of coal organicmore » matrix. The accurate investigations of CO2 sorption capacity as well as of adsorption behavior need to be performed under the conditions that coals deform. The U.S. Department of Energy-National Energy Technology Laboratory and Regional University Alliance are conducting carbon dioxide sorption isotherm experiments by using manometric analysis method for estimation of CO2 sorption capacity of various coal samples and are constructing a gravimetric apparatus which has a visual window cell. The gravimetric apparatus improves the accuracy of carbon dioxide sorption capacity and provides feasibility for the observation of structural deformation of coal sample while carbon dioxide molecules interact with coal organic matrix. The CO2 sorption isotherm measurements have been conducted for moist and dried samples of the Central Appalachian Basin (Russell County, VA) coal seam, received from the SECARB partnership, at the temperature of 55 C.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cronauer, D.C.
1984-05-01
This project was undertaken to understand the role of the coal liquefaction solvent through a study of the interaction between the hydrogen donor solvent characteristics and the heterofunctionality of the solvent. Specifically, hydroxyl- and nitrogen-containing solvents were studied and characterized. A series of coal liquefaction experiments were carried out at 450/sup 0/C in a continuous feed stirred-tank reactor (CSTR) to observe the effect of adding phenolics to anthracene oil (AO) and SRC-II recycle solvents. The addition of phenol to AO at a ratio of 5/65 resulted in a nominal increase in coal conversion to THF solubles, but the amount ofmore » asphaltenes more than doubled resulting in a sizable net loss of solvent. The addition of m-cresol to both AO and SRC-II solvents had a positive effect on coal conversion to both THF and pentane solubles (oils). The partial removal of an OH-concentrate from SRC-II solvent was carried out using Amberlyst IRA-904 ion exchange resin. The resin-treated oil was only marginally better than raw SRC-II recycle solvent for coal liquefaction. Hydroaromatics having nitrogen functionality should be good solvents for coal liquefaction considering their effective solvent power, ability to penetrate and swell coal, and their ability to readily transfer hydrogen, particularly in the presence of oxygen functionality. However, these benefits are overshadowed by the strong tendency of the nitrogen-containing species to adduct with themselves and coal-derived materials.« less
Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales
Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.
2002-01-01
We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roshchanka, Volha; Evans, Meredydd; Ruiz, Felicia
Coal production globally is projected to grow in the foreseeable future. Countries with heavy reliance on coal could reduce methane and other emissions through the capture and utilization of coal mine methane (CMM) in the short and medium term, while they pursue structural and long-term economic changes. Several countries have successfully implemented policies to promote CMM capture and utilization; however, some countries still struggle to implement projects. This paper outlines key factors to consider in adapting policies for CMM mitigation. The authors propose an approach for selecting adequate mechanisms for stimulating CMM mitigation that involves reviewing global best practices andmore » categorizing them functionally either as mechanisms needed to improve the underlying conditions or as CMM-specific policies. It is important to understand local policy frameworks and to consider whether it is more feasible to improve underlying policy conditions or to provide targeted incentives as an interim measure. Using Kazakhstan as a case study, the authors demonstrate how policymakers could assess the overall policy framework to find the most promising options to facilitate CMM projects. Kazakhstan’s emissions from underground coal mines have been increasing both in total and per tonne of coal production, while overall production has been declining. CMM mitigation presents an opportunity for the country to reduce its greenhouse gas emissions in the near and medium term, while the government pursues sustainable development goals. Analysis shows that policymakers in Kazakhstan can leverage existing policies to stimulate utilization by extending feed-in tariffs to cover CMM and by developing working methodologies for companies to obtain emission reduction credits from CMM projects.« less
Bioprocessing of lignite coals using reductive microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, D.L.
In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less
Hackley, Paul C.; Kolak, Jonathan J.
2008-01-01
This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.
Biosolubilization of coal by Candida in glucose limited cultures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitter, J.; Guillory, L.; Bose, N.K.
1990-01-01
Coal biodegradation is attracting the attention of many workers because of its significance for efficient bioconversion of coal into useful chemicals. The authors work is based upon the beneficiation of a fungus (candida) on subbituminous coal. Candida was grown on both solid and liquid sabouraud medium and the coal solubilizing activity was studied at varying glucose concentration and temperature. Lower glucose concentration and higher temperature enhanced coal solubilizing activity by this fungus. Preliminary work has begun on analyzing organic extractions (alumina chromatography) of the liquid produced after microbial solubilization, including elemental analysis, solubility, molecular weights and chemical structure. This preliminarymore » work suggests that the candida could metabolize naturally occurring coal as substrate.« less
Biological solubilization of low-rank coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, M.S.
1991-07-01
Low-ranked coals have been solubilized using cell-free extracts derived from liquid cultures of the white-rot fungus Trametes versicolor. The coal solubilizing agent (CSA) has been separated from the broth components and purified by several analytical techniques including rotary evaporation, reverse osmosis, and solvent extraction. The recrystallized CSA retains coal solubilizing activity. Results from polarography, FTIR, and x-ray crystallography confirm that the purified CSA crystals responsible for coal-solubilization are ammonium oxalate monohydrate. The mechanism of solubilization has been deduced to involve removal of divalent cations (particularly iron FE(III)) from low-rank coals. This is followed by dissolution of the macromolecular coal structure.more » 38 figs., 9 tabs.« less
Literature survey of properties of synfuels derived from coal
NASA Technical Reports Server (NTRS)
Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.
1980-01-01
A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.
Combined compressed air storage-low BTU coal gasification power plant
Kartsounes, George T.; Sather, Norman F.
1979-01-01
An electrical generating power plant includes a Compressed Air Energy Storage System (CAES) fueled with low BTU coal gas generated in a continuously operating high pressure coal gasifier system. This system is used in coordination with a continuously operating main power generating plant to store excess power generated during off-peak hours from the power generating plant, and to return the stored energy as peak power to the power generating plant when needed. The excess coal gas which is produced by the coal gasifier during off-peak hours is stored in a coal gas reservoir. During peak hours the stored coal gas is combined with the output of the coal gasifier to fuel the gas turbines and ultimately supply electrical power to the base power plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vories, K.C.
2003-07-01
Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal minemore » sites (K.C. Vories). The questions and answers are also included.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wimer, R.L.; Adams, M.A.; Jurich, D.M.
1981-02-01
This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to themore » Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.« less
DFT study of CO2 and H2O co-adsorption on carbon models of coal surface.
Gao, Zhengyang; Ding, Yi
2017-06-01
The moisture content of coal affects the adsorption capacity of CO 2 on the coal surface. Since the hydrogen bonds are formed between H 2 O and oxygen functional group, the H 2 O cluster more easily adsorbs on the coal micropore than CO 2 molecule. The coal micropores are occupied by H 2 O molecules that cannot provide extra space for CO 2 adsorption, which may leads to the reduction of CO 2 adsorption capacity. However, without considering factors of micropore and oxygen functional groups, the co-adsorption mechanisms of CO 2 and adsorbed H 2 O molecule are not clear. Density functional theory (DFT) calculations were performed to elucidate the effect of adsorbed H 2 O to CO 2 adsorption. This study reports some typical coal-H 2 O···CO 2 complexes, along with a detailed analysis of the geometry, energy, electrostatic potential (ESP), atoms in molecules (AIM), reduced density gradient (RDG), and energy decomposition analysis (EDA). The results show that H 2 O molecule can more stably adsorb on the aromatic ring surface than CO 2 molecule, and the absolute values of local ESP maximum and minimum of H 2 O cluster are greater than CO 2 . AIM analysis shows a detailed interaction path and strength between atoms in CO 2 and H 2 O, and RDG analysis shows that the interactions among CO 2 , H 2 O, and coal model belong to weak van der Waals force. EDA indicates that electrostatic and long-range dispersion terms play a primary role in the co-adsorption of CO 2 and H 2 O. According to the DFT calculated results without considering micropore structure and functional group, it is shown that the adsorbed H 2 O can promote CO 2 adsorption on the coal surface. These results demonstrate that the micropore factor plays a dominant role in affecting CO 2 adsorption capacity, the attractive interaction of adsorbed H 2 O to CO 2 makes little contribution.
National Coal Quality Inventory (NACQI)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Finkelman
2005-09-30
The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale,more » and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.« less
Retrofitted coal-fired firetube boiler and method employed therewith
Wagoner, Charles L.; Foote, John P.
1995-01-01
A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.
Coal-Gen attendees hear there's no magic bullet
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-09-15
Those attending COAL-GEN 2007 in August heard that there is no magic bullet for meeting the energy and infrastructure needs facing the USA. The article reports on the conference which addressed topics including development of supercritical circulating fluidized bed coal unit; IGCC projects, the importance of including carbon capture and sequestration, and the need to attract and train personnel to work in the power industry. 3 photos.
Coal Liquefaction desulfurization process
Givens, Edwin N.
1983-01-01
In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.
Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog
NASA Technical Reports Server (NTRS)
1980-01-01
The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.
Assessment of negotiation options for coal-lease sales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothkopf, M.H.; McGuire, C.B.
The Commission on Fair Market Value Policy for Federal Coal Leasing recommended that the government have authority to negotiate a fair price for coal leases when competitive bids cannot be obtained. This report analyzes the choices the government faces in designing a coal lease sale mechanism. It considers the impact of the alternatives on economic efficiency, government revenue, administrative workability, fairness and the appearance of fairness. The report concludes that there are advantageous ways for the government to negotiate coal leases when there is only one serious potential bidder for a lease. First, the report notes the advantages of negotiatingmore » exchanges that leave the government with economically logical potentially minable tracts. It also notes the advantages of negotiating shares for the ''cooperative leasing'' by auction of such tracts. For other one bidder tracts, the report concludes that there are potential advantages to ease negotiation provided that: (1) all negotiations are tentative subject to ''validation'' of their one bidder nature in a post-negotiation formal sale process, (2) the government negotiate on more leases than it will conclude, using whenever possible, a ''round-robin'' negotiation procedure, (3) government employees and not independent agents negotiate for the government, and (4) negotiations are narrowly confined to the amount of bonus. The report also suggests that the government may wish to consider use of final-offer arbitration on those leases, such as bypasses, on which both the government and the private party have high interest in reaching an agreement.« less
Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants
NASA Astrophysics Data System (ADS)
Sengupta, Ishita
Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.
Wetzel, Kim L.; Bettandorff, J.M.
1986-01-01
Techniques are presented for estimating various streamflow characteristics, such as peak flows, mean monthly and annual flows, flow durations, and flow volumes, at ungaged sites on unregulated streams in the Eastern Coal region. Streamflow data and basin characteristics for 629 gaging stations were used to develop multiple-linear-regression equations. Separate equations were developed for the Eastern and Interior Coal Provinces. Drainage area is an independent variable common to all equations. Other variables needed, depending on the streamflow characteristic, are mean annual precipitation, mean basin elevation, main channel length, basin storage, main channel slope, and forest cover. A ratio of the observed 50- to 90-percent flow durations was used in the development of relations to estimate low-flow frequencies in the Eastern Coal Province. Relations to estimate low flows in the Interior Coal Province are not presented because the standard errors were greater than 0.7500 log units and were considered to be of poor reliability.
NASA Astrophysics Data System (ADS)
Liu, Junhui; Yang, Jianlian; Wang, Jiangbo; Yang, Meng; Tian, Chunzheng; He, Xinhui
2018-01-01
With grid-connected scale of clean energy such as wind power and photovoltaic power expanding rapidly and cross-province transmission scale being bigger, utilization hours of coal-fired power generation units become lower and lower in the context of the current slowdown in electricity demand. This paper analyzes the influencing factors from the three aspects of demand, supply and supply and demand balance, and the mathematical model has been constructed based on the electric energy balance. The utilization hours of coal-fired power generation units have been solved considering the relationship among proportion of various types of power installed capacity, the output rate and utilization hours. By carrying out empirical research in Henan Province, the utilization hours of coal-fired units of Henan Province in 2020 has been achieved. The example validates the practicability and the rationality of the model, which can provide a basis for the decision-making for coal-fired power generation enterprises.
Evaluation of Proposed Solutions to Global Warming, Air Pollution, and Energy Security
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.
2008-12-01
This study reviews and ranks major proposed solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-E85 and cellulosic E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge. Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs. Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs. Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs. Tier 4 includes corn- and cellulosic-E85. Wind-BEVs ranked first in six out of 11 categories, including the two most important, mortality and climate damage reduction. Although HFCVs are less efficient than BEVs, wind- HFCVs ranked second among all combinations. Tier 2 options provide significant benefits and are recommended. Tier 3 options are less desirable. However, hydroelectricity, which was ranked ahead of coal- CCS and nuclear with respect to climate and health, is an excellent load balancer, thus strongly recommended. The Tier-4 combinations (cellulosic- and corn-E85) were ranked lowest overall and with respect to climate, air pollution, land use, wildlife damage, and chemical waste. Cellulosic-E85 ranked lower than corn-E85 overall, primarily due to its potentially larger land footprint based on recent data and its higher upstream air pollution emissions than corn-E85. Whereas cellulosic-E85 may cause the greatest average human mortality, nuclear-BEVs cause the greatest upper-limit mortality risk due to the expansion of plutonium separation and uranium enrichment in nuclear energy facilities worldwide. Wind-BEVs and CSP-BEVs cause the least mortality. The footprint area of wind-BEVs is 2-6 orders of magnitude less than that of any other option. Because of their low footprint and pollution, wind-BEVs cause the least wildlife loss. The largest consumer of water is corn-E85. The smallest are wind-, tidal-, and wave-BEVs. In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to power electricity for BEVs and HFCVs and for general use in the residential, industrial, and commercial sectors will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit, and the biofuel options provide little or no benefit and greater negative impacts.
Trippi, Michael H.; Belkin, Harvey E.
2015-09-10
Geographic information system (GIS) information may facilitate energy studies, which in turn provide input for energy policy decisions. The U.S. Geological Survey (USGS) has compiled GIS data representing coal mines, deposits (including those with and without coal mines), occurrences, areas, basins, and provinces of Mongolia as of 2009. These data are now available for download, and may be used in a GIS for a variety of energy resource and environmental studies of Mongolia. Chemical data for 37 coal samples from a previous USGS study of Mongolia (Tewalt and others, 2010) are included in a downloadable GIS point shapefile and shown on the map of Mongolia. A brief report summarizes the methodology used for creation of the shapefiles and the chemical analyses run on the samples.
Evaluation of an enhanced gravity-based fine-coal circuit for high-sulfur coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, M.K.; Samal, A.R.; Palit, A.
One of the main objectives of this study was to evaluate a fine-coal cleaning circuit using an enhanced gravity separator specifically for a high sulfur coal application. The evaluation not only included testing of individual unit operations used for fine-coal classification, cleaning and dewatering, but also included testing of the complete circuit simultaneously. At a scale of nearly 2 t/h, two alternative circuits were evaluated to clean a minus 0.6-mm coal stream utilizing a 150-mm-diameter classifying cyclone, a linear screen having a projected surface area of 0.5 m{sup 2}, an enhanced gravity separator having a bowl diameter of 250 mmmore » and a screen-bowl centrifuge having a bowl diameter of 500 mm. The cleaning and dewatering components of both circuits were the same; however, one circuit used a classifying cyclone whereas the other used a linear screen as the classification device. An industrial size coal spiral was used to clean the 2- x 0.6-mm coal size fraction for each circuit to estimate the performance of a complete fine-coal circuit cleaning a minus 2-mm particle size coal stream. The 'linear screen + enhanced gravity separator + screen-bowl circuit' provided superior sulfur and ash-cleaning performance to the alternative circuit that used a classifying cyclone in place of the linear screen. Based on these test data, it was estimated that the use of the recommended circuit to treat 50 t/h of minus 2-mm size coal having feed ash and sulfur contents of 33.9% and 3.28%, respectively, may produce nearly 28.3 t/h of clean coal with product ash and sulfur contents of 9.15% and 1.61 %, respectively.« less
Emission Control Technologies for Thermal Power Plants
NASA Astrophysics Data System (ADS)
Nihalani, S. A.; Mishra, Y.; Juremalani, J.
2018-03-01
Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.
Life-cycle analysis of alternative aviation fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-07-23
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
Life-Cycle Analysis of Alternative Aviation Fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-06-01
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.
Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun
2015-12-01
Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.
ASTM clustering for improving coal analysis by near-infrared spectroscopy.
Andrés, J M; Bona, M T
2006-11-15
Multivariate analysis techniques have been applied to near-infrared (NIR) spectra coals to investigate the relationship between nine coal properties (moisture (%), ash (%), volatile matter (%), fixed carbon (%), heating value (kcal/kg), carbon (%), hydrogen (%), nitrogen (%) and sulphur (%)) and the corresponding predictor variables. In this work, a whole set of coal samples was grouped into six more homogeneous clusters following the ASTM reference method for classification prior to the application of calibration methods to each coal set. The results obtained showed a considerable improvement of the error determination compared with the calibration for the whole sample set. For some groups, the established calibrations approached the quality required by the ASTM/ISO norms for laboratory analysis. To predict property values for a new coal sample it is necessary the assignation of that sample to its respective group. Thus, the discrimination and classification ability of coal samples by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) in the NIR range was also studied by applying Soft Independent Modelling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) techniques. Modelling of the groups by SIMCA led to overlapping models that cannot discriminate for unique classification. On the other hand, the application of Linear Discriminant Analysis improved the classification of the samples but not enough to be satisfactory for every group considered.
