Multiple utility constrained multi-objective programs using Bayesian theory
NASA Astrophysics Data System (ADS)
Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed
2018-03-01
A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.
Martínez-Gomez, Juan; Peña-Lamas, Javier; Martín, Mariano; Ponce-Ortega, José María
2017-12-01
The selection of the working fluid for Organic Rankine Cycles has traditionally been addressed from systematic heuristic methods, which perform a characterization and prior selection considering mainly one objective, thus avoiding a selection considering simultaneously the objectives related to sustainability and safety. The objective of this work is to propose a methodology for the optimal selection of the working fluid for Organic Rankine Cycles. The model is presented as a multi-objective approach, which simultaneously considers the economic, environmental and safety aspects. The economic objective function considers the profit obtained by selling the energy produced. Safety was evaluated in terms of individual risk for each of the components of the Organic Rankine Cycles and it was formulated as a function of the operating conditions and hazardous properties of each working fluid. The environmental function is based on carbon dioxide emissions, considering carbon dioxide mitigation, emission due to the use of cooling water as well emissions due material release. The methodology was applied to the case of geothermal facilities to select the optimal working fluid although it can be extended to waste heat recovery. The results show that the hydrocarbons represent better solutions, thus among a list of 24 working fluids, toluene is selected as the best fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conditioning 3D object-based models to dense well data
NASA Astrophysics Data System (ADS)
Wang, Yimin C.; Pyrcz, Michael J.; Catuneanu, Octavian; Boisvert, Jeff B.
2018-06-01
Object-based stochastic simulation models are used to generate categorical variable models with a realistic representation of complicated reservoir heterogeneity. A limitation of object-based modeling is the difficulty of conditioning to dense data. One method to achieve data conditioning is to apply optimization techniques. Optimization algorithms can utilize an objective function measuring the conditioning level of each object while also considering the geological realism of the object. Here, an objective function is optimized with implicit filtering which considers constraints on object parameters. Thousands of objects conditioned to data are generated and stored in a database. A set of objects are selected with linear integer programming to generate the final realization and honor all well data, proportions and other desirable geological features. Although any parameterizable object can be considered, objects from fluvial reservoirs are used to illustrate the ability to simultaneously condition multiple types of geologic features. Channels, levees, crevasse splays and oxbow lakes are parameterized based on location, path, orientation and profile shapes. Functions mimicking natural river sinuosity are used for the centerline model. Channel stacking pattern constraints are also included to enhance the geological realism of object interactions. Spatial layout correlations between different types of objects are modeled. Three case studies demonstrate the flexibility of the proposed optimization-simulation method. These examples include multiple channels with high sinuosity, as well as fragmented channels affected by limited preservation. In all cases the proposed method reproduces input parameters for the object geometries and matches the dense well constraints. The proposed methodology expands the applicability of object-based simulation to complex and heterogeneous geological environments with dense sampling.
Beyer, Hans-Georg
2014-01-01
The convergence behaviors of so-called natural evolution strategies (NES) and of the information-geometric optimization (IGO) approach are considered. After a review of the NES/IGO ideas, which are based on information geometry, the implications of this philosophy w.r.t. optimization dynamics are investigated considering the optimization performance on the class of positive quadratic objective functions (the ellipsoid model). Exact differential equations describing the approach to the optimizer are derived and solved. It is rigorously shown that the original NES philosophy optimizing the expected value of the objective functions leads to very slow (i.e., sublinear) convergence toward the optimizer. This is the real reason why state of the art implementations of IGO algorithms optimize the expected value of transformed objective functions, for example, by utility functions based on ranking. It is shown that these utility functions are localized fitness functions that change during the IGO flow. The governing differential equations describing this flow are derived. In the case of convergence, the solutions to these equations exhibit an exponentially fast approach to the optimizer (i.e., linear convergence order). Furthermore, it is proven that the IGO philosophy leads to an adaptation of the covariance matrix that equals in the asymptotic limit-up to a scalar factor-the inverse of the Hessian of the objective function considered.
NASA Astrophysics Data System (ADS)
Rabbani, Masoud; Montazeri, Mona; Farrokhi-Asl, Hamed; Rafiei, Hamed
2016-12-01
Mixed-model assembly lines are increasingly accepted in many industrial environments to meet the growing trend of greater product variability, diversification of customer demands, and shorter life cycles. In this research, a new mathematical model is presented considering balancing a mixed-model U-line and human-related issues, simultaneously. The objective function consists of two separate components. The first part of the objective function is related to balance problem. In this part, objective functions are minimizing the cycle time, minimizing the number of workstations, and maximizing the line efficiencies. The second part is related to human issues and consists of hiring cost, firing cost, training cost, and salary. To solve the presented model, two well-known multi-objective evolutionary algorithms, namely non-dominated sorting genetic algorithm and multi-objective particle swarm optimization, have been used. A simple solution representation is provided in this paper to encode the solutions. Finally, the computational results are compared and analyzed.
ERIC Educational Resources Information Center
Casler, Krista; Kelemen, Deborah
2008-01-01
Teleo-functional explanations account for objects in terms of purpose, helping us understand objects such as pencils (for writing) and body parts such as ears (for hearing). Western-educated adults restrict teleo-functional attributions to artifact, biological, and behavioral phenomena, considering such explanations less appropriate for nonliving…
Internet/Web-based administration of benefits.
Vitiello, J
2001-09-01
Most funds will face the challenge of deploying at least some Web-based functionality in the near future, if they have not already done so. Clear objectives and careful planning will help ensure success. Issues that must be considered include support requirements, security concerns, functional business objectives, and employer and member Web access.
Goodness of Fit and Misspecification in Quantile Regressions
ERIC Educational Resources Information Center
Furno, Marilena
2011-01-01
The article considers a test of specification for quantile regressions. The test relies on the increase of the objective function and the worsening of the fit when unnecessary constraints are imposed. It compares the objective functions of restricted and unrestricted models and, in its different formulations, it verifies (a) forecast ability, (b)…
Calculation of the twilight visibility function of near-sun objects
NASA Technical Reports Server (NTRS)
Kastner, S. O.
1976-01-01
The visibility function, defined here as the magnitude difference between the excess brightness of a given object and that of the background sky, of near-sun objects during twilight is obtained from a general calculation which considers the twilight sky background, atmospheric extinction, and night glow. Visibility curves are computed for a number of cases in which observations have been recorded, particularly that of comet Kohoutek. For this object, the computed visibility maxima agree well in time with the reported times of observation.
Resilience-based optimal design of water distribution network
NASA Astrophysics Data System (ADS)
Suribabu, C. R.
2017-11-01
Optimal design of water distribution network is generally aimed to minimize the capital cost of the investments on tanks, pipes, pumps, and other appurtenances. Minimizing the cost of pipes is usually considered as a prime objective as its proportion in capital cost of the water distribution system project is very high. However, minimizing the capital cost of the pipeline alone may result in economical network configuration, but it may not be a promising solution in terms of resilience point of view. Resilience of the water distribution network has been considered as one of the popular surrogate measures to address ability of network to withstand failure scenarios. To improve the resiliency of the network, the pipe network optimization can be performed with two objectives, namely minimizing the capital cost as first objective and maximizing resilience measure of the configuration as secondary objective. In the present work, these two objectives are combined as single objective and optimization problem is solved by differential evolution technique. The paper illustrates the procedure for normalizing the objective functions having distinct metrics. Two of the existing resilience indices and power efficiency are considered for optimal design of water distribution network. The proposed normalized objective function is found to be efficient under weighted method of handling multi-objective water distribution design problem. The numerical results of the design indicate the importance of sizing pipe telescopically along shortest path of flow to have enhanced resiliency indices.
Objective Measures of Visual Function in Papilledema
Moss, Heather E.
2016-01-01
Synopsis Visual function is an important parameter to consider when managing patients with papilledema. Though the current standard of care uses standard automated perimetry (SAP) to obtain this information, this test is inherently subjective and prone to patient errors. Objective visual function tests including the visual evoked potential, pattern electroretinogram, photopic negative response of the full field electroretinogram, and pupillary light response have the potential to replace or supplement subjective visual function tests in papilledema management. This article reviews the evidence for use of objective visual function tests to assess visual function in papilledema and discusses future investigations needed to develop them as clinically practical and useful measures for this purpose. PMID:28451649
Diagnosis and sensor validation through knowledge of structure and function
NASA Technical Reports Server (NTRS)
Scarl, Ethan A.; Jamieson, John R.; Delaune, Carl I.
1987-01-01
The liquid oxygen expert system 'LES' is proposed as the first capable of diagnostic reasoning from sensor data, using model-based knowledge of structure and function to find the expected state of all system objects, including sensors. The approach is generally algorithmic rather than heuristic, and represents uncertainties as sets of possibilities. Functional relationships are inverted to determine hypothetical values for potentially faulty objects, and may include conditional functions not normally considered to have inverses.
NASA Astrophysics Data System (ADS)
Ahmadi, Bahman; Nariman-zadeh, Nader; Jamali, Ali
2017-06-01
In this article, a novel approach based on game theory is presented for multi-objective optimal synthesis of four-bar mechanisms. The multi-objective optimization problem is modelled as a Stackelberg game. The more important objective function, tracking error, is considered as the leader, and the other objective function, deviation of the transmission angle from 90° (TA), is considered as the follower. In a new approach, a group method of data handling (GMDH)-type neural network is also utilized to construct an approximate model for the rational reaction set (RRS) of the follower. Using the proposed game-theoretic approach, the multi-objective optimal synthesis of a four-bar mechanism is then cast into a single-objective optimal synthesis using the leader variables and the obtained RRS of the follower. The superiority of using the synergy game-theoretic method of Stackelberg with a GMDH-type neural network is demonstrated for two case studies on the synthesis of four-bar mechanisms.
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Science objectives in the lunar base advocacy
NASA Technical Reports Server (NTRS)
Mendell, Wendell W.
1988-01-01
The author considers the potential function of astronomy in planning for a lunar base during the 21st century. He is one of the leading advocates for a permanent settlement on the Moon and has given considerable thought to the possible impact of such a station on science. He considers the rationale for a lunar base, research on the Moon, and the definition of science objectives.
NASA Astrophysics Data System (ADS)
Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi
2016-10-01
One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.
Study on multimodal transport route under low carbon background
NASA Astrophysics Data System (ADS)
Liu, Lele; Liu, Jie
2018-06-01
Low-carbon environmental protection is the focus of attention around the world, scientists are constantly researching on production of carbon emissions and living carbon emissions. However, there is little literature about multimodal transportation based on carbon emission at home and abroad. Firstly, this paper introduces the theory of multimodal transportation, the multimodal transport models that didn't consider carbon emissions and consider carbon emissions are analyzed. On this basis, a multi-objective programming 0-1 programming model with minimum total transportation cost and minimum total carbon emission is proposed. The idea of weight is applied to Ideal point method for solving problem, multi-objective programming is transformed into a single objective function. The optimal solution of carbon emission to transportation cost under different weights is determined by a single objective function with variable weights. Based on the model and algorithm, an example is given and the results are analyzed.
Formalization of software requirements for information systems using fuzzy logic
NASA Astrophysics Data System (ADS)
Yegorov, Y. S.; Milov, V. R.; Kvasov, A. S.; Sorokoumova, S. N.; Suvorova, O. V.
2018-05-01
The paper considers an approach to the design of information systems based on flexible software development methodologies. The possibility of improving the management of the life cycle of information systems by assessing the functional relationship between requirements and business objectives is described. An approach is proposed to establish the relationship between the degree of achievement of business objectives and the fulfillment of requirements for the projected information system. It describes solutions that allow one to formalize the process of formation of functional and non-functional requirements with the help of fuzzy logic apparatus. The form of the objective function is formed on the basis of expert knowledge and is specified via learning from very small data set.
Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.
2017-01-01
Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930
Hearing the shape of the Ising model with a programmable superconducting-flux annealer.
Vinci, Walter; Markström, Klas; Boixo, Sergio; Roy, Aidan; Spedalieri, Federico M; Warburton, Paul A; Severini, Simone
2014-07-16
Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.
Young Children's Use of Functional Information To Categorize Artifacts: Three Factors That Matter.
ERIC Educational Resources Information Center
Nelson, Deborah G. Kemler; Frankenfield, Anne; Morris, Catherine; Blair, Elizabeth
2000-01-01
Three experiments examined factors influencing whether young children consider function, as opposed to appearance or shape, when extending names of novel artifacts. Findings indicated that 4-year-olds extend names based on demonstrated function more often when that function provides a plausible causal account of perceptible object structure, when…
Personnel Management: Stewardship of Human Resources
ERIC Educational Resources Information Center
MacLean, Douglas G.
1976-01-01
The personnel function of top management is examined by first studying the environment in which top management functions. The basic skills required to perform the function are discussed. Against this background, six elements of personnel management in colleges and universities are considered: goals and objectives, organization for personnel…
Fuzzy Logic Controller Design for A Robot Grasping System with Different Membership Functions
NASA Astrophysics Data System (ADS)
Ahmad, Hamzah; Razali, Saifudin; Rusllim Mohamed, Mohd
2013-12-01
This paper investigates the effects of the membership function to the object grasping for a three fingered gripper system. The performance of three famously used membership functions is compared to identify their behavior in lifting a defined object shape. MATLAB Simulink and SimMechanics toolboxes are used to examine the performance. Our preliminary results proposed that the Gaussian membership function surpassed the two other membership functions; triangular and trapezoid memberships especially in the context of firmer grasping and less time consumption during operations. Therefore, Gaussian membership function could be the best solution when time consumption and firmer grasp are considered.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Li, Jun
2002-09-01
In this paper a class of stochastic multiple-objective programming problems with one quadratic, several linear objective functions and linear constraints has been introduced. The former model is transformed into a deterministic multiple-objective nonlinear programming model by means of the introduction of random variables' expectation. The reference direction approach is used to deal with linear objectives and results in a linear parametric optimization formula with a single linear objective function. This objective function is combined with the quadratic function using the weighted sums. The quadratic problem is transformed into a linear (parametric) complementary problem, the basic formula for the proposed approach. The sufficient and necessary conditions for (properly, weakly) efficient solutions and some construction characteristics of (weakly) efficient solution sets are obtained. An interactive algorithm is proposed based on reference direction and weighted sums. Varying the parameter vector on the right-hand side of the model, the DM can freely search the efficient frontier with the model. An extended portfolio selection model is formed when liquidity is considered as another objective to be optimized besides expectation and risk. The interactive approach is illustrated with a practical example.
Wisneski, Kimberly J; Johnson, Michelle J
2007-03-23
Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the sagittal plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object imagined and absent conditions. Curvature in the XZ plane of movement was greater than curvature in the XY plane for all movements. The implemented minimum jerk trajectory model was not adequate for generating functional trajectories for these ADLs. The deviations caused by object affordance and functional task constraints must be accounted for in order to allow subjects to perform functional task training in robotic therapy environments. The major differences that we have highlighted include trajectory dependence on: object presence, object orientation, and the plane of movement. With the ability to practice ADLs on the ADLER environment we hope to provide patients with a therapy paradigm that will produce optimal results and recovery.
Multiobjective optimization techniques for structural design
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The multiobjective programming techniques are important in the design of complex structural systems whose quality depends generally on a number of different and often conflicting objective functions which cannot be combined into a single design objective. The applicability of multiobjective optimization techniques is studied with reference to simple design problems. Specifically, the parameter optimization of a cantilever beam with a tip mass and a three-degree-of-freedom vabration isolation system and the trajectory optimization of a cantilever beam are considered. The solutions of these multicriteria design problems are attempted by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It has been observed that the game theory approach required the maximum computational effort, but it yielded better optimum solutions with proper balance of the various objective functions in all the cases.
Design of vibration isolation systems using multiobjective optimization techniques
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The design of vibration isolation systems is considered using multicriteria optimization techniques. The integrated values of the square of the force transmitted to the main mass and the square of the relative displacement between the main mass and the base are taken as the performance indices. The design of a three degrees-of-freedom isolation system with an exponentially decaying type of base disturbance is considered for illustration. Numerical results are obtained using the global criterion, utility function, bounded objective, lexicographic, goal programming, goal attainment and game theory methods. It is found that the game theory approach is superior in finding a better optimum solution with proper balance of the various objective functions.
Ceberio, Josu; Calvo, Borja; Mendiburu, Alexander; Lozano, Jose A
2018-02-15
In the last decade, many works in combinatorial optimisation have shown that, due to the advances in multi-objective optimisation, the algorithms from this field could be used for solving single-objective problems as well. In this sense, a number of papers have proposed multi-objectivising single-objective problems in order to use multi-objective algorithms in their optimisation. In this article, we follow up this idea by presenting a methodology for multi-objectivising combinatorial optimisation problems based on elementary landscape decompositions of their objective function. Under this framework, each of the elementary landscapes obtained from the decomposition is considered as an independent objective function to optimise. In order to illustrate this general methodology, we consider four problems from different domains: the quadratic assignment problem and the linear ordering problem (permutation domain), the 0-1 unconstrained quadratic optimisation problem (binary domain), and the frequency assignment problem (integer domain). We implemented two widely known multi-objective algorithms, NSGA-II and SPEA2, and compared their performance with that of a single-objective GA. The experiments conducted on a large benchmark of instances of the four problems show that the multi-objective algorithms clearly outperform the single-objective approaches. Furthermore, a discussion on the results suggests that the multi-objective space generated by this decomposition enhances the exploration ability, thus permitting NSGA-II and SPEA2 to obtain better results in the majority of the tested instances.
Sum, John Pui-Fai; Leung, Chi-Sing; Ho, Kevin I-J
2012-02-01
Improving fault tolerance of a neural network has been studied for more than two decades. Various training algorithms have been proposed in sequel. The on-line node fault injection-based algorithm is one of these algorithms, in which hidden nodes randomly output zeros during training. While the idea is simple, theoretical analyses on this algorithm are far from complete. This paper presents its objective function and the convergence proof. We consider three cases for multilayer perceptrons (MLPs). They are: (1) MLPs with single linear output node; (2) MLPs with multiple linear output nodes; and (3) MLPs with single sigmoid output node. For the convergence proof, we show that the algorithm converges with probability one. For the objective function, we show that the corresponding objective functions of cases (1) and (2) are of the same form. They both consist of a mean square errors term, a regularizer term, and a weight decay term. For case (3), the objective function is slight different from that of cases (1) and (2). With the objective functions derived, we can compare the similarities and differences among various algorithms and various cases.
An integrated optimum design approach for high speed prop-rotors including acoustic constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris
1993-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.
Estimation of object motion parameters from noisy images.
Broida, T J; Chellappa, R
1986-01-01
An approach is presented for the estimation of object motion parameters based on a sequence of noisy images. The problem considered is that of a rigid body undergoing unknown rotational and translational motion. The measurement data consists of a sequence of noisy image coordinates of two or more object correspondence points. By modeling the object dynamics as a function of time, estimates of the model parameters (including motion parameters) can be extracted from the data using recursive and/or batch techniques. This permits a desired degree of smoothing to be achieved through the use of an arbitrarily large number of images. Some assumptions regarding object structure are presently made. Results are presented for a recursive estimation procedure: the case considered here is that of a sequence of one dimensional images of a two dimensional object. Thus, the object moves in one transverse dimension, and in depth, preserving the fundamental ambiguity of the central projection image model (loss of depth information). An iterated extended Kalman filter is used for the recursive solution. Noise levels of 5-10 percent of the object image size are used. Approximate Cramer-Rao lower bounds are derived for the model parameter estimates as a function of object trajectory and noise level. This approach may be of use in situations where it is difficult to resolve large numbers of object match points, but relatively long sequences of images (10 to 20 or more) are available.
Optimal allocation of industrial PV-storage micro-grid considering important load
NASA Astrophysics Data System (ADS)
He, Shaohua; Ju, Rong; Yang, Yang; Xu, Shuai; Liang, Lei
2018-03-01
At present, the industrial PV-storage micro-grid has been widely used. This paper presents an optimal allocation model of PV-storage micro-grid capacity considering the important load of industrial users. A multi-objective optimization model is established to promote the local extinction of PV power generation and the maximum investment income of the enterprise as the objective function. Particle swarm optimization (PSO) is used to solve the case of a city in Jiangsu Province, the results are analyzed economically.
Optimization of locations of diffusion spots in indoor optical wireless local area networks
NASA Astrophysics Data System (ADS)
Eltokhey, Mahmoud W.; Mahmoud, K. R.; Ghassemlooy, Zabih; Obayya, Salah S. A.
2018-03-01
In this paper, we present a novel optimization of the locations of the diffusion spots in indoor optical wireless local area networks, based on the central force optimization (CFO) scheme. The users' performance uniformity is addressed by using the CFO algorithm, and adopting different objective function's configurations, while considering maximization and minimization of the signal to noise ratio and the delay spread, respectively. We also investigate the effect of varying the objective function's weights on the system and the users' performance as part of the adaptation process. The results show that the proposed objective function configuration-based optimization procedure offers an improvement of 65% in the standard deviation of individual receivers' performance.
20 CFR 416.926a - Functional equivalence for children.
Code of Federal Regulations, 2011 CFR
2011-04-01
....” (See § 416.924(c).) When we assess your functional limitations, we will consider all the relevant... illustrate the typical functioning of children in different age groups. For all of the domains, we also... learning about the world around you. When you play, you should learn how objects go together in different...
Energy acceptance and on momentum aperture optimization for the Sirius project
NASA Astrophysics Data System (ADS)
Dester, P. S.; Sá, F. H.; Liu, L.
2017-07-01
A fast objective function to calculate Touschek lifetime and on momentum aperture is essential to explore the vast search space of strength of quadrupole and sextupole families in Sirius. Touschek lifetime is estimated by using the energy aperture (dynamic and physical), RF system parameters and driving terms. Non-linear induced betatron oscillations are considered to determine the energy aperture. On momentum aperture is estimated by using a chaos indicator and resonance crossing considerations. Touschek lifetime and on momentum aperture constitute the objective function, which was used in a multi-objective genetic algorithm to perform an optimization for Sirius.
Multiple degree of freedom object recognition using optical relational graph decision nets
NASA Technical Reports Server (NTRS)
Casasent, David P.; Lee, Andrew J.
1988-01-01
Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
An operating system for future aerospace vehicle computer systems
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.
1984-01-01
The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.
The role of under-determined approximations in engineering and science application
NASA Technical Reports Server (NTRS)
Carpenter, William C.
1992-01-01
There is currently a great deal of interest in using response surfaces in the optimization of aircraft performance. The objective function and/or constraint equations involved in these optimization problems may come from numerous disciplines such as structures, aerodynamics, environmental engineering, etc. In each of these disciplines, the mathematical complexity of the governing equations usually dictates that numerical results be obtained from large computer programs such as a finite element method program. Thus, when performing optimization studies, response surfaces are a convenient way of transferring information from the various disciplines to the optimization algorithm as opposed to bringing all the sundry computer programs together in a massive computer code. Response surfaces offer another advantage in the optimization of aircraft structures. A characteristic of these types of optimization problems is that evaluation of the objective function and response equations (referred to as a functional evaluation) can be very expensive in a computational sense. Because of the computational expense in obtaining functional evaluations, the present study was undertaken to investigate under-determinined approximations. An under-determined approximation is one in which there are fewer training pairs (pieces of information about a function) than there are undetermined parameters (coefficients or weights) associated with the approximation. Both polynomial approximations and neural net approximations were examined. Three main example problems were investigated: (1) a function of one design variable was considered; (2) a function of two design variables was considered; and (3) a 35 bar truss with 4 design variables was considered.
Exploration of Objective Functions for Optimal Placement of Weather Stations
NASA Astrophysics Data System (ADS)
Snyder, A.; Dietterich, T.; Selker, J. S.
2016-12-01
Many regions of Earth lack ground-based sensing of weather variables. For example, most countries in Sub-Saharan Africa do not have reliable weather station networks. This absence of sensor data has many consequences ranging from public safety (poor prediction and detection of severe weather events), to agriculture (lack of crop insurance), to science (reduced quality of world-wide weather forecasts, climate change measurement, etc.). The Trans-African Hydro-Meteorological Observatory (TAHMO.org) project seeks to address these problems by deploying and operating a large network of weather stations throughout Sub-Saharan Africa. To design the TAHMO network, we must determine where to locate each weather station. We can formulate this as the following optimization problem: Determine a set of N sites that jointly optimize the value of an objective function. The purpose of this poster is to propose and assess several objective functions. In addition to standard objectives (e.g., minimizing the summed squared error of interpolated values over the entire region), we consider objectives that minimize the maximum error over the region and objectives that optimize the detection of extreme events. An additional issue is that each station measures more than 10 variables—how should we balance the accuracy of our interpolated maps for each variable? Weather sensors inevitably drift out of calibration or fail altogether. How can we incorporate robustness to failed sensors into our network design? Another important requirement is that the network should make it possible to detect failed sensors by comparing their readings with those of other stations. How can this requirement be met? Finally, we provide an initial assessment of the computational cost of optimizing these various objective functions. We invite everyone to join the discussion at our poster by proposing additional objectives, identifying additional issues to consider, and expanding our bibliography of relevant papers. A prize (derived from grapes grown in Oregon) will be awarded for the most insightful contribution to the discussion!
Network Coding for Function Computation
ERIC Educational Resources Information Center
Appuswamy, Rathinakumar
2011-01-01
In this dissertation, the following "network computing problem" is considered. Source nodes in a directed acyclic network generate independent messages and a single receiver node computes a target function f of the messages. The objective is to maximize the average number of times f can be computed per network usage, i.e., the "computing…
Acoustic-tactile rendering of visual information
NASA Astrophysics Data System (ADS)
Silva, Pubudu Madhawa; Pappas, Thrasyvoulos N.; Atkins, Joshua; West, James E.; Hartmann, William M.
2012-03-01
In previous work, we have proposed a dynamic, interactive system for conveying visual information via hearing and touch. The system is implemented with a touch screen that allows the user to interrogate a two-dimensional (2-D) object layout by active finger scanning while listening to spatialized auditory feedback. Sound is used as the primary source of information for object localization and identification, while touch is used both for pointing and for kinesthetic feedback. Our previous work considered shape and size perception of simple objects via hearing and touch. The focus of this paper is on the perception of a 2-D layout of simple objects with identical size and shape. We consider the selection and rendition of sounds for object identification and localization. We rely on the head-related transfer function for rendering sound directionality, and consider variations of sound intensity and tempo as two alternative approaches for rendering proximity. Subjective experiments with visually-blocked subjects are used to evaluate the effectiveness of the proposed approaches. Our results indicate that intensity outperforms tempo as a proximity cue, and that the overall system for conveying a 2-D layout is quite promising.
Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats
2014-05-01
In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Optimizing Constrained Single Period Problem under Random Fuzzy Demand
NASA Astrophysics Data System (ADS)
Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin
2008-09-01
In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.
ERIC Educational Resources Information Center
Yalcinalp, Serpil; Emiroglu, Bulent
2012-01-01
Although many developments have been made in the design and development of learning object repositories (LORs), the efficient use of such systems is still questionable. Without realising the functional use of such systems or considering the involvement of their dynamic users, these systems would probably become obsolete. This study includes both…
Materiality matters: Blurred boundaries and the domestication of functional foods.
Weiner, Kate; Will, Catherine
2015-06-01
Previous scholarship on novel foods, including functional foods, has suggested that they are difficult to categorise for both regulators and users. It is argued that they blur the boundary between 'food' and 'drug' and that uncertainties about the products create 'experimental' or 'restless' approaches to consumption. We investigate these uncertainties drawing on data about the use of functional foods containing phytosterols, which are licensed for sale in the EU for people wishing to reduce their cholesterol. We start from an interest in the products as material objects and their incorporation into everyday practices. We consider the scripts encoded in the physical form of the products through their regulation, production and packaging and find that these scripts shape but do not determine their use. The domestication of phytosterols involves bundling the products together with other objects (pills, supplements, foodstuffs). Considering their incorporation into different systems of objects offers new understandings of the products as foods or drugs. In their accounts of their practices, consumers appear to be relatively untroubled by uncertainties about the character of the products. We conclude that attending to materials and practices offers a productive way to open up and interrogate the idea of categorical uncertainties surrounding new food products.
Some classes of analytic functions involving Noor integral operator
NASA Astrophysics Data System (ADS)
Patel, J.; Cho, N. E.
2005-12-01
The object of the present paper is to investigate some inclusion properties of certain subclasses of analytic functions defined by using the Noor integral operator. The integral preserving properties in connection with the operator are also considered. Relevant connections of the results presented here with those obtained in earlier works are pointed out.
Choice of mathematical models for technological process of glass rod drawing
NASA Astrophysics Data System (ADS)
Alekseeva, L. B.
2017-10-01
The technological process of drawing glass rods (light guides) is considered. Automated control of the drawing process is reduced to the process of making decisions to ensure a given quality. The drawing process is considered as a control object, including the drawing device (control device) and the optical fiber forming zone (control object). To study the processes occurring in the formation zone, mathematical models are proposed, based on the continuum mechanics basics. To assess the influence of disturbances, a transfer function is obtained from the basis of the wave equation. Obtaining the regression equation also adequately describes the drawing process.
Collins, Barbara; Paquet, Lise; Dominelli, Rachelle; White, Amanda; MacKenzie, Joyce
2017-01-01
The purpose of this study was to determine if a deficit in metamemory could account for the disparity between subjective and objective measures of memory function commonly observed in patients with breast cancer (BC). Metamemory refers to the awareness and management of one's own memory function. It is considered an aspect of executive functioning, one of the most common areas of cognitive compromise associated with BC and its treatment. Fifty-four women with early stage BC who had recently completed chemotherapy were compared with 54 healthy women matched on age and education. Cognitive function was objectively assessed with a neuropsychological test battery and subjectively assessed with the Functional Assessment of Cancer Therapy Cognitive Scale. Metamemory was assessed with a Feeling of Knowing (FOK) paradigm. The patients with BC scored significantly lower than the controls on both the objective and subjective cognitive measures, as well as on free recall and recognition conditions of the FOK, suggesting some decline in primary memory functions such as working memory, encoding, and retrieval. The discrepancy between the objective and subjective measures was larger in the patients with BC than in the controls, but there was no difference between the groups on the FOK metamemory index. Discrepancy in objective and subjective measures of cognition in patients with BC cannot be accounted for in terms of a deficit in meta-cognition. Objective and subjective measures are complementary, and a comprehensive cognitive assessment in patients with BC requires both. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Objective techniques for psychological assessment
NASA Technical Reports Server (NTRS)
Wortz, E.; Hendrickson, W.; Ross, T.
1973-01-01
A literature review and a pilot study are used to develop psychological assessment techniques for determining objectively the major aspects of the psychological state of an astronaut. Relationships between various performance and psychophysiological variables and between those aspects of attention necessary to engage successfully in various functions are considered in developing a paradigm to be used for collecting data in manned isolation chamber experiments.
Optimum Design of High Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1992-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.
NASA Astrophysics Data System (ADS)
Ausaf, Muhammad Farhan; Gao, Liang; Li, Xinyu
2015-12-01
For increasing the overall performance of modern manufacturing systems, effective integration of process planning and scheduling functions has been an important area of consideration among researchers. Owing to the complexity of handling process planning and scheduling simultaneously, most of the research work has been limited to solving the integrated process planning and scheduling (IPPS) problem for a single objective function. As there are many conflicting objectives when dealing with process planning and scheduling, real world problems cannot be fully captured considering only a single objective for optimization. Therefore considering multi-objective IPPS (MOIPPS) problem is inevitable. Unfortunately, only a handful of research papers are available on solving MOIPPS problem. In this paper, an optimization algorithm for solving MOIPPS problem is presented. The proposed algorithm uses a set of dispatching rules coupled with priority assignment to optimize the IPPS problem for various objectives like makespan, total machine load, total tardiness, etc. A fixed sized external archive coupled with a crowding distance mechanism is used to store and maintain the non-dominated solutions. To compare the results with other algorithms, a C-matric based method has been used. Instances from four recent papers have been solved to demonstrate the effectiveness of the proposed algorithm. The experimental results show that the proposed method is an efficient approach for solving the MOIPPS problem.
Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data
NASA Astrophysics Data System (ADS)
Zhang, Xiuyuan; Du, Shihong; Wang, Qiao
2017-10-01
As the basic units of urban areas, functional zones are essential for city planning and management, but functional-zone maps are hardly available in most cities, as traditional urban investigations focus mainly on land-cover objects instead of functional zones. As a result, an automatic/semi-automatic method for mapping urban functional zones is highly required. Hierarchical semantic cognition (HSC) is presented in this study, and serves as a general cognition structure for recognizing urban functional zones. Unlike traditional classification methods, the HSC relies on geographic cognition and considers four semantic layers, i.e., visual features, object categories, spatial object patterns, and zone functions, as well as their hierarchical relations. Here, we used HSC to classify functional zones in Beijing with a very-high-resolution (VHR) satellite image and point-of-interest (POI) data. Experimental results indicate that this method can produce more accurate results than Support Vector Machine (SVM) and Latent Dirichlet Allocation (LDA) with a larger overall accuracy of 90.8%. Additionally, the contributions of diverse semantic layers are quantified: the object-category layer is the most important and makes 54% contribution to functional-zone classification; while, other semantic layers are less important but their contributions cannot be ignored. Consequently, the presented HSC is effective in classifying urban functional zones, and can further support urban planning and management.
Subjective and objective scales to assess the development of children cerebral palsy.
Pietrzak, S; Jóźwiak, M
2001-01-01
Many scoring systems hale been constructed to assess the motor development of cerebral palsy children and to evaluate the effectiveness of treatment. According to the purposes they fulfill, these instruments may be divided into three types: discriminative, evaluative and predictive. The design and measurement methodology are the criteria that determine whether a given scale is quantitative or qualitative in nature, and whether is should be considered to be objective or subjective. The article presents the "reaching, losing and regaining" scale (constructed by the authors to assess functional development and its changes in certain periods of time), the Munich Functional Development Diagnostics, and the Gross Motor Function Measure (GMFM). Special attention is given to the GMFM, its methods, evaluation of results, and application. A comparison of subjective and objective assessment of two cerebral palsy children is included.
Sanjuán, Ana; Hope, Thomas M.H.; Parker Jones, 'Ōiwi; Prejawa, Susan; Oberhuber, Marion; Guerin, Julie; Seghier, Mohamed L.; Green, David W.; Price, Cathy J.
2015-01-01
We used fMRI in 35 healthy participants to investigate how two neighbouring subregions in the lateral anterior temporal lobe (LATL) contribute to semantic matching and object naming. Four different levels of processing were considered: (A) recognition of the object concepts; (B) search for semantic associations related to object stimuli; (C) retrieval of semantic concepts of interest; and (D) retrieval of stimulus specific concepts as required for naming. During semantic association matching on picture stimuli or heard object names, we found that activation in both subregions was higher when the objects were semantically related (mug–kettle) than unrelated (car–teapot). This is consistent with both LATL subregions playing a role in (C), the successful retrieval of amodal semantic concepts. In addition, one subregion was more activated for object naming than matching semantically related objects, consistent with (D), the retrieval of a specific concept for naming. We discuss the implications of these novel findings for cognitive models of semantic processing and left anterior temporal lobe function. PMID:25496810
Some single-machine scheduling problems with learning effects and two competing agents.
Li, Hongjie; Li, Zeyuan; Yin, Yunqiang
2014-01-01
This study considers a scheduling environment in which there are two agents and a set of jobs, each of which belongs to one of the two agents and its actual processing time is defined as a decreasing linear function of its starting time. Each of the two agents competes to process its respective jobs on a single machine and has its own scheduling objective to optimize. The objective is to assign the jobs so that the resulting schedule performs well with respect to the objectives of both agents. The objective functions addressed in this study include the maximum cost, the total weighted completion time, and the discounted total weighted completion time. We investigate three problems arising from different combinations of the objectives of the two agents. The computational complexity of the problems is discussed and solution algorithms where possible are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryashov, Nikolay A.; Shilnikov, Kirill E.
Numerical computation of the three dimensional problem of the freezing interface propagation during the cryosurgery coupled with the multi-objective optimization methods is used in order to improve the efficiency and safety of the cryosurgery operations performing. Prostate cancer treatment and cutaneous cryosurgery are considered. The heat transfer in soft tissue during the thermal exposure to low temperature is described by the Pennes bioheat model and is coupled with an enthalpy method for blurred phase change computations. The finite volume method combined with the control volume approximation of the heat fluxes is applied for the cryosurgery numerical modeling on the tumormore » tissue of a quite arbitrary shape. The flux relaxation approach is used for the stability improvement of the explicit finite difference schemes. The method of the additional heating elements mounting is studied as an approach to control the cellular necrosis front propagation. Whereas the undestucted tumor tissue and destucted healthy tissue volumes are considered as objective functions, the locations of additional heating elements in cutaneous cryosurgery and cryotips in prostate cancer cryotreatment are considered as objective variables in multi-objective problem. The quasi-gradient method is proposed for the searching of the Pareto front segments as the multi-objective optimization problem solutions.« less
Child serial murder-psychodynamics: closely watched shadows.
Turco, R
2001-01-01
There is a malignant transformation in object relations resulting in an identification with an omnipotent and cruel object resulting in an identity transformation. If the tension, desperation, and dissociation increase, serial murder becomes spree murder. The presence of pathological narcissism and psychopathic tendencies are of diagnostic significance in understanding the murderer's personality functioning and motivation to kill. Meloy (1988) considered the degree of sadism and aggression combined with narcissistic qualities to reflect the "malignancy" of the psychopathic disturbance where gratification (of aggression) occurs in the service of narcissistic functioning--that is, cruelty toward others in the form of a triumphant victory over a rejecting object. Meloy also believes that dissociation is ubiquitious in the psychopath. The initial murder of the serial murderer may reflect a "new identity." The pathological object-relations of narcissism and the malignant narcissism are important diagnostic indicators in the personality functioning of serial killers and the occurrence of these phenomena is a significant factor in the formation of the personalities of serial killers, their inner motivations, and their pattern of commission.
Materiality matters: Blurred boundaries and the domestication of functional foods
Weiner, Kate; Will, Catherine
2015-01-01
Previous scholarship on novel foods, including functional foods, has suggested that they are difficult to categorise for both regulators and users. It is argued that they blur the boundary between ‘food' and ‘drug' and that uncertainties about the products create ‘experimental' or ‘restless' approaches to consumption. We investigate these uncertainties drawing on data about the use of functional foods containing phytosterols, which are licensed for sale in the EU for people wishing to reduce their cholesterol. We start from an interest in the products as material objects and their incorporation into everyday practices. We consider the scripts encoded in the physical form of the products through their regulation, production and packaging and find that these scripts shape but do not determine their use. The domestication of phytosterols involves bundling the products together with other objects (pills, supplements, foodstuffs). Considering their incorporation into different systems of objects offers new understandings of the products as foods or drugs. In their accounts of their practices, consumers appear to be relatively untroubled by uncertainties about the character of the products. We conclude that attending to materials and practices offers a productive way to open up and interrogate the idea of categorical uncertainties surrounding new food products. PMID:26157471
Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit
NASA Astrophysics Data System (ADS)
Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.
2017-11-01
In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.
Reactive Power Compensation Method Considering Minimum Effective Reactive Power Reserve
NASA Astrophysics Data System (ADS)
Gong, Yiyu; Zhang, Kai; Pu, Zhang; Li, Xuenan; Zuo, Xianghong; Zhen, Jiao; Sudan, Teng
2017-05-01
According to the calculation model of minimum generator reactive power reserve of power system voltage stability under the premise of the guarantee, the reactive power management system with reactive power compensation combined generator, the formation of a multi-objective optimization problem, propose a reactive power reserve is considered the minimum generator reactive power compensation optimization method. This method through the improvement of the objective function and constraint conditions, when the system load growth, relying solely on reactive power generation system can not meet the requirement of safe operation, increase the reactive power reserve to solve the problem of minimum generator reactive power compensation in the case of load node.
On global optimization using an estimate of Lipschitz constant and simplicial partition
NASA Astrophysics Data System (ADS)
Gimbutas, Albertas; Žilinskas, Antanas
2016-10-01
A new algorithm is proposed for finding the global minimum of a multi-variate black-box Lipschitz function with an unknown Lipschitz constant. The feasible region is initially partitioned into simplices; in the subsequent iteration, the most suitable simplices are selected and bisected via the middle point of the longest edge. The suitability of a simplex for bisection is evaluated by minimizing of a surrogate function which mimics the lower bound for the considered objective function over that simplex. The surrogate function is defined using an estimate of the Lipschitz constant and the objective function values at the vertices of a simplex. The novelty of the algorithm is the sophisticated method of estimating the Lipschitz constant, and the appropriate method to minimize the surrogate function. The proposed algorithm was tested using 600 random test problems of different complexity, showing competitive results with two popular advanced algorithms which are based on similar assumptions.
Functional Information: Towards Synthesis of Biosemiotics and Cybernetics
Sharov, Alexei A.
2012-01-01
Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt). PMID:22368439
Functional Information: Towards Synthesis of Biosemiotics and Cybernetics.
Sharov, Alexei A
2010-04-27
Biosemiotics and cybernetics are closely related, yet they are separated by the boundary between life and non-life: biosemiotics is focused on living organisms, whereas cybernetics is applied mostly to non-living artificial devices. However, both classes of systems are agents that perform functions necessary for reaching their goals. I propose to shift the focus of biosemiotics from living organisms to agents in general, which all belong to a pragmasphere or functional universe. Agents should be considered in the context of their hierarchy and origin because their semiosis can be inherited or induced by higher-level agents. To preserve and disseminate their functions, agents use functional information - a set of signs that encode and control their functions. It includes stable memory signs, transient messengers, and natural signs. The origin and evolution of functional information is discussed in terms of transitions between vegetative, animal, and social levels of semiosis, defined by Kull. Vegetative semiosis differs substantially from higher levels of semiosis, because signs are recognized and interpreted via direct code-based matching and are not associated with ideal representations of objects. Thus, I consider a separate classification of signs at the vegetative level that includes proto-icons, proto-indexes, and proto-symbols. Animal and social semiosis are based on classification, and modeling of objects, which represent the knowledge of agents about their body (Innenwelt) and environment (Umwelt).
Collision Avoidance Functional Requirements for Step 1. Revision 6
NASA Technical Reports Server (NTRS)
2006-01-01
This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.
Free-form reticulated shell structures searched for maximum buckling strength
NASA Astrophysics Data System (ADS)
Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji
2017-10-01
In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.
Duality in non-linear programming
NASA Astrophysics Data System (ADS)
Jeyalakshmi, K.
2018-04-01
In this paper we consider duality and converse duality for a programming problem involving convex objective and constraint functions with finite dimensional range. We do not assume any constraint qualification. The dual is presented by reducing the problem to a standard Lagrange multiplier problem.
Higher Education in the United States.
ERIC Educational Resources Information Center
Doucette, Donald S.
Issues concerning higher education in the United States are considered, with attention to historical developments; functions and objectives; types of institutions and degrees; internal and external organization; finance; admissions, access, and financial assistance; student and faculty characteristics; distance and recurrent education;…
Multi-Objective Programming for Lot-Sizing with Quantity Discount
NASA Astrophysics Data System (ADS)
Kang, He-Yau; Lee, Amy H. I.; Lai, Chun-Mei; Kang, Mei-Sung
2011-11-01
Multi-objective programming (MOP) is one of the popular methods for decision making in a complex environment. In a MOP, decision makers try to optimize two or more objectives simultaneously under various constraints. A complete optimal solution seldom exists, and a Pareto-optimal solution is usually used. Some methods, such as the weighting method which assigns priorities to the objectives and sets aspiration levels for the objectives, are used to derive a compromise solution. The ɛ-constraint method is a modified weight method. One of the objective functions is optimized while the other objective functions are treated as constraints and are incorporated in the constraint part of the model. This research considers a stochastic lot-sizing problem with multi-suppliers and quantity discounts. The model is transformed into a mixed integer programming (MIP) model next based on the ɛ-constraint method. An illustrative example is used to illustrate the practicality of the proposed model. The results demonstrate that the model is an effective and accurate tool for determining the replenishment of a manufacturer from multiple suppliers for multi-periods.
The Dartnell Personnel Director's Handbook.
ERIC Educational Resources Information Center
Scheer, Wilbert E.
This handbook for personnel directors is designed to help improve the acquisition, selection, development, welfare, and general administration and control of business and industrial employees. Overall objectives and functions of personnel management are considered first. Part 2 (Employment) stresses advance planning; recruiting and interviewing;…
JEFFERSON, ANGELA L.; BARAKAT, LAMIA P.; GIOVANNETTI, TANIA; PAUL, ROBERT H.; GLOSSER, GUILA
2009-01-01
This study examined the contribution of object perception and spatial localization to functional dependence among Alzheimer's disease (AD) patients. Forty patients with probable AD completed measures assessing verbal recognition memory, working memory, object perception, spatial localization, semantic knowledge, and global cognition. Primary caregivers completed a measure of activities of daily living (ADLs) that included instrumental and basic self-care subscales (i.e., IADLs and BADLs, respectively). Stepwise multiple regressions revealed that global cognition accounted for significant portions of variance among the ADL total, IADL, and BADL scores. However, when global cognition was removed from the model, object perception was the only significant cognitive predictor of the ADL total and IADL subscale scores, accounting for 18.5% and 19.3% of the variance, respectively. When considering multiple cognitive components simultaneously, object perception and the integrity of the inferotemporal cortex is important in the completion of functional abilities in general and IADLs in particular among AD patients. PMID:16822730
NASA Astrophysics Data System (ADS)
Khalilpourazari, Soheyl; Khalilpourazary, Saman
2017-05-01
In this article a multi-objective mathematical model is developed to minimize total time and cost while maximizing the production rate and surface finish quality in the grinding process. The model aims to determine optimal values of the decision variables considering process constraints. A lexicographic weighted Tchebycheff approach is developed to obtain efficient Pareto-optimal solutions of the problem in both rough and finished conditions. Utilizing a polyhedral branch-and-cut algorithm, the lexicographic weighted Tchebycheff model of the proposed multi-objective model is solved using GAMS software. The Pareto-optimal solutions provide a proper trade-off between conflicting objective functions which helps the decision maker to select the best values for the decision variables. Sensitivity analyses are performed to determine the effect of change in the grain size, grinding ratio, feed rate, labour cost per hour, length of workpiece, wheel diameter and downfeed of grinding parameters on each value of the objective function.
System Re-engineering Project Executive Summary
1991-11-01
Management Information System (STAMIS) application. This project involved reverse engineering, evaluation of structured design and object-oriented design, and re- implementation of the system in Ada. This executive summary presents the approach to re-engineering the system, the lessons learned while going through the process, and issues to be considered in future tasks of this nature.... Computer-Aided Software Engineering (CASE), Distributed Software, Ada, COBOL, Systems Analysis, Systems Design, Life Cycle Development, Functional Decomposition, Object-Oriented
Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs
Oh, Sang-Il; Kang, Hang-Bong
2017-01-01
Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194
NASA Astrophysics Data System (ADS)
Chintalapudi, V. S.; Sirigiri, Sivanagaraju
2017-04-01
In power system restructuring, pricing the electrical power plays a vital role in cost allocation between suppliers and consumers. In optimal power dispatch problem, not only the cost of active power generation but also the costs of reactive power generated by the generators should be considered to increase the effectiveness of the problem. As the characteristics of reactive power cost curve are similar to that of active power cost curve, a nonconvex reactive power cost function is formulated. In this paper, a more realistic multi-fuel total cost objective is formulated by considering active and reactive power costs of generators. The formulated cost function is optimized by satisfying equality, in-equality and practical constraints using the proposed uniform distributed two-stage particle swarm optimization. The proposed algorithm is a combination of uniform distribution of control variables (to start the iterative process with good initial value) and two-stage initialization processes (to obtain best final value in less number of iterations) can enhance the effectiveness of convergence characteristics. Obtained results for the considered standard test functions and electrical systems indicate the effectiveness of the proposed algorithm and can obtain efficient solution when compared to existing methods. Hence, the proposed method is a promising method and can be easily applied to optimize the power system objectives.
Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?
Lee, Will; Evans, Andrew; Williams, David R
2017-09-01
The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Identification of complex stiffness tensor from waveform reconstruction
NASA Astrophysics Data System (ADS)
Leymarie, N.; Aristégui, C.; Audoin, B.; Baste, S.
2002-03-01
An inverse method is proposed in order to determine the viscoelastic properties of composite-material plates from the plane-wave transmitted acoustic field. Analytical formulations of both the plate transmission coefficient and its first and second derivatives are established, and included in a two-step inversion scheme. Two objective functions to be minimized are then designed by considering the well-known maximum-likelihood principle and by using an analytic signal formulation. Through these innovative objective functions, the robustness of the inversion process against high level of noise in waveforms is improved and the method can be applied to a very thin specimen. The suitability of the inversion process for viscoelastic property identification is demonstrated using simulated data for composite materials with different anisotropy and damping degrees. A study of the effect of the rheologic model choice on the elastic property identification emphasizes the relevance of using a phenomenological description considering viscosity. Experimental characterizations show then the good reliability of the proposed approach. Difficulties arise experimentally for particular anisotropic media.
A stochastic conflict resolution model for trading pollutant discharge permits in river systems.
Niksokhan, Mohammad Hossein; Kerachian, Reza; Amin, Pedram
2009-07-01
This paper presents an efficient methodology for developing pollutant discharge permit trading in river systems considering the conflict of interests of involving decision-makers and the stakeholders. In this methodology, a trade-off curve between objectives is developed using a powerful and recently developed multi-objective genetic algorithm technique known as the Nondominated Sorting Genetic Algorithm-II (NSGA-II). The best non-dominated solution on the trade-off curve is defined using the Young conflict resolution theory, which considers the utility functions of decision makers and stakeholders of the system. These utility functions are related to the total treatment cost and a fuzzy risk of violating the water quality standards. The fuzzy risk is evaluated using the Monte Carlo analysis. Finally, an optimization model provides the trading discharge permit policies. The practical utility of the proposed methodology in decision-making is illustrated through a realistic example of the Zarjub River in the northern part of Iran.
Job shop scheduling problem with late work criterion
NASA Astrophysics Data System (ADS)
Piroozfard, Hamed; Wong, Kuan Yew
2015-05-01
Scheduling is considered as a key task in many industries, such as project based scheduling, crew scheduling, flight scheduling, machine scheduling, etc. In the machine scheduling area, the job shop scheduling problems are considered to be important and highly complex, in which they are characterized as NP-hard. The job shop scheduling problems with late work criterion and non-preemptive jobs are addressed in this paper. Late work criterion is a fairly new objective function. It is a qualitative measure and concerns with late parts of the jobs, unlike classical objective functions that are quantitative measures. In this work, simulated annealing was presented to solve the scheduling problem. In addition, operation based representation was used to encode the solution, and a neighbourhood search structure was employed to search for the new solutions. The case studies are Lawrence instances that were taken from the Operations Research Library. Computational results of this probabilistic meta-heuristic algorithm were compared with a conventional genetic algorithm, and a conclusion was made based on the algorithm and problem.
Edge Extraction by an Exponential Function Considering X-ray Transmission Characteristics
NASA Astrophysics Data System (ADS)
Kim, Jong Hyeong; Youp Synn, Sang; Cho, Sung Man; Jong Joo, Won
2011-04-01
3-D radiographic methodology has been into the spotlight for quality inspection of mass product or in-service inspection of aging product. To locate a target object in 3-D space, its characteristic contours such as edge length, edge angle, and vertices are very important. In spite of a simple geometry product, it is very difficult to get clear shape contours from a single radiographic image. The image contains scattering noise at the edges and ambiguity coming from X-Ray absorption within the body. This article suggests a concise method to extract whole edges from a single X-ray image. At the edge point of the object, the intensity of the X-ray decays exponentially as the X-ray penetrates the object. Considering this X-Ray decaying property, edges are extracted by using the least square fitting with the control of Coefficient of Determination.
Piecewise convexity of artificial neural networks.