Analysis of the holistic impact of the Hydrogen Economy on the coal industry
NASA Astrophysics Data System (ADS)
Lusk, Shannon Perry
As gas prices soar and energy demand continues to grow amidst increasingly stringent environmental regulations and an assortment of global pressures, implementing alternative energy sources while considering their linked economic, environmental and societal impacts becomes a more pressing matter. The Hydrogen Economy has been proposed as an answer to meeting the increasing energy demand for electric power generation and transportation in an environmentally benign way. Based on current hydrogen technology development, the most practical feedstock to fuel the Hydrogen Economy may prove to be coal via hydrogen production at FutureGen plants. The planned growth of the currently conceived Hydrogen Economy will cause dramatic impacts, some good and some bad, on the economy, the environment, and society, which are interlinked. The goal of this research is to provide tools to inform public policy makers in sorting out policy options related to coal and the Hydrogen Economy. This study examines the impact of a transition to a Hydrogen Economy on the coal industry by creating FutureGen penetration models, forecasting coal MFA's which clearly provide the impact on coal production and associated environmental impacts, and finally formulating a goal programming model that seeks the maximum benefit to society while analyzing the trade-offs between environmental, social, and economical concerns related to coal and the Hydrogen Economy.
Herndon, J Marvin
2016-01-01
U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially grave human health implications including cancer, cardiovascular disease, diabetes, respiratory diseases, reduced male fertility, and stroke. The fibrous mesh data admit the possibility of environmentally disastrous formation of methylmercury and ozone-depleting chlorinated-fluorinated hydrocarbons in jet exhaust. Geophysical implications include atmospheric warming and rainfall retardation.
Warwick, Peter D.; Aubourg, Claire E.; Willett, Jason C.
1999-01-01
The coal-bearing Gulf of Mexico Coastal Plain of North America contains a variety of depositional settings and coal types. The coal-bearing region extends westward from Alabama and Mississippi, across Louisiana to the northern part of the Mississippi Embayment, and then southward to eastern Arkansas, Texas and northern Mexico (fig. 1). Most of the coal currently mined in Texas is lignite from the upper part of the Wilcox Group (Paleocene-Eocene) and, in Louisiana, lignite is mined from the lower part of the Wilcox (fig. 2). Gulf Coast coal is used primarily as fuel for mine-mouth electric plants. On this field trip we will visit the only two non-Wilcox coal mining intervals in the Texas-Louisiana Coastal Plain; these include the San Pedro - Santo Tomas bituminous cannel-like coal zone of the Eocene Claiborne Group, and the San Miguel lignite coal zone of the Eocene Jackson Group (fig. 2). Other coal-mining areas in northern Mexico are currently producing bituminous coal from the Cretaceous Olmos Formation of the Navaro Group (fig. 2).
Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.
2006-01-01
In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).
Comprehensive model for predicting elemental composition of coal pyrolysis products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricahrds, Andrew P.; Shutt, Tim; Fletcher, Thomas H.
Large-scale coal combustion simulations depend highly on the accuracy and utility of the physical submodels used to describe the various physical behaviors of the system. Coal combustion simulations depend on the particle physics to predict product compositions, temperatures, energy outputs, and other useful information. The focus of this paper is to improve the accuracy of devolatilization submodels, to be used in conjunction with other particle physics models. Many large simulations today rely on inaccurate assumptions about particle compositions, including that the volatiles that are released during pyrolysis are of the same elemental composition as the char particle. Another common assumptionmore » is that the char particle can be approximated by pure carbon. These assumptions will lead to inaccuracies in the overall simulation. There are many factors that influence pyrolysis product composition, including parent coal composition, pyrolysis conditions (including particle temperature history and heating rate), and others. All of these factors are incorporated into the correlations to predict the elemental composition of the major pyrolysis products, including coal tar, char, and light gases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuempel, E.D.; Wheeler, M.W.; Smith, R.J.
Previous studies have shown associations between dust exposure or lung burden and emphysema in coal miners, although the separate contributions of various predictors have not been clearly demonstrated. The objective was to quantitatively evaluate the relationship between cumulative exposure to respirable coal mine dust, cigarette smoking, and other factors on emphysema severity. The study group included 722 autopsied coal miners and nonminers in the United States. Data on work history, smoking, race, and age at death were obtained from medical records and questionnaire completed by next-of-kin. Emphysema was classified and graded using a standardized schema. Job-specific mean concentrations of respirablemore » coal mine dust were matched with work histories to estimate cumulative exposure. Relationships between various metrics of dust exposure (including cumulative exposure and lung dust burden) and emphysema severity were investigated in weighted least squares regression models. Emphysema severity was significantly elevated in coal miners compared with nonminers among ever- and never-smokers (P < 0.0001). Cumulative exposure to respirable coal mine dust or coal dust retained in the lungs were significant predictors of emphysema severity (P < 0.0001) after accounting for cigarette smoking, age at death, and race. The contributions of coal mine dust exposure and cigarette smoking were similar in predicting emphysema severity averaged over this cohort. Coal dust exposure, cigarette smoking, age, and race are significant and additive predictors of emphysema severity in this study.« less
Qiao, Nan; Wang, Cong; Wang, Tong; Huang, Jian-Jun; Sun, Chen-Ming; Liang, Jie; Liu, Xiao-Meng
2015-01-01
Objectives To assess the relationships between the risk factors and the incidence of nonfatal occupational injury of coal mine workers of Shanxi Province. Methods A cross-sectional study was conducted from July 2013 to December 2013, and 4319 workers were recruited from more than 200,000 coal mine employees who are exposed to continuous potential risk of occupational injuries by using a two-stage stratified cluster sampling method. Trained interviewers having necessary medical knowledge conducted face-to-face interviews with the participants. Univariate and multivariable logistic regression models were used to estimate the odds ratio (OR) and the 95% confidence interval (CI). Results A total number of 3618 effective respondents were got from 4319 participants (83.77%) and the mean age of the participants was 41.5 years with the standard deviation of 8.65. Significant crude odds ratios were observed for all factors considered except for marital status, education, work duration, BMI, EPQ-RSC(P) scale and EPQ-RSC(L) scale. Results from multivariable logistic regression model showed significant adjusted odds ratios for risk factors including gender (female vs male 0.275, 0.094–0.800), age (≥55 vs ≤25yr 0.169, 0.032–0.900), work type (light physical labor vs heavy physical labor 0.504, 0.328–0.774), workplace (underground auxiliary vs underground front-line 0.595, 0.385–0.919), length of shiftwork experience (0~5yr vs no shift 2.075, 1.287–3.344 and ≥15yr vs no shift 2.076, 1.230–3.504) and EPQ-RSC(E) score (extraversion vs introversion 0.538, 0.334–0.867). Conclusions Several risk factors of nonfatal occupational injury were identified including male, age, heavy physical labor, underground front-line, length of shiftwork experience and introversion. The coal mining enterprises should pay attention to controlling the hazards associated with frontline physical work. Workers’ behaviors, life styles and personality traits should also be considered, so that the enterprises could set achievable targets for workers and lessen the exposed period to the risky underground workstation. PMID:26230266
Experience in feeding coal into a liquefaction process development unit
NASA Technical Reports Server (NTRS)
Akhtar, S.; Friedman, S.; Mazzocco, N. J.; Yavorsky, P. M.
1977-01-01
A system for preparing coal slurry and feeding it into a high pressure liquefaction plant is described. The system was developed to provide supporting research and development for the Bureau of Mines coal liquefaction pilot plant. Operating experiences are included.
Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie
2016-01-01
This research was aimed at estimating possible Coal workers’ pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males’ life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China. PMID:26845337
Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie
2016-01-01
This research was aimed at estimating possible Coal workers' pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males' life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China.
Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.
León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas
2016-12-01
Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.
Combustion inorganic transformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, S.A.; Sweeny, P.G.; Abrahamson, H.B.
1988-04-01
The overall goal of the project is to develop a unified picture of the physical and chemical changes that occur in coal inorganic matter during combustion. The research is centered on two main tasks. Task 3.2A deals with the use of laser-induced fluorescence spectroscopy (LIFS) to study the release of sodium from various model compounds and coal during combustion in a flame. The vaporized or released sodium is considered to be an important factor in the formation of ash fouling deposits in full-scale utility boilers. Task 3.2B will study changes in the morphology and chemical associations of inorganic components inmore » coals during combustion in a drop-tube furnace designed to simulate the time-temperature profile of a pulverized coal-fired utility boiler. Results are described. 18 refs., 51 figs., 28 tabs.« less
Van Hook, R I
1979-01-01
This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619
Developing technologies for synthetic fuels
NASA Astrophysics Data System (ADS)
Sprow, F. B.
1981-05-01
After consideration of a likely timetable for the development of a synthetic fuels industry and its necessary supporting technology, the large variety of such fuels and their potential roles is assessed along with their commercialization outlook. Among the fuel production methods considered are: (1) above-ground retorting of oil shale; (2) in-situ shale retorting; (3) open pit mining of tar sands; (4) in-situ steam stimulation of tar sands; (5) coal gasification; (6) methanol synthesis from carbon monoxide and hydrogen; and (7) direct coal liquefaction by the hydrogenation of coal. It is shown that while the U.S. has very limited resource bases for tar sands and heavy crudes, the abundance of shale in the western states and the abundance and greater geographical dispersion of coal will make these the two most important resources of a future synthetic fuels industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.
The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less
Coal-oil coprocessing at HTI - development and improvement of the technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stalzer, R.H.; Lee, L.K.; Hu, J.
1995-12-31
Co-Processing refers to the combined processing of coal and petroleum-derived heavy oil feedstocks. The coal feedstocks used are those typically utilized in direct coal liquefaction: bituminous, subbituminous, and lignites. Petroleum-derived oil, is typically a petroleum residuum, containing at least 70 W% material boiling above 525{degrees}C. The combined coal and oil feedstocks are processed simultaneously with the dual objective of liquefying the coal and upgrading the petroleum-derived residuum to lower boiling (<525{degrees}C) premium products. HTI`s investigation of the Co-Processing technology has included work performed in laboratory, bench and PDU scale operations. The concept of co-processing technology is quite simple and amore » natural outgrowth of the work done with direct coal liquefaction. A 36 month program to evaluate new process concepts in coal-oil coprocessing at the bench-scale was begun in September 1994 and runs until September 1997. Included in this continuous bench-scale program are provisions to examine new improvements in areas such as: interstage product separation, feedstock concentrations (coal/oil), improved supported/dispersed catalysts, optimization of reactor temperature sequencing, and in-line hydrotreating. This does not preclude other ideas from DOE contracts and other sources that can lead to improved product quality and economics. This research work has led to important findings which significantly increased liquid yields, improved product quality, and improved process economics.« less
Schwartz, Grace E.; Hower, James C.; Phillips, Allison L.; ...
2018-01-23
The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosmsmore » on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, D.L.
In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coalmore » depolymerizing enzymes.« less
NASA Astrophysics Data System (ADS)
Koyunoglu, Cemil; Karaca, Hüseyin
2017-12-01
Given the high cost of the tetraline solvent commonly used in liquefaction, the use of manure with EL is an important factor when considering the high cost of using tetraline as a hydrogen transfer source. In addition, due to the another cost factor which is the catalyst prices, red mud (commonly used, produced as a byproduct in the production of aluminium) is reduced cost in the work of liquefaction of coal, biomass, even coal combined biomass, corresponding that making the EL liquefaction an agenda for our country is another important factor. Conditions for liquefaction experiments conducted for hydrogen transfer from manure to coal; Catalyst concentration of 9%, liquid/solid ratio of 3/1, reaction time of 60 min, fertilizer/lignite ratio of 1/3, and the reaction temperature of 400 °C, the stirred speed of 400 rpm and the initial nitrogen pressure of 20 bar was fixed. In order to demonstrate the hydrogen, transfer from manure to coal, coal is used solely, by using tetraline (also known as a hydrogen carrier) and distilled water which is not hydrogen donor as a solvent in the co-liquefaction of experiments, and also the liquefaction conditions are carried out under an inert (N2) gas atmosphere. According to the results of the obtained liquefaction test; using tetraline solvent the total liquid product conversion percentage of the oil + gas conversion was 38.3 %, however, the results of oil+gas conversion obtained using distilled water and EL combined with manure the total liquid product conversion percentage was 7.4 %. According to the results of calorific value and elemental analysis, only the ratio of (H/C)atomic of coal obtained by using tetraline increased with the liquefaction of manure and distilled water. The reason of the increase in the amount of hydrogen due to hydrogen transfer from the manure on the solid surface of the coal, and also on the surface of the inner pore of the coal during the liquefaction, brings about the evaluation of the coal as a structure involved in the recycling through the liquefaction plant if it is being installed. As a result of this study, results obtained from oil + gas data shows that when distilled water is used instead of tetraline during liquefaction of EL combined with manure, abundant crude hydrogen transfer takes place not because of using distilled water as a solvent but only with manure considered as a hydrogen sources. Furthermore, while adding manure into coal of liquefaction is also an alternative for current oil production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindahl, P.C.
A proposed American Society for Testing and Materials (ASTM) method for the determination of arsenic and selenium content in coal has been used and evaluated in the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) as part of an interlaboratory study. Coal is conducted with Eschka's mixture (MgO + Na/sub 2/CO/sub 3/), followed by determination of the aresnic and selenium content by hydride generation/atomic absorption spectrophotometry. The method was evaluated on a series of coals, including two National Bureau of Standards-Standards Reference Material (NBS-SRM) coals and twelve ASTM coal samples. Comparison of ACL/ANL arsenic and selenium data for themore » suite of coal analyzed showed excellent agreement with certified values for the NBS-SRM coals and with interlaboratory data from five other laboratories for the ASTM coals. 11 refs., 3 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Ji, Zhong-Min; Chen, Zhi-Jian; Pan, Jie-Nan; Niu, Qing-He
2017-12-01
As the world's largest coal producer and consumer, China accounts for a relatively high proportion of methane emissions from coal mines. Several estimation methods had been established for the coal mine methane (CMM) emission. However, with large regional differences, various reservoir formation types of coalbed methane (CBM) and due to the complicated geological conditions in China, these methods may be deficient or unsuitable for all the mining areas (e.g. Jiaozuo mining area). By combing the CMM emission characteristics and considering the actual situation of methane emissions from underground coal mine, we found that the methane pre-drainage is a crucial reason creating inaccurate evaluating results for most estimation methods. What makes it so essential is the extensive pre-drainage quantity and its irrelevance with annual coal production. Accordingly, the methane releases were divided into two categories: methane pre-drainage and methane release during mining. On this basis, a pioneering method for estimating CMM emissions was proposed. Taking the Yanma coal mine in the Jiaozuo mining area as a study case, the evaluation method of the pre-drainage methane quantity was established after the correlation analysis between the pre-drainage rate and time. Thereafter, the mining activity influence factor (MAIF) was first introduced to reflect the methane release from the coal and rock seams around where affected by mining activity, and the buried depth was adopted as the predictor of the estimation for future methane emissions. It was verified in the six coal mines of Jiaozuo coalfield (2011) that the new estimation method has the minimum errors of 12.11%, 9.23%, 5.77%, -5.20%, -8.75% and 4.92% respectively comparing with other methods. This paper gives a further insight and proposes a more accurate evaluation method for the CMM emissions, especially for the coal seams with low permeability and strong tectonic deformation in methane outburst coal mines.
43 CFR 3430.3-2 - Environmental analysis.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Juan Regional Coal Environmental Impact Statement (March 1984), the Savery Coal EIS (July 1983), and... impact statement on the application. (b) The environmental analysis may be conducted in conjunction with and included as part of the environmental impact statement required for coal activity planning under...
43 CFR 3430.3-2 - Environmental analysis.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Juan Regional Coal Environmental Impact Statement (March 1984), the Savery Coal EIS (July 1983), and... impact statement on the application. (b) The environmental analysis may be conducted in conjunction with and included as part of the environmental impact statement required for coal activity planning under...
43 CFR 3430.3-2 - Environmental analysis.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Juan Regional Coal Environmental Impact Statement (March 1984), the Savery Coal EIS (July 1983), and... impact statement on the application. (b) The environmental analysis may be conducted in conjunction with and included as part of the environmental impact statement required for coal activity planning under...
Code of Federal Regulations, 2014 CFR
2014-07-01
... including, with respect to leased Federal coal, the Mineral Leasing Act and its implementing regulations... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.5... official action on behalf of a Federal agency that has administrative jurisdiction over Federal lands. Coal...
Code of Federal Regulations, 2011 CFR
2011-07-01
... including, with respect to leased Federal coal, the Mineral Leasing Act and its implementing regulations... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.5... official action on behalf of a Federal agency that has administrative jurisdiction over Federal lands. Coal...
Code of Federal Regulations, 2012 CFR
2012-07-01
... including, with respect to leased Federal coal, the Mineral Leasing Act and its implementing regulations... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.5... official action on behalf of a Federal agency that has administrative jurisdiction over Federal lands. Coal...
Code of Federal Regulations, 2013 CFR
2013-07-01
... including, with respect to leased Federal coal, the Mineral Leasing Act and its implementing regulations... PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS ON FEDERAL LANDS § 740.5... official action on behalf of a Federal agency that has administrative jurisdiction over Federal lands. Coal...
DOT National Transportation Integrated Search
2011-04-01
Leaching of trace elements may raise environmental concerns when using coal fly ash in road construction. US EPA is in the process : of creating the first national rule on coal ash management, including beneficial use. Meanwhile, driven by the tighte...
PLANNING STUDY TO MODEL AND MONITOR COAL PILE RUNOFF. PHASE I
The report describes a planning study for predicting and monitoring the hydrologic and chemical characteristics of effluent streams resulting from precipitation impacting on open storage of coal. It includes: a survey of utilities on storage habits and treatment systems for coal ...
Retrofitted coal-fired firetube boiler and method employed therewith
Wagoner, C.L.; Foote, J.P.
1995-07-04
A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.
RESEARCH TO IDENTIFY COMPONENTS OF ENERGY-RELATED WASTES: A STATE-OF-THE-ART REPORT
Pertinent abstracts from a survey of current (post-1976) research projects are categorized according to energy-related activity. Subjects include coal strip mines, oil refineries, oil shale operations, coal-fired power plants, geothermal energy production, coal liquefaction plant...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2006-07-01
A variety of papers/posters were presented on topics concerning power generation, including solid oxide fuel cells, hydrogen production, mercury as a combustion product, carbon dioxide separation from flue gas. A total of 31 presentations in slide/overview/viewgraph form and with a separate abstract are available online (one in abstract form only) and 24 poster papers (text). In addition 41 abstracts only are available. Papers of particular interest include: Hydrogen production from hydrogen sulfide in IGCC power plants; Oxidation of mercury in products of coal combustion; Computer aided design of advanced turbine aerofoil alloys for industrial gas turbines in coal fired environments;more » Developing engineered fuel using flyash and biomass; Conversion of hydrogen sulfide in coal gases to elemental sulfur with monolithic catalysts; Intelligent control via wireless sensor networks for advanced coal combustion systems; and Investment of fly ash and activated carbon obtained from pulverized coal boilers (poster).« less
Diverse Bacteria with Lignin Degrading Potentials Isolated from Two Ranks of Coal
Wang, Lu; Nie, Yong; Tang, Yue-Qin; Song, Xin-Min; Cao, Kun; Sun, Li-Zhu; Wang, Zhi-Jian; Wu, Xiao-Lei
2016-01-01
Taking natural coal as a “seed bank” of bacterial strains able to degrade lignin that is with molecular structure similar to coal components, we isolated 393 and 483 bacterial strains from a meager lean coal sample from Hancheng coalbed and a brown coal sample from Bayannaoer coalbed, respectively, by using different media. Statistical analysis showed that isolates were significantly more site-specific than medium-specific. Of the 876 strains belonging to 27 genera in Actinobacteria, Firmicutes, and Proteobacteria, 612 were positive for lignin degradation function, including 218 strains belonging to 35 species in Hancheng and 394 strains belonging to 19 species in Zhongqi. Among them, the dominant lignin-degrading strains were Thauera (Hancheng), Arthrobacter (Zhongqi) and Rhizobium (both). The genes encoding the laccases- or laccase-like multicopper oxidases, key enzymes in lignin production and degradation, were detected in three genera including Massila for the first time, which was in high expression by real time PCR (qRT-PCR) detection, confirming coal as a good seed bank. PMID:27667989
Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H
2012-10-01
The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
Coal-bed gas resources of the Rocky Mountain region
Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.
2001-01-01
The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.
Demonstrated reserve base for coal in New Mexico. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, G.K.
1995-02-01
The new demonstrated reserve base estimate of coal for the San Juan Basin, New Mexico, is 11.28 billion short tons. This compares with 4.429 billion short tons in the Energy Information Administration`s demonstrated reserve base of coal as of January 1, 1992 for all of New Mexico and 2.806 billion short tons for the San Juan Basin. The new estimate includes revised resource calculations in the San Juan Basin, in San Juan, McKinley, Sandoval, Rio Arriba, Bernalillo and Cibola counties, but does not include the Raton Basin and smaller fields in New Mexico. These estimated {open_quotes}remaining{close_quotes} coal resource quantities, however,more » include significant adjustments for depletion due to past mining, and adjustments for accessibility and recoverability.« less
1990-08-17
Disparity in Current Coal Prices, Extraction Costs Detailed [GAZETA BANKOWA 1-7 Jul] 29 Employment Prospects for Post-Secondary-School Graduates... grapes , only in reverse... Those who fail to achieve it probably consider it truly sweet... [Antall] Perhaps. [Kristof] I still feel that it is...Last spring the mines were chockfull with coal, so much that they had to curtail extraction , but in the last days of June enormously long queues for
Yun, Yang; Gao, Rui; Yue, Huifeng; Liu, Xiaofang; Li, Guangke; Sang, Nan
2017-02-15
The total accumulative stockpiles of gangue in China comprise 4.5billion metric tons, and approximately 659million tons of additional gangue are generated per year. Considering the stacking characteristics are highly heterogeneous, the potential cancer risks from the presence of polycyclic aromatic hydrocarbons (PAHs) remain elusive. This study aimed to determine whether PAH-containing soil around coal gangue stacking areas poses a potential cancer risk and contributes to cancer cell metastasis. The results indicate that eighteen PAHs, primarily originated from coal gangue, exhibited distance variations from the coal gangues to the downstream villages, and the abandoned colliery posed increased potential carcinogenic risks for humans as a result of long-term stacking of coal gangue. Furthermore, soil samples stimulated HepG2 cell migration and invasion in a PAH-dependent manner, and the action was involved in PPARγ-mediated epithelial to mesenchymal transition (EMT) modulation. These findings highlight the potential cancer risk of PAH-containing soil samples around coal gangue stacking areas, and identify important biomarkers underlying the risk and targets preventing the outcomes in polluted areas. Copyright © 2016 Elsevier B.V. All rights reserved.
The methods of receiving coal water suspension and its use as the modifying additive in concrete
NASA Astrophysics Data System (ADS)
Buyantuyev, S. L.; Urkhanova, L. A.; Lkhasaranov, S. A.; Stebenkova, Y. Y.; Khmelev, A. B.; Kondratenko, A. S.
2017-01-01
Results of research of the coal water suspension (CWS) from a cake received in the electrodigit ways in the fluid environment and gas are given in article and also the possibilities of its use as the modifying additive in concrete are considered. Use of a coal cake is perspective as it is a withdrawal of the coal and concentrating enterprises and has extremely low cost. Methods of receiving CWS and possibility of formation of carbon nanomaterials (CNM) are given in their structure. Research and the analysis of a microstructure of a surface of exemplars before electrodigit processing, their element structure, dependence of durability of a cement stone on a look and quantity of an additive of CWS is conducted. For modification of cement the carbon nanomaterials received from the following exemplars of water coal suspensions were used: foams from a cake from a scrubber of the plasma modular reactor, coal water suspension from a cake from electrodigit installation. The product which can find further application for a power engineering as fuel for combustion, and also in structural materials science, in particular, as the modifying additive in concrete allows to receive these methods.
Chemicals from low temperature liquid-phase cracking of coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Y.; Kodera, Y.; Kamo, T.
1999-07-01
Mild gasification and low temperature pyrolysis are considered to be the most promising process for high-moisture subbituminous and lignite coal to produce upgraded solid fuel with high heating value and low sulfur, and to produce a useful liquid product. However effective technology to prevent spontaneous combustion of solid product and to utilize oxygen-rich liquid product has not yet been reported to enhance commercial feasibility of these process. In this study, liquid-phase cracking of low rank coal at 350--450 C under 2 MPa of initial nitrogen atmosphere has been studied to produce upgraded coal and value added liquid product. Liquid-phase crackingmore » of Wyoming subbituminous Buckskin coal using iron oxide catalyst in the presence of t-decalin at 440C gave 10 wt% of liquid product, 12 wt% of gases and 74 wt% of upgraded coal with small amount of water. Gaseous product consisted of mainly carbon dioxide (62wt%) and methane. Therefore, cracking of carboxylic function took place effectively in these conditions. Liquid product contains BTX, phenols and alkylphenols. Concentrated chemicals of BTX, phenol and cresols from the liquid products by hydrocracking and hydrotreating will be discussed.« less
GIS Representation of Coal-Bearing Areas in North, Central, and South America
Tewalt, Susan J.; Kinney, Scott A.; Merrill, Matthew D.
2008-01-01
Worldwide coal consumption and international coal trade are projected to increase in the next several decades (Energy Information Administration, 2007). A search of existing literature indicates that in the Western Hemisphere, coal resources are known to occur in about 30 countries. The need exists to be able to depict these areas in a digital format for use in Geographic Information System (GIS) applications at small scales (large areas) and in visual presentations. Existing surficial geology GIS layers of the appropriate geologic age have been used as an approximation to depict the extent of coal-bearing areas in North, Central, and South America, as well as Greenland (fig. 1). Global surficial geology GIS data were created by the U.S. Geological Survey (USGS) for use in world petroleum assessments (Hearn and others, 2003). These USGS publications served as the major sources for the selection and creation of polygons to represent coal-bearing areas. Additional publications and maps by various countries and agencies were also used as sources of coal locations. GIS geologic polygons were truncated where literature or hardcopy maps did not indicate the presence of coal. The depicted areas are not adequate for use in coal resource calculations, as they were not adjusted for geologic structure and do not include coal at depth. Additionally, some coal areas in Central America could not be represented by the mapped surficial geology and are shown only as points based on descriptions or depictions from scientific publications or available maps. The provided GIS files are intended to serve as a backdrop for display of coal information. Three attributes of the coal that are represented by the polygons or points include geologic age (or range of ages), published rank (or range of ranks), and information source (published sources for age, rank, or physical location, or GIS geology base).
Trends in coal use - global, EU and Poland
NASA Astrophysics Data System (ADS)
Suwała, Wojciech; Wyrwa, Artur; Olkuski, Tadeusz
2017-11-01
That aim of this paper is to compare trends in global, European use of coal with tendencies in Poland, one of heavy coal dependent countries. Polish power generation is unique among OECD countries, the share of both hard coal and lignite in power generation reaches 81% [1]. Climate policy of European Union is to phase out intensive greenhouse gases sectors, thus to transform Polish power generation into less carbon intensive. Although such policy is generally accepted in Poland, the paste and practically proposed regulation that excludes coal generation from capacity mechanisms, is considered as threat to energy security. Coal is the base for generation for one simple reason, abundant in European scale hard coal reserves and significant capacities in lignite. Natural gas reserves allow to supply about 1/3 of consumption, but prices and supplies dependent hitherto on contracts with GAZPROM did not allow to develop significant generation capacities. Renewable resources are limited, there is not much possibilities for hydro, wind and solar. Poland is also one of the countries of poor air quality, traditional coal based space heating systems plus obsolete car fleet generate vast emissions, especially during the winter. Only recently this became top priority of environmental authorities. This situation is subject to transformation, government, managers are aware that the role of coal needs to be decreased, but there are two main questions, the paste of transformation and the future energy mix. The paper attempts to answer the question whether the expected changes in Polish energy mix are comparable or differ from the global and European tendencies.
Demir, I.; Harvey, R.D.; Hackley, Keith C.
1993-01-01
Two samples of the Herrin (Illinois No. 6) Coal and one sample of the Colchester (Illinois No. 2) Coal from the Illinois Basin were studied to evaluate the spatial distribution of organic sulfur within macerals occurring next to pyrite grains, both in the raw coal and their chars. The chars were produced by pyrolysing the coal at 250-550??C in a nitrogen atmosphere. Representative splits of the coals and their chars were mounted in epoxy and polished for optical microscopy and scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX). Determinations of organic sulfur concentrations were made at 996 locations within macerals, mostly vitrinite, around 115 grains of pyrite and at 50 locations around 5 pores in chars. The pyrite considered here is restricted to the disseminated type within macerals. On the average, the organic sulfur content increased near pyrite grains after the coals were charred at 550??C, indicating that some of the pyritic sulfur released during charring was retained within the organic matrix rather than being emitted to the atmosphere. One of the coal samples and its chars were isotopically characterized by chemically separating the pyritic and organic sulfur fractions, followed by analyzing the isotopes of the sulfur forms with a Nuclide 6-60 ratio mass spectrometer. The sulfur isotope (??34S) data confirmed the movement of pyritic sulfur into the macerals after charring to 550??C. About 18% of the organic sulfur that remained in the 550??C char had originally been pyritic sulfur in the untreated coal. ?? 1993.
NASA Astrophysics Data System (ADS)
Li, Chengwu; Dong, Lihui; Xu, Xiaomeng; Hu, Po; Tian, Jianwei; Zhang, Yihuai; Yang, Leilei
2017-06-01
The gas sorption effect is an important factor affecting the gas permeability of a coal seam, which has been proved in many previous experimental measurements and analytical permeability studies. However, the sorption capacity of coal is usually not static due to the complexity of external stress variation and internal gas media features. The stress-induced sorption capacity variation and its effect on the coal permeability change have not been fully identified yet. Thus, in this paper we present a preliminary evaluation of the stress-induced sorption capacity change by introducing the adsorption capacity modified term, and an experiment is carried out to verify the influence of the altered effective stress on coal permeability. Langmuir-like adsorption deformation constant parameters were combined into the modified coal permeability model and were given values to fully estimate the influence on permeability caused by the modification term. We found that different change modes of effective stress would yield different change effects on the permeability, that is, with the same effective stress change amount, the altered external stress-induced change had less influence than the altered-pore pressure-induced change; however, both modes demonstrated that the model taking sorption capacity change into consideration is more consistent with the experimental data. The effect of sorption capacity change on coal permeability variation was also found to be tightly connected with the physical and mechanical properties of the coal itself. It is proved that considering stress-induced sorption ability change has a critical role in characterizing the permeability variation of coal.
Mercury in Eastern Kentucky coals: Geologic aspects and possible reduction strategies
Hower, J.C.; Eble, C.F.; Quick, J.C.
2005-01-01
Mercury emissions from US coal-fired power plants will be regulated by the US Environmental Protection Agency (USEPA) before the end of the decade. Because of this, the control of Hg in coal is important. Control is fundamentally based on the knowledge of the amounts of Hg in mined, beneficiated, and as-fired coal. Eastern Kentucky coals, on a reserve district level, have Hg contents similar to the USA average for coal at mines. Individual coals show greater variation at the bench scale, with Hg enrichment common in the top bench, often associated with enhanced levels of pyritic sulfur. Some of the variation between parts of eastern Kentucky is also based on the position relative to major faults. The Pine Mountain thrust fault appears to be responsible for elemental enrichment, including Hg, in coals on the footwall side of the thrust. Eastern Kentucky coals shipped to power plants in 1999, the year the USEPA requested coal quality information on coal deliveries, indicate that coals shipped from the region have 0.09 ppm Hg, compared to 0.10 ppm for all delivered coals in the USA. On an equal energy basis, and given equal concentrations of Hg, the high volatile bituminous coals from eastern Kentucky would emit less Hg than lower rank coals from other USA regions. ?? 2005 Elsevier B.V. All rights reserved.
Chlorine in coal and its relationship with boiler corrosion. Technical report, 1 March--31 May 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, M.I.M.; Lytle, J.M.; Ruch, R.R.
1994-09-01
Limited literature and use history data have suggested that some high-chlorine Illinois coals do not cause boiler corrosion while extensive data developed by the British correlate corrosion with chlorine content and other parameters related to the coal and boiler. The differences in corrosivity in coals may be due to the coal properties, to blending of coals, or to the boiler parameters in which they were burned. The goals of this study focus on coal properties. In this quarter, both destructive temperature-programmed Thermogravimetry with Fourier transform infrared (TGA-FTIR) and non-destructive X-ray absorption near-edge structure (XANES) techniques were used to examine themore » forms and the evolution characteristics of chlorine in coals. The TGA-FTIR results indicate that under oxidation condition, both British and Illinois coals release hydrogen chloride gas. Illinois coals release the gas at high temperature with maximum evolution temperature ranged between 210 and 280 C. The XANES results indicate that chlorine in coal exists in ionic forms including a solid salt form. The solid NaCl salt form, however, is observed only in some of the British coals and none of the Illinois coals. These results combined with TGA-FTIR results suggest that the chlorine ions in Illinois coals are different from the chlorine ions in British coals.« less
Chemistry of thermally altered high volatile bituminous coals from southern Indiana
Walker, R.; Mastalerz, Maria; Brassell, S.; Elswick, E.; Hower, J.C.; Schimmelmann, A.
2007-01-01
The optical properties and chemical characteristics of two thermally altered Pennsylvanian high volatile bituminous coals, the non-coking Danville Coal Member (Ro = 0.55%) and the coking Lower Block Coal Member (Ro = 0.56%) were investigated with the purpose of understanding differences in their coking behavior. Samples of the coals were heated to temperatures of 275????C, 325????C, 375????C and 425????C, with heating times of up to one hour. Vitrinite reflectance (Ro%) rises with temperature in both coals, with the Lower Block coal exhibiting higher reflectance at 375????C and 425????C compared to the Danville coal. Petrographic changes include the concomitant disappearance of liptinites and development of vesicles in vitrinites in both coals, although neither coal developed anisotropic coke texture. At 375????C, the Lower Block coal exhibits a higher aromatic ratio, higher reflectance, higher carbon content, and lower oxygen content, all of which indicate a greater degree of aromatization at this temperature. The Lower Block coal maintains a higher CH2/CH3 ratio than the Danville coal throughout the heating experiment, indicating that the long-chain unbranched aliphatics contained in Lower Block coal liptinites are more resistant to decomposition. As the Lower Block coal contains significant amounts of liptinite (23.6%), the contribution of aliphatics from these liptinites appears to be the primary cause of its large plastic range and high fluidity. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Chatterjee, Snehamoy
2017-05-01
Production scheduling is a crucial aspect of the mining industry. An optimal and efficient production schedule can increase the profits manifold and reduce the amount of waste to be handled. Production scheduling for coal mines is necessary to maintain consistency in the quality and quantity parameters of coal supplied to power plants. Irregularity in the quality parameters of the coal can lead to heavy losses in coal-fired power plants. Moreover, the stockpiling of coal poses environmental and fire problems owing to low incubation periods. This article proposes a production scheduling formulation for open-pit coal mines including stockpiling and blending opportunities, which play a major role in maintaining the quality and quantity of supplied coal. The proposed formulation was applied to a large open-pit coal mine in India. This contribution provides an efficient production scheduling formulation for coal mines after utilizing the stockpile coal within the incubation periods with the maximization of discounted cash flows. At the same time, consistency is maintained in the quality and quantity of coal to power plants through blending and stockpiling options to ensure smooth functioning.