Rister, Blaine; Rubin, Daniel L
2017-10-01
Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sendi, Pedram
2008-06-01
When choosing from a menu of treatment alternatives, the optimal treatment depends on the objective function and the assumptions of the model. The classical decision rule of cost-effectiveness analysis may be formulated via two different objective functions: (i) maximising health outcomes subject to the budget constraint or (ii) maximising the net benefit of the intervention with the budget being determined ex post. We suggest a more general objective function of (iii) maximising return on investment from available resources with consideration of health and non-health investments. The return on investment approach allows to adjust the analysis for the benefits forgone by alternative non-health investments from a societal or subsocietal perspective. We show that in the presence of positive returns on non-health investments the decision-maker's willingness to pay per unit of effect for a treatment program needs to be higher than its incremental cost-effectiveness ratio to be considered cost-effective.
This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms--theory and practice.
Harmany, Zachary T; Marcia, Roummel F; Willett, Rebecca M
2012-03-01
Observations in many applications consist of counts of discrete events, such as photons hitting a detector, which cannot be effectively modeled using an additive bounded or Gaussian noise model, and instead require a Poisson noise model. As a result, accurate reconstruction of a spatially or temporally distributed phenomenon (f*) from Poisson data (y) cannot be effectively accomplished by minimizing a conventional penalized least-squares objective function. The problem addressed in this paper is the estimation of f* from y in an inverse problem setting, where the number of unknowns may potentially be larger than the number of observations and f* admits sparse approximation. The optimization formulation considered in this paper uses a penalized negative Poisson log-likelihood objective function with nonnegativity constraints (since Poisson intensities are naturally nonnegative). In particular, the proposed approach incorporates key ideas of using separable quadratic approximations to the objective function at each iteration and penalization terms related to l1 norms of coefficient vectors, total variation seminorms, and partition-based multiscale estimation methods.
[Sibling relations between individuation and attachment: attempt at a conceptualization].
Seiffge-Krenke, I
2001-01-01
Although sibling relationships can be considered as one of the most durable and intensive relationships, not much research in developmental psychology and family research has been done on this issue. The strong focus on parents, more specifically on mothers, stood in the way of adequate conceptualization and understanding of the function and contribution of siblings to individual development and family interaction. In this contribution a conceptualization of sibling relationships is presented. Siblings as objects of aggressive and sexual feelings as well as the function of siblings in the family system, for example, as parentification and negative identity is emphasized. In addition, the different qualities of sibling relationships, for example, envy, rivalry, similarity, and difference, are emphasized. The function of siblings as love objects is stressed, and the role of siblings as support as well as teaching object is illustrated. Finally, it is emphasized that, similar to relationships between parents and child, the quality of sibling relationships changed over time and leads, for example, to a detachment between sibling relationships during adolescence.
Cognition and Health in African American Men
Sims, Regina C.; Thorpe, Roland J.; Gamaldo, Alyssa A.; Aiken-Morgan, Adrienne T.; Hill, LaBarron K.; Allaire, Jason C.; Whitfield, Keith E.
2015-01-01
Objective Despite high rates of poor health outcomes, little attention has been focused on associations between prominent health factors and cognitive function in African American men, exclusively. The objective was to examine relationships between cardiovascular and pulmonary health, and cognitive function in African American men. Method Data from 257 men were pooled from two studies of African American aging. The mean age of participants was 58.15 and mean educational attainment was 11.78 years. Participants provided self-reported health and demographic information, completed cognitive measures, and had their blood pressure and peak expiratory flow assessed. Results After adjustment, significant relationships were found between average peak expiratory flow rate (APEFR) and cognitive performance measures. Discussion Results suggest that lung function is important to consider when examining cognitive function in African American men. Understanding the role of health in cognition and implications for quality of life in this population will be critical as life expectancies increase. PMID:25053802
Kumar, Divya Rani; Han, Hank Ke; Tiller, John; Loo, Colleen K; Martin, Donel M
2016-12-01
Directly inquiring about patient experiences of memory problems after ECT may alert clinicians to the existence of treatment side effects and provide an impression of their intrusiveness. In this study, we examined use of a novel and brief patient-reported measure to assess perceptions of memory side effects and their functional consequences before and after an acute ECT treatment course. These outcomes were compared with objective cognitive and subjective quality of life measures. Data for 75 patients who were prescribed an acute course of ECT were analyzed. Subjective and objective measures were assessed before ECT (pretreatment) and at posttreatment. Patient perceptions were assessed using the Subjective Assessment of Memory Impairment, which consists of two items: The Memory Problems item, and The Impact of Cognitive Adverse Events item. Objective cognitive outcomes were assessed using the Montreal Cognitive Assessment. Quality of life was assessed using the Quality of Life Enjoyment and Satisfaction Questionnaire-Short Form. Patient perceptions of their memory problems did not change across the ECT course, and their functional impact were considered less intrusive after ECT. Greater functional impact of memory impairment was related to poorer quality of life at posttreatment, but not at pretreatment. Subjectively rated cognitive functioning was not associated with objective cognitive outcomes. The Subjective Assessment of Memory Impairment is a brief tool for measuring patient-rated memory function. Overall, patients did not report any change in subjective memory problems after ECT. Although perceptions of functional memory impairment and quality of life were related after ECT, there was no association with objectively assessed cognitive outcomes.
The Social Ailments of Russian Society as an Object of Sociological Study
ERIC Educational Resources Information Center
Ryvkina, R. V.
2010-01-01
Social systems, like biological systems, sometimes manifest dysfunctions that could be considered forms of "social disease." The author interprets the term "social diseases" as "persistent dysfunctions of social relations" that disrupt the normal functioning of particular elements of society or the entire social…
Factors to consider in developing variable rate seeding prescriptions
USDA-ARS?s Scientific Manuscript database
Soil hydraulic properties influence many of the ecological functions of soil. The objectives of this study were to determine the influence of topsoil thickness on soil hydraulic properties for grain and perennial grass production systems. The experiment was carried out at the Soil Productivity Asses...
NASA Astrophysics Data System (ADS)
Morioka, Yasuki; Nakata, Toshihiko
In order to design optimal biomass utilization system for rural area, OMNIBUS (The Optimization Model for Neo-Integrated Biomass Utilization System) has been developed. OMNIBUS can derive the optimal system configuration to meet different objective function, such as current account balance, amount of biomass energy supply, and CO2 emission. Most of biomass resources in a focused region e.g. wood biomass, livestock biomass, and crop residues are considered in the model. Conversion technologies considered are energy utilization technologies e.g. direct combustion and methane fermentation, and material utilization technologies e.g. composting and carbonization. Case study in Miyakojima, Okinawa prefecture, has been carried out for several objective functions and constraint conditions. Considering economics of the utilization system as a priority requirement, composting and combustion heat utilization are mainly chosen in the optimal system configuration. However gasification power plant and methane fermentation are included in optimal solutions, only when both biomass energy utilization and CO2 reduction have been set as higher priorities. External benefit of CO2 reduction has large impacts on the system configuration. Provided marginal external benefit of more than 50,000 JPY/t-C, external benefit becomes greater than the revenue from electricity and compost etc. Considering technological learning in the future, expensive technologies such as gasification power plant and methane fermentation will have economic feasibility as well as market competitiveness.
Zaĭtseva, N V; Trusov, P V; Kir'ianov, D A
2012-01-01
The mathematic concept model presented describes accumulation of functional disorders associated with environmental factors, plays predictive role and is designed for assessments of possible effects caused by heterogenous factors with variable exposures. Considering exposure changes with self-restoration process opens prospects of using the model to evaluate, analyse and manage occupational risks. To develop current theoretic approaches, the authors suggested a model considering age-related body peculiarities, systemic interactions of organs, including neuro-humoral regulation, accumulation of functional disorders due to external factors, rehabilitation of functions during treatment. General objective setting covers defining over a hundred unknow coefficients that characterize speed of various processes within the body. To solve this problem, the authors used iteration approach, successive identification, that starts from the certain primary approximation of the model parameters and processes subsequent updating on the basis of new theoretic and empirical knowledge.
Electric Generator in the System for Damping Oscillations of Vehicles
NASA Astrophysics Data System (ADS)
Serebryakov, A.; Kamolins, E.; Levin, N.
2017-04-01
The control systems for the objects of industry, power generation, transport, etc. are extremely complicated; functional efficiency of these systems determines to a great extent the safe and non-polluting operation as well as convenience of service and repair of such objects. The authors consider the possibility to improve the efficiency of systems for damping oscillations in transport using a combination of electrical (generators of rotational and linear types) and hydraulic means. Better efficiency of functioning is achieved through automatic control over the operational conditions of such a system in order to make it adaptive to variations in the road profile and ambient temperature; besides, it is possible to produce additional electric energy.
NASA Astrophysics Data System (ADS)
Raei, Ehsan; Nikoo, Mohammad Reza; Pourshahabi, Shokoufeh
2017-08-01
In the present study, a BIOPLUME III simulation model is coupled with a non-dominating sorting genetic algorithm (NSGA-II)-based model for optimal design of in situ groundwater bioremediation system, considering preferences of stakeholders. Ministry of Energy (MOE), Department of Environment (DOE), and National Disaster Management Organization (NDMO) are three stakeholders in the groundwater bioremediation problem in Iran. Based on the preferences of these stakeholders, the multi-objective optimization model tries to minimize: (1) cost; (2) sum of contaminant concentrations that violate standard; (3) contaminant plume fragmentation. The NSGA-II multi-objective optimization method gives Pareto-optimal solutions. A compromised solution is determined using fallback bargaining with impasse to achieve a consensus among the stakeholders. In this study, two different approaches are investigated and compared based on two different domains for locations of injection and extraction wells. At the first approach, a limited number of predefined locations is considered according to previous similar studies. At the second approach, all possible points in study area are investigated to find optimal locations, arrangement, and flow rate of injection and extraction wells. Involvement of the stakeholders, investigating all possible points instead of a limited number of locations for wells, and minimizing the contaminant plume fragmentation during bioremediation are new innovations in this research. Besides, the simulation period is divided into smaller time intervals for more efficient optimization. Image processing toolbox in MATLAB® software is utilized for calculation of the third objective function. In comparison with previous studies, cost is reduced using the proposed methodology. Dispersion of the contaminant plume is reduced in both presented approaches using the third objective function. Considering all possible points in the study area for determining the optimal locations of the wells in the second approach leads to more desirable results, i.e. decreasing the contaminant concentrations to a standard level and 20% to 40% cost reduction.
On the convergence of a linesearch based proximal-gradient method for nonconvex optimization
NASA Astrophysics Data System (ADS)
Bonettini, S.; Loris, I.; Porta, F.; Prato, M.; Rebegoldi, S.
2017-05-01
We consider a variable metric linesearch based proximal gradient method for the minimization of the sum of a smooth, possibly nonconvex function plus a convex, possibly nonsmooth term. We prove convergence of this iterative algorithm to a critical point if the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain, under the assumption that a limit point exists. The proposed method is applied to a wide collection of image processing problems and our numerical tests show that our algorithm results to be flexible, robust and competitive when compared to recently proposed approaches able to address the optimization problems arising in the considered applications.
Understanding Diverse Students. New Directions for Community Colleges, No. 3.
ERIC Educational Resources Information Center
Knoell, Dorothy M., Ed.
1973-01-01
A predominant function of community colleges is the education and guidance of students from widely varying backgrounds and with diverse interests and objectives. This sourcebook examines the major student clienteles for whom comprehensive two-year colleges must plan programs and services. The articles consider transfer students; occupational…
Seismic evaluation of I-24 bridges and embankments in Western Kentucky : summary report.
DOT National Transportation Integrated Search
2006-09-01
I-24 is considered as one of the high priority and emergency routes in the region. Hence, it is essential that I-24 remains functional and operational after an earthquake event. The objective of this study is to perform seismic evaluation and risk as...
ICIS and the Reduction of Paperback.
ERIC Educational Resources Information Center
Alvir, Howard P.
Methods by which campuses with similar information needs for similar decisions can set up a common data base are identified and discussed. Advantages and disadvantages of achieving the common data base by bulk paperwork, functional objectives, and piecemeal empiricism are considered. Practical suggestions for instituting each method are given. Use…
ERIC Educational Resources Information Center
Kyriakopoulos, Marinos; Dima, Danai; Roiser, Jonathan P.; Corrigall, Richard; Barker, Gareth J.; Frangou, Sophia
2012-01-01
Objective: Disruption within the working memory (WM) neural network is considered an integral feature of schizophrenia. The WM network, and the dorsolateral prefrontal cortex (DLPFC) in particular, undergo significant remodeling in late adolescence. Potential interactions between developmental changes in the WM network and disease-related…
NASA Astrophysics Data System (ADS)
Feidt, Michel; Costea, Monica
2018-04-01
Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro
2016-10-01
This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.
Miller, J; Fuller, M; Vinod, S; Suchowerska, N; Holloway, L
2009-06-01
A Clinician's discrimination between radiation therapy treatment plans is traditionally a subjective process, based on experience and existing protocols. A more objective and quantitative approach to distinguish between treatment plans is to use radiobiological or dosimetric objective functions, based on radiobiological or dosimetric models. The efficacy of models is not well understood, nor is the correlation of the rank of plans resulting from the use of models compared to the traditional subjective approach. One such radiobiological model is the Normal Tissue Complication Probability (NTCP). Dosimetric models or indicators are more accepted in clinical practice. In this study, three radiobiological models, Lyman NTCP, critical volume NTCP and relative seriality NTCP, and three dosimetric models, Mean Lung Dose (MLD) and the Lung volumes irradiated at 10Gy (V10) and 20Gy (V20), were used to rank a series of treatment plans using, harm to normal (Lung) tissue as the objective criterion. None of the models considered in this study showed consistent correlation with the Radiation Oncologists plan ranking. If radiobiological or dosimetric models are to be used in objective functions for lung treatments, based on this study it is recommended that the Lyman NTCP model be used because it will provide most consistency with traditional clinician ranking.
Karasawa, Jun-Ichi; Hashimoto, Kenji; Chaki, Shigeyuki
2008-01-10
Compounds enhancing N-methyl-d-aspartate (NMDA) glutamate receptor function have been reported to improve cognitive deficits. Since cognitive deficits are considered to be the core symptom of schizophrenia, enhancing NMDA receptor function represents a promising approach to treating schizophrenia. In the present study, we investigated whether d-serine or a glycine transporter inhibitor N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl]sarcosine (NFPS), both of which enhance NMDA receptor function, could improve MK-801-induced cognitive deficits in rats, and compared their effects with those of the atypical antipsychotic clozapine and of the typical antipsychotic haloperidol. To assess cognitive function, we used a novel object recognition test in rats that measured spontaneous exploratory activity of a novel object when paired with a familiar object. We then evaluated the effects of the compounds on cognitive deficits induced by treatment with MK-801, the NMDA receptor antagonist. Pretreatment with clozapine (1, 5 mg/kg, i.p.) but not haloperidol (0.03, 0.1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits. Pretreatment with D-serine at 800 mg/kg (i.p.) or NFPS (0.3, 1 mg/kg, i.p.) significantly improved MK-801-induced cognitive deficits under this test paradigm. These findings suggest that impaired preference for novel objects induced by MK-801 in the novel object recognition test could be a useful animal model for evaluating the efficacy of compounds targeting the cognitive deficits observed in schizophrenic patients. The results also suggest that enhancing NMDA receptor function is an effective way for treating the cognitive deficits associated with schizophrenia.
Biological organization of the extraocular muscles.
Spencer, Robert F; Porter, John D
2006-01-01
Extraocular muscle is fundamentally distinct from other skeletal muscles. Here, we review the biological organization of the extraocular muscles with the intent of understanding this novel muscle group in the context of oculomotor system function. The specific objectives of this review are threefold. The first objective is to understand the anatomic arrangement of the extraocular muscles and their compartmental or layered organization in the context of a new concept of orbital mechanics, the active pulley hypothesis. The second objective is to present an integrated view of the morphologic, cellular, and molecular differences between extraocular and the more traditional skeletal muscles. The third objective is to relate recent data from functional and molecular biology studies to the established extraocular muscle fiber types. Developmental mechanisms that may be responsible for the divergence of the eye muscles from a skeletal muscle prototype also are considered. Taken together, a multidisciplinary understanding of extraocular muscle biology in health and disease provides insights into oculomotor system function and malfunction. Moreover, because the eye muscles are selectively involved or spared in a variety of neuromuscular diseases, knowledge of their biology may improve current pathogenic models of and treatments for devastating systemic diseases.
Scheduling on the basis of the research of dependences among the construction process parameters
NASA Astrophysics Data System (ADS)
Romanovich, Marina; Ermakov, Alexander; Mukhamedzhanova, Olga
2017-10-01
The dependences among the construction process parameters are investigated in the article: average integrated value of qualification of the shift, number of workers per shift and average daily amount of completed work on the basis of correlation coefficient are considered. Basic data for the research of dependences among the above-stated parameters have been collected during the construction of two standard objects A and B (monolithic houses), in four months of construction (October, November, December, January). Kobb-Douglas production function has proved the values of coefficients of correlation close to 1. Function is simple to be used and is ideal for the description of the considered dependences. The development function, describing communication among the considered parameters of the construction process, is developed. The function of the development gives the chance to select optimum quantitative and qualitative (qualification) structure of the brigade link for the work during the next period of time, according to a preset value of amount of works. Function of the optimized amounts of works, which reflects interrelation of key parameters of construction process, is developed. Values of function of the optimized amounts of works should be used as the average standard for scheduling of the storming periods of construction.
A risk-based multi-objective model for optimal placement of sensors in water distribution system
NASA Astrophysics Data System (ADS)
Naserizade, Sareh S.; Nikoo, Mohammad Reza; Montaseri, Hossein
2018-02-01
In this study, a new stochastic model based on Conditional Value at Risk (CVaR) and multi-objective optimization methods is developed for optimal placement of sensors in water distribution system (WDS). This model determines minimization of risk which is caused by simultaneous multi-point contamination injection in WDS using CVaR approach. The CVaR considers uncertainties of contamination injection in the form of probability distribution function and calculates low-probability extreme events. In this approach, extreme losses occur at tail of the losses distribution function. Four-objective optimization model based on NSGA-II algorithm is developed to minimize losses of contamination injection (through CVaR of affected population and detection time) and also minimize the two other main criteria of optimal placement of sensors including probability of undetected events and cost. Finally, to determine the best solution, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), as a subgroup of Multi Criteria Decision Making (MCDM) approach, is utilized to rank the alternatives on the trade-off curve among objective functions. Also, sensitivity analysis is done to investigate the importance of each criterion on PROMETHEE results considering three relative weighting scenarios. The effectiveness of the proposed methodology is examined through applying it to Lamerd WDS in the southwestern part of Iran. The PROMETHEE suggests 6 sensors with suitable distribution that approximately cover all regions of WDS. Optimal values related to CVaR of affected population and detection time as well as probability of undetected events for the best optimal solution are equal to 17,055 persons, 31 mins and 0.045%, respectively. The obtained results of the proposed methodology in Lamerd WDS show applicability of CVaR-based multi-objective simulation-optimization model for incorporating the main uncertainties of contamination injection in order to evaluate extreme value of losses in WDS.
Abdul Ghaffar Al-Shaibani, Tarik A; Sachs-Robertson, Annette; Al Shazali, Hafiz O; Sequeira, Reginald P; Hamdy, Hosam; Al-Roomi, Khaldoon
2003-07-01
A problem-based learning strategy is used for curriculum planning and implementation at the Arabian Gulf University, Bahrain. Problems are constructed in a way that faculty-set objectives are expected to be identified by students during tutorials. Students in small groups, along with a tutor functioning as a facilitator, identify learning issues and define their learning objectives. We compared objectives identified by student groups with faculty-set objectives to determine extent of congruence, and identified factors that influenced students' ability at identifying faculty-set objectives. Male and female students were segregated and randomly grouped. A faculty tutor was allocated for each group. This study was based on 13 problems given to entry-level medical students. Pooled objectives of these problems were classified into four categories: structural, functional, clinical and psychosocial. Univariate analysis of variance was used for comparison, and a p > 0.05 was considered significant. The mean of overall objectives generated by the students was 54.2%, for each problem. Students identified psychosocial learning objectives more readily than structural ones. Female students identified more psychosocial objectives, whereas male students identified more of structural objectives. Tutor characteristics such as medical/non-medical background, and the years of teaching were correlated with categories of learning issues identified. Students identify part of the faculty-set learning objectives during tutorials with a faculty tutor acting as a facilitator. Students' gender influences types of learning issues identified. Content expertise of tutors does not influence identification of learning needs by students.
NASA Astrophysics Data System (ADS)
Mansor, Zakwan; Zakaria, Mohd Zakimi; Nor, Azuwir Mohd; Saad, Mohd Sazli; Ahmad, Robiah; Jamaluddin, Hishamuddin
2017-09-01
This paper presents the black-box modelling of palm oil biodiesel engine (POB) using multi-objective optimization differential evolution (MOODE) algorithm. Two objective functions are considered in the algorithm for optimization; minimizing the number of term of a model structure and minimizing the mean square error between actual and predicted outputs. The mathematical model used in this study to represent the POB system is nonlinear auto-regressive moving average with exogenous input (NARMAX) model. Finally, model validity tests are applied in order to validate the possible models that was obtained from MOODE algorithm and lead to select an optimal model.
Wang, Tiancai; He, Xing; Huang, Tingwen; Li, Chuandong; Zhang, Wei
2017-09-01
The economic emission dispatch (EED) problem aims to control generation cost and reduce the impact of waste gas on the environment. It has multiple constraints and nonconvex objectives. To solve it, the collective neurodynamic optimization (CNO) method, which combines heuristic approach and projection neural network (PNN), is attempted to optimize scheduling of an electrical microgrid with ten thermal generators and minimize the plus of generation and emission cost. As the objective function has non-derivative points considering valve point effect (VPE), differential inclusion approach is employed in the PNN model introduced to deal with them. Under certain conditions, the local optimality and convergence of the dynamic model for the optimization problem is analyzed. The capability of the algorithm is verified in a complicated situation, where transmission loss and prohibited operating zones are considered. In addition, the dynamic variation of load power at demand side is considered and the optimal scheduling of generators within 24 h is described. Copyright © 2017 Elsevier Ltd. All rights reserved.
van Hooren, Susan A.H.; Valentijn, Susanne A.M.; Bosma, Hans; Ponds, Rudolf W.H.M.; van Boxtel, Martin P.J.; Levine, Brian; Robertson, Ian; Jolles, Jelle
2007-01-01
Objective The objective of this study was to investigate the effects of a structured 6-week neuropsychological course on the executive functioning of older adults with cognitive complaints. Methods A randomised controlled design was used involving 69 community dwelling individuals aged 55 years and older. Both objective and subjective measures were included to assess executive functioning. General linear model with repeated measures analysis of variance was used to examine the intervention effects. Results After the intervention, the participants in the intervention group were significantly less annoyed by their cognitive failures, were better able to manage their executive failures and reported less anxiety symptoms than those in the waiting list control group. Conclusion These findings indicate that a combination of psycho-education and training has the potential to change the attitude of older individuals towards their cognitive functioning. Practice implications Because this training focussed on cognitive functions that are among the first to decline in older adults and the subjective evaluation of the people after training was quite favourable, the proposed intervention may be considered a valuable contribution to cognitive interventions for older adults. PMID:16956743
Impulsive Control for Continuous-Time Markov Decision Processes: A Linear Programming Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dufour, F., E-mail: dufour@math.u-bordeaux1.fr; Piunovskiy, A. B., E-mail: piunov@liv.ac.uk
2016-08-15
In this paper, we investigate an optimization problem for continuous-time Markov decision processes with both impulsive and continuous controls. We consider the so-called constrained problem where the objective of the controller is to minimize a total expected discounted optimality criterion associated with a cost rate function while keeping other performance criteria of the same form, but associated with different cost rate functions, below some given bounds. Our model allows multiple impulses at the same time moment. The main objective of this work is to study the associated linear program defined on a space of measures including the occupation measures ofmore » the controlled process and to provide sufficient conditions to ensure the existence of an optimal control.« less
Objective assessment of image quality. IV. Application to adaptive optics
Barrett, Harrison H.; Myers, Kyle J.; Devaney, Nicholas; Dainty, Christopher
2008-01-01
The methodology of objective assessment, which defines image quality in terms of the performance of specific observers on specific tasks of interest, is extended to temporal sequences of images with random point spread functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and estimation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing the effect of measurement noise, random point spread function, and random nature of the astronomical scene. Figures of merit are developed, and computational methods are discussed. PMID:17106464
NASA Astrophysics Data System (ADS)
Solovyev, R.; Seryakov, V.
2014-10-01
The main results obtained in the analysis of existing advertising facilities in the city of Tomsk were considered as a basis for media planning while choosing the most effective advertising medium and its location depending on the area of territorial and functional purpose of the city.
Criteria for the Evaluation of Student Loan Alternatives.
ERIC Educational Resources Information Center
Dresch, Stephen P.
The objectives of student loan programs and the consequences of specific programmatic determinations are considered. In addition to the primary function of providing access to capital markets for the financing of human capital investment, the student loan system in the United States has been utilized as: (1) a mechanism to subsidize schooling…
Inclusive Design: Developing Students' Knowledge and Attitude through Empathic Modelling
ERIC Educational Resources Information Center
Altay, Burçak; Demirkan, Halime
2014-01-01
To enhance the function and quality of built environments, designers should consider all possible users in their design projects. Therefore, it is essential to incorporate inclusive design in the education of the design student. This study focuses on the educational objectives of and related learning activities in a course where inclusive design…
ERIC Educational Resources Information Center
Mustafa, Hassan M. H.; Tourkia, Fadhel Ben; Ramadan, Ramadan Mohamed
2017-01-01
The objective of this piece of research is to interpret and investigate systematically an observed brain functional phenomenon which is associated with proceeding of e-learning processes. More specifically, this work addresses an interesting and challenging educational issue concerned with dynamical evaluation of elearning performance considering…
Study of Human Barriers upon Development of Virtual Disciplines at University of Isfahan
ERIC Educational Resources Information Center
Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr
2015-01-01
The present study has been carried out to investigate the human barriers of developing virtual majors at Isfahan University; therefore, considering its objective, it is a functional research. It was conducted in combined (quantitative-qualitative) manner via descriptive survey method. In order to do the research, investigating the texts, interview…
USDA-ARS?s Scientific Manuscript database
Xylo-oligosaccharides (XOS) are known to have beneficial health properties, and are considered to be functional food ingredients. The objective of this study is to compare corn fibers separated from ground corn flour and distillers dried grains with solubles (DDGS) for XOS yield and optimum authoyd...
Privatization and environmental pollution in an international mixed Cournot model
NASA Astrophysics Data System (ADS)
Ferreira, Fernanda A.
2016-06-01
In this paper, we consider a competition between a domestic public firm and a foreign private firm, supposing that the production processes generates environmental pollution. Introducing the residents' environmental preference into the public firm's objective function, we analyse its economic impacts. We also analyse the economic impacts of the privatization.
Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi
2017-10-01
The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from the nodule-like object functions A and B of the phantom spheres was found, suggesting the validity of the nodule-like object functions. The virtual nodules generated from the nodule-like object function A of the phantom spheres were similar to the real images obtained with Scanner C; the root mean square errors (RMSEs) between them were 10.8, 11.1, and 12.5 Hounsfield units (HU) for 5-, 7-, and 10-mm-diameter spheres, respectively. The equivalent results (RMSEs) using the nodule-like object function B were 15.9, 16.8, and 16.5 HU, respectively. These RMSEs were small considering the high contrast between the sphere density and background density (approximately 674 HU). The virtual nodules generated from the nodule-like object functions of the five laboratory-made nodules were similar to the real images obtained with Scanner C; the RMSEs between them ranged from 6.2 to 8.6 HU in five cases. The nodule-like object functions calculated from real nodule images would be effective to generate realistic virtual nodules. The proposed method would be feasible for generating virtual nodules that have the characteristics of the spatial resolution of the CT system used in each institution, allowing for site-specific nodule generation. © 2017 American Association of Physicists in Medicine.
Algorithms for Learning Preferences for Sets of Objects
NASA Technical Reports Server (NTRS)
Wagstaff, Kiri L.; desJardins, Marie; Eaton, Eric
2010-01-01
A method is being developed that provides for an artificial-intelligence system to learn a user's preferences for sets of objects and to thereafter automatically select subsets of objects according to those preferences. The method was originally intended to enable automated selection, from among large sets of images acquired by instruments aboard spacecraft, of image subsets considered to be scientifically valuable enough to justify use of limited communication resources for transmission to Earth. The method is also applicable to other sets of objects: examples of sets of objects considered in the development of the method include food menus, radio-station music playlists, and assortments of colored blocks for creating mosaics. The method does not require the user to perform the often-difficult task of quantitatively specifying preferences; instead, the user provides examples of preferred sets of objects. This method goes beyond related prior artificial-intelligence methods for learning which individual items are preferred by the user: this method supports a concept of setbased preferences, which include not only preferences for individual items but also preferences regarding types and degrees of diversity of items in a set. Consideration of diversity in this method involves recognition that members of a set may interact with each other in the sense that when considered together, they may be regarded as being complementary, redundant, or incompatible to various degrees. The effects of such interactions are loosely summarized in the term portfolio effect. The learning method relies on a preference representation language, denoted DD-PREF, to express set-based preferences. In DD-PREF, a preference is represented by a tuple that includes quality (depth) functions to estimate how desired a specific value is, weights for each feature preference, the desired diversity of feature values, and the relative importance of diversity versus depth. The system applies statistical concepts to estimate quantitative measures of the user s preferences from training examples (preferred subsets) specified by the user. Once preferences have been learned, the system uses those preferences to select preferred subsets from new sets. The method was found to be viable when tested in computational experiments on menus, music playlists, and rover images. Contemplated future development efforts include further tests on more diverse sets and development of a sub-method for (a) estimating the parameter that represents the relative importance of diversity versus depth, and (b) incorporating background knowledge about the nature of quality functions, which are special functions that specify depth preferences for features.
Using LabView for real-time monitoring and tracking of multiple biological objects
NASA Astrophysics Data System (ADS)
Nikolskyy, Aleksandr I.; Krasilenko, Vladimir G.; Bilynsky, Yosyp Y.; Starovier, Anzhelika
2017-04-01
Today real-time studying and tracking of movement dynamics of various biological objects is important and widely researched. Features of objects, conditions of their visualization and model parameters strongly influence the choice of optimal methods and algorithms for a specific task. Therefore, to automate the processes of adaptation of recognition tracking algorithms, several Labview project trackers are considered in the article. Projects allow changing templates for training and retraining the system quickly. They adapt to the speed of objects and statistical characteristics of noise in images. New functions of comparison of images or their features, descriptors and pre-processing methods will be discussed. The experiments carried out to test the trackers on real video files will be presented and analyzed.
NASA Astrophysics Data System (ADS)
Vasant, Pandian; Barsoum, Nader
2008-10-01
Many engineering, science, information technology and management optimization problems can be considered as non linear programming real world problems where the all or some of the parameters and variables involved are uncertain in nature. These can only be quantified using intelligent computational techniques such as evolutionary computation and fuzzy logic. The main objective of this research paper is to solve non linear fuzzy optimization problem where the technological coefficient in the constraints involved are fuzzy numbers which was represented by logistic membership functions by using hybrid evolutionary optimization approach. To explore the applicability of the present study a numerical example is considered to determine the production planning for the decision variables and profit of the company.
Some system considerations in configuring a digital flight control - navigation system
NASA Technical Reports Server (NTRS)
Boone, J. H.; Flynn, G. R.
1976-01-01
A trade study was conducted with the objective of providing a technical guideline for selection of the most appropriate computer technology for the automatic flight control system of a civil subsonic jet transport. The trade study considers aspects of using either an analog, incremental type special purpose computer or a general purpose computer to perform critical autopilot computation functions. It also considers aspects of integration of noncritical autopilot and autothrottle modes into the computer performing the critical autoland functions, as compared to the federation of the noncritical modes into either a separate computer or with a R-Nav computer. The study is accomplished by establishing the relative advantages and/or risks associated with each of the computer configurations.
A silent yet radical future revolution: Winnicott's innovative perspective.
Fabozzi, Paolo
2012-07-01
The author begins with an examination of two unpublished notes by Melanie Klein, written in 1953 and tracked down by Hinshelwood (2008). In these notes, the role of the study of projective identification as a tool that can permit the analyst to master countertransferential difficulties is highlighted; in 1953, this is the most advanced point of psychoanalytic investigations into unconscious object relations. The author also considers Winnicott's essays "Primitive Emotional Development" (1945) and "Hate in the Countertransference" (1947). In the former, Winnicott begins to inquire into the relationship between subjectivity and objectivity, in relation both to the birth of the mind and to the analyst's psychic functioning. Ultimately, the author demonstrates that the origins of an extraordinary transformation of psychoanalytic theory are contained in Winnicott's essay on countertransference of 1947. In fact, the Winnicottian conception of psychic functioning is founded on the radical and absolutely innovative principle by which the object's unconscious functioning, as well as its transformations caused by the subject's unconscious, must be investigated and transformed in order for the subject to be capable of beginning a psychic transformation.
A novel approach based on preference-based index for interval bilevel linear programming problem.
Ren, Aihong; Wang, Yuping; Xue, Xingsi
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
3D Reasoning from Blocks to Stability.
Zhaoyin Jia; Gallagher, Andrew C; Saxena, Ashutosh; Chen, Tsuhan
2015-05-01
Objects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene. In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about the segments, volumes, supporting relationships, and object stability. Our algorithm is based on the intuition that a good 3D representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e., one that does not topple). We design an energy function for representing the quality of the block representation based on these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.
NASA Astrophysics Data System (ADS)
Anderson, Cynthia Regas
The dissertation considers two different theories of measurement in Kant's Critical philosophy. The first is found in the Critique of Pure Reason. The second is found in the Critique of Judgment. In the former, Kant shows how the size of an object is structured by the necessary rules of the understanding and imagination in terms of its spatial dimensions. In the latter, Kant shows how the actual measurement of this spatial object is estimated. Through a detailed inquiry we argue that, the aesthetic estimation of measurement serves as a precondition for the possibility of spatializing an object. It is only by viewing both components as functioning together, that Kant's account is complete. The first Chapter takes a historical approach to this issue. Kant's Precritical work is considered. The second Chapter examines Kant's theory specifically as found in the Analytic of the First Critique. Finally, the third chapter examines Kant's views on magnitude and measurement in depth in the third Critique. Here we see why this account is needed to condition his prior views.
NASA Astrophysics Data System (ADS)
Lachhwani, Kailash; Poonia, Mahaveer Prasad
2012-08-01
In this paper, we show a procedure for solving multilevel fractional programming problems in a large hierarchical decentralized organization using fuzzy goal programming approach. In the proposed method, the tolerance membership functions for the fuzzily described numerator and denominator part of the objective functions of all levels as well as the control vectors of the higher level decision makers are respectively defined by determining individual optimal solutions of each of the level decision makers. A possible relaxation of the higher level decision is considered for avoiding decision deadlock due to the conflicting nature of objective functions. Then, fuzzy goal programming approach is used for achieving the highest degree of each of the membership goal by minimizing negative deviational variables. We also provide sensitivity analysis with variation of tolerance values on decision vectors to show how the solution is sensitive to the change of tolerance values with the help of a numerical example.
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
An objective function exploiting suboptimal solutions in metabolic networks
2013-01-01
Background Flux Balance Analysis is a theoretically elegant, computationally efficient, genome-scale approach to predicting biochemical reaction fluxes. Yet FBA models exhibit persistent mathematical degeneracy that generally limits their predictive power. Results We propose a novel objective function for cellular metabolism that accounts for and exploits degeneracy in the metabolic network to improve flux predictions. In our model, regulation drives metabolism toward a region of flux space that allows nearly optimal growth. Metabolic mutants deviate minimally from this region, a function represented mathematically as a convex cone. Near-optimal flux configurations within this region are considered equally plausible and not subject to further optimizing regulation. Consistent with relaxed regulation near optimality, we find that the size of the near-optimal region predicts flux variability under experimental perturbation. Conclusion Accounting for suboptimal solutions can improve the predictive power of metabolic FBA models. Because fluctuations of enzyme and metabolite levels are inevitable, tolerance for suboptimality may support a functionally robust metabolic network. PMID:24088221
Effect of design selection on response surface performance
NASA Technical Reports Server (NTRS)
Carpenter, William C.
1993-01-01
The mathematical formulation of the engineering optimization problem is given. Evaluation of the objective function and constraint equations can be very expensive in a computational sense. Thus, it is desirable to use as few evaluations as possible in obtaining its solution. In solving the equation, one approach is to develop approximations to the objective function and/or restraint equations and then to solve the equation using the approximations in place of the original functions. These approximations are referred to as response surfaces. The desirability of using response surfaces depends upon the number of functional evaluations required to build the response surfaces compared to the number required in the direct solution of the equation without approximations. The present study is concerned with evaluating the performance of response surfaces so that a decision can be made as to their effectiveness in optimization applications. In particular, this study focuses on how the quality of approximations is effected by design selection. Polynomial approximations and neural net approximations are considered.
Implementation of "Marginalism" in Day to Day Life.
1998-06-01
1985. 4. Golden, B.L., E.A Wasil and P.T. Harker, The Analytic Hierarchy Process, Spring-Verlag Berlin, Heidelberg, 1989. 5. Agor , Weston H , The...A. H . Maslow was a psychologist whose work on human motivation has been influential in fields such as organization development and industrial...benefit from Xi is the partial derivative of the objective function, 50/aXi. Consider a constraint function: < H >(X1,X2, ,Xn)=0 The marginal cost of
Sexual learning, sexual experience, and healthy adolescent sex.
Fortenberry, J Dennis
2014-01-01
This chapter is organized around the question "How do adolescents learn to have healthy sex?" The chapter assumes that sexual learning derives from a broad range of both informal and formal sources that contribute to learning within the context of neurocognitive brain systems that modulate sexual motivations and self-regulation. The overall objective is to consider how adolescents become sexually functional and healthy and to provide a conceptual basis for expansion of sexual learning to better support healthy sexual functioning. © 2014 Wiley Periodicals, Inc.
20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit
NASA Technical Reports Server (NTRS)
Darcy, Eric; Wilburn, Monique; Hall, Dan; Roth, Peter; Das Gupta, Sankar; Jacobs, Jim; Bhola, Rakesh; Milicic, Gordan; Vandemeer, Dave
2006-01-01
Objective: Consider a new battery design for EMU. Results: a) Electrovaya s aerospace cell production line is improving, but must further improve to achieve acceptable reliability; b) Completed functional, vibration, and thermal cycling of LIB; c) So far, electrical safety tests have produced good results; d) Completed functional, vibration, thermal cycling, power quality and EMI of LIB Charger; e) Completed CDR on 9/23/04; and f) Manufacturing Readiness Review for flight cell/battery production scheduled for Dec 04.
SHIPMO5: An Updated User’s Manual Incorporating New Wave Spectra and Ship-Referenced Forces
1992-04-01
equipment sliding, or of personnel loss-of- balance events, termed motion-induced interruptions. First consider an object on deck and suppose that the object...lateral force estimator in Reference 5. In the present work , this quantity will be called the port sliding estimator function, and denoted by Sport...0.170 , TIME FOR OPERATION " 60.0 a HEADING *$.LATE.LL*$$ **LONGITUDIILL*s TOTAL LFE NIl LFE Nil NI DEG G G 0.0 0.000 0.000 0.001 0.000 0.000 30.0 0.061
Precedent approach to the formation of programs for cyclic objects control
NASA Astrophysics Data System (ADS)
Kulakov, S. M.; Trofimov, V. B.; Dobrynin, A. S.; Taraborina, E. N.
2018-05-01
The idea and procedure for formalizing the precedent method of formation of complex control solutions (complex control programs) is discussed with respect to technological or organizational objects, the operation of which is organized cyclically. A typical functional structure of the system of precedent control by complex technological unit is developed, including a subsystem of retrospective optimization of actually implemented control programs. As an example, the problem of constructing replaceable planograms for the operation of the link of a heading-and-winning machine on the basis of precedents is considered.
Applied genetic evaluations for production and functional traits in dairy cattle.
Mark, T
2004-08-01
The objective of this study was to review the current status of genetic evaluation systems for production and functional traits as practiced in different Interbull member countries and to discuss that status in relation to research results and potential improvements. Thirty-one countries provided information. Substantial variation was evident for number of traits considered per country, trait definition, genetic evaluation procedure within trait, effects included, and how these were treated in genetic evaluation models. All countries lacked genetic evaluations for one or more economically important traits. Improvement in the genetic evaluation models, especially for many functional traits, could be achieved by closing the gaps between research and practice. More detailed and up to date information about national genetic evaluation systems for traits in different countries is available at www.interbull.org. Female fertility and workability traits were considered in many countries and could be next in line for international genetic evaluations.
A development of intelligent entertainment robot for home life
NASA Astrophysics Data System (ADS)
Kim, Cheoltaek; Lee, Ju-Jang
2005-12-01
The purpose of this paper was to present the study and design idea for entertainment robot with educational purpose (IRFEE). The robot has been designed for home life considering dependability and interaction. The developed robot has three objectives - 1. Develop autonomous robot, 2. Design robot considering mobility and robustness, 3. Develop robot interface and software considering entertainment and education functionalities. The autonomous navigation was implemented by active vision based SLAM and modified EPF algorithm. The two differential wheels, the pan-tilt were designed mobility and robustness and the exterior was designed considering esthetic element and minimizing interference. The speech and tracking algorithm provided the good interface with human. The image transfer and Internet site connection is needed for service of remote connection and educational purpose.
Meister, Hartmut; Rählmann, Sebastian; Walger, Martin; Margolf-Hackl, Sabine; Kießling, Jürgen
2015-01-01
To examine the association of cognitive function, age, and hearing loss with clinically assessed hearing aid benefit in older hearing-impaired persons. Hearing aid benefit was assessed using objective measures regarding speech recognition in quiet and noisy environments as well as a subjective measure reflecting everyday situations captured using a standardized questionnaire. A broad range of general cognitive functions such as attention, memory, and intelligence were determined using different neuropsychological tests. Linear regression analyses were conducted with the outcome of the neuropsychological tests as well as age and hearing loss as independent variables and the benefit measures as dependent variables. Thirty experienced older hearing aid users with typical age-related hearing impairment participated. Most of the benefit measures revealed that the participants obtained significant improvement with their hearing aids. Regression models showed a significant relationship between a fluid intelligence measure and objective hearing aid benefit. When individual hearing thresholds were considered as an additional independent variable, hearing loss was the only significant contributor to the benefit models. Lower cognitive capacity - as determined by the fluid intelligence measure - was significantly associated with greater hearing loss. Subjective benefit could not be predicted by any of the variables considered. The present study does not give evidence that hearing aid benefit is critically associated with cognitive function in experienced hearing aid users. However, it was found that lower fluid intelligence scores were related to higher hearing thresholds. Since greater hearing loss was associated with a greater objective benefit, these results strongly support the advice of using hearing aids regardless of age and cognitive function to counter hearing loss and the adverse effects of age-related hearing impairment. Still, individual cognitive capacity might be relevant for hearing aid benefit during an initial phase of hearing aid provision if acclimatization has not yet taken place.
Optimum Allocation of Water to the Cultivation Farms Using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Saeidian, B.; Saadi Mesgari, M.; Ghodousi, M.
2015-12-01
The water scarcity crises in the world and specifically in Iran, requires the proper management of this valuable resource. According to the official reports, around 90 percent of the water in Iran is used for agriculture. Therefore, the adequate management and usage of water in this section can help significantly to overcome the above crises. The most important aspect of agricultural water management is related to the irrigation planning, which is basically an allocation problem. The proper allocation of water to the farms is not a simple and trivial problem, because of the limited amount of available water, the effect of different parameters, nonlinear characteristics of the objective function, and the wideness of the solution space. Usually To solve such complex problems, a meta-heuristic method such as genetic algorithm could be a good candidate. In this paper, Genetic Algorithm (GA) is used for the allocation of different amount of water to a number of farms. In this model, the amount of water transferable using canals of level one, in one period of irrigation is specified. In addition, the amount of water required by each farm is calculated using crop type, stage of crop development, and other parameters. Using these, the water production function of each farm is determined. Then, using the water production function, farm areas, and the revenue and cost of each crop type, the objective function is calculated. This objective function is used by GA for the allocation of water to the farms. The objective function is defined such that the economical profit extracted from all farms is maximized. Moreover, the limitation related to the amount of available water is considered as a constraint. In general, the total amount of allocated water should be less than the finally available water (the water transferred trough the level one canals). Because of the intensive scarcity of water, the deficit irrigation method are considered. In this method, the planning is on the basis of the optimum and limited allocation of water, and not on the basis of the each crop water requirement. According to the available literature, in the condition of water scarcity, the implementation of deficit irrigation strategy results in higher economical income. The main difference of this research with others is the allocation of water to the farms. Whilst, most of similar researches concentrate on the allocation of water to different water consumption sections (such as agriculture, industry etc.), networks and crops. Using the GA for the optimization of the water allocation, proper solutions were generated that maximize the total economical income in the entire study area. In addition, although the search space was considerably wide, the results of the implementation showed an adequate convergence speed. The repeatability test of the algorithm also proved that the algorithm is reasonably stable. In general the usage of GA algorithm can be considered as an efficient and trustable method for such irrigation planning problems. By optimum allocation of the water to the farms with different areas and crop types, and considering the deficit irrigation method, the general income of the entire area can be improved substantially.
Umbral Calculus and Holonomic Modules in Positive Characteristic
NASA Astrophysics Data System (ADS)
Kochubei, Anatoly N.
2006-03-01
In the framework of analysis over local fields of positive characteristic, we develop algebraic tools for introducing and investigating various polynomial systems. In this survey paper we describe a function field version of umbral calculus developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. We consider modules over the Weyl-Carlitz ring, a function field counterpart of the Weyl algebra. It is shown that some basic objects of function field arithmetic, like the Carlitz module, Thakur's hypergeometric polynomials, and analogs of binomial coefficients arising in the positive characteristic version of umbral calculus, generate holonomic modules.
A robust optimisation approach to the problem of supplier selection and allocation in outsourcing
NASA Astrophysics Data System (ADS)
Fu, Yelin; Keung Lai, Kin; Liang, Liang
2016-03-01
We formulate the supplier selection and allocation problem in outsourcing under an uncertain environment as a stochastic programming problem. Both the decision-maker's attitude towards risk and the penalty parameters for demand deviation are considered in the objective function. A service level agreement, upper bound for each selected supplier's allocation and the number of selected suppliers are considered as constraints. A novel robust optimisation approach is employed to solve this problem under different economic situations. Illustrative examples are presented with managerial implications highlighted to support decision-making.
Economic analysis of the space shuttle system, volume 1
NASA Technical Reports Server (NTRS)
1972-01-01
An economic analysis of the space shuttle system is presented. The analysis is based on economic benefits, recurring costs, non-recurring costs, and ecomomic tradeoff functions. The most economic space shuttle configuration is determined on the basis of: (1) objectives of reusable space transportation system, (2) various space transportation systems considered and (3) alternative space shuttle systems.
A TECHNIQUE FOR DETERMINING THE OPERATING CAPACITIES OF JUNIOR COLLEGE INSTRUCTIONAL FACILITIES.
ERIC Educational Resources Information Center
CLAWSON, KENNETH TED
A TECHNIQUE FOR DETERMINING THE CAPACITY OF A COLLEGE PLANT SHOULD (1) CONSIDER THE FUNCTIONAL USE OF THE PLANT, (2) ATTACK THE CAPACITY PROBLEM DIRECTLY RATHER THAN THROUGH STATUS STUDIES, (3) INVOLVE THE SIGNIFICANT FACTORS RELATED TO CAPACITY, (4) USE OBJECTIVE FACTORS, (5) BE UNIVERSAL IN ITS APPLICATION, (6) NOT INVOLVE ABSTRACT STANDARDS,…
Dealing with Organizational Silos with Communities of Practice and Human Resource Management
ERIC Educational Resources Information Center
Forsten-Astikainen, Riitta; Hurmelinna-Laukkanen, Pia; Lämsä, Tuija; Heilmann, Pia; Hyrkäs, Elina
2017-01-01
Purpose: Organizational silos that build on the existing organizational structures are often considered to have negative effects in the form of focus on private narrow objectives and organizational fragmentation. To avoid such harmful outcomes, competence management is called for, and in this, the human resources (HR) function takes a key role.…
Is Bayesian Estimation Proper for Estimating the Individual's Ability? Research Report 80-3.
ERIC Educational Resources Information Center
Samejima, Fumiko
The effect of prior information in Bayesian estimation is considered, mainly from the standpoint of objective testing. In the estimation of a parameter belonging to an individual, the prior information is, in most cases, the density function of the population to which the individual belongs. Bayesian estimation was compared with maximum likelihood…
NASA Astrophysics Data System (ADS)
Zatarain-Salazar, J.; Reed, P. M.; Quinn, J.; Giuliani, M.; Castelletti, A.
2016-12-01
As we confront the challenges of managing river basin systems with a large number of reservoirs and increasingly uncertain tradeoffs impacting their operations (due to, e.g. climate change, changing energy markets, population pressures, ecosystem services, etc.), evolutionary many-objective direct policy search (EMODPS) solution strategies will need to address the computational demands associated with simulating more uncertainties and therefore optimizing over increasingly noisy objective evaluations. Diagnostic assessments of state-of-the-art many-objective evolutionary algorithms (MOEAs) to support EMODPS have highlighted that search time (or number of function evaluations) and auto-adaptive search are key features for successful optimization. Furthermore, auto-adaptive MOEA search operators are themselves sensitive to having a sufficient number of function evaluations to learn successful strategies for exploring complex spaces and for escaping from local optima when stagnation is detected. Fortunately, recent parallel developments allow coordinated runs that enhance auto-adaptive algorithmic learning and can handle scalable and reliable search with limited wall-clock time, but at the expense of the total number of function evaluations. In this study, we analyze this tradeoff between parallel coordination and depth of search using different parallelization schemes of the Multi-Master Borg on a many-objective stochastic control problem. We also consider the tradeoff between better representing uncertainty in the stochastic optimization, and simplifying this representation to shorten the function evaluation time and allow for greater search. Our analysis focuses on the Lower Susquehanna River Basin (LSRB) system where multiple competing objectives for hydropower production, urban water supply, recreation and environmental flows need to be balanced. Our results provide guidance for balancing exploration, uncertainty, and computational demands when using the EMODPS framework to discover key tradeoffs within the LSRB system.
Learning of Rule Ensembles for Multiple Attribute Ranking Problems
NASA Astrophysics Data System (ADS)
Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin
In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.
Health as normal function: a weak link in Daniels's theory of just health distribution.
Krag, Erik
2014-10-01
Drawing on Christopher Boorse's Biostatistical Theory (BST), Norman Daniels contends that a genuine health need is one which is necessary to restore normal functioning - a supposedly objective notion which he believes can be read from the natural world without reference to potentially controversial normative categories. But despite his claims to the contrary, this conception of health harbors arbitrary evaluative judgments which make room for intractable disagreement as to which conditions should count as genuine health needs and therefore which needs should be met. I begin by offering a brief summary of Boorse's BST, the theory to which Daniels appeals for providing the conception of health as normal functioning upon which his overall distributive scheme rests. Next, I consider what I call practical objections to Daniels's use of Boorse's theory. Finally I recount Elseljin Kingma's theoretical objection to Boorse's BST and discuss its impact on Daniels's overall theory. Though I conclude that Boorse's view, so weakened, will no longer be able to sustain the judgments which Daniels's theory uses it to reach, in the end, I offer Daniels an olive branch by briefly sketching an alternative strategy for reaching suitably objective conclusions regarding the health and/or disease status of various conditions. © 2012 John Wiley & Sons Ltd.
Optimal design of dampers within seismic structures
NASA Astrophysics Data System (ADS)
Ren, Wenjie; Qian, Hui; Song, Wali; Wang, Liqiang
2009-07-01
An improved multi-objective genetic algorithm for structural passive control system optimization is proposed. Based on the two-branch tournament genetic algorithm, the selection operator is constructed by evaluating individuals according to their dominance in one run. For a constrained problem, the dominance-based penalty function method is advanced, containing information on an individual's status (feasible or infeasible), position in a search space, and distance from a Pareto optimal set. The proposed approach is used for the optimal designs of a six-storey building with shape memory alloy dampers subjected to earthquake. The number and position of dampers are chosen as the design variables. The number of dampers and peak relative inter-storey drift are considered as the objective functions. Numerical results generate a set of non-dominated solutions.