Sustainability Assessment of Coal-Fired Power Plants with Carbon Capture and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widder, Sarah H.; Butner, R. Scott; Elliott, Michael L.
2011-11-30
Carbon capture and sequestration (CCS) has the ability to dramatically reduce carbon dioxide (CO2) emissions from power production. Most studies find the potential for 70 to 80 percent reductions in CO2 emissions on a life-cycle basis, depending on the technology. Because of this potential, utilities and policymakers are considering the wide-spread implementation of CCS technology on new and existing coal plants to dramatically curb greenhouse gas (GHG) emissions from the power generation sector. However, the implementation of CCS systems will have many other social, economic, and environmental impacts beyond curbing GHG emissions that must be considered to achieve sustainable energymore » generation. For example, emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM) are also important environmental concerns for coal-fired power plants. For example, several studies have shown that eutrophication is expected to double and acidification would increase due to increases in NOx emissions for a coal plant with CCS provided by monoethanolamine (MEA) scrubbing. Potential for human health risks is also expected to increase due to increased heavy metals in water from increased coal mining and MEA hazardous waste, although there is currently not enough information to relate this potential to actual realized health impacts. In addition to environmental and human health impacts, supply chain impacts and other social, economic, or strategic impacts will be important to consider. A thorough review of the literature for life-cycle analyses of power generation processes using CCS technology via the MEA absorption process, and other energy generation technologies as applicable, yielded large variability in methods and core metrics. Nonetheless, a few key areas of impact for CCS were developed from the studies that we reviewed. These are: the impact of MEA generation on increased eutrophication and acidification from ammonia emissions and increased toxicity from MEA production and the impact of increased coal use including the increased generation of NOx from combustion and transportation, impacts of increased mining of coal and limestone, and the disposal of toxic fly ash and boiler ash waste streams. Overall, the implementing CCS technology could contribute to a dramatic decrease in global GHG emissions, while most other environmental and human health impact categories increase only slightly on a global scale. However, the impacts on human toxicity and ecotoxicity have not been studied as extensively and could have more severe impacts on a regional or local scale. More research is needed to draw strong conclusions with respect to the specific relative impact of different CCS technologies. Specifically, a more robust data set that disaggregates data in terms of component processes and treats a more comprehensive set of environmental impacts categories from a life-cycle perspective is needed. In addition, the current LCA framework lacks the required temporal and spatial scales to determine the risk of environmental impact from carbon sequestration. Appropriate factors to use when assessing the risk of water acidification (groundwater/oceans/aquifers depending on sequestration site), risk of increased human toxicity impact from large accidental releases from pipeline or wells, and the legal and public policy risk associated with licensing CO2 sequestration sites are also not currently addressed. In addition to identifying potential environmental, social, or risk-related issues that could impede the large-scale deployment of CCS, performing LCA-based studies on energy generation technologies can suggest places to focus our efforts to achieve technically feasible, economically viable, and environmentally conscious energy generation technologies for maximum impact.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Scope. 75.200 Section 75.200 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY... controlling roof, face and ribs, including coal or rock bursts, in underground coal mines. Roof control...
77 FR 62253 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... digital geologic information related to coal, coalbed gas, shale gas and other energy resources and... assessments concerning coal and coal bed gas occurrences. Requesting external cooperation is the best way for... organic-rich shale, and obtain other information (including geophysical or seismic data, sample collection...
78 FR 48593 - Refuge Alternatives for Underground Coal Mines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-08
... conduct research and tests concerning the use of refuge chambers in underground coal mines, and to report... of Information MSHA will post all comments and information on the Internet without change, including... actions. NIOSH finalized its Research Report on Refuge Alternatives for Underground Coal Mines (NIOSH...
Coal liquefaction process with enhanced process solvent
Givens, Edwin N.; Kang, Dohee
1984-01-01
In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovanni, D.V.; Carr, R.C.; Landham, E.C.
Two products of coal quality research at the Electric Power Research Institute TM (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM and Fireside Testing Guidelines (FIG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FIG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Mississippimore » Power Company`s Watson Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Watson Unit 4 is a 255 MW (gross), opposed-wall, pulverized-coal-fired boiler manufactured by Riley Stoker Corporation and rated at 1,779,000 lb/hr steam flow at 1000{degrees}F superheat steam temperature and 2,500 psig. The unit is equipped with a cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator, for two coals. The CQIN4 was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI, and Mississippi Power Company (MPC) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals. The results from the CQIM validation effort are also presented.« less
New maps of Federal coal ( USA).
Wayland, R.G.
1981-01-01
Compilation and analysis of publicly available data on Federal coal are resulting in voluminous map sets showing coal isopachs, structure contours, and overburden isopachs on each known minable coal bed. As of spring 1981, there are available from the US Geological Survey Open-File Services Section in Denver map sets at 1:24 000 scale or microfiche sets covering approximately 470 of the ultimately 1400 quadrangles in the program. A typical map set has a short text and about 20 plates, including a data sheet; a Federal mineral ownership map; and correlation charts. For each coal bed, there are isopachs, structure contours, stripping limits, and mining ratios extending as far as the data will permit, regardless of coal ownership. Reserve base tonnages and relative development potentials are calculated, but only for unleased Federal coal areas. -from Author
Method of operating a coal gasifier
Blaskowski, Henry J.
1979-01-01
A method of operating an entrained flow coal gasifier which comprises the steps of firing coal at two levels in a combustion zone with near stoichiometric air, removing molten ash from the combustion zone, conveying combustion products upwardly from the combustion zone through a reduction zone, injecting additional coal into the combustion products in the reduction zone and gasifying at least a portion of the coal to form low BTU gas, conveying the gas to a point of use, including also reducing gasifier output by modifying the ratio of air to coal supplied to the upper level of the combustion zone so that the ratio becomes increasingly substoichiometric thereby extending the gasification of coal from the reduction zone into the upper level of the combustion zone, and maintaining the lower level of coal in the combustion zone at near stoichiometric conditions so as to provide sufficient heat to maintain effective slagging conditions.
Coal desulfurization by low temperature chlorinolysis, phase 3
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.
1981-01-01
Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.
Nonlinear-programming mathematical modeling of coal blending for power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Longhua; Zhou Junhu; Yao Qiang
At present most of the blending works are guided by experience or linear-programming (LP) which can not reflect the coal complicated characteristics properly. Experimental and theoretical research work shows that most of the coal blend properties can not always be measured as a linear function of the properties of the individual coals in the blend. The authors introduced nonlinear functions or processes (including neural network and fuzzy mathematics), established on the experiments directed by the authors and other researchers, to quantitatively describe the complex coal blend parameters. Finally nonlinear-programming (NLP) mathematical modeling of coal blend is introduced and utilized inmore » the Hangzhou Coal Blending Center. Predictions based on the new method resulted in different results from the ones based on LP modeling. The authors concludes that it is very important to introduce NLP modeling, instead of NL modeling, into the work of coal blending.« less
30 CFR 780.10 - Information collection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR RECLAMATION AND OPERATION PLAN § 780.10... activities, including a requirement that the application include an operation and reclamation plan. The...
Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.
2005-01-01
The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.
Collection, chemical analysis, and evaluation of coal samples in 1975
Swanson, Vernon Emanuel; Medlin, J.H.; Hatch, J.R.; Coleman, S.L.; Wood, G.H.; Woodruff, S.D.; Hildebrand, R.T.
1976-01-01
During 1975, the U.S. Geological Survey, in cooperation with other Federal and State agencies, university groups, and private companies, continued its program to augment and refine information on the composition of coal in the United States. This report includes all analytical data on 799 channel samples of coal beds from major operating mines and core holes in 28 States, collected mainly by State Geological Surveys under a cooperative program funded largely by the U.S. Energy Research and Development Administration. For each sample, the U.S. Geological Survey has quantitatively determined the amounts of 24 major, minor, and trace elements (including AI, As, Cd, Cu, F, Hg, Mn, Na, Pb, Se, U, and Zn), and has semiquantitatively determined the concentrations of 15 to 20 additional trace elements (including B, Be, Cr, Ge, Mo, Ni, and V). In addition, the U.S. Bureau of Mines has provided proximate and ultimate analyses, and Btu and forms-of-sulfur determinations on 488 of the samples. Statistical summaries of the data are given for all coal samples in the United States, for coal divided by rank (53 anthracite, 509 bituminous coal, 183 subbituminous coal, and 54 lignite samples), and the arithmetic means, ranges, and geometric means and deviations are given for the coal in each of seven different major coal areas in the United States. For example, the average coal in the United States contains 11.3 percent ash, 10.0 percent moisture, 2.0 percent sulfur, and has 11,180 Btu per pound; of the 10 major oxides determined on the 525?C ash, the average SiO2 content is 38 percent, Al2O3 20 percent, and Na2O 0.67 percent; the average Cd content is 7.3 ppm, Pb 114 ppm, and Zn 151 ppm (range 1 ppm to 6.0 percent). As determined on the raw coal, the average Hg content is 0.18 ppm (range <0.01 to 63.0 ppm), the Se content 4.1 ppm (range <0.1 to 150 ppm), and the U content 1.8 ppm (range <0.2 to 42.9 ppm).
Wang, Shaobin; Luo, Kunli; Wang, Xing; Sun, Yuzhuang
2016-02-01
A rough estimate of the annual amount of sulfur, arsenic, mercury and fluoride emission from spontaneous combustion of coal gangue in China was determined. The weighted mean concentrations of S, As, Hg, and F in coal gangue are 1.01%, 7.98, 0.18, and 365.54 mg/kg, respectively. Amounts of S, As, Hg, and F emissions from coal gangue spontaneous combustion show approximately 1.13 Mt, and 246, 45, and 63,298 tons in 2013, respectively. The atmospheric release amount of sulfur from coal gangue is more than one tenth of this from coal combustion, and the amounts of As, Hg, and F are close to or even exceed those from coal combustion. China's coal gangue production growth from 1992 to 2013 show an obvious growth since 2002. It may indicate that Chinese coal gangue has become a potential source of air pollution, which should be included in emission inventories. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lung disease and coal mining: what pulmonologists need to know.
Go, Leonard H T; Krefft, Silpa D; Cohen, Robert A; Rose, Cecile S
2016-03-01
Coal mine workers are at risk for a range of chronic respiratory diseases including coal workers' pneumoconiosis, diffuse dust-related fibrosis, and chronic obstructive pulmonary disease. The purpose of this review is to describe coal mining processes and associated exposures to inform the diagnostic evaluation of miners with respiratory symptoms. Although rates of coal workers' pneumoconiosis declined after regulations were enacted in the 1970s, more recent data shows a reversal in this downward trend. Rapidly progressive pneumoconiosis with progressive massive fibrosis (complicated coal workers' pneumoconiosis) is being observed with increased frequency in United States coal miners, with histologic findings of silicosis and mixed-dust pneumoconiosis. There is increasing evidence of decline in lung function in individuals with pneumoconiosis. Multiple recent cohort studies suggest increased risk of lung cancer in coal miners. A detailed understanding of coal mining methods and processes allows clinicians to better evaluate and confirm chronic lung diseases caused by inhalational hazards in the mine atmosphere.
Applications of molecular modeling in coal research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, G.A.; Faulon, J.L.
Over the past several years, molecular modeling has been applied to study various characteristics of coal molecular structures. Powerful workstations coupled with molecular force-field-based software packages have been used to study coal and coal-related molecules. Early work involved determination of the minimum-energy three-dimensional conformations of various published coal structures (Given, Wiser, Solomon and Shinn), and the dominant role of van der Waals and hydrogen bonding forces in defining the energy-minimized structures. These studies have been extended to explore various physical properties of coal structures, including density, microporosity, surface area, and fractal dimension. Other studies have related structural characteristics to cross-linkmore » density and have explored small molecule interactions with coal. Finally, recent studies using a structural elucidation (molecular builder) technique have constructed statistically diverse coal structures based on quantitative and qualitative data on coal and its decomposition products. This technique is also being applied to study coalification processes based on postulated coalification chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancet, M.S.; Curran, G.P.; Sim, F.A.
1982-08-01
The coking properties of seven bituminous coals, including three Eastern US coals, one Midwestern US coal, a Western US coal and two from the UK were studied with respect to the possible utilization of these coals in moving bed gasifier systems. Complete physical, chemical and petrographic analyses were obtained for each coal in addition to the highly specialized CCDC simulated gasifier coking test data. The effects of total pressure, hydrogen partial pressure, heating rate and the addition of gob and tar on the fluidity and swelling properties of each coal was studied. Samples of each coal were shock heated undermore » pressure to simulate coking in the top of a Lurgi gasifier. The resultant cokes were tested for various physical properties and the product yields were determined. Gas release patterns during pressurized pyrolysis were obtained in several instances. The data obtained in this work should provide a valuable data base for future gasifier feedstock evaluation programs.« less
Coal flow aids reduce coke plant operating costs and improve production rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.
2005-06-01
Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.
Advanced technology applications for second and third generation coal gasification systems. Appendix
NASA Technical Reports Server (NTRS)
Bradford, R.; Hyde, J. D.; Mead, C. W.
1980-01-01
Sixteen coal conversion processes are described and their projected goals listed. Tables show the reactants used, products derived, typical operating data, and properties of the feed coal. A history of the development of each process is included along with a drawing of the chemical reactor used.
Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia
Belkin, Harvey E.; Tewalt, Susan J.
2007-01-01
Introduction Indonesia is an archipelago of more than 17,000 islands that stretches astride the equator for about 5,200 km in southeast Asia (figure 1) and includes major Cenozoic volcano-plutonic arcs, active volcanoes, and various related onshore and offshore basins. These magmatic arcs have extensive Cu and Au mineralization that has generated much exploration and mining in the last 50 years. Although Au and Ag have been mined in Indonesia for over 1000 years (van Leeuwen, 1994), it was not until the middle of the nineteenth century that the Dutch explored and developed major Sn and minor Au, Ag, Ni, bauxite, and coal resources. The metallogeny of Indonesia includes Au-rich porphyry Cu, porphyry Mo, skarn Cu-Au, sedimentary-rock hosted Au, epithermal Au, laterite Ni, and diamond deposits. For example, the Grasberg deposit in Papua has the world's largest gold reserves and the third-largest copper reserves (Sillitoe, 1994). Coal mining in Indonesia also has had a long history beginning with the initial production in 1849 in the Mahakam coal field near Pengaron, East Kalimantan; in 1891 in the Ombilin area, Sumatra, (van Leeuwen, 1994); and in South Sumatra in 1919 at the Bukit Asam mine (Soehandojo, 1989). Total production from deposits in Sumatra and Kalimantan, from the 19thth century to World War II, amounted to 40 million metric tons (Mt). After World War II, production declined due to various factors including politics and a boom in the world-wide oil economy. Active exploration and increased mining began again in the 1980's mainly through a change in Indonesian government policy of collaboration with foreign companies and the global oil crises (Prijono, 1989). This recent coal revival (van Leeuwen, 1994) has lead Indonesia to become the largest exporter of thermal (steam) coal and the second largest combined thermal and metallurgical (coking) coal exporter in the world market (Fairhead and others, 2006). The exported coal is desirable as it is low sulfur and ash (generally <1 and < 10 wt.%, respectively). Coal mining for both local use and for export has a very strong future in Indonesia although, at present, there are concerns about the strong need for a major revision in mining laws and foreign investment policies (Wahju, 2004; United States Embassy Jakarta, 2004). The World Coal Quality Inventory (WoCQI) program of the U.S. Geological Survey (Tewalt and others, 2005) is a cooperative project with about 50 countries (out of 70 coal-producing countries world-wide). The WoCQI initiative has collected and published extensive coal quality data from the world's largest coal producers and consumers. The important aspects of the WoCQI program are; (1) samples from active mines are collected, (2) the data have a high degree of internal consistency with a broad array of coal quality parameters, and (3) the data are linked to GIS and available through the world-wide-web. The coal quality parameters include proximate and ultimate analysis, sulfur forms, major-, minor-, and trace-element concentrations and various technological tests. This report contains geochemical data from a selected group of Indonesian coal samples from a range of coal types, localities, and ages collected for the WoCQI program.
The adaption of coal quality to furnace structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.; Shun, X.