Energy Center Structure Optimization by using Smart Technologies in Process Control System
NASA Astrophysics Data System (ADS)
Shilkina, Svetlana V.
2018-03-01
The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.
Provisional-Ideal-Point-Based Multi-objective Optimization Method for Drone Delivery Problem
NASA Astrophysics Data System (ADS)
Omagari, Hiroki; Higashino, Shin-Ichiro
2018-04-01
In this paper, we proposed a new evolutionary multi-objective optimization method for solving drone delivery problems (DDP). It can be formulated as a constrained multi-objective optimization problem. In our previous research, we proposed the "aspiration-point-based method" to solve multi-objective optimization problems. However, this method needs to calculate the optimal values of each objective function value in advance. Moreover, it does not consider the constraint conditions except for the objective functions. Therefore, it cannot apply to DDP which has many constraint conditions. To solve these issues, we proposed "provisional-ideal-point-based method." The proposed method defines a "penalty value" to search for feasible solutions. It also defines a new reference solution named "provisional-ideal point" to search for the preferred solution for a decision maker. In this way, we can eliminate the preliminary calculations and its limited application scope. The results of the benchmark test problems show that the proposed method can generate the preferred solution efficiently. The usefulness of the proposed method is also demonstrated by applying it to DDP. As a result, the delivery path when combining one drone and one truck drastically reduces the traveling distance and the delivery time compared with the case of using only one truck.
Huang, Lijie; Song, Yiying; Li, Jingguang; Zhen, Zonglei; Yang, Zetian; Liu, Jia
2014-01-01
In functional magnetic resonance imaging studies, object selectivity is defined as a higher neural response to an object category than other object categories. Importantly, object selectivity is widely considered as a neural signature of a functionally-specialized area in processing its preferred object category in the human brain. However, the behavioral significance of the object selectivity remains unclear. In the present study, we used the individual differences approach to correlate participants' face selectivity in the face-selective regions with their behavioral performance in face recognition measured outside the scanner in a large sample of healthy adults. Face selectivity was defined as the z score of activation with the contrast of faces vs. non-face objects, and the face recognition ability was indexed as the normalized residual of the accuracy in recognizing previously-learned faces after regressing out that for non-face objects in an old/new memory task. We found that the participants with higher face selectivity in the fusiform face area (FFA) and the occipital face area (OFA), but not in the posterior part of the superior temporal sulcus (pSTS), possessed higher face recognition ability. Importantly, the association of face selectivity in the FFA and face recognition ability cannot be accounted for by FFA response to objects or behavioral performance in object recognition, suggesting that the association is domain-specific. Finally, the association is reliable, confirmed by the replication from another independent participant group. In sum, our finding provides empirical evidence on the validity of using object selectivity as a neural signature in defining object-selective regions in the human brain. PMID:25071513
NASA Astrophysics Data System (ADS)
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain.
Taylor, Ann M; Phillips, Kristine; Patel, Kushang V; Turk, Dennis C; Dworkin, Robert H; Beaton, Dorcas; Clauw, Daniel J; Gignac, Monique A M; Markman, John D; Williams, David A; Bujanover, Shay; Burke, Laurie B; Carr, Daniel B; Choy, Ernest H; Conaghan, Philip G; Cowan, Penney; Farrar, John T; Freeman, Roy; Gewandter, Jennifer; Gilron, Ian; Goli, Veeraindar; Gover, Tony D; Haddox, J David; Kerns, Robert D; Kopecky, Ernest A; Lee, David A; Malamut, Richard; Mease, Philip; Rappaport, Bob A; Simon, Lee S; Singh, Jasvinder A; Smith, Shannon M; Strand, Vibeke; Tugwell, Peter; Vanhove, Gertrude F; Veasley, Christin; Walco, Gary A; Wasan, Ajay D; Witter, James
2016-09-01
Although pain reduction is commonly the primary outcome in chronic pain clinical trials, physical functioning is also important. A challenge in designing chronic pain trials to determine efficacy and effectiveness of therapies is obtaining appropriate information about the impact of an intervention on physical function. The Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) and Outcome Measures in Rheumatology (OMERACT) convened a meeting to consider assessment of physical functioning and participation in research on chronic pain. The primary purpose of this article is to synthesize evidence on the scope of physical functioning to inform work on refining physical function outcome measurement. We address issues in assessing this broad construct and provide examples of frequently used measures of relevant concepts. Investigators can assess physical functioning using patient-reported outcome (PRO), performance-based, and objective measures of activity. This article aims to provide support for the use of these measures, covering broad aspects of functioning, including work participation, social participation, and caregiver burden, which researchers should consider when designing chronic pain clinical trials. Investigators should consider the inclusion of both PROs and performance-based measures as they provide different but also important complementary information. The development and use of reliable and valid PROs and performance-based measures of physical functioning may expedite development of treatments, and standardization of these measures has the potential to facilitate comparison across studies. We provide recommendations regarding important domains to stimulate research to develop tools that are more robust, address consistency and standardization, and engage patients early in tool development.
NASA Technical Reports Server (NTRS)
Lucas, S. H.; Scotti, S. J.
1989-01-01
The nonlinear mathematical programming method (formal optimization) has had many applications in engineering design. A figure illustrates the use of optimization techniques in the design process. The design process begins with the design problem, such as the classic example of the two-bar truss designed for minimum weight as seen in the leftmost part of the figure. If formal optimization is to be applied, the design problem must be recast in the form of an optimization problem consisting of an objective function, design variables, and constraint function relations. The middle part of the figure shows the two-bar truss design posed as an optimization problem. The total truss weight is the objective function, the tube diameter and truss height are design variables, with stress and Euler buckling considered as constraint function relations. Lastly, the designer develops or obtains analysis software containing a mathematical model of the object being optimized, and then interfaces the analysis routine with existing optimization software such as CONMIN, ADS, or NPSOL. This final state of software development can be both tedious and error-prone. The Sizing and Optimization Language (SOL), a special-purpose computer language whose goal is to make the software implementation phase of optimum design easier and less error-prone, is presented.
Meta-heuristic algorithm to solve two-sided assembly line balancing problems
NASA Astrophysics Data System (ADS)
Wirawan, A. D.; Maruf, A.
2016-02-01
Two-sided assembly line is a set of sequential workstations where task operations can be performed at two sides of the line. This type of line is commonly used for the assembly of large-sized products: cars, buses, and trucks. This paper propose a Decoding Algorithm with Teaching-Learning Based Optimization (TLBO), a recently developed nature-inspired search method to solve the two-sided assembly line balancing problem (TALBP). The algorithm aims to minimize the number of mated-workstations for the given cycle time without violating the synchronization constraints. The correlation between the input parameters and the emergence point of objective function value is tested using scenarios generated by design of experiments. A two-sided assembly line operated in an Indonesia's multinational manufacturing company is considered as the object of this paper. The result of the proposed algorithm shows reduction of workstations and indicates that there is negative correlation between the emergence point of objective function value and the size of population used.
NASA Astrophysics Data System (ADS)
Darvishvand, Leila; Kamkari, Babak; Kowsary, Farshad
2018-03-01
In this article, a new hybrid method based on the combination of the genetic algorithm (GA) and artificial neural network (ANN) is developed to optimize the design of three-dimensional (3-D) radiant furnaces. A 3-D irregular shape design body (DB) heated inside a 3-D radiant furnace is considered as a case study. The uniform thermal conditions on the DB surfaces are obtained by minimizing an objective function. An ANN is developed to predict the objective function value which is trained through the data produced by applying the Monte Carlo method. The trained ANN is used in conjunction with the GA to find the optimal design variables. The results show that the computational time using the GA-ANN approach is significantly less than that of the conventional method. It is concluded that the integration of the ANN with GA is an efficient technique for optimization of the radiant furnaces.
Diemoz, Paul C; Vittoria, Fabio A; Olivo, Alessandro
2016-05-16
Previous studies on edge illumination (EI) X-ray phase-contrast imaging (XPCi) have investigated the nature and amplitude of the signal provided by this technique. However, the response of the imaging system to different object spatial frequencies was never explicitly considered and studied. This is required in order to predict the performance of a given EI setup for different classes of objects. To this scope, in the present work we derive analytical expressions for the contrast transfer function of an EI imaging system, using the approximation of near-field regime, and study its dependence upon the main experimental parameters. We then exploit these results to compare the frequency response of an EI system with respect of that of a free-space propagation XPCi one. The results achieved in this work can be useful for predicting the signals obtainable for different types of objects and also as a basis for new retrieval methods.
NASA Astrophysics Data System (ADS)
Jahangoshai Rezaee, Mustafa; Yousefi, Samuel; Hayati, Jamileh
2017-06-01
Supplier selection and allocation of optimal order quantity are two of the most important processes in closed-loop supply chain (CLSC) and reverse logistic (RL). So that providing high quality raw material is considered as a basic requirement for a manufacturer to produce popular products, as well as achieve more market shares. On the other hand, considering the existence of competitive environment, suppliers have to offer customers incentives like discounts and enhance the quality of their products in a competition with other manufacturers. Therefore, in this study, a model is presented for CLSC optimization, efficient supplier selection, as well as orders allocation considering quantity discount policy. It is modeled using multi-objective programming based on the integrated simultaneous data envelopment analysis-Nash bargaining game. In this study, maximizing profit and efficiency and minimizing defective and functions of delivery delay rate are taken into accounts. Beside supplier selection, the suggested model selects refurbishing sites, as well as determining the number of products and parts in each network's sector. The suggested model's solution is carried out using global criteria method. Furthermore, based on related studies, a numerical example is examined to validate it.
To the horizon and beyond: Weak lensing of the CMB and binary inspirals into horizonless objects
NASA Astrophysics Data System (ADS)
Kesden, Michael
This thesis examines two predictions of general relativity: weak lensing and gravitational waves. The cosmic microwave background (CMB) is gravitationally lensed by the large-scale structure between the observer and the last- scattering surface. This weak lensing induces non-Gaussian correlations that can be used to construct estimators for the deflection field. The error and bias of these estimators are derived and used to analyze the viability of lensing reconstruction for future CMB experiments. Weak lensing also affects the one-point probability distribution function of the CMB. The skewness and kurtosis induced by lensing and the Sunayev- Zel'dovich (SZ) effect are calculated as functions of the angular smoothing scale of the map. While these functions offer the advantage of easy computability, only the skewness from lensing-SZ correlations can potentially be detected, even in the limit of the largest amplitude fluctuations allowed by observation. Lensing estimators are also essential to constrain inflation, the favored explanation for large-scale isotropy and the origin of primordial perturbations. B-mode polarization is considered to be a "smoking-gun" signature of inflation, and lensing estimators can be used to recover primordial B-modes from lensing-induced contamination. The ability of future CMB experiments to constrain inflation is assessed as functions of survey size and instrumental sensitivity. A final application of lensing estimators is to constrain a possible cutoff in primordial density perturbations on near-horizon scales. The paucity of independent modes on such scales limits the statistical certainty of such a constraint. Measurements of the deflection field can be used to constrain at the 3s level the existence of a cutoff large enough to account for current CMB observations. A final chapter of this thesis considers an independent topic: the gravitational-wave (GW) signature of a binary inspiral into a horizonless object. If the supermassive objects at galactic centers lack the horizons of traditional black holes, inspiraling objects could emit GWs after passing within their surfaces. The GWs produced by such an inspiral are calculated, revealing distinctive features potentially observable by future GW observatories.
Gazijahani, Farhad Samadi; Ravadanegh, Sajad Najafi; Salehi, Javad
2018-02-01
The inherent volatility and unpredictable nature of renewable generations and load demand pose considerable challenges for energy exchange optimization of microgrids (MG). To address these challenges, this paper proposes a new risk-based multi-objective energy exchange optimization for networked MGs from economic and reliability standpoints under load consumption and renewable power generation uncertainties. In so doing, three various risk-based strategies are distinguished by using conditional value at risk (CVaR) approach. The proposed model is specified as a two-distinct objective function. The first function minimizes the operation and maintenance costs, cost of power transaction between upstream network and MGs as well as power loss cost, whereas the second function minimizes the energy not supplied (ENS) value. Furthermore, the stochastic scenario-based approach is incorporated into the approach in order to handle the uncertainty. Also, Kantorovich distance scenario reduction method has been implemented to reduce the computational burden. Finally, non-dominated sorting genetic algorithm (NSGAII) is applied to minimize the objective functions simultaneously and the best solution is extracted by fuzzy satisfying method with respect to risk-based strategies. To indicate the performance of the proposed model, it is performed on the modified IEEE 33-bus distribution system and the obtained results show that the presented approach can be considered as an efficient tool for optimal energy exchange optimization of MGs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Noise reduction for low-dose helical CT by 3D penalized weighted least-squares sinogram smoothing
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong
2006-03-01
Helical computed tomography (HCT) has several advantages over conventional step-and-shoot CT for imaging a relatively large object, especially for dynamic studies. However, HCT may increase X-ray exposure significantly to the patient. This work aims to reduce the radiation by lowering the X-ray tube current (mA) and filtering the low-mA (or dose) sinogram noise. Based on the noise properties of HCT sinogram, a three-dimensional (3D) penalized weighted least-squares (PWLS) objective function was constructed and an optimal sinogram was estimated by minimizing the objective function. To consider the difference of signal correlation among different direction of the HCT sinogram, an anisotropic Markov random filed (MRF) Gibbs function was designed as the penalty. The minimization of the objection function was performed by iterative Gauss-Seidel updating strategy. The effectiveness of the 3D-PWLS sinogram smoothing for low-dose HCT was demonstrated by a 3D Shepp-Logan head phantom study. Comparison studies with our previously developed KL domain PWLS sinogram smoothing algorithm indicate that the KL+2D-PWLS algorithm shows better performance on in-plane noise-resolution trade-off while the 3D-PLWS shows better performance on z-axis noise-resolution trade-off. Receiver operating characteristic (ROC) studies by using channelized Hotelling observer (CHO) shows that 3D-PWLS and KL+2DPWLS algorithms have similar performance on detectability in low-contrast environment.
Robust active contour via additive local and global intensity information based on local entropy
NASA Astrophysics Data System (ADS)
Yuan, Shuai; Monkam, Patrice; Zhang, Feng; Luan, Fangjun; Koomson, Ben Alfred
2018-01-01
Active contour-based image segmentation can be a very challenging task due to many factors such as high intensity inhomogeneity, presence of noise, complex shape, weak boundaries objects, and dependence on the position of the initial contour. We propose a level set-based active contour method to segment complex shape objects from images corrupted by noise and high intensity inhomogeneity. The energy function of the proposed method results from combining the global intensity information and local intensity information with some regularization factors. First, the global intensity term is proposed based on a scheme formulation that considers two intensity values for each region instead of one, which outperforms the well-known Chan-Vese model in delineating the image information. Second, the local intensity term is formulated based on local entropy computed considering the distribution of the image brightness and using the generalized Gaussian distribution as the kernel function. Therefore, it can accurately handle high intensity inhomogeneity and noise. Moreover, our model is not dependent on the position occupied by the initial curve. Finally, extensive experiments using various images have been carried out to illustrate the performance of the proposed method.
NASA Astrophysics Data System (ADS)
Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang
2017-10-01
The purpose of the present work is to study the buckling problem with plate/shell topology optimization of orthotropic material. A model of buckling topology optimization is established based on the independent, continuous, and mapping method, which considers structural mass as objective and buckling critical loads as constraints. Firstly, composite exponential function (CEF) and power function (PF) as filter functions are introduced to recognize the element mass, the element stiffness matrix, and the element geometric stiffness matrix. The filter functions of the orthotropic material stiffness are deduced. Then these filter functions are put into buckling topology optimization of a differential equation to analyze the design sensitivity. Furthermore, the buckling constraints are approximately expressed as explicit functions with respect to the design variables based on the first-order Taylor expansion. The objective function is standardized based on the second-order Taylor expansion. Therefore, the optimization model is translated into a quadratic program. Finally, the dual sequence quadratic programming (DSQP) algorithm and the global convergence method of moving asymptotes algorithm with two different filter functions (CEF and PF) are applied to solve the optimal model. Three numerical results show that DSQP&CEF has the best performance in the view of structural mass and discretion.
Factors that determin color appearance and color classification.
Janelidze, D
2011-11-01
The purpose of this work was to consider the objective and subjective factors involved in color perception and on their basis offer a color classification that would allow for determining which of these factors are significant for each particular class of colors. In the first part of the article it is considered that physical correlates of subjective sensation of color have mainly a dual nature and sometimes correlate with spectral-power content of light coming from a given area of visual scene to retina, and sometimes with surface reflectance of the given area. Other objective and subjective factors which participate in the formation of color appearance are also considered. According to the characteristics of the visual stimulus, viewing conditions and functional state of visual system, composition of objective and subjective factors participating in the formation of color appearance, as well as the share of each factor in this process are changeable. In the second part of the article one of the possible version of color classification according to which it is possible to distinguish nine different classes of colors is proposed. Among differences between these classes, the most noticeable is that in the case of all classes of color except constant colors, the physical parameter that determines the color category of a given area is the spectral-power distribution of the light coming from this area to the retina. However, in the case of constant colors, the physical parameter that determines the color category of a given area is its reflectance. In the case of considered different classes of colors, composition of objective and subjective factors participating in the formation of color appearance is different. The proposed classification allows determining which of these factors are significant in the case of each specific class of color.
Sleep in athletes and the effects of Ramadan.
Roky, Rachida; Herrera, Christopher Paul; Ahmed, Qanta
2012-01-01
Sleep is now considered as a new frontier in performance enhancement. This article presents background content on sleep function, sleep needs and methods of sleep investigation along with data on the potential effects of Ramadan fasting on sleep in normal individuals and athletes. Accumulated sleep loss has negative impacts on cognitive function, mood, daytime sleepiness and performance. Sleep studies in athletes fasting during Ramadan are very rare. Most of them have demonstrated that during this month, sleep duration decreased and sleep timing shifted. But the direct relation between sleep changes and performance during Ramadan is not yet elucidated. Objective sleep patterns can be investigated using polysomnography, actigraphy, and standardised questionnaires and recorded in daily journals or sleep logs. The available data on sleep indicate that team doctors and coaches should consider planning sleep schedule and napping; implementing educational programmes focusing on the need for healthy sleep; and consider routine screening for sleep loss in athletes of all age groups and genders.
Children and Objects: Affection and Infection
ERIC Educational Resources Information Center
Jones, Liz; MacLure, Maggie; Holmes, Rachel; MacRae, Christina
2012-01-01
This paper considers young children's (aged 3-5 years) relations with objects, and in particular objects that are brought from home to school. We begin by considering the place of objects within early years classrooms and their relationship to children's education before considering why some objects are often separated from their owners on entry…
Temperature-dependent and optimized thermal emission by spheres
NASA Astrophysics Data System (ADS)
Nguyen, K. L.; Merchiers, O.; Chapuis, P.-O.
2018-03-01
We investigate the temperature and size dependencies of thermal emission by homogeneous spheres as a function of their dielectric properties. Different power laws obtained in this work show that the emitted power can depart strongly from the usual fourth power of temperature given by Planck's law and from the square or the cube of the radius. We also show how to optimize the thermal emission by selecting permittivities leading to resonances, which allow for the so-called super-Planckian regime. These results will be useful as spheres, i.e. the simplest finite objects, are often considered as building blocks of more complex objects.
Procedure of Partitioning Data Into Number of Data Sets or Data Group - A Review
NASA Astrophysics Data System (ADS)
Kim, Tai-Hoon
The goal of clustering is to decompose a dataset into similar groups based on a objective function. Some already well established clustering algorithms are there for data clustering. Objective of these data clustering algorithms are to divide the data points of the feature space into a number of groups (or classes) so that a predefined set of criteria are satisfied. The article considers the comparative study about the effectiveness and efficiency of traditional data clustering algorithms. For evaluating the performance of the clustering algorithms, Minkowski score is used here for different data sets.
Crowd evacuation model based on bacterial foraging algorithm
NASA Astrophysics Data System (ADS)
Shibiao, Mu; Zhijun, Chen
To understand crowd evacuation, a model based on a bacterial foraging algorithm (BFA) is proposed in this paper. Considering dynamic and static factors, the probability of pedestrian movement is established using cellular automata. In addition, given walking and queue times, a target optimization function is built. At the same time, a BFA is used to optimize the objective function. Finally, through real and simulation experiments, the relationship between the parameters of evacuation time, exit width, pedestrian density, and average evacuation speed is analyzed. The results show that the model can effectively describe a real evacuation.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.
NASA Astrophysics Data System (ADS)
Yin, Hui; Yu, Dejie; Yin, Shengwen; Xia, Baizhan
2018-03-01
The conventional engineering optimization problems considering uncertainties are based on the probabilistic model. However, the probabilistic model may be unavailable because of the lack of sufficient objective information to construct the precise probability distribution of uncertainties. This paper proposes a possibility-based robust design optimization (PBRDO) framework for the uncertain structural-acoustic system based on the fuzzy set model, which can be constructed by expert opinions. The objective of robust design is to optimize the expectation and variability of system performance with respect to uncertainties simultaneously. In the proposed PBRDO, the entropy of the fuzzy system response is used as the variability index; the weighted sum of the entropy and expectation of the fuzzy response is used as the objective function, and the constraints are established in the possibility context. The computations for the constraints and objective function of PBRDO are a triple-loop and a double-loop nested problem, respectively, whose computational costs are considerable. To improve the computational efficiency, the target performance approach is introduced to transform the calculation of the constraints into a double-loop nested problem. To further improve the computational efficiency, a Chebyshev fuzzy method (CFM) based on the Chebyshev polynomials is proposed to estimate the objective function, and the Chebyshev interval method (CIM) is introduced to estimate the constraints, thereby the optimization problem is transformed into a single-loop one. Numerical results on a shell structural-acoustic system verify the effectiveness and feasibility of the proposed methods.
NASA Technical Reports Server (NTRS)
Lan, C. Edward; Ge, Fuying
1989-01-01
Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.
NASA Astrophysics Data System (ADS)
Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.
2017-09-01
This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.
Camouflage and visual perception
Troscianko, Tom; Benton, Christopher P.; Lovell, P. George; Tolhurst, David J.; Pizlo, Zygmunt
2008-01-01
How does an animal conceal itself from visual detection by other animals? This review paper seeks to identify general principles that may apply in this broad area. It considers mechanisms of visual encoding, of grouping and object encoding, and of search. In most cases, the evidence base comes from studies of humans or species whose vision approximates to that of humans. The effort is hampered by a relatively sparse literature on visual function in natural environments and with complex foraging tasks. However, some general constraints emerge as being potentially powerful principles in understanding concealment—a ‘constraint’ here means a set of simplifying assumptions. Strategies that disrupt the unambiguous encoding of discontinuities of intensity (edges), and of other key visual attributes, such as motion, are key here. Similar strategies may also defeat grouping and object-encoding mechanisms. Finally, the paper considers how we may understand the processes of search for complex targets in complex scenes. The aim is to provide a number of pointers towards issues, which may be of assistance in understanding camouflage and concealment, particularly with reference to how visual systems can detect the shape of complex, concealed objects. PMID:18990671
Methods for converting industrial zones
NASA Astrophysics Data System (ADS)
Talipova, L.; Kosyakov, E.; Polyakova, Irina
2017-10-01
In this article, industrial zones of Saint Petersburg and Hong Kong were considered. Competitive projects aimed at developing the grey belt of Saint Petersburg were considered. The methodology of the survey of reconstruction of the industrial zone of Hong Kong is also analyzed. The potential of the city’s grey belt lies in its location on the border of the city’s historical centre. Rational use of this potential will make it possible to achieve numerous objectives, including development of the city’s transport infrastructure, positioning of business functions, and organization of housing and the city’s system of green public spaces.
A study of optimal abstract jamming strategies vs. noncoherent MFSK
NASA Technical Reports Server (NTRS)
Mceliece, R. J.; Rodemich, E. R.
1983-01-01
The present investigation is concerned with the performance of uncoded MFSK modulation in the presence of arbitrary additive jamming, taking into account the objective to devise robust antijamming strategies. An abstract model is considered, giving attention to the signal strength as a nonnegative real number X, the employment of X as a random variable, its distribution function G(x), the transmitter's strategy G, the jamming noise as an M-dimensional random vector Z, and the error probability. A summary of previous work on the considered problem is provided, and the results of the current study are presented.
An Open-Source Auto-Calibration Routine Supporting the Stormwater Management Model
NASA Astrophysics Data System (ADS)
Tiernan, E. D.; Hodges, B. R.
2017-12-01
The stormwater management model (SWMM) is a clustered model that relies on subcatchment-averaged parameter assignments to correctly capture catchment stormwater runoff behavior. Model calibration is considered a critical step for SWMM performance, an arduous task that most stormwater management designers undertake manually. This research presents an open-source, automated calibration routine that increases the efficiency and accuracy of the model calibration process. The routine makes use of a preliminary sensitivity analysis to reduce the dimensions of the parameter space, at which point a multi-objective function, genetic algorithm (modified Non-dominated Sorting Genetic Algorithm II) determines the Pareto front for the objective functions within the parameter space. The solutions on this Pareto front represent the optimized parameter value sets for the catchment behavior that could not have been reasonably obtained through manual calibration.
Behavioral and biological interactions with small groups in confined microsocieties
NASA Technical Reports Server (NTRS)
Brady, J. V.; Emurian, H. H.
1982-01-01
Requirements for high levels of human performance in the unfamiliar and stressful environments associated with space missions necessitate the development of research-based technological procedures for maximizing the probability of effective functioning at all levels of personnel participation. Where the successful accomplishment of such missions requires the coordinated contributions of several individuals collectively identified with the achievement of a common objective, the conditions for characterizing a team, crew, or functional group are operationally defined. For the most part, studies of group performances under operational conditions which emphasize relatively long exposure to extended mission environments have been limited by the constraints imposed on experimental manipulations to identify critical effectiveness factors. On the other hand, laboratory studies involving relatively brief exposures to contrived task situations have been considered of questionable generality to operational settings requiring realistic group objectives.
Multi-objective optimal design of sandwich panels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow
2017-10-01
In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.
Habitat and Biodiversity: One out of five essential soil functions for agricultural soils
NASA Astrophysics Data System (ADS)
Trinsoutrot Gattin, Isabelle; Creamer, Rachel; van Leeuwen, Jeroen; Vrebos, Dirk; Gatti, Fabio; Bampa, Francesca; Schulte, Rogier; Rutgers, Michiel
2017-04-01
Current agricultural challenges require developing new agricultural systems that can optimize the ecological functioning of soils in order to limit the use of chemical inputs (i.e. disease suppression) and maintain a high organic matter content. This implies our ability to evaluate the effects of management practices on immediate performance objectives (i.e. fertility linked to nutrient cycling) but also in longer-term objective (i.e. C cycling and storage) in a variety of agro-climatic conditions. These issues demand the development of systemic approaches for understanding the determinants of soil functioning. In ecology, it is generally accepted that there are many positive relationships between soil biodiversity indicators and the functioning of ecosystems. Indeed, soil organisms and their interactions are essential drivers of ecosystem processes and impact the response, resilience and adaptability of ecosystems to environmental pressures. Thus, maintaining soil biodiversity is a condition for the sustainability of cropping systems. In this new context, the European project Landmark considers soil functions as a key to the improvement of agricultural land management towards sustainable development goals, amongst the five functions is soil biodiversity and habitat provisioning. We propose to present how we manage within this project to deal with this challenging objective at three spatial scales : field, landscape (regional) and European (policy). We aim to define a link between the physical, chemical and biological soil properties and "habitat & biodiversity" soil function in order to identify key indicators which modulate biodiversity. This will allow us to quantify and assess this soil function, in order to provide insight in win wins and tradeoffs in soil functions to enhance management practices which optimise the biodiversity in European agricultural systems.
Optimal design of earth-moving machine elements with cusp catastrophe theory application
NASA Astrophysics Data System (ADS)
Pitukhin, A. V.; Skobtsov, I. G.
2017-10-01
This paper deals with the optimal design problem solution for the operator of an earth-moving machine with a roll-over protective structure (ROPS) in terms of the catastrophe theory. A brief description of the catastrophe theory is presented, the cusp catastrophe is considered, control parameters are viewed as Gaussian stochastic quantities in the first part of the paper. The statement of optimal design problem is given in the second part of the paper. It includes the choice of the objective function and independent design variables, establishment of system limits. The objective function is determined as mean total cost that includes initial cost and cost of failure according to the cusp catastrophe probability. Algorithm of random search method with an interval reduction subject to side and functional constraints is given in the last part of the paper. The way of optimal design problem solution can be applied to choose rational ROPS parameters, which will increase safety and reduce production and exploitation expenses.
Optimizing an experimental design for an electromagnetic experiment
NASA Astrophysics Data System (ADS)
Roux, Estelle; Garcia, Xavier
2013-04-01
Most of geophysical studies focus on data acquisition and analysis, but another aspect which is gaining importance is the discussion on acquisition of suitable datasets. This can be done through the design of an optimal experiment. Optimizing an experimental design implies a compromise between maximizing the information we get about the target and reducing the cost of the experiment, considering a wide range of constraints (logistical, financial, experimental …). We are currently developing a method to design an optimal controlled-source electromagnetic (CSEM) experiment to detect a potential CO2 reservoir and monitor this reservoir during and after CO2 injection. Our statistical algorithm combines the use of linearized inverse theory (to evaluate the quality of one given design via the objective function) and stochastic optimization methods like genetic algorithm (to examine a wide range of possible surveys). The particularity of our method is that it uses a multi-objective genetic algorithm that searches for designs that fit several objective functions simultaneously. One main advantage of this kind of technique to design an experiment is that it does not require the acquisition of any data and can thus be easily conducted before any geophysical survey. Our new experimental design algorithm has been tested with a realistic one-dimensional resistivity model of the Earth in the region of study (northern Spain CO2 sequestration test site). We show that a small number of well distributed observations have the potential to resolve the target. This simple test also points out the importance of a well chosen objective function. Finally, in the context of CO2 sequestration that motivates this study, we might be interested in maximizing the information we get about the reservoir layer. In that case, we show how the combination of two different objective functions considerably improve its resolution.
Optimizing global liver function in radiation therapy treatment planning
NASA Astrophysics Data System (ADS)
Wu, Victor W.; Epelman, Marina A.; Wang, Hesheng; Romeijn, H. Edwin; Feng, Mary; Cao, Yue; Ten Haken, Randall K.; Matuszak, Martha M.
2016-09-01
Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose (\\ell \\text{EUD} ) (conventional ‘\\ell \\text{EUD} model’), the so-called perfusion-weighted \\ell \\text{EUD} (\\text{fEUD} ) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed ‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting \\ell \\text{EUD} , fEUD, and GLF plans delivering the same target \\ell \\text{EUD} are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6 % ≤ft(7.5 % \\right) more liver function than the fEUD (\\ell \\text{EUD} ) plan does in 2D cases, and up to 4.5 % ≤ft(5.6 % \\right) in 3D cases. The GLF and fEUD plans worsen in \\ell \\text{EUD} of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and often achieves better GLF than \\ell \\text{EUD} model optimization does, the GLF model directly optimizes a more clinically relevant metric and can further improve fEUD plan quality.
van Elk, Michiel; van Schie, Hein; Bekkering, Harold
2014-06-01
Our capacity to use tools and objects is often considered one of the hallmarks of the human species. Many objects greatly extend our bodily capabilities to act in the physical world, such as when using a hammer or a saw. In addition, humans have the remarkable capability to use objects in a flexible fashion and to combine multiple objects in complex actions. We prepare coffee, cook dinner and drive our car. In this review we propose that humans have developed declarative and procedural knowledge, i.e. action semantics that enables us to use objects in a meaningful way. A state-of-the-art review of research on object use is provided, involving behavioral, developmental, neuropsychological and neuroimaging studies. We show that research in each of these domains is characterized by similar discussions regarding (1) the role of object affordances, (2) the relation between goals and means in object use and (3) the functional and neural organization of action semantics. We propose a novel conceptual framework of action semantics to address these issues and to integrate the previous findings. We argue that action semantics entails both multimodal object representations and modality-specific sub-systems, involving manipulation knowledge, functional knowledge and representations of the sensory and proprioceptive consequences of object use. Furthermore, we argue that action semantics are hierarchically organized and selectively activated and used depending on the action intention of the actor and the current task context. Our framework presents an integrative account of multiple findings and perspectives on object use that may guide future studies in this interdisciplinary domain. Copyright © 2013 Elsevier B.V. All rights reserved.
Use of Objective Metrics in Dynamic Facial Reanimation: A Systematic Review.
Revenaugh, Peter C; Smith, Ryan M; Plitt, Max A; Ishii, Lisa; Boahene, Kofi; Byrne, Patrick J
2018-06-21
Facial nerve deficits cause significant functional and social consequences for those affected. Existing techniques for dynamic restoration of facial nerve function are imperfect and result in a wide variety of outcomes. Currently, there is no standard objective instrument for facial movement as it relates to restorative techniques. To determine what objective instruments of midface movement are used in outcome measurements for patients treated with dynamic methods for facial paralysis. Database searches from January 1970 to June 2017 were performed in PubMed, Embase, Cochrane Library, Web of Science, and Scopus. Only English-language articles on studies performed in humans were considered. The search terms used were ("Surgical Flaps"[Mesh] OR "Nerve Transfer"[Mesh] OR "nerve graft" OR "nerve grafts") AND (face [mh] OR facial paralysis [mh]) AND (innervation [sh]) OR ("Face"[Mesh] OR facial paralysis [mh]) AND (reanimation [tiab]). Two independent reviewers evaluated the titles and abstracts of all articles and included those that reported objective outcomes of a surgical technique in at least 2 patients. The presence or absence of an objective instrument for evaluating outcomes of midface reanimation. Additional outcome measures were reproducibility of the test, reporting of symmetry, measurement of multiple variables, and test validity. Of 241 articles describing dynamic facial reanimation techniques, 49 (20.3%) reported objective outcome measures for 1898 patients. Of those articles reporting objective measures, there were 29 different instruments, only 3 of which reported all outcome measures. Although instruments are available to objectively measure facial movement after reanimation techniques, most studies do not report objective outcomes. Of objective facial reanimation instruments, few are reproducible and able to measure symmetry and multiple data points. To accurately compare objective outcomes in facial reanimation, a reproducible, objective, and universally applied instrument is needed.
NASA Astrophysics Data System (ADS)
Zhang, Bao-Ji; Zhang, Zhu-Xin
2015-09-01
To obtain low resistance and high efficiency energy-saving ship, minimum total resistance hull form design method is studied based on potential flow theory of wave-making resistance and considering the effects of tail viscous separation. With the sum of wave resistance and viscous resistance as objective functions and the parameters of B-Spline function as design variables, mathematical models are built using Nonlinear Programming Method (NLP) ensuring the basic limit of displacement and considering rear viscous separation. We develop ship lines optimization procedures with intellectual property rights. Series60 is used as parent ship in optimization design to obtain improved ship (Series60-1) theoretically. Then drag tests for the improved ship (Series60-1) is made to get the actual minimum total resistance hull form.
An approach to detecting deliberately introduced defects and micro-defects in 3D printed objects
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2017-05-01
In prior work, Zeltmann, et al. demonstrated the negative impact that can be created by defects of various sizes in 3D printed objects. These defects may make the object unsuitable for its application or even present a hazard, if the object is being used for a safety-critical application. With the uses of 3D printing proliferating and consumer access to printers increasing, the desire of a nefarious individual or group to subvert the desired printing quality and safety attributes of a printer or printed object must be considered. Several different approaches to subversion may exist. Attackers may physically impair the functionality of the printer or launch a cyber-attack. Detecting introduced defects, from either attack, is critical to maintaining public trust in 3D printed objects and the technology. This paper presents an alternate approach. It applies a quality assurance technology based on visible light sensing to this challenge and assesses its capability for detecting introduced defects of multiple sizes.
Visual dysfunction in Parkinson’s disease
Weil, Rimona S.; Schrag, Anette E.; Warren, Jason D.; Crutch, Sebastian J.; Lees, Andrew J.; Morris, Huw R.
2016-01-01
Patients with Parkinson’s disease have a number of specific visual disturbances. These include changes in colour vision and contrast sensitivity and difficulties with complex visual tasks such as mental rotation and emotion recognition. We review changes in visual function at each stage of visual processing from retinal deficits, including contrast sensitivity and colour vision deficits to higher cortical processing impairments such as object and motion processing and neglect. We consider changes in visual function in patients with common Parkinson’s disease-associated genetic mutations including GBA and LRRK2. We discuss the association between visual deficits and clinical features of Parkinson’s disease such as rapid eye movement sleep behavioural disorder and the postural instability and gait disorder phenotype. We review the link between abnormal visual function and visual hallucinations, considering current models for mechanisms of visual hallucinations. Finally, we discuss the role of visuo-perceptual testing as a biomarker of disease and predictor of dementia in Parkinson’s disease. PMID:27412389
Online Feature Transformation Learning for Cross-Domain Object Category Recognition.
Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold
2017-06-09
In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.
[Quantitative relationships of intra- and interspecific competition in Cryptocarya concinna].
Zhang, Chi; Huang, Zhongliang; Li, Jiong; Shi, Junhui; Li, Lin
2006-01-01
The monsoon evergreen broad-leaved forest (MEBF) in Dinghushan Nature Reserve (DNR) has been considered as a zonal vegetation in lower subtropical China, with a history of more than 400 years. In this paper, the intra- and interspecific competition intensity in Cryptocarya concinna, one of the constructive species in MEBF in DNR was quantitatively analyzed by Hegyi single-tree competition index model. The results showed that the intraspecific competition intensity in C. concinna decreased gradually with increasing tree diameter. For C. concinna, its intraspecific competition was weaker than its interspecific competition with Aporosa yunnanensis. The competition intensity of interspecific competition with C. concinna followed the order of A. yunnanensis > Schima superba > Gironniera subaequalis > Acmena acuminatissima > Castanopsis chinensis > Syzygium rehderianum > Pygeum topengii > Blastus cochinchinensis > Sarcosperma laurinum > Pterospermum lanceaefolium > Cryptocarya chinensis. The relationship of the DBH of objective tree and the competition intensity between competitive tree and objective tree in the whole forest and C. concinna population nearly conformed to power function, while that between other competitive tree and the objective C. concinna tree conformed to logarithm function. There was a significantly negative correlation between the competition intensity and the DBH of objective tree.
Dacia M. Meneguzzo; Greg C. Liknes; Mark D. Nelson
2013-01-01
Discrete trees and small groups of trees in nonforest settings are considered an essential resource around the world and are collectively referred to as trees outside forests (ToF). ToF provide important functions across the landscape, such as protecting soil and water resources, providing wildlife habitat, and improving farmstead energy efficiency and aesthetics....
Kevin M. Potter; Jeanne L. Paschke; Mark O. Zweifler
2018-01-01
Insects and diseases cause changes in forest structure and function, species succession, and biodiversity, which may be considered negative or positive depending on management objectives (Edmonds and others 2011). An important task for forest managers, pathologists, and entomologists is recognizing and distinguishing between natural and excessive mortality, a task
ERIC Educational Resources Information Center
de la Vega, Ariadna; de la Osa, Nuria; Ezpeleta, Lourdes; Granero, Roser; Domenech, Josep Maria
2011-01-01
Objective: Psychological maltreatment (PM) is the most prevalent form of child abuse, and is the core component of most of what is considered as child maltreatment. The aim of this work was to explore differential adverse outcomes of the different types of PM in the mental health and functioning of children living in homes in which they are…
Lumped Nonlinear System Analysis with Volterra Series.
1980-04-01
f h2 (t-=,t-r )x(r)x(t2)dl d 2 (4- 1 )O0 0 Consider the input signal comprising two unit sinusoidal signals at fre- quencies wa and wb. The input x... 1 - 2 . Nonlinear System Analysis Methods. .............. 2 1 -3. Objectives of the Investigation ....... ............... 6 1 -4. Organization of...the Report ..... ... ................. 9 CHAPTER 2 - VOLTERRA FUNCTIONAL SERIES ...... ............... 12 2 - 1 . Introduction
A new user-assisted segmentation and tracking technique for an object-based video editing system
NASA Astrophysics Data System (ADS)
Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark
2004-03-01
This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.
Terrestrial cross-calibrated assimilation of various datasources
NASA Astrophysics Data System (ADS)
Groß, André; Müller, Richard; Schömer, Elmar; Trentmann, Jörg
2014-05-01
We introduce a novel software tool, ANACLIM, for the efficient assimilation of multiple two-dimensional data sets using a variational approach. We consider a single objective function in two spatial coordinates with higher derivatives. This function measures the deviation of the input data from the target data set. By using the Euler-Lagrange formalism the minimization of this objective function can be transformed into a sparse system of linear equations, which can be efficiently solved by a conjugate gradient solver on a desktop workstation. The objective function allows for a series of physically-motivated constraints. The user can control the relative global weights, as well as the individual weight of each constraint on a per-grid-point level. The different constraints are realized as separate terms of the objective function: One similarity term for each input data set and two additional smoothness terms, penalizing high gradient and curvature values. ANACLIM is designed to combine similarity and smoothness operators easily and to choose different solvers. We performed a series of benchmarks to calibrate and verify our solution. We use, for example, terrestrial stations of BSRN and GEBA for the solar incoming flux and AERONET stations for aerosol optical depth. First results show that the combination of these data sources gain a significant benefit against the input datasets with our approach. ANACLIM also includes a region growing algorithm for the assimilation of ground based data. The region growing algorithm computes the maximum area around a station that represents the station data. The regions are grown under several constraints like the homogeneity of the area. The resulting dataset is then used within the assimilation process. Verification is performed by cross-validation. The method and validation results will be presented and discussed.
Neural networks: further insights into error function, generalized weights and others
2016-01-01
The article is a continuum of a previous one providing further insights into the structure of neural network (NN). Key concepts of NN including activation function, error function, learning rate and generalized weights are introduced. NN topology can be visualized with generic plot() function by passing a “nn” class object. Generalized weights assist interpretation of NN model with respect to the independent effect of individual input variables. A large variance of generalized weights for a covariate indicates non-linearity of its independent effect. If generalized weights of a covariate are approximately zero, the covariate is considered to have no effect on outcome. Finally, prediction of new observations can be performed using compute() function. Make sure that the feature variables passed to the compute() function are in the same order to that in the training NN. PMID:27668220
[A new information technology for system diagnosis of functional activity of human organs].
Avshalumov, A Sh; Sudakov, K V; Filaretov, G F
2006-01-01
The goal of this work was to consider a new diagnostic technology based on analysis of objective information parameters of functional activity and interaction of normal and pathologically changed human organs. The technology is based on the use of very low power millimeter (EHF) radiation emitted by human body and other biological objects in the process of vital activity. The importance of consideration of the information aspect of vital activity from the standpoint of the theory of functional systems suggested by P. K. Anokhin is emphasized. The suggested information technology is theoretically substantiated. The capabilities of the suggested technology for diagnosis, as well as the difficulties of its practical implementation caused by very low power of electromagnetic fields generated by human body, are discussed. It is noted that only use of modern radiophysical equipment together with new software based on specially developed algorithms made it possible to construct a medical EHF diagnostic system for effective implementation of the suggested technology. The system structure, functions of its components, the examination procedure, and the form of representation of diagnostic information are described together with the specific features of applied software based on the principle of maximal objectivity of analysis and interpretation of the results of diagnosis on the basis of artificial intelligence algorithms. The diagnostic capabilities of the system are illustrated by several examples.
Tan, Eric J; Thomas, Neil; Rossell, Susan L
2014-04-01
Speech disturbances in schizophrenia impact on the individual's communicative ability. Although they are considered a core feature of schizophrenia, comparatively little work has been done to examine their impact on the life experiences of patients. This study aimed to examine the relationship between schizophrenia speech disturbances, including those traditionally known as formal thought disorder (TD), and quality of life (QoL). It assessed effects on functioning (objective QoL) and satisfaction (subjective QoL) concurrently, while controlling for the influence of neurocognition and depression. Fifty-four patients with schizophrenia/schizoaffective disorder were administered the MATRICS Consensus Cognitive Battery (MCCB), the PANSS, MADRS (with separate ratings for negative TD [verbal underproductivity] and positive TD [verbal disorganisation and pressured speech]) and Lehman's QOLI assessing both objective and subjective QoL. Ratings of positive and negative TD, depression, and general neurocognition were entered into hierarchical regressions to explore their relationship with both life functioning and satisfaction. Verbal underproductivity was a significant predictor of objective QoL, while pressured speech had a trend association with subjective QoL. This suggests a differential relationship between speech disturbances and QoL. Verbal underproductivity seems to affect daily functioning and relations with others, while pressured speech is predictive of satisfaction with life. The impact of verbal underproductivity on QoL suggests it to be an important target for rehabilitation in schizophrenia. Copyright © 2014 Elsevier Inc. All rights reserved.
SU-F-BRD-13: Quantum Annealing Applied to IMRT Beamlet Intensity Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nazareth, D; Spaans, J
Purpose: We report on the first application of quantum annealing (QA) to the process of beamlet intensity optimization for IMRT. QA is a new technology, which employs novel hardware and software techniques to address various discrete optimization problems in many fields. Methods: We apply the D-Wave Inc. proprietary hardware, which natively exploits quantum mechanical effects for improved optimization. The new QA algorithm, running on this hardware, is most similar to simulated annealing, but relies on natural processes to directly minimize the free energy of a system. A simple quantum system is slowly evolved into a classical system, representing the objectivemore » function. To apply QA to IMRT-type optimization, two prostate cases were considered. A reduced number of beamlets were employed, due to the current QA hardware limitation of ∼500 binary variables. The beamlet dose matrices were computed using CERR, and an objective function was defined based on typical clinical constraints, including dose-volume objectives. The objective function was discretized, and the QA method was compared to two standard optimization Methods: simulated annealing and Tabu search, run on a conventional computing cluster. Results: Based on several runs, the average final objective function value achieved by the QA was 16.9 for the first patient, compared with 10.0 for Tabu and 6.7 for the SA. For the second patient, the values were 70.7 for the QA, 120.0 for Tabu, and 22.9 for the SA. The QA algorithm required 27–38% of the time required by the other two methods. Conclusion: In terms of objective function value, the QA performance was similar to Tabu but less effective than the SA. However, its speed was 3–4 times faster than the other two methods. This initial experiment suggests that QA-based heuristics may offer significant speedup over conventional clinical optimization methods, as quantum annealing hardware scales to larger sizes.« less
Liddell, Belinda J; Jobson, Laura
2016-01-01
A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD.
An effective and comprehensive model for optimal rehabilitation of separate sanitary sewer systems.
Diogo, António Freire; Barros, Luís Tiago; Santos, Joana; Temido, Jorge Santos
2018-01-15
In the field of rehabilitation of separate sanitary sewer systems, a large number of technical, environmental, and economic aspects are often relevant in the decision-making process, which may be modelled as a multi-objective optimization problem. Examples are those related with the operation and assessment of networks, optimization of structural, hydraulic, sanitary, and environmental performance, rehabilitation programmes, and execution works. In particular, the cost of investment, operation and maintenance needed to reduce or eliminate Infiltration from the underground water table and Inflows of storm water surface runoff (I/I) using rehabilitation techniques or related methods can be significantly lower than the cost of transporting and treating these flows throughout the lifespan of the systems or period studied. This paper presents a comprehensive I/I cost-benefit approach for rehabilitation that explicitly considers all elements of the systems and shows how the approximation is incorporated as an objective function in a general evolutionary multi-objective optimization model. It takes into account network performance and wastewater treatment costs, average values of several input variables, and rates that can reflect the adoption of different predictable or limiting scenarios. The approach can be used as a practical and fast tool to support decision-making in sewer network rehabilitation in any phase of a project. The fundamental aspects, modelling, implementation details and preliminary results of a two-objective optimization rehabilitation model using a genetic algorithm, with a second objective function related to the structural condition of the network and the service failure risk, are presented. The basic approach is applied to three real world cases studies of sanitary sewerage systems in Coimbra and the results show the simplicity, suitability, effectiveness, and usefulness of the approximation implemented and of the objective function proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghalyan, Najah F; Miller, David J; Ray, Asok
2018-06-12
Estimation of a generating partition is critical for symbolization of measurements from discrete-time dynamical systems, where a sequence of symbols from a (finite-cardinality) alphabet may uniquely specify the underlying time series. Such symbolization is useful for computing measures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the (possibly unknown) dynamical system. It is also useful for time series classification and anomaly detection. The seminal work of Hirata, Judd, and Kilminster (2004) derives a novel objective function, akin to a clustering objective, that measures the discrepancy between a set of reconstruction values and the points from the time series. They cast estimation of a generating partition via the minimization of their objective function. Unfortunately, their proposed algorithm is nonconvergent, with no guarantee of finding even locally optimal solutions with respect to their objective. The difficulty is a heuristic-nearest neighbor symbol assignment step. Alternatively, we develop a novel, locally optimal algorithm for their objective. We apply iterative nearest-neighbor symbol assignments with guaranteed discrepancy descent, by which joint, locally optimal symbolization of the entire time series is achieved. While most previous approaches frame generating partition estimation as a state-space partitioning problem, we recognize that minimizing the Hirata et al. (2004) objective function does not induce an explicit partitioning of the state space, but rather the space consisting of the entire time series (effectively, clustering in a (countably) infinite-dimensional space). Our approach also amounts to a novel type of sliding block lossy source coding. Improvement, with respect to several measures, is demonstrated over popular methods for symbolizing chaotic maps. We also apply our approach to time-series anomaly detection, considering both chaotic maps and failure application in a polycrystalline alloy material.
Vafadar, Amir K.; Côté, Julie N.; Archambault, Philippe S.
2015-01-01
Background. Different therapeutic methods are being used to prevent or decrease long-term impairments of the upper arm in stroke patients. Functional electrical stimulation (FES) is one of these methods, which aims to stimulate the nerves of the weakened muscles so that the resulting muscle contractions resemble those of a functional task. Objectives. The objective of this study was to review the evidence for the effect of FES on (1) shoulder subluxation, (2) pain, and (3) upper arm motor function in stroke patients, when added to conventional therapy. Methods. From the 727 retrieved articles, 10 (9 RCTs, 1 quasi-RCT) were selected for final analysis and were rated based on the PEDro (Physiotherapy Evidence Database) scores and the Sackett's levels of evidence. A meta-analysis was performed for all three considered outcomes. Results. The results of the meta-analyses showed a significant difference in shoulder subluxation in experimental groups compared to control groups, only if FES was applied early after stroke. No effects were found on pain or motor function outcomes. Conclusion. FES can be used to prevent or reduce shoulder subluxation early after stroke. However, it should not be used to reduce pain or improve upper arm motor function after stroke. PMID:25685805
Optimal control of LQG problem with an explicit trade-off between mean and variance
NASA Astrophysics Data System (ADS)
Qian, Fucai; Xie, Guo; Liu, Ding; Xie, Wenfang
2011-12-01
For discrete-time linear-quadratic Gaussian (LQG) control problems, a utility function on the expectation and the variance of the conventional performance index is considered. The utility function is viewed as an overall objective of the system and can perform the optimal trade-off between the mean and the variance of performance index. The nonlinear utility function is first converted into an auxiliary parameters optimisation problem about the expectation and the variance. Then an optimal closed-loop feedback controller for the nonseparable mean-variance minimisation problem is designed by nonlinear mathematical programming. Finally, simulation results are given to verify the algorithm's effectiveness obtained in this article.
Ergül, Özgür
2011-11-01
Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multilevel fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures using a rigorous technique, namely, the hierarchical partitioning strategy. Efficiency and accuracy of the developed implementation are demonstrated on very large problems involving as many as 100 million unknowns.
LASER BIOLOGY AND MEDICINE: Optoacoustic laser monitoring of cooling and freezing of tissues
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Larina, I. V.; Motamedi, M.; Esenaliev, R. O.
2002-11-01
Real-time monitoring of cooling and freezing of tissues, cells, and other biological objects with a high spatial and time resolution, which is necessary for selective destruction of cancer and benign tumours during cryotherapy, as well as for preventing any damage to the structure and functioning of biological objects in cryobiology, is considered. The optoacoustic method, based on the measurement and analysis of acoustic waves induced by short laser pulses, is proposed for monitoring the cooling and freezing of the tissue. The effect of cooling and freezing on the amplitude and time profile of acoustic signals generated in real tissues and in a model object is studied. The experimental results indicate that the optoacoustic laser technique can be used for real-time monitoring of cooling and freezing of biological objects with a submillimeter spatial resolution and a high contrast.
Horsetail matching: a flexible approach to optimization under uncertainty
NASA Astrophysics Data System (ADS)
Cook, L. W.; Jarrett, J. P.
2018-04-01
It is important to design engineering systems to be robust with respect to uncertainties in the design process. Often, this is done by considering statistical moments, but over-reliance on statistical moments when formulating a robust optimization can produce designs that are stochastically dominated by other feasible designs. This article instead proposes a formulation for optimization under uncertainty that minimizes the difference between a design's cumulative distribution function and a target. A standard target is proposed that produces stochastically non-dominated designs, but the formulation also offers enough flexibility to recover existing approaches for robust optimization. A numerical implementation is developed that employs kernels to give a differentiable objective function. The method is applied to algebraic test problems and a robust transonic airfoil design problem where it is compared to multi-objective, weighted-sum and density matching approaches to robust optimization; several advantages over these existing methods are demonstrated.
Optimal design and installation of ultra high bypass ratio turbofan nacelle
NASA Astrophysics Data System (ADS)
Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey
2016-10-01
The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.
X ray microscope assembly and alignment support and advanced x ray microscope design and analysis
NASA Technical Reports Server (NTRS)
Shealy, David L.
1991-01-01
Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.
Long-term functional outcome after unilateral cordectomy.
Keilmann, Annerose; Napiontek, Ulrike; Engel, Christiane; Nakarat, Todsaporn; Schneider, Astrid; Mann, Wolf
2011-01-01
Our aim was to longitudinally analyze the vocal outcome after endoscopic CO(2) laser resection of early glottic carcinoma. Sixteen patients treated with laser surgery for T1 or T2 tumors of the vocal cords received voice therapy and were examined 1, 2, 3, 4.5, 6 and 12 months postoperatively. Besides videolaryngostroboscopy, each examination included history, phonetogram of the speaking and the singing voice, language-specific hoarseness diagram and a questionnaire (Voice Handicap Index 12 in German). Objective parameters demonstrated a broad variability with a slight tendency of improvement over time. For the maximal phonation time a nearly constant improvement was seen. After an initial improvement deterioration for subjective assessment in the Voice Handicap Index was noted in most patients 3-6 months postoperatively. The functional outcome after cordectomy is variable. MESSAGE OF THE PAPER: Discrepancies between objective findings and patient satisfaction over time have to be considered after cordectomy. Copyright © 2010 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Golias, Mihalis M.
2011-01-01
Berth scheduling is a critical function at marine container terminals and determining the best berth schedule depends on several factors including the type and function of the port, size of the port, location, nearby competition, and type of contractual agreement between the terminal and the carriers. In this paper we formulate the berth scheduling problem as a bi-objective mixed-integer problem with the objective to maximize customer satisfaction and reliability of the berth schedule under the assumption that vessel handling times are stochastic parameters following a discrete and known probability distribution. A combination of an exact algorithm, a Genetic Algorithms based heuristic and a simulation post-Pareto analysis is proposed as the solution approach to the resulting problem. Based on a number of experiments it is concluded that the proposed berth scheduling policy outperforms the berth scheduling policy where reliability is not considered.
Plant cysteine proteases that evoke itch activate protease-activated receptors
Reddy, V.B.; Lerner, E.A.
2013-01-01
Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769
Improved multi-objective ant colony optimization algorithm and its application in complex reasoning
NASA Astrophysics Data System (ADS)
Wang, Xinqing; Zhao, Yang; Wang, Dong; Zhu, Huijie; Zhang, Qing
2013-09-01
The problem of fault reasoning has aroused great concern in scientific and engineering fields. However, fault investigation and reasoning of complex system is not a simple reasoning decision-making problem. It has become a typical multi-constraint and multi-objective reticulate optimization decision-making problem under many influencing factors and constraints. So far, little research has been carried out in this field. This paper transforms the fault reasoning problem of complex system into a paths-searching problem starting from known symptoms to fault causes. Three optimization objectives are considered simultaneously: maximum probability of average fault, maximum average importance, and minimum average complexity of test. Under the constraints of both known symptoms and the causal relationship among different components, a multi-objective optimization mathematical model is set up, taking minimizing cost of fault reasoning as the target function. Since the problem is non-deterministic polynomial-hard(NP-hard), a modified multi-objective ant colony algorithm is proposed, in which a reachability matrix is set up to constrain the feasible search nodes of the ants and a new pseudo-random-proportional rule and a pheromone adjustment mechinism are constructed to balance conflicts between the optimization objectives. At last, a Pareto optimal set is acquired. Evaluation functions based on validity and tendency of reasoning paths are defined to optimize noninferior set, through which the final fault causes can be identified according to decision-making demands, thus realize fault reasoning of the multi-constraint and multi-objective complex system. Reasoning results demonstrate that the improved multi-objective ant colony optimization(IMACO) can realize reasoning and locating fault positions precisely by solving the multi-objective fault diagnosis model, which provides a new method to solve the problem of multi-constraint and multi-objective fault diagnosis and reasoning of complex system.
Ji-Wook Jeong; Seung-Hoon Chae; Eun Young Chae; Hak Hee Kim; Young Wook Choi; Sooyeul Lee
2016-08-01
A computer-aided detection (CADe) algorithm for clustered microcalcifications (MCs) in reconstructed digital breast tomosynthesis (DBT) images is suggested. The MC-like objects were enhanced by a Hessian-based 3D calcification response function, and a signal-to-noise ratio (SNR) enhanced image was also generated to screen the MC clustering seed objects. A connected component segmentation method was used to detect the cluster seed objects, which were considered as potential clustering centers of MCs. Bounding cubes for the accepted clustering seed candidate were generated and the overlapping cubes were combined and examined. After the MC clustering and false-positive (FP) reduction step, the average number of FPs was estimated to be 0.87 per DBT volume with a sensitivity of 90.5%.
Optical Associative Processors For Visual Perception"
NASA Astrophysics Data System (ADS)
Casasent, David; Telfer, Brian
1988-05-01
We consider various associative processor modifications required to allow these systems to be used for visual perception, scene analysis, and object recognition. For these applications, decisions on the class of the objects present in the input image are required and thus heteroassociative memories are necessary (rather than the autoassociative memories that have been given most attention). We analyze the performance of both associative processors and note that there is considerable difference between heteroassociative and autoassociative memories. We describe associative processors suitable for realizing functions such as: distortion invariance (using linear discriminant function memory synthesis techniques), noise and image processing performance (using autoassociative memories in cascade with with a heteroassociative processor and with a finite number of autoassociative memory iterations employed), shift invariance (achieved through the use of associative processors operating on feature space data), and the analysis of multiple objects in high noise (which is achieved using associative processing of the output from symbolic correlators). We detail and provide initial demonstrations of the use of associative processors operating on iconic, feature space and symbolic data, as well as adaptive associative processors.
Ursache, Alexandra; Noble, Kimberly G; Blair, Clancy
2015-01-01
Several studies have investigated associations between socioeconomic status (SES) and indicators of children's physiological and cognitive self-regulation. Although objective measures of family SES may be good proxies for families' experiences of disadvantage, less is known about subjective aspects of families' experiences. We hypothesize that subjective social status (SSS) and perceived stress may be important independent predictors of children's stress physiology and executive functioning (EF). Eighty-two children from diverse SES backgrounds were administered EF measures and provided saliva samples for cortisol assay. Caregivers reported on objective SES, SSS, and perceived stress. Results suggest that SES and SSS are both independently and positively related to EF. In models predicting stress physiology, higher perceived stress was associated with lower baseline cortisol. Moreover, SES and age interacted to predict cortisol levels such that among younger children, lower SES was associated with higher cortisol, whereas among older children, lower SES was associated with lower cortisol. Results highlight the importance of considering both objective and subjective indicators of families' SES and stressful experiences in relation to multiple aspects of children's self-regulation.
Function of the Left and Right Ventricles and the Interactions Between Them.
Penny, Daniel J; Redington, Andrew N
2016-08-01
There has been a recent increase in our understanding of mechanisms whereby the two sides of the heart interact and modulate each other that may be particularly relevant to patients in the ICU. For this review, our objectives are to examine the function of the left ventricle, consider some of the ways in which the function of the right ventricle differs from that of the left, and examine the effects of the left ventricle on the function of the right and vice versa. MEDLINE and PubMed. There are fundamental differences between the function of the left and right ventricles, which relate to a significant extent to differences in their respective arterial loads. Although traditionally it has been usual to consider the function of the left and right ventricle in isolation, it is now recognized that this approach is flawed and as a result there is an increasing appreciation of the continual cross talk between the two sides of the heart in both the normal and diseased states. A more rational approach to the use of standard therapies frequently used in the cardiac ICU will come from a better understanding of these important fundamental concepts, and novel therapeutic concepts are already emerging from new data regarding biventricular interactions.
The influence of grasping habits and object orientation on motor planning in children and adults.
Jovanovic, Bianca; Schwarzer, Gudrun
2017-12-01
We investigated the influence of habitual grasp strategies and object orientation on motor planning in 3-year-olds and 4- to 5-year-old children and adults. Participants were required to rotate different vertically oriented objects around 180°. Usually, adults perform this task by grasping objects with an awkward grip (thumb and index finger pointing downward) at the beginning of the movement, in order to finish it with a comfortable hand position. This pattern corresponds to the well-known end-state comfort effect (ESC) in grasp planning. The presented objects were associated with different habitual grasp orientations that either corresponded with the grasp direction required to reach end-state comfort (downward) or implied a contrary grasp orientation (upward). Additionally, they were presented either in their usual, canonical orientation (e.g., shovel with the blade oriented downward versus cup with its opening oriented upward) or upside down. As dependent variable we analyzed the number of grips conforming to the end-state comfort principle (ESC score) realized in each object type and orientation condition. The number of grips conforming to ESC strongly increased with age. In addition, the extent to which end-state comfort was considered was influenced by the actual orientation of the objects' functional parts. Thus, in all age-groups the ESC score was highest when the functional parts of the objects were oriented downward (shovel presented canonically with blade pointing downward, cup presented upside down) and corresponded to the hand orientation needed to realize ESC. © 2017 Wiley Periodicals, Inc.
Effects of dietary selenium and moisture on the physical activity and thyroid axis of cats
S. E. Hooper; R. Backus; S. Amelon
2018-01-01
Consumption of canned cat food is considered a risk factor for the development of feline hyperthyroidism. Because selenium and water are substantially higher in canned diets compared to dry diets, objectives of this study were to determine whether increased dietary selenium or water alters the function of the hypothalamicâpituitaryâ thyroid axis and leads to an...
End of Century State of Science
1998-09-12
the first cosmological objects. There have been several calculations of the molecular abundance as functions of the red shift with some differences...Compact Muon Solenoid) experiment, with the prospects for Higgs boson searches, for electroweak scale Supersymmetry and CP violation studies in the B...1.2.3] in a very down to earth way, and then consider the consequences for and relationships to biology, physics and cosmology in a somewhat less down to
Hand Sensorimotor Function in Older Children With Neonatal Brachial Plexus Palsy.
Brown, Susan H; Wernimont, Cory W; Phillips, Lauren; Kern, Kathy L; Nelson, Virginia S; Yang, Lynda J-S
2016-03-01
Routine sensory assessments in neonatal brachial plexus palsy are infrequently performed because it is generally assumed that sensory recovery exceeds motor recovery. However, studies examining sensory function in neonatal brachial plexus palsy have produced equivocal findings. The purpose of this study was to examine hand sensorimotor function in older children with neonatal brachial plexus palsy using standard clinical and research-based measures of tactile sensibility. Seventeen children with neonatal brachial plexus palsy (mean age: 11.6 years) and 19 age-matched controls participated in the study. Functional assessments included grip force, monofilament testing, and hand dexterity (Nine-Hole Peg, Jebsen-Taylor Hand Function). Tactile spatial perception involving the discrimination of pin patterns and movement-enhanced object recognition (stereognosis) were also assessed. In the neonatal brachial plexus palsy group, significant deficits in the affected hand motor function were observed compared with the unaffected hand. Median monofilament scores were considered normal for both hands. In contrast, tactile spatial perception was impaired in the neonatal brachial plexus palsy group. This impairment was seen as deficits in both pin pattern and object recognition accuracy as well as the amount of time required to identify patterns and objects. Tactile pattern discrimination time significantly correlated with performance on both functional assessment tests (P < 0.01). This study provides evidence that tactile perception deficits may accompany motor deficits in neonatal brachial plexus palsy even when measures of tactile registration (i.e., monofilament testing) are normal. These results may reflect impaired processing of somatosensory feedback associated with reductions in goal-directed upper limb use and illustrate the importance of including a broader range of sensory assessments in neonatal brachial plexus palsy. Copyright © 2016 Elsevier Inc. All rights reserved.
Gamifying Video Object Segmentation.
Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela
2017-10-01
Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.
Reid, Ryan; Ezekowitz, Justin A.; Brown, Paul M.; McAlister, Finlay A.; Rowe, Brian H.; Braam, Branko
2015-01-01
Background Worsening and improving renal function during acute heart failure have been associated with adverse outcomes but few studies have considered the admission level of renal function upon which these changes are superimposed. Objectives The objective of this study was to evaluate definitions that incorporate both admission renal function and change in renal function. Methods 696 patients with acute heart failure with calculable eGFR were classified by admission renal function (Reduced [R, eGFR<45 ml/min] or Preserved [P, eGFR≥45 ml/min]) and change over hospital admission (worsening [WRF]: eGFR ≥20% decline; stable [SRF]; and improving [IRF]: eGFR ≥20% increase). The primary outcome was all-cause mortality. The prevalence of Pres and Red renal function was 47.8% and 52.2%. The frequency of R-WRF, R-SRF, and R-IRF was 11.4%, 28.7%, and 12.1%, respectively; the incidence of P-WRF, P-SRF, and P-IRF was 5.7%, 35.3%, and 6.8%, respectively. Survival was shorter for patients with R-WRF compared to R-IRF (median survival times 13.9 months (95%CI 7.7–24.9) and 32.5 months (95%CI 18.8–56.1), respectively), resulting in an acceleration factor of 2.3 (p = 0.016). Thus, an increase compared with a decrease in renal function was associated with greater than two times longer survival among patients with Reduced renal function. PMID:26380982
Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy
Szaflarski, Jerzy P.; Gloss, David; Binder, Jeffrey R.; Gaillard, William D.; Golby, Alexandra J.; Holland, Scott K.; Ojemann, Jeffrey; Spencer, David C.; Swanson, Sara J.; French, Jacqueline A.; Theodore, William H.
2017-01-01
Objective: To assess the diagnostic accuracy and prognostic value of functional MRI (fMRI) in determining lateralization and predicting postsurgical language and memory outcomes. Methods: An 11-member panel evaluated and rated available evidence according to the 2004 American Academy of Neurology process. At least 2 panelists reviewed the full text of 172 articles and selected 37 for data extraction. Case reports, reports with <15 cases, meta-analyses, and editorials were excluded. Results and recommendations: The use of fMRI may be considered an option for lateralizing language functions in place of intracarotid amobarbital procedure (IAP) in patients with medial temporal lobe epilepsy (MTLE; Level C), temporal epilepsy in general (Level C), or extratemporal epilepsy (Level C). For patients with temporal neocortical epilepsy or temporal tumors, the evidence is insufficient (Level U). fMRI may be considered to predict postsurgical language deficits after anterior temporal lobe resection (Level C). The use of fMRI may be considered for lateralizing memory functions in place of IAP in patients with MTLE (Level C) but is of unclear utility in other epilepsy types (Level U). fMRI of verbal memory or language encoding should be considered for predicting verbal memory outcome (Level B). fMRI using nonverbal memory encoding may be considered for predicting visuospatial memory outcomes (Level C). Presurgical fMRI could be an adequate alternative to IAP memory testing for predicting verbal memory outcome (Level C). Clinicians should carefully advise patients of the risks and benefits of fMRI vs IAP during discussions concerning choice of specific modality in each case. PMID:28077494
NASA Astrophysics Data System (ADS)
Magid, S. I.; Arkhipova, E. N.; Kulichikhin, V. V.; Zagretdinov, I. Sh.
2016-12-01
Technogenic and anthropogenic accidence at hazardous industrial objects (HIO) in the Russian Federation has been considered. The accidence level at HIO, including power plants and network enterprises, is determined by anthropogenic reasons, so-called "human factor", in 70% of all cases. The analysis of incidents caused by personnel has shown that errors occur most often during accidental situations, launches, holdups, routine switches, and other effects on equipment controls. It has been demonstrated that skills needed to perform type and routine switches can be learned, to certain limits, on real operating equipment, while combating emergency and accidental situations can be learned only with the help of modern training simulators developed based on information technologies. Problems arising during the following processes have been considered: development of mathematical and software support of modern training equipment associated, in one way or another, with adequate power-generating object modeling in accordance with human operator specifics; modeling and/or simulation of the corresponding control and management systems; organization of the education system (functional supply of the instructor, education and methodological resources (EMR)); organization of the program-technical, scalable and adaptable, platform for modeling of the main and secondary functions of the training simulator. It has been concluded that the systemic approach principle on the necessity and sufficiency in the applied methodology allows to reproduce all technological characteristics of the equipment, its topological completeness, as well as to achieve the acceptable counting rate. The initial "rough" models of processes in the equipment are based on the normative techniques and equation coefficients taken from the normative materials as well. Then, the synthesis of "fine" models has been carried out following the global practice in modeling and training simulator building, i.e., verification of "rough" models based on experimental data available to the developer. Finally, the last stage of modeling is adaptation (validation) of "fine" models to the prototype object using experimental data on the power-generating object and tests of these models with operating and maintaining personnel. These stages determine adequacy of the used mathematical model for a particular training simulator and, thus, its compliance with such modern scientific criteria as objectivity and experimental verifiability.
Data Analytics for Smart Parking Applications.
Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele
2016-09-23
We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.
Data Analytics for Smart Parking Applications
Piovesan, Nicola; Turi, Leo; Toigo, Enrico; Martinez, Borja; Rossi, Michele
2016-01-01
We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset. PMID:27669259
Augmented halal food traceability system: analysis and design using UML
NASA Astrophysics Data System (ADS)
Usman, Y. V.; Fauzi, A. M.; Irawadi, T. T.; Djatna, T.
2018-04-01
Augmented halal food traceability is expanding the range of halal traceability in food supply chain where currently only available for tracing from the source of raw material to the industrial warehouse or inbound logistic. The halal traceability system must be developed in the integrated form that includes inbound and outbound logistics. The objective of this study was to develop a reliable initial model of integrated traceability system of halal food supply chain. The method was based on unified modeling language (UML) such as use case, sequence, and business process diagram. A goal programming model was formulated considering two objective functions which include (1) minimization of risk of halal traceability failures happened potentially during outbound logistics activities and (2) maximization of quality of halal product information. The result indicates the supply of material is the most important point to be considered in minimizing the risk of failure of halal food traceability system whereas no risk observed in manufacturing and distribution.
Agricultural Urbanism in the Context of Landscape Ecological Architecture
NASA Astrophysics Data System (ADS)
Maltseva, I. N.; Kaganovich, N. N.; Mindiyrova, T. N.
2017-11-01
The article analyzes some of the fundamental aspects of cities sustainable development connected in many respects with the concept of ecological architecture. One of the main concepts of sustainability is considered in detail: the city as an eco-sustainable and balanced system, architectural objects as a full-fledged part of this system, which, most likely, will be determined by one of the directions of this development - the development of landscape architecture as an tool for integration of nature into the urban environment. At the same time, the variety of its functional forms and architectural methods in the system of organization of internal and external space is outlined as well as its interrelation with energy-saving architecture defining them as the two most important components of eco-sustainable development. The development forms of landscape architecture are considered in the review of analogs, as an example (agricultural urbanism object) a thesis on the topic “Vertical Farm Agroindustrial Complex” is presented.
Dikin-type algorithms for dextrous grasping force optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buss, M.; Faybusovich, L.; Moore, J.B.
1998-08-01
One of the central issues in dextrous robotic hand grasping is to balance external forces acting on the object and at the same time achieve grasp stability and minimum grasping effort. A companion paper shows that the nonlinear friction-force limit constraints on grasping forces are equivalent to the positive definiteness of a certain matrix subject to linear constraints. Further, compensation of the external object force is also a linear constraint on this matrix. Consequently, the task of grasping force optimization can be formulated as a problem with semidefinite constraints. In this paper, two versions of strictly convex cost functions, onemore » of them self-concordant, are considered. These are twice-continuously differentiable functions that tend to infinity at the boundary of possible definiteness. For the general class of such cost functions, Dikin-type algorithms are presented. It is shown that the proposed algorithms guarantee convergence to the unique solution of the semidefinite programming problem associated with dextrous grasping force optimization. Numerical examples demonstrate the simplicity of implementation, the good numerical properties, and the optimality of the approach.« less
On Using Intensity Interferometry for Feature Identification and Imaging of Remote Objects
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Strekalov, Dmitry V.; Yu, Nan
2013-01-01
We derive an approximation to the intensity covariance function of two scanning pinhole detectors, facing a distant source (e.g., a star) being occluded partially by an absorptive object (e.g., a planet). We focus on using this technique to identify or image an object that is in the line-of-sight between a well-characterized source and the detectors. We derive the observed perturbation to the intensity covariance map due to the object, showing that under some reasonable approximations it is proportional to the real part of the Fourier transform of the source's photon-flux density times the Fourier transform of the object's intensity absorption. We highlight the key parameters impacting its visibility and discuss the requirements for estimating object-related parameters, e.g., its size, velocity or shape. We consider an application of this result to determining the orbit inclination of an exoplanet orbiting a distant star. Finally, motivated by the intrinsically weak nature of the signature, we study its signal-to-noise ratio and determine the impact of system parameters.
El-Kadi, A. I.; Torikai, J.D.
2001-01-01
The objective of this paper is to identify water-flow patterns in part of an active landslide, through the use of numerical simulations and data obtained during a field study. The approaches adopted include measuring rainfall events and pore-pressure responses in both saturated and unsaturated soils at the site. To account for soil variability, the Richards equation is solved within deterministic and stochastic frameworks. The deterministic simulations considered average water-retention data, adjusted retention data to account for stones or cobbles, retention functions for a heterogeneous pore structure, and continuous retention functions for preferential flow. The stochastic simulations applied the Monte Carlo approach which considers statistical distribution and autocorrelation of the saturated conductivity and its cross correlation with the retention function. Although none of the models is capable of accurately predicting field measurements, appreciable improvement in accuracy was attained using stochastic, preferential flow, and heterogeneous pore-structure models. For the current study, continuum-flow models provide reasonable accuracy for practical purposes, although they are expected to be less accurate than multi-domain preferential flow models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gattis, J.L.; Watts, A.
In recent years, land development professionals from various disciplines have advocated narrowing city streets as a means to slow speeds and improve the urban environment. This paper reports the findings of a study of relationships among urban street function (i.e., arterial versus local traffic), width, and resulting speed. Crash data for the roadways studied also were considered. The objective was to determine if the wider streets did in fact have more objectionable traits (e.g., higher speeds or crash rates) than did the narrower streets, taking street function into account. Six two-lane streets in a small city were considered; the predominantmore » focus of the study was an old neighborhood with streets in a grid layout. The findings suggest that street width may play a small role in vehicle speed, but other factors such as trip function may be more significant determinants of the average and 85th percentile through vehicle speeds. From this study, one also can infer the need to segregate traits of through vehicles from local vehicles when collecting speed data for the purpose of contrasting the behaviors on various streets.« less
Heo, Eun Young; Hwang, Hee; Kim, Eun Hye; Cho, Eun Young; Lee, Kee Hyuck; Kim, Tae Hun; Kim, Ki Dong; Baek, Rong Min
2012-01-01
Objectives This study aims to investigate the suitability of electronic health record (EHR) systems in Korea for global certification and to propose functions for future global systems by comparing and analyzing the certification criteria for Certification Commission for Health Information Technology (CCHIT) Certified Ambulatory EHR with BESTCare, which is the EHR system at Seoul National University Bundang hospital. Methods Domain expert groups were formed to analyze the inclusion of BESTCare functions and the types of differences for each of the CCHIT Certified 2011 Ambulatory EHR Certification Criteria. The types of differences were divided into differences in functions (F), differences in business processes (B), and differences in government policies (P). Results Generally, the criteria that showed differences in functions pertained to the connection between the diagnosis/problem list and order, the alert and warning functions for medication-diagnosis interactions, and the reminder/instruction/notification messages related to the patient's immunization status; these absent functions were enhanced clinical decision support system (CDSS) functions related to patient safety and healthcare quality. Differences in government policies were found in the pharmacy's electronic prescription functions, while differences in business processes were found in the functions constrained by the local workflow or internal policy, which require some customization. Conclusions Functions that differed between the CCHIT certification criteria and the BESTCare system in this study should be considered when developing a global EHR system. Such a system will need to be easily customizable to adapt to various government policies and local business processes. These functions should be considered when developing a global EHR system certified by CCHIT in the future. PMID:22509474
Hamiltonian dynamics of extended objects
NASA Astrophysics Data System (ADS)
Capovilla, R.; Guven, J.; Rojas, E.
2004-12-01
We consider relativistic extended objects described by a reparametrization-invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behaviour under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory is described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations are shown to be consistent with the Euler Lagrange equations.
Function follows form: combining nanoimprint and inkjet printing
NASA Astrophysics Data System (ADS)
Muehlberger, M.; Haslinger, M. J.; Kurzmann, J.; Ikeda, M.; Fuchsbauer, A.; Faury, T.; Koepplmayr, T.; Ausserhuber, H.; Kastner, J.; Woegerer, C.; Fechtig, D.
2017-06-01
We are investigating the possibilities and the technical requirements to do nanopatterning on arbitrary curved surfaces. This is done considering the opportunities and possibilities of additive manufacturing. One of the key elements is the necessity to deposit material in well-defined areas of various complex 3D objects. In order to achieve this we are developing a robot-based inkjet printing. We report on our progress with this respect and also on our efforts to perform nanoimprinting on curved, possibly 3D-printed objects using materials that can be deposited by inkjet printing. In the framework of this article, we provide an overview over our current status, the challenges and an outlook.
Interidentity amnesia for neutral, episodic information in dissociative identity disorder.
Huntjens, Rafaële J C; Postma, Albert; Peters, Madelon L; Woertman, Liesbeth; van der Hart, Onno
2003-05-01
Interidentity amnesia is considered a hallmark of dissociative identity disorder (DID) in clinical practice. In this study, objective methods of testing episodic memory transfer between identities were used. Tests of both recall (interference paradigm) and recognition were used. A sample of 31 DID patients was included. Additionally, 50 control subjects participated, half functioning as normal controls and the other half simulating interidentity amnesia. Twenty-one patients subjectively reported complete one-way amnesia for the learning episode. However, objectively, neither recall nor recognition scores of patients were different from those of normal controls. It is suggested that clinical models of amnesia in DID may be specified to exclude episodic memory impairments for emotionally neutral material.
[Images of animals in old cultures].
Defoer, H L M
2006-01-01
The author is an art historian, who travelled widely and who is fascinated by the animal portrayel by people of old cultures, sometimes stylized, other times monumentally or naturalistic. Often the figures demonstrate the position the animals held in society. Most of them fulfil functions useful to man: for hunting them, for supply of food and clothing, for riding, or for draught and packing. Sometimes they may be deified and considered as embodiment of natural forces. They are given then a sacral significance and become objects of devotion. The pictures presented here, stem from the old cultures of the Eurasian continent, dating from ten centuries B.C. until the Middle Ages. The objects are explained in their cultural context and meaning.
An Intuitionistic Multiplicative ORESTE Method for Patients’ Prioritization of Hospitalization
Zhang, Cheng; Wu, Xingli; Wu, Di; Luo, Li; Herrera-Viedma, Enrique
2018-01-01
The tension brought about by sickbeds is a common and intractable issue in public hospitals in China due to the large population. Assigning the order of hospitalization of patients is difficult because of complex patient information such as disease type, emergency degree, and severity. It is critical to rank the patients taking full account of various factors. However, most of the evaluation criteria for hospitalization are qualitative, and the classical ranking method cannot derive the detailed relations between patients based on these criteria. Motivated by this, a comprehensive multiple criteria decision making method named the intuitionistic multiplicative ORESTE (organísation, rangement et Synthèse dedonnées relarionnelles, in French) was proposed to handle the problem. The subjective and objective weights of criteria were considered in the proposed method. To do so, first, considering the vagueness of human perceptions towards the alternatives, an intuitionistic multiplicative preference relation model is applied to represent the experts’ preferences over the pairwise alternatives with respect to the predetermined criteria. Then, a correlation coefficient-based weight determining method is developed to derive the objective weights of criteria. This method can overcome the biased results caused by highly-related criteria. Afterwards, we improved the general ranking method, ORESTE, by introducing a new score function which considers both the subjective and objective weights of criteria. An intuitionistic multiplicative ORESTE method was then developed and further highlighted by a case study concerning the patients’ prioritization. PMID:29673212
A Regionalization Approach to select the final watershed parameter set among the Pareto solutions
NASA Astrophysics Data System (ADS)
Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.
2017-12-01
The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.
The Hampstead Clinic at work. Discussions in the Diagnostic Profile Research Group.
Koch, Ehud
2012-01-01
Minutes of the Hampstead Clinic's Diagnostic Profile Research Group during a fifteen-month period (1964-1965) are reviewed and discussed. A wide range of topics were considered and discussed, with a special focus on the affective life, object relations, and ego function of atypical children in comparison to the early ego functions and differentiation of normal and neurotic children. These lively clinical and theoretical discussions and their implications for therapeutic work with a wide range of children, demonstrate the multifaceted leadership and contributions of Anna Freud as teacher, clinician, and thinker, and of the Hampstead Clinic as a major center for psychoanalytic studies.
Scheduling Jobs with Variable Job Processing Times on Unrelated Parallel Machines
Zhang, Guang-Qian; Wang, Jian-Jun; Liu, Ya-Jing
2014-01-01
m unrelated parallel machines scheduling problems with variable job processing times are considered, where the processing time of a job is a function of its position in a sequence, its starting time, and its resource allocation. The objective is to determine the optimal resource allocation and the optimal schedule to minimize a total cost function that dependents on the total completion (waiting) time, the total machine load, the total absolute differences in completion (waiting) times on all machines, and total resource cost. If the number of machines is a given constant number, we propose a polynomial time algorithm to solve the problem. PMID:24982933
Optimization model of vaccination strategy for dengue transmission
NASA Astrophysics Data System (ADS)
Widayani, H.; Kallista, M.; Nuraini, N.; Sari, M. Y.
2014-02-01
Dengue fever is emerging tropical and subtropical disease caused by dengue virus infection. The vaccination should be done as a prevention of epidemic in population. The host-vector model are modified with consider a vaccination factor to prevent the occurrence of epidemic dengue in a population. An optimal vaccination strategy using non-linear objective function was proposed. The genetic algorithm programming techniques are combined with fourth-order Runge-Kutta method to construct the optimal vaccination. In this paper, the appropriate vaccination strategy by using the optimal minimum cost function which can reduce the number of epidemic was analyzed. The numerical simulation for some specific cases of vaccination strategy is shown.
Absolute Scale Quantitative Off-Axis Electron Holography at Atomic Resolution
NASA Astrophysics Data System (ADS)
Winkler, Florian; Barthel, Juri; Tavabi, Amir H.; Borghardt, Sven; Kardynal, Beata E.; Dunin-Borkowski, Rafal E.
2018-04-01
An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.
A psychiatric dialogue on the mind-body problem.
Kendler, K S
2001-07-01
Of all the human professions, psychiatry is most centrally concerned with the relationship of mind and brain. In many clinical interactions, psychiatrists need to consider both subjective mental experiences and objective aspects of brain function. This article attempts to summarize, in the form of a dialogue between a philosophically informed attending psychiatrist and three residents, the major philosophical positions on the mind-body problem. The positions reviewed include the following: substance dualism, property dualism, type identity, token identity, functionalism, eliminative materialism, and explanatory dualism. This essay seeks to provide a brief user-friendly introduction, from a psychiatric perspective, to current thinking about the mind-body problem.
Assessing the Agricultural Vulnerability for India under Changing Climate
NASA Astrophysics Data System (ADS)
Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra
2016-04-01
Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.
Reliability based design including future tests and multiagent approaches
NASA Astrophysics Data System (ADS)
Villanueva, Diane
The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method was studied, and the method was compared to other surrogate-based optimization methods that aim to locate the global optimum using two two-dimensional test functions, a six-dimensional test function, and a five-dimensional engineering example.
Independent functions and the geometry of Banach spaces
NASA Astrophysics Data System (ADS)
Astashkin, Sergey V.; Sukochev, Fedor A.
2010-12-01
The main objective of this survey is to present the `state of the art' of those parts of the theory of independent functions which are related to the geometry of function spaces. The `size' of a sum of independent functions is estimated in terms of classical moments and also in terms of general symmetric function norms. The exposition is centred on the Rosenthal inequalities and their various generalizations and sharp conditions under which the latter hold. The crucial tool here is the recently developed construction of the Kruglov operator. The survey also provides a number of applications to the geometry of Banach spaces. In particular, variants of the classical Khintchine-Maurey inequalities, isomorphisms between symmetric spaces on a finite interval and on the semi-axis, and a description of the class of symmetric spaces with any sequence of symmetrically and identically distributed independent random variables spanning a Hilbert subspace are considered. Bibliography: 87 titles.
Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.
Menzies, Fiona M; Fleming, Angeleen; Caricasole, Andrea; Bento, Carla F; Andrews, Stephen P; Ashkenazi, Avraham; Füllgrabe, Jens; Jackson, Anne; Jimenez Sanchez, Maria; Karabiyik, Cansu; Licitra, Floriana; Lopez Ramirez, Ana; Pavel, Mariana; Puri, Claudia; Renna, Maurizio; Ricketts, Thomas; Schlotawa, Lars; Vicinanza, Mariella; Won, Hyeran; Zhu, Ye; Skidmore, John; Rubinsztein, David C
2017-03-08
Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor
NASA Astrophysics Data System (ADS)
PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu
2018-03-01
In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.
Design, construction and operation features of high-rise structures
NASA Astrophysics Data System (ADS)
Mylnik, Alexey; Mylnik, Vladimir; Zubeeva, Elena; Mukhamedzhanova, Olga
2018-03-01
The article considers design, construction and operation features of high-rise facilities. The analysis of various situations, that come from improper designing, construction and operation of unique facilities, is carried out. The integrated approach is suggested, when the problems of choosing acceptable constructional solutions related to the functional purpose, architectural solutions, methods of manufacturing and installation, operating conditions for unique buildings and structures are being tackled. A number of main causes for the emergency destruction of objects under construction and operation is considered. A number of measures are proposed on the basis of factor classification in order to efficiently prevent the situations, when various negative options of design loads and emergency impacts occur.
Discrete-time pilot model. [human dynamics and digital simulation
NASA Technical Reports Server (NTRS)
Cavalli, D.
1978-01-01
Pilot behavior is considered as a discrete-time process where the decision making has a sequential nature. This model differs from both the quasilinear model which follows from classical control theory and from the optimal control model which considers the human operator as a Kalman estimator-predictor. An additional factor considered is that the pilot's objective may not be adequately formulated as a quadratic cost functional to be minimized, but rather as a more fuzzy measure of the closeness with which the aircraft follows a reference trajectory. All model parameters, in the digital program simulating the pilot's behavior, were successfully compared in terms of standard-deviation and performance with those of professional pilots in IFR configuration. The first practical application of the model was in the study of its performance degradation when the aircraft model static margin decreases.
Sumiyoshi, Tatsuaki; Shima, Yasuo; Okabayashi, Takehiro; Kozuki, Akihito; Hata, Yasuhiro; Noda, Yoshihiro; Kouno, Michihiko; Miyagawa, Kazuyuki; Tokorodani, Ryotaro; Saisaka, Yuichi; Tokumaru, Teppei; Nakamura, Toshio; Morita, Sojiro
2016-07-01
The objective of this study was to determine the utility of Tc-99m-diethylenetriamine-penta-acetic acid-galactosyl human serum albumin ((99m)Tc-GSA) single-photon emission computed tomography (SPECT)/CT fusion imaging for posthepatectomy remnant liver function assessment in hilar bile duct cancer patients. Thirty hilar bile duct cancer patients who underwent major hepatectomy with extrahepatic bile duct resection were retrospectively analyzed. Indocyanine green plasma clearance rate (KICG) value and estimated KICG by (99m)Tc-GSA scintigraphy (KGSA) and volumetric and functional rates of future remnant liver by (99m)Tc-GSA SPECT/CT fusion imaging were used to evaluate preoperative whole liver function and posthepatectomy remnant liver function, respectively. Remnant (rem) KICG (= KICG × volumetric rate) and remKGSA (= KGSA × functional rate) were used to predict future remnant liver function; major hepatectomy was considered unsafe for values <0.05. The correlation of remKICG and remKGSA with posthepatectomy mortality and morbidity was determined. Although remKICG and remKGSA were not significantly different (median value: 0.071 vs 0.075), functional rates of future remnant liver were significantly higher than volumetric rates (median: 0.54 vs 0.46; P < .001). Hepatectomy was considered unsafe in 17% and 0% of patients using remKICG and remKGSA, respectively. Postoperative liver failure and mortality did not occur in the patients for whom hepatectomy was considered unsafe based on remKICG. remKGSA showed a stronger correlation with postoperative prothrombin time activity than remKICG. (99m)Tc-GSA SPECT/CT fusion imaging enables accurate assessment of future remnant liver function and suitability for hepatectomy in hilar bile duct cancer patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Constantinou, Christos E.
2009-01-01
In this review the diagnostic potential of evaluating female pelvic floor muscle (PFM)) function using magnetic and ultrasound imaging in the context of urodynamic observations is considered in terms of determining the mechanisms of urinary continence. A new approach is used to consider the dynamics of PFM activity by introducing new parameters derived from imaging. Novel image processing techniques are applied to illustrate the static anatomy and dynamics PFM function of stress incontinent women pre and post operatively as compared to asymptomatic subjects. Function was evaluated from the dynamics of organ displacement produced during voluntary and reflex activation. Technical innovations include the use of ultrasound analysis of movement of structures during maneuvers that are associated with external stimuli. Enabling this approach is the development of criteria and fresh and unique parameters that define the kinematics of PFM function. Principal among these parameters, are displacement, velocity, acceleration and the trajectory of pelvic floor landmarks. To accomplish this objective, movement detection, including motion tracking algorithms and segmentation algorithms were developed to derive new parameters of trajectory, displacement, velocity and acceleration, and strain of pelvic structures during different maneuvers. Results highlight the importance of timing the movement and deformation to fast and stressful maneuvers, which are important for understanding the neuromuscular control and function of PFM. Furthermore, observations suggest that timing of responses is a significant factor separating the continent from the incontinent subjects. PMID:19303690
Lang, Catherine E.; Bland, Marghuretta D.; Bailey, Ryan R.; Schaefer, Sydney Y.; Birkenmeier, Rebecca L.
2012-01-01
The purpose of this review is to provide a comprehensive approach for assessing the upper extremity (UE) after stroke. First, common upper extremity impairments and how to assess them are briefly discussed. While multiple UE impairments are typically present after stroke, the severity of one impairment, paresis, is the primary determinant of UE functional loss. Second, UE function is operationally defined and a number of clinical measures are discussed. It is important to consider how impairment and loss of function affect UE activity outside of the clinical environment. Thus, this review also identifies accelerometry as an objective method for assessing UE activity in daily life. Finally, the role that each of these levels of assessment should play in clinical decision making is discussed in order to optimize the provision of stroke rehabilitation services. PMID:22975740
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... Anthropology, Philadelphia, PA, that meet the definitions of sacred objects and/or objects of cultural..., anthropological literature, and expert opinion, one cultural item is considered to be a sacred object (Wolf Helmet... considered to be both sacred objects and objects of cultural patrimony (Ganook Hat, NA6864; Noble Killer Hat...
Feasibility study on a strain based deflection monitoring system for wind turbine blades
NASA Astrophysics Data System (ADS)
Lee, Kyunghyun; Aihara, Aya; Puntsagdash, Ganbayar; Kawaguchi, Takayuki; Sakamoto, Hiraku; Okuma, Masaaki
2017-01-01
The bending stiffness of the wind turbine blades has decreased due to the trend of wind turbine upsizing. Consequently, the risk of blades breakage by hitting the tower has increased. In order to prevent such incidents, this study proposes a deflection monitoring system that can be installed to already operating wind turbine's blades. The monitoring system is composed of an estimation algorithm to detect blade deflection and a wireless sensor network as a hardware equipment. As for the estimation method for blade deflection, a strain-based estimation algorithm and an objective function for optimal sensor arrangement are proposed. Strain-based estimation algorithm is using a linear correlation between strain and deflections, which can be expressed in a form of a transformation matrix. The objective function includes the terms of strain sensitivity and condition number of the transformation matrix between strain and deflection. In order to calculate the objective function, a simplified experimental model of the blade is constructed by interpolating the mode shape of a blade from modal testing. The interpolation method is effective considering a practical use to operating wind turbines' blades since it is not necessary to establish a finite element model of a blade. On the other hand, a sensor network with wireless connection with an open source hardware is developed. It is installed to a 300 W scale wind turbine and vibration of the blade on operation is investigated.
Chen, Xi; Clark, Jennifer JJ
2013-01-01
This survey was to study whether and how dental professional assess dental-related function in older adults with cognitive impairment (OACI). An invitation was sent to 525 special-care dental professionals, followed by a reminder in 2 weeks. Thirteen percent of the targeted participants completed the survey. Among them, 88% completed a hospital dentistry, geriatric dentistry or other post-graduate training program. Nearly 70% of the respondents considered somewhat to very difficult to assess dentally-related function; 45% did not ever or did not regularly assess dental-related function for OACI. Dental-related functional assessments were often based on a subjective, unstructured approach. Only 6% of the respondents routinely used standard instruments to assess the patients' function. These results indicate that an objective functional assessment based on a standardized instrument has not been routinely incorporated into dental care for OACI, raising concerns for quality of care in this vulnerable population. PMID:23451924
Chen, Xi; Clark, Jennifer J J
2013-01-01
This survey was to study whether and how dental professional assess dental-related function in older adults with cognitive impairment (OACI). An invitation was sent to 525 special-care dental professionals, followed by a reminder in 2 weeks. Thirteen percent of the targeted participants completed the survey. Among them, 88% completed a hospital dentistry, geriatric dentistry, or other postgraduate training program. Nearly 70% of the respondents considered somewhat to very difficult to assess dentally related function; 45% did not ever or did not regularly assess dental-related function for OACI. Dental-related functional assessments were often based on a subjective, unstructured approach. Only 6% of the respondents routinely used standard instruments to assess the patients' function. These results indicate that an objective functional assessment based on a standardized instrument has not been routinely incorporated into dental care for OACI, raising concerns for quality of care in this vulnerable population. ©2012 Special Care Dentistry Association and Wiley Periodicals, Inc.
Common foundations of optimal control across the sciences: evidence of a free lunch
NASA Astrophysics Data System (ADS)
Russell, Benjamin; Rabitz, Herschel
2017-03-01
A common goal in the sciences is optimization of an objective function by selecting control variables such that a desired outcome is achieved. This scenario can be expressed in terms of a control landscape of an objective considered as a function of the control variables. At the most basic level, it is known that the vast majority of quantum control landscapes possess no traps, whose presence would hinder reaching the objective. This paper reviews and extends the quantum control landscape assessment, presenting evidence that the same highly favourable landscape features exist in many other domains of science. The implications of this broader evidence are discussed. Specifically, control landscape examples from quantum mechanics, chemistry and evolutionary biology are presented. Despite the obvious differences, commonalities between these areas are highlighted within a unified mathematical framework. This mathematical framework is driven by the wide-ranging experimental evidence on the ease of finding optimal controls (in terms of the required algorithmic search effort beyond the laboratory set-up overhead). The full scope and implications of this observed common control behaviour pose an open question for assessment in further work. This article is part of the themed issue 'Horizons of cybernetical physics'.
NASA Astrophysics Data System (ADS)
Sawall, Mathias; von Harbou, Erik; Moog, Annekathrin; Behrens, Richard; Schröder, Henning; Simoneau, Joël; Steimers, Ellen; Neymeyr, Klaus
2018-04-01
Spectral data preprocessing is an integral and sometimes inevitable part of chemometric analyses. For Nuclear Magnetic Resonance (NMR) spectra a possible first preprocessing step is a phase correction which is applied to the Fourier transformed free induction decay (FID) signal. This preprocessing step can be followed by a separate baseline correction step. Especially if series of high-resolution spectra are considered, then automated and computationally fast preprocessing routines are desirable. A new method is suggested that applies the phase and the baseline corrections simultaneously in an automated form without manual input, which distinguishes this work from other approaches. The underlying multi-objective optimization or Pareto optimization provides improved results compared to consecutively applied correction steps. The optimization process uses an objective function which applies strong penalty constraints and weaker regularization conditions. The new method includes an approach for the detection of zero baseline regions. The baseline correction uses a modified Whittaker smoother. The functionality of the new method is demonstrated for experimental NMR spectra. The results are verified against gravimetric data. The method is compared to alternative preprocessing tools. Additionally, the simultaneous correction method is compared to a consecutive application of the two correction steps.
Classical subjective expected utility.
Cerreia-Vioglio, Simone; Maccheroni, Fabio; Marinacci, Massimo; Montrucchio, Luigi
2013-04-23
We consider decision makers who know that payoff-relevant observations are generated by a process that belongs to a given class M, as postulated in Wald [Wald A (1950) Statistical Decision Functions (Wiley, New York)]. We incorporate this Waldean piece of objective information within an otherwise subjective setting à la Savage [Savage LJ (1954) The Foundations of Statistics (Wiley, New York)] and show that this leads to a two-stage subjective expected utility model that accounts for both state and model uncertainty.
1994-03-01
asked whether the planned structure considered (a) all objectives, (b) all functions, (c) all relevant units of analysis such as the plant , the...literature and provides an integrative model of design for high perfor-ming organizations. The model is based on an analysis of current theories of...important midrange theories underlie much of the work on organizational analysis . 0 Systems Approaches. These approaches emphasize the rational, goal
Progress in the development of integrated mental health care in Scotland
Woods, Kevin; McCollam, Allyson
2002-01-01
Abstract The development of integrated care through the promotion of ‘partnership working’ is a key policy objective of the Scottish Executive, the administration responsible for health services in Scotland. This paper considers the extent to which this goal is being achieved in mental health services, particularly those for people with severe and enduring mental illness. Distinguishing between the horizontal and vertical integration of services, exploratory research was conducted to assess progress towards this objective by examining how far a range of functional activities in Primary Care Trusts (PCTs) and their constituent Local Health Care Co-operatives (LHCCs) were themselves becoming increasingly integrated. All PCTs in Scotland were surveyed by postal questionnaire, and followed up by detailed telephone interviews. Six LHCC areas were selected for detailed case study analysis. A Reference Group was used to discuss and review emerging themes from the fieldwork. The report suggests that faster progress is being made in the horizontal integration of services between health and social care organisations than is the case for vertical integration between primary health care and specialist mental health care services; and that there are significant gaps in the extent to which functional activities within Trusts are changing to support the development of integrated care. A number of models are briefly considered, including the idea of ‘intermediate care’ that might speed the process of integration. PMID:16896397
Whitehead, Brenda R; Bergeman, C S
2016-09-01
Because subjective health reports are a primary source of health information in a number of medical and research-based contexts, much research has been devoted to establishing the extent to which these self-reports of health correspond to health information from more objective sources. One of the key factors considered in this area is trait affect, with most studies emphasizing the impact of negative affect (negative emotions) over positive affect (positive emotions), and focusing on high-arousal affect (e.g., anger, excitement) over moderate- or low-arousal affect (e.g., relaxed, depressed). The present study examines the impact of both Positive and Negative Affect (PA/NA)-measured by items of both high and low arousal-on the correspondence between objective health information and subjective health reports. Another limitation of existing literature in the area is the focus on samples suffering from a particular diagnosis or on specific symptom reports; here, these effects are investigated in a sample of community-dwelling older adults representing a broader spectrum of health. 153 older adults (Mage = 71.2) took surveys assessing Perceived Health and Affect and underwent an objective physical health assessment. Structural equation modeling was used to investigate the extent to which the relationship between Objective Health and Perceived Health was moderated by PA or NA, which would indicate the presence of affective health bias. Results reveal a significant moderation effect for NA, but not for PA; PA appeared to serve a more mediational function, indicating that NA and PA operate on health perceptions in distinct ways. These findings provide evidence that in our high-functioning, community-dwelling sample of older adults, a) affective health bias is present within a general health context, and not only within specific symptom or diagnostic categories; and b) that both PA and NA play important roles in the process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cella, M; Swan, S; Medin, E; Reeder, C; Wykes, T
2014-02-01
People with a diagnosis of schizophrenia have limited metacognitive awareness of their symptoms. This is also evident for cognitive difficulties when neuropsychological assessments and self-reports are compared. Unlike for delusions and hallucinations, little attention has been given to factors that may influence the mismatch between objective and subjectively reported cognitive problems. Symptom severity, and also self-esteem and social functioning, can have an impact on cognitive problem perception and help to explain the gap between objective and subjective cognitive assessments in psychosis. One-hundred participants with a diagnosis of schizophrenia were recruited and assessed with a comprehensive neuropsychological battery, a measure of awareness of cognitive problems and measures of psychotic symptoms, social and behavioural functioning and self-esteem. Regression was used to investigate the influence of symptoms, social functioning and self-esteem, and patients with different levels of cognitive problem awareness were contrasted. Simple correlation analysis replicated the lack of association between objective cognitive measures and metacognitive awareness of cognitive problems. However, the results of the regression analyses highlight that self-esteem and negative symptoms predict metacognitive awareness. When significant predictors were controlled, individuals with better awareness had more impaired working memory but higher IQ. Poor self-esteem and high negative symptoms are negatively associated with metacognitive awareness in people with schizophrenia. Interventions that aim to improve cognition should consider that cognitive problem reporting in people with schizophrenia correlates poorly with objective measures and is biased not only by symptoms but also by self-esteem. Future studies should explore the causal pathways using longitudinal designs.
NASA Astrophysics Data System (ADS)
Cao, Pei; Qi, Shuai; Tang, J.
2018-03-01
The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.
Williams, Perry J.; Kendall, William L.
2017-01-01
Choices in ecological research and management are the result of balancing multiple, often competing, objectives. Multi-objective optimization (MOO) is a formal decision-theoretic framework for solving multiple objective problems. MOO is used extensively in other fields including engineering, economics, and operations research. However, its application for solving ecological problems has been sparse, perhaps due to a lack of widespread understanding. Thus, our objective was to provide an accessible primer on MOO, including a review of methods common in other fields, a review of their application in ecology, and a demonstration to an applied resource management problem.A large class of methods for solving MOO problems can be separated into two strategies: modelling preferences pre-optimization (the a priori strategy), or modelling preferences post-optimization (the a posteriori strategy). The a priori strategy requires describing preferences among objectives without knowledge of how preferences affect the resulting decision. In the a posteriori strategy, the decision maker simultaneously considers a set of solutions (the Pareto optimal set) and makes a choice based on the trade-offs observed in the set. We describe several methods for modelling preferences pre-optimization, including: the bounded objective function method, the lexicographic method, and the weighted-sum method. We discuss modelling preferences post-optimization through examination of the Pareto optimal set. We applied each MOO strategy to the natural resource management problem of selecting a population target for cackling goose (Branta hutchinsii minima) abundance. Cackling geese provide food security to Native Alaskan subsistence hunters in the goose's nesting area, but depredate crops on private agricultural fields in wintering areas. We developed objective functions to represent the competing objectives related to the cackling goose population target and identified an optimal solution first using the a priori strategy, and then by examining trade-offs in the Pareto set using the a posteriori strategy. We used four approaches for selecting a final solution within the a posteriori strategy; the most common optimal solution, the most robust optimal solution, and two solutions based on maximizing a restricted portion of the Pareto set. We discuss MOO with respect to natural resource management, but MOO is sufficiently general to cover any ecological problem that contains multiple competing objectives that can be quantified using objective functions.