1996-12-31
This paper gives the research result of coal quality adaption to furnace structure. The designing of a furnace is based on the coal quality that the furnace would fire. If the coal fired in the furnace differs from the design coal, there would be a lot of problems such as flame stability, coal burn-out rate and slagging problem for the furnace during its operation. In order to know the adaptional range of coal quality for an existing furnace the authors had chosen three different furnaces and 18 kinds of coals in their research work. To understand the coal combustion characteristicsmore » they introduce different indexes to show different processes of coal combustion. These indexes include Fz index which demonstrates the coal combustion based on its utility analyzed result, flame stability index, combustion characteristic index and char burn-out index which are based on the analyzed result of thermogravimetric characteristic. As a furnace is built up and set into operation its flame stability, burn-out rate and ash deposition are definite. If a furnace`s fuel changes its structure characteristics and operation condition will change. A relation between coal quality to furnace structure is based on a lot of regressional analysis results of existing furnaces and their fuels. Based on this relation the adaption of coal quality for a furnace are defined and the kinds of coal furnace fired are optimized to its design fuel.« less
The economic pre-treatment of coal mine drainage water with caustic and ozone.
Boyden, B H; Nador, L; Addleman, S; Jeston, L
2017-09-01
Coal mine drainage waters are low in pH with varying amounts of iron and manganese and are generally brackish. The Austar Coal Mine in NSW, Australia, sought alternatives to their current lime dosing as the pre-treatment before the downstream reverse osmosis plant. Undesirable operating aspects of the current system include manganese and gypsum scaling/fouling, the need for anti-scalants and reduced water recovery. Thirteen processes for acid mine drainage were initially considered. The preferred process of caustic and ozone for Mn(II) oxidation was pilot tested at up to 0.74 kL/hr at the mine site. Under proper conditions and no aeration, about 81 per cent of the Fe could be removed (initially at 156 mg/L) as green rust. Supplemental aeration followed first-order kinetics and allowed 99.9 per cent Fe(II) oxidation and removal but only with a hydraulic residence time of about 47 minutes. The addition of supplemental Cu catalyst improved Fe removal. Ozone applied after caustic was effective in stoichiometrically oxidising recalcitrant Mn(II) and any remaining Fe(II). Control of the ozonation was achieved using the oxidation reduction potential during oxidation of the Mn(II) species. The use of caustic, followed by ozone, proved economically comparable to the current lime pre-treatment.
Cataldo, Franco; Keheyan, Yeghis; Heymann, Dieter
2004-02-01
In this communication we present the basic concept that the pure PAHs (Polycyclic Aromatic Hydrocarbons) can be considered only the ideal carriers of the UIBs (Unidentified Infrared Bands), the emission spectra coming from a large variety of astronomical objects. Instead we have proposed that the carriers of UIBs and of protoplanetary nebulae (PPNe) emission spectra are much more complex molecular mixtures possessing also complex chemical structures comparable to certain petroleum fractions obtained from the petroleum refining processes. The demonstration of our proposal is based on the comparison between the emission spectra recorded from the protoplanetary nebulae (PPNe) IRAS 22272+ 5435 and the infrared absorption spectra of certain 'heavy' petroleum fractions. It is shown that the best match with the reference spectrum is achieved by highly aromatic petroleum fractions. It is shown that the selected petroleum fractions used in the present study are able to match the band pattern of anthracite coal. Coal has been proposed previously as a model for the PPNe and UIBs but presents some drawbacks which could be overcome by adopting the petroleum fractions as model for PPNe and UIBs in place of coal. A brief discussion on the formation of the petroleum-like fractions in PPNe objects is included.
NASA Astrophysics Data System (ADS)
Ding, Dianshi; Liu, Guijian; Sun, Xiaohui; Sun, Ruoyu
2018-01-01
To investigate the magnitude to which the carbon isotopic ratio (δ13C) varies in coals in response to their contemporary terrestrial environment, the Early-Middle Permian Huainan coals (including coals from the Shanxi Formation, Lower Shihezi Formation and Upper Shihezi Formation) in North China were systematically sampled. A 2.5‰ variation range of δ13C values (-25.15‰ to -22.65‰) was observed in Huainan coals, with an average value of -24.06‰. As coal diagenesis exerts little influence on carbon isotope fractionation, δ13C values in coals were mainly imparted by those of coal-forming flora assemblages which were linked to the contemporary climate. The δ13C values in coals from the Shanxi and Lower Shihezi Formations are variable, reflecting unstable climatic oscillations. Heavy carbon isotope is enriched in coals of the Capitanian Upper Shihezi Formation, implying a shift to high positive δ13C values of coeval atmospheric CO2. Notably, our study provides evidence of the Kamura event in the terrestrial environment for the first time.
NASA Technical Reports Server (NTRS)
1975-01-01
A set of energy conservation actions that cut across all sectors of the economy were analyzed so that all actions under consideration be analyzed systematically and as a whole. The actions considered were as follows: (1) roll back the price of newly discovered oil, (2) freeze gasoline production for 3 years at 1972 levels, (3) mandate automobile mileage improvements, (4) require industry to improve energy efficiency, (5) require manufacture of household appliances with greater efficiency, (6) force conversion of many power plants from gas and oil to coal. The results showed that considerable gas and oil would be saved by forcing switches to coal. However, the large scale switch to coal was shown to require greatly increased outputs from many other industries that in turn require more energy. It was estimated that nearly 2.5 quads of additional coal were needed to produce these additional requirements. Also, the indirect requirements would create more jobs.
The accident analysis of mobile mine machinery in Indian opencast coal mines.
Kumar, R; Ghosh, A K
2014-01-01
This paper presents the analysis of large mining machinery related accidents in Indian opencast coal mines. The trends of coal production, share of mining methods in production, machinery deployment in open cast mines, size and population of machinery, accidents due to machinery, types and causes of accidents have been analysed from the year 1995 to 2008. The scrutiny of accidents during this period reveals that most of the responsible factors are machine reversal, haul road design, human fault, operator's fault, machine fault, visibility and dump design. Considering the types of machines, namely, dumpers, excavators, dozers and loaders together the maximum number of fatal accidents has been caused by operator's faults and human faults jointly during the period from 1995 to 2008. The novel finding of this analysis is that large machines with state-of-the-art safety system did not reduce the fatal accidents in Indian opencast coal mines.
NASA Astrophysics Data System (ADS)
Eom, Seongyong; Ahn, Seongyool; Kang, Kijoong; Choi, Gyungmin
2017-12-01
In this study, a numerical model of activation and ohmic polarization is modified, taking into account the correlation function between surface properties and inner resistance. To investigate the correlation function, the surface properties of coal are changed by acid treatment, and the correlations between the inner resistance measured by half-cell tests and the surface characteristics are analyzed. A comparison between the model and experimental results demonstrates that the absolute average deviations for each fuel are less than 10%. The numerical results show that the sensitivities of the coal surface properties affecting polarization losses change depending on the operating temperature. The surface oxygen concentrations affect the activation polarization and the sensitivity decreased with increasing temperature. The surface ash of coal is an additional index to be considered along with ohmic polarization and it has the greatest effect on the surface properties at 973 K.
[Cost-benefit analysis to substituting natural gas for coal project in large Chinese cities].
Mao, Xianqiang; Peng, Yingdeng; Guo, Xiurui
2002-09-01
Since China's large cities were faced with serious coal-smoke pollution with PM10 and SO2 as the main pollutants, natural gas is becoming one of the most attractive clean replacers of coal. To clarify the wide disputation and doubt on the rationality of burning natural gas instead of coal, cost-benefit analysis (CBA) of urban natural gas substitution projects in Beijing and Chongqing was done respectively, in which, the health benefit was carefully estimated with epidemical dose-response function as the main external benefit. The final result shows that in large cities with intensively concentrated population and economic activities, natural gas consumption as municipal civil energy has obvious priority in terms of large environmental benefit from reducing non-point and low-altitude air pollutant concentration. This paper finally recommends that market oriented system reform in natural gas production and retailing system should be considered.
Research of Energy Substitution Strategy of China
NASA Astrophysics Data System (ADS)
Zhang, Lifeng; kai, Chen
For a long time, China's energy endowment structure determines the production structure and consumption structure of energy are coal-based.This situation is difficult to change for quite a long time. With the rapid economic growth, industrialization and urbanization, the demand for energy, especially for oil, natural gas will continue to increase. But the oil and gas supply can not meet the needs of rapid growth. The most direct way is to import, and imports will be charged by the international energy situation, and will affect energy and economic security. In view of our country abundant coal resources, we can consider to use coal substituting oil and natural gas to reduce dependence on foreign energy, to strengthen energy and economic security. Therefore, using translog production function, the text forecasts substitution elasticity and the marginal substitution rate between the capital, coal, oil and natural gas, and puts forward substitution program.
Application of modified extended method in CREAM for safety inspector in coal mines
NASA Astrophysics Data System (ADS)
Wang, Jinhe; Zhang, Xiaohong; Zeng, Jianchao
2018-01-01
Safety inspector often performs duties in circumstances contributes to the oc currence of human failures. Therefore, the paper aims at quantifying human failure pro bability (HFP) of safety inspector during the coal mine operation with cognitive reliabi lity and error analysis method (CREAM). Whereas, some shortcomings of this approa ch that lacking considering the applicability of the common performance condition (C PC), and the subjective of evaluating CPC level which weaken the accuracy of the qua ntitative prediction results. A modified extended method in CREAM which is able to a ddress these difficulties with a CPC framework table is proposed, and the proposed me thodology is demonstrated by the virtue of a coal-mine accident example. The results a re expected to be useful in predicting HFP of safety inspector and contribute to the enh ancement of coal mine safety.
Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.
1993-01-01
The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinemer, V.
Alaska's diverse systems for electric power include only 4% by private utilities. Large distances and small markets make transmission impractical for the most part. Rates are variable, although the state average is low. Energy sources, except nuclear, are abundant: half the US coal reserves are in Alaska. In addition, it has geothermal, tidal, biomass, solar, wind, and hydroelectric power. Energy construction and study programs are centered in the Alaska Power Authority and include using waste heat from village diesel generators. Hydro potential is good, but access, distances, and environmental effects must be considered. The Terror Lake, Tyee Lake, Swan Lake,more » and Susitna projects are described and transmission construction, including the 345-kW Railbelt intertie, is discussed. 1 figure.« less
Floatabilities of treated coal in water at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Rohrer, R.L.; Lai, R.W.
1995-04-01
Experiments on equilibrium adsorption loadings of various probe compounds on 60-200 mesh Illinois No. 6 coal (PSOC-1539), Adaville No. 1 coal (PSOC-1544), Wyodak coal (PSOC-1545), and Pittsburgh No. 8 coal (PSOC-1549) were performed. The probe compounds include 2-methyl-1-pentanol (2M1P), 1-heptanol, benzene, and toluene. Equilibrium adsorption loadings of aromatic compounds such as toluene and benzene on the four chosen coals obey the Langmuir isotherm model up to 100 ppm in concentrations of probe compounds. Equilibrium adsorption loadings of higher aliphatic alcohols such as 2M1P and 1-heptanol on the four chosen coals do not follow both the Langmuir isotherm model and themore » Freundlich empirical adsorption model. Flotation of the coals, equilibrated with aqueous solutions of 2M1P and 1-heptanol, increases linearly with equilibrium adsorption loadings of these probe compounds on the coals. The chosen coals were treated with nitrogen and air at 1 atm and 125-225{degrees}C for 24 h. Flotation experiments of the treated coals were conducted at room temperature, using distilled water only as a flotation medium. Flotation of Adaville No. 1 coal and Wyodak coal treated with nitrogen gas is higher than that of the untreated coals and increases with treatment temperatures. Flotation of Adaville No. 1 coal treated with air at 125-225{degrees}C is not significantly different from that of untreated coal. Flotation of Pittsburgh No. 8 coal treated with air is lower than that of untreated coal and decreases with treatment temperatures. Flotation of Illinois No. 6 coal treated with nitrogen with nitrogen only is higher than that of untreated coal. Flotation of Illinois No. 6 coal treated with nitrogen at 125-175{degrees}C increases with treatment temperatures, whereas flotation of Illinois No. 6 coal treated with nitrogen at 174-225{degrees}C decreases with treatment temperatures.« less
Analysis of coal seam thickness and seismic wave amplitude: A wedge model
NASA Astrophysics Data System (ADS)
Zou, Guangui; Xu, Zhiliang; Peng, Suping; Fan, Feng
2018-01-01
Coal seam thickness is of great significance in mining coal resources. The focus of this study is to determine the relationship between coal seam thickness and seismic wave amplitude, and the factors influencing this relationship. We used a wedge model to analyze this relationship and its influencing factors. The results show that wave interference from the top and bottom interfaces is the primary reason for the linear relationship between seismic wave amplitude and wedge thickness, when the thickness of the wedge is less than one quarter of the wavelength. This relationship is influenced by the dominant frequency, reflection coefficients from the top and bottom boundaries, depth, thickness, and angle of the wedge. However, when the lateral shift between the reflected waves is smaller than the radius of the first Fresnel zone, the wedge angle and change in lithology at the top and bottom layers are considered to have little effect on the amplitude of the interference wave. The difference in the dominant frequency of seismic waves can be reduced by filtering, and the linear relationship between amplitude and coal thickness can be improved. Field data from Sihe coal mine was analyzed, and the error was found to be within 4% of the predicted seismic wave amplitude. The above conclusions could help predict the thickness of coal seam by seismic amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerin, M.R.; Griest, W.H.; Ho, C.H.
1986-06-01
Research here on the toxicological properties of coal-derived liquids focuses on characterizing the refining process and refined products. Principle attention is given to the potential tumorigenicity of coal-derived fuels and to the identification of means to further reduce tumorigenicity should this be found necessary. Hydrotreatment is studied most extensively because it will be almost certainly required to produce commercial products and because it is likely to also greatly reduce tumorigenic activity relative to that of crude coal-liquid feedstocks. This report presents the results of a lifetime C3H mouse skin tumorigenicity assay of an H-Coal series of oils and considers themore » relationships between tumorigenicity, chemistry, and processing. Lifetime assay results are reported for an H-Coal syncrude mode light oil/heavy oil blend, a low severity hydrotreatment product, a high severity hydrotreatment product, a naphtha reformate, a heating oil, a petroleum-derived reformate, and a petroleum derived heating oil. Data are compared with those for an earlier study of an SRC-II blend and products of its hydrotreatment. Adequate data are presented to allow an independent qualitative assessment of the conclusions while statistical evaluation of the data is being completed. The report also documents the physical and chemical properties of the oils tested. 33 refs., 14 figs., 53 tabs.« less
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Lei; Zhao, Shu-Xia; Li, Yu-Fang; Gong, Yao; Dong, Lei; Ma, Wei-Guang; Yin, Wang-Bao; Yao, Shun-Chun; Lu, Ji-Dong; Xiao, Lian-Tuan; Jia, Suo-Tang
2016-12-01
Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical spectroscopy technique. This review presents the main recent developments in China regarding the implementation of LIBS for coal analysis. The paper mainly focuses on the progress of the past few years in the fundamentals, data pretreatment, calibration model, and experimental issues of LIBS and its application to coal analysis. Many important domestic studies focusing on coal quality analysis have been conducted. For example, a proposed novel hybrid quantification model can provide more reproducible quantitative analytical results; the model obtained the average absolute errors (AREs) of 0.42%, 0.05%, 0.07%, and 0.17% for carbon, hydrogen, volatiles, and ash, respectively, and a heat value of 0.07 MJ/kg. Atomic/ionic emission lines and molecular bands, such as CN and C2, have been employed to generate more accurate analysis results, achieving an ARE of 0.26% and a 0.16% limit of detection (LOD) for the prediction of unburned carbon in fly ashes. Both laboratory and on-line LIBS apparatuses have been developed for field application in coal-fired power plants. We consider that both the accuracy and the repeatability of the elemental and proximate analysis of coal have increased significantly and further efforts will be devoted to realizing large-scale commercialization of coal quality analyzer in China.
Quality of selected coal seams from Indiana: Implications for carbonization
Walker, R.; Mastalerz, Maria; Padgett, P.
2001-01-01
The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.
Brecciated and mineralized coals in Union County Western Kentucky coal field
Hower, J.C.; Williams, D.A.; Eble, C.F.; Sakulpitakphon, T.; Moecher, D.P.
2001-01-01
Coals from the D-2 and D-3 boreholes in the Grove Center 7 1/2 min quadrangle, Union County, KY, have been found to be highly brecciated and mineralized. The mineralization is dominated by a carbonate assemblage with minor sulfides and sulfates. Included among the secondary minerals is the lead selenide, clausthalite. Overall, the emplacement of secondary vein minerals was responsible for raising the rank of the coals from the 0.6-0.7% Rmax range found in the area to as high as 0.95-0.99% Rmax. A 1.3-m-thick coal found in one of the boreholes is unique among known Western Kentucky coals in having less than 50% vitrinite. Semifusinite and fusinite dominate the maceral assemblages. The coal is also low in sulfur coal, which is unusual for the Illinois Basin. It has an ash yield of less than 10%; much of it dominated by pervasive carbonate veining. The age of the thick coal in core D-2 is similar to that of the Elm Lick coal bed, found elsewhere in the Western Kentucky coalfield. The coals in D-3 are younger, having Stephanian palynomorph assemblages. ?? 2001 Elsevier Science B.V. All rights reserved.
Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.
2015-01-01
In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.
The World Coal Quality Inventory: South America
Karlsen, Alex W.; Tewalt, Susan J.; Bragg, Linda J.; Finkelman, Robert B.
2006-01-01
Executive Summary-Introduction: The concepts of a global environment and economy are strongly and irrevocably linked to global energy issues. Worldwide coal production and international coal trade are projected to increase during the next several decades in an international energy mix that is still strongly dependent on fossil fuels. Therefore, worldwide coal use will play an increasingly visible role in global environmental, economic, and energy forums. Policy makers require information on coal, including coal quality data, to make informed decisions regarding domestic coal resource allocation, import needs and export opportunities, foreign policy objectives, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. The development of a worldwide, reliable, coal quality database would help ensure the most economically and environmentally efficient global use of coal. The U.S. Geological Survey (USGS), in cooperation with many agencies and scientists from the world's coal producing countries, originally undertook a project to obtain representative samples of coal from most of the world's producing coal provinces during a limited period of time (roughly 1998-2005), which is called the World Coal Quality Inventory (WoCQI). The multitude of producing coal mines, coal occurrences, or limited accessibility to sites in some countries can preclude collecting more than a single sample from a mine. In some areas, a single sample may represent an entire coal mining region or basin. Despite these limitations in sampling and uneven distribution of sample collection, the analytical results can still provide a general overview of world coal quality. The USGS intends to present the WoCQI data in reports and, when possible, in Geographic Information System (GIS) products that cover important coal bearing and producing regions.
Characteristics of Pyrolytic Topping in Fluidized Bed for Different Volatile Coals
NASA Astrophysics Data System (ADS)
Xiong, R.; Dong, L.; Xu, G. W.
Coal is generally combusted or gasified directly to destroy completely the chemical structures, such as aromatic rings containing in volatile coals including bituminite and lignite. Coal topping refers to a process that extracts chemicals with aromatic rings from such volatile coals in advance of combustion or gasification and thereby takes advantage of the value of coal as a kind of chemical structure resource. CFB boiler is the coal utilization facility that can be easily retrofitted to implement coal topping. A critical issue for performing coal topping is the choice of the pyrolytic reactor that can be different types. The present study concerns fluidized bed reactor that has rarely been tested for use in coal topping. Two different types of coals, one being Xiaolongtan (XLT) lignite and the other Shanxi (SX) bituminous, were tested to clarify the yield and composition of pyrolysis liquid and gas under conditions simulating actual operations. The results showed that XLT lignite coals had the maximum tar yield in 823-873K and SX bituminite realized its highest tar yield in 873-923K. Overall, lignite produced lower tar yield than bituminous coal. The pyrolysis gas from lignite coals contained more CO and CO2 and less CH4, H2 and C2+C3 (C2H4, C2H6, C3H6, C3H8) components comparing to that from bituminous coal. TG-FTIR analysis of tars demonstrated that for different coals there are different amounts of typical chemical species. Using coal ash of CFB boiler, instead of quartz sand, as the fluidized particles decreased the yields of both tar and gas for all the tested coals. Besides, pyrolysis in a reaction atmosphere simulating the pyrolysis gas (instead of N2) resulted also in higher production of pyrolysis liquid.
The Uncertain Carbon Emissions in China (Invited)
NASA Astrophysics Data System (ADS)
Liu, Z.; Guan, D.
2013-12-01
Anthropogenic fossil fuel emissions are considered as being well understood with a low uncertainty (9.1 × 0.5Gt C yr-1). By using full transparency emission inventory which the energy consumption, fuel heating values, carbon content and oxidation rate reported separately in sectoal level, here we found new 2.1 Gt C yr-1 (23% of global total) uncertainties of carbon emission inventory, which mainly contributed by the mass energy use and consumption coal quality in China and by misunderstanding of fuel quality in international fossil fuel trade. Increment of coal's carbon emission in China and India are equivalent to 130 % of global total coal's emission growth during 2008-2010, by using macro energy statistics and bottom up coal mine datasets, the difference carbon emission estimates from China and India can up to 1.32 C yr-1. Emissions from international trade of coal could produce another 0.08 Gt C yr-1 uncertainty. These new emerging 1.4 Gt C yr-1 uncertainties implies a significant mis-estimation of human induced carbon emissions and a new dominating factor in contributing the global carbon budget residual.
Vitrinite reflectance of sinkhole coals, east central Missouri fire clay district
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laudon, R.C.
1993-03-01
East central Missouri contains numerous sinkholes many of which are filled with commercial quantities of fire clay and some contain small amounts of coal. Vitrinite reflectance averages from 513 samples taken from eleven of these coals ranged from 0.71 to 0.78. Data were remarkably consistent and no local trends were observed. Using Barker and Goldstein (1990) and Barker and Pawlewicz (1986) temperature correlations, these measurements suggest that the coals have been heated to temperatures on the order of 108 C to 128 C (average = 116). These temperatures are considered anomalously high when compared against known geothermal gradients and burialmore » depths for these rocks. The temperatures suggest that the sinkhole coals have been heated by some thermal event, possibly associated with Mississippi Valley type mineralization. These temperatures are consistent with regional trends in the state. This data, when combined with other vitrinite reflectance and fluid inclusion data (right), suggest that southwest Missouri (Tristate) and southeast Missouri (Viburnum Trend) were hot spots, and that temperatures decrease regionally away from these two areas.« less
Removing heavy metals from wastewaters with use of shales accompanying the coal beds.
Jabłońska, Beata; Siedlecka, Ewa
2015-05-15
A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.
An intelligent emissions controller for fuel lean gas reburn in coal-fired power plants.
Reifman, J; Feldman, E E; Wei, T Y; Glickert, R W
2000-02-01
The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.
Mathews, Teresa J; Fortner, Allison M; Jett, R Trent; Morris, Jesse; Gable, Jennifer; Peterson, Mark J; Carriker, Neil
2014-10-01
In December 2008, 4.1 million cubic meters of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4 μg/g and 9 μg/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 μg/g. In the present study, the authors examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. Whereas Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the 5-yr period since the spill. These findings are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, the results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Teresa J; Fortner, Allison M; Jett, Robert T
2014-01-01
In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined themore » relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.« less
Clinically important respiratory effects of dust exposure and smoking in British coal miners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marine, W.M.; Gurr, D.; Jacobsen, M.
A unique data set of 3380 British coal miners has been reanalyzed with major focus on nonpneumoconiotic respiratory conditions. The aim was to assess the independent contribution of smoking and exposure to respirable dust to clinically significant measures of respiratory dysfunction. Exposure to coal-mine dust was monitored over a 10-yr period. Medical surveys provided estimates of prior dust exposure and recorded respiratory symptoms. Each man's FEV1 was compared with the level predicted for his age and height by an internally derived prediction equation for FEV1. Four respiratory indices were considered at the end of the 10-yr period: FEV1 less thanmore » 80%, chronic bronchitis, chronic bronchitis with FEV1 less than 80%, and FEV1 less than 65%. Results were uniformly incorporated into logistic regression equations for each condition. The equations include coefficients for age, dust, and when indicated, an interaction term for age and dust. Dust-related increases in prevalence of each of the 4 conditions were statistically significant and were similar for smokers and nonsmokers at the mean age (47 yr). There was no evidence that smoking potentiates the effect of exposure to dust. Estimates of prevalences at the mean age of all 4 measures of respiratory dysfunction were greater in smokers. At intermediate and high dust exposure the prevalence of the 4 conditions in nonsmokers approached the prevalence in smokers at hypothetically zero dust exposure. Both smoking and dust exposure can cause clinically important respiratory dysfunction and their separate contributions to obstructive airway disease in coal miners appear to be additive.« less
Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.
2004-01-01
The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.
Self-Scrubbing Coal -- an integrated approach to clean air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, K.E.
1997-12-31
Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceedingmore » boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtron Davis; Gary Jacobs; Wenping Ma
The successful adaptation of conventional cobalt and iron-based Fischer-Tropsch synthesis catalysts for use in converting biomass-derived syngas hinges in part on understanding their susceptibility to byproducts produced during the biomass gasification process. With the possibility that oil production will peak in the near future, and due to concerns in maintaining energy security, the conversion of biomass-derived syngas and syngas derived from coal/biomass blends to Fischer-Tropsch synthesis products to liquid fuels may provide a sustainable path forward, especially considering if carbon sequestration can be successfully demonstrated. However, one current drawback is that it is unknown whether conventional catalysts based on ironmore » and cobalt will be suitable without proper development because, while ash, sulfur compounds, traces of metals, halide compounds, and nitrogen-containing chemicals will likely be lower in concentration in syngas derived from mixtures of coal and biomass (i.e., using an entrained-flow oxygen-blown gasifier) than solely from coal, other byproducts may be present in higher concentrations. The current project examines the impact of a number of potential byproducts of concern from the gasification of biomass process, including compounds containing alkali chemicals like the chlorides of sodium and potassium. In the second year, researchers from the University of Kentucky Center for Applied Energy Research (UK-CAER) continued the project by evaluating the sensitivity of a commercial iron-chromia high temperature water-gas shift catalyst (WGS) to a number of different compounds, including KHCO{sub 3}, NaHCO{sub 3}, HCl, HBr, HF, H{sub 2}S, NH{sub 3}, and a combination of H{sub 2}S and NH{sub 3}. Cobalt and iron-based Fischer-Tropsch synthesis (FT) catalysts were also subjected to a number of the same compounds in order to evaluate their sensitivities.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
... information related to coal, coal bed gas, shale gas and other energy resources and related information..., coal bed gas, and other solid fuel occurrences. Requesting external cooperation is the best way for... organic-rich shale, and obtain other information (including geophysical or seismic data, sample collection...
20 CFR 725.101 - Definition and use of terms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the surface of such land by any person, used in, or to be used in, or resulting from, the work of... means or method, and in the work of preparing the coal so extracted, and includes custom coal..., mixing, storing and loading of bituminous coal, lignite or anthracite, and such other work of preparing...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
...: (720) 407-0609, e-mail: [email protected] . Conventional Energy Projects (Oil, Natural Gas, Coal..., development, feasibility and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro...
20 CFR 726.101 - Who may be authorized to self-insure.
Code of Federal Regulations, 2014 CFR
2014-04-01
... COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE... incurred by coal mine operators on account of the total disability or death of miners due to pneumoconiosis... liabilities by the sum of— (i) The estimated aggregate amount of black lung benefits (including medical...
20 CFR 726.101 - Who may be authorized to self-insure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE... incurred by coal mine operators on account of the total disability or death of miners due to pneumoconiosis... liabilities by the sum of— (i) The estimated aggregate amount of black lung benefits (including medical...
20 CFR 726.101 - Who may be authorized to self-insure.
Code of Federal Regulations, 2012 CFR
2012-04-01
... COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE... incurred by coal mine operators on account of the total disability or death of miners due to pneumoconiosis... liabilities by the sum of— (i) The estimated aggregate amount of black lung benefits (including medical...
20 CFR 726.101 - Who may be authorized to self-insure.
Code of Federal Regulations, 2013 CFR
2013-04-01
... COAL MINE HEALTH AND SAFETY ACT OF 1969, AS AMENDED BLACK LUNG BENEFITS; REQUIREMENTS FOR COAL MINE... incurred by coal mine operators on account of the total disability or death of miners due to pneumoconiosis... liabilities by the sum of— (i) The estimated aggregate amount of black lung benefits (including medical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, K.L.; Lindahl, P.; Vincent, R.
1983-10-01
A literature search was conducted to identify current light-control technology and hardware that may be applicable on underground lighting systems to minimize disability and discomfort glare. No research dealing specifically with mine lighting was found, but abstracts on research considered potentially applicable are included in the report. Information on several commercial light-control products for use in controlling glare are also included. Vision tests conducted on 137 mine personnel to determine their discomfort and disability glare sensitivity indicate their sensitivity to disability glare is about the same as the general population.
Coal workers pneumoconiosis - stage II (image)
... borders, representing coalescence (merging together) of previously distinct light areas. Diseases which may explain these x-ray findings include simple coal workers pneumoconiosis (CWP) - stage ...
Committing to coal and gas: Long-term contracts, regulation, and fuel switching in power generation
NASA Astrophysics Data System (ADS)
Rice, Michael
Fuel switching in the electricity sector has important economic and environmental consequences. In the United States, the increased supply of gas during the last decade has led to substantial switching in the short term. Fuel switching is constrained, however, by the existing infrastructure. The power generation infrastructure, in turn, represents commitments to specific sources of energy over the long term. This dissertation explores fuel contracts as the link between short-term price response and long-term plant investments. Contracting choices enable power plant investments that are relationship-specific, often regulated, and face uncertainty. Many power plants are subject to both hold-up in investment and cost-of-service regulation. I find that capital bias is robust when considering either irreversibility or hold-up due to the uncertain arrival of an outside option. For sunk capital, the rental rate is inappropriate for determining capital bias. Instead, capital bias depends on the regulated rate of return, discount rate, and depreciation schedule. If policies such as emissions regulations increase fuel-switching flexibility, this can lead to capital bias. Cost-of-service regulation can shorten the duration of a long-term contract. From the firm's perspective, the existing literature provides limited guidance when bargaining and writing contracts for fuel procurement. I develop a stochastic programming framework to optimize long-term contracting decisions under both endogenous and exogenous sources of hold-up risk. These typically include policy changes, price shocks, availability of fuel, and volatility in derived demand. For price risks, the optimal contract duration is the moment when the expected benefits of the contract are just outweighed by the expected opportunity costs of remaining in the contract. I prove that imposing early renegotiation costs decreases contract duration. Finally, I provide an empirical approach to show how coal contracts can limit short-term fuel switching in power production. During the era prior to shale gas and electricity market deregulation, I do not find evidence that gas generation substituted for coal in response to fuel price changes. However, I do find evidence that coal plant operations are constrained by fuel contracts. As the min-take commitment to coal increases, changes to annual coal plant output decrease. My conclusions are robust in spite of bias due to the selective reporting of proprietary coal delivery contracts by utilities.
Ellis, M.S.; Rohrbacher, T.J.; Carter, M.D.; Molnia, C.L.; Osmonson, L.M.; Scott, D.C.
2001-01-01
The Economic and Environmental Evaluations of Extractable Coal Resources (E4CR) project integrates economic analyses of extractable coal resources with environmental and coal quality considerations in order to better understand the contribution that coal resources can make to help meet the Nation’s future energy needs. The project utilizes coal resource information derived from the recent National Coal Resource Assessment (NCRA), National Oil and Gas Assessment (NOGA), and Coal Availability and Recoverability Studies (CARS) conducted by the U.S. Geological Survey and other State and Federal cooperating agencies. The E4CR evaluations are designed to augment economic models created by the U.S. Geological Survey CARS and NCRA projects and by the Department of Energy/Energy Information Administration (DOE/EIA). E4CR evaluations are conducted on potentially minable coal beds within selected coalfields in the United States. Emphasis is placed on coalfields containing Federally owned coal and within or adjacent to Federal lands, as shown in U.S. Geological Survey Fact Sheets 012-98, 145-99, and 011-00 (U.S. Geological Survey, 1998, 1999, 2000). Other considerations for the selection of study areas include coal quality, potential environmental impact of coal production activities and coal utilization, the potential for coalbed methane development from the coal, and projected potential for future mining. Completion dates for the E4CR studies loosely follow the schedule for analogous NOGA studies to allow for a comparison of different energy resources in similar geographic areas.
Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping
NASA Astrophysics Data System (ADS)
Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen
We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.
Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing
2013-01-01
According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447
NASA Astrophysics Data System (ADS)
Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang
2016-10-01
Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used for residential heating can be replaced with gas-burning wall-heaters, ground-source heat pumps, solar energy and electricity. In areas with inadequate clean energy sources, low-sulfur coal should be used instead of the traditional raw coal with high sulfur and ash content, thereby slightly reducing the emissions of PM, SO2, CO and other toxic pollutants.
Quarterly coal report, July--September 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-18
The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended.
Greb, S.F.; Anderson, W.H.
2006-01-01
Kentucky mines coal, limestone, clay, sand and gravel. Coal mining operations are carried out mainly in the Western Kentucky Coal Field and the Eastern Kentucky Coal field. As to nonfuel minerals, Mississippian limestones are mined in the Mississippian Plateaus Region and along Pine Mountain in southeastern Kentucky. Ordovician and Silurian limestones are mined from the central part of the state. Clay minerals that are mined in the state include common clay, ceramic and ball clays, refractory clay and shale. Just like in 2004, mining activities in the state remain significant.
Kolker, A.; Finkelman, R.B.
1998-01-01
Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Rank of coal beds of the Narragansett basin, Massachusetts and Rhode Island
Lyons, P.C.; Chase, H.B.
1981-01-01
Coal of the Narragansett basin generally has been considered to be anthracite and/or meta-anthracite. However, no single reliable method has been used to distinguish these two ranks in this basin. Three methods - chemical, X-ray, and petrographic - have been used with some degree of success on coal of the Narragansett basin, but too often the results are in conflict. Chemical methods have been limited by inadequate sampling on a coal-bed-by-coal-bed basis and by a lack of analyses made according to (American Society for Testing and Materials, 1974) standard specifications. In addition, when corrections are made by using the Parr formulas, as required by the ASTM (1974) procedures, the generally high to very high ash content of coal from the Narragansett basin causes the fixed-carbon content to appear higher than it actually is. X-ray methods using the degree of graphitization as a measure of rank are not reliable because some of the graphite is related to shearing and brecciation associated with folding and faulting. Petrographic methods using reflectance on vitrinite give results that are generally consistent with results from chemical determinations. However, it is not clear whether the mean maximum reflectance or mean bireflectance is a better indicator of similar rank of such high-rank coals that have been structurally deformed. Coal from the Cranston Mine, RI, is probably meta-anthracite and coal from the Portsmouth Mine is probably anthracite. These ranks are based on chemical,X-ray, and petrographic data and are supported by associated metamorphic mineral assemblages that indicate that the Cranston Mine is in a higher metamorphic zone than the zone containing the Porthmouth Mine. Interpretation of the rank of Mansfield, MA, coal on the basis of extant chemical data is difficult because it is an impure coal with an ash content of 33 to 50%. Reflectance data indicate that the Mansfield, Foxborough, and Plainville coals in the northern part of the Narragansett basin are meta-anthracite but this is in disagreement with the rank suggested by the low degree of metamorphism of the associated rocks. ?? 1981.