Brodaty, Henry; Aerts, Liesbeth; Crawford, John D; Heffernan, Megan; Kochan, Nicole A; Reppermund, Simone; Kang, Kristan; Maston, Kate; Draper, Brian; Trollor, Julian N; Sachdev, Perminder S
2017-05-01
Mild cognitive impairment (MCI) is considered an intermediate stage between normal aging and dementia. It is diagnosed in the presence of subjective cognitive decline and objective cognitive impairment without significant functional impairment, although there are no standard operationalizations for each of these criteria. The objective of this study is to determine which operationalization of the MCI criteria is most accurate at predicting dementia. Six-year longitudinal study, part of the Sydney Memory and Ageing Study. Community-based. 873 community-dwelling dementia-free adults between 70 and 90 years of age. Persons from a non-English speaking background were excluded. Seven different operationalizations for subjective cognitive decline and eight measures of objective cognitive impairment (resulting in 56 different MCI operational algorithms) were applied. The accuracy of each algorithm to predict progression to dementia over 6 years was examined for 618 individuals. Baseline MCI prevalence varied between 0.4% and 30.2% and dementia conversion between 15.9% and 61.9% across different algorithms. The predictive accuracy for progression to dementia was poor. The highest accuracy was achieved based on objective cognitive impairment alone. Inclusion of subjective cognitive decline or mild functional impairment did not improve dementia prediction accuracy. Not MCI, but objective cognitive impairment alone, is the best predictor for progression to dementia in a community sample. Nevertheless, clinical assessment procedures need to be refined to improve the identification of pre-dementia individuals. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Motion visualization and estimation for flapping wing systems
NASA Astrophysics Data System (ADS)
Hsu, Tzu-Sheng Shane; Fitzgerald, Timothy; Nguyen, Vincent Phuc; Patel, Trisha; Balachandran, Balakumar
2017-04-01
Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.
Objective evaluation of insert material for diabetic and athletic footwear.
Brodsky, J W; Kourosh, S; Stills, M; Mooney, V
1988-12-01
Five of the most commonly used materials for shoe inserts (soft Plastazote, medium Pelite, PPT, Spenco, and Sorbothane) were objectively evaluated in the laboratory to characterize their behavior in the following three specific functions that correspond to clinical use: (1) the effect on the materials of repeated compression. (2) the effect of a combination of repetitive shear and compression. (3) the force-distribution (force-attenuation) properties of these materials, both when new and after repeated compression. The last function represents a model for relief of pressure beneath plantar bony prominences, a topic of special concern for the insensitive foot. All materials were effective in reducing transmitted force over the simulated bony prominence with a rank order of effectiveness. Other factors considered were: amount and rate of permanent deformation offset by considerations of enhanced moldability when comparing the neoprene and urethane materials with the polyethylene foams. The ideal insert represents a combination of material to achieve both durability and moldability.
Water Quality Planning in Rivers: Assimilative Capacity and Dilution Flow.
Hashemi Monfared, Seyed Arman; Dehghani Darmian, Mohsen; Snyder, Shane A; Azizyan, Gholamreza; Pirzadeh, Bahareh; Azhdary Moghaddam, Mehdi
2017-11-01
Population growth, urbanization and industrial expansion are consequentially linked to increasing pollution around the world. The sources of pollution are so vast and also include point and nonpoint sources, with intrinsic challenge for control and abatement. This paper focuses on pollutant concentrations and also the distance that the pollution is in contact with the river water as objective functions to determine two main necessary characteristics for water quality management in the river. These two necessary characteristics are named assimilative capacity and dilution flow. The mean area of unacceptable concentration [Formula: see text] and affected distance (X) are considered as two objective functions to determine the dilution flow by a non-dominated sorting genetic algorithm II (NSGA-II) optimization algorithm. The results demonstrate that the variation of river flow discharge in different seasons can modify the assimilation capacity up to 97%. Moreover, when using dilution flow as a water quality management tool, results reveal that the content of [Formula: see text] and X change up to 97% and 93%, respectively.
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
Satomura, Hironori; Adachi, Kohei
2013-07-01
To facilitate the interpretation of canonical correlation analysis (CCA) solutions, procedures have been proposed in which CCA solutions are orthogonally rotated to a simple structure. In this paper, we consider oblique rotation for CCA to provide solutions that are much easier to interpret, though only orthogonal rotation is allowed in the existing formulations of CCA. Our task is thus to reformulate CCA so that its solutions have the freedom of oblique rotation. Such a task can be achieved using Yanai's (Jpn. J. Behaviormetrics 1:46-54, 1974; J. Jpn. Stat. Soc. 11:43-53, 1981) generalized coefficient of determination for the objective function to be maximized in CCA. The resulting solutions are proved to include the existing orthogonal ones as special cases and to be rotated obliquely without affecting the objective function value, where ten Berge's (Psychometrika 48:519-523, 1983) theorems on suborthonormal matrices are used. A real data example demonstrates that the proposed oblique rotation can provide simple, easily interpreted CCA solutions.
NASA Astrophysics Data System (ADS)
Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid
2011-10-01
In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.
NASA Astrophysics Data System (ADS)
Marston, Philip L.; Zhang, Likun
2016-11-01
When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.
Dynamic cellular manufacturing system considering machine failure and workload balance
NASA Astrophysics Data System (ADS)
Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad
2018-02-01
Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.
Hydrodynamical simulations of strong tides in astrophysical systems
NASA Astrophysics Data System (ADS)
Guillochon, James
2013-07-01
At the simplest level, gravitational sources are considered to be point-like and in solitude, with a radial force that falls off as r -2. In reality, all astrophysical objects aside from black holes are extended in space, and can be deformed by the tidal forces arising from the proximity of companion objects with large average densities. When these forces are weak, the response of an object to a tide can be through a decomposition into basis functions, but this approach fails when the tide is strong enough to deform an object by a distance equal to its own size. Under these circumstances, a hydrodynamical representation of the object is required to understand the true tidal response. In this thesis, we present a number of examples of physical systems in which tides dominate the dynamics. First, we consider the case of a star that encounters a supermassive black hole (SMBH) in a deeply penetrating encounter, resulting in a dramatic compression that produces shocks that would be observable in the X-ray. Second, we present the results of hydrodynamical simulations that demonstrate a new mechanism for igniting Type Ia supernovae from binary systems composed of two white dwarfs undergoing Roche-lobe overflow. Third, we investigate the survival prospects of giant planets that have been scattered into highly eccentricity orbits and are exposed to a strong tide applied by their parent star. Fourth, we systematically map the fallback rate resulting from the tidal disruptions of stars by SMBHs. Finally, we use what we have learned about the feeding rate to model determine the highest-likelihood model for an observed prototypical tidal disruption event.
Tajparast, Mohammad
2018-01-01
Feast-famine cycles in biological wastewater resource recovery systems select for bacterial species that accumulate intracellular storage compounds such as poly-β-hydroxybutyrate (PHB), glycogen, and triacylglycerols (TAG). These species survive better the famine phase and resume rapid substrate uptake at the beginning of the feast phase faster than microorganisms unable to accumulate storage. However, ecophysiological conditions favouring the accumulation of either storage compounds remain to be clarified, and predictive capabilities need to be developed to eventually rationally design reactors producing these compounds. Using a genome-scale metabolic modelling approach, the storage metabolism of Rhodococcus jostii RHA1 was investigated for steady-state feast-famine cycles on glucose and acetate as the sole carbon sources. R. jostii RHA1 is capable of accumulating the three storage compounds (PHB, TAG, and glycogen) simultaneously. According to the experimental observations, when glucose was the substrate, feast phase chemical oxygen demand (COD) accumulation was similar for the three storage compounds; when acetate was the substrate, however, PHB accumulation was 3 times higher than TAG accumulation and essentially no glycogen was accumulated. These results were simulated using the genome-scale metabolic model of R. jostii RHA1 (iMT1174) by means of flux balance analysis (FBA) to determine the objective functions capable of predicting these behaviours. Maximization of the growth rate was set as the main objective function, while minimization of total reaction fluxes and minimization of metabolic adjustment (environmental MOMA) were considered as the sub-objective functions. The environmental MOMA sub-objective performed better than the minimization of total reaction fluxes sub-objective function at predicting the mixture of storage compounds accumulated. Additional experiments with 13C-labelled bicarbonate (HCO3−) found that the fluxes through the central metabolism reactions during the feast phases were similar to the ones during the famine phases on acetate due to similarity in the carbon sources in the feast and famine phases (i.e., acetate and poly-β-hydroxybutyrate, respectively); this suggests that the environmental MOMA sub-objective function could be used to analyze successive environmental conditions such as the feast and famine cycles while the metabolically similar carbon sources are taken up by microorganisms. PMID:29494607
Tajparast, Mohammad; Frigon, Dominic
2018-01-01
Feast-famine cycles in biological wastewater resource recovery systems select for bacterial species that accumulate intracellular storage compounds such as poly-β-hydroxybutyrate (PHB), glycogen, and triacylglycerols (TAG). These species survive better the famine phase and resume rapid substrate uptake at the beginning of the feast phase faster than microorganisms unable to accumulate storage. However, ecophysiological conditions favouring the accumulation of either storage compounds remain to be clarified, and predictive capabilities need to be developed to eventually rationally design reactors producing these compounds. Using a genome-scale metabolic modelling approach, the storage metabolism of Rhodococcus jostii RHA1 was investigated for steady-state feast-famine cycles on glucose and acetate as the sole carbon sources. R. jostii RHA1 is capable of accumulating the three storage compounds (PHB, TAG, and glycogen) simultaneously. According to the experimental observations, when glucose was the substrate, feast phase chemical oxygen demand (COD) accumulation was similar for the three storage compounds; when acetate was the substrate, however, PHB accumulation was 3 times higher than TAG accumulation and essentially no glycogen was accumulated. These results were simulated using the genome-scale metabolic model of R. jostii RHA1 (iMT1174) by means of flux balance analysis (FBA) to determine the objective functions capable of predicting these behaviours. Maximization of the growth rate was set as the main objective function, while minimization of total reaction fluxes and minimization of metabolic adjustment (environmental MOMA) were considered as the sub-objective functions. The environmental MOMA sub-objective performed better than the minimization of total reaction fluxes sub-objective function at predicting the mixture of storage compounds accumulated. Additional experiments with 13C-labelled bicarbonate (HCO3-) found that the fluxes through the central metabolism reactions during the feast phases were similar to the ones during the famine phases on acetate due to similarity in the carbon sources in the feast and famine phases (i.e., acetate and poly-β-hydroxybutyrate, respectively); this suggests that the environmental MOMA sub-objective function could be used to analyze successive environmental conditions such as the feast and famine cycles while the metabolically similar carbon sources are taken up by microorganisms.
Effects of transference work in the context of therapeutic alliance and quality of object relations.
Høglend, Per; Hersoug, Anne Grete; Bøgwald, Kjell-Petter; Amlo, Svein; Marble, Alice; Sørbye, Øystein; Røssberg, Jan Ivar; Ulberg, Randi; Gabbard, Glen O; Crits-Christoph, Paul
2011-10-01
Transference interpretation is considered as a core active ingredient in dynamic psychotherapy. In common clinical theory, it is maintained that more mature relationships, as well as a strong therapeutic alliance, may be prerequisites for successful transference work. In this study, the interaction between quality of object relations, transference interpretation, and alliance is estimated. One hundred outpatients seeking psychotherapy for depression, anxiety, and personality disorders were randomly assigned to 1 year of weekly sessions of dynamic psychotherapy with transference interpretation or to the same type and duration of treatment, but without the use of transference interpretation. Quality of Object Relations (QOR)-lifelong pattern was evaluated before treatment (P. Høglend, 1994). The Working Alliance Inventory (A. O. Horvath & L. S. Greenberg, 1989; T. J. Tracey & A. M. Kokotovic, 1989) was rated in Session 7. The primary outcome variable was the Psychodynamic Functioning Scales (P. Høglend et al., 2000), measured at pretreatment, posttreatment, and 1 year after treatment termination. A significant Treatment Group × Quality of Object Relations × Alliance interaction was present, indicating that alliance had a significantly different impact on effects of transference interpretation, depending on the level of QOR. The impact of transference interpretation on psychodynamic functioning was more positive within the context of a weak therapeutic alliance for patients with low quality of object relations. For patients with more mature object relations and high alliance, the authors observed a negative effect of transference work. The specific effects of transference work was influenced by the interaction of object relations and alliance, but in the direct opposite direction of what is generally maintained in mainstream clinical theory.
The interstellar medium of M31. III - Narrow-band imagery in H alpha and (SII)
NASA Technical Reports Server (NTRS)
Walterbos, R. A. M.; Braun, R.
1992-01-01
Deep CCD imagery in H alpha and (SII) is presented of the major spiral arms of M31 with particular attention given to the data reduction and the analysis of the (SII)/H alpha flux ratios. A diffuse ionized gas noted in the images is analyzed which shows higher (SII)/H alpha ratios, and 967 discrete nebulae are listed with gray-scale images, finding charts, and absolute fluxes. The differential H-alpha luminosity function is found to have a slope of -0.95 for brighter objects and flattens out below a critical level. The curve is shown to correspond to the point at which single-star ionization accounts for the H alpha luminosities and is consistent with previous observations. The catalog of objects and fluxes is the largest existing sample of this type, and the unresolved objects in the sample are considered to be planetary nebulae.
Dynamical tuning for MPC using population games: A water supply network application.
Barreiro-Gomez, Julian; Ocampo-Martinez, Carlos; Quijano, Nicanor
2017-07-01
Model predictive control (MPC) is a suitable strategy for the control of large-scale systems that have multiple design requirements, e.g., multiple physical and operational constraints. Besides, an MPC controller is able to deal with multiple control objectives considering them within the cost function, which implies to determine a proper prioritization for each of the objectives. Furthermore, when the system has time-varying parameters and/or disturbances, the appropriate prioritization might vary along the time as well. This situation leads to the need of a dynamical tuning methodology. This paper addresses the dynamical tuning issue by using evolutionary game theory. The advantages of the proposed method are highlighted and tested over a large-scale water supply network with periodic time-varying disturbances. Finally, results are analyzed with respect to a multi-objective MPC controller that uses static tuning. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
An Effective Evolutionary Approach for Bicriteria Shortest Path Routing Problems
NASA Astrophysics Data System (ADS)
Lin, Lin; Gen, Mitsuo
Routing problem is one of the important research issues in communication network fields. In this paper, we consider a bicriteria shortest path routing (bSPR) model dedicated to calculating nondominated paths for (1) the minimum total cost and (2) the minimum transmission delay. To solve this bSPR problem, we propose a new multiobjective genetic algorithm (moGA): (1) an efficient chromosome representation using the priority-based encoding method; (2) a new operator of GA parameters auto-tuning, which is adaptively regulation of exploration and exploitation based on the change of the average fitness of parents and offspring which is occurred at each generation; and (3) an interactive adaptive-weight fitness assignment mechanism is implemented that assigns weights to each objective and combines the weighted objectives into a single objective function. Numerical experiments with various scales of network design problems show the effectiveness and the efficiency of our approach by comparing with the recent researches.
Intracerebral stimulation of left and right ventral temporal cortex during object naming.
Bédos Ulvin, Line; Jonas, Jacques; Brissart, Hélène; Colnat-Coulbois, Sophie; Thiriaux, Anne; Vignal, Jean-Pierre; Maillard, Louis
2017-12-01
While object naming is traditionally considered asa left hemisphere function, neuroimaging studies have reported activations related to naming in the ventral temporal cortex (VTC) bilaterally. Our aim was to use intracerebral electrical stimulation to specifically compare left and right VTC in naming. In twenty-three epileptic patients tested for visual object naming during stimulation, the proportion of naming impairments was significantly higher in the left than in the right VTC (31.3% vs 13.6%). The highest proportions of positive naming sites were found in the left fusiform gyrus and occipito-temporal sulcus (47.5% and 31.8%). For 17 positive left naming sites, an additional semantic picture matching was carried out, always successfully performed. Our results showed the enhanced role of the left compared to the right VTC in naming and suggest that it may be involved in lexical retrieval rather than in semantic processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Multi-classification of cell deformation based on object alignment and run length statistic.
Li, Heng; Liu, Zhiwen; An, Xing; Shi, Yonggang
2014-01-01
Cellular morphology is widely applied in digital pathology and is essential for improving our understanding of the basic physiological processes of organisms. One of the main issues of application is to develop efficient methods for cell deformation measurement. We propose an innovative indirect approach to analyze dynamic cell morphology in image sequences. The proposed approach considers both the cellular shape change and cytoplasm variation, and takes each frame in the image sequence into account. The cell deformation is measured by the minimum energy function of object alignment, which is invariant to object pose. Then an indirect analysis strategy is employed to overcome the limitation of gradual deformation by run length statistic. We demonstrate the power of the proposed approach with one application: multi-classification of cell deformation. Experimental results show that the proposed method is sensitive to the morphology variation and performs better than standard shape representation methods.
SU-F-R-46: Predicting Distant Failure in Lung SBRT Using Multi-Objective Radiomics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Z; Folkert, M; Iyengar, P
2016-06-15
Purpose: To predict distant failure in lung stereotactic body radiation therapy (SBRT) in early stage non-small cell lung cancer (NSCLC) by using a new multi-objective radiomics model. Methods: Currently, most available radiomics models use the overall accuracy as the objective function. However, due to data imbalance, a single object may not reflect the performance of a predictive model. Therefore, we developed a multi-objective radiomics model which considers both sensitivity and specificity as the objective functions simultaneously. The new model is used to predict distant failure in lung SBRT using 52 patients treated at our institute. Quantitative imaging features of PETmore » and CT as well as clinical parameters are utilized to build the predictive model. Image features include intensity features (9), textural features (12) and geometric features (8). Clinical parameters for each patient include demographic parameters (4), tumor characteristics (8), treatment faction schemes (4) and pretreatment medicines (6). The modelling procedure consists of two steps: extracting features from segmented tumors in PET and CT; and selecting features and training model parameters based on multi-objective. Support Vector Machine (SVM) is used as the predictive model, while a nondominated sorting-based multi-objective evolutionary computation algorithm II (NSGA-II) is used for solving the multi-objective optimization. Results: The accuracy for PET, clinical, CT, PET+clinical, PET+CT, CT+clinical, PET+CT+clinical are 71.15%, 84.62%, 84.62%, 85.54%, 82.69%, 84.62%, 86.54%, respectively. The sensitivities for the above seven combinations are 41.76%, 58.33%, 50.00%, 50.00%, 41.67%, 41.67%, 58.33%, while the specificities are 80.00%, 92.50%, 90.00%, 97.50%, 92.50%, 97.50%, 97.50%. Conclusion: A new multi-objective radiomics model for predicting distant failure in NSCLC treated with SBRT was developed. The experimental results show that the best performance can be obtained by combining all features.« less
NASA Astrophysics Data System (ADS)
Parhusip, H. A.; Trihandaru, S.; Susanto, B.; Prasetyo, S. Y. J.; Agus, Y. H.; Simanjuntak, B. H.
2017-03-01
Several algorithms and objective functions on paddy crops have been studied to get optimal paddy crops in Central Java based on the data given from Surakarta and Boyolali. The algorithms are linear solver, least square and Ant Colony Algorithms (ACO) to develop optimization procedures on paddy crops modelled with Modified GSTAR (Generalized Space-Time Autoregressive) and nonlinear models where the nonlinear models are quadratic and power functions. The studied data contain paddy crops from Surakarta and Boyolali determining the best period of planting in the year 1992-2012 for Surakarta where 3 periods for planting are known and the optimal amount of paddy crops in Boyolali in the year 2008-2013. Having these analyses may guide the local agriculture government to give a decision on rice sustainability in its region. The best period for planting in Surakarta is observed, i.e. the best period is in September-December based on the data 1992-2012 by considering the planting area, the cropping area, and the paddy crops are the most important factors to be taken into account. As a result, we can refer the paddy crops in this best period (about 60.4 thousand tons per year) as the optimal results in 1992-2012 where the used objective function is quadratic. According to the research, the optimal paddy crops in Boyolali about 280 thousand tons per year where the studied factors are the amount of rainfalls, the harvested area and the paddy crops in 2008-2013. In this case, linear and power functions are studied to be the objective functions. Compared to all studied algorithms, the linear solver is still recommended to be an optimization tool for a local agriculture government to predict paddy crops in future.
NASA Technical Reports Server (NTRS)
2005-01-01
Three sources have been considered to provide information allowing the evaluation of the Collision Conflict Avoidance (CCA) functional requirements: existing data, simulation, and flight test. The existing data sources that have been evaluated have been found to be lacking in two areas: The actual data that was recorded and missing elements to the system architecture. Many previous tests addressing collision avoidance were conducted without a remote operator. As such, they are missing critical elements that are required to assess the CCA functional requirements. Tests such as ERAST were conducted with all of the UAS elements. However, ERAST tests were conducted as a demonstration and the data recorded was of end-to-end performance. Many contributing elements of the system were not individually recorded or were recorded at a data rate insufficient for the purposes of evaluating the CCA functional requirements.
Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insel, Philip S.; Mattsson, Niklas; Mackin, R. Scott
Objective: Our objective is to estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. Methods: In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ 42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Results: Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloidmore » positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. Conclusions: A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ 42. Lastly, future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline.« less
NASA Astrophysics Data System (ADS)
Bandaru, Sunith; Deb, Kalyanmoy
2011-09-01
In this article, a methodology is proposed for automatically extracting innovative design principles which make a system or process (subject to conflicting objectives) optimal using its Pareto-optimal dataset. Such 'higher knowledge' would not only help designers to execute the system better, but also enable them to predict how changes in one variable would affect other variables if the system has to retain its optimal behaviour. This in turn would help solve other similar systems with different parameter settings easily without the need to perform a fresh optimization task. The proposed methodology uses a clustering-based optimization technique and is capable of discovering hidden functional relationships between the variables, objective and constraint functions and any other function that the designer wishes to include as a 'basis function'. A number of engineering design problems are considered for which the mathematical structure of these explicit relationships exists and has been revealed by a previous study. A comparison with the multivariate adaptive regression splines (MARS) approach reveals the practicality of the proposed approach due to its ability to find meaningful design principles. The success of this procedure for automated innovization is highly encouraging and indicates its suitability for further development in tackling more complex design scenarios.
Accelerating rates of cognitive decline and imaging markers associated with β-amyloid pathology
Insel, Philip S.; Mattsson, Niklas; Mackin, R. Scott; ...
2016-04-15
Objective: Our objective is to estimate points along the spectrum of β-amyloid pathology at which rates of change of several measures of neuronal injury and cognitive decline begin to accelerate. Methods: In 460 patients with mild cognitive impairment (MCI), we estimated the points at which rates of florbetapir PET, fluorodeoxyglucose (FDG) PET, MRI, and cognitive and functional decline begin to accelerate with respect to baseline CSF Aβ 42. Points of initial acceleration in rates of decline were estimated using mixed-effects regression. Results: Rates of neuronal injury and cognitive and even functional decline accelerate substantially before the conventional threshold for amyloidmore » positivity, with rates of florbetapir PET and FDG PET accelerating early. Temporal lobe atrophy rates also accelerate prior to the threshold, but not before the acceleration of cognitive and functional decline. Conclusions: A considerable proportion of patients with MCI would not meet inclusion criteria for a trial using the current threshold for amyloid positivity, even though on average, they are experiencing cognitive/functional decline associated with prethreshold levels of CSF Aβ 42. Lastly, future trials in early Alzheimer disease might consider revising the criteria regarding β-amyloid thresholds to include the range of amyloid associated with the first signs of accelerating rates of decline.« less
Using learning automata to determine proper subset size in high-dimensional spaces
NASA Astrophysics Data System (ADS)
Seyyedi, Seyyed Hossein; Minaei-Bidgoli, Behrouz
2017-03-01
In this paper, we offer a new method called FSLA (Finding the best candidate Subset using Learning Automata), which combines the filter and wrapper approaches for feature selection in high-dimensional spaces. Considering the difficulties of dimension reduction in high-dimensional spaces, FSLA's multi-objective functionality is to determine, in an efficient manner, a feature subset that leads to an appropriate tradeoff between the learning algorithm's accuracy and efficiency. First, using an existing weighting function, the feature list is sorted and selected subsets of the list of different sizes are considered. Then, a learning automaton verifies the performance of each subset when it is used as the input space of the learning algorithm and estimates its fitness upon the algorithm's accuracy and the subset size, which determines the algorithm's efficiency. Finally, FSLA introduces the fittest subset as the best choice. We tested FSLA in the framework of text classification. The results confirm its promising performance of attaining the identified goal.
The development and organizing function of perversion: the example of transvestism.
Meyer, Jon
2011-04-01
Perversion had been viewed as oedipally determined and in a reciprocal relationship with neurosis. In our widening scope, however, pre-oedipal and traumatic contributions have been increasingly emphasized. While both perspectives represent aspects of clinical reality, the tendency has been to overlook sexual and aggressive drive derivatives, with their related conflicts, object representations, and symbolic enactments, even though they may make significant contributions to the analytic situation. These latter, 'classical' patients have what I consider 'organized' perversions: complex, evolved, neurotic-level, stable psychopathological formations that may be distinguished from borderline or near psychotic syndromes enlisting perverse mechanisms to ward off disorganization. This paper will review Freud's work, briefly consider some recent trends in conceptualizing perversion and perverse mechanisms, characterize organized perversion, and present clinical material to illustrate its evolution, clinical manifestations, and analysis. Transsexualism, overtly similar to transvestism but not functioning as an organized perversion, will serve as a point of contrast. Copyright © 2011 Institute of Psychoanalysis.
NASA Astrophysics Data System (ADS)
Leitão, J. P.; Carbajal, J. P.; Rieckermann, J.; Simões, N. E.; Sá Marques, A.; de Sousa, L. M.
2018-01-01
The activation of available in-sewer storage volume has been suggested as a low-cost flood and combined sewer overflow mitigation measure. However, it is currently unknown what the attributes for suitable objective functions to identify the best location for flow control devices are and the impact of those attributes on the results. In this study, we present a novel location model and efficient algorithm to identify the best location(s) to install flow limiters. The model is a screening tool that does not require hydraulic simulations but rather considers steady state instead of simplistic static flow conditions. It also maximises in-sewer storage according to different reward functions that also considers the potential impact of flow control device failure. We demonstrate its usefulness on two real sewer networks, for which an in-sewer storage potential of approximately 2,000 m3 and 500 m3 was estimated with five flow control devices installed.
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
NASA Astrophysics Data System (ADS)
Sahraei, S.; Asadzadeh, M.
2017-12-01
Any modern multi-objective global optimization algorithm should be able to archive a well-distributed set of solutions. While the solution diversity in the objective space has been explored extensively in the literature, little attention has been given to the solution diversity in the decision space. Selection metrics such as the hypervolume contribution and crowding distance calculated in the objective space would guide the search toward solutions that are well-distributed across the objective space. In this study, the diversity of solutions in the decision-space is used as the main selection criteria beside the dominance check in multi-objective optimization. To this end, currently archived solutions are clustered in the decision space and the ones in less crowded clusters are given more chance to be selected for generating new solution. The proposed approach is first tested on benchmark mathematical test problems. Second, it is applied to a hydrologic model calibration problem with more than three objective functions. Results show that the chance of finding more sparse set of high-quality solutions increases, and therefore the analyst would receive a well-diverse set of options with maximum amount of information. Pareto Archived-Dynamically Dimensioned Search, which is an efficient and parsimonious multi-objective optimization algorithm for model calibration, is utilized in this study.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
Bidonde, Julia; Busch, Angela Jean; Bath, Brenna; Milosavljevic, Stephan
2014-01-01
The objective of this umbrella systematic review was to identify, evaluate, and synthesize systematic reviews of physical activity interventions for adults with fibromyalgia (FM) focussing on four outcomes: pain, multidimensional function (wellness or quality of life), physical function (self-reported physical function or measured physical fitness) and adverse effects. A further objective was to link these outcomes with details of the interventions so as to guide and shape future practice and research. Electronic databases including Medline, EMBASE, CINAHL, AMED, the Cochrane Library, and DARE, were searched for the January 1(st) 2007 to March 31(st) 2013 period. Nine systematic reviews (60 RCTs with 3816 participants) were included. Meta-analysis was not conducted due to the heterogeneity of the sample. We found positive results of diverse exercise interventions on pain, multidimensional function, and self-reported physical function, and no supporting evidence for new (to FM) interventions (i.e., qigong, tai chi). There were no serious adverse effects reported. The variability of the interventions in the reviews prevented us from answering important clinical questions to guide practical decisions about optimal modes or dosages (i.e., frequency, intensity, duration). Finally, the number of review articles is proliferating, leading researchers and reviewers to consider the rigor and quality of the information being reviewed. As well, consumers of these reviews (i.e., clinicians, individuals with FM) should not rely on them without careful consideration.
Heuristic Approach for Configuration of a Grid-Tied Microgrid in Puerto Rico
NASA Astrophysics Data System (ADS)
Rodriguez, Miguel A.
The high rates of cost of electricity that consumers are being charged by the utility grid in Puerto Rico have created an energy crisis around the island. This situation is due to the island's dependence on imported fossil fuels. In order to aid in the transition from fossil-fuel based electricity into electricity from renewable and alternative sources, this research work focuses on reducing the cost of electricity for Puerto Rico through means of finding the optimal microgrid configuration for a set number of consumers from the residential sector. The Hybrid Optimization Modeling for Energy Renewables (HOMER) software, developed by NREL, is utilized as an aid in determining the optimal microgrid setting. The problem is also approached via convex optimization; specifically, an objective function C(t) is formulated in order to be minimized. The cost function depends on the energy supplied by the grid, the energy supplied by renewable sources, the energy not supplied due to outages, as well as any excess energy sold to the utility in a yearly manner. A term for considering the social cost of carbon is also considered in the cost function. Once the microgrid settings from HOMER are obtained, those are evaluated via the optimized function C( t), which will in turn assess the true optimality of the microgrid configuration. A microgrid to supply 10 consumers is considered; each consumer can possess a different microgrid configuration. The cost function C( t) is minimized, and the Net Present Value and Cost of Electricity are computed for each configuration, in order to assess the true feasibility. Results show that the greater the penetration of components into the microgrid, the greater the energy produced by the renewable sources in the microgrid, the greater the energy not supplied due to outages. The proposed method demonstrates that adding large amounts of renewable components in a microgrid does not necessarily translates into economic benefits for the consumer; in fact, there is a trade back between cost and addition of elements that must be considered. Any configurations which consider further increases in microgrid components will result in increased NPV and increased costs of electricity, which deem the configurations as unfeasible.
Multiobjective constraints for climate model parameter choices: Pragmatic Pareto fronts in CESM1
NASA Astrophysics Data System (ADS)
Langenbrunner, B.; Neelin, J. D.
2017-09-01
Global climate models (GCMs) are examples of high-dimensional input-output systems, where model output is a function of many variables, and an update in model physics commonly improves performance in one objective function (i.e., measure of model performance) at the expense of degrading another. Here concepts from multiobjective optimization in the engineering literature are used to investigate parameter sensitivity and optimization in the face of such trade-offs. A metamodeling technique called cut high-dimensional model representation (cut-HDMR) is leveraged in the context of multiobjective optimization to improve GCM simulation of the tropical Pacific climate, focusing on seasonal precipitation, column water vapor, and skin temperature. An evolutionary algorithm is used to solve for Pareto fronts, which are surfaces in objective function space along which trade-offs in GCM performance occur. This approach allows the modeler to visualize trade-offs quickly and identify the physics at play. In some cases, Pareto fronts are small, implying that trade-offs are minimal, optimal parameter value choices are more straightforward, and the GCM is well-functioning. In all cases considered here, the control run was found not to be Pareto-optimal (i.e., not on the front), highlighting an opportunity for model improvement through objectively informed parameter selection. Taylor diagrams illustrate that these improvements occur primarily in field magnitude, not spatial correlation, and they show that specific parameter updates can improve fields fundamental to tropical moist processes—namely precipitation and skin temperature—without significantly impacting others. These results provide an example of how basic elements of multiobjective optimization can facilitate pragmatic GCM tuning processes.
Zhao, Yuanfang; Li, Jingguang; Liu, Xiqin; Song, Yiying; Wang, Ruosi; Yang, Zetian; Liu, Jia
2016-08-01
Individuals with developmental prosopagnosia (DP) exhibit severe difficulties in recognizing faces and to a lesser extent, also exhibit difficulties in recognizing non-face objects. We used fMRI to investigate whether these behavioral deficits could be accounted for by altered spontaneous neural activity. Two aspects of spontaneous neural activity were measured: the intensity of neural activity in a voxel indexed by the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), and the connectivity of a voxel to neighboring voxels indexed by regional homogeneity (ReHo). Compared with normal adults, both the fALFF and ReHo values within the right occipital face area (rOFA) were significantly reduced in DP subjects. Follow-up studies on the normal adults revealed that these two measures indicated further functional division of labor within the rOFA. The fALFF in the rOFA was positively correlated with behavioral performance in recognition of non-face objects, whereas ReHo in the rOFA was positively correlated with processing of faces. When considered together, the altered fALFF and ReHo within the same region (rOFA) may account for the comorbid deficits in both face and object recognition in DPs, whereas the functional division of labor in these two measures helps to explain the relative independency of deficits in face recognition and object recognition in DP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorikov, A. F., E-mail: afshorikov@mail.ru
We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminalmore » approach process with incomplete information and give a general scheme for its solving.« less
Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization
NASA Technical Reports Server (NTRS)
Holst, Terry L.; Pulliam, Thomas H.
2003-01-01
A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.
Object links in the repository
NASA Technical Reports Server (NTRS)
Beck, Jon; Eichmann, David
1991-01-01
Some of the architectural ramifications of extending the Eichmann/Atkins lattice-based classification scheme to encompass the assets of the full life-cycle of software development are explored. In particular, we wish to consider a model which provides explicit links between objects in addition to the edges connecting classification vertices in the standard lattice. The model we consider uses object-oriented terminology. Thus, the lattice is viewed as a data structure which contains class objects which exhibit inheritance. A description of the types of objects in the repository is presented, followed by a discussion of how they interrelate. We discuss features of the object-oriented model which support these objects and their links, and consider behavior which an implementation of the model should exhibit. Finally, we indicate some thoughts on implementing a prototype of this repository architecture.
Cooperative Coevolution with Formula-Based Variable Grouping for Large-Scale Global Optimization.
Wang, Yuping; Liu, Haiyan; Wei, Fei; Zong, Tingting; Li, Xiaodong
2017-08-09
For a large-scale global optimization (LSGO) problem, divide-and-conquer is usually considered an effective strategy to decompose the problem into smaller subproblems, each of which can then be solved individually. Among these decomposition methods, variable grouping is shown to be promising in recent years. Existing variable grouping methods usually assume the problem to be black-box (i.e., assuming that an analytical model of the objective function is unknown), and they attempt to learn appropriate variable grouping that would allow for a better decomposition of the problem. In such cases, these variable grouping methods do not make a direct use of the formula of the objective function. However, it can be argued that many real-world problems are white-box problems, that is, the formulas of objective functions are often known a priori. These formulas of the objective functions provide rich information which can then be used to design an effective variable group method. In this article, a formula-based grouping strategy (FBG) for white-box problems is first proposed. It groups variables directly via the formula of an objective function which usually consists of a finite number of operations (i.e., four arithmetic operations "[Formula: see text]", "[Formula: see text]", "[Formula: see text]", "[Formula: see text]" and composite operations of basic elementary functions). In FBG, the operations are classified into two classes: one resulting in nonseparable variables, and the other resulting in separable variables. In FBG, variables can be automatically grouped into a suitable number of non-interacting subcomponents, with variables in each subcomponent being interdependent. FBG can easily be applied to any white-box problem and can be integrated into a cooperative coevolution framework. Based on FBG, a novel cooperative coevolution algorithm with formula-based variable grouping (so-called CCF) is proposed in this article for decomposing a large-scale white-box problem into several smaller subproblems and optimizing them respectively. To further enhance the efficiency of CCF, a new local search scheme is designed to improve the solution quality. To verify the efficiency of CCF, experiments are conducted on the standard LSGO benchmark suites of CEC'2008, CEC'2010, CEC'2013, and a real-world problem. Our results suggest that the performance of CCF is very competitive when compared with those of the state-of-the-art LSGO algorithms.
Fernández-Mayoralas, Gloria; Rojo-Pérez, Fermina; Martínez-Martín, Pablo; Prieto-Flores, Maria-Eugenia; Rodríguez-Blázquez, Carmen; Martín-García, Salomé; Rojo-Abuín, José-Manuel; Forjaz, Maria-Joao
2015-01-01
Active ageing, considered from the perspective of participation in leisure activities, promotes life satisfaction and personal well-being. The aims of this work are to define and explain leisure activity profiles among institutionalized older adults, considering their sociodemographic characteristics and objective and subjective conditions in relation to their quality of life. Two samples of institutionalized people aged 60 and over were analysed together: 234 older adults without dementia and 525 with dementia. Sociodemographic, economic, family and social network, and health and functioning variables were selected. Cluster analysis was applied to obtain activity profiles according to the leisure activities, and ordinal regression models were performed to analyse factors associated to activity level. The sample was clustered into three groups of people: active (27%), moderately active (35%) and inactive people (38%). In the final regression model (Nagelkerke pseudo R(2) = 0.500), a higher level of activity was associated with better cognitive function (Pfeiffer scale), self-perceived health status and functional ability, as well as with a higher frequency of gathering with family and friends, and higher educational level. The decline in physical and mental health, the loss of functional capabilities and the weakening of family and social ties represent a significant barrier to active ageing in a context of institutionalization.
NASA Astrophysics Data System (ADS)
Schmidt, Barnet Michael
An optimal performance monitoring metric for a hybrid free space optical and radio-frequency (RF) wireless network, the Outage Capacity Objective Function, is analytically developed and studied. Current and traditional methods of performance monitoring of both optical and RF wireless networks are centered on measurement of physical layer parameters, the most common being signal-to-noise ratio, error rate, Q factor, and eye diagrams, occasionally combined with link-layer measurements such as data throughput, retransmission rate, and/or lost packet rate. Network management systems frequently attempt to predict or forestall network failures by observing degradations of these parameters and to attempt mitigation (such as offloading traffic, increasing transmitter power, reducing the data rate, or combinations thereof) prior to the failure. These methods are limited by the frequent low sensitivity of the physical layer parameters to the atmospheric optical conditions (measured by optical signal-to-noise ratio) and the radio frequency fading channel conditions (measured by signal-to-interference ratio). As a result of low sensitivity, measurements of this type frequently are unable to predict impending failures sufficiently in advance for the network management system to take corrective action prior to the failure. We derive and apply an optimal measure of hybrid network performance based on the outage capacity of the hybrid optical and RF channel, the outage capacity objective function. The objective function provides high sensitivity and reliable failure prediction, and considers both the effects of atmospheric optical impairments on the performance of the free space optical segment as well as the effect of RF channel impairments on the radio frequency segment. The radio frequency segment analysis considers the three most common RF channel fading statistics: Rayleigh, Ricean, and Nakagami-m. The novel application of information theory to the underlying physics of the gamma-gamma optical channel and radio fading channels in determining the joint hybrid channel outage capacity provides the best performance estimate under any given set of operating conditions. It is shown that, unlike traditional physical layer performance monitoring techniques, the objective function based upon the outage capacity of the hybrid channel at any combination of OSNR and SIR, is able to predict channel degradation and failure well in advance of the actual outage. An outage in the information-theoretic definition occurs when the offered load exceeds the outage capacity under the current conditions of OSNR and SIR. The optical channel is operated at the "long" mid-infrared wavelength of 10000 nm. which provides improved resistance to scattering compared to shorter wavelengths such as 1550 nm.
Modal-Power-Based Haptic Motion Recognition
NASA Astrophysics Data System (ADS)
Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei
Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.
Optimal manpower allocation in aircraft line maintenance (Case in GMF AeroAsia)
NASA Astrophysics Data System (ADS)
Puteri, V. E.; Yuniaristanto, Hisjam, M.
2017-11-01
This paper presents a mathematical modeling to find the optimal manpower allocation in an aircraft line maintenance. This research focuses on assigning the number and type of manpower that allocated to each service. This study considers the licenced worker or Aircraft Maintenance Engineer Licence (AMEL) and non licenced worker or Aircraft Maintenance Technician (AMT). In this paper, we also consider the relationship of each station in terms of the possibility to transfer the manpower among them. The optimization model considers the number of manpowers needed for each service and the requirement of AMEL worker. This paper aims to determine the optimal manpower allocation using the mathematical modeling. The objective function of the model is to find the minimum employee expenses. The model was solved using the ILOG CPLEX software. The results show that the manpower allocation can meet the manpower need and the all load can be served.
Mota, L F M; Martins, P G M A; Littiere, T O; Abreu, L R A; Silva, M A; Bonafé, C M
2018-04-01
The objective was to estimate (co)variance functions using random regression models (RRM) with Legendre polynomials, B-spline function and multi-trait models aimed at evaluating genetic parameters of growth traits in meat-type quail. A database containing the complete pedigree information of 7000 meat-type quail was utilized. The models included the fixed effects of contemporary group and generation. Direct additive genetic and permanent environmental effects, considered as random, were modeled using B-spline functions considering quadratic and cubic polynomials for each individual segment, and Legendre polynomials for age. Residual variances were grouped in four age classes. Direct additive genetic and permanent environmental effects were modeled using 2 to 4 segments and were modeled by Legendre polynomial with orders of fit ranging from 2 to 4. The model with quadratic B-spline adjustment, using four segments for direct additive genetic and permanent environmental effects, was the most appropriate and parsimonious to describe the covariance structure of the data. The RRM using Legendre polynomials presented an underestimation of the residual variance. Lesser heritability estimates were observed for multi-trait models in comparison with RRM for the evaluated ages. In general, the genetic correlations between measures of BW from hatching to 35 days of age decreased as the range between the evaluated ages increased. Genetic trend for BW was positive and significant along the selection generations. The genetic response to selection for BW in the evaluated ages presented greater values for RRM compared with multi-trait models. In summary, RRM using B-spline functions with four residual variance classes and segments were the best fit for genetic evaluation of growth traits in meat-type quail. In conclusion, RRM should be considered in genetic evaluation of breeding programs.
ROSAT all-sky survey on the Einstein EMSS sample
NASA Technical Reports Server (NTRS)
Maccacaro, Tomasso
1992-01-01
The cosmological evolution and the luminosity function (XLF) of X ray selected Active Galactic Nuclei (AGN's) are discussed. The sample used is extracted from the Einstein Observatory Extended Medium Sensitivity Surveys (EMSS) and consists of more than 420 objects. Preliminary results from the ROSAT All-Sky Survey data confirm the correctness of the optical identification of the EMSS sources, thus giving confidence to the results obtained from the analysis of the AGN's sample. The XLF observed at different redshifts (up to z approx. 2) gives direct evidence of cosmological evolution. Data have been analyzed within the framework of luminosity evolution models and the two most common evolutionary forms, L sub x(Z) = L sub x(0) x e(sup Cr) and L sub x(Z) = L sub x(0) x (1 + z)(exp C), have been considered. Luminosity dependent evolution is required if the evolution function has the exponential form, whereas the simpler pure luminosity evolution model is still acceptable if the evolution function has the power law form. Using the whole sample of objects the number-counts and the de-evolved (z = 0) XLF have been derived. A comparison of the EMSS data with preliminary ROSAT results presented at this meeting indicates an overall agreement.
[Forensic identification of floating shoulder injury].
Li, Sheng-Ya; Huang, Si-Xing; Zhao, Xing-Bin; Zheng, Xiao-Hong; Zhu, Yi
2006-10-15
To discuss forensic identification of floating shoulder injury (FSI). To analyze fifteen cases of FSI which were accepted from Jan. 1993 to Jan. 2006, including 15 shoulder neck fracture, 13 clavide stem fracture and 2 distal end clavide fracture, the function of shoulder joint was evaluated six months after injure considering the following three aspects: result of forensic examination such as X-ray photograph, CT and MRI, the injurers' symptom, objective sign and joint function, shoulder joint territory, degree of pain and local muscle power. Basing on the curative effect standard of Herscovic, all cases were divided into good. Modest, worst, which included 2, 4, 9 cases respectively; referring the standard of GA35-92, GB18667-2002, all cases were divided into six, seven, eight, nine and ten degree, which included 2,9,2,1,1 cases respectively. As a special powerful injure, FSI always companied with concurrent and multiple injure, and characterized by missed, incorrect and delayed diagnosis and infelicitous treatment, which lead to the high frequency and degree of injure. To prevent missed and incorrect forensic identification, we should have a full realization of the particularity of FSI, and evaluate the function of shoulder all-sidely, objectively and synseticaly.
NASA Astrophysics Data System (ADS)
Kurz, Felix; Kampf, Thomas; Buschle, Lukas; Schlemmer, Heinz-Peter; Bendszus, Martin; Heiland, Sabine; Ziener, Christian
2016-12-01
In biological tissue, an accumulation of similarly shaped objects with a susceptibility difference to the surrounding tissue generates a local distortion of the external magnetic field in magnetic resonance imaging. It induces stochastic field fluctuations that characteristically influence proton spin diffusion in the vicinity of these magnetic perturbers. The magnetic field correlation that is associated with such local magnetic field inhomogeneities can be expressed in the form of a dynamic frequency autocorrelation function that is related to the time evolution of the measured magnetization. Here, an eigenfunction expansion for two simple magnetic perturber shapes, that of spheres and cylinders, is considered for restricted spin diffusion in a simple model geometry. Then, the concept of generalized moment analysis, an approximation technique that is applied in the study of (non-)reactive processes that involve Brownian motion, allows to provide analytical expressions for the correlation function for different exponential decay forms. Results for the biexponential decay for both spherical and cylindrical magnetized objects are derived and compared with the frequently used (less accurate) monoexponential decay forms. They are in asymptotic agreement with the numerically exact value of the correlation function for long and short times.
Cognitive Remediation in Schizophrenia: Current Status and Future Perspectives
Deste, Giacomo; De Peri, Luca
2013-01-01
Objectives. This study is aimed to review the current scientific literature on cognitive remediation in schizophrenia. In particular, the main structured protocols of cognitive remediation developed for schizophrenia are presented and the main results reported in recent meta-analyses are summarized. Possible benefits of cognitive remediation in the early course of schizophrenia and in subjects at risk for psychosis are also discussed. Methods. Electronic search of the relevant studies which appeared in the PubMed database until April 2013 has been performed and all the meta-analyses and review articles on cognitive remediation in schizophrenia have been also taken into account. Results. Numerous intervention programs have been designed, applied, and evaluated, with the objective of improving cognition and social functioning in schizophrenia. Several quantitative reviews have established that cognitive remediation is effective in reducing cognitive deficits and in improving functional outcome of the disorder. Furthermore, the studies available support the usefulness of cognitive remediation when applied in the early course of schizophrenia and even in subjects at risk of the disease. Conclusions. Cognitive remediation is a promising approach to improve real-world functioning in schizophrenia and should be considered a key strategy for early intervention in the psychoses. PMID:24455253
Self-paced model learning for robust visual tracking
NASA Astrophysics Data System (ADS)
Huang, Wenhui; Gu, Jason; Ma, Xin; Li, Yibin
2017-01-01
In visual tracking, learning a robust and efficient appearance model is a challenging task. Model learning determines both the strategy and the frequency of model updating, which contains many details that could affect the tracking results. Self-paced learning (SPL) has recently been attracting considerable interest in the fields of machine learning and computer vision. SPL is inspired by the learning principle underlying the cognitive process of humans, whose learning process is generally from easier samples to more complex aspects of a task. We propose a tracking method that integrates the learning paradigm of SPL into visual tracking, so reliable samples can be automatically selected for model learning. In contrast to many existing model learning strategies in visual tracking, we discover the missing link between sample selection and model learning, which are combined into a single objective function in our approach. Sample weights and model parameters can be learned by minimizing this single objective function. Additionally, to solve the real-valued learning weight of samples, an error-tolerant self-paced function that considers the characteristics of visual tracking is proposed. We demonstrate the robustness and efficiency of our tracker on a recent tracking benchmark data set with 50 video sequences.
Optimizing Motion Planning for Hyper Dynamic Manipulator
NASA Astrophysics Data System (ADS)
Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache
2012-01-01
This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.
A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints
NASA Astrophysics Data System (ADS)
Li, Jinquan; Feng, Shuang; Mi, Honghai
In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.
Rivers, Brian M.; August, Euna M.; Gwede, Clement K.; Hart, Alton; Donovan, Kristine A.; Pow-Sang, Julio M.; Quinn, Gwendolyn P.
2015-01-01
Objective Focus on cancer survivorship and quality of life (QOL) is a growing priority. The aim of this study was to identify and describe the most salient psychosocial concerns related to sexual functioning among African-American (AA) prostate cancer survivors and their spouses. Methods Twelve AA prostate cancer survivors and their spouses participated in semi-structured individual interviews. The interviews assessed couples’ experiences with psychosocial adjustment and sexual functioning posttreatment for localized prostate cancer. The data were analyzed using the constant comparison method and content analysis. Results In this qualitative study of couples surviving prostate cancer, there were divergent views between the male prostate cancer survivors and their female partners, particularly regarding sexual functioning. For the males, QOL issues emerged as the primary area of concern, whereas survival of their husbands was considered most important among the female spouses. The male respondents expressed unease with the sexual side effects of their cancer treatment, such as erectile dysfunction and decreased sexual desire and satisfaction. Female spouses recognized decreased sexual desire in their partners following treatment, but this was not considered a primary concern. Conclusions Patients and their spouses may have differing perceptions regarding QOL and the impact of sexual functioning on survivorship. This study points to the need for further research and intervention development to address these domains with a goal to improve QOL. PMID:20187071
The principles and technical aspects of diuresis renography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, J.J.
1989-12-01
It is intuitive that dilation of the urinary tract is most likely caused by obstruction. However, the opposite is more often true. That is, dilation is not associated with obstruction, especially in children. The most common causes for hydronephrosis and hydroureter include infection, vesicoureteral reflux, congenital megacalyces and megaureter, previous obstruction, and bladder noncompliance. Theoretically, one can consider obstruction on the basis of its significance, which is that there may be a loss of renal function with time. Techniques such as intravenous pyelography and ultrasonography, which anatomically document the degree of dilation of the urinary tract, cannot quantitatively determine themore » presence of obstruction or its significance. Radionuclide renography more readily quantifies abnormal renal function. Serial renographic studies with furosemide can document renal function loss and, thus, determine the significance of the obstruction. Diuresis renography with furosemide provides an objective quantitative means for determining the renal function changes over time.« less
A trust region-based approach to optimize triple response systems
NASA Astrophysics Data System (ADS)
Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen
2014-05-01
This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.
Development of structural model of adaptive training complex in ergatic systems for professional use
NASA Astrophysics Data System (ADS)
Obukhov, A. D.; Dedov, D. L.; Arkhipov, A. E.
2018-03-01
The article considers the structural model of the adaptive training complex (ATC), which reflects the interrelations between the hardware, software and mathematical model of ATC and describes the processes in this subject area. The description of the main components of software and hardware complex, their interaction and functioning within the common system are given. Also the article scrutinizers a brief description of mathematical models of personnel activity, a technical system and influences, the interactions of which formalize the regularities of ATC functioning. The studies of main objects of training complexes and connections between them will make it possible to realize practical implementation of ATC in ergatic systems for professional use.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1998-01-01
This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.
Krystal, H
1988-09-01
The possibility has to be considered that the infant, in danger of overwhelming himself with his own excitement, forms object-representations in ways dictated by expediency. It is necessary for survival to establish in one's mind an all-powerful and loving object-representation that contains in it major parts of the self-representation. In fact, all the vital and affective functions are attributed to the parenting object and are used only under a "franchise-like" illusion. From infancy we are just like the "hypnotized" person or the patient who has received a placebo and carries out self-caring or self-soothing functions under the illusion that he/she is not doing it on their own but the transference object is doing it. In considering the challenge of creating a coherent self-representation within the amazing world of perceptions and affects, it can be readily seen that it is very easy to overwhelm oneself, even for an adult just trying to imagine it. It is most helpful to use Stern's suggestion that probably a sense of self emerges gradually from the consolidation of various nuclear clusters of self-views. He listed (1) a self-agency, representing the recognition of one's volition and capacity to act; (2) a sense of self-coherence, representing a sentience of what remains constant within one's own purveyance; (3) a sense of self-affectivity, representing the recognition of feelings, that is, the subjective aspect of affective living; and (4) a sense of self-history, representing a registration of continuity and a recognition of what "goes on being." In our perusal of what we can learn by confronting the alexithymia picture lessons from developmental psychobiology and direct observations of infant behavior, we get useful clues to the origins of creativity. The epigenetic history of affects and the development of affect tolerance show us how these functions evolve in the context of the interaction of the infant and mother. The success in containing one's own excitement and keeping one's affects in manageable intensity so that they are useful for information processing is made possible by congruent responses of the mothering parent. This situation prolongs the illusions of symbiosis and omnipotence to their optimal duration, permitting a period of guilt-free practicing of self-soothing and self-gratification. By not forcing the conscious recognition of mother's externality and the confrontation with one's own rage and helplessness, the mother helps the infant to avoid a premature formation of an "external" object-representation.(ABSTRACT TRUNCATED AT 400 WORDS)
Acoustic radiation force control: Pulsating spherical carriers.
Rajabi, Majid; Mojahed, Alireza
2018-02-01
The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.
A psychotechnological review on eye-tracking systems: towards user experience.
Mele, Maria Laura; Federici, Stefano
2012-07-01
The aim of the present work is to show a critical review of the international literature on eye-tracking technologies by focusing on those features that characterize them as 'psychotechnologies'. A critical literature review was conducted through the main psychology, engineering, and computer sciences databases by following specific inclusion and exclusion criteria. A total of 46 matches from 1998 to 2010 were selected for content analysis. Results have been divided into four broad thematic areas. We found that, although there is a growing attention to end-users, most of the studies reviewed in this work are far from being considered as adopting holistic human-computer interaction models that include both individual differences and needs of users. User is often considered only as a measurement object of the functioning of the technological system and not as a real alter-ego of the intrasystemic interaction. In order to fully benefit from the communicative functions of gaze, the research on eye-tracking must emphasize user experience. Eye-tracking systems would become an effective assistive technology for integration, adaptation and neutralization of the environmental barrier only when a holistic model can be applied for both design processes and assessment of the functional components of the interaction.
Comparative analysis of data quality and applications in vegetation of HJ-1A CCD images
NASA Astrophysics Data System (ADS)
Wei, Hongwei; Tian, Qingjiu; Huang, Yan; Wang, Yan
2014-05-01
To study the data quality and to find the differences in vegetation monitoring applications, the same region at Chuzhou Lai 'an, the data of HJ-1A CCD1 on the April 1st, 2012 and the data of HJ-1A CCD2 on the March 31, 2012 have being comparative analysis by the method of objective quality (image)assessment which selecting over five spectral image evaluation parameters: radiation precision (mean, variance, inclination, steepness), information entropy, signal-to-noise ratio, sharpness, contrast, and normalized differential vegetation index. The results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality except radiation precision conform to their design theory, so the conclusion is that the difference of them without considering on the usual unless continuation;and Combination of field observation data Lai'an spectral data and GPS data (each point),selecting the normalized difference vegetation index as CCD1, CCD2 in vegetation monitoring application on the evaluation of the differences, and the specific process is based on GPS data is divided into nine small plots of spectral data ,and image data of nine one-to-one correspondence plots, and their normalized difference vegetation index values were calculated ,and measured spectra data resampling HJ-1A CCD1, CCD2 spectral response function calculated NDVI, and the results show that there is little differences between the HJ-1A CCD1 and CCD2 by objective evaluation of data quality, and, the differences of wheat `s reflection and normalized vegetation index is mainly due to calibration coefficients of CCD1 and CCD2, the differences of the solar elevation angle when obtaining the image and atmospheric conditions, so it has to consider the performance indicators as well as access conditions of CCD1 and CCD2, and to be take the normalization techniques for processing for the comparison analysis in the use of HJ-1A CCD Data to surface dynamic changes; Finally, in order to study the response of the spectral response function proposed spectral response function of impact factor, and in view of the spectral response function measured spectral data resampling only HJ-1A CCD spectral response function, calculated according to the formula of the equivalent reflectivity quantitative spectral response function, and spectral normalization of proposed theoretical Technical Support. The Objective evaluation of its application of HJ-1A CCD1, and CCD2 data quality differences research has important implications for broader application to further promote China-made remote sensing satellite data, future research also needs calibration coefficient, the solar elevation angle atmospheric conditions and its image scanning angle be taken into account, and to make the corresponding normalized its impact quantitative research has important significance for the timing changes in the application of the ecological environment in China.
Klotz, Sebastian
2008-09-01
The study of acoustics, harmonics and of music has been providing scientific models since Greek Antiquity. Since the early modern ages, two separate cultures began to emerge out of the study of music: a technical acoustics and an aesthetically and philosophically inspired musical criticism. In the writings of Johann Friedrich Herbart (1811) a scientific approach to musical aesthetics and to music perception is taking shape that reinstalls the listening process as a highly complex and logical phenomenon. By opening music for a scientific psychological investigation, Herbart pioneered the physiologically and acoustically grounded seminal work by Hermann von Helmholtz On the sensations of tone (1863) which the author considered a prerequisite for musical aesthetics and music theory. Helmholtz in turn inspired the philosopher and psychologist Carl Stumpf to further investigate musical perception (beginning in 1883). To Stumpf, it provided a paradigm for experimental psychology as mental functions and phenomena could be studied in detail. These functions and phenomena are the actual objects of scientific study in Stumpf's inductive and descriptive psychology. Combining insights from statistics, ethnology, anthropology, psychoacoustics and the cultural history of mankind, Stumpf and his team developed a new blend of science which absorbs styles of reasoning, analytical procedures and academic convictions from natural history, the natural sciences and the humanities but at the same time identifies shortcomings of these approaches that fail to grasp the complexities of psychic functions. Despite their reliance on the quasi-objective phonograph and despite their commitment to objectivity, precision and measurement, mental phenomena relating to tonal perception and to music provided too complex a challenge to be easily articulated and shared by the scientific community after 1900. The essay illustrates these tensions against the background of a history of objectivity.
Losa, Gabriele A
2009-01-01
The extension of the concepts of Fractal Geometry (Mandelbrot [1983]) toward the life sciences has led to significant progress in understanding complex functional properties and architectural / morphological / structural features characterising cells and tissues during ontogenesis and both normal and pathological development processes. It has even been argued that fractal geometry could provide a coherent description of the design principles underlying living organisms (Weibel [1991]). Fractals fulfil a certain number of theoretical and methodological criteria including a high level of organization, shape irregularity, functional and morphological self-similarity, scale invariance, iterative pathways and a peculiar non-integer fractal dimension [FD]. Whereas mathematical objects are deterministic invariant or self-similar over an unlimited range of scales, biological components are statistically self-similar only within a fractal domain defined by upper and lower limits, called scaling window, in which the relationship between the scale of observation and the measured size or length of the object can be established (Losa and Nonnenmacher [1996]). Selected examples will contribute to depict complex biological shapes and structures as fractal entities, and also to show why the application of the fractal principle is valuable for measuring dimensional, geometrical and functional parameters of cells, tissues and organs occurring within the vegetal and animal realms. If the criteria for a strict description of natural fractals are met, then it follows that a Fractal Geometry of Life may be envisaged and all natural objects and biological systems exhibiting self-similar patterns and scaling properties may be considered as belonging to the new subdiscipline of "fractalomics".
"Failure-to-Identify" Hunting Incidents: A Resilience Engineering Approach.
Bridges, Karl E; Corballis, Paul M; Hollnagel, Erik
2018-03-01
Objective The objective was to develop an understanding, using the Functional Resonance Analysis Method (FRAM), of the factors that could cause a deer hunter to misidentify their intended target. Background Hunting is a popular activity in many communities. However, hunters vary considerably based on training, experience, and expertise. Surprisingly, safety in hunting has not received much attention, especially failure-to-identify hunting incidents. These are incidents in which the hunter, after spotting and targeting their quarry, discharge their firearm only to discover they have been spotting and targeting another human, an inanimate object, or flora by mistake. The hunter must consider environment, target, time of day, weather, and many other factors-continuously evaluating whether the hunt should continue. To understand how these factors can relate to one another is fundamental to begin to understand how incidents happen. Method Workshops with highly experienced and active hunters led to the development of a FRAM model detailing the functions of a "Hunting FRAM." The model was evaluated for correctness based on confidential and anonymous near-miss event submissions by hunters. Results A FRAM model presenting the functions of a hunt was produced, evaluated, and accepted. Using the model, potential sources of incidents or other unintended outcomes were identified, which in turn helped to improve the model. Conclusion Utilizing principles of understanding and visualization tools of the FRAM, the findings create a foundation for safety improvements potentially through training or safety messages based on an increased understanding of the complexity of hunting.
Hodgetts, Sophie; Gallagher, Peter; Stow, Daniel; Ferrier, I Nicol; O'Brien, John T
2017-03-01
Depression is known to negatively impact social functioning, with patients commonly reporting difficulties maintaining social relationships. Moreover, a large body of evidence suggests poor social functioning is not only present in depression but that social functioning is an important factor in illness course and outcome. In addition, good social relationships can play a protective role against the onset of depressive symptoms, particularly in late-life depression. However, the majority of research in this area has employed self-report measures of social function. This approach is problematic, as due to their reliance on memory, such measures are prone to error from the neurocognitive impairments of depression, as well as mood-congruent biases. Narrative review based on searches of the Web of Science and PubMed database(s) from the start of the databases, until the end of 2015. The present review provides an overview of the literature on social functioning in (late-life) depression and discusses the potential for new technologies to improve the measurement of social function in depressed older adults. In particular, the use of wearable technology to collect direct, objective measures of social activity, such as physical activity and speech, is considered. In order to develop a greater understanding of social functioning in late-life depression, future research should include the development and validation of more direct, objective measures in conjunction with subjective self-report measures. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Aimaijiang, Yiliyaer; Otomaru, Takafumi; Taniguchi, Hisashi
2016-04-01
This preliminary study examined whether the type of surgery performed for head and neck lesion was associated perceived chewing ability, objective masticatory function, and oral health-related quality of life (OHRQoL) in patients who required a dento-maxillary prosthesis postoperatively. Thirty-eight patients with a dento-maxillary prosthesis were divided into three groups according to the type of surgery received: marginal mandibulectomy, segmental mandibulectomy with bony reconstruction, or glossectomy. Perceived chewing ability, objective mixing ability, and OHRQoL were evaluated using a food intake questionnaire, color-changeable chewing gum, and the Geriatric Oral Health Assessment Index (GOHAI), respectively. Differences in the scores obtained by the three measures were compared between the surgical groups using the Kruskal-Wallis test, and associations between the scores in each group were analyzed by Spearman's rank correlation analysis. Objective mixing ability was found to be significantly low only in patients who underwent glossectomy. No other measures differed significantly between the surgical groups. Perceived chewing ability and objective mixing ability were significantly associated in the marginal mandibulectomy and glossectomy groups but not in the segmental mandibulectomy group. Furthermore, GOHAI score was significantly associated with perceived chewing ability and objective mixing ability in the marginal mandibulectomy group. Within the limitations of this study, the present findings suggest that the type of surgery received might influence food mixing ability. Associations among food mixing ability, perceived chewing and OHRQoL are not accountable depending on the type of surgery received, indicating the presence of other contributing factors to be considered. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
SEM analysis of ionizing radiation effects in an analog to digital converter /AD571/
NASA Technical Reports Server (NTRS)
Gauthier, M. K.; Perret, J.; Evans, K. C.
1981-01-01
The considered investigation is concerned with the study of the total-dose degradation mechanisms in an IIL analog to digital (A/D) converter. The A/D converter is a 10 digit device having nine separate functional units on the chip which encompass several hundred transistors and circuit elements. It was the objective of the described research to find the radiation sensitive elements by a systematic search of the devices on the LSI chip. The employed technique using a scanning electron microscope to determine the functional blocks of an integrated circuit which are sensitive to ionizing radiation and then progressively zeroing in on the soft components within those blocks, proved extremely successful on the AD571. Four functional blocks were found to be sensitive to radiation, including the Voltage Reference, DAC, IIL Clock, and IIL SAR.
Vascular Leiomyoma and Geniculate Ganglion
Magliulo, Giuseppe; Iannella, Giannicola; Valente, Michele; Greco, Antonio; Appiani, Mario Ciniglio
2013-01-01
Objectives Discussion of a rare case of angioleiomyoma involving the geniculate ganglion and the intratemporal facial nerve segment and its surgical treatment. Design Case report. Setting Presence of an expansive lesion englobing the geniculate ganglion without any lesion to the cerebellopontine angle. Participants A 45-year-old man with a grade III facial paralysis according to the House-Brackmann scale of evaluation. Main Outcomes Measure Surgical pathology, radiologic appearance, histological features, and postoperative facial function. Results Removal of the entire lesion was achieved, preserving the anatomic integrity of the nerve; no nerve graft was necessary. Postoperative histology and immunohistochemical studies revealed features indicative of solid vascular leiomyoma. Conclusion Angioleiomyoma should be considered in the differential diagnosis of geniculate ganglion lesions. Optimal postoperative facial function is possible only by preserving the anatomical and functional integrity of the facial nerve. PMID:23943721
Global dynamic optimization approach to predict activation in metabolic pathways.
de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R
2014-01-06
During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.
Dissipation function and adaptive gradient reconstruction based smoke detection in video
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Qiang; Shi, Chunlei
2017-11-01
A method for smoke detection in video is proposed. The camera monitoring the scene is assumed to be stationary. With the atmospheric scattering model, dissipation function is reflected transmissivity between the background objects in the scene and the camera. Dark channel prior and fast bilateral filter are used for estimating dissipation function which is only the function of the depth of field. Based on dissipation function, visual background extractor (ViBe) can be used for detecting smoke as a result of smoke's motion characteristics as well as detecting other moving targets. Since smoke has semi-transparent parts, the things which are covered by these parts can be recovered by poisson equation adaptively. The similarity between the recovered parts and the original background parts in the same position is calculated by Normalized Cross Correlation (NCC) and the original background's value is selected from the frame which is nearest to the current frame. The parts with high similarity are considered as smoke parts.
Computation of Standard Errors
Dowd, Bryan E; Greene, William H; Norton, Edward C
2014-01-01
Objectives We discuss the problem of computing the standard errors of functions involving estimated parameters and provide the relevant computer code for three different computational approaches using two popular computer packages. Study Design We show how to compute the standard errors of several functions of interest: the predicted value of the dependent variable for a particular subject, and the effect of a change in an explanatory variable on the predicted value of the dependent variable for an individual subject and average effect for a sample of subjects. Empirical Application Using a publicly available dataset, we explain three different methods of computing standard errors: the delta method, Krinsky–Robb, and bootstrapping. We provide computer code for Stata 12 and LIMDEP 10/NLOGIT 5. Conclusions In most applications, choice of the computational method for standard errors of functions of estimated parameters is a matter of convenience. However, when computing standard errors of the sample average of functions that involve both estimated parameters and nonstochastic explanatory variables, it is important to consider the sources of variation in the function's values. PMID:24800304
NASA Technical Reports Server (NTRS)
Wallace, Robert
1986-01-01
A major impediment to a systematic attack on Ada software reusability is the lack of an effective taxonomy for software component functions. The scope of all possible applications of Ada software is considered too great to allow the practical development of a working taxonomy. Instead, for the purposes herein, the scope of Ada software application is limited to device and subsystem control in real-time embedded systems. A functional approach is taken in constructing the taxonomy tree for identified Ada domain. The use of modular software functions as a starting point fits well with the object oriented programming philosophy of Ada. Examples of the types of functions represented within the working taxonomy are real time kernels, interrupt service routines, synchronization and message passing, data conversion, digital filtering and signal conditioning, and device control. The constructed taxonomy is proposed as a framework from which a need analysis can be performed to reveal voids in current Ada real-time embedded programming efforts for Space Station.
Selective involvement of superior frontal cortex during working memory for shapes.
Yee, Lydia T S; Roe, Katherine; Courtney, Susan M
2010-01-01
A spatial/nonspatial functional dissociation between the dorsal and ventral visual pathways is well established and has formed the basis of domain-specific theories of prefrontal cortex (PFC). Inconsistencies in the literature regarding prefrontal organization, however, have led to questions regarding whether the nature of the dissociations observed in PFC during working memory are equivalent to those observed in the visual pathways for perception. In particular, the dissociation between dorsal and ventral PFC during working memory for locations versus object identities has been clearly present in some studies but not in others, seemingly in part due to the type of objects used. The current study compared functional MRI activation during delayed-recognition tasks for shape or color, two object features considered to be processed by the ventral pathway for perceptual recognition. Activation for the shape-delayed recognition task was greater than that for the color task in the lateral occipital cortex, in agreement with studies of visual perception. Greater memory-delay activity was also observed, however, in the parietal and superior frontal cortices for the shape than for the color task. Activity in superior frontal cortex was associated with better performance on the shape task. Conversely, greater delay activity for color than for shape was observed in the left anterior insula and this activity was associated with better performance on the color task. These results suggest that superior frontal cortex contributes to performance on tasks requiring working memory for object identities, but it represents different information about those objects than does the ventral frontal cortex.
NASA Technical Reports Server (NTRS)
Zipf, Mark E.
1989-01-01
An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.
NASA Astrophysics Data System (ADS)
Babaveisi, Vahid; Paydar, Mohammad Mahdi; Safaei, Abdul Sattar
2018-07-01
This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of maximizing the profit, minimizing the total risk and shortages of products. Since three objective functions are considered, a multi-objective solution methodology can be advantageous. Therefore, several approaches have been studied and an NSGA-II algorithm is first utilized, and then the results are validated using an MOSA and MOPSO algorithms. Priority-based encoding, which is used in all the algorithms, is the core of the solution computations. To compare the performance of the meta-heuristics, random numerical instances are evaluated by four criteria involving mean ideal distance, spread of non-dominance solution, the number of Pareto solutions, and CPU time. In order to enhance the performance of the algorithms, Taguchi method is used for parameter tuning. Finally, sensitivity analyses are performed and the computational results are presented based on the sensitivity analyses in parameter tuning.
NASA Astrophysics Data System (ADS)
Babaveisi, Vahid; Paydar, Mohammad Mahdi; Safaei, Abdul Sattar
2017-07-01
This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of maximizing the profit, minimizing the total risk and shortages of products. Since three objective functions are considered, a multi-objective solution methodology can be advantageous. Therefore, several approaches have been studied and an NSGA-II algorithm is first utilized, and then the results are validated using an MOSA and MOPSO algorithms. Priority-based encoding, which is used in all the algorithms, is the core of the solution computations. To compare the performance of the meta-heuristics, random numerical instances are evaluated by four criteria involving mean ideal distance, spread of non-dominance solution, the number of Pareto solutions, and CPU time. In order to enhance the performance of the algorithms, Taguchi method is used for parameter tuning. Finally, sensitivity analyses are performed and the computational results are presented based on the sensitivity analyses in parameter tuning.
Unsupervised Detection of Planetary Craters by a Marked Point Process
NASA Technical Reports Server (NTRS)
Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.
2011-01-01
With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.
NASA Astrophysics Data System (ADS)
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
Echolocation system of the bottlenose dolphin
NASA Astrophysics Data System (ADS)
Dubrovsky, N. A.
2004-05-01
The hypothesis put forward by Vel’min and Dubrovsky [1] is discussed. The hypothesis suggests that bottlenose dolphins possess two functionally separate auditory subsystems: one of them serves for analyzing extraneous sounds, as in nonecholocating terrestrial animals, and the other performs the analysis of echoes caused by the echolocation clicks of the animal itself. The first subsystem is called passive hearing, and the second, active hearing. The results of experimental studies of dolphin’s echolocation system are discussed to confirm the proposed hypothesis. For the active hearing of dolphins, the notion of a critical interval is considered as the interval of time within which the formation of a merged auditory image of the echolocation object is formed when all echo highlights of the echo from this object fall within the critical interval.
NASA Astrophysics Data System (ADS)
Palestini, C.; Basso, A.; Graziani, L.
2018-05-01
The contribution, considering the use of low-cost photogrammetric detection methodologies and the use of asset Historical-BIM, has as its aim the theme of knowledge and the adaptation of safety in school buildings, a topic brought to attention by the many situations of seismic risk that have interested the central Apennines in Italy. The specific investigation is referred to the Abruzzo region, hit by the recent earthquakes of 2016 and 2009 that have highlighted the vulnerability of the building structures involved in a large seismic crater covering large areas of the territory. The need to consider in advance the performance standards of building components, especially concerning the strategic ways of the functions contained in them, starts here. In this sense, the school buildings have emerged among the types on which to pay attention, a study theme to be promptly considered, considering the functions performed within them and the possible criticality of such constructions, often dated, enlarged or readjusted without appropriate seismic adaptation plans. From here derives the purpose of the research that is directed towards a systematic recognition of the scholastic heritage, deriving from objective and rapid surveys at low cost, taking into consideration the as-built and the different formal and structural aspects that define the architectural organisms to analyse and manage through three-dimensional models that can be interrogated using HBIM connected to databases containing information of a structural and functional nature. In summary, through the implementation of information in the BIM model, it will be possible to query and obtain in real time all the necessary information to optimize, in terms of efficiency, costs, and future maintenance operations.
Yu, Hao; Solvang, Wei Deng
2016-01-01
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment. PMID:27258293
An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking
NASA Astrophysics Data System (ADS)
Raihan A. V, Dilshad; Chakravorty, Suman
2018-03-01
Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.
Yu, Hao; Solvang, Wei Deng
2016-05-31
Hazardous waste location-routing problems are of importance due to the potential risk for nearby residents and the environment. In this paper, an improved mathematical formulation is developed based upon a multi-objective mixed integer programming approach. The model aims at assisting decision makers in selecting locations for different facilities including treatment plants, recycling plants and disposal sites, providing appropriate technologies for hazardous waste treatment, and routing transportation. In the model, two critical factors are taken into account: system operating costs and risk imposed on local residents, and a compensation factor is introduced to the risk objective function in order to account for the fact that the risk level imposed by one type of hazardous waste or treatment technology may significantly vary from that of other types. Besides, the policy instruments for promoting waste recycling are considered, and their influence on the costs and risk of hazardous waste management is also discussed. The model is coded and calculated in Lingo optimization solver, and the augmented ε-constraint method is employed to generate the Pareto optimal curve of the multi-objective optimization problem. The trade-off between different objectives is illustrated in the numerical experiment.
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.
2018-06-01
The necessity to find the global optimum of multiextremal functions arises in many applied problems where finding local solutions is insufficient. One of the desirable properties of global optimization methods is strong homogeneity meaning that a method produces the same sequences of points where the objective function is evaluated independently both of multiplication of the function by a scaling constant and of adding a shifting constant. In this paper, several aspects of global optimization using strongly homogeneous methods are considered. First, it is shown that even if a method possesses this property theoretically, numerically very small and large scaling constants can lead to ill-conditioning of the scaled problem. Second, a new class of global optimization problems where the objective function can have not only finite but also infinite or infinitesimal Lipschitz constants is introduced. Third, the strong homogeneity of several Lipschitz global optimization algorithms is studied in the framework of the Infinity Computing paradigm allowing one to work numerically with a variety of infinities and infinitesimals. Fourth, it is proved that a class of efficient univariate methods enjoys this property for finite, infinite and infinitesimal scaling and shifting constants. Finally, it is shown that in certain cases the usage of numerical infinities and infinitesimals can avoid ill-conditioning produced by scaling. Numerical experiments illustrating theoretical results are described.
O'Donnell, Sean T; Caldwell, Michael D; Barlaz, Morton A; Morris, Jeremy W F
2018-05-01
Municipal solid waste (MSW) landfills in the USA are regulated under Subtitle D of the Resource Conservation and Recovery Act (RCRA), which includes the requirement to protect human health and the environment (HHE) during the post-closure care (PCC) period. Several approaches have been published for assessment of potential threats to HHE. These approaches can be broadly divided into organic stabilization, which establishes an inert waste mass as the ultimate objective, and functional stability, which considers long-term emissions in the context of minimizing threats to HHE in the absence of active controls. The objective of this research was to conduct a case study evaluation of a closed MSW landfill using long-term data on landfill gas (LFG) production, leachate quality, site geology, and solids decomposition. Evaluations based on both functional and organic stability criteria were compared. The results showed that longer periods of LFG and leachate management would be required using organic stability criteria relative to an approach based on functional stability. These findings highlight the somewhat arbitrary and overly stringent nature of assigning universal stability criteria without due consideration of the landfill's hydrogeologic setting and potential environmental receptors. This supports previous studies that advocated for transition to a passive or inactive control stage based on a performance-based functional stability framework as a defensible mechanism for optimizing and ending regulatory PCC. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sun, Yuxiao; Wang, Jianan; Heine, Lizette; Huang, Wangshan; Wang, Jing; Hu, Nantu; Hu, Xiaohua; Fang, Xiaohui; Huang, Supeng; Laureys, Steven; Di, Haibo
2018-04-12
Behavioral assessment has been acted as the gold standard for the diagnosis of disorders of consciousness (DOC) patients. The item "Functional Object Use" in the motor function sub-scale in the Coma Recovery Scale-Revised (CRS-R) is a key item in differentiating between minimally conscious state (MCS) and emergence from MCS (EMCS). However, previous studies suggested that certain specific stimuli, especially something self-relevant can affect DOC patients' scores of behavioral assessment scale. So, we attempted to find out if personalized objects can improve the diagnosis of EMCS in the assessment of Functional Object Use by comparing the use of patients' favorite objects and other common objects in MCS patients. Twenty-one post-comatose patients diagnosed as MCS were prospectively included. The item "Functional Object Use" was assessed by using personalized objects (e.g., cigarette, paper) and non-personalized objects, which were presented in a random order. The rest assessments were performed following the standard protocol of the CRS-R. The differences between functional uses of the two types of objects were analyzed by the McNemar test. The incidence of Functional Object Use was significantly higher using personalized objects than non-personalized objects in the CRS-R. Five out of the 21 MCS studied patients, who were assessed with non-personalized objects, were re-diagnosed as EMCS with personalized objects (χ 2 = 5, df = 1, p < 0.05). Personalized objects employed here seem to be more effective to elicit patients' responses as compared to non-personalized objects during the assessment of Functional Object Use in DOC patients. Clinical Trials.gov: NCT02988206 ; Date of registration: 2016/12/12.
NASA Astrophysics Data System (ADS)
Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.
2018-03-01
According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.
A stochastic tabu search algorithm to align physician schedule with patient flow.
Niroumandrad, Nazgol; Lahrichi, Nadia
2018-06-01
In this study, we consider the pretreatment phase for cancer patients. This is defined as the period between the referral to a cancer center and the confirmation of the treatment plan. Physicians have been identified as bottlenecks in this process, and the goal is to determine a weekly cyclic schedule that improves the patient flow and shortens the pretreatment duration. High uncertainty is associated with the arrival day, profile and type of cancer of each patient. We also include physician satisfaction in the objective function. We present a MIP model for the problem and develop a tabu search algorithm, considering both deterministic and stochastic cases. Experiments show that our method compares very well to CPLEX under deterministic conditions. We describe the stochastic approach in detail and present a real application.
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N.
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead. PMID:26426701
Bayes Node Energy Polynomial Distribution to Improve Routing in Wireless Sensor Network.
Palanisamy, Thirumoorthy; Krishnasamy, Karthikeyan N
2015-01-01
Wireless Sensor Network monitor and control the physical world via large number of small, low-priced sensor nodes. Existing method on Wireless Sensor Network (WSN) presented sensed data communication through continuous data collection resulting in higher delay and energy consumption. To conquer the routing issue and reduce energy drain rate, Bayes Node Energy and Polynomial Distribution (BNEPD) technique is introduced with energy aware routing in the wireless sensor network. The Bayes Node Energy Distribution initially distributes the sensor nodes that detect an object of similar event (i.e., temperature, pressure, flow) into specific regions with the application of Bayes rule. The object detection of similar events is accomplished based on the bayes probabilities and is sent to the sink node resulting in minimizing the energy consumption. Next, the Polynomial Regression Function is applied to the target object of similar events considered for different sensors are combined. They are based on the minimum and maximum value of object events and are transferred to the sink node. Finally, the Poly Distribute algorithm effectively distributes the sensor nodes. The energy efficient routing path for each sensor nodes are created by data aggregation at the sink based on polynomial regression function which reduces the energy drain rate with minimum communication overhead. Experimental performance is evaluated using Dodgers Loop Sensor Data Set from UCI repository. Simulation results show that the proposed distribution algorithm significantly reduce the node energy drain rate and ensure fairness among different users reducing the communication overhead.
The acoustic response of rooms with open windows to airborne sounds.
NASA Technical Reports Server (NTRS)
Vaidya, P. G.
1972-01-01
The objective of the work described in this and the companion paper was to establish a theory for predicting the sound field generated in a room by a sonic boom incident on an open window. In this paper, some basic theoretical results are presented. First, the case of a normally incident harmonic wave was considered. Expressions for the pressure field were obtained by viewing the room as a terminated duct and by using a Green function method. The concept of mode excitation distribution functions was formulated and used to match the boundary conditions. This concept has been extended for oblique incidence. A modified form of Laplace transform technique was used to obtain expressions in the time domain for transient signals.
Lunar Surface Habitat Configuration Assessment: Methodology and Observations
NASA Technical Reports Server (NTRS)
Carpenter, Amanda
2008-01-01
The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.
Liddell, Belinda J.; Jobson, Laura
2016-01-01
A significant body of literature documents the neural mechanisms involved in the development and maintenance of posttraumatic stress disorder (PTSD). However, there is very little empirical work considering the influence of culture on these underlying mechanisms. Accumulating cultural neuroscience research clearly indicates that cultural differences in self-representation modulate many of the same neural processes proposed to be aberrant in PTSD. The objective of this review paper is to consider how culture may impact on the neural mechanisms underlying PTSD. We first outline five key affective and cognitive functions and their underlying neural correlates that have been identified as being disrupted in PTSD: (1) fear dysregulation; (2) attentional biases to threat; (3) emotion and autobiographical memory; (4) self-referential processing; and (5) attachment and interpersonal processing. Second, we consider prominent cultural theories and review the empirical research that has demonstrated the influence of cultural variations in self-representation on the neural substrates of these same five affective and cognitive functions. Finally, we propose a conceptual model that suggests that these five processes have major relevance to considering how culture may influence the neural processes underpinning PTSD. Highlights of the article Cultural variations in individualistic-collectivistic self-representation modulate many of the same neural and psychological processes disrupted in PTSD. These commonly affected processes include fear perception and regulation mechanisms, attentional biases (to threat), emotional and autobiographical memory systems, self-referential processing and attachment systems. A conceptual model is proposed whereby culture is considered integral to the development and maintenance of PTSD and its neural substrates. PMID:27302635
Assessing the quality of restored images in optical long-baseline interferometry
NASA Astrophysics Data System (ADS)
Gomes, Nuno; Garcia, Paulo J. V.; Thiébaut, Éric
2017-03-01
Assessing the quality of aperture synthesis maps is relevant for benchmarking image reconstruction algorithms, for the scientific exploitation of data from optical long-baseline interferometers, and for the design/upgrade of new/existing interferometric imaging facilities. Although metrics have been proposed in these contexts, no systematic study has been conducted on the selection of a robust metric for quality assessment. This article addresses the question: what is the best metric to assess the quality of a reconstructed image? It starts by considering several metrics and selecting a few based on general properties. Then, a variety of image reconstruction cases are considered. The observational scenarios are phase closure and phase referencing at the Very Large Telescope Interferometer (VLTI), for a combination of two, three, four and six telescopes. End-to-end image reconstruction is accomplished with the MIRA software, and several merit functions are put to test. It is found that convolution by an effective point spread function is required for proper image quality assessment. The effective angular resolution of the images is superior to naive expectation based on the maximum frequency sampled by the array. This is due to the prior information used in the aperture synthesis algorithm and to the nature of the objects considered. The ℓ1-norm is the most robust of all considered metrics, because being linear it is less sensitive to image smoothing by high regularization levels. For the cases considered, this metric allows the implementation of automatic quality assessment of reconstructed images, with a performance similar to human selection.
Lidar detection of underwater objects using a neuro-SVM-based architecture.
Mitra, Vikramjit; Wang, Chia-Jiu; Banerjee, Satarupa
2006-05-01
This paper presents a neural network architecture using a support vector machine (SVM) as an inference engine (IE) for classification of light detection and ranging (Lidar) data. Lidar data gives a sequence of laser backscatter intensities obtained from laser shots generated from an airborne object at various altitudes above the earth surface. Lidar data is pre-filtered to remove high frequency noise. As the Lidar shots are taken from above the earth surface, it has some air backscatter information, which is of no importance for detecting underwater objects. Because of these, the air backscatter information is eliminated from the data and a segment of this data is subsequently selected to extract features for classification. This is then encoded using linear predictive coding (LPC) and polynomial approximation. The coefficients thus generated are used as inputs to the two branches of a parallel neural architecture. The decisions obtained from the two branches are vector multiplied and the result is fed to an SVM-based IE that presents the final inference. Two parallel neural architectures using multilayer perception (MLP) and hybrid radial basis function (HRBF) are considered in this paper. The proposed structure fits the Lidar data classification task well due to the inherent classification efficiency of neural networks and accurate decision-making capability of SVM. A Bayesian classifier and a quadratic classifier were considered for the Lidar data classification task but they failed to offer high prediction accuracy. Furthermore, a single-layered artificial neural network (ANN) classifier was also considered and it failed to offer good accuracy. The parallel ANN architecture proposed in this paper offers high prediction accuracy (98.9%) and is found to be the most suitable architecture for the proposed task of Lidar data classification.
Hoshide, Reid; Brown, Justin
2017-01-01
Background: Unilateral diaphragmatic paralysis (UDP) can be a very disabling, typically causing shortness of breath and reduced exercise tolerance. We present a case of a surgical decompression of the phrenic nerve of a patient who presented with UDP, which occurred following cervical spine surgery. Methods: The workup for the etiology of UDP demonstrated paradoxical movement on “sniff test” and notably impaired pulmonary function tests. Seven months following the onset of the UDP, he underwent a surgical decompression of the phrenic nerve at the level of the anterior scalene. Results: He noted rapid symptomatic improvement following surgery and reversal of the above noted objective findings was documented. At his 4-year follow-up, he had complete resolution of his clinical symptoms. Repeated physiologic testing of his respiratory function had shown a complete reversal of his UDP. Conclusions: Anatomical compression of the phrenic nerve by redundant neck vasculature should be considered in the differential diagnosis of UDP. Here we demonstrated the techniques in workup and surgical management, with both subjective and objective evidence of success. PMID:29184705
Hoshide, Reid; Brown, Justin
2017-01-01
Unilateral diaphragmatic paralysis (UDP) can be a very disabling, typically causing shortness of breath and reduced exercise tolerance. We present a case of a surgical decompression of the phrenic nerve of a patient who presented with UDP, which occurred following cervical spine surgery. The workup for the etiology of UDP demonstrated paradoxical movement on "sniff test" and notably impaired pulmonary function tests. Seven months following the onset of the UDP, he underwent a surgical decompression of the phrenic nerve at the level of the anterior scalene. He noted rapid symptomatic improvement following surgery and reversal of the above noted objective findings was documented. At his 4-year follow-up, he had complete resolution of his clinical symptoms. Repeated physiologic testing of his respiratory function had shown a complete reversal of his UDP. Anatomical compression of the phrenic nerve by redundant neck vasculature should be considered in the differential diagnosis of UDP. Here we demonstrated the techniques in workup and surgical management, with both subjective and objective evidence of success.
NASA Technical Reports Server (NTRS)
Kafatos, Minas C. (Editor); Harrington, Robert S. (Editor); Maran, Stephen P. (Editor)
1986-01-01
Various reports on theoretical and observational studies of brown dwarfs (BDs) are presented. The topics considered include: astrometric detection of BDs, search for substellar companions to nearby stars using IR imaging, constraints on BD mass function from optical and IR searches, properties of stellar objects near the main sequence mass limit, search for low-mass stellar companions with the HF precision velocity technique, dynamical search for substellar objects, search for BDs in the IRAS data base, deep CCD survey for low mass stars in the disk and halo, the Berkeley search for a faint solar companion, the luminosity function for late M stars, astronomic search for IR dwarfs, and the role of the Space Telescope in the detection of BDs. Also addressed are: theoretical significance of BDs, evolution of super-Jupiters, compositional indicators in IR spectra of BDs, evolution of BDs and the evolutionary status of VB8B, the position of BDs on universal diagrams, theoretical determination of the minimum protostellar mass, Population II BDs and dark halos.
Optimal design of a bank of spatio-temporal filters for EEG signal classification.
Higashi, Hiroshi; Tanaka, Toshihisa
2011-01-01
The spatial weights for electrodes called common spatial pattern (CSP) are known to be effective in EEG signal classification for motor imagery based brain computer interfaces (MI-BCI). To achieve accurate classification in CSP, the frequency filter should be properly designed. To this end, several methods for designing the filter have been proposed. However, the existing methods cannot consider plural brain activities described with different frequency bands and different spatial patterns such as activities of mu and beta rhythms. In order to efficiently extract these brain activities, we propose a method to design plural filters and spatial weights which extract desired brain activity. The proposed method designs finite impulse response (FIR) filters and the associated spatial weights by optimization of an objective function which is a natural extension of CSP. Moreover, we show by a classification experiment that the bank of FIR filters which are designed by introducing an orthogonality into the objective function can extract good discriminative features. Moreover, the experiment result suggests that the proposed method can automatically detect and extract brain activities related to motor imagery.
Hausdorff, Jeffrey M
2007-01-01
Until recently, quantitative studies of walking have typically focused on properties of a typical or average stride, ignoring the stride-to-stride fluctuations and considering these fluctuations to be noise. Work over the past two decades has demonstrated, however, that the alleged noise actually conveys important information. The magnitude of the stride-to-stride fluctuations and their changes over time during a walk – gait dynamics – may be useful in understanding the physiology of gait, in quantifying age-related and pathologic alterations in the locomotor control system, and in augmenting objective measurement of mobility and functional status Indeed, alterations in gait dynamics may help to determine disease severity, medication utility, and fall risk, and to objectively document improvements in response to therapeutic interventions, above and beyond what can be gleaned from measures based on the average, typical stride. This review discusses support for the idea that gait dynamics has meaning and may be useful in providing insight into the neural control of locomtion and for enhancing functional assessment of aging, chronic disease, and their impact on mobility. PMID:17618701
Li, Zhijun; Ge, Shuzhi Sam; Liu, Sibang
2014-08-01
This paper investigates optimal feet forces' distribution and control of quadruped robots under external disturbance forces. First, we formulate a constrained dynamics of quadruped robots and derive a reduced-order dynamical model of motion/force. Consider an external wrench on quadruped robots; the distribution of required forces and moments on the supporting legs of a quadruped robot is handled as a tip-point force distribution and used to equilibrate the external wrench. Then, a gradient neural network is adopted to deal with the optimized objective function formulated as to minimize this quadratic objective function subjected to linear equality and inequality constraints. For the obtained optimized tip-point force and the motion of legs, we propose the hybrid motion/force control based on an adaptive neural network to compensate for the perturbations in the environment and approximate feedforward force and impedance of the leg joints. The proposed control can confront the uncertainties including approximation error and external perturbation. The verification of the proposed control is conducted using a simulation.
Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.
Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed
2018-03-01
Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Huaipeng; Zhang, Qi; Shi, Jun
2017-12-01
Magnetic resonance (MR) images suffer from intensity inhomogeneity. Segmentation-based approaches can simultaneously achieve both intensity inhomogeneity compensation (IIC) and tissue segmentation for MR images with little noise, but they often fail for images polluted by severe noise. Here, we propose a noise-robust algorithm named noise-suppressed multiplicative intrinsic component optimization (NSMICO) for simultaneous IIC and tissue segmentation. Considering the spatial characteristics in an image, an adaptive nonlocal means filtering term is incorporated into the objective function of NSMICO to decrease image deterioration due to noise. Then, a fuzzy local factor term utilizing the spatial and gray-level relationship among local pixels is embedded into the objective function to reach a balance between noise suppression and detail preservation. Experimental results on synthetic natural and MR images with various levels of intensity inhomogeneity and noise, as well as in vivo clinical MR images, have demonstrated the effectiveness of the NSMICO and its superiority to three competing approaches. The NSMICO could be potentially valuable for MR image IIC and tissue segmentation.
Bernier, Annie; Beauchamp, Miriam H; Carlson, Stephanie M; Lalonde, Gabrielle
2015-09-01
In light of emerging evidence suggesting that the affective quality of parent-child relationships may relate to individual differences in young children's executive functioning (EF) skills, the aim of this study was to investigate the prospective associations between attachment security in toddlerhood and children's EF skills in kindergarten. Mother-child dyads (N = 105) participated in 2 toddlerhood visits in their homes, when children were 15 months and 2 years of age. Mother-child attachment security was assessed with the Attachment Q-Sort during both these visits. When children were in kindergarten (ages 5-6), they were administered a battery of EF tasks, and their teachers completed the Behavior Rating Inventory of Executive Function to assess children's EF problems. The results indicated that kindergarteners who were more securely attached to their mothers in toddlerhood showed better performance on all EF tasks, and were considered by their teachers to present fewer EF problems in everyday school situations. These results held above family socioeconomic status (SES) and child age, sex, and general cognitive functioning. The fact that early attachment security uniquely predicted both teacher reports and children's objective EF task performance suggests that parent-child attachment may be a promising factor to consider in the continuing search for the social antecedents of young children's EF. (c) 2015 APA, all rights reserved).
Ginsberg, Jill P; Rai, Shesh N; Carlson, Claire A; Meadows, Anna T; Hinds, Pamela S; Spearing, Elena M; Zhang, Lijun; Callaway, Lulie; Neel, Michael D; Rao, Bhaskar N; Marchese, Victoria G
2007-12-01
Comparison of functional mobility and quality of life is performed in patients with lower-extremity bone sarcoma following either amputation, limb-sparing surgery, or rotationplasty with four different types of outcome measures: (1) an objective functional mobility measure that requires patients to physically perform specific tasks, functional mobility assessment (FMA); (2) a clinician administered tool, Musculoskeletal Tumor Society Scale (MSTS); (3) a patient questionnaire, Toronto Extremity Salvage Scale (TESS); and (4) a health-related quality of life (HRQL) measure, Short Form-36 version 2 (SF-36v.2). This is a prospective multi-site study including 91 patients with lower-extremity bone sarcoma following amputation, limb-sparing surgery, or rotationplasty. One of three physical therapists administered the quality of life measure (SF-36v.2) as well as a battery of functional measures (FMA, MSTS, and TESS). Differences between patients who had amputation, limb-sparing surgery, or rotationplasty were consistently demonstrated by the FMA. Patients with limb sparing femur surgery performed better than those patients with an above the knee amputation but similarly to a small number of rotationplasty patients. Several of the more conventional self-report measures were shown to not have the discriminative capabilities of the FMA in these cohorts. In adolescents with lower-extremity bone sarcoma, it may be advantageous to consider the use of a combination of outcome measures, including the FMA, for objective functional mobility assessment along with the TESS for a subjective measure of disability and the SF-36v.2 for a quality-of-life measure. 2007 Wiley-Liss, Inc
Reasoning about Function Objects
NASA Astrophysics Data System (ADS)
Nordio, Martin; Calcagno, Cristiano; Meyer, Bertrand; Müller, Peter; Tschannen, Julian
Modern object-oriented languages support higher-order implementations through function objects such as delegates in C#, agents in Eiffel, or closures in Scala. Function objects bring a new level of abstraction to the object-oriented programming model, and require a comparable extension to specification and verification techniques. We introduce a verification methodology that extends function objects with auxiliary side-effect free (pure) methods to model logical artifacts: preconditions, postconditions and modifies clauses. These pure methods can be used to specify client code abstractly, that is, independently from specific instantiations of the function objects. To demonstrate the feasibility of our approach, we have implemented an automatic prover, which verifies several non-trivial examples.
Conflict between object structural and functional affordances in peripersonal space.
Kalénine, Solène; Wamain, Yannick; Decroix, Jérémy; Coello, Yann
2016-10-01
Recent studies indicate that competition between conflicting action representations slows down planning of object-directed actions. The present study aims to assess whether similar conflict effects exist during manipulable object perception. Twenty-six young adults performed reach-to-grasp and semantic judgements on conflictual objects (with competing structural and functional gestures) and non-conflictual objects (with similar structural and functional gestures) presented at difference distances in a 3D virtual environment. Results highlight a space-dependent conflict between structural and functional affordances. Perceptual judgments on conflictual objects were slower that perceptual judgments on non-conflictual objects, but only when objects were presented within reach. Findings demonstrate that competition between structural and functional affordances during object perception induces a processing cost, and further show that object position in space can bias affordance competition. Copyright © 2016 Elsevier B.V. All rights reserved.
Objective Video Quality Assessment Based on Machine Learning for Underwater Scientific Applications
Moreno-Roldán, José-Miguel; Luque-Nieto, Miguel-Ángel; Poncela, Javier; Otero, Pablo
2017-01-01
Video services are meant to be a fundamental tool in the development of oceanic research. The current technology for underwater networks (UWNs) imposes strong constraints in the transmission capacity since only a severely limited bitrate is available. However, previous studies have shown that the quality of experience (QoE) is enough for ocean scientists to consider the service useful, although the perceived quality can change significantly for small ranges of variation of video parameters. In this context, objective video quality assessment (VQA) methods become essential in network planning and real time quality adaptation fields. This paper presents two specialized models for objective VQA, designed to match the special requirements of UWNs. The models are built upon machine learning techniques and trained with actual user data gathered from subjective tests. Our performance analysis shows how both of them can successfully estimate quality as a mean opinion score (MOS) value and, for the second model, even compute a distribution function for user scores. PMID:28333123
Stars with relativistic speeds in the Hills scenario
NASA Astrophysics Data System (ADS)
Dremova, G. N.; Dremov, V. V.; Tutukov, A. V.
2017-07-01
The dynamical capture of a binary system consisting of a supermassive black hole (SMBH) and an ordinary star in the gravitational field of a central (more massive) SMBH is considered in the three-body problem in the framework of a modified Hills scenario. The results of numerical simulations predict the existence of objects whose spatial speeds are comparable to the speed of light. The conditions for and constraints imposed on the ejection speeds realized in a classical scenario and the modified Hills scenario are analyzed. The star is modeled using an N-body approach, making it possible to treat it as a structured object, enabling estimation of the probability that the object survives when it is ejected with relativistic speed as a function of the mass of the star, the masses of both SMBHs, and the pericenter distance. It is possible that the modern kinematic classification for stars with anomalously high spatial velocities will be augmented with a new class—stars with relativistic speeds.
The effects of a convex rear-view mirror on ocular accommodative responses.
Nagata, Tatsuo; Iwasaki, Tsuneto; Kondo, Hiroyuki; Tawara, Akihiko
2013-11-01
Convex mirrors are universally used as rear-view mirrors in automobiles. However, the ocular accommodative responses during the use of these mirrors have not yet been examined. This study investigated the effects of a convex mirror on the ocular accommodative systems. Seven young adults with normal visual functions were ordered to binocularly watch an object in a convex or plane mirror. The accommodative responses were measured with an infrared optometer. The average of the accommodation of all subjects while viewing the object in the convex mirror were significantly nearer than in the plane mirror, although all subjects perceived the position of the object in the convex mirror as being farther away. Moreover, the fluctuations of accommodation were significantly larger for the convex mirror. The convex mirror caused the 'false recognition of distance', which induced the large accommodative fluctuations and blurred vision. Manufactures should consider the ocular accommodative responses as a new indicator for increasing automotive safety. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.
A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs
NASA Astrophysics Data System (ADS)
Elahi, Golnaz; Yu, Eric
In designing software systems, security is typically only one design objective among many. It may compete with other objectives such as functionality, usability, and performance. Too often, security mechanisms such as firewalls, access control, or encryption are adopted without explicit recognition of competing design objectives and their origins in stakeholder interests. Recently, there is increasing acknowledgement that security is ultimately about trade-offs. One can only aim for "good enough" security, given the competing demands from many parties. In this paper, we examine how conceptual modeling can provide explicit and systematic support for analyzing security trade-offs. After considering the desirable criteria for conceptual modeling methods, we examine several existing approaches for dealing with security trade-offs. From analyzing the limitations of existing methods, we propose an extension to the i* framework for security trade-off analysis, taking advantage of its multi-agent and goal orientation. The method was applied to several case studies used to exemplify existing approaches.
NASA Astrophysics Data System (ADS)
Chai, Runqi; Savvaris, Al; Tsourdos, Antonios
2016-06-01
In this paper, a fuzzy physical programming (FPP) method has been introduced for solving multi-objective Space Manoeuvre Vehicles (SMV) skip trajectory optimization problem based on hp-adaptive pseudospectral methods. The dynamic model of SMV is elaborated and then, by employing hp-adaptive pseudospectral methods, the problem has been transformed to nonlinear programming (NLP) problem. According to the mission requirements, the solutions were calculated for each single-objective scenario. To get a compromised solution for each target, the fuzzy physical programming (FPP) model is proposed. The preference function is established with considering the fuzzy factor of the system such that a proper compromised trajectory can be acquired. In addition, the NSGA-II is tested to obtain the Pareto-optimal solution set and verify the Pareto optimality of the FPP solution. Simulation results indicate that the proposed method is effective and feasible in terms of dealing with the multi-objective skip trajectory optimization for the SMV.
Model and algorithm based on accurate realization of dwell time in magnetorheological finishing.
Song, Ci; Dai, Yifan; Peng, Xiaoqiang
2010-07-01
Classically, a dwell-time map is created with a method such as deconvolution or numerical optimization, with the input being a surface error map and influence function. This dwell-time map is the numerical optimum for minimizing residual form error, but it takes no account of machine dynamics limitations. The map is then reinterpreted as machine speeds and accelerations or decelerations in a separate operation. In this paper we consider combining the two methods in a single optimization by the use of a constrained nonlinear optimization model, which regards both the two-norm of the surface residual error and the dwell-time gradient as an objective function. This enables machine dynamic limitations to be properly considered within the scope of the optimization, reducing both residual surface error and polishing times. Further simulations are introduced to demonstrate the feasibility of the model, and the velocity map is reinterpreted from the dwell time, meeting the requirement of velocity and the limitations of accelerations or decelerations. Indeed, the model and algorithm can also apply to other computer-controlled subaperture methods.
Acoustic design by topology optimization
NASA Astrophysics Data System (ADS)
Dühring, Maria B.; Jensen, Jakob S.; Sigmund, Ole
2008-11-01
To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when using two barriers are achieved compared to utilizing conventional sound barriers.
Effects of atmospheric turbulence on the imaging performance of optical system
NASA Astrophysics Data System (ADS)
Al-Hamadani, Ali H.; Zainulabdeen, Faten Sh.; Karam, Ghada Sabah; Nasir, Eman Yousif; Al-Saedi, Abaas
2018-05-01
Turbulent effects are very complicated and still not entirely understood. Light waves from an astronomical object are distorted as they pass through the atmosphere. The refractive index fluctuations in the turbulent atmosphere induce an optical path difference (OPD) between different parts of the wavefront, distorted wavefronts produce low-quality images and degrade the image beyond the diffraction limit. In this paper the image degradation due to 2-D Gaussian atmospheric turbulence is considered in terms of the point spread function (PSF), and Strehl ratio as an image quality criteria for imaging systems with different apertures using the pupil function teqneque. A general expression for the degraded PSF in the case of circular and square apertures (with half diagonal = √{π/2 } , and 1) diffraction limited and defocused optical system is considered. Based on the derived formula, the effect of the Gaussian atmospheric turbulence on circular and square pupils has been studied with details. Numerical results show that the performance of optical systems with square aperture is more efficient at high levels of atmospheric turbulence than the other apertures.