Sen. Byrd, Robert C. [D-WV
2010-04-15
Senate - 04/15/2010 Submitted in the Senate, considered, and agreed to without amendment and with a preamble by Unanimous Consent. (All Actions) Tracker: This bill has the status Agreed to in SenateHere are the steps for Status of Legislation:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chunshan Song; Hatcher, P.G.; Saini, A.K.
It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminousmore » coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.« less
Combining a Spatial Model and Demand Forecasts to Map Future Surface Coal Mining in Appalachia
Strager, Michael P.; Strager, Jacquelyn M.; Evans, Jeffrey S.; Dunscomb, Judy K.; Kreps, Brad J.; Maxwell, Aaron E.
2015-01-01
Predicting the locations of future surface coal mining in Appalachia is challenging for a number of reasons. Economic and regulatory factors impact the coal mining industry and forecasts of future coal production do not specifically predict changes in location of future coal production. With the potential environmental impacts from surface coal mining, prediction of the location of future activity would be valuable to decision makers. The goal of this study was to provide a method for predicting future surface coal mining extents under changing economic and regulatory forecasts through the year 2035. This was accomplished by integrating a spatial model with production demand forecasts to predict (1 km2) gridded cell size land cover change. Combining these two inputs was possible with a ratio which linked coal extraction quantities to a unit area extent. The result was a spatial distribution of probabilities allocated over forecasted demand for the Appalachian region including northern, central, southern, and eastern Illinois coal regions. The results can be used to better plan for land use alterations and potential cumulative impacts. PMID:26090883
Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.
2006-01-01
In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.
NASA Astrophysics Data System (ADS)
Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang
2017-08-01
Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.
NASA Astrophysics Data System (ADS)
Yao, Shunchun; Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping; Lu, Jidong
2015-08-01
The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment.
Life-cycle analysis of bio-based aviation fuels.
Han, Jeongwoo; Elgowainy, Amgad; Cai, Hao; Wang, Michael Q
2013-12-01
Well-to-wake (WTWa) analysis of bio-based aviation fuels, including hydroprocessed renewable jet (HRJ) from various oil seeds, Fischer-Tropsch jet (FTJ) from corn-stover and co-feeding of coal and corn-stover, and pyrolysis jet from corn stover, is conducted and compared with petroleum jet. WTWa GHG emission reductions relative to petroleum jet can be 41-63% for HRJ, 68-76% for pyrolysis jet and 89% for FTJ from corn stover. The HRJ production stage dominates WTWa GHG emissions from HRJ pathways. The differences in GHG emissions from HRJ production stage among considered feedstocks are much smaller than those from fertilizer use and N2O emissions related to feedstock collection stage. Sensitivity analyses on FTJ production from coal and corn-stover are also conducted, showing the importance of biomass share in the feedstock, carbon capture and sequestration options, and overall efficiency. For both HRJ and FTJ, co-product handling methods have significant impacts on WTWa results. Copyright © 2013 Elsevier Ltd. All rights reserved.
Coal resources in environmentally-sensitive lands under federal management
Watson, William D.; Tully, John K.; Moser, Edward N.; Dee, David P.; Bryant, Karen; Schall, Richard; Allan, Harold A.
1995-01-01
This report presents estimates of coal-bearing acreage and coal tonnage in environmentally-sensitive areas. The analysis was conducted to provide data for rulemaking by the Federal Office of Surface Mining (Watson and others, 1995). The rulemaking clarifies conditions under which coal can be mined in environmentally-sensitive areas. The area of the U.S. is about 2.3 billion acres. Contained within that acreage are certain environmentally-sensitive and unique areas (including parks, forests, and various other Federal land preserves). These areas are afforded special protection under Federal and State law. Altogether these protected areas occupy about 400 million acres. This report assesses coal acreage and coal tonnage in these protected Federal land preserves. Results are presented in the form of 8 map-displays prepared using GIS methods at a national scale. Tables and charts that accompany each map provide estimates of the total acreage in Federal land preserve units that overlap or fall within coal fields, coal-bearing acreage in each unit, and coal tonnage in each unit. Summary charts, compiled from the maps, indicate that about 8% of the Nation's coal reserves are located within environmentally-sensitive Federal land preserves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Organiscak, J.A.; Page, S.J.
1998-10-01
Laboratory crushing experiments were conducted on a range of low- to high-volatile bituminous coals to investigate the various factors influencing airborne respirable dust (ARD) generation. This research was conducted to identify the principles of ARD liberation from the coal product. Five U.S. bituminous coals were uniformly prepared and processed through a double roll crusher located in a low-velocity wind tunnel. Experimental factors studied included inherent coal seam constituents, coal grindability, specific energy of crushing, product size characteristics, dust cloud electrostatic field, and specific ARD generated. The results of this investigation indicate that a combination of several factors are associated withmore » ARD generation. One factor is the effect of coal rank, described by the inherent moist fuel ratio, on the product size characteristics, defined by Schuhmann size function parameters. Another key factor is the effect of air dry loss (ADL) moisture in the coal seam on the breakage-induced electrostatic field of airborne dust. The effect of these factors is that different percentages of <10-micrometers coal particles are dispersed as ARD. A discussion of electrostatic field principles, coal ADL, and its effect on ARD generation is presented.« less
Bostick, N.H.; Betterton, W.J.; Gluskoter, H.J.; Nazrul, Islam M.
1991-01-01
Drilling through Quaternary alluvium and Tertiary cover at low-gravity anomalies in northwestern Bangladesh showed the presence of Permian sedimentary rocks in depressions that may be as much as a thousand meters deep in the crystalline basement. These Permian strata include low-sulfur, high-volatile bituminous coals in beds as thick as 15 m. The maceral group composition of these coals was determined by semiautomated reflectance scanning with a motorized microscope stage, rather than by point counting. This method was chosen to give objectively recorded raw analytical data and to provide a graphical picture of each sample. The coals are mostly "Gondwana" type (poorly layered "plum pudding" with abundant minerals and inertinite in a vitrinite groundmass) that would be classed as semi-dull (inerto-gelitite) coals. However, six samples have more than 70% vitrinite. None of the samples would be classed as sapropelic (liptinitic). The upper, middle, and lower main seams in borehole GDH-45 were sampled in 10 benches (0.1-3 m thick) each. Inertinite ranges from 7 to 100 vol% (mineral free basis) in individual benches, but composite seam averages are 41, 54 and 67%. Inertinite increases toward the top of two main seams so the bottom would yield the most valuable first mine slices. Some benches with extremely high inertinite content, such as the top 7 m of the lower thick seam, might be mined specially for blending with foreign low-inert coals to increase coke strength. The free swelling index reaches 7.5 in several vitrinite-rich benches, which can indicate good coking coal. Much of the vitrinite is fluorescent, which indicates secondary bituminization characteristic of vitrinite in good coking coals. Ash yields range from 8 to 52%, with composite seam averages of 15, 14 and 24%. Rare visible pyrite is in veinlets or small nodules; framboids and dispersed pyrite are absent. In borehole GDH-40 near Barapukuria (200-500 m depth), the mean random reflectance of vitrinite "A" ranges from 0.60 to 0.80% Ro and vitrinite "B" ranges from 0.55 to 0.65%. In borehole GDH-45 near Khalaspir (287-442 m), the reflectance of vitrinite ranges from 0.79 to 0.94%. In individual cases, the vitrinite is difficult to define because of semivitrinite at higher reflectance (forming a separate peak on several reflectograms) and because of surface bitumen films or resinous (?) inclusions at lower reflectance. On the basis of vitrinite reflectance, the coals can be considered to have entered the "main phase of bitumen generation" of organic thermal maturation as understood in petroleum geochemistry. ?? 1991.
USGS international activities in coal resources
,
1999-01-01
During the last 30 years the U.S. Geological Survey (USGS) has been engaged in coal exploration and characterization in more that 30 foreign countries, including India, Pakistan, China, Turkey, several Eastern European countries, Russia, and other former Soviet Union countries. Through this work, the USGS has developed an internationally recognized capability for assessing coal resources and defining their geochemical and physical characteristics. More recently, these data have been incorporated into digital databases and Geographic Information System (GIS) digital map products. The USGS has developed a high level of expertise in assessing the technological, economic, environmental, and human health impacts of coal occurrences and utilization based on comprehensive characterization of representative coal samples.
Decaking of coal or oil shale during pyrolysis in the presence of iron oxides
Khan, M. Rashid
1989-01-01
A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.
Coal resources for part of the Wilcox group (Paleocene-Eocene), northeast Texas
Warwick, Peter D.; Aubourg, Claire E.; Podwysocki, Steven M.; Schultz, Adam C.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.
2011-01-01
The Wilcox Group of northeast Texas contains shallow (less than 500 ft) coal deposits that are mined for use in mine-mouth electric power generating plants. The coal deposits, which are lignite in apparent rank (Pierce et al., 2011), are separated from similar shallow coal deposits in the Sabine uplift area by the East Texas Basin (Figure 1). The coal zones and associated strata in the northeast assessment area generally dip to the south and southeast at 28 or less toward the axis of the East Texas Basin. The northeast Texas resource assessment area includes parts of nine counties (Figure 2).
Organic intermediates in the anaerobic biodegradation of coal to methane under laboratory conditions
Orem, William H.; Voytek, Mary A.; Jones, Elizabeth J.; Lerch, Harry E.; Bates, Anne L.; Corum, Margo D.; Warwick, Peter D.; Clark, Arthur C.
2010-01-01
Organic intermediates in coal fluids produced by anaerobic biodegradation of geopolymers in coal play a key role in the production of methane in natural gas reservoirs. Laboratory biodegradation experiments on sub-bituminous coal from Texas, USA, were conducted using bioreactors to examine the organic intermediates relevant to methane production. Production of methane in the bioreactors was linked to acetate accumulation in bioreactor fluid. Long chain fatty acids, alkanes (C19–C36) and various low molecular weight aromatics, including phenols, also accumulated in the bioreactor fluid and appear to be the primary intermediates in the biodegradation pathway from coal-derived geopolymers to acetate and methane.
Determination of element affinities by density fractionation of bulk coal samples
Querol, X.; Klika, Z.; Weiss, Z.; Finkelman, R.B.; Alastuey, A.; Juan, R.; Lopez-Soler, A.; Plana, F.; Kolker, A.; Chenery, S.R.N.
2001-01-01
A review has been made of the various methods of determining major and trace element affinities for different phases, both mineral and organic in coals, citing their various strengths and weaknesses. These include mathematical deconvolution of chemical analyses, direct microanalysis, sequential extraction procedures and density fractionation. A new methodology combining density fractionation with mathematical deconvolution of chemical analyses of whole coals and their density fractions has been evaluated. These coals formed part of the IEA-Coal Research project on the Modes of Occurrence of Trace Elements in Coal. Results were compared to a previously reported sequential extraction methodology and showed good agreement for most elements. For particular elements (Be, Mo, Cu, Se and REEs) in specific coals where disagreement was found, it was concluded that the occurrence of rare trace element bearing phases may account for the discrepancy, and modifications to the general procedure must be made to account for these.
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
Development of Methods of Characterizing Coal in Its Plastic State
NASA Technical Reports Server (NTRS)
Lloyd, W. G.
1978-01-01
Coal in its plastic state (typically 400-460 C) was examined by the isothermal Gieseler plastometry of seven selected coals of widely varying plastic properties. Kinetic models were proposed for the isothermal plastometric curves. Plastic behavior was compared with a variety of laboratory analyses and characterizations of these coals, including classical coal analysis; mineral analysis; microstructural analysis (extractable fractions, surface area measurement, and petrographic analysis); and thermal analysis (thermogravimetric analysis, thermomechanical analysis, and differential scanning calorimetry). The phenomenon of a sharp, large, poorly reproducible exotherm in the differential scanning calorimetric analysis of coking coals was examined. Several coal extrudates show mineral distribution, organic maceral composition and overall calorific value to be little affected by 800 F extrusion. Volatile matter and plastic properties are moderately reduced, and the network structure (as gauged by extractables) appears to be slightly degraded in the extrusion process.
Automatic crack detection method for loaded coal in vibration failure process
Li, Chengwu
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically. PMID:28973032
Automatic crack detection method for loaded coal in vibration failure process.
Li, Chengwu; Ai, Dihao
2017-01-01
In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM). A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
Wang, Yan; Xu, Yue; Chen, Yingjun; Tian, Chongguo; Feng, Yanli; Chen, Tian; Li, Jun; Zhang, Gan
2016-05-01
To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129-16.7 mg/kg and 0.059-0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
... (Oil, Natural Gas, Coal): Bob Just, Tel: (720) 407-0611, e-mail: [email protected] ; Renewable Energy... and market studies. Energy includes conventional energy resources (such as oil, gas, coal, uranium, and coal bed gas) and renewable energy resources (such as wind, solar, biomass, hydro and geothermal...
29 CFR 782.8 - Special classes of carriers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subject to its jurisdiction. (New Pittsburgh Coal Co. v. Hocking Valley Ry. Co., 24 I.C.C. 244; Corona Coal Co. v. Secretary of War, 69 I.C.C. 389; Bunker Coal from Alabama to Gulf Ports, 227 I.C.C. 485.) The intrastate delivery of chandleries, including cordage, canvas, repair parts, wire rope, etc., to...
29 CFR 782.8 - Special classes of carriers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... subject to its jurisdiction. (New Pittsburgh Coal Co. v. Hocking Valley Ry. Co., 24 I.C.C. 244; Corona Coal Co. v. Secretary of War, 69 I.C.C. 389; Bunker Coal from Alabama to Gulf Ports, 227 I.C.C. 485.) The intrastate delivery of chandleries, including cordage, canvas, repair parts, wire rope, etc., to...
Flow in Coal Seams: An Unconventional Challenge
NASA Astrophysics Data System (ADS)
Armstrong, R. T.; Mostaghimi, P.; Jing, Y.; Gerami, A.
2016-12-01
A significant unconventional resource for energy is the methane gas stored in shallow coal beds, known as coal seam gas. An integrated imaging and modelling framework is developed for analysing petrophysical behaviour of coals. X-ray micro-computed tomography (micro-CT) is applied using a novel contrast agent method for visualising micrometer-sized fractures in coal. The technique allows for the visualisation of coal features not visible with conventional imaging methods. A Late Permian medium volatile bituminous coal from Moura Coal Mine (Queensland, Australia) is imaged and the resulting three-dimensional coal fracture system is extracted for fluid flow simulations. The results demonstrate a direct relationship between coal lithotype and permeability. Scanning electron microscope and energy dispersive spectrometry (SEM-EDS) together with X-ray diffraction (XRD) methods are used for identifying mineral matters at high resolution. SEM high-resolution images are also used to calibrate the micro-CT images and measure the exact aperture size of fractures. This leads to a more accurate estimation of permeability using micro-CT images. To study the significance of geometry and topology of the fracture system, a fracture reconstruction method based on statistical properties of coal is also developed. The network properties including the frequency, aperture size distribution, length, and spacing of the imaged coal fracture system. This allows for a sensitivity analysis on the effects that coal fracture topology and geometry has on coal petrophysical properties. Furthermore, we generate microfluidic chips based on coal fracture observations. The chip is used for flow experiments to visualise multi-fluid processes and measure recovery of gas. A combined numerical and experimental approach is applied to obtain relative permeability curves for different regions of interest. A number of challenges associated with coal samples are discussed and insights are provided for better understanding of these complex porous media systems.
Access to primary energy sources - the basis of national energy security
NASA Astrophysics Data System (ADS)
Szlązak, Jan; Szlązak, Rafał A.
2017-11-01
National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
Paleoecology of Middle Pennsylvanian-age peat-swamp plants in Herrin coal, Kentucky, U.S.A.
Winston, R.B.
1988-01-01
To develop a method for quantifying the vegetation of Pennsylvania-age coal beds, of four coal-ball (permineralized peat) profiles and four coal column samples from the Herrin coal bed (Kentucky No. 11) Carbondale Formation in western Kentucky were compared. An estimated 89.5% of the coal can be identified botanically. Compaction ratios for individual tissues were estimated using point counts of organic matter in coal balls. The estimated abundances of major plant groups (lycopods, ferns, sphenopsids, and pteridosperms) in coal balls differ by less than 10% compared to coal after accounting for differential compaction of plant tissues. Standard deviations in taxonomic and maceral composition among coal columns are generally less than 2%. Consistent differences in botanical composition were found between benches showing that the method is consistent when applied to sufficient thicknesses of coal. It was not possible to make fine-scale correlations within the coal bed using the vegetational data; either the flora varied considerably from place to place or the method of quantification is unreliable for small increments of coal (5 cm or less). In the coal, pteridosperm abundance is positively correlated with underlying shale partings. This correlation suggests that pteridosperms are favored either by higher nutrient levels or disturbance. In the third of four benches in the Herrin coal bed, a succession from Sigillaria-containing zones to zones dominated by Lepidophloios hallii is interpreted as a shift towards wetter conditions. In the other benches, the main factors controlling the taxonomic composition appear to have been the relative abundance of nutrients and/or the frequency of disturbance as indicated by the relative abundance of partings. Criteria for distinguishing between domed and planar swamps are discussed. These include: distribution of partings, type of plant succession, and changes in plant diversity, average plant size, preservational quality and sporinite content. The infrequency of partings in bench C suggests a peat dome developed while the peat of that bench was accumulating but other evidence either fails to support the development of a peat dome or is ambiguous. The maceral composition resembles those of other Carboniferous coals which are thought to have formed from planar peat swamps. Formation of fusain bands appears to be associated with processes occurring above the peat surface, such as burning or prolonged oxidative exposure. Oxidation of accumulated peat is unlikely because fusain bands rarely include more than a single plant. ?? 1988.