Reconstruction of phonon relaxation times from systems featuring interfaces with unknown properties
NASA Astrophysics Data System (ADS)
Forghani, Mojtaba; Hadjiconstantinou, Nicolas G.
2018-05-01
We present a method for reconstructing the phonon relaxation-time function τω=τ (ω ) (including polarization) and associated phonon free-path distribution from thermal spectroscopy data for systems featuring interfaces with unknown properties. Our method does not rely on the effective thermal-conductivity approximation or a particular physical model of the interface behavior. The reconstruction is formulated as an optimization problem in which the relaxation times are determined as functions of frequency by minimizing the discrepancy between the experimentally measured temperature profiles and solutions of the Boltzmann transport equation for the same system. Interface properties such as transmissivities are included as unknowns in the optimization; however, because for the thermal spectroscopy problems considered here the reconstruction is not very sensitive to the interface properties, the transmissivities are only approximately reconstructed and can be considered as byproducts of the calculation whose primary objective is the accurate determination of the relaxation times. The proposed method is validated using synthetic experimental data obtained from Monte Carlo solutions of the Boltzmann transport equation. The method is shown to remain robust in the presence of uncertainty (noise) in the measurement.
The role of diffusion tensor imaging tractography for Gamma Knife thalamotomy planning.
Gomes, João Gabriel Ribeiro; Gorgulho, Alessandra Augusta; de Oliveira López, Amanda; Saraiva, Crystian Wilian Chagas; Damiani, Lucas Petri; Pássaro, Anderson Martins; Salvajoli, João Victor; de Oliveira Siqueira, Ludmila; Salvajoli, Bernardo Peres; De Salles, Antônio Afonso Ferreira
2016-12-01
OBJECTIVE The role of tractography in Gamma Knife thalamotomy (GK-T) planning is still unclear. Pyramidal tractography might reduce the risk of radiation injury to the pyramidal tract and reduce motor complications. METHODS In this study, the ventralis intermedius nucleus (VIM) targets of 20 patients were bilaterally defined using Iplannet Stereotaxy Software, according to the anterior commissure-posterior commissure (AC-PC) line and considering the localization of the pyramidal tract. The 40 targets and tractography were transferred as objects to the GammaPlan Treatment Planning System (GP-TPS). New targets were defined, according to the AC-PC line in the functional targets section of the GP-TPS. The target offsets required to maintain the internal capsule (IC) constraint of < 15 Gy were evaluated. In addition, the strategies available in GP-TPS to maintain the minimum conventional VIM target dose at > 100 Gy were determined. RESULTS A difference was observed between the positions of both targets and the doses to the IC. The lateral (x) and the vertical (z) coordinates were adjusted 1.9 mm medially and 1.3 mm cranially, respectively. The targets defined considering the position of the pyramidal tract were more medial and superior, based on the constraint of 15 Gy touching the object representing the IC in the GP-TPS. The best strategy to meet the set constraints was 90° Gamma angle (GA) with automatic shaping of dose distribution; this was followed by 110° GA. The worst GA was 70°. Treatment time was substantially increased by the shaping strategy, approximately doubling delivery time. CONCLUSIONS Routine use of DTI pyramidal tractography might be important to fine-tune GK-T planning. DTI tractography, as well as anisotropy showing the VIM, promises to improve Gamma Knife functional procedures. They allow for a more objective definition of dose constraints to the IC and targeting. DTI pyramidal tractography introduced into the treatment planning may reduce the incidence of motor complications and improve efficacy. This needs to be validated in a large clinical series.
Solberg, Øivind; Blix, Ines; Heir, Trond
2015-01-01
Objective: In the present study we wanted to investigate the link between exposure, posttraumatic stress symptomatology, and functional impairment in the aftermath of terrorism. Method: Posttraumatic stress symptomatology and functional impairment related to the Oslo bombing 22nd of July, 2011, in directly and indirectly exposed individuals (N = 1927) were assessed together with demographics, exposure, peri-traumatic reactions, and event centrality approximately 1 year after the attack. Results: Directly and indirectly exposed individuals qualifying for posttraumatic stress disorder (PTSD) reported similar peri-traumatic reactions, event centrality, and functional impairment. However, clusters within the PTSD symptomatology were differentially associated with impairment as a function of their exposure. In the directly exposed group, all clusters within the PTSD symptomatology were associated with impairment in function, while only emotional numbing was associated with impairment within the indirectly exposed group. Conclusion: Considering that terror attacks frequently involve directly exposed individuals and a larger population of indirectly exposed individuals, this finding is of importance, especially in the design of intervention programs and the development of treatment policies. PMID:26300833
Optimality principles in the regulation of metabolic networks.
Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas
2012-08-29
One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.
Sub-pixel accuracy thickness calculation of poultry fillets from scattered laser profiles
NASA Astrophysics Data System (ADS)
Jing, Hansong; Chen, Xin; Tao, Yang; Zhu, Bin; Jin, Fenghua
2005-11-01
A laser range imaging system based on the triangulation method was designed and implemented for online high-resolution thickness calculation of poultry fillets. A laser pattern was projected onto the surface of the chicken fillet for calculation of the thickness of the meat. Because chicken fillets are relatively loosely-structured material, a laser light easily penetrates the meat, and scattering occurs both at and under the surface. When laser light is scattered under the surface it is reflected back and further blurs the laser line sharpness. To accurately calculate the thickness of the object, the light transportation has to be considered. In the system, the Bidirectional Reflectance Distribution Function (BSSRDF) was used to model the light transportation and the light pattern reflected into the cameras. BSSRDF gives the reflectance of a target as a function of illumination geometry and viewing geometry. Based on this function, an empirical method has been developed and it has been proven that this method can be used to accurately calculate the thickness of the object from a scattered laser profile. The laser range system is designed as a sub-system that complements the X-ray bone inspection system for non-invasive detection of hazardous materials in boneless poultry meat with irregular thickness.
NASA Astrophysics Data System (ADS)
Yun, Dong-Un; Lee, Sang-Kwon
2017-06-01
In this paper, we present a novel method for an objective evaluation of knocking noise emitted by diesel engines based on the temporal and frequency masking theory. The knocking sound of a diesel engine is a vibro-acoustic sound correlated with the high-frequency resonances of the engine structure and a periodic impulsive sound with amplitude modulation. Its period is related to the engine speed and includes specific frequency bands related to the resonances of the engine structure. A knocking sound with the characteristics of a high-frequency impulsive wave can be masked by low-frequency sounds correlated with the harmonics of the firing frequency and broadband noise. The degree of modulation of the knocking sound signal was used for such objective evaluations in previous studies, without considering the masking effect. However, the frequency masking effect must be considered for the objective evaluation of the knocking sound. In addition to the frequency masking effect, the temporal masking effect occurs because the period of the knocking sound changes according to the engine speed. Therefore, an evaluation method considering the temporal and frequency masking effect is required to analyze the knocking sound objectively. In this study, an objective evaluation method considering the masking effect was developed based on the masking theory of sound and signal processing techniques. The method was applied successfully for the objective evaluation of the knocking sound of a diesel engine.
Goldman-Rakic, P S
1996-10-29
The functional architecture of prefrontal cortex is central to our understanding of human mentation and cognitive prowess. This region of the brain is often treated as an undifferentiated structure, on the one hand, or as a mosaic of psychological faculties, on the other. This paper focuses on the working memory processor as a specialization of prefrontal cortex and argues that the different areas within prefrontal cortex represent iterations of this function for different information domains, including spatial cognition, object cognition and additionally, in humans, semantic processing. According to this parallel processing architecture, the 'central executive' could be considered an emergent property of multiple domain-specific processors operating interactively. These processors are specializations of different prefrontal cortical areas, each interconnected both with the domain-relevant long-term storage sites in posterior regions of the cortex and with appropriate output pathways.
Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray
This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less
Turano, Maria Teresa; Viggiano, Maria Pia
2017-11-01
The relationship between face recognition ability and socioemotional functioning has been widely explored. However, how aging modulates this association regarding both objective performance and subjective-perception is still neglected. Participants, aged between 18 and 81 years, performed a face memory test and completed subjective face recognition and socioemotional questionnaires. General and social anxiety, and neuroticism traits account for the individual variation in face recognition abilities during adulthood. Aging modulates these relationships because as they age, individuals that present a higher level of these traits also show low-level face recognition ability. Intriguingly, the association between depression and face recognition abilities is evident with increasing age. Overall, the present results emphasize the importance of embedding face metacognition measurement into the context of these studies and suggest that aging is an important factor to be considered, which seems to contribute to the relationship between socioemotional and face-cognitive functioning.
Functioning and disability in autism spectrum disorder: A worldwide survey of experts
de Schipper, Elles; Mahdi, Soheil; de Vries, Petrus; Granlund, Mats; Holtmann, Martin; Karande, Sunil; Almodayfer, Omar; Shulman, Cory; Tonge, Bruce; Wong, Virginia V.C.N.; Zwaigenbaum, Lonnie
2016-01-01
Objective: This study is the second of four to prepare International Classification of Functioning, Disability and Health (ICF; and Children and Youth version, ICF(‐CY)) Core Sets for Autism Spectrum Disorder (ASD).The objective of this study was to survey the opinions and experiences of international experts on functioning and disability in ASD. Methods: Using a protocol stipulated by the World Health Organization (WHO) and monitored by the ICF Research Branch, an email‐based questionnaire was circulated worldwide among ASD experts, and meaningful functional ability and disability concepts were extracted from their responses. These concepts were then linked to the ICF(‐CY) by two independent researchers using a standardized linking procedure. Results: N = 225 experts from 10 different disciplines and all six WHO‐regions completed the survey. Meaningful concepts from the responses were linked to 210 ICF(‐CY) categories. Of these, 103 categories were considered most relevant to ASD (i.e., identified by at least 5% of the experts), of which 37 were related to Activities and Participation, 35 to Body functions, 22 to Environmental factors, and 9 to Body structures. A variety of personal characteristics and ASD‐related functioning skills were provided by experts, including honesty, loyalty, attention to detail and creative talents. Reported gender differences in ASD comprised more externalizing behaviors among males and more internalizing behaviors in females. Conclusion: The ICF(‐CY) categories derived from international expert opinions indicate that the impact of ASD on functioning extends far beyond core symptom domains. Autism Res 2016, 9: 959–969. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:26749373
Daytime sleepiness, exercise, and physical function in older adults.
Chasens, Eileen R; Sereika, Susan M; Weaver, Terri E; Umlauf, Mary Grace
2007-03-01
The purpose of this study was to describe the association between sleepiness, exercise, and physical function in older adults, testing the hypothesis that sleepiness predicts decreased exercise and impaired physical function in this population. We performed a secondary analysis of data from the National Sleep Foundation's Sleep in America Poll, comparing frequency of exercise and ability to perform functional tasks between sleepy and non-sleepy subjects. Trained interviewers administered a scripted telephone survey. Participants (n = 1506) were community-dwelling older Americans (55-84 years) randomly chosen from geographically representative households with listed telephone numbers. Sleepiness 'so severe that it interferes with daytime activity' was dichotomized as 'daily/frequently' or 'never/rare'. Exercise frequency was scored 1-4 ('less than once a week' to 'more than five times a week'). Responses to five questions (walk 0.5 mile, climb stairs, push/pull heavy object, stoop/crouch/or kneel, write, handle small objects), rated 1-5 ('no difficulty' to 'unable to do'), were summed; a mean score of > or = 2.5 was considered impaired physical function. Daytime sleepiness predicted low exercise frequency while controlling for age and body mass index (BMI) (OR = 1.40, 95% CI 1.031-1.897, P = 0.031). Frequent daytime sleepiness predicted impaired physical function (OR = 2.76, 95%CI = 0.237-0.553, P = 0.001) after controlling for age, BMI, income and number of co-morbid conditions. The conclusion was that daytime sleepiness in older adults is associated with physical functional impairments and decreased exercise frequency. The findings suggest that sleepiness in older adults is not benign but has implications for continued physical decline and warrants attention.
A survey. Financial accounting and internal control functions pursued by hospital boards.
Gavin, T A
1984-09-01
Justification for a board committee's existence is its ability to devote time to issues judged to be important by the full board. This seems to have happened. Multiple committees pursue more functions than the other committee structures. Boards lacking an FA/IC committee pursue significantly fewer functions than their counterparts with committees. Substantial respondent agreement exists on those functions most and least frequently pursued, those perceived to be most and least important, and those perceived to be most and least effectively undertaken. Distinctions between committee structures and the full board, noted in the previous paragraph, hold true with respect to the importance of functions. All board structures identified reviewing the budget and comparing it to actual results as important. Committee structures are generally more inclined to address functions related to the work of the independent auditor and the effectiveness of the hospital's system and controls than are full board structures. Functions related to the internal auditor are pursued least frequently by all FA/IC board structures. The following suggestions are made to help boards pay adequate attention to and obtain objective information about the financial affairs of their hospitals. Those boards that do not have some form of an FA/IC committee should consider starting one. Evidence shows chief financial officers have been a moving force in establishing and strengthening such committees. Boards having a joint or single committee structure should consider upgrading their structure to either a single committee or multiple committees respectively. The complexity of the healthcare environment requires that more FA/IC functions be addressed by the board. The board or its FA/IC committee(s) should meet with their independent CPA's, fiscal intermediary auditors, and internal auditors. Where the hospital lacks an internal audit function a study should be undertaken to determine the feasibility of initiating such a function. In most cases, the benefits derived from an independent, properly staffed internal audit function far exceed the cost of such a function.
NASA Astrophysics Data System (ADS)
Wayan Suletra, I.; Priyandari, Yusuf; Jauhari, Wakhid A.
2018-03-01
We propose a new model of facility location to solve a kind of problem that belong to a class of set-covering problem using an integer programming formulation. Our model contains a single objective function, but it represents two goals. The first is to minimize the number of facilities, and the other is to minimize the total distance of customers to facilities. The first goal is a mandatory goal, and the second is an improvement goal that is very useful when alternate optimum solutions for the first goal exist. We use a big number as a weight on the first goal to force the solution algorithm to give first priority to the first goal. Besides considering capacity constraints, our model accommodates a kind of either-or constraints representing facilities dependency. The either-or constraints will prevent the solution algorithm to select two or more facilities from the same set of facility with mutually exclusive properties. A real location selection problem to locate a set of wastewater treatment facility (IPAL) in Surakarta city, Indonesia, will describe the implementation of our model. A numerical example is given using the data of that real problem.
Evaluation of purchase intention of customers in two wheeler automobile segment: AHP and TOPSIS
NASA Astrophysics Data System (ADS)
Sri Yogi, Kottala
2018-03-01
Winning heart of customers is preeminent main design of any business organization in global business environment. This paper explored customer’s priorities while purchasing a two wheeler automobile segment using Analytical Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) as a multi criteria decision making tools to accomplish the research objectives. Study has been done to analyze different criteria to be considered during purchasing of two wheeler automobiles among respondents using structured questionnaire based on SAATY scale. Based on our previous work on empirical & fuzzy logic approach to product quality and purchase intention of customers in two wheeler- operational, performance, economic, brand value and maintenance aspects are considered as decision criteria of customers while purchasing a two wheeler. The study suggests high pick up during overtaking, petrol saving, reasonable spare parts price, unique in design and identity and easy to change gear as main criterion in purchasing process. We also found some leading two wheeler automobiles models available in Indian market using some objective function criterion in choosing some important characteristics like price, cylinder capacity, brake horse power and weight during purchasing process of two wheeler automobile in Indian market based on respondents perception.
A consideration of cognitive factors in the learning and education of older adults
NASA Astrophysics Data System (ADS)
Fry, Prem S.
1992-07-01
The purpose of this paper is to consider the unique cognitive and intellectual factors that influence the learning and education of older adults. With this objective in mind, the paper reviews the empirical literature on patterns of intellectual and cognitive aging, and ends by discussing the implications and applications of these patterns for the practical and effective education of our elderly citizenry. When we consider the aging of intellectual abilities we are concerned with studying the development of fluid, crystallized and practical intelligence and variations in these abilities from adulthood into advanced old age. We are also concerned with looking at changes in cognitive functions such as attention, memory, information retrieval and tolerance for interference in learning capacity. Much recent work has been successful in showing that intellectual and cognitive decline in old age is not necessarily irreversible. While many elderly persons are very able learners, are highly self-directed, and have ample educational and intellectual resources available, others may benefit from assistance or suggestions about how to compensate for some of the cognitive declines in old age. With this objective the implications are discussed for educators and practitioners who must formulate cognitive training programs for older adults.
Souza, J C; Simoes, H G; Campbell, C S G; Pontes, F L; Boullosa, D A; Prestes, J
2012-02-01
One of the most important objectives of intervention programs for persons with haemophilia (PWH) is to improve their quality of life. Regular physical activity has been recommended as an adjunct to conventional treatment, with positive results in the prevention of joint problems and bleeding, in addition to the improvement in cardiovascular function, muscle strength, and body composition. The objective of the present review was to present the benefits of aerobic and resistance training programs in PWH, as well to discuss the best exercise dose-response in the different levels of disease severity. We considered randomized controlled trials, study cases and literature reviews from MEDLINE and Highwire databases. After a detailed analysis of the studies involving exercise for PWH, it can be concluded that this intervention elicits some benefits for physical fitness and blood coagulation mechanisms, suggesting the application of physical training as a non pharmacological treatment in association with conventional treatment. Adequate and periodized resistance training considering the disease severity, accompanied by physical education professionals could improve muscle strength, balance and proprioception. In addition, aerobic training could reduce the risks of obesity and several metabolic and cardiovascular diseases. Exercise can improve several outcomes of quality in PWH. © Georg Thieme Verlag KG Stuttgart · New York.
Considerations concerning the definition of sarcopenia.
Dawson-Hughes, B; Bischoff-Ferrari, H
2016-11-01
In this commentary, we describe the sarcopenia spectrum that results in frailty and consider the impact of several components of the frailty definition on its global prevalence. We review proposed operational definitions of sarcopenia and the extent to which they have been shown to predict hard clinical outcomes, such as hip fracture, falls, and mortality. A head-to-head comparison of nine proposed operational definitions of sarcopenia as predictors of falls revealed that the definition involving appendicular lean mass (ALM)/ht 2 alone was a significant predictor; the prevalence of sarcopenia by this definition was 11 %. We consider the strengths and limitations of definitions that include functional measurements, such as gait speed and grip strength, along with measures of lean tissue mass. The functional assessments are harder to standardize than the more objective ALM measurements. The prevalence of sarcopenia by definitions that include functional and lean mass measurements tends to be lower than the prevalence by definitions that include lean mass alone. A low prevalence limits opportunity for early identification and application of prevention strategies. For these and other reasons, it seems advantageous to base the operational definition of sarcopenia on ALM/ht 2 alone. This commentary addresses the importance of a globally applicable operational definition of sarcopenia and both desirable and undesirable features of such a definition.
Comprehensive Outpatient Rehabilitation Program: Hospital-Based Stroke Outpatient Rehabilitation.
Rice, Danielle; Janzen, Shannon; McIntyre, Amanda; Vermeer, Julianne; Britt, Eileen; Teasell, Robert
2016-05-01
Few studies have considered the effectiveness of outpatient rehabilitation programs for stroke patients. The objective of this study was to assess the effectiveness of a hospital-based interdisciplinary outpatient stroke rehabilitation program with respect to physical functioning, mobility, and balance. The Comprehensive Outpatient Rehabilitation Program provides a hospital-based interdisciplinary approach to stroke rehabilitation in Southwestern Ontario. Outcome measures from physiotherapy and occupational therapy sessions were available at intake and discharge from the program. A series of paired sample t-tests were performed to assess patient changes between time points for each outcome measure. A total of 271 patients met the inclusion criteria for analysis (56.1% male; mean age = 62.9 ± 13.9 years). Significant improvements were found between admission and discharge for the Functional Independence Measure, grip strength, Chedoke-McMaster Stroke Assessment, two-minute walk test, maximum walk test, Timed Up and Go, Berg Balance Scale, and one-legged stance (P < .003 for all). The findings indicate that an interdisciplinary rehabilitation program was effective at improving the physical functioning, mobility, and balance of individuals after a stroke. A hospital-based, stroke-specific rehabilitation program should be considered when patients continue to experience deficits after inpatient rehabilitation. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Dense image registration through MRFs and efficient linear programming.
Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos
2008-12-01
In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.
Comparison of CEAS and Williams-type models for spring wheat yields in North Dakota and Minnesota
NASA Technical Reports Server (NTRS)
Barnett, T. L. (Principal Investigator)
1982-01-01
The CEAS and Williams-type yield models are both based on multiple regression analysis of historical time series data at CRD level. The CEAS model develops a separate relation for each CRD; the Williams-type model pools CRD data to regional level (groups of similar CRDs). Basic variables considered in the analyses are USDA yield, monthly mean temperature, monthly precipitation, and variables derived from these. The Williams-type model also used soil texture and topographic information. Technological trend is represented in both by piecewise linear functions of year. Indicators of yield reliability obtained from a ten-year bootstrap test of each model (1970-1979) demonstrate that the models are very similar in performance in all respects. Both models are about equally objective, adequate, timely, simple, and inexpensive. Both consider scientific knowledge on a broad scale but not in detail. Neither provides a good current measure of modeled yield reliability. The CEAS model is considered very slightly preferable for AgRISTARS applications.
The Representation of Object-Directed Action and Function Knowledge in the Human Brain
Chen, Quanjing; Garcea, Frank E.; Mahon, Bradford Z.
2016-01-01
The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. PMID:25595179
Toward Optimal Transport Networks
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Kincaid, Rex K.; Vargo, Erik P.
2008-01-01
Strictly evolutionary approaches to improving the air transport system a highly complex network of interacting systems no longer suffice in the face of demand that is projected to double or triple in the near future. Thus evolutionary approaches should be augmented with active design methods. The ability to actively design, optimize and control a system presupposes the existence of predictive modeling and reasonably well-defined functional dependences between the controllable variables of the system and objective and constraint functions for optimization. Following recent advances in the studies of the effects of network topology structure on dynamics, we investigate the performance of dynamic processes on transport networks as a function of the first nontrivial eigenvalue of the network's Laplacian, which, in turn, is a function of the network s connectivity and modularity. The last two characteristics can be controlled and tuned via optimization. We consider design optimization problem formulations. We have developed a flexible simulation of network topology coupled with flows on the network for use as a platform for computational experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan
The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less
From non-preemptive to preemptive scheduling using synchronization synthesis.
Černý, Pavol; Clarke, Edmund M; Henzinger, Thomas A; Radhakrishna, Arjun; Ryzhyk, Leonid; Samanta, Roopsha; Tarrach, Thorsten
2017-01-01
We present a computer-aided programming approach to concurrency. The approach allows programmers to program assuming a friendly, non-preemptive scheduler, and our synthesis procedure inserts synchronization to ensure that the final program works even with a preemptive scheduler. The correctness specification is implicit, inferred from the non-preemptive behavior. Let us consider sequences of calls that the program makes to an external interface. The specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We guarantee that our synthesis does not introduce deadlocks and that the synchronization inserted is optimal w.r.t. a given objective function. The solution is based on a finitary abstraction, an algorithm for bounded language inclusion modulo an independence relation, and generation of a set of global constraints over synchronization placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronization placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronization solution. We apply the approach to device-driver programming, where the driver threads call the software interface of the device and the API provided by the operating system. Our experiments demonstrate that our synthesis method is precise and efficient. The implicit specification helped us find one concurrency bug previously missed when model-checking using an explicit, user-provided specification. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronization placements are produced for our experiments, favoring a minimal number of synchronization operations or maximum concurrency, respectively.
Behavioral Modeling of Adversaries with Multiple Objectives in Counterterrorism.
Mazicioglu, Dogucan; Merrick, Jason R W
2018-05-01
Attacker/defender models have primarily assumed that each decisionmaker optimizes the cost of the damage inflicted and its economic repercussions from their own perspective. Two streams of recent research have sought to extend such models. One stream suggests that it is more realistic to consider attackers with multiple objectives, but this research has not included the adaption of the terrorist with multiple objectives to defender actions. The other stream builds off experimental studies that show that decisionmakers deviate from optimal rational behavior. In this article, we extend attacker/defender models to incorporate multiple objectives that a terrorist might consider in planning an attack. This includes the tradeoffs that a terrorist might consider and their adaption to defender actions. However, we must also consider experimental evidence of deviations from the rationality assumed in the commonly used expected utility model in determining such adaption. Thus, we model the attacker's behavior using multiattribute prospect theory to account for the attacker's multiple objectives and deviations from rationality. We evaluate our approach by considering an attacker with multiple objectives who wishes to smuggle radioactive material into the United States and a defender who has the option to implement a screening process to hinder the attacker. We discuss the problems with implementing such an approach, but argue that research in this area must continue to avoid misrepresenting terrorist behavior in determining optimal defensive actions. © 2017 Society for Risk Analysis.
Assessment of derelict soil quality: Abiotic, biotic and functional approaches.
Vincent, Quentin; Auclerc, Apolline; Beguiristain, Thierry; Leyval, Corinne
2018-02-01
The intensification and subsequent closing down of industrial activities during the last century has left behind large surfaces of derelict lands. Derelict soils have low fertility, can be contaminated, and many of them remain unused. However, with the increasing demand of soil surfaces, they might be considered as a resource, for example for non-food biomass production. The study of their physico-chemical properties and of their biodiversity and biological activity may provide indications for their potential re-use. The objective of our study was to investigate the quality of six derelict soils, considering abiotic, biotic, and functional parameters. We studied (i) the soil bacteria, fungi, meso- and macro-fauna and plant communities of six different derelict soils (two from coking plants, one from a settling pond, two constructed ones made from different substrates and remediated soil, and an inert waste storage one), and (ii) their decomposition function based on the decomposer trophic network, enzyme activities, mineralization activity, and organic pollutant degradation. Biodiversity levels in these soils were high, but all biotic parameters, except the mycorrhizal colonization level, discriminated them. Multivariate analysis showed that biotic parameters co-varied more with fertility proxies than with soil contamination parameters. Similarly, functional parameters significantly co-varied with abiotic parameters. Among functional parameters, macro-decomposer proportion, enzyme activity, average mineralization capacity, and microbial polycyclic aromatic hydrocarbon degraders were useful to discriminate the soils. We assessed their quality by combining abiotic, biotic, and functional parameters: the compost-amended constructed soil displayed the highest quality, while the settling pond soil and the contaminated constructed soil displayed the lowest. Although differences among the soils were highlighted, this study shows that derelict soils may provide a biodiversity ecosystem service and are functional for decomposition. Copyright © 2017 Elsevier B.V. All rights reserved.
Abedini, Mohammad; Moradi, Mohammad H; Hosseinian, S M
2016-03-01
This paper proposes a novel method to address reliability and technical problems of microgrids (MGs) based on designing a number of self-adequate autonomous sub-MGs via adopting MGs clustering thinking. In doing so, a multi-objective optimization problem is developed where power losses reduction, voltage profile improvement and reliability enhancement are considered as the objective functions. To solve the optimization problem a hybrid algorithm, named HS-GA, is provided, based on genetic and harmony search algorithms, and a load flow method is given to model different types of DGs as droop controller. The performance of the proposed method is evaluated in two case studies. The results provide support for the performance of the proposed method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
She, Yuchen; Li, Shuang
2018-01-01
The planning algorithm to calculate a satellite's optimal slew trajectory with a given keep-out constraint is proposed. An energy-optimal formulation is proposed for the Space-based multiband astronomical Variable Objects Monitor Mission Analysis and Planning (MAP) system. The innovative point of the proposed planning algorithm lies in that the satellite structure and control limitation are not considered as optimization constraints but are formulated into the cost function. This modification is able to relieve the burden of the optimizer and increases the optimization efficiency, which is the major challenge for designing the MAP system. Mathematical analysis is given to prove that there is a proportional mapping between the formulation and the satellite controller output. Simulations with different scenarios are given to demonstrate the efficiency of the developed algorithm.
Electrograms (ECG, EEG, EMG, EOG).
Reilly, Richard B; Lee, T Clive
2010-01-01
There is a constant need in medicine to obtain objective measurements of physical and cognitive function as the basis for diagnosis and monitoring of health. The body can be considered as a chemical and electrical system supported by a mechanical structure. Measuring and quantifying such electrical activity provides a means for objective examination of heath status. The term electrogram, from the Greek electro meaning electricity and gram meaning write or record, is the broad definition given to the recording of electrical signal from the body. In order that comparisons of electrical activity can be made against normative data, certain methods and procedures have been defined for different electrograms. This paper reviews these methods and procedures for the more typical electrograms associated with some of the major organs in the body, providing a first point of reference for the reader.
II.3. Electrograms (ECG, EEG, EMG, EOG).
Reilly, Richard B; Lee, T Clive
2010-01-01
There is a constant need in medicine to obtain objective measurements of physical and cognitive function as the basis for diagnosis and monitoring of health. The body can be considered as a chemical and electrical system supported by a mechanical structure. Measuring and quantifying such electrical activity provides a means for objective examination of heath status. The term electrogram, from the Greek electro meaning electricity and gram meaning write or record, is the broad definition given to the recording of electrical signal from the body. In order that comparisons of electrical activity can be made against normative data, certain methods and procedures have been defined for different electrograms. This paper reviews these methods and procedures for the more typical electrograms associated with some of the major organs in the body, providing a first point of reference for the reader.
An automated methodology development. [software design for combat simulation
NASA Technical Reports Server (NTRS)
Hawley, L. R.
1985-01-01
The design methodology employed in testing the applicability of Ada in large-scale combat simulations is described. Ada was considered as a substitute for FORTRAN to lower life cycle costs and ease the program development efforts. An object-oriented approach was taken, which featured definitions of military targets, the capability of manipulating their condition in real-time, and one-to-one correlation between the object states and real world states. The simulation design process was automated by the problem statement language (PSL)/problem statement analyzer (PSA). The PSL/PSA system accessed the problem data base directly to enhance the code efficiency by, e.g., eliminating non-used subroutines, and provided for automated report generation, besides allowing for functional and interface descriptions. The ways in which the methodology satisfied the responsiveness, reliability, transportability, modifiability, timeliness and efficiency goals are discussed.
Data processing and optimization system to study prospective interstate power interconnections
NASA Astrophysics Data System (ADS)
Podkovalnikov, Sergei; Trofimov, Ivan; Trofimov, Leonid
2018-01-01
The paper presents Data processing and optimization system for studying and making rational decisions on the formation of interstate electric power interconnections, with aim to increasing effectiveness of their functioning and expansion. The technologies for building and integrating a Data processing and optimization system including an object-oriented database and a predictive mathematical model for optimizing the expansion of electric power systems ORIRES, are described. The technology of collection and pre-processing of non-structured data collected from various sources and its loading to the object-oriented database, as well as processing and presentation of information in the GIS system are described. One of the approaches of graphical visualization of the results of optimization model is considered on the example of calculating the option for expansion of the South Korean electric power grid.
Studies on combined model based on functional objectives of large scale complex engineering
NASA Astrophysics Data System (ADS)
Yuting, Wang; Jingchun, Feng; Jiabao, Sun
2018-03-01
As various functions were included in large scale complex engineering, and each function would be conducted with completion of one or more projects, combined projects affecting their functions should be located. Based on the types of project portfolio, the relationship of projects and their functional objectives were analyzed. On that premise, portfolio projects-technics based on their functional objectives were introduced, then we studied and raised the principles of portfolio projects-technics based on the functional objectives of projects. In addition, The processes of combined projects were also constructed. With the help of portfolio projects-technics based on the functional objectives of projects, our research findings laid a good foundation for management of large scale complex engineering portfolio management.
Collette, Cynthia; Bonnotte, Isabelle; Jacquemont, Charlotte; Kalénine, Solène; Bartolo, Angela
2016-01-01
Object semantics include object function and manipulation knowledge. Function knowledge refers to the goal attainable by using an object (e.g., the function of a key is to open or close a door) while manipulation knowledge refers to gestures one has to execute to use an object appropriately (e.g., a key is held between the thumb and the index, inserted into the door lock and then turned). To date, several studies have assessed function and manipulation knowledge in brain lesion patients as well as in healthy adult populations. In patients with left brain damage, a double dissociation between these two types of knowledge has been reported; on the other hand, behavioral studies in healthy adults show that function knowledge is processed faster than manipulation knowledge. Empirical evidence has shown that object interaction in children differs from that in adults, suggesting that the access to function and manipulation knowledge in children might also differ. To investigate the development of object function and manipulation knowledge, 51 typically developing 8-9-10 year-old children and 17 healthy young adults were tested on a naming task associated with a semantic priming paradigm (190-ms SOA; prime duration: 90 ms) in which a series of line drawings of manipulable objects were used. Target objects could be preceded by three priming contexts: related (e.g., knife-scissors for function; key-screwdriver for manipulation), unrelated but visually similar (e.g., glasses-scissors; baseball bat-screwdriver), and purely unrelated (e.g., die-scissors; tissue-screwdriver). Results showed a different developmental pattern of function and manipulation priming effects. Function priming effects were not present in children and emerged only in adults, with faster naming responses for targets preceded by objects sharing the same function. In contrast, manipulation priming effects were already present in 8-year-olds with faster naming responses for targets preceded by objects sharing the same manipulation and these decreased linearly between 8 and 10 years of age, 10-year-olds not differing from adults. Overall, results show that the access to object function and manipulation knowledge changes during development by favoring manipulation knowledge in childhood and function knowledge in adulthood. PMID:27602004
Demant, Kirsa M; Vinberg, Maj; Kessing, Lars V; Miskowiak, Kamilla W
2015-09-30
Cognitive dysfunction is prevalent in bipolar disorder (BD). However, the evidence regarding the association between subjective cognitive complaints, objective cognitive performance and psychosocial function is sparse and inconsistent. Seventy seven patients with bipolar disorder who presented cognitive complaints underwent assessment of objective and subjective cognitive function and psychosocial functioning as part of their participation in two clinical trials. We investigated the association between global and domain-specific objective and subjective cognitive function and between global cognitive function and psychosocial function. We also identified clinical variables that predicted objective and subjective cognitive function and psychosocial functioning. There was a correlation between global subjective and objective measures of cognitive dysfunction but not within the individual cognitive domains. However, the correlation was weak, suggesting that cognitive complaints are not an assay of cognition per se. Self-rated psychosocial difficulties were associated with subjective (but not objective) cognitive impairment and both subjective cognitive and psychosocial difficulties were predicted by depressive symptoms. Our findings indicate that adequate assessment of cognition in the clinical treatment of BD and in drug trials targeting cognition requires implementation of not only subjective measures but also of objective neuropsychological tests. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Interfaces Leading Groups of Learners to Make Their Shared Problem-Solving Organization Explicit
ERIC Educational Resources Information Center
Moguel, P.; Tchounikine, P.; Tricot, A.
2012-01-01
In this paper, we consider collective problem-solving challenges and a particular structuring objective: lead groups of learners to make their shared problem-solving organization explicit. Such an objective may be considered as a way to lead learners to consider building and maintaining a shared organization, and/or as a way to provide a basis for…
Driver, Christine
2005-04-01
This paper explores the dynamics brought into analytic work when there is a symmetric fusion between psyche and soma within the patient. It will consider how such a fusion may emerge from reverberations between physical constitution and a lack of maternal attunement, containment and reflective function. I will describe the work with a patient, Jane, who was diagnosed with Myalgic Encephalomyelitis (ME) during the course of her analysis. The dynamic of her physical symptoms within the analytic work, and the impact of her internal affects and internal 'objects' within the transference and countertransference, indicated a difficulty in finding an homeostatic balance resulting in overactivity and underactivity at both somatic and psychological levels. Using the clinical work with Jane this paper will also examine the interrelationship between mother-infant attachment, an inadequate internalized maternal reflective function, affect dysregulation, unconscious fusion, the lack of psyche-soma differentiation and the impact of the latter in relation to internal regulation systems, or lack of, in patients with Chronic Fatigue Syndrome (CFS) and Myalgic Encephalomyelitis (ME). I will draw on similar work carried out by Holland (1997), Simpson (1997) and Simpson et al. (1997). The paper will also employ the concept of the reflective function (Fonagy 2001; Knox 2003), and consider Matte-Blanco's (1999) concepts of generalization and unconscious symmetry in relation to the patient's internal world. I go on to consider how analysis provides a point outside the 'fusion' that can enable the 'deadlock' to be broken.
Miller, Rachael; Jelbert, Sarah A; Taylor, Alex H; Cheke, Lucy G; Gray, Russell D; Loissel, Elsa; Clayton, Nicola S
2016-01-01
The ability to reason about causality underlies key aspects of human cognition, but the extent to which non-humans understand causality is still largely unknown. The Aesop's Fable paradigm, where objects are inserted into water-filled tubes to obtain out-of-reach rewards, has been used to test casual reasoning in birds and children. However, success on these tasks may be influenced by other factors, specifically, object preferences present prior to testing or arising during pre-test stone-dropping training. Here, we assessed this 'object-bias' hypothesis by giving New Caledonian crows and 5-10 year old children two object-choice Aesop's Fable experiments: sinking vs. floating objects, and solid vs. hollow objects. Before each test, we assessed subjects' object preferences and/or trained them to prefer the alternative object. Both crows and children showed pre-test object preferences, suggesting that birds in previous Aesop's Fable studies may also have had initial preferences for objects that proved to be functional on test. After training to prefer the non-functional object, crows, but not children, performed more poorly on these two object-choice Aesop's Fable tasks than subjects in previous studies. Crows dropped the non-functional objects into the tube on their first trials, indicating that, unlike many children, they do not appear to have an a priori understanding of water displacement. Alternatively, issues with inhibition could explain their performance. The crows did, however, learn to solve the tasks over time. We tested crows further to determine whether their eventual success was based on learning about the functional properties of the objects, or associating dropping the functional object with reward. Crows inserted significantly more rewarded, non-functional objects than non-rewarded, functional objects. These findings suggest that the ability of New Caledonian crows to produce performances rivaling those of young children on object-choice Aesop's Fable tasks is partly due to pre-existing object preferences.
Alejo-Alvarez, Luz; Guzmán-Fierro, Víctor; Fernández, Katherina; Roeckel, Marlene
2016-11-01
A full-scale process for the treatment of 80 tons per day of poultry manure was designed and optimized. A total ammonia nitrogen (TAN) balance was performed at steady state, considering the stoichiometry and the kinetic data from the anaerobic digestion and the anaerobic ammonia oxidation. The equipment, reactor design, investment costs, and operational costs were considered. The volume and cost objective functions optimized the process in terms of three variables: the water recycle ratio, the protein conversion during AD, and the TAN conversion in the process. The processes were compared with and without water recycle; savings of 70% and 43% in the annual fresh water consumption and the heating costs, respectively, were achieved. The optimal process complies with the Chilean environmental legislation limit of 0.05 g total nitrogen/L.
Double multiple streamtube model with recent improvements
NASA Astrophysics Data System (ADS)
Paraschivoiu, I.; Delclaux, F.
1983-06-01
The objective of the present paper is to show the new capabilities of the double multiple streamtube (DMS) model for predicting the aerodynamic loads and performance of the Darrieus vertical-axis turbine. The original DMS model has been improved (DMSV model) by considering the variation in the upwind and downwind induced velocities as a function of the azimuthal angle for each streamtube. A comparison is made of the rotor performance for several blade geometries (parabola, catenary, troposkien, and Sandia shape). A new formulation is given for an approximate troposkien shape by considering the effect of the gravitational field. The effects of three NACA symmetrical profiles, 0012, 0015 and 0018, on the aerodynamic performance of the turbine are shown. Finally, a semiempirical dynamic-stall model has been incorporated and a better approximation obtained for modeling the local aerodynamic forces and performance for a Darrieus rotor.
PyMOL mControl: Manipulating molecular visualization with mobile devices.
Lam, Wendy W T; Siu, Shirley W I
2017-01-02
Viewing and manipulating three-dimensional (3D) structures in molecular graphics software are essential tasks for researchers and students to understand the functions of molecules. Currently, the way to manipulate a 3D molecular object is mainly based on mouse-and-keyboard control that is usually difficult and tedious to learn. While gesture-based and touch-based interactions are increasingly popular in interactive software systems, their suitability in handling molecular graphics has not yet been sufficiently explored. Here, we designed the gesture-based and touch-based interaction methods to manipulate virtual objects in PyMOL utilizing the motion and touch sensors in a mobile device. Three fundamental viewing controls-zooming, translation and rotation-and frequently used functions were implemented. Results from a pilot user study reveal that task performances on viewing controls using a mobile device are slightly reduced as compared to mouse-and-keyboard method. However, it is considered to be more suitable for oral presentations and equally suitable for education scenarios such as school classes. Overall, PyMOL mControl provides an alternative way to manipulate objects in molecular graphic software with new user experiences. The software is freely available at http://cbbio.cis.umac.mo/mcontrol.html. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):76-83, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Derivative-free generation and interpolation of convex Pareto optimal IMRT plans
NASA Astrophysics Data System (ADS)
Hoffmann, Aswin L.; Siem, Alex Y. D.; den Hertog, Dick; Kaanders, Johannes H. A. M.; Huizenga, Henk
2006-12-01
In inverse treatment planning for intensity-modulated radiation therapy (IMRT), beamlet intensity levels in fluence maps of high-energy photon beams are optimized. Treatment plan evaluation criteria are used as objective functions to steer the optimization process. Fluence map optimization can be considered a multi-objective optimization problem, for which a set of Pareto optimal solutions exists: the Pareto efficient frontier (PEF). In this paper, a constrained optimization method is pursued to iteratively estimate the PEF up to some predefined error. We use the property that the PEF is convex for a convex optimization problem to construct piecewise-linear upper and lower bounds to approximate the PEF from a small initial set of Pareto optimal plans. A derivative-free Sandwich algorithm is presented in which these bounds are used with three strategies to determine the location of the next Pareto optimal solution such that the uncertainty in the estimated PEF is maximally reduced. We show that an intelligent initial solution for a new Pareto optimal plan can be obtained by interpolation of fluence maps from neighbouring Pareto optimal plans. The method has been applied to a simplified clinical test case using two convex objective functions to map the trade-off between tumour dose heterogeneity and critical organ sparing. All three strategies produce representative estimates of the PEF. The new algorithm is particularly suitable for dynamic generation of Pareto optimal plans in interactive treatment planning.
The Representation of Object-Directed Action and Function Knowledge in the Human Brain.
Chen, Quanjing; Garcea, Frank E; Mahon, Bradford Z
2016-04-01
The appropriate use of everyday objects requires the integration of action and function knowledge. Previous research suggests that action knowledge is represented in frontoparietal areas while function knowledge is represented in temporal lobe regions. Here we used multivoxel pattern analysis to investigate the representation of object-directed action and function knowledge while participants executed pantomimes of familiar tool actions. A novel approach for decoding object knowledge was used in which classifiers were trained on one pair of objects and then tested on a distinct pair; this permitted a measurement of classification accuracy over and above object-specific information. Region of interest (ROI) analyses showed that object-directed actions could be decoded in tool-preferring regions of both parietal and temporal cortex, while no independently defined tool-preferring ROI showed successful decoding of object function. However, a whole-brain searchlight analysis revealed that while frontoparietal motor and peri-motor regions are engaged in the representation of object-directed actions, medial temporal lobe areas in the left hemisphere are involved in the representation of function knowledge. These results indicate that both action and function knowledge are represented in a topographically coherent manner that is amenable to study with multivariate approaches, and that the left medial temporal cortex represents knowledge of object function. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Preliminary application of scripting in RayStation TPS system].
Zhang, Jianying; Sun, Jing; Wang, Yun
2013-07-01
Discussing the basic application of scripting in RayStation TPS system. On the RayStation 3.0 Platform, the programming methods and the points should be considered during basic scripting application were explored with the help of utility scripts. The typical planning problems in the field of beam arrangement and plan outputting were used as examples by ironprthon language. The necessary properties and the functions of patient object for script writing can be extracted from RayStation system. With the help of NET controls, planning functions such as the interactive parameter input, treatment planning control and the extract of the plan have been realized by scripts. With the help of demo scripts, scripts can be developed in RayStation, as well as the system performance can be upgraded.
The development of a whole-body algorithm
NASA Technical Reports Server (NTRS)
Kay, F. J.
1973-01-01
The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.
De Gasperi, Andrea; Mazza, Ernestina; Prosperi, Manlio
2016-01-01
Indocyanine green (ICG) kinetics (PDR/R15) used to quantitatively assess hepatic function in the perioperative period of major resective surgery and liver transplantation have been the object of an extensive, updated and critical review. New, non invasive bedside monitors (pulse dye densitometry technology) make this opportunity widely available in clinical practice. After having reviewed basic concepts of hepatic clearance, we analysed the most common indications ICG kinetic parameters have nowadays in clinical practice, focusing in particular on the diagnostic and prognostic role of PDR and R15 in the perioperative period of major liver surgery and liver transplantation. As recently pointed out, even if of extreme interest, ICG clearance parameters have still some limitations, to be considered when using these tests. PMID:26981173
Optimality Principles in the Regulation of Metabolic Networks
Berkhout, Jan; Bruggeman, Frank J.; Teusink, Bas
2012-01-01
One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide. PMID:24957646
Autonomic nervous system correlates in movement observation and motor imagery
Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.
2013-01-01
The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623
Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota
2017-02-01
Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Li, Huan; Sinha, Tridib K; Oh, Jeong Seok; Kim, Jin Kuk
2018-04-25
Inspired by the epidermis-dermis composition of human skin, here we have simply developed a lightweight, robust, flexible, and biocompatible single-electrode triboelectric nanogenerator (S-TENG)-based prototype of bilayer artificial skin, by attaching one induction electrode with unfoamed skin layer of microcellular thermoplastic polyurethane (TPU) foam, which shows high-performance object manipulation [by responding differently toward different objects, viz., aluminum foil, balloon, cotton glove, human finger, glass, rubber glove, artificial leather, polyimide, poly(tetrafluoroethylene) (PTFE), paper, and wood], due to electrification and electrostatic induction during contact with the objects having different chemical functionalities. Comparative foaming behavior of ecofriendly supercritical fluids, viz., CO 2 over N 2 under variable temperatures (e.g., 130 and 150 °C) and constant pressure (15 MPa), have been examined here to pursue the soft and flexible triboelectric TPU foam. The foam derived by CO 2 foaming at 150 °C has been prioritized for development of S-TENG. Foam derived by CO 2 foaming at 130 °C did not respond as well due to the smaller cell size, higher hardness, and thicker skin. Inflexible N 2 -derived foam was not considered for S-TENG fabrication. Object manipulation performance has been visualized by principal component analysis (PCA), which shows good discrimination among responses to different objects.
Koshy, John; Hall, Martha L.; Erol, Ozan; Cao, Huantian; Buckley, Jenner M.; Galloway, James C.; Higginson, Jill
2016-01-01
Background A person's ability to move his or her arms against gravity is important for independent performance of critical activities of daily living and for exploration that facilitates early cognitive, language, social, and perceptual-motor development. Children with a variety of diagnoses have difficulty moving their arms against gravity. Objective The purpose of this technical report is to detail the design process and initial testing of a novel exoskeletal garment, the Playskin Lift, that assists and encourages children to lift their arms against gravity. Design This report details the design theory and process, the device, and the results of field testing with a toddler with impaired upper extremity function due to arthrogryposis multiplex congenita. Results The Playskin Lift is an inexpensive (<$30 material costs), easy to use (5/5 rating), comfortable (5/5 rating), and attractive (4/5 rating) device. While wearing the device, the child was able to contact objects more often throughout an increased play space, to look at toys more while contacting them, and to perform more complex interactions with toys. Limitations This report details initial testing with one child. Future testing with more participants is recommended. Conclusions These results suggest that by considering the broad needs of users, including cost, accessibility, comfort, aesthetics, and function, we can design inexpensive devices that families and clinicians can potentially fabricate in their own communities to improve function, participation, exploration, and learning for children with disabilities. PMID:26316534
Baldi, F; Alencar, M M; Albuquerque, L G
2010-12-01
The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Shahriari, Mohammadreza
2016-06-01
The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.
Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.
Montaño, Andrés; Suárez, Raúl
2018-05-03
This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approach.
Functional fixedness in a technologically sparse culture.
German, Tim P; Barrett, H Clark
2005-01-01
Problem solving can be inefficient when the solution requires subjects to generate an atypical function for an object and the object's typical function has been primed. Subjects become "fixed" on the design function of the object, and problem solving suffers relative to control conditions in which the object's function is not demonstrated. In the current study, such functional fixedness was demonstrated in a sample of adolescents (mean age of 16 years) among the Shuar of Ecuadorian Amazonia, whose technologically sparse culture provides limited access to large numbers of artifacts with highly specialized functions. This result suggests that design function may universally be the core property of artifact concepts in human semantic memory.
Multiple Realities and Hybrid Objects: A Creative Approach of Schizophrenic Delusion
Cermolacce, Michel; Despax, Katherine; Richieri, Raphaëlle; Naudin, Jean
2018-01-01
Delusion is usually considered in DSM 5 as a false belief based on incorrect inference about external reality, but the issue of delusion raises crucial concerns, especially that of a possible (or absent) continuity between delusional and normal experiences, and the understanding of delusional experience. In the present study, we first aim to consider delusion from a perspectivist angle, according to the Multiple Reality Theory (MRT). In this model inherited from Alfred Schütz and recently addressed by Gallagher, we are not confronting one reality only, but several (such as the reality of everyday life, of imaginary life, of work, of delusion, etc.). In other terms, the MRT states that our own experience is not drawing its meaning from one reality identified as the outer reality but rather from a multiplicity of realities, each with their own logic and style. Two clinical cases illustrate how the Multiple Realities Theory (MRT) may help address the reality of delusion. Everyday reality and the reality of delusion may be articulated under a few conditions, such as compossibility [i.e., Double Book-Keeping (DBK), in Bleulerian terms] or flexibility. There are indeed possible bridges between them. Possible links with neuroscience or psychoanalysis are evoked. As the subject is confronting different realities, so do the objects among and toward which a subject is evolving. We call such objects Hybrid Objects (HO) due to their multiple belonging. They can operate as shifters, i.e., as some functional operators letting one switch from one reality to another. In the final section, we will emphasize how delusion flexibility, as a dynamic interaction between Multiple Realities, may offer psychotherapeutic possibilities within some reality shared with others, entailing relocation of the present subjects in regained access to some flexibility via Multiple Realities and perspectivism. PMID:29487553
Hlinakova, Petra; Kasparova, Magdalena; Rehacek, Adam; Vavrickova, Lenka; Navrátil, Leoš
2012-01-01
Abstract Objective: Low-level laser therapy (LLLT) is a treatment method commonly used in physiotherapy for musculoskeletal disorders. The aim of this study was to monitor the function of temporomandibular joint (TMJ) and surrounding tissues and compare the objective measurements of the effect of LLLT. Background data: LLLT has been considered effective in reducing pain and muscular tension; thus improving the quality of patients' lives. Materials and Methods: TMJ function was evaluated by cephalometric tracing analysis, orthopantomogram, TMJ tomogram, and computer face-bow record. Interalveolar space between central incisors before and after therapy was measured. Patients evaluated pain on the Visual Analog Scale. LLLT was performed in five treatment sessions (energy density of 15.4 J/cm2) by semiconductive GaAlAs laser with an output of 280 mW, emitting radiation wavelength of 830 mm. The laser supplied a spot of∼0.2 cm2. Results: Baseline comparisons between the healthy patients and patients with low-level laser application show that TMJ pain during function is based on anatomical and function changes in TMJ areas. Significant differences were seen in the posterior and anterior face height. The results comparing healthy and impaired TMJ sagittal condyle paths showed that patients with TMJ pain during function had significantly flatter nonanatomical movement during function. After therapy, the unpleasant feeling was reduced from 27.5 to 4.16 on the pain Visual Analog Scale. The pain had reduced the ability to open the mouth from 34 to 42 mm. Conclusions: The laser therapy was effective in the improvement of the range of temporomandibular disorders (TMD) and promoted a significant reduction of pain symptoms. PMID:22551049
Robust feedback zoom tracking for digital video surveillance.
Zou, Tengyue; Tang, Xiaoqi; Song, Bao; Wang, Jin; Chen, Jihong
2012-01-01
Zoom tracking is an important function in video surveillance, particularly in traffic management and security monitoring. It involves keeping an object of interest in focus during the zoom operation. Zoom tracking is typically achieved by moving the zoom and focus motors in lenses following the so-called "trace curve", which shows the in-focus motor positions versus the zoom motor positions for a specific object distance. The main task of a zoom tracking approach is to accurately estimate the trace curve for the specified object. Because a proportional integral derivative (PID) controller has historically been considered to be the best controller in the absence of knowledge of the underlying process and its high-quality performance in motor control, in this paper, we propose a novel feedback zoom tracking (FZT) approach based on the geometric trace curve estimation and PID feedback controller. The performance of this approach is compared with existing zoom tracking methods in digital video surveillance. The real-time implementation results obtained on an actual digital video platform indicate that the developed FZT approach not only solves the traditional one-to-many mapping problem without pre-training but also improves the robustness for tracking moving or switching objects which is the key challenge in video surveillance.
Muro-Neuro-Urodynamics; a Review of the Functional Assessment of Mouse Lower Urinary Tract Function.
Ito, Hiroki; Pickering, Anthony E; Igawa, Yasuhiko; Kanai, Anthony J; Fry, Christopher H; Drake, Marcus J
2017-01-01
Background: Mouse urodynamic tests are fundamental to understanding normal lower urinary tract (LUT) function. These experiments also contribute to our understanding of neurological dysfunction, pathophysiological processes, and potential mechanisms of therapy. Objectives: Systematic assessment of published evidence on urodynamics, advantages and limitations of different urodynamic measurements in mice, and consideration of potential implications for the clinical field. Methods: A search using specific search-terms for urodynamic studies and mice was conducted on PubMed (from inception to 1 July 2016). Results: We identified 55 studies examining or describing mouse neuro-urodynamics. We summarize reported features of mouse urodynamic function deriving from frequency-volume chart (FVC) measurements, voiding spot assays, filling cystometry, and pressure-flow studies. Similarly, an influence of the diurnal cycle on voiding is observed in mice and should be considered when interpreting rodent urodynamic studies, especially FVC measurements and voiding spot assays. Anaesthesia, restraint conditions, or filling rate influence mouse neuro-urodynamics. Mouse cystometric studies have observed intravesical pressure oscillations that accompany urine flow, attributed to high frequency opening and closing of the urethra. This characterization is not seen in other species, except rats. In contrast to human clinical urodynamics, the terminology of these examinations has not been standardized although many rodent urodynamic studies have been described. Conclusion: Mice have many anatomical and physiological similarities to humans and they are generally cost effective, and allow investigation of the effects of aging because of their short lifespan. There are some differences between mouse and human urodynamics. These must be considered when interpreting LUT function in mice, and translational value of murine disease models.
Preserving the Pyramid of STI Using Buckets
NASA Technical Reports Server (NTRS)
Nelson, Michael L.; Maly, Kurt
2004-01-01
The product of research projects is information. Through the life cycle of a project, information comes from many sources and takes many forms. Traditionally, this body of information is summarized in a formal publication, typically a journal article. While formal publications enjoy the benefits of peer review and technical editing, they are also often compromises in media format and length. As such, we consider a formal publication to represent an abstract to a larger body of work: a pyramid of scientific and technical information (STI). While this abstract may be sufficient for some applications, an in-depth use or analysis is likely to require the supporting layers from the pyramid. We have developed buckets to preserve this pyramid of STI. Buckets provide an archive- and protocol-independent container construct in which all related information objects can be logically grouped together, archived, and manipulated as a single object. Furthermore, buckets are active archival objects and can communicate with each other, people, or arbitrary network services. Buckets are an implementation of the Smart Object, Dumb Archive (SODA) DL model. In SODA, data objects are more important than the archives that hold them. Much of the functionality traditionally associated with archives is pushed down into the objects, such as enforcing terms and conditions, negotiating display, and content maintenance. In this paper, we discuss the motivation, design, and implication of bucket use in DLs with respect to grey literature.
Price schedules coordination for electricity pool markets
NASA Astrophysics Data System (ADS)
Legbedji, Alexis Motto
2002-04-01
We consider the optimal coordination of a class of mathematical programs with equilibrium constraints, which is formally interpreted as a resource-allocation problem. Many decomposition techniques were proposed to circumvent the difficulty of solving large systems with limited computer resources. The considerable improvement in computer architecture has allowed the solution of large-scale problems with increasing speed. Consequently, interest in decomposition techniques has waned. Nonetheless, there is an important class of applications for which decomposition techniques will still be relevant, among others, distributed systems---the Internet, perhaps, being the most conspicuous example---and competitive economic systems. Conceptually, a competitive economic system is a collection of agents that have similar or different objectives while sharing the same system resources. In theory, constructing a large-scale mathematical program and solving it centrally, using currently available computing power can optimize such systems of agents. In practice, however, because agents are self-interested and not willing to reveal some sensitive corporate data, one cannot solve these kinds of coordination problems by simply maximizing the sum of agent's objective functions with respect to their constraints. An iterative price decomposition or Lagrangian dual method is considered best suited because it can operate with limited information. A price-directed strategy, however, can only work successfully when coordinating or equilibrium prices exist, which is not generally the case when a weak duality is unavoidable. Showing when such prices exist and how to compute them is the main subject of this thesis. Among our results, we show that, if the Lagrangian function of a primal program is additively separable, price schedules coordination may be attained. The prices are Lagrange multipliers, and are also the decision variables of a dual program. In addition, we propose a new form of augmented or nonlinear pricing, which is an example of the use of penalty functions in mathematical programming. Applications are drawn from mathematical programming problems of the form arising in electric power system scheduling under competition.
Psychophysical workload in the operating room: primary surgeon versus assistant.
Rieger, Annika; Fenger, Sebastian; Neubert, Sebastian; Weippert, Matthias; Kreuzfeld, Steffi; Stoll, Regina
2015-07-01
Working in the operating room is characterized by high demands and overall workload of the surgical team. Surgeons often report that they feel more stressed when operating as a primary surgeon than in the function as an assistant which has been confirmed in recent studies. In this study, intra-individual workload was assessed in both intraoperative functions using a multidimensional approach that combined objective and subjective measures in a realistic work setting. Surgeons' intraoperative psychophysiologic workload was assessed through a mobile health system. 25 surgeons agreed to take part in the 24-hour monitoring by giving their written informed consent. The mobile health system contained a sensor electronic module integrated in a chest belt and measuring physiological parameters such as heart rate (HR), breathing rate (BR), and skin temperature. Subjective workload was assessed pre- and postoperatively using an electronic version of the NASA-TLX on a smartphone. The smartphone served as a communication unit and transferred objective and subjective measures to a communication server where data were stored and analyzed. Working as a primary surgeon did not result in higher workload. Neither NASA-TLX ratings nor physiological workload indicators were related to intraoperative function. In contrast, length of surgeries had a significant impact on intraoperative physical demands (p < 0.05; η(2) = 0.283), temporal demands (p < 0.05; η(2) = 0.260), effort (p < 0.05; η(2) = 0.287), and NASA-TLX sum score (p < 0.01; η(2) = 0.287). Intra-individual workload differences do not relate to intraoperative role of surgeons when length of surgery is considered as covariate. An intelligent operating management that considers the length of surgeries by implementing short breaks could contribute to the optimization of intraoperative workload and the preservation of surgeons' health, respectively. The value of mobile health systems for continuous psychophysiologic workload assessment was shown.
Holtom-Viesel, Anita; Allan, Steven
2014-02-01
The objectives of this review were to systematically identify and evaluate quantitative research comparing family functioning (a) in eating disorder families with control families, (b) in families with different eating disorder diagnoses (c) perceptions of different family members and (d) the relationship between family functioning and recovery. This adds to the findings of previous reviews of family functioning by including data from control families, the range of diagnoses, and focusing on recovery. Findings were considered in relation to models of family functioning. Using specific search criteria, 17 research papers were identified and evaluated. Findings indicated that eating disorder families reported worse family functioning than control families but there was little evidence for a typical pattern of family dysfunction. A consistent pattern of family dysfunction for different diagnoses was not suggested but patients consistently rated their family as more dysfunctional than one or both of their parents. With respect to outcome and recovery, those with more positive perceptions of family functioning generally had more positive outcomes, irrespective of severity of eating disorder. Conclusions were limited by inconsistent findings and methodological issues. Further research is needed into the relationship between family functioning and outcome and the assessment of family functioning beyond self-report. © 2013.
Knopman, Debra S.; Voss, Clifford I.
1989-01-01
Sampling design for site characterization studies of solute transport in porous media is formulated as a multiobjective problem. Optimal design of a sampling network is a sequential process in which the next phase of sampling is designed on the basis of all available physical knowledge of the system. Three objectives are considered: model discrimination, parameter estimation, and cost minimization. For the first two objectives, physically based measures of the value of information obtained from a set of observations are specified. In model discrimination, value of information of an observation point is measured in terms of the difference in solute concentration predicted by hypothesized models of transport. Points of greatest difference in predictions can contribute the most information to the discriminatory power of a sampling design. Sensitivity of solute concentration to a change in a parameter contributes information on the relative variance of a parameter estimate. Inclusion of points in a sampling design with high sensitivities to parameters tends to reduce variance in parameter estimates. Cost minimization accounts for both the capital cost of well installation and the operating costs of collection and analysis of field samples. Sensitivities, discrimination information, and well installation and sampling costs are used to form coefficients in the multiobjective problem in which the decision variables are binary (zero/one), each corresponding to the selection of an observation point in time and space. The solution to the multiobjective problem is a noninferior set of designs. To gain insight into effective design strategies, a one-dimensional solute transport problem is hypothesized. Then, an approximation of the noninferior set is found by enumerating 120 designs and evaluating objective functions for each of the designs. Trade-offs between pairs of objectives are demonstrated among the models. The value of an objective function for a given design is shown to correspond to the ability of a design to actually meet an objective.
Stochastic scheduling on a repairable manufacturing system
NASA Astrophysics Data System (ADS)
Li, Wei; Cao, Jinhua
1995-08-01
In this paper, we consider some stochastic scheduling problems with a set of stochastic jobs on a manufacturing system with a single machine that is subject to multiple breakdowns and repairs. When the machine processing a job fails, the job processing must restart some time later when the machine is repaired. For this typical manufacturing system, we find the optimal policies that minimize the following objective functions: (1) the weighed sum of the completion times; (2) the weighed number of late jobs having constant due dates; (3) the weighted number of late jobs having random due dates exponentially distributed, which generalize some previous results.
Performance of the reverse Helmbold universal portfolio
NASA Astrophysics Data System (ADS)
Tan, Choon Peng; Kuang, Kee Seng; Lee, Yap Jia
2017-04-01
The universal portfolio is an important investment strategy in a stock market where no stochastic model is assumed for the stock prices. The zero-gradient set of the objective function estimating the next-day portfolio which contains the reverse Kullback-Leibler order-alpha divergence is considered. From the zero-gradient set, the explicit, reverse Helmbold universal portfolio is obtained. The performance of the explicit, reverse Helmbold universal portfolio is studied by running them on some stock-price data sets from the local stock exchange. It is possible to increase the wealth of the investor by using these portfolios in investment.
Simplified Numerical Analysis of ECT Probe - Eddy Current Benchmark Problem 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikora, R.; Chady, T.; Gratkowski, S.
2005-04-09
In this paper a third eddy current benchmark problem is considered. The objective of the benchmark is to determine optimal operating frequency and size of the pancake coil designated for testing tubes made of Inconel. It can be achieved by maximization of the change in impedance of the coil due to a flaw. Approximation functions of the probe (coil) characteristic were developed and used in order to reduce number of required calculations. It results in significant speed up of the optimization process. An optimal testing frequency and size of the probe were achieved as a final result of the calculation.
Transmission loss optimization in acoustic sandwich panels
NASA Astrophysics Data System (ADS)
Makris, S. E.; Dym, C. L.; MacGregor Smith, J.
1986-06-01
Considering the sound transmission loss (TL) of a sandwich panel as the single objective, different optimization techniques are examined and a sophisticated computer program is used to find the optimum TL. Also, for one of the possible case studies such as core optimization, closed-form expressions are given between TL and the core-design variables for different sets of skins. The significance of these functional relationships lies in the fact that the panel designer can bypass the necessity of using a sophisticated software package in order to assess explicitly the dependence of the TL on core thickness and density.
Generalizations of Tikhonov's regularized method of least squares to non-Euclidean vector norms
NASA Astrophysics Data System (ADS)
Volkov, V. V.; Erokhin, V. I.; Kakaev, V. V.; Onufrei, A. Yu.
2017-09-01
Tikhonov's regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by "instrumental" generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.
Taylor, Alex H.; Cheke, Lucy G.; Gray, Russell D.; Loissel, Elsa; Clayton, Nicola S.
2016-01-01
The ability to reason about causality underlies key aspects of human cognition, but the extent to which non-humans understand causality is still largely unknown. The Aesop’s Fable paradigm, where objects are inserted into water-filled tubes to obtain out-of-reach rewards, has been used to test casual reasoning in birds and children. However, success on these tasks may be influenced by other factors, specifically, object preferences present prior to testing or arising during pre-test stone-dropping training. Here, we assessed this ‘object-bias’ hypothesis by giving New Caledonian crows and 5–10 year old children two object-choice Aesop’s Fable experiments: sinking vs. floating objects, and solid vs. hollow objects. Before each test, we assessed subjects’ object preferences and/or trained them to prefer the alternative object. Both crows and children showed pre-test object preferences, suggesting that birds in previous Aesop’s Fable studies may also have had initial preferences for objects that proved to be functional on test. After training to prefer the non-functional object, crows, but not children, performed more poorly on these two object-choice Aesop’s Fable tasks than subjects in previous studies. Crows dropped the non-functional objects into the tube on their first trials, indicating that, unlike many children, they do not appear to have an a priori understanding of water displacement. Alternatively, issues with inhibition could explain their performance. The crows did, however, learn to solve the tasks over time. We tested crows further to determine whether their eventual success was based on learning about the functional properties of the objects, or associating dropping the functional object with reward. Crows inserted significantly more rewarded, non-functional objects than non-rewarded, functional objects. These findings suggest that the ability of New Caledonian crows to produce performances rivaling those of young children on object-choice Aesop’s Fable tasks is partly due to pre-existing object preferences. PMID:27936242
de Schipper, Elles; Lundequist, Aiko; Wilteus, Anna Löfgren; Coghill, David; de Vries, Petrus J; Granlund, Mats; Holtmann, Martin; Jonsson, Ulf; Karande, Sunil; Levy, Florence; Al-Modayfer, Omar; Rohde, Luis; Tannock, Rosemary; Tonge, Bruce; Bölte, Sven
2015-08-01
This is the first in a series of four empirical investigations to develop International Classification of Functioning, Disability and Health (ICF) Core Sets for Attention Deficit Hyperactivity Disorder (ADHD). The objective here was to use a comprehensive scoping review approach to identify the concepts of functional ability and disability used in the scientific ADHD literature and link these to the nomenclature of the ICF-CY. Systematic searches were conducted using Medline/PubMed, PsycINFO, ERIC and Cinahl, to extract the relevant concepts of functional ability and disability from the identified outcome studies of ADHD. These concepts were then linked to ICF-CY by two independent researchers using a standardized linking procedure. Data from identified studies were analysed until saturation of ICF-CY categories was reached. Eighty studies were included in the final analysis. Concepts contained in these studies were linked to 128 ICF-CY categories. Of these categories, 68 were considered to be particularly relevant to ADHD (i.e., identified in at least 5 % of the studies). Of these, 32 were related to Activities and participation, 31 were related to Body functions, and five were related to environmental factors. The five most frequently identified categories were school education (53 %), energy and drive functions (50 %), psychomotor functions (50 %), attention functions (49 %), and emotional functions (45 %). The broad variety of ICF-CY categories identified in this study underlines the necessity to consider ability and disability in ADHD across all dimensions of life, for which the ICF-CY provides a valuable and universally applicable framework. These results, in combination with three additional preparatory studies (expert survey, focus groups, clinical study), will provide a scientific basis to define the ICF Core Sets for ADHD for multi-purpose use in basic and applied research, and every day clinical practice.
White blood cell segmentation by circle detection using electromagnetism-like optimization.
Cuevas, Erik; Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo
2013-01-01
Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.
Distributed stimulation increases force elicited with functional electrical stimulation
NASA Astrophysics Data System (ADS)
Buckmire, Alie J.; Lockwood, Danielle R.; Doane, Cynthia J.; Fuglevand, Andrew J.
2018-04-01
Objective. The maximum muscle forces that can be evoked using functional electrical stimulation (FES) are relatively modest. The reason for this weakness is not fully understood but could be partly related to the widespread distribution of motor nerve branches within muscle. As such, a single stimulating electrode (as is conventionally used) may be incapable of activating the entire array of motor axons supplying a muscle. Therefore, the objective of this study was to determine whether stimulating a muscle with more than one source of current could boost force above that achievable with a single source. Approach. We compared the maximum isometric forces that could be evoked in the anterior deltoid of anesthetized monkeys using one or two intramuscular electrodes. We also evaluated whether temporally interleaved stimulation between two electrodes might reduce fatigue during prolonged activity compared to synchronized stimulation through two electrodes. Main results. We found that dual electrode stimulation consistently produced greater force (~50% greater on average) than maximal stimulation with single electrodes. No differences, however, were found in the fatigue responses using interleaved versus synchronized stimulation. Significance. It seems reasonable to consider using multi-electrode stimulation to augment the force-generating capacity of muscles and thereby increase the utility of FES systems.
White Blood Cell Segmentation by Circle Detection Using Electromagnetism-Like Optimization
Oliva, Diego; Díaz, Margarita; Zaldivar, Daniel; Pérez-Cisneros, Marco; Pajares, Gonzalo
2013-01-01
Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability. PMID:23476713
Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer
NASA Astrophysics Data System (ADS)
Monschke, Jason; White, Edward
2015-11-01
Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.
Model-checking techniques based on cumulative residuals.
Lin, D Y; Wei, L J; Ying, Z
2002-03-01
Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.
Alvarez-Segura, T; Gómez-Díaz, A; Ortiz-Bolsico, C; Torres-Lapasió, J R; García-Alvarez-Coque, M C
2015-08-28
Getting useful chemical information from samples containing many compounds is still a challenge to analysts in liquid chromatography. The highest complexity corresponds to samples for which there is no prior knowledge about their chemical composition. Computer-based methodologies are currently considered as the most efficient tools to optimise the chromatographic resolution, and further finding the optimal separation conditions. However, most chromatographic objective functions (COFs) described in the literature to measure the resolution are based on mathematical models fitted with the information obtained from standards, and cannot be applied to samples with unknown compounds. In this work, a new COF based on the automatic measurement of the protruding part of the chromatographic peaks (or peak prominences) that indicates the number of perceptible peaks and global resolution, without the need of standards, is developed. The proposed COF was found satisfactory with regard to the peak purity criterion when applied to artificial peaks and simulated chromatograms of mixtures built using the information of standards. The approach was applied to mixtures of drugs containing unknown impurities and degradation products and to extracts of medicinal herbs, eluted with acetonitrile-water mixtures using isocratic and gradient elution. Copyright © 2015 Elsevier B.V. All rights reserved.
Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid
NASA Astrophysics Data System (ADS)
Masoum, Mohammad A. S.; Nabavi, Seyed M. H.
2016-10-01
Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.
NASA Astrophysics Data System (ADS)
Shamieh, Hadi; Sedaghati, Ramin
2017-12-01
The magnetorheological brake (MRB) is an electromechanical device that generates a retarding torque through employing magnetorheological (MR) fluids. The objective of this paper is to design, optimize and control an MRB for automotive applications considering. The dynamic range of a disk-type MRB expressing the ratio of generated toque at on and off states has been formulated as a function of the rotational speed, geometrical and material properties, and applied electrical current. Analytical magnetic circuit analysis has been conducted to derive the relation between magnetic field intensity and the applied electrical current as a function of the MRB geometrical and material properties. A multidisciplinary design optimization problem has then been formulated to identify the optimal brake geometrical parameters to maximize the dynamic range and minimize the response time and weight of the MRB under weight, size and magnetic flux density constraints. The optimization problem has been solved using combined genetic and sequential quadratic programming algorithms. Finally, the performance of the optimally designed MRB has been investigated in a quarter vehicle model. A PID controller has been designed to regulate the applied current required by the MRB in order to improve vehicle’s slipping on different road conditions.
NASA Astrophysics Data System (ADS)
Guarnieri, Vittorio; Francini, Franco
1997-12-01
Last generation of digital printer is usually characterized by a spatial resolution enough high to allow the designer to realize a binary CGH directly on a transparent film avoiding photographic reduction techniques. These devices are able to produce slides or offset prints. Furthermore, services supplied by commercial printing company provide an inexpensive method to rapidly verify the validity of the design by means of a test-and-trial process. Notably, this low-cost approach appears to be suitable for a didactical environment. On the basis of these considerations, a set of software tools able to design CGH's has been developed. The guidelines inspiring the work have been the following ones: (1) ray-tracing approach, considering the object to be reproduced as source of spherical waves; (2) Optimization and speed-up of the algorithms used, in order to produce a portable code, runnable on several hardware platforms. In this paper calculation methods to obtain some fundamental geometric functions (points, lines, curves) are described. Furthermore, by the juxtaposition of these primitives functions it is possible to produce the holograms of more complex objects. Many examples of generated CGHs are presented.
NASA Astrophysics Data System (ADS)
Indarsih, Indrati, Ch. Rini
2016-02-01
In this paper, we define variance of the fuzzy random variables through alpha level. We have a theorem that can be used to know that the variance of fuzzy random variables is a fuzzy number. We have a multi-objective linear programming (MOLP) with fuzzy random of objective function coefficients. We will solve the problem by variance approach. The approach transform the MOLP with fuzzy random of objective function coefficients into MOLP with fuzzy of objective function coefficients. By weighted methods, we have linear programming with fuzzy coefficients and we solve by simplex method for fuzzy linear programming.
Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.
Mitri, F G; Fatemi, M
2005-05-01
An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.
De Lara, M; Martinet, V
2009-02-01
Managing natural resources in a sustainable way is a hard task, due to uncertainties, dynamics and conflicting objectives (ecological, social, and economical). We propose a stochastic viability approach to address such problems. We consider a discrete-time control dynamical model with uncertainties, representing a bioeconomic system. The sustainability of this system is described by a set of constraints, defined in practice by indicators - namely, state, control and uncertainty functions - together with thresholds. This approach aims at identifying decision rules such that a set of constraints, representing various objectives, is respected with maximal probability. Under appropriate monotonicity properties of dynamics and constraints, having economic and biological content, we characterize an optimal feedback. The connection is made between this approach and the so-called Management Strategy Evaluation for fisheries. A numerical application to sustainable management of Bay of Biscay nephrops-hakes mixed fishery is given.
NASA Astrophysics Data System (ADS)
Katkovnik, Vladimir; Shevkunov, Igor; Petrov, Nikolay V.; Egiazarian, Karen
2017-06-01
In-line lensless holography is considered with a random phase modulation at the object plane. The forward wavefront propagation is modelled using the Fourier transform with the angular spectrum transfer function. The multiple intensities (holograms) recorded by the sensor are random due to the random phase modulation and noisy with Poissonian noise distribution. It is shown by computational experiments that high-accuracy reconstructions can be achieved with resolution going up to the two thirds of the wavelength. With respect to the sensor pixel size it is a super-resolution with a factor of 32. The algorithm designed for optimal superresolution phase/amplitude reconstruction from Poissonian data is based on the general methodology developed for phase retrieval with a pixel-wise resolution in V. Katkovnik, "Phase retrieval from noisy data based on sparse approximation of object phase and amplitude", http://www.cs.tut.fi/ lasip/DDT/index3.html.
VizieR Online Data Catalog: M33 SNR candidates properties (Lee+, 2014)
NASA Astrophysics Data System (ADS)
Lee, J. H.; Lee, M. G.
2017-04-01
We utilized the Hα and [S II] images in the LGGS to find new M33 remnants. The LGGS covered three 36' square fields of M33. We subtracted continuum sources from the narrowband images using R-band images. We smoothed the images with better seeing to match the point-spread function in the images with worse seeing, using the IRAF task psfmatch. We then scaled and subtracted the resulting continuum images from narrowband images. We selected M33 remnants considering three criteria: emission-line ratio ([S II]/Hα), the morphological structure, and the absence of blue stars inside the sources. Details are described in L14 (Lee et al. 2014ApJ...786..130L). We detected objects with [S II]/Hα>0.4 in emission-line ratio maps, and selected objects with round or shell structures in each narrowband image. As a result, we chose 435 sources. (2 data files).
How well can ultracompact bodies imitate black hole ringdowns?
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George
2018-02-01
The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.
NASA Astrophysics Data System (ADS)
Pisa, Carlos Cabañero; López, Enric Serradell
Teamwork is considered one of the most important professional skills in today's business environment. More specifically, the collaborative work between professionals and information technology managers from various functional areas is a strategic key in competitive business. Several university-level programs are focusing on developing these skills. This article presents the case of the course Computer Science Applied to Management (hereafter CSAM) that has been designed with the objective to develop the ability to work cooperatively in interdisciplinary teams. For their design and development have been addressed to the key elements of efficiency that appear in the literature, most notably the establishment of shared objectives and a feedback system, the management of the harmony of the team, their level of autonomy, independence, diversity and level of supervision. The final result is a subject in which, through a working virtual platform, interdisciplinary teams solve a problem raised by a case study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.
Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. But, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. We built this method on the theory of compressive sensing and the single pixelmore » optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. Particularly, it is found that an inspection with low noise (<1%) and high undersampling (>256×) exhibits high robustness and security.« less
Algorithms and architectures for robot vision
NASA Technical Reports Server (NTRS)
Schenker, Paul S.
1990-01-01
The scope of the current work is to develop practical sensing implementations for robots operating in complex, partially unstructured environments. A focus in this work is to develop object models and estimation techniques which are specific to requirements of robot locomotion, approach and avoidance, and grasp and manipulation. Such problems have to date received limited attention in either computer or human vision - in essence, asking not only how perception is in general modeled, but also what is the functional purpose of its underlying representations. As in the past, researchers are drawing on ideas from both the psychological and machine vision literature. Of particular interest is the development 3-D shape and motion estimates for complex objects when given only partial and uncertain information and when such information is incrementally accrued over time. Current studies consider the use of surface motion, contour, and texture information, with the longer range goal of developing a fused sensing strategy based on these sources and others.
A strategy for space biology and medical science for the 1980s and 1990s
NASA Technical Reports Server (NTRS)
1987-01-01
A guideline is provided for developing NASA's long-term mission plans and a rational, coherent research program. Ten topical areas for research are addressed: developmental biology, gravitropism in plants, sensorimotor integration, bone and mineral metabolism, cardiovascular/pulmonary function, muscle remodeling, nutrition, human reproduction, space anemia, and human behavior. Scientific goals, objectives, and required measurements and facilities for each of the major areas of space biology and medicine are identified and described along with primary goals and objectives for each of these disciplines. Proposals are made concerning the use of scientific panels to oversee the implementation of the strategy, life sciences' need for continuous access to spaceflight opportunities, the advantages of a focused mission strategy, certain design features that will enhance spaceflight experimentation, and general facilities. Other topics that are considered include mission planning, crew selection and training, and interagency and international cooperation.
Schlieren imaging of the standing wave field in an ultrasonic acoustic levitator
NASA Astrophysics Data System (ADS)
Rendon, Pablo Luis; Boullosa, Ricardo R.; Echeverria, Carlos; Porta, David
2015-11-01
We consider a model of a single axis acoustic levitator consisting of two cylinders immersed in air and directed along the same axis. The first cylinder has a flat termination and functions as a sound emitter, and the second cylinder, which is simply a refector, has the side facing the first cylinder cut out by a spherical surface. By making the first cylinder vibrate at ultrasonic frequencies a standing wave is produced in the air between the cylinders which makes it possible, by means of the acoustic radiation pressure, to levitate one or several small objects of different shapes, such as spheres or disks. We use schlieren imaging to observe the acoustic field resulting from the levitation of one or several objects, and compare these results to previous numerical approximations of the field obtained using a finite element method. The authors acknowledge financial support from DGAPA-UNAM through project PAPIIT IN109214.
Evolution of Scientific and Technical Information Distribution
NASA Technical Reports Server (NTRS)
Esler, Sandra; Nelson, Michael L.
1998-01-01
World Wide Web (WWW) and related information technologies are transforming the distribution of scientific and technical information (STI). We examine 11 recent, functioning digital libraries focusing on the distribution of STI publications, including journal articles, conference papers, and technical reports. We introduce 4 main categories of digital library projects: based on the architecture (distributed vs. centralized) and the contributor (traditional publisher vs. authoring individual/organization). Many digital library prototypes merely automate existing publishing practices or focus solely on the digitization of the publishing cycle output, not sampling and capturing elements of the input. Still others do not consider for distribution the large body of "gray literature." We address these deficiencies in the current model of STI exchange by suggesting methods for expanding the scope and target of digital libraries by focusing on a greater source of technical publications and using "buckets," an object-oriented construct for grouping logically related information objects, to include holdings other than technical publications.
Physical Watermarking for Securing Cyber-Physical Systems via Packet Drop Injections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozel, Omur; Weekrakkody, Sean; Sinopoli, Bruno
Physical watermarking is a well known solution for detecting integrity attacks on Cyber-Physical Systems (CPSs) such as the smart grid. Here, a random control input is injected into the system in order to authenticate physical dynamics and sensors which may have been corrupted by adversaries. Packet drops may naturally occur in a CPS due to network imperfections. To our knowledge, previous work has not considered the role of packet drops in detecting integrity attacks. In this paper, we investigate the merit of injecting Bernoulli packet drops into the control inputs sent to actuators as a new physical watermarking scheme. Withmore » the classical linear quadratic objective function and an independent and identically distributed packet drop injection sequence, we study the effect of packet drops on meeting security and control objectives. Our results indicate that the packet drops could act as a potential physical watermark for attack detection in CPSs.« less
Assimilating data into open ocean tidal models
NASA Astrophysics Data System (ADS)
Kivman, Gennady A.
The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.
Tom, Nathan; Yu, Yi-Hsiang; Wright, Alan; ...
2017-11-17
The focus of this paper is to balance power absorption against structural loading for a novel fixed-bottom oscillating surge wave energy converter in both regular and irregular wave environments. The power-to-load ratio will be evaluated using pseudospectral control (PSC) to determine the optimum power-takeoff (PTO) torque based on a multiterm objective function. This paper extends the pseudospectral optimal control problem to not just maximize the time-averaged absorbed power but also include measures for the surge-foundation force and PTO torque in the optimization. The objective function may now potentially include three competing terms that the optimizer must balance. Separate weighting factorsmore » are attached to the surge-foundation force and PTO control torque that can be used to tune the optimizer performance to emphasize either power absorption or load shedding. To correct the pitch equation of motion, derived from linear hydrodynamic theory, a quadratic-viscous-drag torque has been included in the system dynamics; however, to continue the use of quadratic programming solvers, an iteratively obtained linearized drag coefficient was utilized that provided good accuracy in the predicted pitch motion. Furthermore, the analysis considers the use of a nonideal PTO unit to more accurately evaluate controller performance. The PTO efficiency is not directly included in the objective function but rather the weighting factors are utilized to limit the PTO torque amplitudes, thereby reducing the losses resulting from the bidirectional energy flow through a nonideal PTO. Results from PSC show that shedding a portion of the available wave energy can lead to greater reductions in structural loads, peak-to-average power ratio, and reactive power requirement.« less
Sparsely-distributed organization of face and limb activations in human ventral temporal cortex
Weiner, Kevin S.; Grill-Spector, Kalanit
2011-01-01
Functional magnetic resonance imaging (fMRI) has identified face- and body part-selective regions, as well as distributed activation patterns for object categories across human ventral temporal cortex (VTC), eliciting a debate regarding functional organization in VTC and neural coding of object categories. Using high-resolution fMRI, we illustrate that face- and limb-selective activations alternate in a series of largely nonoverlapping clusters in lateral VTC along the inferior occipital gyrus (IOG), fusiform gyrus (FG), and occipitotemporal sulcus (OTS). Both general linear model (GLM) and multivoxel pattern (MVP) analyses show that face- and limb-selective activations minimally overlap and that this organization is consistent across experiments and days. We provide a reliable method to separate two face-selective clusters on the middle and posterior FG (mFus and pFus), and another on the IOG using their spatial relation to limb-selective activations and retinotopic areas hV4, VO-1/2, and hMT+. Furthermore, these activations show a gradient of increasing face selectivity and decreasing limb selectivity from the IOG to the mFus. Finally, MVP analyses indicate that there is differential information for faces in lateral VTC (containing weakly- and highly-selective voxels) relative to non-selective voxels in medial VTC. These findings suggest a sparsely-distributed organization where sparseness refers to the presence of several face- and limb-selective clusters in VTC, and distributed refers to the presence of different amounts of information in highly-, weakly-, and non-selective voxels. Consequently, theories of object recognition should consider the functional and spatial constraints of neural coding across a series of nonoverlapping category-selective clusters that are themselves distributed. PMID:20457261
Evaluation and inversion of a net ecosystem carbon exchange model for grasslands and croplands
NASA Astrophysics Data System (ADS)
Herbst, M.; Klosterhalfen, A.; Weihermueller, L.; Graf, A.; Schmidt, M.; Huisman, J. A.; Vereecken, H.
2017-12-01
A one-dimensional soil water, heat, and CO2 flux model (SOILCO2), a pool concept of soil carbon turnover (RothC), and a crop growth module (SUCROS) was coupled to predict the net ecosystem exchange (NEE) of carbon. This model, further referred to as AgroC, was extended with routines for managed grassland as well as for root exudation and root decay. In a first step, the coupled model was applied to two winter wheat sites and one upland grassland site in Germany. The model was calibrated based on soil water content, soil temperature, biometric, and soil respiration measurements for each site, and validated in terms of hourly NEE measured with the eddy covariance technique. The overall model performance of AgroC was acceptable with a model efficiency >0.78 for NEE. In a second step, AgroC was optimized with the eddy covariance NEE measurements to examine the effect of various objective functions, constraints, and data-transformations on estimated NEE, which showed a distinct sensitivity to the choice of objective function and the inclusion of soil respiration data in the optimization process. Both, day and nighttime fluxes, were found to be sensitive to the selected optimization strategy. Additional consideration of soil respiration measurements improved the simulation of small positive fluxes remarkably. Even though the model performance of the selected optimization strategies did not diverge substantially, the resulting annual NEE differed substantially. We conclude that data-transformation, definition of objective functions, and data sources have to be considered cautiously when using a terrestrial ecosystem model to determine carbon balances by means of eddy covariance measurements.
NASA Astrophysics Data System (ADS)
Contenta, Filippo; Gieles, Mark; Balbinot, Eduardo; Collins, Michelle L. M.
2017-04-01
In the last decade, several ultra faint objects (UFOs, MV ≳ -3.5) have been discovered in the outer halo of the Milky Way. For some of these objects, it is not clear whether they are star clusters or (ultra faint) dwarf galaxies. In this work, we quantify the contribution of star clusters to the population of UFOs. We extrapolated the mass and Galactocentric radius distribution of the globular clusters using a population model, finding that the Milky Way contains about 3.3^{+7.3}_{-1.6} star clusters with MV ≳ -3.5 and Galactocentric radius ≥20 kpc. To understand whether dissolving clusters can appear as UFOs, we run a suite of direct N-body models, varying the orbit, the Galactic potential, the binary fraction and the black hole (BH) natal kick velocities. In the analyses, we consider observational biases such as luminosity limit, field stars and line-of-sight projection. We find that star clusters contribute to both the compact and the extended population of UFOs: clusters without BHs appear compact with radii ˜5 pc, while clusters that retain their BHs after formation have radii ≳ 20 pc. The properties of the extended clusters are remarkably similar to those of dwarf galaxies: high-inferred mass-to-light ratios due to binaries, binary properties mildly affected by dynamical evolution, no observable mass segregation and flattened stellar mass function. We conclude that the slope of the stellar mass function as a function of Galactocentric radius and the presence/absence of cold streams can discriminate between dark matter-free and dark matter-dominated UFOs.
[Complications in brachial plexus surgery].
Martínez, Fernando; Pinazzo, Samantha; Moragues, Rodrigo; Suarez, Elizabeth
2015-01-01
Although traumatic brachial plexus injuries are relatively rare in trauma patients, their effects on the functionality of the upper limb can be very disabling. The authors' objective was to assess the complications in a series of patients operated for brachial plexus injuries. This was a retrospective evaluation of patients operated on by the authors between August 2009 and March 2013. We performed 36 surgeries on 33 patients. The incidence of complications was 27.7%. Of these, only 1 (2.7%) was considered serious and associated with the procedure (iatrogenic injury of brachial artery). There was another serious complication (hypoxia in patients with airway injury) but it was not directly related to the surgical procedure. All other complications were considered minor (wound dehiscence, hematoma, infection). There was no mortality in our series. The complications in our series are similar to those reported in the literature. Serious complications (vascular, neural) are rare and represent less than 5% in all the different series. Given the rate of surgical complications and the poor functional perspective for a brachial plexus injury without surgery, we believe that surgery should be the treatment of choice. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Features of control systems analysis with discrete control devices using mathematical packages
NASA Astrophysics Data System (ADS)
Yakovleva, E. M.; Faerman, V. A.
2017-02-01
The article contains presentation of basic provisions of the theory of automatic pulse control systems as well as methods of analysis of such systems using the mathematical software widespread in the academic environment. The pulse systems under research are considered as analogues systems interacting among themselves, including sensors, amplifiers, controlled objects, and discrete parts. To describe such systems, one uses a mathematical apparatus of difference equations as well as discrete transfer functions. To obtain a transfer function of the open-loop system, being important from the point of view of the analysis of control systems, one uses mathematical packages Mathcad and Matlab. Despite identity of the obtained result, the way of its achievement from the point of view of user’s action is various for the specified means. In particular, Matlab uses a structural model of the control system while Mathcad allows only execution of a chain of operator transforms. It is worth noting that distinctions taking place allow considering transformation of signals during interaction of the linear and continuous parts of the control system from different sides. The latter can be used in an educational process for the best assimilation of the course of the control system theory by students.
The deaths of a cell: how language and metaphor influence the science of cell death.
Reynolds, Andrew S
2014-12-01
Multicellular development and tissue maintenance involve the regular elimination of damaged and healthy cells. The science of this genetically regulated cell death is particularly rich in metaphors: 'programmed cell death' or 'cell suicide' is considered an 'altruistic' act on the part of a cell for the benefit of the organism as a whole. It is also considered a form of 'social control' exerted by the body/organism over its component cells. This paper analyzes the various functions of these metaphors and critical discussion about them within the scientific community. Bodies such as the Nomenclature Committee on Cell Death (NCCD) have been charged with bringing order to the language of cell death to facilitate scientific progress. While the NCCD recommends adopting more objective biochemical terminology to describe the mechanisms of cell death, the metaphors in question retain an important function by highlighting the broader context within which cell death occurs. Scientific metaphors act as conceptual 'tools' which fulfill various roles, from highlighting a phenomenon as of particular interest, situating it in a particular context, or suggesting explanatory causal mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
The basic traumatic situation in the analytical relationship.
Hartke, Raul
2005-04-01
The author attempts to develop a concept of psychic trauma which would comply with the nucleus of this Freudian notion, that is, an excess of excitations that cannot be processed by the mental apparatus, but which would also consider the functions and the crucial role of objects in the constitution of the psychism and in traumatic conditions, as well as taking into account the methodological positioning according to which the analytical relationship is the sole possible locus of observation, inference and intervention by the psychoanalyst. He considers as a basic or minimal traumatic psychoanalytical situation that in which a magnitude or quality of emotions exceeds the capacity for containment of the psychoanalytical pair, to the point of generating a period or area of dementalisation in the psyche of one or both of the participants, of requiring analytical work on the matter and promoting a significant positive or negative change in the relationship. Availing himself of Bion's theory about the alpha function and the metapsychological conceptions of Freud and Green concerning psychic representations, he presents two theoretical formulations relating to this traumatic situation, utilising them according to the 'altered focus' model proposed by Bion. He presents three clinical examples to illustrate the concept and the relevant theoretical formulations.
Chassy, Philippe; Lindell, Trym A E; Jones, Jessica A; Paramei, Galina V
2015-01-01
Image aesthetic pleasure (AP) is conjectured to be related to image visual complexity (VC). The aim of the present study was to investigate whether (a) two image attributes, AP and VC, are reflected in eye-movement parameters; and (b) subjective measures of AP and VC are related. Participants (N=26) explored car front images (M=50) while their eye movements were recorded. Following image exposure (10 seconds), its VC and AP were rated. Fixation count was found to positively correlate with the subjective VC and its objective proxy, JPEG compression size, suggesting that this eye-movement parameter can be considered an objective behavioral measure of VC. AP, in comparison, positively correlated with average dwelling time. Subjective measures of AP and VC were related too, following an inverted U-shape function best-fit by a quadratic equation. In addition, AP was found to be modulated by car prestige. Our findings reveal a close relationship between subjective and objective measures of complexity and aesthetic appraisal, which is interpreted within a prototype-based theory framework. © The Author(s) 2015.
Visual agnosia and focal brain injury.
Martinaud, O
Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Identification and its vicissitudes.
Etchegoyen, R H
1985-01-01
This paper attempts to understand the vicissitudes of identification within the co-ordinates of narcissism and the object relation. Firstly the dialectic pair primary identification/secondary identification are studied, and primary narcissism is suggested as the hypothesis which best explains them. The complex identification processes in the primary scene are considered next and the importance of the introjection of the oedipal parents for the formation of the superego is underlined. The importance of the structuring function of the introjection and projection mechanisms becomes embodied in the concept of projective identification, which comes to question the postulate of primary narcissism. The theory of projective-introjective identification is an extremely powerful instrument for explaining phenomena, however it obliges one to accept that the first introjections are radically different from the others. They have nothing to do with mourning but rather with primitive mechanisms which question the subject/object polarity and, so this author believes, spring basically from envy. Lastly, it is maintained that envy and libido are factors of a dialectic from which the object relation and the earliest processes of identification, previous to the Oedipus complex, proceed at one and the same time.
Heuristics for Multiobjective Optimization of Two-Sided Assembly Line Systems
Jawahar, N.; Ponnambalam, S. G.; Sivakumar, K.; Thangadurai, V.
2014-01-01
Products such as cars, trucks, and heavy machinery are assembled by two-sided assembly line. Assembly line balancing has significant impacts on the performance and productivity of flow line manufacturing systems and is an active research area for several decades. This paper addresses the line balancing problem of a two-sided assembly line in which the tasks are to be assigned at L side or R side or any one side (addressed as E). Two objectives, minimum number of workstations and minimum unbalance time among workstations, have been considered for balancing the assembly line. There are two approaches to solve multiobjective optimization problem: first approach combines all the objectives into a single composite function or moves all but one objective to the constraint set; second approach determines the Pareto optimal solution set. This paper proposes two heuristics to evolve optimal Pareto front for the TALBP under consideration: Enumerative Heuristic Algorithm (EHA) to handle problems of small and medium size and Simulated Annealing Algorithm (SAA) for large-sized problems. The proposed approaches are illustrated with example problems and their performances are compared with a set of test problems. PMID:24790568
Kirby, Jessica L; Houston, Megan N; Gabriner, Michael L; Hoch, Matthew C
2016-08-01
Individuals with chronic ankle instability (CAI) have demonstrated alterations in ankle mechanics and deficits in sensory function. However, relationships between mechanical stability and somatosensory function have not been examined, nor have those between somatosensory function and injury history characteristics. Therefore, the objective of this study was to examine relationships between (1) somatosensory function and mechanical stability and (2) somatosensory function and injury history characteristics. Forty adults with CAI volunteered to participate. In a single testing session, participants completed mechanical and sensory assessments in a counterbalanced order. Dependent variables included anterior/posterior displacement (mm), inversion/eversion rotation (°), SWM index values, JPS absolute error (°), number of previous ankle sprains, and number of "giving way" episodes in the previous 3 months. Spearman's Rho correlations examined the relationships between somatosensory function and (1) mechanical stability and (2) injury history characteristics (p<0.05). No significant correlations were identified between any variables (p>0.11), and all r-values were considered weak. These results revealed somatosensory function was not significantly correlated to mechanical stability or injury history characteristics. This indicates peripheral sensory impairments associated with CAI are likely caused by factors other than mechanical stability and injury history characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evariste, Lauris; Rioult, Damien; Brousseau, Pauline; Geffard, Alain; David, Elise; Auffret, Michel; Fournier, Michel; Betoulle, Stéphane
2017-03-01
Increasing discharge of industrial wastes into the environment results in pollution transfer towards hydrosystems. These activities release heavy metals such as cadmium, known as persistent pollutant that is accumulated by molluscs and exercise immunotoxicological effects. Among molluscs, the zebra mussel, Dreissena polymorpha constitutes a suitable support for freshwater ecotoxicological studies. In molluscs, homeostasis maintain is ensured in part by hemocytes that are composed of several cell populations involved in multiple physiological processes such as cell-mediated immune response or metal metabolism. Thus, hemocytes constitute a target of concern to study adverse effects of heavy metals. The objectives of this work were to determine whether immune-related endpoints assessed were of different sensitivity to cadmium and whether hemocyte functionalities were differentially affected depending on hemocyte subpopulation considered. Hemocytes were exposed ex vivo to concentrations of cadmium ranging from 10 -6 M to 10 -3 M for 21h prior flow cytometric analysis of cellular markers. Measured parameters (viability, phagocytosis, oxidative activity, lysosomal content) decreased in a dose-dependent manner with sensitivity differences depending on endpoint and cell type considered. Our results indicated that phagocytosis related endpoints were the most sensitive studied mechanisms to cadmium compared to other markers with EC 50 of 3.71±0.53×10 -4 M for phagocytic activity and 2.79±0.19×10 -4 M considering mean number of beads per phagocytic cell. Lysosomal content of granulocytes was less affected compared to other cell types, indicating lower sensitivity to cadmium. This suggests that granulocyte population is greatly involved in metal metabolism. Mitochondrial activity was reduced only in blast-like hemocytes that are considered to be cell precursors. Impairment of these cell functionalities may potentially compromise functions ensured by differentiated cells. We concluded that analysis of hemocyte activities should be performed at sub-population scale for more accurate results in ecotoxicological studies. Copyright © 2016 Elsevier Inc. All rights reserved.
On some problems of inorganic supramolecular chemistry.
Pervov, Vladislav S; Zotova, Anna E
2013-12-02
In this study, some features that distinguish inorganic supramolecular host-guest objects from traditional architectures are considered. Crystalline inorganic supramolecular structures are the basis for the development of new functional materials. Here, the possible changes in the mechanism of crystalline inorganic supramolecular structure self-organization at high interaction potentials are discussed. The cases of changes in the host structures and corresponding changes in the charge states under guest intercalation, as well as their impact on phase stability and stoichiometry are considered. It was demonstrated that the deviation from the geometrical and topological complementarity conditions may be due to the additional energy gain from forming inorganic supramolecular structures. It has been assumed that molecular recognition principles can be employed for the development of physicochemical analysis and interpretation of metastable states in inorganic crystalline alloys. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum synchronization in an optomechanical system based on Lyapunov control.
Li, Wenlin; Li, Chong; Song, Heshan
2016-06-01
We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.
Zhao, Chuan-Li; Hsu, Hua-Feng
2014-01-01
This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n 4) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n 3) time by providing a dynamic programming algorithm. PMID:25258727
Zhao, Chuan-Li; Hsu, Chou-Jung; Hsu, Hua-Feng
2014-01-01
This paper considers single machine scheduling and due date assignment with setup time. The setup time is proportional to the length of the already processed jobs; that is, the setup time is past-sequence-dependent (p-s-d). It is assumed that a job's processing time depends on its position in a sequence. The objective functions include total earliness, the weighted number of tardy jobs, and the cost of due date assignment. We analyze these problems with two different due date assignment methods. We first consider the model with job-dependent position effects. For each case, by converting the problem to a series of assignment problems, we proved that the problems can be solved in O(n(4)) time. For the model with job-independent position effects, we proved that the problems can be solved in O(n(3)) time by providing a dynamic programming algorithm.
Space station tracking requirements feasibility study, volume 2
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches should be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JSC. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 2, containing Appendices K through U.
Space station tracking requirements feasibility study, volume 1
NASA Technical Reports Server (NTRS)
Udalov, Sergei; Dodds, James
1988-01-01
The objective of this feasibility study is to determine analytically the accuracies of various sensors being considered as candidates for Space Station use. Specifically, the studies were performed whether or not the candidate sensors are capable of providing the required accuracy, or if alternate sensor approaches be investigated. Other topics related to operation in the Space Station environment were considered as directed by NASA-JCS. The following topics are addressed: (1) Space Station GPS; (2) Space Station Radar; (3) Docking Sensors; (4) Space Station Link Analysis; (5) Antenna Switching, Power Control, and AGC Functions for Multiple Access; (6) Multichannel Modems; (7) FTS/EVA Emergency Shutdown; (8) Space Station Information Systems Coding; (9) Wanderer Study; and (10) Optical Communications System Analysis. Brief overviews of the abovementioned topics are given. Wherever applicable, the appropriate appendices provide detailed technical analysis. The report is presented in two volumes. This is Volume 1, containing the main body and Appendices A through J.
Analysis of credit linked demand in an inventory model with varying ordering cost.
Banu, Ateka; Mondal, Shyamal Kumar
2016-01-01
In this paper, we have considered an economic order quantity model for deteriorating items with two-level trade credit policy in which a delay in payment is offered by a supplier to a retailer and also an another delay in payment is offered by the retailer to his/her all customers. Here, it is proposed that the demand function is dependent on the length of the customer's credit period and also the duration of offering the credit period. In this article, it is considered that the retailer's ordering cost per order depends on the number of replenishment cycles. The objective of this model is to establish a deterministic EOQ model of deteriorating items for the retailer to decide the position of customers credit period and the number of replenishment cycles in finite time horizon such that the retailer gets the maximum profit. Also, the model is explained with the help of some numerical examples.
Ventura, Joseph; Subotnik, Kenneth L; Ered, Arielle; Hellemann, Gerhard S; Nuechterlein, Keith H
2016-04-01
Progress has been made in developing interview-based measures for the assessment of cognitive functioning, such as the Cognitive Assessment Interview (CAI), as co-primary measures that compliment objective neurocognitive assessments and daily functioning. However, a few questions remain, including whether the relationships with objective cognitive measures and daily functioning are high enough to justify the CAI as an co-primary measure and whether patient-only assessments are valid. Participants were first-episode schizophrenia patients (n=60) and demographically-similar healthy controls (n=35), chronic schizophrenia patients (n=38) and demographically similar healthy controls (n=19). Participants were assessed at baseline with an interview-based measure of cognitive functioning (CAI), a test of objective cognitive functioning, functional capacity, and role functioning at baseline, and in the first episode patients again 6 months later (n=28). CAI ratings were correlated with objective cognitive functioning, functional capacity, and functional outcomes in first-episode schizophrenia patients at similar magnitudes as in chronic patients. Comparisons of first-episode and chronic patients with healthy controls indicated that the CAI sensitively detected deficits in schizophrenia. The relationship of CAI Patient-Only ratings with objective cognitive functioning, functional capacity, and daily functioning were comparable to CAI Rater scores that included informant information. These results confirm in an independent sample the relationship of the CAI ratings with objectively measured cognition, functional capacity, and role functioning. Comparison of schizophrenia patients with healthy controls further validates the CAI as an co-primary measure of cognitive deficits. Also, CAI change scores were strongly related to objective cognitive change indicating sensitivity to change. Copyright © 2016 Elsevier B.V. All rights reserved.