GIS Representation of Coal-Bearing Areas in Africa
Merrill, Matthew D.; Tewalt, Susan J.
2008-01-01
The African continent contains approximately 5 percent of the world's proven recoverable reserves of coal (World Energy Council, 2007). Energy consumption in Africa is projected to grow at an annual rate of 2.3 percent from 2004 through 2030, while average consumption in first-world nations is expected to rise at 1.4 percent annually (Energy Information Administration, 2007). Coal reserves will undoubtedly continue to be part of Africa's energy portfolio as it grows in the future. A review of academic and industrial literature indicates that 27 nations in Africa contain coal-bearing rock. South Africa accounts for 96 percent of Africa's total proven recoverable coal reserves, ranking it sixth in the world. This report is a digital compilation of information on Africa's coal-bearing geology found in the literature and is intended to be used in small scale spatial investigations in a Geographic Information System (GIS) and as a visual aid for the discussion of Africa's coal resources. Many maps of African coal resources often include points for mine locations or regional scale polygons with generalized borders depicting basin edges. Point locations are detailed but provide no information regarding extent, and generalized polygons do not have sufficient detail. In this dataset, the polygons are representative of the actual coal-bearing lithology both in location and regional extent. Existing U.S. Geological Survey (USGS) digital geology datasets provide the majority of the base geologic polygons. Polygons for the coal-bearing localities were clipped from the base geology that represented the age and extent of the coal deposit as indicated in the literature. Where the 1:5,000,000-scale geology base layer's ages conflicted with those in the publications, polygons were generated directly from the regional African coal maps (1:500,000 scale, approximately) in the published material. In these cases, coal-bearing polygons were clipped to the literature's indicated coal extent, without regard to the underlying geology base or topographic constraints. Indication of the presence of African coal is based on multiple sources. However, the quality of the sources varies and there is often disagreement in the literature. This dataset includes the rank, age, and location of coal in Africa as well as the detailed source information responsible for each coal-bearing polygon. The dataset is not appropriate for use in resource assessments of any kind. Attributes necessary for tasks, such as number of coal seams, thickness of seams, and depth to coal are rarely provided in the literature and accordingly not represented in this data set. Small-scale investigations, representations and display uses are most appropriate for this product. This product is the first to show coal distribution as bounded by actual geologic contacts for the entire African continent. In addition to the spatial component of this dataset, complete references to source material are provided for each polygon, making this product a useful first step resource in African coal research. Greater detail regarding the creation of this dataset as well as the sources used is provided in the metadata file for the Africa_coal.shp file.
Hossain, Md Nazir; Paul, Shitangsu Kumar; Hasan, Md Muyeed
2015-04-01
The study was carried out to analyse the environmental impacts of coal mine and coal-based thermal power plant to the surrounding environment of Barapukuria, Dinajpur. The analyses of coal, water, soil and fly ash were carried out using standard sample testing methods. This study found that coal mining industry and coal-based thermal power plant have brought some environmental and socio-economic challenges to the adjacent areas such as soil, water and air pollution, subsidence of agricultural land and livelihood insecurity of inhabitants. The pH values, heavy metal, organic carbon and exchangeable cations of coal water treated in the farmland soil suggest that coal mining deteriorated the surrounding water and soil quality. The SO4(2-) concentration in water samples was beyond the range of World Health Organisation standard. Some physico-chemical properties such as pH, conductivity, moisture content, bulk density, unburned carbon content, specific gravity, water holding capacity, liquid and plastic limit were investigated on coal fly ash of Barapukuria thermal power plant. Air quality data provided by the Barapukuria Coal Mining Company Limited were contradictory with the result of interview with the miners and local inhabitants. However, coal potentially contributes to the development of economy of Bangladesh but coal mining deteriorates the environment by polluting air, water and soil. In general, this study includes comprehensive baseline data for decision makers to evaluate the feasibility of coal power industry at Barapukuria and the coalmine itself.
Okuda, Tomoaki; Katsuno, Masayuki; Naoi, Daisuke; Nakao, Shunsuke; Tanaka, Shigeru; He, Kebin; Ma, Yongliang; Lei, Yu; Jia, Yingtao
2008-06-01
Daily observations of hazardous trace metal concentrations in aerosols in Beijing, China were made in the period from 2001 to 2006. We considered coal combustion as a major source of some anthropogenic metals by achieving a correlation analysis and by investigating enrichment factors and relative composition of metals. A possible extra source of some specific metals, such as Cu and Sb, was brake abrasion particles, however, we did not think the transport-related particle was a major source for the hazardous anthropogenic metals even though they could originate from vehicle exhaust and brake/tire abrasion particles. A time-trend model was used to describe temporal variations of chemical constituent concentrations during the five-year period. Several crustal elements, such as Al, Ti, V, Cr, Mn, Fe, and Co, did not show clear increases, with annual rates of change of -15.2% to 3.6%. On the other hand, serious increasing trends were noted from several hazardous trace metals. Cu, Zn, As, Cd, and Pb, which are derived mainly from anthropogenic sources, such as coal combustion, showed higher annual rate of change (4.9-19.8%, p<0.001) according to the regression model. In particular, the Cd and Pb concentrations increased remarkably. We hypothesize that the trend towards increasing concentrations of metals in the air reflects a change that has occurred in the process of burning coal, whereby the use of higher temperatures for coal combustion has resulted in increased emissions of these metals. The increasing use of low-rank coal may also explain the observed trends. In addition, nonferrous metal smelters are considered as a potential, albeit minor, reason for the increasing atmospheric concentrations of anthropogenic hazardous metals in Beijing city.
Zullig, Keith J; Hendryx, Michael
2010-01-01
We compared health-related quality of life (HRQOL) in mining and non-mining counties in and out of Appalachia using the 2006 Behavioral Risk Factor Surveillance System (BRFSS) survey. Dependent variables included self-rated health, the number of poor physical and mental health days, the number of activity limitation days (in the last 30 days), and the Centers for Disease Control and Prevention Healthy Days Index. Independent variables included the presence of coal mining, Appalachian region residence, metropolitan status, primary care physician supply, and BRFSS behavioral (e.g., smoking, body mass index, and alcohol consumption) and demographic (e.g., age, gender, race, and income) variables. We compared dependent variables across a four-category variable: Appalachia (yes/ no) and coal mining (yes/no). We used SUDAAN Multilog and multiple linear regression models with post-hoc least-squares means to test for Appalachian coal-mining effects after adjusting for covariates. Residents of coal-mining counties inside and outside of Appalachia reported significantly fewer healthy days for both physical and mental health, and poorer self-rated health (p < 0.0005) when compared with referent U.S. non-coal-mining counties, but disparities were greatest for people residing in Appalachian coal-mining areas. Furthermore, results remained consistent in separate analyses by gender and age. Coal-mining areas are characterized by greater socioeconomic disadvantage, riskier health behaviors, and environmental degradation that are associated with reduced HRQOL.
Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.
Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi
2018-06-01
Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2 h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2 h -1 ; no coal-fire area 19 and 32 ng m -2 h -1 ; and backfilling area 53 ng m -2 h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.
Trace and major element pollution originating from coal ash suspension and transport processes.
Popovic, A; Djordjevic, D; Polic, P
2001-04-01
Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.
Code of Federal Regulations, 2011 CFR
2011-04-01
...' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK... matter of law in a denial of his claim for compensation under such law. (c) To be considered to have...
Code of Federal Regulations, 2010 CFR
2010-04-01
...' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK... matter of law in a denial of his claim for compensation under such law. (c) To be considered to have...
Carbon-free hydrogen production from low rank coal
NASA Astrophysics Data System (ADS)
Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao
2018-02-01
Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.
Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification
NASA Astrophysics Data System (ADS)
Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.
2009-04-01
Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 Ë C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 Ë C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.
NASA Astrophysics Data System (ADS)
Esen, Olgun; Özer, Samet Can; Fişne, Abdullah
2015-04-01
Coal and gas outbursts are sudden and violent releases of gas and in company with coal that result from a complex function of geology, stress regime with gas pressure and gas content of the coal seam. The phenomena is referred to as instantaneous outbursts and have occurred in virtually all the major coal producing countries and have been the cause of major disasters in the world mining industry. All structures from faults to joints and cleats may supply gas or lead to it draining away. Most geological structures influence the way in which gas can drain within coal seams. From among all the geological factors two groups can be distinguished: parameters characterising directly the occurrence and geometry of the coal seams; parameters characterising the tectonic disturbances of the coal seams and neighbouring rocks. Also dykes may act as gas barriers. When the production of the coal seam is advanced in mine working areas, these barriers are failed mostly in the weak and mylonitized zones. Geology also plays a very important role in the outburst process. Coal seams of complex geological structure including faults, folds, and fractured rocks are liable to outbursts if coal seams and neighbouring rocks have high gas content level. The purpose of the study is to enlighten the coal industry in Turkey to improving mine safety in underground coal production and decrease of coal and gas outburst events due to increasing depth of mining process. In Turkey; the years between 1969 and 2013, the number of 90 coal and gas outbursts took place in Zonguldak Hard Coal Basin in both Kozlu and Karadon Collieries. In this study the liability to coal and gas outburst of the coal seams are investigated by measuring the strength of coal and the rock pressure. The correlation between these measurements and the event locations shows that the geological structures resulted in 52 events out of 90 events; 19 events close to the fault zones, 25 events thorough the fault zones and 8 events in the zones where sudden changes of inclination and/or thickness of the coal seam.
40 CFR 98.320 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... destroyed (including by flaring). (2) Each degasification system well or shaft, including degasification...
40 CFR 98.320 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... destroyed (including by flaring). (2) Each degasification system well or shaft, including degasification...
40 CFR 98.320 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... under development that have operational pre-mining degasification systems. An underground coal mine is a mine at which coal is produced by tunneling into the earth to the coalbed, which is then mined with... destroyed (including by flaring). (2) Each degasification system well or shaft, including degasification...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lili; Schobert, Harold H.; Song, Chunshan
1998-01-01
The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. Formore » convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.« less
Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China
Zheng, Lingyun; Liu, Gaisheng; Chou, C.-L.; Qi, C.; Zhang, Y.
2007-01-01
The rare earth elements (REEs) in coals are important because of: (a) REE patterns can be an indicator of the nature of source rocks of the mineral matter as well as sedimentary environments; (b) REEs abundance in coal may have industrial-significance. In this study, a total of thirty-four samples of Permian coal, partings, roof, and floor were collected from the Huaibei Coalfield, Anhui Province, China. Abundances of rare earth elements (REEs) and other elements in the samples were determined by inductively coupled-plasma mass spectrometry (ICP-MS) and inductively coupled-plasma atomic emission spectrometry (ICP-AES). The results show that the REEs are enriched in coals in the Huaibei Coalfield as compared with Chinese and U.S. coals and the world coal average. Coals in the Lower Shihezi Formation (No. 7, 5, and 4 Coals) and Upper Shihezi Formation (No. 3) have higher REE abundances than the coals in Shanxi Formation (No. 10). Magmatic intrusion resulted in high enrichment of REEs concentrations in No. 5 and 7 Coals. The REE abundances are positively correlated with the ash content. The mineral matter in these coals is mainly made up of clay minerals and carbonates. The REEs are positively correlated with lithophile elements including Si, Al, Ti, Fe, and Na, which are mainly distributed in clay minerals, indicating that REEs are contained mainly in clay minerals. The REE abundances in coals normalized by the ash are higher than that in partings. REEs abundances of coals cannot be accounted for by the REE content in the mineral matter, and some REEs associated with organic matter in coals. ?? 2007 Elsevier Ltd. All rights reserved.
Huber, Douglas W.; Pierce, Brenda S.
2000-01-01
The U. S. Geological Survey (USGS) conducted a coal resource assessment of several areas in Armenia from 1997 to 1999. This report, which presents a prefeasibility study of the economic and mining potential of one coal deposit found and studied by the USGS team, was prepared using all data available at the time of the study and the results of the USGS exploratory work, including core drilling, trenching, coal quality analyses, and other ongoing field work. On the basis of information currently available, it is the authors? opinion that a small surface coal mine having about a 20-year life span could be developed in the Antaramut-Kurtan-Dzoragukh coal field, specifically at the Dzoragukh site. The mining organization selected or created to establish the mine will need to conduct necessary development drilling and other work to establish the final feasibility study for the mine. The company will need to be entrepreneurial, profit oriented, and sensitive to the coal consumer; have an analytical management staff; and focus on employee training, safety, and protection of the environment. It is anticipated that any interested parties will be required to submit detailed mining plans to the appropriate Armenian Government agencies. Further development work will be required to reach a final decision regarding the economic feasibility of the mine. However, available information indicates that a small, economic surface mine can be developed at this locality. The small mine suggested is a typical surface-outcropstripping, contour mining operation. In addition, auger mining is strongly suggested, because the recovery of these low-cost mining reserves will help to ensure that the operation will be a viable, economic enterprise. (Auger mining is a system in which large-diameter boreholes are placed horizontally into the coal seam at the final highwall set as the economic limit for the surface mining operation). A special horizontal boring machine, which can be imported from Russia, is required for auger mining. Although auger-mining coal reserves do exist, the necessary development work will further verify the extent of these reserves and all of the other indicated reserves. The following items are based on the detailed study reported in this publication. Initial investment.?Following an investment of US $85,000 over a 12-month period in mine development drilling and other activities, a decision must be taken regarding further investment in an ongoing mining operation. If the new data support the opening of the surface mine, __________________________ 1Consultant, 6024 Morning Dew Drive, Austin, TX 78749. 2 U.S. Geological Survey, 956 National Center, Reston, VA 20192 1 2 MINABILITY AND ECONOMIC VIABILITY, ANTARAMUT-KURTAN-DZORAGUKH COAL FIELD the $85,000 development cost is amortized over the first 10 years of mine production. If the new data do not support the opening of the mine, the $85,000 is considered a business development expense that may be written off against profits from other operations for income or other tax purposes or simply as a business loss. Total capital required.?The equipment costs will reach a total of $900,500 which will be amortized over a 7-year period to establish estimated coal mining costs. Estimated working capital costs are $300,000, which will be borrowed. Surface mining reserves.?Approximately 840,200 metric tonnes of surface minable coal reserves at 9.3 m3 of overburden per metric tonne of minable coal is indicated. Recovery of the minable coal at 85 percent will yield 714,000 recoverable metric tonnes of marketable as-mined coal. Auger mining reserves.?Auger-mining reserves of 576,000 metric tonnes are indicated. Recoverable auger-mining reserves of 202,000 metric tonnes (at 35-percent recovery) can be expected. Auger-mining production will vary according to the hole size being used, but, in either case, augering is a very profitable addition to the mining oper
... vapors that can cause PF (such as asbestos, coal, silica, and others) Some MEDICATIONS can cause PF. ... wide variety of inorganic dusts, including asbestos, silica, coal dust, beryllium, and hard metal dusts. Are there ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.
Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less
Minor element distribution in iron disulfides in coal: a geochemical review
Kolker, Allan
2012-01-01
Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to the environment through coal mining and use, as well as for potential reduction by coal preparation, and for delineating diagenetic compositional changes throughout and after coal formation.
NASA Astrophysics Data System (ADS)
Fox, J. F.; Campbell, J. E.; Martin, D.
2008-12-01
The need to quantify the impact of human disturbance upon carbon flux and storage has been recently highlighted in order to more accurately budget carbon. One understudied but critical area of research is surface coal mining's impact on terrestrial carbon storage and sediment carbon transport processes-which has been identified as potentially important to understanding fluxes in global carbon budgeting. While national attention has focused on U.S. coal production to maintain a vibrant economy, scientists are concerned that increased coal production could have unforeseen environmental implications if the relationship between coal mining practices and the environment is not better understood. This issue is particularly important to the coal mining region of the Southern Appalachian forest region, which has been responsible for 23.3% of the coal produced in the United States over the past twenty years and seen approximately 300,000 ha of forested land disturbed by surface coal mining during that time period. Our presentation provides results that focus upon terrestrial carbon cycling as impacted by mountaintop coal mining in the Southern Appalachian forest region. In order to study carbon redistribution due to the mining disturbance, our methods make use of measurements of total organic carbon, total organic nitrogen, and carbon and nitrogen stable isotopes of soils and eroded sediments collected in the region as well as published data, consultation with experts and remote sensing of land cover change. It was found that disturbed terrestrial carbon, including soil C, non-soil or plant C, and geogenic C, is approximately 10% of the carbon emitted to the atmosphere during coal combusting and transportation and mining of coal. Quantification of the fate of terrestrial carbon in different pools is provided and discussed including the fate atmosphere during recovery of the terrestrial system; newly deposited coal fragments within the terrestrial soil reservoir; and carbon that is eroded to streams in mined watersheds with different levels of disturbance.